WorldWideScience

Sample records for astrocytes

  1. Astrocytes.

    Science.gov (United States)

    Kimelberg, Harold K.; Norenberg, Michael D.

    1989-01-01

    Describes the astrocytes' function as equal partners with neurons in both the normal and the abnormal brain. Discusses the developmental scaffolds, inert scar tissue, Huntington's disease, psychiatric disorders, and the identification of these brain cells. (RT)

  2. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of......During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such...... cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were...

  3. Copper Metabolism of Astrocytes

    OpenAIRE

    Ralf Dringen; Scheiber, Ivo F.; Julian FB Mercer

    2013-01-01

    This short review will summarize the current knowledge on the uptake, storage, and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothion...

  4. Copper Metabolism of Astrocytes

    Directory of Open Access Journals (Sweden)

    Ralf eDringen

    2013-03-01

    Full Text Available This short review will summarize the current knowledge on the uptake, storage and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and of glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic inventions that aim to correct disturbances in brain copper homeostasis.

  5. Astrocytes optimize synaptic fidelity

    Science.gov (United States)

    Nadkarni, Suhita; Jung, Peter; Levine, Herbert

    2007-03-01

    Most neuronal synapses in the central nervous system are enwrapped by an astrocytic process. This relation allows the astrocyte to listen to and feed back to the synapse and to regulate synaptic transmission. We combine a tested mathematical model for the Ca^2+ response of the synaptic astrocyte and presynaptic feedback with a detailed model for vesicle release of neurotransmitter at active zones. The predicted Ca^2+ dependence of the presynaptic synaptic vesicle release compares favorably for several types of synapses, including the Calyx of Held. We hypothesize that the feedback regulation of the astrocyte onto the presynaptic terminal optimizes the fidelity of the synapse in terms of information transmission.

  6. Astrocytes Potentiate Synaptic Transmission

    Science.gov (United States)

    Nadkarni, Suhita

    2005-03-01

    A recent experimental study shows that astrocytes, a subtype of glia, are able to influence the spontaneous activity in the brain via calcium dependent glutamate release. We model the coupling mechanism between an astrocyte and a neuron based on experimental data. This coupling is dynamic and bi-directional, such that the modulations in intracellular calcium concentrations in astrocytes affect neuronal excitability and vice versa via a glutamatergic pathway. We demonstrate through simple neural-glial circuits that increases in the intracellular calcium concentration in astrocytes nearby can enhance spontaneous activity in a neuron, a significant mechanism said to be involved in plasticity and learning. The pattern of this marked increase in spontaneous firing rate in our model quantitatively follows that observed in the experiment. Further, depending on the type of synaptic connections diverging from the neuron, it can either inhibit or excite the ensuing dynamics and potentiate synaptic transmission, thus reinstating the integral role played by astrocytes in normal neuronal dynamics.

  7. Targeting astrocytes in major depression

    OpenAIRE

    Verkhratsky, Alexej; Peng, Liang; Gu, Li; Li, Baoman

    2015-01-01

    Astrocytes represent a highly heterogeneous population of neural cells primarily responsible for the homeostasis of the central nervous system. Astrocytes express multiple receptors for neurotransmitters, including the serotonin 5-HT2B receptors and interact with neurones at the synapse. Astroglia contribute to neurological diseases through homeostatic response, neuroprotection and reactivity. In major depression, astrocytes show signs of degeneration and are decreased in numbe...

  8. Astrocytes in Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Verkhratsky, Alexei; Olabarria, M.; Noristani, H. N.; Yeh, C. Y.; Rodríguez Arellano, Jose Julio

    2010-01-01

    Roč. 7, č. 4 (2010), s. 399-412. ISSN 1933-7213 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Astrocytes * neuroglia * neurodegeneration Subject RIV: FH - Neurology Impact factor: 6.084, year: 2010

  9. Modeling presynapse-astrocyte interactions

    OpenAIRE

    Kerstin Lenk

    2015-01-01

    Astrocytes have gained an increased interest in neuroscience due to their ability to influence synaptic transmission through gliotransmitters. Many studies and models concentrate on tripartite synapses formed by two neurons and an astrocyte. The effects of tripartite synapse on paired pulse facilitation and depression were suggested for example by De Pittá et al. (PLoS Comput. Biol. 2011). In the presented work we concentrated on the pathway from the presynapse to the astrocyte and back to th...

  10. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation and...... cell protrusions of both cell types. Moreover, the NGS analysis revealed that the mRNA of the intermediate filament proteins nestin and glial fibrilary acidic protein (GFAP) significantlyaccumulatedin astrocyte protrusions, which was examined in closer detail. Fluorescence in situ hybridization (FISH...

  11. Astrocytes: Orchestrating synaptic plasticity?

    Science.gov (United States)

    De Pittà, M; Brunel, N; Volterra, A

    2016-05-26

    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. PMID:25862587

  12. Astrocytes in multiple sclerosis.

    Science.gov (United States)

    Ludwin, Samuel K; Rao, Vijayaraghava Ts; Moore, Craig S; Antel, Jack P

    2016-08-01

    Recent experimental and clinical studies on astrocytes are unraveling the capabilities of these multi-functional cells in normal homeostasis, and in central nervous system (CNS) disease. This review focuses on understanding their behavior in all aspects of the initiation, evolution, and resolution of the multiple sclerosis (MS) lesion. Astrocytes display remarkable flexibility and variability of their physical structure and biochemical output, each aspect finely tuned to the specific stage and location of the disease, participating in both pathogenic and beneficial changes seen in acute and progressive forms. As examples, chemo-attractive or repulsive molecules may facilitate the entry of destructive immune cells but may also aid in the recruitment of oligodendrocyte precursors, essential for repair. Pro-inflammatory cytokines may attack pathogenic cells and also destroy normal oligodendrocytes, myelin, and axons. Protective trophic factors may also open the blood-brain barrier and modulate the extracellular matrix to favor recruitment and persistence of CNS-specific immune cells. A chronic glial scar may confer structural support following tissue loss and inhibit ingress of further noxious insults and also inhibit migration of reparative cells and molecules into the damaged tissue. Continual study into these processes offers the therapeutic opportunities to enhance the beneficial capabilities of these cells while limiting their destructive effects. PMID:27207458

  13. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes

    OpenAIRE

    Christian Schnell; Yohannes Hagos; Swen Hülsmann

    2012-01-01

    Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrol...

  14. Heterogeneity of Astrocytic Form and Function

    OpenAIRE

    Oberheim, Nancy Ann; Goldman, Steven A.; NEDERGAARD, Maiken

    2012-01-01

    Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structu...

  15. Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease

    OpenAIRE

    Lange, Sofie C.; Bak, Lasse K.; Helle S. Waagepetersen; Schousboe, Arne; Norenberg, Michael D.

    2012-01-01

    During the past decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium s...

  16. Intracellular Polyamines Enhance Astrocytic Coupling

    OpenAIRE

    Benedikt, Jan; Inyushin, Mikhail; Yuriy V Kucheryavykh; Rivera, Yomarie; Kucheryavykh, Lilia Y.; Nichols, Colin G.; Eaton, Misty J.; Skatchkov, Serguei N.

    2012-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncit...

  17. Memory in astrocytes: a hypothesis

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-01-01

    Full Text Available Abstract Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary

  18. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    OpenAIRE

    Wallach, Gilad; Lallouette, Jules; Herzog, Nitzan; De Pittà, Maurizio; Ben Jacob, Eshel; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocyt...

  19. Astrocytic regulation of cortical UP states

    OpenAIRE

    Poskanzer, Kira E.; Yuste, Rafael

    2011-01-01

    The synchronization of neuronal assemblies during cortical UP states has been implicated in computational and homeostatic processes, but the mechanisms by which this occurs remain unknown. To investigate potential roles of astrocytes in synchronizing cortical circuits, we electrically activated astrocytes while monitoring the activity of the surrounding network with electrophysiological recordings and calcium imaging. Stimulating a single astrocyte activates other astrocytes in the local circ...

  20. Astrocytes and lysosomal storage diseases.

    Science.gov (United States)

    Rama Rao, K V; Kielian, T

    2016-05-26

    Lysosomal storage diseases (LSDs) encompass a wide range of disorders characterized by inborn errors of lysosomal function. The majority of LSDs result from genetic defects in lysosomal enzymes, although some arise from mutations in lysosomal proteins that lack known enzymatic activity. Neuropathological abnormalities are a feature of several LSDs and when severe, represent an important determinant in disease outcome. Glial dysfunction, particularly in astrocytes, is also observed in numerous LSDs and has been suggested to impact neurodegeneration. This review will discuss the potential role of astrocytes in LSDs and highlight the possibility of targeting glia as a beneficial strategy to counteract the neuropathology associated with LSDs. PMID:26037807

  1. Functional Oxygen Sensitivity of Astrocytes.

    Science.gov (United States)

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  2. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Pankaj Seth; Nitin Koul

    2008-09-01

    Until recently, the neuroscience community held the belief that glial cells such as astrocytes and oligodendrocytes functioned solely as “support” cells of the brain. In this role, glial cells simply provide physical support and housekeeping functions for the more important cells of the brain, the neurons. However, this view has changed radically in recent years with the discovery of previously unrecognized and surprising functions for this underappreciated cell type. In the past decade or so, emerging evidence has provided new insights into novel glial cell activities such as control of synapse formation and function, communication, cerebrovascular tone regulation, immune regulation and adult neurogenesis. Such advances in knowledge have effectively elevated the role of the astrocyte to one that is more important than previously realized. This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis on astrocytes.

  3. Astrocytes Underlie Neuroinflammatory Memory Impairment

    OpenAIRE

    Osso, LA; Chan, JR

    2015-01-01

    © 2015 Elsevier Inc. All rights reserved. Neuroinflammation is being increasingly recognized as a potential mediator of cognitive impairments in various neurological conditions. Habbas et al. demonstrate that the pro-inflammatory cytokine tumor necrosis factor alpha signals through astrocytes to alter synaptic transmission and impair cognition in a mouse model of multiple sclerosis.

  4. Astrocyte Regulation of CNS Inflammation and Remyelination

    Directory of Open Access Journals (Sweden)

    Stephen J. Crocker

    2013-07-01

    Full Text Available Astrocytes regulate fundamentally important functions to maintain central nervous system (CNS homeostasis. Altered astrocytic function is now recognized as a primary contributing factor to an increasing number of neurological diseases. In this review, we provide an overview of our rapidly developing understanding of the basal and inflammatory functions of astrocytes as mediators of CNS responsiveness to inflammation and injury. Specifically, we elaborate on ways that astrocytes actively participate in the pathogenesis of demyelinating diseases of the CNS through their immunomodulatory roles as CNS antigen presenting cells, modulators of blood brain barrier function and as a source of chemokines and cytokines. We also outline how changes in the extracellular matrix can modulate astrocytes phenotypically, resulting in dysregulation of astrocytic responses during inflammatory injury. We also relate recent studies describing newly identified roles for astrocytes in leukodystrophies. Finally, we describe recent advances in how adapting this increasing breadth of knowledge on astrocytes has fostered new ways of thinking about human diseases, which offer potential to modulate astrocytic heterogeneity and plasticity towards therapeutic gain. In summary, recent studies have provided improved insight in a wide variety of neuroinflammatory and demyelinating diseases, and future research on astrocyte pathophysiology is expected to provide new perspectives on these diseases, for which new treatment modalities are increasingly necessary.

  5. Involvement of astrocytes in neurovascular communication.

    Science.gov (United States)

    Nuriya, M; Hirase, H

    2016-01-01

    The vascular interface of the brain is distinct from that of the peripheral tissue in that astrocytes, the most numerous glial cell type in the gray matter, cover the vasculature with their endfeet. This morphological feature of the gliovascular junction has prompted neuroscientists to suggest possible functional roles of astrocytes including astrocytic modulation of the vasculature. Additionally, astrocytes develop an intricate morphology that intimately apposes neuronal synapses, making them an ideal cellular mediator of neurovascular coupling. In this article, we first introduce the classical anatomical and physiological findings that led to the proposal of various gliovascular interaction models. Next, we touch on the technological advances in the past few decades that enabled investigations and evaluations of neuro-glio-vascular interactions in situ. We then review recent experimental findings on the roles of astrocytes in neurovascular coupling from the viewpoints of intra- and intercellular signalings in astrocytes. PMID:27130410

  6. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-01-27

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function. PMID:26814587

  7. Astrocytes in the tempest of multiple sclerosis.

    Science.gov (United States)

    Miljković, Djordje; Timotijević, Gordana; Mostarica Stojković, Marija

    2011-12-01

    Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is perfectly performed in the healthy CNS as they support functions of neurons. The omnipresence of astrocytes throughout the white and grey matter and their intimate relation with blood vessels of the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis (MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS therapeutics on astrocytes. PMID:21443873

  8. Dynamic reactive astrocytes after focal ischemia

    Institute of Scientific and Technical Information of China (English)

    Shinghua Ding

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disor-ders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar for-mation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

  9. Triptolide protects astrocytes from hypoxia/ reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    Minfang Guo; Hongcui Fan; Jiezhong Yu; Ning Ji; Yongsheng Sun; Liyun Liang; Baoguo Xiao; Cungen Ma

    2011-01-01

    Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.

  10. Gap Junctions Couple Astrocytes and Oligodendrocytes

    OpenAIRE

    Orthmann-Murphy, Jennifer L.; ABRAMS, CHARLES K.; Scherer, Steven S.

    2008-01-01

    In vertebrates, a family of related proteins called connexins form gap junctions (GJs), which are intercellular channels. In the central nervous system (CNS), GJs couple oligodendrocytes and astrocytes (O/A junctions) and adjacent astrocytes (A/A junctions), but not adjacent oligodendrocytes, forming a “glial syncytium.” Oligodendrocytes and astrocytes each express different connexins. Mutations of these connexin genes demonstrate that the proper functioning of myelin and oligodendrocytes req...

  11. White matter astrocytes in health and disease

    OpenAIRE

    Lundgaard, Iben; Osório, Maria Joana; Kress, Benjamin; Sanggaard, Simon; NEDERGAARD, Maiken

    2013-01-01

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and oligodendrocyte. Astrocytes also have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and grey matter astrocytes, how astrocytes support myelination, how their dysfunc...

  12. Glutamate Pays Its Own Way in Astrocytes

    OpenAIRE

    MaryC.McKenna

    2013-01-01

    In vitro and in vivo studies have shown that glutamate can be oxidized for energy by brain astrocytes. The ability to harvest the energy from glutamate provides astrocytes with a mechanism to offset the high ATP cost of the uptake of glutamate from the synaptic cleft. This brief review focuses on oxidative metabolism of glutamate by astrocytes, the specific pathways involved in the complete oxidation of glutamate and the energy provided by each reaction.

  13. Targeting astrocytes in bipolar disorder.

    Science.gov (United States)

    Peng, Liang; Li, Baoman; Verkhratsky, Alexei

    2016-06-01

    Astrocytes are homeostatic cells of the central nervous system, which are critical for development and maintenance of synaptic transmission and hence of synaptically connected neuronal ensembles. Astrocytic densities are reduced in bipolar disorder, and therefore deficient astroglial function may contribute to overall disbalance in neurotransmission and to pathological evolution. Classical anti-bipolar drugs (lithium salts, valproic acid and carbamazepine) affect expression of astroglial genes and modify astroglial signalling and homeostatic cascades. Many effects of both antidepressant and anti-bipolar drugs are exerted through regulation of glutamate homeostasis and glutamatergic transmission, through K(+) buffering, through regulation of calcium-dependent phospholipase A2 (that controls metabolism of arachidonic acid) or through Ca(2+) homeostatic and signalling pathways. Sometimes anti-depressant and anti-bipolar drugs exert opposite effects, and some effects on gene expression in drug treated animals are opposite in neurones vs. astrocytes. Changes in the intracellular pH induced by anti-bipolar drugs affect uptake of myo-inositol and thereby signalling via inositoltrisphosphate (InsP3), this being in accord with one of the main theories of mechanism of action for these drugs. PMID:27015045

  14. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  15. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. PMID:25732135

  16. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  17. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  18. Molecular diversity of astrocytes with implications for neurological disorders

    OpenAIRE

    Bachoo, Robert M.; Kim, Ryung S.; Ligon, Keith L.; Maher, Elizabeth A.; Brennan, Cameron; Billings, Nathan; Chan, Suzanne; Li, Cheng; Rowitch, David H.; Wing H. Wong; DePinho, Ronald A.

    2004-01-01

    The astrocyte represents the most abundant yet least understood cell type of the CNS. Here, we use a stringent experimental strategy to molecularly define the astrocyte lineage by integrating microarray datasets across several in vitro model systems of astrocyte differentiation, primary astrocyte cultures, and various astrocyterich CNS structures. The intersection of astrocyte data sets, coupled with the application of nonastrocytic exclusion filters, yielded many astrocyte-specific genes pos...

  19. Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster.

    OpenAIRE

    Suarez Najera, I; Fernandez Ruiz, B; Garcia Segura, L M

    1980-01-01

    Adult hamsters were used for this electron microscopic study of the hypothalamic region. Specialized contacts between astrocytes and astrocytes, and between astrocytes and other cellular elements, are described and illustrated. The specialized inter-astrocytic junctions occur primarily in perivascular and subpial regions, but also in areas of high synaptic density. The junctions between astrocytic processes are of hemidesmosomal type. Astrocytes are connected to oligodendroglial cells by mean...

  20. Astrocytes and Developmental White Matter Disorders

    Science.gov (United States)

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  1. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  2. Podocalyxin expression in malignant astrocytic tumors

    International Nuclear Information System (INIS)

    Podocalyxin is an anti-adhesive mucin-like transmembrane sialoglycoprotein that has been implicated in the development of aggressive forms of cancer. Podocalyxin is also known as keratan sulfate (KS) proteoglycan. Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors. The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors. In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR. Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells. In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells. Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors

  3. Podocalyxin expression in malignant astrocytic tumors.

    Science.gov (United States)

    Hayatsu, Norihito; Kaneko, Mika Kato; Mishima, Kazuhiko; Nishikawa, Ryo; Matsutani, Masao; Price, Janet E; Kato, Yukinari

    2008-09-19

    Podocalyxin is an anti-adhesive mucin-like transmembrane sialoglycoprotein that has been implicated in the development of aggressive forms of cancer. Podocalyxin is also known as keratan sulfate (KS) proteoglycan. Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors. The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors. In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR. Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells. In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells. Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors. PMID:18639524

  4. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. PMID:26358496

  5. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  6. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  7. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures

    OpenAIRE

    Kumamaru Hiromi; Saiwai Hirokazu; Kobayakawa Kazu; Kubota Kensuke; van Rooijen Nico; Inoue Kazuhide; Iwamoto Yukihide; Okada Seiji

    2012-01-01

    Abstract Background There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned r...

  8. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    OpenAIRE

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  9. Common astrocytic programs during brain development, injury and cancer

    OpenAIRE

    Silver, Daniel J.; Steindler, Dennis A.

    2009-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during...

  10. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M;

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...... bind with high affinity to MHC class II antigen expressing astrocytes; binding is displaceable with excess cold toxin. Competition experiments further indicate that TSST-1 and SEB at least partially compete with each other for binding to astrocytes suggesting they bind to the same HLA-DR region on...

  11. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    OpenAIRE

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (I...

  12. Association of astrocytes with neurons and astrocytes derived from distinct progenitor domains in the subpallium

    OpenAIRE

    Makio Torigoe; Kenta Yamauchi; Yan Zhu; Hiroaki Kobayashi; Fujio Murakami

    2015-01-01

    Astrocytes play pivotal roles in metabolism and homeostasis as well as in neural development and function in a manner thought to depend on their region-specific diversity. In the mouse spinal cord, astrocytes and neurons, which are derived from a common progenitor domain (PD) and controlled by common PD-specific transcription factors, migrate radially and share their final positions. However, whether astrocytes can only interact with neurons from common PDs in the brain remains unknown. Here,...

  13. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. PMID:27073064

  14. Calcium wave of Brain Astrocytes

    Science.gov (United States)

    Cornell Bell, A. H.

    1997-03-01

    Time lapse confocal scanning laser microscopy was used to study hippocampal astrocyte cultures loaded with a calcium indicator, Fluo3-AM (4 uM). kThe neurotransmitter kainate (100uM) overwhelms the Na+-buffering capacity of astrocytes within 100 sec resulting in reversal of the Na+/Ca2+ exchanger. This results in a subcellular site where Ca2+ entering the cytoplasm contributes to a long-distance Ca2+ wave which travels at 20 um/sec without decrement. Image analysis has shown calcium waves not only at a high Kainate dose, but also at a low Kainate dose, e.g. 10uM. These are, however, shortlived and burried in an extremely noisy background and only detectable by analyzing the calcium waves images for spatio-temporal coherence. As the kainate dose increases, more large scale coherent structures with visible geometric features (spiral waves and target waves) can be observed. Multiple spiral waves are produced when the Kainate dose increases to 100 uM. These waves travel at a constant velocity across entire microscope fields for long time periods (>30 mins). Na+ channels have no effect on the Kainate wave. Voltage-gated Ca2+ channels are not involved and Ca2+ enters through reversal of the exchanger. Ca2+ release from stores does not contribute to the kainate wave. Removal of Na+ or Ca2+ from outside and the specific Na+/Ca2+ exchange inhibitor benzamil (10 uM) inhibit the kainate wave. A functional antibody to alpha6-Integrin which is localized to membrane regions between cells inhibits the spread of the kainate wave in a dose and time-dependent manner. Fluorescence Recovery after Photobleach (FRAP) techniques indicate that gap junctions remain open between cells. This would imply that Ca2+ or IP3 need not pass through the gap junction, but reversal of the exchanger would propel the Ca2+ wave at the cell surface.

  15. Astrocytes release ATP through lysosomal exocytosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Astrocytes, the most abundant type of glial cells in the brain, have been found to release signaling molecules, including adenosine triphosphate(ATP), the most important energy carrier inside the cell as well as a universal extracellular signaling molecule.

  16. Astrocytes and Huntington’s Disease

    OpenAIRE

    Khakh, Baljit S.; Sofroniew, Michael V.

    2014-01-01

    In this Viewpoint, we summarize and discuss the recent serendipitous discovery of an astrocyte Kir4.1 potassium channel dysfunction in two mouse models of Huntington’s disease (HD). Restoration of Kir4.1 channels within astrocytes in vivo attenuated neuronal dysfunction, some aspects of motor dysfunction and increased survival time in a HD mouse model. Overall, the data show that aspects of altered neuronal excitability associated with HD may be secondary to changes in as...

  17. Relaxin Protects Astrocytes from Hypoxia In Vitro

    OpenAIRE

    Willcox, Jordan M.; Alastair J S Summerlee

    2014-01-01

    The peptide relaxin has recently been shown to protect brain tissues from the detrimental effects of ischemia. To date, the mechanisms for this remain unclear. In order to investigate the neuroprotective mechanisms by which relaxin may protect the brain, we investigated the possibility that relaxin protects astrocytes from hypoxia or oxygen/glucose deprivation (OGD). Cultured astrocytes were pre-treated with either relaxin-2 or relaxin-3 and exposed to OGD for 24 or 48 hours. Following OGD ex...

  18. Dynamic reactive astrocytes after focal ischemia

    OpenAIRE

    Ding, Shinghua

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advan...

  19. Stargazing: Monitoring subcellular dynamics of brain astrocytes.

    Science.gov (United States)

    Benjamin Kacerovsky, J; Murai, K K

    2016-05-26

    Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain. PMID:26162237

  20. Astrocyte response to St. Louis encephalitis virus.

    Science.gov (United States)

    Zuza, Adriano Lara; Barros, Heber Leão Silva; de Mattos Silva Oliveira, Thelma Fátima; Chávez-Pavoni, Juliana Helena; Zanon, Renata Graciele

    2016-06-01

    St. Louis encephalitis virus (SLEV), a flavivirus transmitted to humans by Culex mosquitoes, causes clinical symptoms ranging from acute febrile disorder to encephalitis. To reach the central nervous system (CNS) from circulating blood, the pathogen must cross the blood-brain barrier formed by endothelial cells and astrocytes. Because astrocytes play an essential role in CNS homeostasis, in this study these cells were infected with SLEV and investigated for astrogliosis, major histocompatibility complex (MHC)-I-dependent immune response, and apoptosis by caspase-3 activation. Cultures of Vero cells were used as a positive control for the viral infection. Cytopathic effects were observed in both types of cell cultures, and the cytotoxicity levels of the two were compared. Astrocytes infected with a dilution of 1E-01 (7.7E+08 PFU/mL) had a reduced mortality rate of more than 50% compared to the Vero cells. In addition, the astrocytes responded to the flavivirus infection with increased MHC-I expression and astrogliosis, characterized by intense glial fibrillary acidic protein expression and an increase in the number and length of cytoplasmic processes. When the astrocytes were exposed to higher viral concentrations, a proportional increase in caspase-3 expression was observed, as well as nuclear membrane destruction. SLEV immunostaining revealed a perinuclear location of the virus during the replication process. Together, these results suggest that mechanisms other than SLEV infection in astrocytes must be associated with the development of the neuroinvasive form of the disease. PMID:26975980

  1. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  2. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  3. Astrocyte Aquaporin Dynamics in Health and Disease.

    Science.gov (United States)

    Potokar, Maja; Jorgačevski, Jernej; Zorec, Robert

    2016-01-01

    The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state. PMID:27420057

  4. Label-free optical activation of astrocyte in vivo

    Science.gov (United States)

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  5. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Vartak-Sharma Neha

    2012-08-01

    Full Text Available Abstract Background Reactive astrogliosis is a ubiquitous but poorly understood hallmark of central nervous system pathologies such as trauma and neurodegenerative diseases. In vitro and in vivo studies have identified proinflammatory cytokines and chemokines as mediators of astrogliosis during injury and disease; however, the molecular mechanism remains unclear. In this study, we identify astrocyte elevated gene-1 (AEG-1, a human immunodeficiency virus 1 or tumor necrosis factor α-inducible oncogene, as a novel modulator of reactive astrogliosis. AEG-1 has engendered tremendous interest in the field of cancer research as a therapeutic target for aggressive tumors. However, little is known of its role in astrocytes and astrocyte-mediated diseases. Based on its oncogenic role in several cancers, here we investigate the AEG-1-mediated regulation of astrocyte migration and proliferation during reactive astrogliosis. Methods An in vivo brain injury mouse model was utilized to show AEG-1 induction following reactive astrogliosis. In vitro wound healing and cell migration assays following AEG-1 knockdown were performed to analyze the role of AEG-1 in astrocyte migration. AEG-1-mediated regulation of astrocyte proliferation was assayed by quantifying the levels of cell proliferation markers, Ki67 and proliferation cell nuclear antigen, using immunocytochemistry. Confocal microscopy was used to evaluate nucleolar localization of AEG-1 in cultured astrocytes following injury. Results The in vivo mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein and AEG-1 colocalization at the wound site. AEG-1 knockdown in cultured human astrocytes significantly reduced astrocyte migration into the wound site and cell proliferation. Confocal analysis showed colocalization of AEG-1 to the nucleolus of injured cultured human astrocytes. Conclusions The present findings report for the first time the novel role of AEG-1

  6. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    Science.gov (United States)

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  7. Astrocytes in physiological aging and Alzheimer's disease.

    Science.gov (United States)

    Rodríguez-Arellano, J J; Parpura, V; Zorec, R; Verkhratsky, A

    2016-05-26

    Astrocytes are fundamental for homoeostasis, defence and regeneration of the central nervous system. Loss of astroglial function and astroglial reactivity contributes to the aging of the brain and to neurodegenerative diseases. Changes in astroglia in aging and neurodegeneration are highly heterogeneous and region-specific. In animal models of Alzheimer's disease (AD) astrocytes undergo degeneration and atrophy at the early stages of pathological progression, which possibly may alter the homeostatic reserve of the brain and contribute to early cognitive deficits. At later stages of AD reactive astrocytes are associated with neurite plaques, the feature commonly found in animal models and in human diseased tissue. In animal models of the AD reactive astrogliosis develops in some (e.g. in the hippocampus) but not in all regions of the brain. For instance, in entorhinal and prefrontal cortices astrocytes do not mount gliotic response to emerging β-amyloid deposits. These deficits in reactivity coincide with higher vulnerability of these regions to AD-type pathology. Astroglial morphology and function can be regulated through environmental stimulation and/or medication suggesting that astrocytes can be regarded as a target for therapies aimed at the prevention and cure of neurodegenerative disorders. PMID:25595973

  8. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  9. Functions of astrocytes and their potential as therapeutic targets

    OpenAIRE

    Kimelberg, Harold K.; NEDERGAARD, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the s...

  10. Injury and repair of astrocyte after ionizing radiation

    International Nuclear Information System (INIS)

    Astrocyte is the most glial cell in the central nervous system. In the present experiment, radiation injury to the central nervous system (CNS) triggers a large network of cellular changes including neuron, glial cell and endothelial cell in morphology and metabolism and function. Astrocyte changes rapidly after ionizing radiation. There is a relationship between astrocyte and the pathologic process and function recover of damaged brain tissue following CNS injury. This suggests that astrocyte plays an important role in cure of clinical radiation injury

  11. Epigenetic Regulation of HIV-1 Latency in Astrocytes

    OpenAIRE

    Narasipura, Srinivas D.; Kim, Stephanie; Al-Harthi, Lena

    2014-01-01

    HIV infiltrates the brain at early times postinfection and remains latent within astrocytes and macrophages. Because astrocytes are the most abundant cell type in the brain, we evaluated epigenetic regulation of HIV latency in astrocytes. We have shown that class I histone deacetylases (HDACs) and a lysine-specific histone methyltransferase, SU(VAR)3-9, play a significant role in silencing of HIV transcription in astrocytes. Our studies add to a growing body of evidence demonstrating that ast...

  12. Astrocytes contribute to gamma oscillations and recognition memory

    OpenAIRE

    Lee, Hosuk Sean; Ghetti, Andrea; Pinto-Duarte, António; Xin WANG; Dziewczapolski, Gustavo; Galimi, Francesco; Huitron-Resendiz, Salvador; Piña-Crespo, Juan C.; Roberts, Amanda J.; Verma, Inder M.; Sejnowski, Terrence J.; Heinemann, Stephen F.

    2014-01-01

    Astrocytes are well placed to modulate neural activity. However, the functions typically attributed to astrocytes are associated with a temporal dimension significantly slower than the timescale of synaptic transmission of neurons. Consequently, it has been assumed that astrocytes do not play a major role in modulating fast neural network dynamics known to underlie cognitive behavior. By creating a transgenic mouse in which vesicular release from astrocytes can be reversibly blocked, we found...

  13. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  14. Astrocyte heterogeneity in the brain: from development to disease

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2015-03-01

    Full Text Available In the last decades, astrocytes have risen from passive supporters of neuronal activity to central players in brain function and cognition. Likewise, the heterogeneity of astrocytes starts to become recognized in contrast to the homogeneous population previously predicted. In this review, we focused on astrocyte heterogeneity in terms of their morphological, protein expression and functional aspects and debate in a historical perspective the diversity encountered in glial progenitors and how they may reflect mature astrocyte heterogeneity. We discussed data that show that different progenitors may have unsuspected roles in developmental processes. We have approached the functions of astrocyte subpopulations on the onset of psychiatric and neurological diseases.

  15. Local production of astrocytes in the cerebral cortex.

    Science.gov (United States)

    Ge, W-P; Jia, J-M

    2016-05-26

    Astrocytes are the largest glial population in the mammalian brain. Astrocytes in the cerebral cortex are reportedly generated from four sources, namely radial glia, progenitors in the subventricular zone (SVZ progenitors), locally proliferating glia, and NG2 glia; it remains an open question, however, as to what extent these four cell types contribute to the substantial increase in astrocytes that occurs postnatally in the cerebral cortex. Here we summarize all possible sources of astrocytes and discuss their roles in this postnatal increase. In particular, we focus on astrocytes derived from local proliferation within the cortex. PMID:26343293

  16. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  17. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier Min

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  18. Recent molecular approaches to understanding astrocyte function in vivo

    Directory of Open Access Journals (Sweden)

    Todd A Fiacco

    2013-12-01

    Full Text Available Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes - with an emphasis on astrocyte signaling - in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.

  19. A novel human astrocyte cell line (A735) with astrocyte-specific neurotransmitter function.

    Science.gov (United States)

    Price, T N; Burke, J F; Mayne, L V

    1999-05-01

    Studies of brain cell function and physiology are hampered by the limited availability of immortal human brain-derived cell lines, as a result of the technical difficulties encountered in establishing immortal human cells in culture. In this study, we demonstrate the application of recombinant DNA vectors expressing SV40 T antigen for the development of immortal human cell cultures, with morphological, growth, and functional properties of astrocytes. Primary human astrocytes were transfected with the SV40 T antigen expression vectors, pSV3neo or p735.6, and cultures were established with an extended lifespan. One of these cultures gave rise to an immortal cell line, designated A735. All the human SV40-derived lines retained morphological features and growth properties of type 1 astrocytes. Immunohistochemical studies and Western blot analysis of the intermediate filament proteins and glutamine synthetase demonstrated a differentiated but immature astrocyte phenotype. Transport of gamma-amino butyric acid and glutamate were examined and found to be by a glial-specific mechanism, consistent with the cell lines' retaining aspects of normal glial function. We conclude that methods based on the use of SV40 T antigen can successfully immortalize human astrocytes, retaining key astrocyte functions, but T antigen-induced proliferation appeared to interfere with expression of glial fibrillary acidic protein. We believe A735 is the first documented nontumor-derived human glial cell line which is immortal. PMID:10475274

  20. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C;

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...

  1. Astrocytes: a central element in neurological diseases

    NARCIS (Netherlands)

    M. Pekny; M. Pekna; A. Messing; C. Steinhäuser; J.M. Lee; V. Parpura; E.M. Hol; M.V. Sofroniew; A. Verkhratsky

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  2. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  3. Astrocytes : a central element in neurological diseases

    NARCIS (Netherlands)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin Moo; Parpura, Vladimir; Hol, Elly M.; Sofroniew, Michael V.; Verkhratsky, Alexei

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  4. Lrp4 in astrocytes modulates glutamatergic transmission.

    Science.gov (United States)

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity. PMID:27294513

  5. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes

    DEFF Research Database (Denmark)

    Lau, Cl; O'Shea, Rd; Bischof, L;

    2011-01-01

    BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes...... undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT...... activity and astrocytic morphology. EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA-1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed...

  6. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline.

    Science.gov (United States)

    Sharma, Arpita; Patro, Nisha; Patro, Ishan K

    2016-05-01

    Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline. PMID:26188416

  7. Manganese inhibits the ability of astrocytes to promote neuronal differentiation

    International Nuclear Information System (INIS)

    Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 μM) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrix protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H2O2 and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.

  8. Pyk2 is essential for astrocytes mobility following brain lesion.

    Science.gov (United States)

    Giralt, Albert; Coura, Renata; Girault, Jean-Antoine

    2016-04-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a calcium-dependent, non-receptor protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Pyk2 is enriched in the brain, especially the forebrain. Pyk2 is highly expressed in neurons but is also present in astrocytes, where its role is not known. We used Pyk2 knockout mice (Pyk2(-/-) ) developed in our laboratory to investigate the function of Pyk2 in astrocytes. Morphology and basic properties of astrocytes in vivo and in culture were not altered in the absence of Pyk2. However, following stab lesions in the motor cortex, astrocytes-mediated wound filling was slower in Pyk2(-/-) than in wild-type littermates. In an in vitro wound healing model, Pyk2(-/-) astrocytes migrated slower than Pyk2(+/+) astrocytes. The role of Pyk2 in actin dynamics was investigated by treating astrocytic cultures with the actin-depolymerizing drug latrunculin B. Actin filaments re-polymerization after latrunculin B treatment was delayed in Pyk2(-/-) astrocytes as compared with wild-type astrocytes. We mimicked wound-induced activation by treating astrocytes in culture with tumor-necrosis factor alpha (TNFα), which increased Pyk2 phosphorylation at Tyr402. TNFα increased PKC activity, and Rac1 phosphorylation at Ser71 similarly in wild-type and Pyk2-deficient astrocytes. Conversely, we found that gelsolin, an actin-capping protein known to interact with Pyk2 in other cell types, was less enriched at the leading edge of migrating Pyk2(-/-) astrocytes, suggesting that its lack of recruitment mediated in part the effects of the mutation. This work shows the critical role of Pyk2 in astrocytes migration during wound healing. GLIA 2016;64:620-634. PMID:26663135

  9. Astrocyte mega-domain hypothesis of the autistic savantism.

    Science.gov (United States)

    Mitterauer, Bernhard J

    2013-01-01

    Individuals with autism who show high abilities are called savants. Whereas in their brains a disconnection in and between neural networks has been identified, savantism is yet poorly understood. Focusing on astrocyte domain organization, it is hypothesized that local astrocyte mega-organizations may be responsible for exerting high capabilities in brains of autistic savants. Astrocytes, the dominant glial cell type, modulate synaptic information transmission. Each astrocyte is organized in non-overlapping domains. Formally, each astrocyte contacting n-neurons with m-synapses via its processes generates dynamic domains of synaptic interactions based on qualitative computation criteria, and hereby it structures neuronal information processing. If the number of processes is genetically significantly increased, these astrocytes operate in a mega-domain with a higher complexitiy of computation. From this model savant abilities are deduced. PMID:23098371

  10. Astrocytic role in synapse formation after injury.

    Science.gov (United States)

    Li, Ying; Li, Daqing; Raisman, Geoffrey

    2016-08-15

    In 1969 a paper entitled Neuronal plasticity in the septal nuclei of the adult rat proposed that new synapses are formed in the adult brain after injury (Raisman, 1969). The quantitative electron microscopic study of the timed responses to selective partial denervation of the neuropil of the adult rat septal nuclei after distant transection of the hippocampal efferent axons in the fimbria showed that the new synapses arise by sprouting of surviving adjacent synapses which selectively take over the previously denervated sites and thus restore the number of synapses to normal. This article presents the evidence for the role of perisynaptic astrocytic processes in the removal and formation of synapses and considers its significance as one of the three major divisions of the astrocytic surface in terms of the axonal responses to injury and regeneration. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26746338

  11. An Astrocyte-Specific Proteomic Approach toInflammatory Responses in Experimental Rat Glaucoma

    OpenAIRE

    Tezel, Gülgün; Yang, Xiangjun; Luo, Cheng; Cai, Jian; Powell, David W.

    2012-01-01

    This study introduces an astrocyte-specific approach, validates its sensitivity to quantitatively identify astrocyte responses in experimental rat glaucoma, and highlights various immune mediators/regulators characteristic of the inflammatory responses of ocular hypertensive astrocytes.

  12. Synchronization analysis of cultured epileptic human astrocytes

    Science.gov (United States)

    Balazsi, Gabor; Cornell-Bell, Ann; Neiman, Alexander; Moss, Frank

    2001-03-01

    Astrocyte cultures from severely epileptic patients were cultured, and the fluctuations of the intracellular calcium ion concentration were visualized using the fluorescent dye Fluo-3. The resulting image sequences were analyzed by methods of stochastic synchronization. Increased synchronization was observed in the epileptic tissues, when compared to normal tissues from rats. The more pathological the tissue, the more synchronized the calcium oscillations. The results might lead to a better understanding of intracellular calcium dynamics and could help drug development.

  13. Taurine Biosynthesis by Neurons and Astrocytes*

    OpenAIRE

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capab...

  14. Spatiotemporal characteristics of calcium dynamics in astrocytes

    Science.gov (United States)

    Kang, Minchul; Othmer, Hans G.

    2009-09-01

    Although Cai2+ waves in networks of astrocytes in vivo are well documented, propagation in vivo is much more complex than in culture, and there is no consensus concerning the dominant roles of intercellular and extracellular messengers [inositol 1,4,5-trisphosphate (IP3) and adenosine-5'-triphosphate (ATP)] that mediate Cai2+ waves. Moreover, to date only simplified models that take very little account of the geometrical struture of the networks have been studied. Our aim in this paper is to develop a mathematical model based on realistic cellular morphology and network connectivity, and a computational framework for simulating the model, in order to address these issues. In the model, Cai2+ wave propagation through a network of astrocytes is driven by IP3 diffusion between cells and ATP transport in the extracellular space. Numerical simulations of the model show that different kinetic and geometric assumptions give rise to differences in Cai2+ wave propagation patterns, as characterized by the velocity, propagation distance, time delay in propagation from one cell to another, and the evolution of Ca2+ response patterns. The temporal Cai2+ response patterns in cells are different from one cell to another, and the Cai2+ response patterns evolve from one type to another as a Cai2+ wave propagates. In addition, the spatial patterns of Cai2+ wave propagation depend on whether IP3, ATP, or both are mediating messengers. Finally, two different geometries that reflect the in vivo and in vitro configuration of astrocytic networks also yield distinct intracellular and extracellular kinetic patterns. The simulation results as well as the linear stability analysis of the model lead to the conclusion that Cai2+ waves in astrocyte networks are probably mediated by both intercellular IP3 transport and nonregenerative (only the glutamate-stimulated cell releases ATP) or partially regenerative extracellular ATP signaling.

  15. Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    OpenAIRE

    Halnes, Geir; Pettersen, Klas H.; Øyehaug, Leiv; Rognes, Marie E.; Langtangen, Hans Petter; Einevoll, Gaute T.

    2016-01-01

    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate mic...

  16. Astrocytes and diffusive spread of substances in brain extracellular space

    OpenAIRE

    Sherpa, Ang D.; Hrabetova, Sabina

    2016-01-01

    Brain function is based on communication between individual cells, neurons and glia. From a traditional point of view, neurons play a central role in the fast transfer of information in the central nervous system while astrocytes, major type of glia, serve as housekeeping elements maintaining homeostasis of the extracellular microenvironment. This view has dramatically changed in recent years as many findings ascribe new roles to astrocytes. It is becoming evident that astrocytes communica...

  17. Striatal astrocytes act as a reservoir for L-DOPA.

    Science.gov (United States)

    Asanuma, Masato; Miyazaki, Ikuko; Murakami, Shinki; Diaz-Corrales, Francisco J; Ogawa, Norio

    2014-01-01

    L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, DA and DAT in striatal astrocytes of hemi-parkinsonian model rats after repeated L-DOPA administration, and measured the contents of L-DOPA, DA and their metabolite in primary cultured striatal astrocytes after L-DOPA/DA treatment. Repeated injections of L-DOPA induced apparent L-DOPA- and DA-immunoreactivities and marked expression of DAT in reactive astrocytes on the lesioned side of the striatum in hemi-parkinsonian rats. Exposure to DA for 4h significantly increased the levels of DA and its metabolite DOPAC in cultured striatal astrocytes. L-DOPA was also markedly increased in cultured striatal astrocytes after 4-h L-DOPA exposure, but DA was not detected 4 or 8h after L-DOPA treatment, despite the expression of aromatic amino acid decarboxylase in astrocytes. Furthermore, the intracellular level of L-DOPA in cultured striatal astrocytes decreased rapidly after removal of extracellular L-DOPA. The results suggest that DA uptaken into striatal astrocytes is rapidly metabolized and that striatal astrocytes act as a reservoir of L-DOPA that govern the uptake or release of L-DOPA depending on extracellular L-DOPA concentration, but are less capable of converting L-DOPA to DA. PMID:25188235

  18. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  19. Metabolic dysfunction in the brain: implications of astrocyte activation

    OpenAIRE

    Sonia Luz Albarracin

    2015-01-01

    Astrocytes are the most abundant cells in the central nervous system (CNS). They participate in different processes such as maintaining the blood–brain barrier and ion homeostasis, uptake and turnover of neurotransmitters, and formation of synapses. In addition, astrocytes also respond to brain insults to prevent the damage. For instance, astrocyte activation plays a central role in the cellular response to brain insults like trauma, infections, stroke, tumorigenesis, and neurodegeneration....

  20. Astrocyte Form and Function in the Developing CNS

    OpenAIRE

    Chaboub, Lesley S.; Deneen, Benjamin

    2013-01-01

    Astrocytes have long been forgotten entities in our quest to understand brain function. Over the last few decades there has been an exponential increase in our knowledge of CNS function and consequently astrocytes have emerged as key figures in CNS physiology and disease. Indeed, several pediatric neurological disorders have recently been linked to astrocyte dysregulation including, leukodystrophies, autism spectrum disorders, and epilepsy. Given that pediatric disorders are rooted in develop...

  1. Astrocyte heterogeneity in the brain: from development to disease

    OpenAIRE

    Costa, Marcos R.; Cecilia Hedin-Pereira

    2015-01-01

    In the last decades, astrocytes have risen from passive supporters of neuronal activity to central players in brain function and cognition. Likewise, the heterogeneity of astrocytes starts to become recognized in contrast to the homogeneous population previously predicted. In this review, we focused on astrocyte heterogeneity in terms of their morphological, protein expression and functional aspects, and debate in a historical perspective the diversity encountered in glial progenitors and how...

  2. Astrocytes Are an Early Target in Osmotic Demyelination Syndrome

    OpenAIRE

    Gankam Kengne, Fabrice; Nicaise, Charles; Soupart, Alain; Boom, Alain; Schiettecatte, Johan; Pochet, Roland; Brion, Jean Pierre; Decaux, Guy

    2011-01-01

    Abrupt osmotic changes during rapid correction of chronic hyponatremia result in demyelinative brain lesions, but the sequence of events linking rapid osmotic changes to myelin loss is not yet understood. Here, in a rat model of osmotic demyelination syndrome, we found that massive astrocyte death occurred after rapid correction of hyponatremia, delineating the regions of future myelin loss. Astrocyte death caused a disruption of the astrocyte-oligodendrocyte network, rapidly upregulated infl...

  3. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice.

    OpenAIRE

    Messing, A; Head, M.W.; Galles, K.; Galbreath, E. J.; Goldman, J. E.; Brenner, M.

    1998-01-01

    Increased expression of glial fibrillary acidic protein (GFAP) is a hallmark of gliosis, the astrocytic hypertrophy that occurs during a wide variety of diseases of the central nervous system. To determine whether this increase in GFAP expression per se alters astrocyte function, we generated transgenic mice that carry copies of the human GFAP gene driven by its own promoter. Astrocytes of these mice are hypertrophic, up-regulate small heat-shock proteins, and contain inclusion bodies identic...

  4. Astrocytes mediate the neuroprotective effects of Tibolone following brain injury

    OpenAIRE

    Luis Miguel Garcia-Segura; Barreto, George E.

    2015-01-01

    Recently, astrocytes have become a key central player in mediating important functions in the brain. These physiological processes include neurotransmitter recycling, energy management, metabolic shuttle, immune sensing, K+ buffer, antioxidant supply and release of neurotrophic factors and gliotransmitters. These astrocytic roles are somehow altered upon brain injury, therefore strategies aimed at better protecting astrocytes are an essential asset to maintain brain homeostasis. In this cont...

  5. Transcriptomic analyses of primary astrocytes under TNFα treatment

    OpenAIRE

    Birck, Cindy; Koncina, Eric; Heurtaux, Tony; Glaab, Enrico; Michelucci, Alessandro; Heuschling, Paul; Grandbarbe, Luc

    2016-01-01

    Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1], [2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set o...

  6. Striatal Astrocytes Act as a Reservoir for L-DOPA

    OpenAIRE

    Masato Asanuma; Ikuko Miyazaki; Shinki Murakami; Diaz-Corrales, Francisco J.; Norio Ogawa

    2014-01-01

    L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, D...

  7. Astrocytes conspire with neurons during progression of neurological disease

    OpenAIRE

    McGann, James C.; Lioy, Daniel T.; Mandel, Gail

    2012-01-01

    As astrocytes are becoming recognized as important mediators of normal brain function, studies into their roles in neurological disease have gained significance. Across mouse models for neurodevelopmental and neurodegenerative diseases, astrocytes are considered key regulators of disease progression. In Rett syndrome and Parkinson’s disease, astrocytes can even initiate certain disease phenotypes. Numerous potential mechanisms have been offered to explain these results, but research into the ...

  8. The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals.

    Science.gov (United States)

    Michelucci, Alessandro; Bithell, Angela; Burney, Matthew J; Johnston, Caroline E; Wong, Kee-Yew; Teng, Siaw-Wei; Desai, Jyaysi; Gumbleton, Nigel; Anderson, Gregory; Stanton, Lawrence W; Williams, Brenda P; Buckley, Noel J

    2016-08-01

    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes. PMID:26138449

  9. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K;

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways at...

  10. Imaging neurotransmitter uptake and depletion in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tan, W. [Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 (United States); Haydon, P.G. [Department of Zoology and Genetics, Laboratory of Cellular Signaling, Iowa State University, Ames, Iowa 50011 (United States); Yeung, E.S. [Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1997-08-01

    An ultraviolet (UV) laser-based optical microscope and charge-coupled device (CCD) detection system was used to obtain chemical images of biological cells. Subcellular structures can be easily seen in both optical and fluorescence images. Laser-induced native fluorescence detection provides high sensitivity and low limits of detection, and it does not require coupling to fluorescent dyes. We were able to quantitatively monitor serotonin that has been taken up into and released from individual astrocytes on the basis of its native fluorescence. Different regions of the cells took up different amounts of serotonin with a variety of uptake kinetics. Similarly, we observed different serotonin depletion dynamics in different astrocyte regions. There were also some astrocyte areas where no serotonin uptake or depletion was observed. Potential applications include the mapping of other biogenic species in cells as well as the ability to image their release from specific regions of cells in response to external stimuli. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  11. Decoding astrocyte heterogeneity: New tools for clonal analysis.

    Science.gov (United States)

    Bribián, A; Figueres-Oñate, M; Martín-López, E; López-Mascaraque, L

    2016-05-26

    The importance of astrocyte heterogeneity came out as a hot topic in neurosciences especially over the last decades, when the development of new methodologies allowed demonstrating the existence of big differences in morphological, neurochemical and physiological features between astrocytes. However, although the knowledge about the biology of astrocytes is increasing rapidly, an important characteristic that remained unexplored, until the last years, has been the relationship between astrocyte lineages and cell heterogeneity. To fill this gap, a new method called StarTrack was recently developed, a powerful genetic tool that allows tracking astrocyte lineages forming cell clones. Using StarTrack, a single astrocyte progenitor and its progeny can be specifically labeled from its generation, during embryonic development, to its final fate in the adult brain. Because of this specific labeling, astrocyte clones, exhibiting heterogeneous morphologies and features, can be easily analyzed in relation to their ontogenetic origin. This review summarizes how astrocyte heterogeneity can be decoded studying the embryonic development of astrocyte lineages and their clonal relationship. Finally, we discuss about some of the challenges and opportunities emerging in this exciting area of investigation. PMID:25917835

  12. Astrocyte Mitogen Inhibitor Related to Epidermal Growth Factor Receptor

    Science.gov (United States)

    Nieto-Sampedro, Manuel

    1988-06-01

    Epidermal growth factor (EGF) is a well-characterized polypeptide hormone with diverse biological activities, including stimulation of astrocyte division. A soluble astrocyte mitogen inhibitor, immunologically related to the EGF receptor, is present in rat brain. Injury to the brain causes a time-dependent reduction in the levels of this inhibitor and the concomitant appearance of EGF receptor on the astrocyte surface. Intracerebral injection of antibody capable of binding the inhibitor caused the appearance of numerous reactive astrocytes. EGF receptor-related inhibitors may play a key role in the control of glial cell division in both normal and injured brain.

  13. A Digital Realization of Astrocyte and Neural Glial Interactions.

    Science.gov (United States)

    Hayati, Mohsen; Nouri, Moslem; Haghiri, Saeed; Abbott, Derek

    2016-04-01

    The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms. PMID:26390499

  14. Astrocyte scar formation aids central nervous system axon regeneration.

    Science.gov (United States)

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V

    2016-04-14

    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  15. Development of a Novel Method for the Purification and Culture of Rodent Astrocytes

    OpenAIRE

    Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.

    2011-01-01

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo...

  16. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures

    Directory of Open Access Journals (Sweden)

    Kumamaru Hiromi

    2012-05-01

    Full Text Available Abstract Background There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. Methods The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6 stimulation. Results The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in

  17. Selenoprotein S expression in reactive astrocytes following brain injury.

    Science.gov (United States)

    Fradejas, Noelia; Serrano-Pérez, Maria Del Carmen; Tranque, Pedro; Calvo, Soledad

    2011-06-01

    Selenoprotein S (SelS) is an endoplasmic reticulum (ER)-resident protein involved in the unfolded protein response. Besides reducing ER-stress, SelS attenuates inflammation by decreasing pro-inflammatory cytokines. We have recently shown that SelS is responsive to ischemia in cultured astrocytes. To check the possible association of SelS with astrocyte activation, here we investigate the expression of SelS in two models of brain injury: kainic acid (KA) induced excitotoxicity and cortical mechanical lesion. The regulation of SelS and its functional consequences for neuroinflammation, ER-stress, and cell survival were further analyzed using cultured astrocytes from mouse and human. According to our immunofluorescence analysis, SelS expression is prominent in neurons and hardly detectable in astrocytes from control mice. However, brain injury intensely upregulates SelS, specifically in reactive astrocytes. SelS induction by KA was evident at 12 h and faded out after reaching maximum levels at 3-4 days. Analysis of mRNA and protein expression in cultured astrocytes showed SelS upregulation by inflammatory stimuli as well as ER-stress inducers. In turn, siRNA-mediated SelS silencing combined with adenoviral overexpression assays demonstrated that SelS reduces ER-stress markers CHOP and spliced XBP-1, as well as inflammatory cytokines IL-1β and IL-6 in stimulated astrocytes. SelS overexpression increased astrocyte resistance to ER-stress and inflammatory stimuli. Conversely, SelS suppression compromised astrocyte viability. In summary, our results reveal the upregulation of SelS expression in reactive astrocytes, as well as a new protective role for SelS against inflammation and ER-stress that can be relevant to astrocyte function in the context of inflammatory neuropathologies. PMID:21456042

  18. Neuroimmunological Implications of AQP4 in Astrocytes.

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4's role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  19. Probing astrocytes with carbon nanotubes and assessing their effects on astrocytic structural and functional properties

    Science.gov (United States)

    Gottipati, Manoj K.

    Single-walled carbon nanotubes, chemically-functionalized with polyethylene glycol (SWCNT-PEG) have been shown to modulate the morphology and proliferation characteristics of astrocytes in culture, when applied to the cells as colloidal solutes or as films upon which the cells can attach and grow. These changes were associated with a change in the immunoreactivity of the astrocyte-specific protein, glial fibrillary acidic protein (GFAP); the solutes and films caused an increase and a decrease in GFAP levels, respectively. To assess if these morpho-functional changes induced by the SWCNT-PEG modalities are dependent on GFAP or if the changes in GFAP levels are independent events, I used astrocytes isolated from GFAP knockout mice and found that selected changes induced by the SWCNT-PEG modalities are mediated by GFAP, namely the changes in perimeter, shape and cell death for colloidal solutes and the rate of proliferation for films. Since the loss GFAP has been shown to hamper the trafficking of glutamate transporters to the surface of astrocytes, which plays a vital role in the uptake of extracellular glutamate and maintaining homeostasis in the brain and spinal cord, in a subsequent study, I assessed if the SWCNT-PEG solute causes any change in the glutamate uptake characteristics of astrocytes. Using a radioactive glutamate uptake assay and immunolabeling, I found that SWCNT-PEG solute causes an increase in the uptake of glutamate from the extracellular space along with an increase in the immunoreactivity of the glutamate transporter, L-glutamate L-aspartate transporter (GLAST), on their cell surface, a likely consequence of the increase in GFAP levels induced by the SWCNT-PEG solute. These results imply that SWCNT-PEG could potentially be used as a viable candidate in neural prosthesis applications to prevent glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries, and alleviate the death toll of neurons surrounding the injury

  20. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 40C, in an effort to establish the best conditions for the preservation. Survival rate at 40C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 40C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 40C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  1. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  2. Optical modulation of astrocyte network using ultrashort pulsed laser

    Science.gov (United States)

    Yoon, Jonghee; Ku, Taeyun; Chong, Kyuha; Ryu, Seung-Wook; Choi, Chulhee

    2012-03-01

    Astrocyte, the most abundant cell type in the central nervous system, has been one of major topics in neuroscience. Even though many tools have been developed for the analysis of astrocyte function, there has been no adequate tool that can modulates astrocyte network without pharmaceutical or genetic interventions. Here we found that ultrashort pulsed laser stimulation can induce label-free activation of astrocytes as well as apoptotic-like cell death in a dose-dependent manner. Upon irradiation with high intensity pulsed lasers, the irradiated cells with short exposure time showed very rapid mitochondria fragmentation, membrane blebbing and cytoskeletal retraction. We applied this technique to investigate in vivo function of astrocyte network in the CNS: in the aspect of neurovascular coupling and blood-brain barrier. We propose that this noninvasive technique can be widely applied for in vivo study of complex cellular network.

  3. Spatiotemporal characteristics of calcium dynamics in astrocytes

    OpenAIRE

    Kang, Minchul; Othmer, Hans G.

    2009-01-01

    Although Cai2+ waves in networks of astrocytes in vivo are well documented, propagation in vivo is much more complex than in culture, and there is no consensus concerning the dominant roles of intercellular and extracellular messengers [inositol 1,4,5–trisphosphate (IP3) and adenosine-5′-triphosphate (ATP)] that mediate Cai2+ waves. Moreover, to date only simplified models that take very little account of the geometrical struture of the networks have been studied. Our aim in this paper is to ...

  4. Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures

    Science.gov (United States)

    Balázsi, Gábor; Cornell-Bell, Ann H.; Moss, Frank

    2003-06-01

    Stochastic synchronization analysis is applied to intracellular calcium oscillations in astrocyte cultures prepared from epileptic human temporal lobe. The same methods are applied to astrocyte cultures prepared from normal rat hippocampus. Our results indicate that phase-repulsive coupling in epileptic human astrocyte cultures is stronger, leading to an increased synchronization in epileptic human compared to normal rat astrocyte cultures.

  5. Sex differences in hypothalamic astrocyte response to estradiol stimulation

    Directory of Open Access Journals (Sweden)

    Kuo John

    2010-11-01

    Full Text Available Abstract Background Reproductive functions controlled by the hypothalamus are highly sexually differentiated. One of the most dramatic differences involves estrogen positive feedback, which leads to ovulation. A crucial feature of this positive feedback is the ability of estradiol to facilitate progesterone synthesis in female hypothalamic astrocytes. Conversely, estradiol fails to elevate hypothalamic progesterone levels in male rodents, which lack the estrogen positive feedback-induced luteinizing hormone (LH surge. To determine whether hypothalamic astrocytes are sexually differentiated, we examined the cellular responses of female and male astrocytes to estradiol stimulation. Methods Primary adult hypothalamic astrocyte cultures were established from wild type rats and mice, estrogen receptor-α knockout (ERKO mice, and four core genotype (FCG mice, with the sex determining region of the Y chromosome (Sry deleted and inserted into an autosome. Astrocytes were analyzed for Sry expression with reverse transcription PCR. Responses to estradiol stimulation were tested by measuring free cytoplasmic calcium concentration ([Ca2+]i with fluo-4 AM, and progesterone synthesis with column chromatography and radioimmunoassay. Membrane estrogen receptor-α (mERα levels were examined using surface biotinylation and western blotting. Results Estradiol stimulated both [Ca2+]i release and progesterone synthesis in hypothalamic astrocytes from adult female mice. Male astrocytes had a significantly elevated [Ca2+]i response but it was significantly lower than in females, and progesterone synthesis was not enhanced. Surface biotinylation demonstrated mERα in both female and male astrocytes, but only in female astrocytes did estradiol treatment increase insertion of the receptor into the membrane, a necessary step for maximal [Ca2+]i release. Regardless of the chromosomal sex, estradiol facilitated progesterone synthesis in astrocytes from mice with ovaries

  6. Thyroid hormone action: Astrocyte-neuron communication.

    Directory of Open Access Journals (Sweden)

    BeatrizMorte

    2014-05-01

    Full Text Available Thyroid hormone action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase, expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by type 2 deiodinase. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local thyroid hormone action during development.

  7. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10-5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (3H)inositol, and basal (3H) inositol phosphate (IP1) accumulation was measured in the presence of Li+. Epinephrine > norepinephrine (NE) were the most active stimulants of IP1 production. The α1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP1 below basal levels and when added together diminished IP1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  8. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2010-08-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1–40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50–70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5–14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10–2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  9. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  10. Differentiation of purified astrocytes in a chemically defined medium

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, R.S.; de Vellis, J.

    1981-01-01

    Homogeneous cultures of astrocytes and oligodendrocytes provide an excellent model system for studying the regulation of glial structure and function. Recently, a chemically defined (CD) medium was developed for purified cultures of astrocytes, thus eliminating the requirement for serum and providing a controlled system for the study of astroglial properties. Due to the widespread use of astrocyte cultures and the potential benefits to be gained from using a defined medium, astrocyte cultures raised in CD medium were analyzed for purity as well as morphological and biochemical properties. Purity was assessed using immunocytochemical staining for glial fibrillary acidic protein (GFAP) and fibronectin. Astrocytes raised in CD medium are 95% pure using the expression of GFAP as a criterion. Fewer than 1% of the cells in CD medium stained positive for fibronectin eliminating the possibility that CD medium is selective for meningeal or endothelial cells. Astrocytes raised in CD medium exhibit a striking degree of morphological differentiation as seen in scanning electron micrographs. They also exhibit a high degree of biochemical differentiation illustrated by increases in the specific activity of S-100 protein and the induction of glutamine synthetase by glucocorticoids. A defined medium that supports the proliferation of rat astrocytes and enhances numerous morphological and biochemical properties should greatly facilitate the study of factors controlling glial proliferation and differentiation.

  11. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  12. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  13. Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function.

    Science.gov (United States)

    Pleiss, Melanie M; Sompol, Pradoldej; Kraner, Susan D; Abdul, Hafiz Mohmmad; Furman, Jennifer L; Guttmann, Rodney P; Wilcock, Donna M; Nelson, Peter T; Norris, Christopher M

    2016-09-01

    Mounting evidence suggests that astrocyte activation, found in most forms of neural injury and disease, is linked to the hyperactivation of the protein phosphatase calcineurin. In many tissues and cell types, calcineurin hyperactivity is the direct result of limited proteolysis. However, little is known about the proteolytic status of calcineurin in activated astrocytes. Here, we developed a polyclonal antibody to a high activity calcineurin proteolytic fragment in the 45-48kDa range (ΔCN) for use in immunohistochemical applications. When applied to postmortem human brain sections, the ΔCN antibody intensely labeled cell clusters in close juxtaposition to amyloid deposits and microinfarcts. Many of these cells exhibited clear activated astrocyte morphology. The expression of ΔCN in astrocytes near areas of pathology was further confirmed using confocal microscopy. Multiple NeuN-positive cells, particularly those within microinfarct core regions, also labeled positively for ΔCN. This observation suggests that calcineurin proteolysis can also occur within damaged or dying neurons, as reported in other studies. When a similar ΔCN fragment was selectively expressed in hippocampal astrocytes of intact rats (using adeno-associated virus), we observed a significant reduction in the strength of CA3-CA1 excitatory synapses, indicating that the hyperactivation of astrocytic calcineurin is sufficient for disrupting synaptic function. Together, these results suggest that proteolytic activation of calcineurin in activated astrocytes may be a central mechanism for driving and/or exacerbating neural dysfunction during neurodegenerative disease and injury. PMID:27212416

  14. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  15. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  16. Inducing Alignment In Astrocyte Tissue Constructs By Surface Ligands Patterned On Biomaterials

    OpenAIRE

    Meng, Fanwei; Hlady, Vladimir; Tresco, Patrick A.

    2011-01-01

    Planar substrates with patterned ligands were used to induce astrocyte alignment whereas substrates with uniform fields of ligand were used to produce random cell orientation. DRG neurons plated on top of oriented astrocyte monolayers exhibited directional outgrowth along aligned astrocytes, demonstrating that purely biological cues provided by the oriented astrocytes were sufficient to provide guidance cues. Antibody blocking studies demonstrated that astrocyte associated FN played a major m...

  17. Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery

    OpenAIRE

    Wu, Le-yu; Yu, Xue-li; Feng, Lin-yin

    2015-01-01

    Aim: Connexin 43 (Cx43) is a member of connexin family mainly expressed in astrocytes, which forms gap junctions and hemichannels and maintains the normal shape and function of astrocytes. In this study we investigated the role of Cx43 in astrocytes in facilitating neuronal recovery during ischemic stroke. Methods: Primary culture of astrocytes or a mixed culture of astrocytes and cortical neurons was subjected to oxygen glucose deprivation and reperfusion (OGD/R). The expression of Cx43 and ...

  18. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter

    OpenAIRE

    Vanzulli, Ilaria; Butt, Arthur M

    2015-01-01

    Astrocytes perform essential neuron-supporting functions in the central nervous system (CNS) and their disruption has devastating effects on neuronal integrity in multiple neuropathologies. Although astrocytes are considered resistant to most pathological insults, ischemia can result in astrocyte injury and astrocytes in postnatal white matter are particularly vulnerable. Metabotropic glutamate receptors (mGluR) are neuroprotective in ischemia and are widely expressed by astrocytes throughout...

  19. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology.

    Science.gov (United States)

    Laureys, Guy; Clinckers, Ralph; Gerlo, Sarah; Spooren, Anneleen; Wilczak, Nadine; Kooijman, Ron; Smolders, Ilse; Michotte, Yvette; De Keyser, Jacques

    2010-07-01

    Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states. PMID:20138112

  20. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    OpenAIRE

    Dienel, Gerald A.; Nancy F Cruz

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net g...

  1. Pyk2 is essential for astrocytes mobility following brain lesion

    OpenAIRE

    Giralt, Albert; Coura, Renata; Girault, Jean-Antoine

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a calcium-dependent, non-receptor protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Pyk2 is enriched in the brain, especially the forebrain. Pyk2 is highly expressed in neurons but is also present in astrocytes, where its role is not known. We used Pyk2 knockout mice (Pyk2−/−) developed in our laboratory to investigate the function of Pyk2 in astrocytes. Morphology and basic properties of astrocytes in vivo and in culture were not alte...

  2. Computational models of neuron-astrocyte interaction in epilepsy

    Directory of Open Access Journals (Sweden)

    Vladislav eVolman

    2012-08-01

    Full Text Available Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computational models of astrocytic involvement in epileptogenesis, focusing on their relevance to existing physiological data.

  3. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration

    OpenAIRE

    Vartak-Sharma Neha; Ghorpade Anuja

    2012-01-01

    Abstract Background Reactive astrogliosis is a ubiquitous but poorly understood hallmark of central nervous system pathologies such as trauma and neurodegenerative diseases. In vitro and in vivo studies have identified proinflammatory cytokines and chemokines as mediators of astrogliosis during injury and disease; however, the molecular mechanism remains unclear. In this study, we identify astrocyte elevated gene-1 (AEG-1), a human immunodeficiency virus 1 or tumor necrosis factor α-inducible...

  4. Intercellular synchronization of diffusively coupled astrocytes

    CERN Document Server

    Alam, Md Jahoor; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2010-01-01

    We examine the synchrony of the dynamics of localized [Ca^{2+}]_i oscillations in internal pool of astrocytes via diffusing coupling of a network of such cells in a certain topology where cytosolic Ca^{2+} and inositol 1,4,5-triphosphate (IP3) are coupling molecules; and possible long range interaction among the cells. Our numerical results claim that the cells exhibit fairly well coordinated behaviour through this coupling mechanism. It is also seen in the results that as the number of coupling molecular species is increased, the rate of synchrony is also increased correspondingly. Apart from the topology of the cells taken, as the number of coupled cells around any one of the cells in the system is increased, the cell process information faster.

  5. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering

    OpenAIRE

    NAGY, JAMES I.; Rash, John E.

    2003-01-01

    Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes. In addition, primarily Cx29 and Cx32 are contain...

  6. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  7. Overexpression of Eg5 correlates with high grade astrocytic neoplasm.

    Science.gov (United States)

    Liu, Liqiong; Liu, Xichun; Mare, Marcus; Dumont, Aaron S; Zhang, Haitao; Yan, Dong; Xiong, Zhenggang

    2016-01-01

    To investigate the relationship between Eg5 and histopathological grade of astrocytoma, Eg5 expression was evaluated by immunohistochemical examination on 88 specimens including 25 cases of glioblastoma (WHO grade IV), 22 cases of anaplastic astrocytoma (WHO grade III), 20 cases of diffuse astrocytoma (WHO grade II), and 21 cases of pilocytic astrocytoma (WHO grade I). The histopathological characteristics and Eg5 expression level of each tumor were assessed and statistically analyzed. Astrocytic tumors exhibited significant correlation of expression of Eg5 with higher WHO histopathological grades (p astrocytoma, 6-36% (mean 18.60%) of neoplastic cells in diffuse astrocytoma, and 2-28% (mean 13.48%) of neoplastic cells in pilocytic astrocytoma. In conclusion, overexpression of Eg5 associates with high-grade astrocytic neoplasm, and it may represent an independent diagnostic and prognostic factor in grading astrocytic tumors and predicting prognosis of astrocytic tumor patients. PMID:26456023

  8. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel Bo;

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET of the...... brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes and...... astrocyte metabolism of [(11)C]acetate. No significant differences of the rate constant of oxidation of [(11)C]acetate (k 3) were found among the three groups of subjects. The net metabolic clearance of [(11)C]acetate from blood was lower in the group of patients with cirrhosis and HE than in the group of...

  9. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  10. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes

    OpenAIRE

    Chao Zhang; Wenliang Chen; Xin Zhang; Bin Huang; Aanjing Chen; Ying He; Jian Wang; Xingang Li

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic ...

  11. Astrocytes as therapeutic targets of estrogenic compounds following brain injuries

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-03-01

    Full Text Available For decades, astrocytes have been considered to be non-excitable support cells that are relatively resistant to brain injury. This view has changed radically during the past twenty years. Multiple essential functions are performed by astrocytes in normal brain. Astrocytes are dynamically involved in synaptic transmission, metabolic and ionic homeostasis, and inflammatory maintenance of the blood brain barrier. Advances in our understanding of astrocytes include new observations about their structure, organization, and function. Astrocytes play an active and important role in the pathophysiology of brain damage. Brain injury impairs mitochondrial function and this is accompanied by increased oxidative stress, leading to prominent astrogliosis, which involves changes in gene expression and morphology, and therefore glial scar formation. Recent works have demonstrated a protective role of reactive astrocytes after brain injury. Nevertheless, others have pointed to an inhibitory role of astrocytes in axonal regeneration after injury. Reactive astrogliosis is a complex phenomenon that includes a mixture of positive and negative responses for neuronal survival and regeneration. Reactive astroglia maintains the integrity of the blood-brain barrier and the survival of the perilesional tissue, but may prevent axonal and damaged tissue regeneration. Neuroprotective strategies aiming at reducing gliosis and enhance brain plasticity are of potential interest for translational neuroscience research in brain injuries. In this context, neurosteroids have shown to be a promising strategy to protect brain against injury, as their effects may rely on reducing gliosis, brain inflammation and potentially modulating recovery from brain injury by engaging mechanisms of neural plasticity. In conclusion, in this work we will consider particularly the two-edged sword role of reactive astrocytes, which is an experimental paradigm helpful in discriminating destructive

  12. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling

    OpenAIRE

    Parpura, Vladimir; VERKHRATSKY, ALEXEI

    2012-01-01

    Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is...

  13. Recent molecular approaches to understanding astrocyte function in vivo

    OpenAIRE

    Fiacco, Todd A.; Cendra Agulhon

    2013-01-01

    Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments ...

  14. Computational models of neuron-astrocyte interaction in epilepsy

    OpenAIRE

    Vladislav Volman; Maxim Bazhenov; Sejnowski, Terrence J.

    2012-01-01

    Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability, and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computation...

  15. Neuroinflammation alters voltage-dependent conductance in striatal astrocytes

    OpenAIRE

    Karpuk, Nikolay; Burkovetskaya, Maria; Kielian, Tammy

    2012-01-01

    Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)+ astrocytes neighboring abscesses at postinfection ...

  16. A Mathematical Model of Tripartite Synapse: Astrocyte Induced Synaptic Plasticity

    OpenAIRE

    Tewari, Shivendra; Majumdar, Kaushik

    2011-01-01

    In this paper we present a biologically detailed mathematical model of tripartite synapses, where astrocytes modulate short-term synaptic plasticity. The model consists of a pre-synaptic bouton, a post-synaptic dendritic spine-head, a synaptic cleft and a peri-synaptic astrocyte controlling Ca2+ dynamics inside the synaptic bouton. This in turn controls glutamate release dynamics in the cleft. As a consequence of this, glutamate concentration in the cleft has been modeled, in which glutamate ...

  17. The astrocyte as a gatekeeper of synaptic information transfer

    OpenAIRE

    Volman, Vladislav; Ben-Jacob, Eshel; Levine, Herbert

    2006-01-01

    We present a simple biophysical model for the coupling between synaptic transmission and the local calcium concentration on an enveloping astrocytic domain. This interaction enables the astrocyte to modulate the information flow from presynaptic to postsynaptic cells in a manner dependent on previous activity at this and other nearby synapses. Our model suggests a novel, testable hypothesis for the spike timing statistics measured for rapidly-firing cells in culture experiments.

  18. Information Transmission in a Neuron-Astrocyte Coupled Model

    OpenAIRE

    Tang, Jun; Luo, Jin-Ming; Ma, Jun

    2013-01-01

    A coupled model containing two neurons and one astrocyte is constructed by integrating Hodgkin-Huxley neuronal model and Li-Rinzel calcium model. Based on this hybrid model, information transmission between neurons is studied numerically. Our results show that when the successive spikes are produced in neuron 1 (N1), the bursting-like spikes (BLSs) occur in two neurons simultaneously during the spikes being transferred to neuron 2 (N2). The existence of the astrocyte and a higher expression l...

  19. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    OpenAIRE

    Tommaso eFellin; Jeffrey M Ellenbogen; Maurizio eDe Pittà; Eshel eBen-Jacob; Michael M Halassa

    2012-01-01

    Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges...

  20. Astrocytes Directly Influence Tumor Cell Invasion and Metastasis In Vivo

    OpenAIRE

    Wang, Ling; Cossette, Stephanie M.; Rarick, Kevin R.; Gershan, Jill; Michael B Dwinell; Harder, David R.; Ramchandran, Ramani

    2013-01-01

    Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among wh...

  1. Group B streptococcal infection and activation of human astrocytes.

    Directory of Open Access Journals (Sweden)

    Terri D Stoner

    Full Text Available Streptococcus agalactiae (Group B Streptococcus, GBS is the leading cause of life-threatening meningitis in human newborns in industrialized countries. Meningitis results from neonatal infection that occurs when GBS leaves the bloodstream (bacteremia, crosses the blood-brain barrier (BBB, and enters the central nervous system (CNS, where the bacteria contact the meninges. Although GBS is known to invade the BBB, subsequent interaction with astrocytes that physically associate with brain endothelium has not been well studied.We hypothesize that human astrocytes play a unique role in GBS infection and contribute to the development of meningitis. To address this, we used a well- characterized human fetal astrocyte cell line, SVG-A, and examined GBS infection in vitro. We observed that all GBS strains of representative clinically dominant serotypes (Ia, Ib, III, and V were able to adhere to and invade astrocytes. Cellular invasion was dependent on host actin cytoskeleton rearrangements, and was specific to GBS as Streptococcus gordonii failed to enter astrocytes. Analysis of isogenic mutant GBS strains deficient in various cell surface organelles showed that anchored LTA, serine-rich repeat protein (Srr1 and fibronectin binding (SfbA proteins all contribute to host cell internalization. Wild-type GBS also displayed an ability to persist and survive within an intracellular compartment for at least 12 h following invasion. Moreover, GBS infection resulted in increased astrocyte transcription of interleukin (IL-1β, IL-6 and VEGF.This study has further characterized the interaction of GBS with human astrocytes, and has identified the importance of specific virulence factors in these interactions. Understanding the role of astrocytes during GBS infection will provide important information regarding BBB disruption and the development of neonatal meningitis.

  2. A Common Progenitor for Retinal Astrocytes and Oligodendrocytes

    OpenAIRE

    Rompani, Santiago B.; Cepko, Constance L.

    2010-01-01

    Developing neural tissue undergoes a period of neurogenesis followed by a period of gliogenesis. The lineage relationships among glial cell types have not been defined for most areas of the nervous system. Here we use retroviruses to label clones of glial cells in the chick retina. We found that almost every clone had both astrocytes and oligodendrocytes. In addition, we discovered a novel glial cell type, with features intermediate between those of astrocytes and oligodendrocytes, which we h...

  3. Crucial role of astrocytes in temporal lobe epilepsy.

    Science.gov (United States)

    Steinhäuser, C; Grunnet, M; Carmignoto, G

    2016-05-26

    Astrocytes sense and respond to synaptic activity through activation of different neurotransmitter receptors and transporters. Astrocytes are also coupled by gap junctions, which allow these cells to redistribute through the glial network the K(+) ions excessively accumulated at sites of intense neuronal activity. Work over the past two decades has revealed important roles for astrocytes in brain physiology, and it is therefore not surprising that recent studies unveiled their involvement in the etiology of neurological disorders such as epilepsy. Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization and function of astrocytic connexins, K(+) and water channels. In addition, disturbed gliotransmission as well as malfunction of glutamate transporters and of the astrocytic glutamate- and adenosine-converting enzymes - glutamine synthetase and adenosine kinase, respectively - have been observed in epileptic tissues. Accordingly, increasing evidence indicates that dysfunctional astrocytes are crucially involved in processes leading to epilepsy. These new insights might foster the search for new targets for the development of new, more efficient anti-epileptogenic therapies. PMID:25592426

  4. Astrocytes, Synapses and Brain Function: A Computational Approach

    Science.gov (United States)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  5. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  6. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    International Nuclear Information System (INIS)

    Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 μM. This stimulation was blocked by the low concentration of the α1-adrenergic antagonist prazosin but not by the α2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables

  7. Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality

    OpenAIRE

    Magnotti, Laura M.; Goodenough, Daniel A.; Paul, David L.

    2011-01-01

    CNS glia exhibit a variety of gap junctional interactions: between neighboring astrocytes, between neighboring oligodendrocytes, between astrocytes and oligodendrocytes, and as ‘reflexive’ structures between layers of myelin in oligodendrocytes. Together, these junctions are thought to form a network facilitating absorption and removal of extracellular K+ released during neuronal activity. In mice, loss of the two major oligodendrocyte connexins causes severe demyelination and early mortality...

  8. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes

    OpenAIRE

    Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei; Zhou, Min

    2015-01-01

    Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and ...

  9. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  10. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  11. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes

    Directory of Open Access Journals (Sweden)

    Gautam K Gandhi

    2010-03-01

    Full Text Available Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin-treated rats at 20–24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  12. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  13. Voluntary Exercise Induces Astrocytic Structural Plasticity in the Globus Pallidus.

    Science.gov (United States)

    Tatsumi, Kouko; Okuda, Hiroaki; Morita-Takemura, Shoko; Tanaka, Tatsuhide; Isonishi, Ayami; Shinjo, Takeaki; Terada, Yuki; Wanaka, Akio

    2016-01-01

    Changes in astrocyte morphology are primarily attributed to the fine processes where intimate connections with neurons form the tripartite synapse and participate in neurotransmission. Recent evidence has shown that neurotransmission induces dynamic synaptic remodeling, suggesting that astrocytic fine processes may adapt their morphologies to the activity in their environment. To illustrate such a neuron-glia relationship in morphological detail, we employed a double transgenic Olig2(CreER/WT); ROSA26-GAP43-EGFP mice, in which Olig2-lineage cells can be visualized and traced with membrane-targeted GFP. Although Olig2-lineage cells in the adult brain usually become mature oligodendrocytes or oligodendrocyte precursor cells with NG2-proteoglycan expression, we found a population of Olig2-lineage astrocytes with bushy morphology in several brain regions. The globus pallidus (GP) preferentially contains Olig2-lineage astrocytes. Since the GP exerts pivotal motor functions in the indirect pathway of the basal ganglionic circuit, we subjected the double transgenic mice to voluntary wheel running to activate the GP and examined morphological changes of Olig2-lineage astrocytes at both the light and electron microscopic levels. The double transgenic mice were divided into three groups: control group mice were kept in a cage with a locked running wheel for 3 weeks, Runner group were allowed free access to a running wheel for 3 weeks, and the Runner-Rest group took a sedentary 3-week rest after a 3-week running period. GFP immunofluorescence analysis and immunoelectron microscopy revealed that astrocytic fine processes elaborated complex arborization in the Runner mice, and reverted to simple morphology comparable to that of the Control group in the Runner-Rest group. Our results indicated that the fine processes of the Olig2-lineage astrocytes underwent plastic changes that correlated with overall running activities, suggesting that they actively participate in motor

  14. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  15. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [14C]acetoacetate formed from the [1-14C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [14C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  16. Effects of Hydro Alcoholic Extraction of Valeriana on Astrocyte Raphe Magnus in Adult Rats

    Directory of Open Access Journals (Sweden)

    sajad Hatami joni

    2014-12-01

    Conclusion: Oral administration of hydro alcoholic extract of valerian increases astrocytes number and decreases their size in nucleus of raphe Magna, which indicated the effect of this extraction on proliferation of astrocytes increasing.

  17. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    Science.gov (United States)

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes. PMID:26976322

  18. Astrocyte activation in vivo during graded photic stimulation.

    Science.gov (United States)

    Dienel, Gerald A; Schmidt, Kathleen C; Cruz, Nancy F

    2007-11-01

    Astrocytes have important roles in control of extracellular environment, de novo synthesis of neurotransmitters, and regulation of neurotransmission and blood flow. All of these functions require energy, suggesting that astrocytic metabolism should rise and fall with changes in neuronal activity and that brain imaging can be used to visualize and quantify astrocytic activation in vivo. A unilateral photic stimulation paradigm was used to test the hypothesis that graded sensory stimuli cause progressive increases in the uptake coefficient of [2-(14)C]acetate, a substrate preferentially oxidized by astrocytes. The acetate uptake coefficient fell in deafferented visual structures and it rose in intact tissue during photic stimulation of conscious rats; the increase was highest in structures with monosynaptic input from the eye and was much smaller in magnitude than the change in glucose utilization (CMR(glc)) by all cells. The acetate uptake coefficient was not proportional to stimulus rate and did not correlate with CMR(glc) in resting or activated structures. Simulation studies support the conclusions that acetate uptake coefficients represent mainly metabolism and respond to changes in metabolism rate, with a lower response at high rates. A model portraying regulation of acetate oxidation illustrates complex relationships among functional activation, cation levels, and astrocytic metabolism. PMID:17725580

  19. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  20. Astrocytes directly influence tumor cell invasion and metastasis in vivo.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2 and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.

  1. Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma.

    Science.gov (United States)

    Vardjan, Nina; Horvat, Anemari; Anderson, Jamie E; Yu, Dou; Croom, Deborah; Zeng, Xiang; Lužnik, Zala; Kreft, Marko; Teng, Yang D; Kirov, Sergei A; Zorec, Robert

    2016-06-01

    Edema in the central nervous system can rapidly result in life-threatening complications. Vasogenic edema is clinically manageable, but there is no established medical treatment for cytotoxic edema, which affects astrocytes and is a primary trigger of acute post-traumatic neuronal death. To test the hypothesis that adrenergic receptor agonists, including the stress stimulus epinephrine protects neural parenchyma from damage, we characterized its effects on hypotonicity-induced cellular edema in cortical astrocytes by in vivo and in vitro imaging. After epinephrine administration, hypotonicity-induced swelling of astrocytes was markedly reduced and cytosolic 3'-5'-cyclic adenosine monophosphate (cAMP) was increased, as shown by a fluorescence resonance energy transfer nanosensor. Although, the kinetics of epinephrine-induced cAMP signaling was slowed in primary cortical astrocytes exposed to hypotonicity, the swelling reduction by epinephrine was associated with an attenuated hypotonicity-induced cytosolic Ca(2+) excitability, which may be the key to prevent astrocyte swelling. Furthermore, in a rat model of spinal cord injury, epinephrine applied locally markedly reduced neural edema around the contusion epicenter. These findings reveal new targets for the treatment of cellular edema in the central nervous system. GLIA 2016;64:1034-1049. PMID:27018061

  2. Astrocytes mediate the neuroprotective effects of Tibolone following brain injury

    Directory of Open Access Journals (Sweden)

    Luis Miguel Garcia-Segura

    2015-04-01

    Full Text Available Recently, astrocytes have become a key central player in mediating important functions in the brain. These physiological processes include neurotransmitter recycling, energy management, metabolic shuttle, immune sensing, K+ buffer, antioxidant supply and release of neurotrophic factors and gliotransmitters. These astrocytic roles are somehow altered upon brain injury, therefore strategies aimed at better protecting astrocytes are an essential asset to maintain brain homeostasis. In this context, estrogenic compounds, such as Tibolone, have attracted attention for their beneficial effects in acute and chronic degenerative diseases. Tibolone may act through binding to estrogen, androgen or progesterone receptors and exert protective effects by reducing astrocytes cell death and oxidative stress signaling mechanisms. Although Tibolone has a multifactorial effect in the brain, its mechanisms of action are not completely understood. In this work, we highlight the role of Tibolone in brain protection upon damage, how astrocytes might mediate part of its neuroprotective actions and discuss the effects of Tibolone in diminishing the harmful consequences of a metabolic insult and energy failure in the setting of a pathological event.

  3. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  4. Investigation on the suitable pressure for the preservation of astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: sotome_shinichi@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4{sup 0}C, in an effort to establish the best conditions for the preservation. Survival rate at 4{sup 0}C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4{sup 0}C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4{sup 0}C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  5. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Science.gov (United States)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  6. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  7. Investigation on the suitable pressure for the preservation of astrocyte

    Science.gov (United States)

    Sotome, S.; Nakajima, K.; Yoshimura, Y.; Shimizu, A.

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4°C, in an effort to establish the best conditions for the preservation. Survival rate at 4°C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4°C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4°C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  8. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  9. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  10. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures

    OpenAIRE

    Goudriaan, Andrea; Camargo, Nutabi; Carney, Karen E.; Oliet, Stéphane H. R.; Smit, August B.; Verheijen, Mark H. G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedited technique for separation of neuro...

  11. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo

    OpenAIRE

    Liu, Rui; Wang, Zhe; Gou, Lin; XU, HANPENG

    2015-01-01

    Astrocytes are the most heterogeneous and predominant glial cell type in the central nervous system. However, the functional significance of this heterogeneity remains to be elucidated. Following injury, damaged astrocytes inhibit axonal regeneration in vivo and in vitro. Cultured primary astrocytes are commonly considered good supportive substrates for neuron attachment and axon regeneration. However, it is not known whether different populations of cells in the heterogeneous astrocyte cultu...

  12. Novel cell separation method for molecular analysis of neuron-astrocyte cocultures

    OpenAIRE

    Karen Carney; Oliet, Stéphane H. R.; Verheijen, Mark H. G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedite technique for separation of neuron...

  13. Significance of the astrocyte domain organization for qualitative information structuring in the brain

    OpenAIRE

    Bernhard J Mitterauer

    2010-01-01

    Astrocytes, the dominant glial cell type, modulate synaptic information transmission. Each astrocyte is organized in non-overlapping domains. Here, a formally based model of the possible significance of astrocyte domain organization is proposed. It is hypothesized that each astrocyte contacting n neurons with m synapses via its processes generates dynamic domains of synaptic interactions based on qualitative criteria so that it exerts a structuring of neuronal information processing. The form...

  14. Studies on astrocyte function : potential roles in brain water homeostasis and neuroprotection

    OpenAIRE

    Song, Yutong

    2012-01-01

    Astrocytes are essential in brain homeostasis and function, including maintenance of water and ion balance. Astrocytes express the water channel aquaporin 4 (AQP4), implicated in both physiological functions and injury processes associated with brain edema, a common consequence of brain diseases. As part of the tripartite synapse astrocytes are tightly coupled to normal brain function via neuron-astrocyte interactions and by providing metabolic support to neurons as well as con...

  15. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway

    OpenAIRE

    Haustein, Martin D.; Kracun, Sebastian; Lu, Xiao-Hong; Shih, Tiffany; Jackson-Weaver, Olan; Tong, Xiaoping; Xu, Ji; Yang, X William; O'Dell, Thomas J.; Marvin, Jonathan S.; Ellisman, Mark H.; Bushong, Eric A.; Looger, Loren L.; Khakh, Baljit S.

    2014-01-01

    The spatiotemporal activities of astrocyte Ca2+ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca2+ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localised spontaneous Ca2+ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate. Moreover, evoked astrocyte ...

  16. Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord

    OpenAIRE

    Tien, An-Chi; Tsai, Hui-hsin; Molofsky, Anna V.; McMahon, Martin; Foo, Lynette C.; Kaul, Aparna; Dougherty, Joseph D.; Heintz, Nathaniel; Gutmann, David H.; Barres, Ben A.; Rowitch, David H.

    2012-01-01

    Expansion of astrocyte populations in the central nervous system is characteristic of evolutionarily more complex organisms. However, regulation of mammalian astrocyte precursor proliferation during development remains poorly understood. Here, we used Aldh1L1-GFP to identify two morphologically distinct types of proliferative astrocyte precursors: radial glia (RG) in the ventricular zone and a second cell type we call an ‘intermediate astrocyte precursor’ (IAP) located in the mantle region of...

  17. Modulation of Astrocyte Glutamate Transporters Decreases Seizures in a Mouse Model of Tuberous Sclerosis Complex

    OpenAIRE

    Zeng, Ling-Hui; Bero, Adam W.; Bo ZHANG; Holtzman, David M.; Wong, Michael

    2010-01-01

    Astrocyte dysfunction may contribute to epileptogenesis and other neurological deficits in Tuberous Sclerosis Complex (TSC). In particular, decreased expression and function of astrocyte glutamate transporters have been implicated in causing elevated extracellular glutamate levels, neuronal death, and epilepsy in a mouse model of TSC (Tsc1GFAPCKO mice), involving inactivation of the Tsc1 gene primarily in astrocytes. Here, we tested whether pharmacological induction of astrocyte glutamate tra...

  18. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity

    OpenAIRE

    Karpuk, Nikolay; Burkovetskaya, Maria; Fritz, Teresa; Angle, Amanda; Kielian, Tammy

    2011-01-01

    Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we utilized a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on GFP-positive astrocytes in acute brain slices from GFAP-GFP mice at 3 or 7 days following S. aureus infection in the striatum. Astrocyte GJ communication was signific...

  19. Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    OpenAIRE

    Martin Heni; Hennige, Anita M.; Andreas Peter; Dorothea Siegel-Axel; Anna-Maria Ordelheide; Norbert Krebs; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring; Harald Staiger

    2011-01-01

    INTRODUCTION: In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone. METHODS: Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathwa...

  20. In vivo astrocytic Ca2+ signaling in health and brain disorders

    OpenAIRE

    Ding, Shinghua

    2013-01-01

    Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron–glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellul...

  1. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity

    OpenAIRE

    Yoon, Seo-Yeon; Robinson, Caleb R.; Zhang, Haijun; Dougherty, Patrick M.

    2013-01-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific ...

  2. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats

    OpenAIRE

    Lima, A; Sardinha, Vanessa Morais; Oliveira, A. F.; Reis, M; Mota, Cristina de Fátima Sousa da; Silva, M. A.; Marques, Fernanda; Cerqueira, João; Pinto, Luisa; Sousa, Nuno; Oliveira, João F.

    2014-01-01

    Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-a-aminoadipate (L-AA) ...

  3. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    OpenAIRE

    Chen, Lei-lei; Wu, Jun-Chao; Wang, Lin-Hui; Wang, Jin; Qin, Zheng-hong; Difiglia, Marian; Lin, Fang

    2012-01-01

    Aim: To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552). Methods: Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups. An astrocytes model of Huntington's disease was established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin. The protein levels of glutamate transporters GLT-1 and GLAST, the autoph...

  4. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes

    OpenAIRE

    Renner, Nicole A.; Sansing, Hope A.; Inglis, Fiona M; Mehra, Smriti; Kaushal, Deepak; Lackner, Andrew A; Andrew G MacLean

    2013-01-01

    The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukoc...

  5. Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain

    OpenAIRE

    Sosunov, Alexander A.; Wu, Xiaoping; Tsankova, Nadejda M.; Guilfoyle, Eileen; Guy M McKhann; Goldman, James E.

    2014-01-01

    To examine the diversity of astrocytes in the human brain, we immunostained surgical specimens of temporal cortex and hippocampus and autopsy brains for CD44, a plasma membrane protein and extracellular matrix receptor. CD44 antibodies outline the details of astrocyte morphology to a degree not possible with glial fibrillary acidic protein (GFAP) antibodies. CD44+ astrocytes could be subdivided into two groups. First, CD44+ astrocytes with long processes were consistently found in the subpial...

  6. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    OpenAIRE

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-01-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astroc...

  7. Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    OpenAIRE

    Yuan Liu; Li Wang; Zaiyun Long; Lin Zeng; Yamin Wu

    2012-01-01

    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific...

  8. Neuronal cadherin (NCAD) increases sensory neurite formation and outgrowth on astrocytes

    OpenAIRE

    Ferguson, Toby A.; Scherer, Steven S.

    2012-01-01

    We examined the neurite outgrowth of sensory neurons on astrocytes following the genetic deletion of N-cadherin (NCAD). Deletion abolished immunostaining for NCAD and the other classical cadherins, indicating that NCAD is likely the only classical cadherin expressed by astrocytes. Only 38% of neurons grown on NCAD-deficient astrocytes for 24 hours produced neurites, as compared to 74% of neurons grown on NCAD-expressing astrocytes. Of the neurons that produced neurites, those grown on NCAD-de...

  9. Don't fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair

    OpenAIRE

    White, Robin E.; Jakeman, Lyn B.

    2008-01-01

    Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent...

  10. GLUT2 Immunoreactivity in Gomori-positive Astrocytes of the Hypothalamus

    OpenAIRE

    Young, John K.; McKenzie, James C.

    2004-01-01

    A specialized subtype of astrocyte, the Gomori-positive (GP) astrocyte, is unusually abundant and prominent in the arcuate nucleus of the hypothalamus. GP astro-cytes possess cytoplasmic granules derived from degenerating mitochondria. GP granules are highly stained by Gomori's chrome alum hematoxylin stain, by the Perl's reaction for iron, or by toluidine blue. The source of the oxidative stress causing mitochondrial damage in GP astrocytes is uncertain, but such damage could arise from the ...

  11. Form Follows Function: Astrocyte Morphology and Immune Dysfunction in SIV neuroAIDS

    OpenAIRE

    Lee, Kim M.; Chiu, Kevin B.; Renner, Nicole A.; Sansing, Hope A.; Didier, Peter J.; Andrew G MacLean

    2014-01-01

    Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of GFAP-labeled astrocytes per mm2 and the proporti...

  12. Phenotypic Conversions of “Protoplasmic” to “Reactive” Astrocytes in Alexander Disease

    OpenAIRE

    Sosunov, Alexander A.; Guilfoyle, Eileen; Wu, Xiaoping; Guy M McKhann; Goldman, James E.

    2013-01-01

    Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology we have examined hippocam...

  13. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.;

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in...... astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  14. File list: ALL.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Astrocytes.bed ...

  15. File list: ALL.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Astrocytes.bed ...

  16. File list: Oth.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Astrocytes.bed ...

  17. File list: Oth.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Astrocytes.bed ...

  18. Astrocytes Grown in Alvetex(®) Three Dimensional Scaffolds Retain a Non-reactive Phenotype.

    Science.gov (United States)

    Ugbode, Christopher I; Hirst, Warren D; Rattray, Marcus

    2016-08-01

    Protocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embryonic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype. PMID:27099962

  19. File list: ALL.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Astrocytes.bed ...

  20. File list: Oth.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Astrocytes.bed ...

  1. File list: Oth.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Astrocytes.bed ...

  2. File list: ALL.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Astrocytes.bed ...

  3. Comparison of the Gene Expression Profiles of Human Fetal Cortical Astrocytes with Pluripotent Stem Cell Derived Neural Stem Cells Identifies Human Astrocyte Markers and Signaling Pathways and Transcription Factors Active in Human Astrocytes

    OpenAIRE

    Nasir Malik; Xiantao Wang; Sonia Shah; Efthymiou, Anastasia G.; Bin Yan; Sabrina Heman-Ackah; Ming Zhan; Mahendra Rao

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression anal...

  4. Substrate-dependent regulation of ascorbate transport in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na+-dependent L-ascorbate transporter in the plasma membrane. The present study examined the effects of ascorbate deprivation and supplementation on the activity of the transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 minute at 37C. They observed that the maximal uptake rate, Vmax, rapidly (m) of the transport system for ascorbate. Vmax returned to normal following addition of L-ascorbate, but not D-isoascorbate, to the medium. The authors conclude that astrocytes adapt ascorbate transport rates to changes in substrate availability. Furthermore, the data suggest that the transport system located in the astroglial plasma membrane regulates intracellular ascorbate concentration, because changes in transport rate may compensate for regional differences and temporal fluctuations in extracellular ascorbate levels

  5. 1,3-Dinitrobenzene neurotoxicity - Passage effect in immortalized astrocytes.

    Science.gov (United States)

    Maurer, Laura L; Latham, Jackelyn D; Landis, Rory W; Song, Dong Hoon; Epstein, Tamir; Philbert, Martin A

    2016-03-01

    Age-related disturbances in astrocytic mitochondrial function are linked to loss of neuroprotection and decrements in neurological function. The immortalized rat neocortical astrocyte-derived cell line, DI-TNC1, provides a convenient model for the examination of cellular aging processes that are difficult to study in primary cell isolates from aged brain. Successive passages in culture may serve as a surrogate of aging in which time-dependent adaptation to culture conditions may result in altered responses to xenobiotic challenge. To investigate the hypothesis that astrocytic mitochondrial homeostatic function is decreased with time in culture, low passage DI-TNC1 astrocytes (LP; #2-8) and high passage DI-TNC1 astrocytes (HP; #17-28) were exposed to the mitochondrial neurotoxicant 1,3-dinitrobenzene (DNB). Cells were exposed in either monoculture or in co-culture with primary cortical neurons. Astrocyte mitochondrial membrane potential, morphology, ATP production and proliferation were monitored in monoculture, and the ability of DI-TNC1 cells to buffer K(+)-induced neuronal depolarization was examined in co-cultures. In HP DI-TNC1 cells, DNB exposure decreased proliferation, reduced mitochondrial membrane potential and significantly decreased mitochondrial form factor. Low passage DI-TNC1 cells effectively attenuated K(+)-induced neuronal depolarization in the presence of DNB whereas HP counterparts were unable to buffer K(+) in DNB challenge. Following DNB challenge, LP DI-TNC1 cells exhibited greater viability in co-culture than HP. The data provide compelling evidence that there is an abrupt phenotypic change in DI-TNC1 cells between passage #9-16 that significantly diminishes the ability of DI-TNC1 cells to compensate for neurotoxic challenge and provide neuroprotective spatial buffering. Whether or not these functional changes have an in vivo analog in aging brain remains to be determined. PMID:26769196

  6. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  7. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  8. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  9. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A...... reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids....

  10. CCL2 modulates cytokine production in cultured mouse astrocytes

    Directory of Open Access Journals (Sweden)

    Frugier Tony

    2010-10-01

    Full Text Available Abstract Background The chemokine CCL2 (also known as monocyte chemoattractant protein-1, or MCP-1 is upregulated in patients and rodent models of traumatic brain injury (TBI, contributing to post-traumatic neuroinflammation and degeneration by directing the infiltration of blood-derived macrophages into the injured brain. Our laboratory has previously reported that Ccl2-/- mice show reduced macrophage accumulation and tissue damage, corresponding to improved motor recovery, following experimental TBI. Surprisingly, Ccl2-deficient mice also exhibited delayed but exacerbated secretion of key proinflammatory cytokines in the injured cortex. Thus we sought to further characterise CCL2's potential ability to modulate immunoactivation of astrocytes in vitro. Methods Primary astrocytes were isolated from neonatal wild-type and Ccl2-deficient mice. Established astrocyte cultures were stimulated with various concentrations of lipopolysaccharide (LPS and interleukin (IL-1β for up to 24 hours. Separate experiments involved pre-incubation with mouse recombinant (rCCL2 prior to IL-1β stimulation in wild-type cells. Following stimulation, cytokine secretion was measured in culture supernatant by immunoassays, whilst cytokine gene expression was quantified by real-time reverse transcriptase polymerase chain reaction. Results LPS (0.1-100 μg/ml; 8 h induced the significantly greater secretion of five key cytokines and chemokines in Ccl2-/- astrocytes compared to wild-type cells. Consistently, IL-6 mRNA levels were 2-fold higher in Ccl2-deficient cells. IL-1β (10 and 50 ng/ml; 2-24 h also resulted in exacerbated IL-6 production from Ccl2-/- cultures. Despite this, treatment of wild-type cultures with rCCL2 alone (50-500 ng/ml did not induce cytokine/chemokine production by astrocytes. However, pre-incubation of wild-type astrocytes with rCCL2 (250 ng/ml, 12 h prior to stimulation with IL-1β (10 ng/ml, 8 h significantly reduced IL-6 protein and gene

  11. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro.

    Science.gov (United States)

    Cheli, Veronica T; Santiago González, Diara A; Smith, Jessica; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2016-08-01

    We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415. PMID:27247164

  12. Astrocytes protect neurons against methylmercury via ATP/P2Y(1 receptor-mediated pathways in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yusuke Noguchi

    Full Text Available Methylmercury (MeHg is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i inhibited by a P2Y1 receptor antagonist, MRS2179, (ii abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii mimicked by exogenously applied ATP. In addition, (iv MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  13. Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-γ

    OpenAIRE

    Lee, Jeonggi; Shin, Jeon-Soo; Choi, In-Hong

    2006-01-01

    TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1β, TNF-α or IFN-γ, TRAIL was induced in cultured fetal astrocytes. In particular, IFN-γ induced the highest levels of TRAIL in cultured astrocytes. When astrocytes were prereated with IFN-γ, they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-γ modulates the expression of TRAIL i...

  14. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  15. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. PMID:27383770

  16. Expression and cellular function of vSNARE proteins in brain astrocytes.

    Science.gov (United States)

    Ropert, N; Jalil, A; Li, D

    2016-05-26

    Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo. PMID:26518463

  17. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  18. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  19. Neuropharmacological effects of Phoneutria nigriventer venom on astrocytes.

    Science.gov (United States)

    Rapôso, Catarina; Björklund, Ulrika; Kalapothakis, Evanguedes; Biber, Björn; Alice da Cruz-Höfling, Maria; Hansson, Elisabeth

    2016-06-01

    Bites from genus Phoneutria (Ctenidae, Araneomorpha) are the second most frequent source of spider accidents in Southeast Brazil. Severe envenoming from Phoneutria nigriventer produces vision disturbance, tremor and convulsion, suggesting that the CNS is involved; however, the mechanisms by which P. nigriventer venom (PNV) affects the CNS remain poorly understood. The present study aimed to investigate whether PNV directly impairs astrocytes. Cultured astrocytes were exposed to PNV, and intracellular Ca(2+) release and signaling were measured (Fura-2/AM), Na(+)/K(+)-ATPase and Toll-like receptor 4 (TLR4) involvement were investigated, actin filaments were stained (Alexa™ 488-conjugated phalloidin probe), the G-actin/F-actin ratio was determined, and the expression level of connexin 43 (Cx43) was assessed. Incubation in Ca(2+)-free buffer did not change the Ca(2+) responses. However, pre-incubation in thapsigargin/caffeine completely abolished these responses, suggesting that PNV-evoked Ca(2+) transients were from intracellular Ca(2+) stores. Pretreatment with a Na(+)/K(+)-ATPase antagonist (ouabain) or a TLR4 antagonist (LPS-RS) decreased or increased the Ca(2+)-evoked transients, respectively. Astrocytes showed altered actin filament structure after PNV exposure. PNV treatment increased the expression levels of Na(+)/K(+)-ATPase and Cx43 but decreased those of TLR4. The present results suggest that PNV directly affects astrocytes. Na(+)/K(+)-ATPase may thus represent a more specific drug target for controlling the neurotoxicity of PNV. PMID:27094845

  20. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    Directory of Open Access Journals (Sweden)

    Nathalie Rouach

    2013-10-01

    Full Text Available A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

  1. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer;

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero...

  2. Astrocytes contribute to gamma oscillations and recognition memory.

    Science.gov (United States)

    Lee, Hosuk Sean; Ghetti, Andrea; Pinto-Duarte, António; Wang, Xin; Dziewczapolski, Gustavo; Galimi, Francesco; Huitron-Resendiz, Salvador; Piña-Crespo, Juan C; Roberts, Amanda J; Verma, Inder M; Sejnowski, Terrence J; Heinemann, Stephen F

    2014-08-12

    Glial cells are an integral part of functional communication in the brain. Here we show that astrocytes contribute to the fast dynamics of neural circuits that underlie normal cognitive behaviors. In particular, we found that the selective expression of tetanus neurotoxin (TeNT) in astrocytes significantly reduced the duration of carbachol-induced gamma oscillations in hippocampal slices. These data prompted us to develop a novel transgenic mouse model, specifically with inducible tetanus toxin expression in astrocytes. In this in vivo model, we found evidence of a marked decrease in electroencephalographic (EEG) power in the gamma frequency range in awake-behaving mice, whereas neuronal synaptic activity remained intact. The reduction in cortical gamma oscillations was accompanied by impaired behavioral performance in the novel object recognition test, whereas other forms of memory, including working memory and fear conditioning, remained unchanged. These results support a key role for gamma oscillations in recognition memory. Both EEG alterations and behavioral deficits in novel object recognition were reversed by suppression of tetanus toxin expression. These data reveal an unexpected role for astrocytes as essential contributors to information processing and cognitive behavior. PMID:25071179

  3. Astrocytes and extracellular matrix in extrasynaptic volume transmission

    Czech Academy of Sciences Publication Activity Database

    Vargová, Lýdia; Syková, Eva

    2014-01-01

    Roč. 369, č. 1654 (2014). ISSN 0962-8436 R&D Projects: GA ČR GA13-11867S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : extracellular space * diffusion * astrocytes Subject RIV: FH - Neurology Impact factor: 7.055, year: 2014

  4. Neurorestorative Role of Stem Cells in Alzheimer's Disease: Astrocyte Involvement.

    Science.gov (United States)

    Choi, Sung S; Lee, Sang-Rae; Lee, Hong J

    2016-01-01

    Neurogenesis is maintained in both neonatal and adult brain, although it is dramatically reduced in aged neurogenic brain region such as the subgranular layer and subventricular zone of the dentate gyrus (DG). Astrocytes play important roles for survival and maintenance of neurons as well as maintenance of neurogenic niche in quiescent state. Aβ can induce astrocyte activation which give rise to produce reactive oxygen species (ROS) and cytotoxic cytokines and chemokines, and subsequently induce neuronal death. Unfortunately, the current therapeutic medicines have been limited to reduce the symptoms and delay the pathogenesis of Alzheimer's disease (AD), but not to cure it. Stem cells enhance neurogenesis and Aβ clearing as well as improved cognitive impairment. Neurotrophins and growth factors which are produced from both stem cells and astrocytes also have neuroprotective effects via neurogenesis. Secreted factors from both astrocytes and neural stem cells also are influenced in neurogenesis and neuron survival in neurodegenerative diseases. Transplanted stem cells overexpressing neurogenic factors may be an effective and therapeutic tool to enhance neurogenesis for AD. PMID:27018261

  5. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  6. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death.

    Science.gov (United States)

    Wang, Xin-Shang; Tian, Zhen; Zhang, Nan; Han, Jing; Guo, Hong-Liang; Zhao, Ming-Gao; Liu, Shui-Bing

    2016-03-01

    Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26643508

  7. Glucose Tightly Controls Morphological and Functional Properties of Astrocytes

    Czech Academy of Sciences Publication Activity Database

    Lee, Ch. Y.; Dallérac, G.; Ezan, P.; Anděrová, Miroslava; Rouach, N.

    2016-01-01

    Roč. 8, č. 85 (2016). ISSN 1663-4365 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : hippocampus * astrocytes * neuroglial interactions Subject RIV: ED - Physiology Impact factor: 4.000, year: 2014

  8. Microglia is activated by astrocytes in trimethyltin intoxication

    International Nuclear Information System (INIS)

    Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) how the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 μmol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown

  9. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China); Wang, Guang-Hui [College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 (China); Chen, Zhong, E-mail: chenzhong@zju.edu.cn [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China)

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5{sup −/−} mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the

  10. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    International Nuclear Information System (INIS)

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5−/− mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  11. Characterization of the BAC Id3-enhanced green fluorescent protein transgenic mouse line for in vivo imaging of astrocytes

    OpenAIRE

    Lamantia, Cassandra; Tremblay, Marie-Eve; Majewska, Ania

    2014-01-01

    Astrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes. Here, we characterize the bacterial artificial chromosome transgenic Id3-EGFP knock-in mouse to establish its usefulness for in vivo imaging of astrocyte processes....

  12. Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps

    OpenAIRE

    Reeves, Alexander; Shigetomi, Eiji; Khakh, Baljit S.

    2011-01-01

    Calcium signalling has been studied in astrocyte cell bodies using bulk loading of calcium indicator dyes and astrocytes are known to display intracellular calcium transients. An assumption in recent data on the neuronal impact of somatic astrocyte calcium transients has been that bulk loading reflects signalling in relevant astrocyte compartments such as processes. We assessed bulk loading using Sholl analysis (Sholl, 1953) of astrocytes loaded with common calcium indicator dyes and compared...

  13. Endocytosis-Mediated HIV-1 Entry and Its Significance in the Elusive Behavior of the Virus in Astrocytes

    OpenAIRE

    Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder; Handy, Indhira

    2014-01-01

    Astrocytes protect neurons but also evoke a proinflammatory response to injury and viral infections including HIV. We investigated the mechanism of HIV-1 infection in primary astrocytes, which showed minimal but productive viral infection independent of CXCR4. As with ectopic-CD4-expressing astrocytes, lysosomotropic agents led to increased HIV-1 infection in wild-type but not Rab 5, 7, and 11-ablated astrocytes. Instead, HIV-1 infection was decreased in Rab-depleted astrocytes, corroborating...

  14. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.

    Science.gov (United States)

    Aldasoro, Martin; Guerra-Ojeda, Sol; Aguirre-Rueda, Diana; Mauricio, M Dolores; Vila, Jose M; Marchio, Patricia; Iradi, Antonio; Aldasoro, Constanza; Jorda, Adrian; Obrador, Elena; Valles, Soraya L

    2016-01-01

    Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents. PMID:26950436

  15. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  16. Astrocyte signaling in the presence of spatial inhomogeneities

    Science.gov (United States)

    Stamatakis, Michail; Mantzaris, Nikos V.

    2007-09-01

    Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the

  17. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture

    Science.gov (United States)

    Aldasoro, Martin; Guerra-Ojeda, Sol; Aguirre-Rueda, Diana; Mauricio, Mª Dolores; Vila, Jose Mª; Marchio, Patricia; Iradi, Antonio; Aldasoro, Constanza; Jorda, Adrian; Obrador, Elena; Valles, Soraya L.

    2016-01-01

    Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10−7, 10−6 and 10−5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents. PMID:26950436

  18. Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

    Directory of Open Access Journals (Sweden)

    Giovanni Cirillo

    2012-01-01

    Full Text Available Astrocytic Ca2+ dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca2+ signaling in living central nervous system. Ca2+ waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101 and imaged astrocytic Ca2+ levels with Oregon-Green BAPTA-1 (OGB. Then, we studied astrocytic Ca2+ levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca2+ levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  19. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-01-01

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome. PMID:27485117

  20. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  1. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    International Nuclear Information System (INIS)

    Highlights: • Astrocytes exhibit characteristic changes in [Ca2+]i under OGD. • Astrocytic [Ca2+]i increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca2+]i) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca2+]i oscillations followed by larger and sustained [Ca2+]i increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca2+]i increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca2+]i increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca2+]i increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage during the acute phase of ischemia

  2. Traumatically injured astrocytes release a proteomic signature modulated by STAT3-dependent cell survival.

    Science.gov (United States)

    Levine, Jaclynn; Kwon, Eunice; Paez, Pablo; Yan, Weihong; Czerwieniec, Gregg; Loo, Joseph A; Sofroniew, Michael V; Wanner, Ina-Beate

    2016-05-01

    Molecular markers associated with CNS injury are of diagnostic interest. Mechanical trauma generates cellular deformation associated with membrane permeability with unknown molecular consequences. We used an in vitro model of stretch-injury and proteomic analyses to determine protein changes in murine astrocytes and their surrounding fluids. Abrupt pressure-pulse stretching resulted in the rapid release of 59 astrocytic proteins with profiles reflecting cell injury and cell death, i.e., mechanoporation and cell lysis. This acute trauma-release proteome was overrepresented with metabolic proteins compared with the uninjured cellular proteome, bearing relevance for post-traumatic metabolic depression. Astrocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3-CKO) resulted in reduced stretch-injury tolerance, elevated necrosis and increased protein release. Consistent with more lysed cells, more protein complexes, nuclear and transport proteins were released from STAT3-CKO versus nontransgenic astrocytes. STAT3-CKO astrocytes had reduced basal expression of GFAP, lactate dehydrogenase B (LDHB), aldolase C (ALDOC), and astrocytic phosphoprotein 15 (PEA15), and elevated levels of tropomyosin (TPM4) and α actinin 4 (ACTN4). Stretching caused STAT3-dependent cellular depletion of PEA15 and GFAP, and its filament disassembly in subpopulations of injured astrocytes. PEA15 and ALDOC signals were low in injured astrocytes acutely after mouse spinal cord crush injury and were robustly expressed in reactive astrocytes 1 day postinjury. In contrast, α crystallin (CRYAB) was present in acutely injured astrocytes, and absent from uninjured and reactive astrocytes, demonstrating novel marker differences among postinjury astrocytes. These findings reveal a proteomic signature of traumatically-injured astrocytes reflecting STAT3-dependent cellular survival with potential diagnostic value. GLIA 2016;64:668-694. PMID:26683444

  3. Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury.

    Science.gov (United States)

    Gleixner, Amanda M; Posimo, Jessica M; Pant, Deepti B; Henderson, Matthew P; Leak, Rehana K

    2016-09-01

    Astrocytes are one of the major cell types to combat cellular stress and protect neighboring neurons from injury. In order to fulfill this important role, astrocytes must sense and respond to toxic stimuli, perhaps including stimuli that are severely stressful and kill some of the astrocytes. The present study demonstrates that primary astrocytes that managed to survive severe proteotoxic stress were protected against subsequent challenges. These findings suggest that the phenomenon of preconditioning or tolerance can be extended from mild to severe stress for this cell type. Astrocytic stress adaptation lasted at least 96 h, the longest interval tested. Heat shock protein 70 (Hsp70) was raised in stressed astrocytes, but inhibition of neither Hsp70 nor Hsp32 activity abolished their resistance against a second proteotoxic challenge. Only inhibition of glutathione synthesis abolished astrocytic stress adaptation, consistent with our previous report. Primary neurons were plated upon previously stressed astrocytes, and the cocultures were then exposed to another proteotoxic challenge. Severely stressed astrocytes were still able to protect neighboring neurons against this injury, and the protection was unexpectedly independent of glutathione synthesis. Stressed astrocytes were even able to protect neurons after simultaneous application of proteasome and Hsp70 inhibitors, which otherwise elicited synergistic, severe loss of neurons when applied together. Astrocyte-induced neuroprotection against proteotoxicity was not elicited with astrocyte-conditioned media, suggesting that physical cell-to-cell contacts may be essential. These findings suggest that astrocytes may adapt to severe stress so that they can continue to protect neighboring cell types from profound injury. PMID:26374549

  4. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  5. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  6. Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust.

    Science.gov (United States)

    Hanson, Elizabeth; Danbolt, Niels Christian; Dulla, Chris G

    2016-05-01

    Developmental cortical malformations (DCMs) are linked with severe epilepsy and are caused by both genetic and environmental insults. DCMs include several neurological diseases, such as focal cortical dysplasia, polymicrogyria, schizencephaly, and others. Human studies have implicated astrocyte reactivity and dysfunction in the pathophysiology of DCMs, but their specific role is unknown. As astrocytes powerfully regulate glutamate neurotransmission, and glutamate levels are known to be increased in human epileptic foci, understanding the role of astrocytes in the pathological sequelae of DCMs is extremely important. Additionally, recent studies examining astrocyte glutamate uptake in DCMs have reported conflicting results, adding confusion to the field. In this study we utilized the freeze lesion (FL) model of DCM, which is known to induce reactive astrocytosis and cause significant changes in astrocyte morphology, proliferation, and distribution. Using whole-cell patch clamp recording from astrocytes, we recorded both UV-uncaging and synaptically evoked glutamate transporter currents (TCs), widely accepted assays of functional glutamate transport by astrocytes. With this approach, we set out to test the hypothesis that astrocyte membrane properties and glutamate transport were disrupted in this model of DCM. Though we found that the developmental maturation of astrocyte membrane resistance was disrupted by FL, glutamate uptake by individual astrocytes was robust throughout FL development. Interestingly, using an immunolabeling approach, we observed spatial and developmental differences in excitatory amino acid transporter (EAAT) expression in FL cortex. Spatially specific differences in EAAT2 (GLT-1) and EAAT1 (GLAST) expression suggest that the relative contribution of each EAAT to astrocytic glutamate uptake may be altered in FL cortex. Lastly, we carefully analyzed the amplitudes and onset times of both synaptically- and UV uncaging-evoked TCs. We found that in

  7. Regulation of astrocyte activity via control over stiffness of cellulose acetate electrospun nanofiber.

    Science.gov (United States)

    Min, Seul Ki; Jung, Sang Myung; Ju, Jung Hyeon; Kwon, Yeo Seon; Yoon, Gwang Heum; Shin, Hwa Sung

    2015-10-01

    Astrocytes are involved in neuron protection following central nervous system (CNS) injury; accordingly, engineered astrocytes have been investigated for their usefulness in cell therapy for CNS injury. Nanofibers have attracted a great deal of attention in neural tissue engineering, but their mechanical properties greatly influence physiology. Cellulose acetate (CA) has been studied for use in scaffolds owing to its biocompatibility, biodegradability, and good thermal stability. In this study, stiffness of CA nanofibers controlled by heat treatment was shown to regulate astrocyte activity. Adhesion and viability increased in culture as substrate became stiffer but showed saturation at greater than 2 MPa of tensile strength. Astrocytes became more active in terms of increasing intermediate filament glial fibrillary acidic protein (GFAP). The results of this study demonstrate the effects of stiffness alone on cellular behaviors in a three-dimensional culture and highlight the efficacy of heat-treated CA for astrocyte culture in that the simple treatment enables control of astrocyte activity. PMID:26091629

  8. Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS

    Directory of Open Access Journals (Sweden)

    Bettina Schreiner

    2015-09-01

    Full Text Available Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS. Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.

  9. Receptor-mediated glutamate release from volume sensitive channels in astrocytes

    Science.gov (United States)

    Takano, Takahiro; Kang, Jian; Jaiswal, Jyoti K.; Simon, Sanford M.; Lin, Jane H.-C.; Yu, Yufei; Li, Yuxing; Yang, Jay; Dienel, Gerald; Zielke, H. Ronald; Nedergaard, Maiken

    2005-11-01

    Several lines of work have shown that astrocytes release glutamate in response to receptor activation, which results in a modulation of local synaptic activity. Astrocytic glutamate release is Ca2+-dependent and occurs in conjunction with exocytosis of glutamate containing vesicles. However, astrocytes contain a millimolar concentration of cytosolic glutamate and express channels permeable to small anions, such as glutamate. Here, we tested the idea that astrocytes respond to receptor stimulation by dynamic changes in cell volume, resulting in volume-sensitive channel activation, and efflux of cytosolic glutamate. Confocal imaging and whole-cell recordings demonstrated that astrocytes exhibited a transient Ca2+-dependent cell volume increase, which activated glutamate permeable channels. HPLC analysis revealed that glutamate was released in conjunction with other amino acid osmolytes. Our observations indicate that volume-sensitive channel may constitute a previously uncharacterized target for modulation of astrocyte-neuronal interactions. electrophysiology | exocytosis | neurotransmitters | osmolarity | synapses

  10. Effects of propofol on ammonium chloride-exposed astrocyte morphology and aquaporin-4 expression

    Institute of Scientific and Technical Information of China (English)

    Hanjian Chen; Caifei Pan; Peng Guo; Yueying Zheng; Shengmei Zhu

    2011-01-01

    Ammonia induces astrocyte swelling, which is strongly associated with overexpression of aquaporin-4.However, the mechanisms by which ammonia induces astrocyte swelling, and subsequently upregulating aquaporin-4 expression, remain unknown.In the present study,astrocytes were cultured in vitro and exposed to ammonium chloride (NH4CI), followed by propofol,protein kinase C agonist, or antagonist, respectively.Astrocyte morphology was observed by light microscopy, and aquaporin-4 expression was detected by western blot analysis.Results showed that propofol or protein kinase C agonist significantly attenuated the degree of NH4CI-induced astrocyte swelling and inhibited increased aquaporin-4 expression.Propofol treatment inhibited aquaporin-4 overexpression in cultured astrocyte induced by NH4CI; protein kinase C pathway activation is potentially involved.

  11. Morphological assessment of neurite outgrowth in hippocampal neuron-astrocyte co-cultures.

    Science.gov (United States)

    Giordano, Gennaro; Costa, Lucio G

    2012-05-01

    Neurite outgrowth is a fundamental event in brain development, as well as in regeneration of damaged neurons. Astrocytes play a major role in neuritogenesis, by expressing and releasing factors that facilitate neurite outgrowth, such as extracellular matrix proteins, and factors that can inhibit neuritogenesis, such as the chondroitin sulfate proteoglycan neurocan. In this unit we describe a noncontact co-culture system of hippocampal neurons and cortical (or hippocampal) astrocytes for measurement of neurite outgrowth. Hippocampal pyramidal neurons are plated on glass coverslips, which are inverted onto an astrocyte feeder layer, allowing exposure of neurons to astrocyte-derived factors without direct contact between these two cell types. After co-culture, neurons are stained and photographed, and processes are assessed morphologically using Metamorph software. This method allows exposing astrocytes to various agents before co-culture in order to assess how these exposures may influence the ability of astrocytes to foster neurite outgrowth. PMID:22549268

  12. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes†

    Science.gov (United States)

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan

    2016-01-01

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  13. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C;

    2012-01-01

    astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in...... several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic...... perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE...

  14. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  15. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  16. Biomechanical and proteomic analysis of INF- {beta}-treated astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, Daniele; Leporatti, Stefano; Maruccio, Giuseppe; Cingolani, Roberto; Rinaldi, Ross [National Nanotechnology Laboratory of CNR-INFM, ISUFI, University of Lecce, Italian Institute of Technology (IIT) Research Unit, via Arnesano, I-73100 Lecce (Italy); Martignago, Roberta; Nuccio, Franco De; Nicolardi, Giuseppe; Maffia, Michele [Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, I-73100 Lecce (Italy); Bonsegna, Stefania; Santino, Angelo, E-mail: michele.maffia@unile.i, E-mail: ross.rinaldi@unile.i [Institute of Sciences of Food Production CNR, Unit of Lecce I-73100 (Italy)

    2009-11-11

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- {beta} (IFN-{beta}) treatment. Our results indicated that IFN-{beta} treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  17. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    Science.gov (United States)

    Vergara, Daniele; Martignago, Roberta; Leporatti, Stefano; Bonsegna, Stefania; Maruccio, Giuseppe; De Nuccio, Franco; Santino, Angelo; Cingolani, Roberto; Nicolardi, Giuseppe; Maffia, Michele; Rinaldi, Ross

    2009-11-01

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  18. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of [3H] D- and L-3-hydroxybutyrate and 3-hydroxy-[3-14C] butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells

  19. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    International Nuclear Information System (INIS)

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  20. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    OpenAIRE

    LARSEN, N. J.; Ambrosi, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2011-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and...

  1. A positive feedback cell signaling nucleation model of astrocyte dynamics

    OpenAIRE

    MacDonald, Christopher L.; Silva, Gabriel A.

    2013-01-01

    We constructed a model of calcium signaling in astrocyte neural glial cells that incorporates a positive feedback nucleation mechanism, whereby small microdomain increases in local calcium can stochastically produce global cellular and intercellular network scale dynamics. The model is able to simultaneously capture dynamic spatial and temporal heterogeneities associated with intracellular calcium transients in individual cells and intercellular calcium waves (ICW) in spatially realistic netw...

  2. The effects of trypsin on rat brain astrocyte activation

    OpenAIRE

    Masoud Fereidoni; Farzaneh Sabouni; Ali Moghimi; Shirin Hosseini

    2013-01-01

    Background Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO), and sometimes they induce apoptosis. Their protease-activated receptors (PARs) can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of di...

  3. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes

    OpenAIRE

    Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Yi, Sun Shin; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2013-01-01

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the methima...

  4. Control of CNS synapse development by γ-protocadherin-mediated astrocyte-neuron contact

    OpenAIRE

    Garrett, Andrew M.; Weiner, Joshua A.

    2009-01-01

    Recent studies indicate that astrocytes, whose processes enwrap synaptic terminals, promote synapse formation both by releasing soluble factors and through contact-dependent mechanisms. While astrocyte-secreted synaptogenic factors have been identified, the molecules underlying perisynaptic astroctye-neuron contacts are unknown. Here we show that the γ-Protocadherins (γ-Pcdhs), a family of 22 neuronal adhesion molecules encoded by a single gene cluster, are also expressed by astrocytes and lo...

  5. Human-derived neural progenitors functionally replace astrocytes in adult mice

    OpenAIRE

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal co...

  6. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  7. Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro

    OpenAIRE

    Crawford, Devon C.; Jiang, Xiaoping; Taylor, Amanda; Mennerick, Steven

    2012-01-01

    Astrocytes contribute to many neuronal functions, including synaptogenesis, but their role in the development of synaptic plasticity remains unclear. Presynaptic muting of hippocampal glutamatergic terminals defends against excitotoxicity. Here we studied the role of astrocytes in the development of presynaptic muting at glutamatergic synapses in rat hippocampal neurons. We found that astrocytes were critical for the development of depolarization-dependent and Gi/o-dependent presynaptic mutin...

  8. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice

    OpenAIRE

    Cho, Woosung; Messing, Albee

    2008-01-01

    Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultur...

  9. Focal Transplantation-based Astrocyte Replacement is Neuroprotective in a Model of Motor Neuron Disease

    OpenAIRE

    Lepore, Angelo C.; Rauck, Britta; Dejea, Christine; Pardo, Andrea C; Rao, Mahendra S; Rothstein, Jeffrey D.; Maragakis, Nicholas J.

    2008-01-01

    Cellular abnormalities in amyotrophic lateral sclerosis (ALS) are not limited to motor neurons. Astrocyte dysfunction occurs in human ALS and SOD1G93A animal models. Therefore, the value of focal enrichment of normal astrocytes was investigated using transplantation of lineage-restricted astrocyte precursors, Glial-Restricted Precursors (GRPs). GRPs were transplanted around cervical spinal cord respiratory motor neuron pools, the principal cells responsible for death in this neurodegenerative...

  10. Comparison of Larval and Adult Drosophila Astrocytes Reveals Stage-Specific Gene Expression Profiles

    OpenAIRE

    Huang, Yanmei; Ng, Fanny S.; Jackson, F. Rob

    2015-01-01

    The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation. We have utilized the Drosophila model and Translati...

  11. A neurons-astrocyte network model: from synaptic boosting to epilepsy

    OpenAIRE

    Lallier, Corentin; Fournel, Arnaud; Reynaud, Emanuelle

    2010-01-01

    Recent findings indicate that astrocytes might play a functional role in triggering epileptic seizures. To test both the role of astrocytes on neuronal firings under normal conditions and the role they could play in epilepsy, we build here a computational model where four neurons and an astrocyte interact. Based on a mathematical model previously described in the literature, our model allows to investigate the dynamics of neuronal firing in this mini-network. In particular, we describe the co...

  12. Targeting Astrocytes Ameliorates Neurologic Changes in a Mouse Model of Alzheimer’s Disease

    OpenAIRE

    Furman, Jennifer L.; Sama, Diana M.; Gant, John C.; Beckett, Tina L.; Murphy, M. Paul; Bachstetter, Adam D.; Van Eldik, Linda J.; Norris, Christopher M.

    2012-01-01

    Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer’s disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically “activated” phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent a...

  13. Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus

    OpenAIRE

    Coiret, Guyllaume; Ster, Jeanne; Grewe, Benjamin; Wendling, Fabrice; Helmchen, Fritjof; Gerber, Urs; Benquet, Pascal

    2012-01-01

    Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a posi...

  14. A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    OpenAIRE

    Tewari, Shivendra; Majumdar, Kaushik

    2011-01-01

    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, t...

  15. Neuron–astrocyte interactions in the medial nucleus of the trapezoid body

    OpenAIRE

    Reyes-Haro, D.; Mueller, J.; Boresch, M.; Pivneva, T.; Benedetti, B.; Scheller, A; Nolte, C.; Kettenmann, H.

    2010-01-01

    The calyx of Held (CoH) synapse serves as a model system to analyze basic mechanisms of synaptic transmission. Astrocyte processes are part of the synaptic structure and contact both pre- and postsynaptic membranes. In the medial nucleus of the trapezoid body (MNTB), midline stimulation evoked a current response that was not mediated by glutamate receptors or glutamate uptake, despite the fact that astrocytes express functional receptors and transporters. However, astrocytes showed spontaneou...

  16. Diffusion Modeling of ATP Signaling Suggests a Partially Regenerative Mechanism Underlies Astrocyte Intercellular Calcium Waves

    OpenAIRE

    MacDonald, Christopher L.; Yu, Diana; Buibas, Marius; Silva, Gabriel A.

    2008-01-01

    Network signaling through astrocyte syncytiums putatively contribute to the regulation of a number of both physiological and pathophysiological processes in the mammalian central nervous system. As such, an understanding of the underlying mechanisms is critical to determining any roles played by signaling through astrocyte networks. Astrocyte signaling is primarily mediated by the propagation of intercellular calcium waves (ICW) in the sense that paracrine signaling results in measurable intr...

  17. Combining spiking neuronal network model with presynaptic and astrocyte interface models

    OpenAIRE

    Eero Antero Räisänen

    2014-01-01

    Astrocytes have gained an increased interest in neuroscience due to their ability to influence synaptic transmission through gliotransmitters. The effects of gliotransmitters are computationally modeled by various groups. However models integrating astrocytes and their effects in the network level are lacking. Here we introduce a simulation scheme of astrocyte control of single synapses extend that to its effects on neuronal network behavior. A version of Tsodyks-Markram presynaptic model is ...

  18. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Lei-lei CHEN; Jun-chao WU; Lin-hui WANG; Jin WANG; Zhen-hong QIN; Marian DIFIGLIA; Fang LIN

    2012-01-01

    To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552).Methods:Primary astrocyte cultures were prepared from the cortex of postnatal rat pups.An astrocytes model of Huntington's diseasewas established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin.The protein levels of glutamate transporters GLT-1 and GLAST,the autophagic marker microtubule-associated protein 1A/1B-light chain 3(LC3) and the autophagy substrate p62 in the astrocytes were examined using Western blotting.The mRNA expression levels of GLT-1and GLAST in the astrocytes were determined using Real-time PCR.[3H]glutamate uptake by the astrocytes was measured with liquid scintillation counting.Results:The expression of mutant Htt-552 in the astrocytes significantly decreased both the mRNA and protein levels of GLT-1 but not those of GLAST.Furthermore,Htt-552 significantly reduced [3H]glutamate uptake by the astrocytes.Treatment with the autophagy inhibitor 3-MA (10 mmol/L) significantly increased the accumulation of mutant Htt-552,and reduced the expression of GLT-1 and [3H]glutamate uptake in the astrocytes.Treatment with the autophagy stimulator rapamycin (0.2 mg/mL) significantly reduced the accumulation of mutant Htt-552,and reversed the changes in GLT-1 expression and [3H]glutamate uptake in the astrocytes.Conclusion:Rapamcin,an autophagy stimulator,can prevent the suppression of GLT-1 expression and glutamate uptake by mutant Htt-552 in cultured astrocytes.

  19. Nuclear Factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes

    OpenAIRE

    Wilczynska, Katarzyna M.; Singh, Sandeep K.; Adams, Bret; Bryan, Lauren; Rao, Raj R.; Valerie, Kristoffer; Wright, Sarah; Griswold-Prenner, Irene; Kordula, Tomasz

    2009-01-01

    Even though astrocytes are critical for both normal brain functions and the development and progression of neuropathological states, including neuroinflammation associated with neurodegenerative diseases, the mechanisms controlling gene expression during astrocyte differentiation are poorly understood. Thus far, several signaling pathways were shown to regulate astrocyte differentiation, including JAK-STAT, BMP-2/Smads, and Notch. More recently, a family of Nuclear Factor-1 (NFI-A, -B, -C, an...

  20. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    OpenAIRE

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate ...

  1. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  2. Insights into Human Astrocyte Response to H5N1 Infection by Microarray Analysis

    OpenAIRE

    Xian Lin; Ruifang Wang; Jun Zhang; Xin Sun; Zhong Zou; Shengyu Wang; Meilin Jin

    2015-01-01

    Influenza virus infects not only the respiratory system but also the central nervous system (CNS), leading to influenza-associated encephalopathy and encephalitis. Astrocytes are essential for brain homeostasis and neuronal function. These cells can also be infected by influenza virus. However, genome-wide changes in response to influenza viral infection in astrocytes have not been defined. In this study, we performed gene profiling of human astrocytes in response to H5N1. Innate immune and p...

  3. Astrocyte-neuron lactate transport is required for long-term memory formation

    OpenAIRE

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M

    2011-01-01

    We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter...

  4. Chloroquine mediated molecular tuning of astrocytes for enhanced permissiveness to HIV infection

    OpenAIRE

    Vijaykumar, Theophilus S.; Nath, Avindra; Chauhan, Ashok

    2008-01-01

    We report in this study that minimum productive HIV infection in astrocytes (a predominant cell type in brain and persists for the entire life) occurs through endocytosis. The lysosomotropic agent chloroquine enhanced permissiveness of astrocytes to HIV infection possibly by circumventing degradation of endosome-entrapped viral particles. In particular, chloroquine may promote establishment of a stable long term viral reservoir in astrocytes and may eventually facilitate early onset of neurol...

  5. Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: a fiery path to its destination

    OpenAIRE

    Chauhan, Ashok; Khandkar, Mehrab

    2014-01-01

    Despite successful suppression of peripheral HIV-1 infection by combination antiretroviral therapy, immune activation by residual virus in the brain leads to HIV-associated neurocognitive disorders (HAND). In the brain, several types of cells, including microglia, perivascular macrophage, and astrocytes have been reported to be infected by HIV-1. Astrocytes, the most abundant cells in the brain, maintain homeostasis. The general consensus on HIV-1 infection in astrocytes is that it produces u...

  6. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    OpenAIRE

    JOHNSON, RYAN T.; Breedlove, S. Marc; Jordan, Cynthia L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to de...

  7. Computational simulation: astrocyte-induced depolarization of neighboring neurons mediates synchronous UP states in a neural network.

    Science.gov (United States)

    Kuriu, Takayuki; Kakimoto, Yuta; Araki, Osamu

    2015-09-01

    Although recent reports have suggested that synchronous neuronal UP states are mediated by astrocytic activity, the mechanism responsible for this remains unknown. Astrocytic glutamate release synchronously depolarizes adjacent neurons, while synaptic transmissions are blocked. The purpose of this study was to confirm that astrocytic depolarization, propagated through synaptic connections, can lead to synchronous neuronal UP states. We applied astrocytic currents to local neurons in a neural network consisting of model cortical neurons. Our results show that astrocytic depolarization may generate synchronous UP states for hundreds of milliseconds in neurons even if they do not directly receive glutamate release from the activated astrocyte. PMID:25940565

  8. Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain.

    Science.gov (United States)

    Kim, Sun Kwang; Hayashi, Hideaki; Ishikawa, Tatsuya; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Youichi; Inada, Hiroyuki; Roh, Seung Eon; Kim, Sang Jeong; Lee, Gihyun; Bae, Hyunsu; Moorhouse, Andrew J; Mikoshiba, Katsuhiko; Fukazawa, Yugo; Koizumi, Schuichi; Nabekura, Junichi

    2016-05-01

    Long-term treatments to ameliorate peripheral neuropathic pain that includes mechanical allodynia are limited. While glial activation and altered nociceptive transmission within the spinal cord are associated with the pathogenesis of mechanical allodynia, changes in cortical circuits also accompany peripheral nerve injury and may represent additional therapeutic targets. Dendritic spine plasticity in the S1 cortex appears within days following nerve injury; however, the underlying cellular mechanisms of this plasticity and whether it has a causal relationship to allodynia remain unsolved. Furthermore, it is not known whether glial activation occurs within the S1 cortex following injury or whether it contributes to this S1 synaptic plasticity. Using in vivo 2-photon imaging with genetic and pharmacological manipulations of murine models, we have shown that sciatic nerve ligation induces a re-emergence of immature metabotropic glutamate receptor 5 (mGluR5) signaling in S1 astroglia, which elicits spontaneous somatic Ca2+ transients, synaptogenic thrombospondin 1 (TSP-1) release, and synapse formation. This S1 astrocyte reactivation was evident only during the first week after injury and correlated with the temporal changes in S1 extracellular glutamate levels and dendritic spine turnover. Blocking the astrocytic mGluR5-signaling pathway suppressed mechanical allodynia, while activating this pathway in the absence of any peripheral injury induced long-lasting (>1 month) allodynia. We conclude that reawakened astrocytes are a key trigger for S1 circuit rewiring and that this contributes to neuropathic mechanical allodynia. PMID:27064281

  9. A positive feedback cell signaling nucleation model of astrocyte dynamics

    Directory of Open Access Journals (Sweden)

    Gabriel A Silva

    2013-07-01

    Full Text Available We constructed a model of calcium signaling in astrocyte neural glial cells that incorporates a positive feedback nucleation mechanism, whereby small microdomain increases in local calcium can stochastically produce global cellular and intercellular network scale dynamics. The model is able to simultaneously capture dynamic spatial and temporal heterogeneities associated with intracellular calcium transients in individual cells and intercellular calcium waves (ICW in spatially realistic networks of astrocytes, i.e. networks where the positions of cells were taken from real in vitro experimental data of spontaneously forming sparse networks, as opposed to artificially constructed grid networks or other non-realistic geometries. This is the first work we are aware of where an intracellular model of calcium signaling that reproduces intracellular dynamics inherently accounts for intercellular network dynamics. These results suggest that a nucleation type mechanism should be further investigated experimentally in order to test its contribution to calcium signaling in astrocytes and in other cells more broadly. It may also be of interest in engineered neuromimetic network systems that attempt to emulate biological signaling and information processing properties in synthetic hardwired neuromorphometric circuits or coded algorithms.

  10. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. PMID:24193059

  11. Glucose and hypothalamic astrocytes: More than a fueling role?

    Science.gov (United States)

    Leloup, C; Allard, C; Carneiro, L; Fioramonti, X; Collins, S; Pénicaud, L

    2016-05-26

    Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states. PMID:26071958

  12. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  13. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission

    Science.gov (United States)

    Shinozaki, Youichi; Nomura, Masatoshi; Iwatsuki, Ken; Moriyama, Yoshinori; Gachet, Christian; Koizumi, Schuichi

    2014-03-01

    Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia sense low concentrations of the neurotoxicant methylmercury (MeHglow) and provide neuroprotection against MeHg, for which astrocytes are also required. When exposed to MeHglow, microglia exocytosed ATP via p38 MAPK- and vesicular nucleotide transporter (VNUT)-dependent mechanisms. Astrocytes responded to the microglia-derived ATP via P2Y1 receptors and released interleukin-6 (IL-6), thereby protecting neurons against MeHglow. These neuroprotective actions were also observed in organotypic hippocampal slices from wild-type mice, but not in slices prepared from VNUT knockout or P2Y1 receptor knockout mice. These findings suggest that microglia sense and respond to even non-hazardous toxicants such as MeHglow and change their phenotype into a neuroprotective one, for which astrocytic support is required.

  14. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  15. Modulation of. beta. -adrenergic response in rat brain astrocytes by serum and hormones

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.K.; Morrison, R.S.; de Vellis, J.

    1985-01-01

    Purified astrocyte cultures from neonatal rat cerebrum respond to isoproterenol, a ..beta..-adrenergic agonist, with a transient rise in cAMP production. This astroglial property was regulated by serum, a chemically defined medium (serum-free medium plus hydrocortisone, putrescine, prostaglandin F/sub 2/, insulin, and fibroblast growth factor) and epidermal growth factor. Compared to astrocytes grown in serum-supplemented medium, astrocytes grown in the chemically defined medium were nonresponsive to isoproterenol stimulation, and this difference did not appear to be due to selection of a subpopulation of cells by either medium. The data suggest that a decreased ..beta..-adrenergic receptor number and an increased degradation of cAMP may account for the reduced response to ..beta..-adrenergic stimulation. The nonresponsive state of astrocytes in the defined medium was reversible when the medium was replaced with serum-supplemented medium. An active substance(s) in serum was responsible for restoring the responsiveness of astrocytes. Each of the five components of the defined medium had little effect by itself; however, together they acted synergistically to desensitize astrocytes to ..beta..-adrenergic stimulation. On the other hand, epidermal growth factor, a potent mitogen for astrocytes, was very competent by itself in reducing the cAMP response of astrocytes to ..beta..-adrenergic stimulation. Thus purified astrocytes grown in the chemically defined medium appear to be a good model for the study of hormonal interactions and of serum factors which may modulate the ..beta..-adrenergic response.

  16. CD81 Inhibits the Proliferation of Astrocytes by Inducing G_0/G_1 Arrest In Vitro

    Institute of Scientific and Technical Information of China (English)

    马俊芳; 刘仁刚; 彭会明; 周洁萍; 李海朋

    2010-01-01

    Astrocytes play a major role in the reactive processes in response to neuronal injuries in the brain.Excessive gliosis is detrimental and can contribute to neuronal damage.CD81(TAPA),a member of the tetraspanin family of proteins,is upregulated by astrocytes after traumatic injury to the rat central nervous system(CNS).To further understand the role of CD81 in the inhibition of astrocytes,we analyzed the effects of a CD81 antibody,on cultured rat astrocytes.The results indicated that the effect worked in a ...

  17. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes

    OpenAIRE

    Luo, Xiaoyu; He, Johnny J.

    2014-01-01

    Astrocytes are the most abundant cells in the central nervous system and play important roles in HIV/neuroAIDS. Detection of HIV proviral DNA, RNA and early gene products but not late structural gene products in astrocytes in vivo and in vitro indicates that astrocytes are susceptible to HIV infection albeit in a restricted manner. We as well as others have shown that cell-free HIV is capable of entering CD4− astrocytes through human mannose receptor-mediated endocytosis. In this study, we to...

  18. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  19. The inhibitory neurotransmitter GABA evokes long-lasting Ca(2+) oscillations in cortical astrocytes.

    Science.gov (United States)

    Mariotti, Letizia; Losi, Gabriele; Sessolo, Michele; Marcon, Iacopo; Carmignoto, Giorgio

    2016-03-01

    Studies over the last decade provided evidence that in a dynamic interaction with neurons glial cell astrocytes contribut to fundamental phenomena in the brain. Most of the knowledge on this derives, however, from studies monitoring the astrocyte Ca(2+) response to glutamate. Whether astrocytes can similarly respond to other neurotransmitters, including the inhibitory neurotransmitter GABA, is relatively unexplored. By using confocal and two photon laser-scanning microscopy the astrocyte response to GABA in the mouse somatosensory and temporal cortex was studied. In slices from developing (P15-20) and adult (P30-60) mice, it was found that in a subpopulation of astrocytes GABA evoked somatic Ca(2+) oscillations. This response was mediated by GABAB receptors and involved both Gi/o protein and inositol 1,4,5-trisphosphate (IP3 ) signalling pathways. In vivo experiments from young adult mice, revealed that also cortical astrocytes in the living brain exibit GABAB receptor-mediated Ca(2+) elevations. At all astrocytic processes tested, local GABA or Baclofen brief applications induced long-lasting Ca(2+) oscillations, suggesting that all astrocytes have the potential to respond to GABA. Finally, in patch-clamp recordings it was found that Ca(2+) oscillations induced by Baclofen evoked astrocytic glutamate release and slow inward currents (SICs) in pyramidal cells from wild type but not IP3 R2(-/-) mice, in which astrocytic GABAB receptor-mediated Ca(2+) elevations are impaired. These data suggest that cortical astrocytes in the mouse brain can sense the activity of GABAergic interneurons and through their specific recruitment contribut to the distinct role played on the cortical network by the different subsets of GABAergic interneurons. PMID:26496414

  20. Neurovirulent simian immunodeficiency virus induces calbindin-D-28K in astrocytes.

    Science.gov (United States)

    Berman, N E; Yong, C; Raghavan, R; Raymond, L A; Joag, S V; Narayan, O; Cheney, P D

    1998-05-01

    Astrocyte activation has been postulated to be a major contributor to functional changes in the brain of AIDS patients. We assessed astrocyte activation in the simian immunodeficiency virus (SIV) model. Four groups of macaque brains were examined: uninoculated controls, animals inoculated with virus that did not cause disease, animals inoculated with virus that caused AIDS but did not cause encephalitis, and animals with SIV encephalitis. We examined expression of calbindin-D-28K, a calcium binding protein that is upregulated in astrocytes during excitotoxic events, as well as glial fibrillary acidic protein (GFAP). The presence of calbindin in astrocytes was confirmed by double-labeling using confocal microscopy. Increases in calbindin staining were most apparent in the white matter, but increases in GFAP staining were most apparent in middle layers of the cerebral cortex. Six of the seven animals with SIV encephalitis had calbindin immunoreactive astrocytes in the subcortical white matter, corpus callosum, internal capsule, cerebral peduncle, pontine white matter, and cerebellar white matter. Very rarely, a few, very lightly calbindin-immunoreactive astrocytes were present in the uninoculated control brains. The increase in calbindin expression by astrocytes in SIV encephalitis suggests that these cells are subject to calcium toxicity. In uninoculated control macaques, and in macaques inoculated with virus that did not cause disease, GFAP-immunoreactive astrocytes were present throughout the subcortical white matter and in layer I, but very few were found in layers III-V of the cerebral cortex. Two animals that died of AIDS without encephalitis had somewhat higher numbers of GFAP immunoreactive astrocytes in middle cortical layers. In seven animals that received passaged neurovirulent virus and developed both AIDS and encephalitis, the number of GFAP-immunoreactive astrocytes in middle cortical layers was high, indicating widespread astrocyte activation. PMID

  1. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury.

    Science.gov (United States)

    Jayakumar, Arumugam R; Tong, Xiao Y; Ruiz-Cordero, Roberto; Bregy, Amade; Bethea, John R; Bramlett, Helen M; Norenberg, Michael D

    2014-07-15

    Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). While astrocyte swelling (cytotoxic edema) represents a major component of the brain edema in the early phase of TBI, its mechanisms are unclear. One factor known to be activated by trauma is nuclear factor-κB (NF-κB). Because this factor has been implicated in the mechanism of cell swelling/brain edema in other neurological conditions, we examined whether NF-κB might also be involved in the mediation of post-traumatic astrocyte swelling/brain edema. Here we show an increase in NF-κB activation in cultured astrocytes at 1 and 3 h after trauma (fluid percussion injury, FPI), and that BAY 11-7082, an inhibitor of NF-κB, significantly blocked the trauma-induced astrocyte swelling. Increased activities of nicotinamide adenine dinucleotide phosphate-oxidase and the Na(+), K(+), 2Cl(-) cotransporter were also observed in cultured astrocytes after trauma, and BAY 11-7082 reduced these effects. We also examined the role of NF-κB in the mechanism of cell swelling by using astrocyte cultures derived from transgenic (Tg) mice with a functional inactivation of astrocytic NF-κB. Exposure of cultured astrocytes from wild-type mice to in vitro trauma (3 h) caused a significant increase in cell swelling. By contrast, traumatized astrocyte cultures derived from NF-κB Tg mice showed no swelling. We also found increased astrocytic NF-κB activation and brain water content in rats after FPI, while BAY 11-7082 significantly reduced such effects. Our findings strongly suggest that activation of astrocytic NF-κB represents a key element in the process by which cytotoxic brain edema occurs after TBI. PMID:24471369

  2. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  3. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    International Nuclear Information System (INIS)

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  4. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro

    International Nuclear Information System (INIS)

    Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E2 (PGE2) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE2 was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE2 in enhanced astrocyte proliferation was suggested by the findings that PGE2 production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE2 antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE2 to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE2 plays an important role in astrocyte proliferation, identifying PGE2 as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE2 in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.

  5. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U-14C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  6. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS

    OpenAIRE

    Emiliano eTrias; Pablo eDíaz-Amarilla; Silvia eOlivera-Bravo; Eugenia eIsasi; Drechsel, Derek A.; Nathan eLopez; Charles Samuel Bradford; Kyle Edward Ireton; Beckman, Joseph S; Luis Hector Barbeito

    2013-01-01

    Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular or...

  7. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    OpenAIRE

    Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.

  8. Human-derived neural progenitors functionally replace astrocytes in adult mice

    Science.gov (United States)

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair. PMID:25642771

  9. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    International Nuclear Information System (INIS)

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  10. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    1993-01-01

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  11. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  12. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  13. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hu; Zhou, Wenhao [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Wei, Liming; Zhong, Fan [Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Roda, Shanghai 200032 (China); Yang, Yi, E-mail: yyang@shmu.edu.cn [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China)

    2010-01-08

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  14. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle.

    Science.gov (United States)

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  15. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  16. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats.

    Science.gov (United States)

    Lima, A; Sardinha, V M; Oliveira, A F; Reis, M; Mota, C; Silva, M A; Marques, F; Cerqueira, J J; Pinto, L; Sousa, N; Oliveira, J F

    2014-07-01

    Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-α-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC. PMID:24419043

  17. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  18. Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I.

    OpenAIRE

    Olivera-Bravo, Silvia; Fernández, Anabel; Sarlabós, María Noel; Rosillo, Juan Carlos; Casanova, Gabriela; Jiménez, Marcie; Barbeito, Luis

    2011-01-01

    BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction...

  19. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  20. The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes.

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Chiu

    Full Text Available Sleep apnea syndrome, characterized by intermittent hypoxia (IH, is linked with increased oxidative stress. This study investigates the mechanisms underlying IH and the effects of IH-induced oxidative stress on cerebellar astrocytes. Rat primary cerebellar astrocytes were kept in an incubator with an oscillating O2 concentration between 20% and 5% every 30 min for 1-4 days. Although the cell loss increased with the duration, the IH incubation didn't induce apoptosis or necrosis, but rather a G0/G1 cell cycle arrest of cerebellar astrocytes was noted. ROS accumulation was associated with cell loss during IH. PARP activation, resulting in p21 activation and cyclin D1 degradation was associated with cell cycle G0/G1 arrest of IH-treated cerebellar astrocytes. Our results suggest that IH induces cell loss by enhancing oxidative stress, PARP activation and cell cycle G0/G1 arrest in rat primary cerebellar astrocytes.

  1. Behavioral sequelae of astrocyte dysfunction: focus on animal models of schizophrenia.

    Science.gov (United States)

    Xia, Meng; Abazyan, Sofya; Jouroukhin, Yan; Pletnikov, Mikhail

    2016-09-01

    Astrocytes regulate multiple processes in the brain ranging from trophic support of developing neurons to modulation of synaptic neurotransmission and neuroinflammation in adulthood. It is, therefore, understandable that pathogenesis and pathophysiology of major psychiatric disorders involve astrocyte dysfunctions. Until recently, there has been the paucity of experimental approaches to studying the roles of astrocytes in behavioral disease. A new generation of in vivo models allows us to advance our understanding of the roles of astrocytes in psychiatric disorders. This review will evaluate the recent studies that focus on the contribution of astrocyte dysfunction to behavioral alterations pertinent to schizophrenia and will propose the possible solutions of the limitations of the existing approaches. PMID:25468180

  2. Co-culture of astrocytes with neurons from injured brain A time-dependent dichotomy

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Xu; Min Wang; Jing Liu; Jingya Lv; Yanan Hu; Huanxiang Zhang

    2011-01-01

    As supportive cells for neuronal growth and development, much effort has been devoted to the role of astrocytes in the normal state. However, the effect of the astrocytes after injury remains elusive. In the present study, neurons isolated from the subventricular zone of injured neonatal rat brains were co-cultured with astrocytes. After 6 days, these astrocytes showed a mature neuron-like appearance and the number of survivingneurons, primary dendrites and total branches was significantly higher than those at 3 days. The neurons began to shrink at 9 days after co-culture with shorter and thinner processes and the number of primary dendrites and total branches was significantly reduced. These experimental findings indicate that astrocytes in the injured brain promote the development of neurons in the early stages of co-culture while these cells reversely inhibit neuronal growth and development at the later states.

  3. The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages.

    Science.gov (United States)

    Rutkowska, Aleksandra; O'Sullivan, Sinead A; Christen, Isabelle; Zhang, Juan; Sailer, Andreas W; Dev, Kumlesh K

    2016-01-01

    EBI2 is a G protein-coupled receptor activated by oxysterol 7α, 25-dihydroxycholesterol (7α25HC) and regulates T cell-dependant antibody response and B cell migration. We recently found EBI2 is expressed in human astrocytes, regulates intracellular signalling and modulates astrocyte migration. Here, we report that LPS treatment of mouse astrocytes alters mRNA levels of EBI2 and oxysterols suggesting that the EBI2 signalling pathway is sensitive to LPS-mediated immune challenge. We also find that conditioned media obtained from LPS-stimulated mouse astrocytes induces macrophage migration, which is inhibited by the EBI2 antagonist NIBR189. These results demonstrate a role for the EBI2 signalling pathway in astrocytes as a sensor for immune challenge and for communication with innate immune cells such as macrophages. PMID:27166278

  4. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla;

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...... of the astrocyte marker proteins. The metabolic pattern of the cultures from 7-day-old animals of the labeled substrates was comparable to that seen previously in astrocyte cultures prepared from new-born mouse brain showing pronounced glycolytic and oxidative metabolism of glucose. Glutamate was...... prepared from cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes....

  5. A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo

    DEFF Research Database (Denmark)

    Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne;

    2014-01-01

    cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-(13)C]acetate and [1-(13)C......]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4......,5-(13)C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and (13)C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose...

  6. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    Science.gov (United States)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  7. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    OpenAIRE

    Seul Ki Min; Jun Sang Park; Lidan Luo; Yeo Seon Kwon; Hoo Cheol Lee; Hyun Jung Shim; Il-Doo Kim; Ja-Kyeong Lee; Hwa Sung Shin

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administrati...

  8. Cytochrome c dysregulation induced by HIV infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an IP3 and calcium-dependent mechanism

    OpenAIRE

    Eugenin, Eliseo A.; Berman, Joan W.

    2013-01-01

    HIV entry into the CNS is an early event after peripheral infection, resulting in neurologic dysfunction in a significant number of individuals despite successful anti-retroviral therapy. The mechanisms by which HIV mediates CNS dysfunction are not well understood. Our group recently demonstrated that HIV infection of astrocytes results in survival of HIV infected cells and apoptosis of surrounding uninfected astrocytes by the transmission of toxic intracellular signals through gap junctions....

  9. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. : ErbB signaling in human astrocytes

    OpenAIRE

    Sharif, Ariane; Duhem-Tonnelle, Véronique; Allet, Cécile; Baroncini, Marc; Loyens, Anne; Kerr-Conte, Julie; Collier, Francis; Blond, Serge; Ojeda, Sergio; Junier, Marie-Pierre; Prévot, Vincent

    2009-01-01

    Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of...

  10. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  11. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Science.gov (United States)

    De Pittà, Maurizio; Volman, Vladislav; Berry, Hugues; Ben-Jacob, Eshel

    2011-12-01

    Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression) and/or increase (facilitation) of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+) oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes and resulting

  12. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Chan [Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Hyun Joo, So [Department of Pharmacology, School of Medicine, Konkuk University (Korea, Republic of); Shin, Chan Young, E-mail: chanyshin@kku.ac.kr [Department of Pharmacology, School of Medicine, Konkuk University (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  13. Human astrocytic grid networks patterned in parylene-C inlayed SiO2 trenches.

    Science.gov (United States)

    Jordan, M D; Raos, B J; Bunting, A S; Murray, A F; Graham, E S; Unsworth, C P

    2016-10-01

    Recent literature suggests that glia, and in particular astrocytes, should be studied as organised networks which communicate through gap junctions. Astrocytes, however, adhere to most surfaces and are highly mobile cells. In order to study, such organised networks effectively in vitro it is necessary to influence them to pattern to certain substrates whilst being repelled from others and to immobilise the astrocytes sufficiently such that they do not continue to migrate further whilst under study. In this article, we demonstrate for the first time how it is possible to facilitate the study of organised patterned human astrocytic networks using hNT astrocytes in a SiO2 trench grid network that is inlayed with the biocompatible material, parylene-C. We demonstrate how the immobilisation of astrocytes lies in the depth of the SiO2 trench, determining an optimum trench depth and that the optimum patterning of astrocytes is a consequence of the parylene-C inlay and the grid node spacing. We demonstrate high fidelity of the astrocytic networks and demonstrate that functionality of the hNT astrocytes through ATP evoked calcium signalling is also dependent on the grid node spacing. Finally, we demonstrate that the location of the nuclei on the grid nodes is also a function of the grid node spacing. The significance of this work, is to describe a suitable platform to facilitate the study of hNT astrocytes from the single cell level to the network level to improve knowledge and understanding of how communication links to spatial organisation at these higher order scales and trigger in vitro research further in this area with clinical applications in the area of epilepsy, stroke and focal cerebral ischemia. PMID:27521614

  14. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties

    Directory of Open Access Journals (Sweden)

    Sandra J Hewett

    2011-07-01

    Full Text Available Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia–ischaemia injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2. Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase, EAAT-1 (excitatory amino acid transporter-1; also known as GLAST, MCT-1 (monocarboxylate transporter-1 and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP, which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.

  15. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  16. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Directory of Open Access Journals (Sweden)

    Maurizio De Pittà

    2011-12-01

    Full Text Available Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression and/or increase (facilitation of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes

  17. Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin.

    Science.gov (United States)

    Kim, Jung H; Kwon, Soojung J; Stankewich, Michael C; Huh, Gi-Yeong; Glantz, Susan B; Morrow, Jon S

    2016-02-01

    Calpain, a family of calcium-dependent neutral proteases, plays important roles in neurophysiology and pathology through the proteolytic modification of cytoskeletal proteins, receptors and kinases. Alpha 2 spectrin (αII spectrin) is a major substrate for this protease family, and the presence of the αII spectrin breakdown product (αΙΙ spectrin BDP) in a cell is evidence of calpain activity triggered by enhanced intracytoplasmic Ca(2+) concentrations. Astrocytes, the most dynamic CNS cells, respond to micro-environmental changes or noxious stimuli by elevating intracytoplasmic Ca(2+) concentration to become activated. As one measure of whether calpains are involved with reactive glial transformation, we examined paraffin sections of the human cerebral cortex and white matter by immunohistochemistry with an antibody specific for the calpain-mediated αΙΙ spectrin BDP. We also performed conventional double immunohistochemistry as well as immunofluorescent studies utilizing antibodies against αΙΙ spectrin BDP as well as glial fibrillary acidic protein (GFAP). We found strong immunopositivity in selected protoplasmic and fibrous astrocytes, and in transitional forms that raise the possibility of some of fibrous astrocytes emerging from protoplasmic astrocytes. Immunoreactive astrocytes were numerous in brain sections from cases with severe cardiac and/or respiratory diseases in the current study as opposed to our previous study of cases without significant clinical conditions that failed to reveal such remarkable immunohistochemical alterations. Our study suggests that astrocytes become αΙΙ spectrin BDP immunopositive in various stages of activation, and that spectrin cleavage product persists even in fully reactive astrocytes. Immunohistochemistry for αΙΙ spectrin BDP thus marks reactive astrocytes, and highlights the likelihood that calpains and their proteolytic processing of spectrin participate in the morphologic and physiologic transition from

  18. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Almad, Akshata A; Doreswamy, Arpitha; Gross, Sarah K; Richard, Jean-Philippe; Huo, Yuqing; Haughey, Norman; Maragakis, Nicholas J

    2016-07-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons in the CNS. Astrocytes play a critical role in disease progression of ALS. Astrocytes are interconnected through a family of gap junction proteins known as connexins (Cx). Cx43 is a major astrocyte connexin conducting crucial homeostatic functions in the CNS. Under pathological conditions, connexin expression and functions are altered. Here we report that an abnormal increase in Cx43 expression serves as one of the mechanisms for astrocyte-mediated toxicity in ALS. We observed a progressive increase in Cx43 expression in the SOD1(G93A) mouse model of ALS during the disease course. Notably, this increase in Cx43 was also detected in the motor cortex and spinal cord of ALS patients. Astrocytes isolated from SOD1(G93A) mice as well as human induced pluripotent stem cell (iPSC)-derived astrocytes showed an increase in Cx43 protein, which was found to be an endogenous phenomenon independent of neuronal co-culture. Increased Cx43 expression led to important functional consequences when tested in SOD1(G93A) astrocytes when compared to control astrocytes over-expressing wild-type SOD1 (SOD1(WT) ). We observed SOD1(G93A) astrocytes exhibited enhanced gap junction coupling, increased hemichannel-mediated activity, and elevated intracellular calcium levels. Finally, we tested the impact of increased expression of Cx43 on MN survival and observed that use of both a pan Cx43 blocker and Cx43 hemichannel blocker conferred neuroprotection to MNs cultured with SOD1(G93A) astrocytes. These novel findings show a previously unrecognized role of Cx43 in ALS-related motor neuron loss. GLIA 2016;64:1154-1169. PMID:27083773

  19. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  20. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Science.gov (United States)

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. PMID:26851652

  1. HIV-1, Methamphetamine and Astrocytes at Neuroinflammatory crossroads

    Directory of Open Access Journals (Sweden)

    Kathleen eBorgmann

    2015-10-01

    Full Text Available As a popular psychostimulant, methamphetamine (METH use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10-15% of human immunodeficiency virus-1 (HIV-1 patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND through direct and indirect mechanisms. Repetitive METH use decreases adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression towards AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte number and activity, cytokine signaling, phagocytic function, and CNS infiltration through the blood brain barrier. Further, METH triggers the neuronal dopamine reward pathway and leads to altered neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation. Neuroinflammation modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress and excitotoxicity. Pathologically, glial activation is a hallmark of both HIV-1 and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, neuroinflammation and HAND are carefully reviewed. Interventions targeting astrocytes in HAND and METH are presented as potential novel therapeutic approaches.

  2. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes

    Science.gov (United States)

    McConnell, G. C.; Butera, R. J.; Bellamkonda, R. V.

    2009-10-01

    The widespread adoption of neural prosthetic devices is currently hindered by our inability to reliably record neural signals from chronically implanted electrodes. The extent to which the local tissue response to implanted electrodes influences recording failure is not well understood. To investigate this phenomenon, impedance spectroscopy has shown promise for use as a non-invasive tool to estimate the local tissue response to microelectrodes. Here, we model impedance spectra from chronically implanted rats using the well-established Cole model, and perform a correlation analysis of modeled parameters with histological markers of astroglial scar, including glial fibrillary acid protein (GFAP) and 4',6-diamidino-2- phenylindole (DAPI). Correlations between modeled parameters and GFAP were significant for three parameters studied: Py value, Ro and |Z|1 kHz, and in all cases were confined to the first 100 µm from the interface. Py value was the only parameter also correlated with DAPI in the first 100 µm. Our experimental results, along with computer simulations, suggest that astrocytes are a predominant cellular player affecting electrical impedance spectra. The results also suggest that the largest contribution from reactive astrocytes on impedance spectra occurs in the first 100 µm from the interface, where electrodes are most likely to record electrical signals. These results form the basis for future approaches where impedance spectroscopy can be used to evaluate neural implants, evaluate strategies to minimize scar and potentially develop closed-loop prosthetic devices.

  3. Astrocytic mGluR5 and the tripartite synapse.

    Science.gov (United States)

    Panatier, A; Robitaille, R

    2016-05-26

    In the brain, astrocytes occupy a key position between vessels and synapses. Among their numerous functions, these glial cells are key partners of neurons during synaptic transmission. Astrocytes detect transmitter release through receptors and transporters at the level of their processes, which are in close proximity to the tow neuronal elements of synapses. In response to transmitter-mediated activation, glial cells in turn regulate synaptic transmission and neuronal excitability. This process has been reported to involve several glial receptors. One of the best known of such receptors is the metabotropic glutamatergic receptor subtype 5 (mGluR5). In the present review we will discuss the implication of mGluR5s as detectors of synaptic transmission. In particular, we will discuss how the functional properties and localization of these receptors permit the detection of the synaptic signal in a defined temporal window and a given spatial area around the synapse. Furthermore, we will review the impact of their activation on synaptic transmission. PMID:25847307

  4. Response of Quiescent Cerebral Cortical Astrocytes to Nanofibrillar Scaffold Properties

    Science.gov (United States)

    Ayres, Virginia; Mujdat Tiryaki, Volkan; Xie, Kan; Ahmed, Ijaz; Shreiber, David I.

    2013-03-01

    We present results of an investigation to examine the hypothesis that the extracellular environment can trigger specific signaling cascades with morphological consequences. Differences in the morphological responses of quiescent cerebral cortical astrocytes cultured on the nanofibrillar matrices versus poly-L-lysine functionalized glass and Aclar, and unfunctionalized Aclar surfaces were demonstrated using atomic force microscopy (AFM) and phalloidin staining of F-actin. The differences and similarities of the morphological responses were consistent with differences and similarities of the surface polarity and surface roughness of the four surfaces investigated in this work, characterized using contact angle and AFM measurements. The three-dimensional capability of AFM was also used to identify differences in cell spreading. An initial quantitative immunolabeling study further identified significant differences in the activation of the Rho GTPases: Cdc42, Rac1, and RhoA, which are upstream regulators of the observed morphological responses: filopodia, lamellipodia, and stress fiber formation. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family with demonstrable morphological consequences for cerebral cortical astrocytes. The support of NSF PHY-095776 is acknowledged.

  5. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    The effect of ATP and other purines on 45Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  6. Substrate regulation of ascorbate transport activity in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-[14C]ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels

  7. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe;

    2013-01-01

    Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2......+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified in...... astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have...

  8. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors

    Directory of Open Access Journals (Sweden)

    Nicolas eMerienne

    2013-07-01

    Full Text Available Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during CNS development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.

  9. Bi-directional astrocytic regulation of neuronal activity within a network

    Directory of Open Access Journals (Sweden)

    Alexey V Semyanov

    2012-11-01

    Full Text Available The concept of a tripartite synapse holds that astrocytes can affect both the pre- and postsynaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin-Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the postsynaptic currents. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them.

  10. Stochastic resonance in feedforward-loop neuronal network motifs in astrocyte field.

    Science.gov (United States)

    Liu, Ying; Li, Chunguang

    2013-10-21

    Elucidating the underlying dynamical properties of neuronal network motifs, statistically significant patterns of interconnections, is essential to understand the dynamics of the whole networks. Besides, the brain is intrinsically noisy. Various noise-induced dynamical behaviors, in particular, the stochastic resonance (SR), have been found in both neuronal systems and neuronal network motifs. However, the effect of astrocytes, active partners in neuronal signal processing, has not yet received much attention. In this paper, we study the effect of astrocytes on the stochastic behaviors of the typical triple-neuron feedforward-loop (FFL) neuronal network motifs. The neurons are described by the Hodgkin-Huxley model, while the astrocytes are modeled by extending the Li-Rinzel model to a two-dimensional field with the effect of diffusion. The mutual neuron-astrocyte interactions are established correspondingly. Simulation results indicate that the stochastic behaviors of the FFL motifs show bell-shaped dependence on the intensities of both noise and astrocyte-neuron coupling. Moreover, in the presence of astrocytes, the performance of the FFL motifs on weak signal transmission in both noisy and noise-free environments can be significantly improved. From this point of view, the astrocytes can be regarded as a possible internal source of "noise", which assist the neurons in signal processing. PMID:23871712

  11. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  12. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

    Science.gov (United States)

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  13. Central role of maladapted astrocytic plasticity in ischemic brain edema formation

    Directory of Open Access Journals (Sweden)

    Yu-Feng eWang

    2016-05-01

    Full Text Available Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the ensuing reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas; the two processes are interactive closely under the driving of maladapted astrocytic plasticity. The astrocytic plasticity includes both morphologic and functional plasticity. The former involves a reactive gliosis and the ensuing glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier. The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein and water channel protein aquaporin 4 to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the blood-brain barrier. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the blood-brain barrier, but also lead to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  14. Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures

    Institute of Scientific and Technical Information of China (English)

    Howe CL; Kaptzan T; Magaa SM; Ayers-Ringler JR; LaFrance-Corey RG; Lucchinetti CF

    2014-01-01

    Neuromyelitis optica (NMO) is a primary astrocyte disease associated with central nervous system inflammation, demyelination, and tissue injury. Brain lesions are frequently observed in regions enriched in expression of the aquaporin-4 (AQP4) water channel, an antigenic target of the NMO IgG serologic marker. Based on observations of disease reversibility and careful characterization of NMO lesion development, we propose that the NMO IgG may induce a dynamic immunological response in astrocytes. Using primary rat astrocyte-enriched cultures and treatment with NMO patient-derived serum or purified IgG, we observed a robust pattern of gene expression changes consistent with the induction of a reactive and inflammatory phenotype in astrocytes. The reactive astrocyte factor lipocalin-2 and a broad spectrum of chemokines, cytokines, and stress response factors were induced by either NMO patient serum or purified IgG. Treatment with IgG from healthy controls had no effect. The effect is disease-specific, as serum from patients with relapsing-remitting multiple sclerosis, Sj gren's, or systemic lupus erythematosus did not induce a response in the cultures. We hypothesize that binding of the NMO IgG to AQP4 induces a cellular response that results in transcriptional and translational events within the astrocyte that are consistent with a reactive and inflammatory phenotype. Strategies aimed at reducing the inflammatory response of astrocytes may short circuit an amplification loop associated with NMO lesion development.

  15. Molecular analysis of acute and chronic reactive astrocytes in the pilocarpine model of temporal lobe epilepsy.

    Science.gov (United States)

    Clasadonte, Jerome; Morel, Lydie; Barrios-Camacho, Camila M; Chiang, Ming Sum R; Zhang, Jinhua; Iyer, Lakshmanan; Haydon, Philip G; Yang, Yongjie

    2016-07-01

    Astroglia, the most abundant glial cells in the mammalian central nervous system (CNS), are considered an emerging key player in seizure induction and progression. Although astrocytes undergo reactive gliosis in temporal lobe epilepsy (TLE) with dramatic morphological and molecular changes, specific astrocyte targets/molecular pathways that contribute to the induction and progression of seizure remain largely unknown. By combining translating ribosomal affinity purification (TRAP) with the pilocarpine model of TLE in BAC aldh1l1 TRAP mice, we profiled translating mRNAs from hippocampal or cortical astrocytes at different phases (3days, 30days, and 60days post-pilocarpine injections) of pilocarpine-induced epilepsy models. Our results found that hippocampal (but not cortical) astrocytes undergo early and unique molecular changes at 3days post-pilocarpine injections. These changes indicate a potentially primary pathogenic role of hippocampal astrocytes in seizure induction and progression and provide new insights about the involvement of specific astrocytic pathways/targets in epilepsy. In particular, we validated expression changes of ocrl and aeg1 in pilocarpine models. Follow-up studies on these genes may reveal new roles of hippocampal astrocytes in TLE. PMID:27060558

  16. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    KAUST Repository

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  17. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes.

    Science.gov (United States)

    Lanciotti, Angela; Brignone, Maria Stefania; Visentin, Sergio; De Nuccio, Chiara; Catacuzzeno, Luigi; Mallozzi, Cinzia; Petrini, Stefania; Caramia, Martino; Veroni, Caterina; Minnone, Gaetana; Bernardo, Antonietta; Franciolini, Fabio; Pessia, Mauro; Bertini, Enrico; Petrucci, Tamara Corinna; Ambrosini, Elena

    2016-04-15

    Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs. PMID:26908604

  18. Probenecid protects against oxygen-glucose deprivation injury in primary astrocytes by regulating inflammasome activity.

    Science.gov (United States)

    Jian, Zhihong; Ding, Shuai; Deng, Hongping; Wang, Jun; Yi, Wei; Wang, Lei; Zhu, Shengmei; Gu, Lijuan; Xiong, Xiaoxing

    2016-07-15

    Inflammation is extremely important in the development of cerebral ischemia/reperfusion injury. Pannexin 1 (Panx1) channel has been reported to activate inflammasome in astrocytes and be involved in ischemic injury, but this damage effect is reversed by a Panx1 inhibitor-probenecid. However, the mechanism of probenecid protects against cerebral ischemia/reperfusion injury remains unclear. In present study, we hypothesized that probenecid protected astrocytes from ischemia/reperfusion injury in vitro by modulating the inflammasome. Primary cultured neocortical astrocytes were exposed to oxygen-glucose deprivation/reoxygenation (OGD/RX) and probenecid was added in this model. Viability and nuclear morphology of astrocytes, production of reactive oxygen species (ROS), protein expressions of NLRP3 (NOD-like receptor protein 3), caspase-1, and AQP4 (Aquaporins 4), as well as release of cellular HMGB1 and IL-1β were observed to evaluate the effect and mechanisms of probenecid on OGD/reoxygenated astrocytes. Probenecid did not affect cell viability at concentrations of 1, 5, 10, and 100μM but induced significant astrocytes death at 500μM. Probenecid inhibited cell death and ROS generation in astrocytes subjected to 6h of OGD and 24h of reoxygenation. The expression levels of NLRP3, caspase-1, and AQP4 increased after 6h of OGD, but probenecid treatment attenuated this increase. Moreover, the extracellular release of IL-1β and HMGB1 from OGD/reoxygenated astrocytes increased significantly. However, treatment by probenecid resulted in substantial reduction of these proteins levels in extracellular space. In conclusion, The Panx1 inhibitor, probenecid, which was administered before OGD, provided protective effects on the OGD/reoxygenation model of cultured astrocytes by modulating inflammasome activity and downregulating AQP4 expression. PMID:27154322

  19. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems. PMID:26915106

  20. Astrocyte-Dependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse.

    Science.gov (United States)

    Cervetto, Chiara; Vergani, Laura; Passalacqua, Mario; Ragazzoni, Milena; Venturini, Arianna; Cecconi, Francesco; Berretta, Nicola; Mercuri, Nicola; D'Amelio, Marcello; Maura, Guido; Mariottini, Paolo; Voci, Adriana; Marcoli, Manuela; Cervelli, Manuela

    2016-03-01

    Transgenic mice overexpressing spermine oxidase (SMO) in the cerebral cortex (Dach-SMO mice) showed increased vulnerability to excitotoxic brain injury and kainate-induced epileptic seizures. To investigate the mechanisms by which SMO overexpression leads to increased susceptibility to kainate excitotoxicity and seizure, in the cerebral cortex of Dach-SMO and control mice we assessed markers for astrocyte proliferation and neuron loss, and the ability of kainate to evoke glutamate release from nerve terminals and astrocyte processes. Moreover, we assessed a possible role of astrocytes in an in vitro model of epileptic-like activity in combined cortico-hippocampal slices recorded with a multi-electrode array device. In parallel, as the brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms, we analyzed the oxidative status of the cerebral cortex of both SMO-overexpressing and control mice by evaluating enzymatic and non-enzymatic scavengers such as metallothioneins. The main findings in the cerebral cortex of Dach-SMO mice as compared to controls are the following: astrocyte activation and neuron loss; increased oxidative stress and activation of defense mechanisms involving both neurons and astrocytes; increased susceptibility to kainate-evoked cortical epileptogenic activity, dependent on astrocyte function; appearance of a glutamate-releasing response to kainate from astrocyte processes due to activation of Ca(2+)-permeable AMPA receptors in Dach-SMO mice. We conclude that reactive astrocytosis and activation of glutamate release from astrocyte processes might contribute, together with increased reactive oxygen species production, to the vulnerability to kainate excitotoxicity in Dach-SMO mice. This mouse model with a deregulated polyamine metabolism would shed light on roles for astrocytes in increasing vulnerability to excitotoxic neuron injury. PMID:26530396

  1. Purinergic Junctional Transmission and Propagation of Calcium Waves in Spinal Cord Astrocyte Networks

    OpenAIRE

    Bennett, Max R.; Buljan, Vlado; Farnell, Les; Gibson, William G.

    2006-01-01

    Micro-photolithographic methods have been employed to form discrete patterns of spinal cord astrocytes that allow quantitative measurements of Ca2+ wave propagation. Astrocytes were confined to lanes 20–100 μm wide and Ca2+ waves propagated from a point of mechanical stimulation or of application of adenosine triphosphate; all Ca2+ wave propagation was blocked by simultaneous application of purinergic P2Y1 and P2Y2 antagonists. Stimulation of an astrocyte at one end of a lane, followed by fur...

  2. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders.

    Science.gov (United States)

    Batarseh, Yazan S; Duong, Quoc-Viet; Mousa, Youssef M; Al Rihani, Sweilem B; Elfakhri, Khaled; Kaddoumi, Amal

    2016-01-01

    Amyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer's disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer's disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia. PMID:26959008

  3. Increased astrocytic expression of metallothioneins I + II in brainstem of adult rats treated with 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan; Moos, Torben

    1997-01-01

    caused damage to this part of the brain. In the grey matter regions infiltrated with OX-42-positive cells, astrocytes identified by anti-GFAP and MT-I + II antibodies were almost absent. By contrast, in the peripheral zone of the lesioned regions numerous reactive GFAP- and MT-I + II-positive astrocytes...... were observed. The blood-brain barrier (BBB) to serum albumin was compromised in the entire brainstem. The astrocytic expression of MT-I + II could reflect the brains needs to scavenge metal ions released from either damaged cells or plasma proteins entering the brain due to the injured BBB, as well as...

  4. Androgen Receptors Mediate Masculinization of Astrocytes in the Rat Posterodorsal Medial Amygdala During Puberty

    OpenAIRE

    JOHNSON, RYAN T.; Breedlove, S. Marc; Jordan, Cynthia L.

    2013-01-01

    Astrocytes in the posterodorsal portion of the medial amygdala (MePD) are sexually dimorphic in adult rats: males have more astrocytes in the right MePD and more elaborate processes in the left MePD than do females. Functional androgen receptors (ARs) are required for masculinization of MePD astrocytes, as these measures are demasculinized in adult genetic males carrying the testicular feminization mutation (Tfm) of the AR gene, which renders AR dysfunctional. We now report that the number of...

  5. Autoradiography of high affinity uptake of catecholamines by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Uptake of D,L-[3H]norepinephrine ([3H]NE) and [3H]dopamine ([3H]DA) by primary astrocyte cultures prepared from neonatal rat brains, was studied by measuring accumulation of tritium label, and localizing such uptake at the cellular level by autoradiography. The results confirm the authors previous findings of the existence of a high affinity uptake process for catecholamines in primary astrocyte cultures based on uptake properties, and in the present study also localizes such uptake to the major, astrocytic cell type. (Auth.)

  6. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  7. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  8. Nanoscale Properties of Neural Cell Prosthetic and Astrocyte Response

    Science.gov (United States)

    Flowers, D. A.; Ayres, V. M.; Delgado-Rivera, R.; Ahmed, I.; Meiners, S. A.

    2009-03-01

    Preliminary data from in-vivo investigations (rat model) suggest that a nanofiber prosthetic device of fibroblast growth factor-2 (FGF-2)-modified nanofibers can correctly guide regenerating axons across an injury gap with aligned functional recovery. Scanning Probe Recognition Microscopy (SPRM) with auto-tracking of individual nanofibers is used for investigation of the key nanoscale properties of the nanofiber prosthetic device for central nervous system tissue engineering and repair. The key properties under SPRM investigation include nanofiber stiffness and surface roughness, nanofiber curvature, nanofiber mesh density and porosity, and growth factor presentation and distribution. Each of these factors has been demonstrated to have global effects on cell morphology, function, proliferation, morphogenesis, migration, and differentiation. The effect of FGF-2 modification on the key nanoscale properties is investigated. Results from the nanofiber prosthetic properties investigations are correlated with astrocyte response to unmodified and FGF-2 modified scaffolds, using 2D planar substrates as a control.

  9. Astrocytic Dysfunction and Addiction: Consequences of Impaired Glutamate Homeostasis

    Science.gov (United States)

    Scofield, Michael D.; Kalivas, Peter W.

    2016-01-01

    Addiction is characterized as a chronic relapsing disorder whereby addicted individuals persistently engage in drug seeking and use despite profound negative consequences. The results of studies using animal models of addiction and relapse indicate that drug seeking is mediated by alterations in cortico-accumbal plasticity induced by chronic drug exposure. Among the maladaptive responses to drug exposure are long-lasting alterations in the expression of proteins localized to accumbal astrocytes, which are responsible for maintaining glutamate homeostasis. These alterations engender an aberrant potentiation of glutamate transmission in the cortico-accumbens circuit that is linked to the reinstatement of drug seeking. Accordingly, pharmacological restoration of glutamate homeostasis functions as an efficient method of reversing drug-induced plasticity and inhibiting drug seeking in both rodents and humans. PMID:24496610

  10. Role of astrocytic glutamate transporter in alcohol use disorder.

    Science.gov (United States)

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup

    2016-03-22

    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD. PMID:27014596

  11. Immortalized Rat Astrocyte Strain Genetically Modified by Rat Preprogalanin Gene

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To construct an immortalized rat astrocyte strain genetically modified by rat preprogalanin gene (IAST/GAL) and detect its galanin (GAL) expression and secretion, a cDNA fragment of rat GAL in plasmid of pBS KS(+)-GAL was inserted into eukaryotic expression vector pcDNA3.1(+) by DNA recombinant technology, then the restriction enzyme digestion and DNA sequencing were carried out to evaluate the recombinant. The pcDNA3.1 (+)-GAL and pcDNA3.1 (+) construct were transfected into immortalized rat astrocyte strain (IAST) by lipofectamine and the population of cells which stably integrated the construct was selected with 600 μg/mL G418. Individual clones were screened and expanded into clonal cell strains. Detection of Neo gene was used to validate the success of the transfection. Immunocytochemical staining, RT-PCR and radioimmunoassay were used to detect the expression and secretion level of GAL. The recombinant had been successfully constructed by restriction enzyme digestion and DNA sequencing. Detection of Neo gene showed that the pcDNA3.1 (+)-GAL and pcDNA3.1 (+) have been successfully transfected into IAST. After selection by using G418, IAST/GAL and IAST/Neo cell strains were obtained.IAST/GAL, IAST/Neo and IAST were immunostained positively for GAL, but the GAL average optical density of IAST/GAL was significantly higher than that of IAST/Neo and IAST (P<0.01). The level of GAL mRNA expression and the supernatant concentration of GAL in cultured IAST/GAL were significantly higher than those of IAST and IAST/Neo (P<0.01), but no significant differences were found between the IAST and IAST/Neo (P>0.05). It was concluded that IAST/GAL strain was constructed successfully and it might provide a basis for the further study of pain therapy.

  12. Glutamate release from astrocytic gliosomes under physiological and pathological conditions.

    Science.gov (United States)

    Milanese, Marco; Bonifacino, Tiziana; Zappettini, Simona; Usai, Cesare; Tacchetti, Carlo; Nobile, Mario; Bonanno, Giambattista

    2009-01-01

    Glial subcellular particles (gliosomes) have been purified from rat cerebral cortex or mouse spinal cord and investigated for their ability to release glutamate. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins, such as GFAP and S-100 but not neuronal proteins, such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin, high KCl, veratrine, 4-aminopyridine, AMPA, or ATP by mechanisms involving extracellular Ca2+, Ca2+ release from intracellular stores as well as reversal of glutamate transporters. In addition, gliosomes can release glutamate also by a mechanism involving heterologous transporter activation (heterotransporters) located on glutamate-releasing and glutamate transporter-expressing (homotransporters) gliosomes. This glutamate release involves reversal of glutamate transporters and anion channel opening, but not exocytosis. Both the exocytotic and the heterotransporter-mediated glutamate release were more abundant in gliosomes prepared from the spinal cord of transgenic mice, model of amyotrophic lateral sclerosis, than in controls; suggesting the involvement of astrocytic glutamate release in the excitotoxicity proposed as a cause of motor neuron degeneration. The results support the view that gliosomes may represent a viable preparation that allows to study mechanisms of astrocytic transmitter release and its regulation in healthy animals and in animal models of brain diseases. PMID:19607977

  13. Effect of type-2 astrocytes on the viability of dorsal root ganglion neurons and length of neuronal processes

    Institute of Scientific and Technical Information of China (English)

    Chunling Fan; Hui Wang; Dan Chen; Xiaoxin Cheng; Kun Xiong; Xuegang Luo; Qilin Cao

    2014-01-01

    The role of type-2 astrocytes in the repair of central nervous system injury remains poorly un-derstood. In this study, using a relatively simple culture condition in vitro, type-2 astrocytes, differentiated from oligodendrocyte precursor cells by induction with bone morphogenetic pro-tein-4, were co-cultured with dorsal root ganglion neurons. We examined the effects of type-2 astrocytes differentiated from oligodendrocyte precursor cells on the survival and growth of dorsal root ganglion neurons. Results demonstrated that the number of dorsal root ganglion neurons was higher following co-culture of oligodendrocyte precursor cells and type-2 astrocytes than when cultured alone, but lower than that of neurons co-cultured with type-1 astrocytes. The length of the longest process and the length of all processes of a single neuron were shortest in neurons cultured alone, followed by neurons co-cultured with type-2 astrocytes, then neurons co-cultured with oligodendrocyte precursor cells, and longest in neurons co-cultured with type-1 astrocytes. These results indicate that co-culture with type-2 astrocytes can increase neuronal survival rate and process length. However, compared with type-1 astrocytes and oligodendrocyte precursor cells, the promotion effects of type-2 astrocytes on the growth of dorsal root ganglion neurons were weaker.

  14. Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain.

    Science.gov (United States)

    Norden, Diana M; Trojanowski, Paige J; Walker, Frederick R; Godbout, Jonathan P

    2016-08-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial interleukin (IL)-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher glial fibrillary acidic protein, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 receptor-1 (IL-10R1). After in vivo lipopolysaccharide immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and transforming growth factor β and resolve microglial activation. In addition, adult astrocytes reduced microglial activation when co-cultured ex vivo, whereas aged astrocytes did not. Consistent with the aging studies, IL-10R(KO) astrocytes did not augment transforming growth factor β after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  15. Malignant gliomas induce and exploit astrocytic mesenchymal-like transition by activating canonical Wnt/β-catenin signaling.

    Science.gov (United States)

    Lu, Ping; Wang, Yajing; Liu, Xiuting; Wang, Hong; Zhang, Xin; Wang, Kequan; Wang, Qing; Hu, Rong

    2016-07-01

    The complex microenvironment of malignant gliomas plays a dynamic and usually cancer-promoting role in glioma progression. Astrocytes, the major stromal cells in the brain, can be activated by glioma microenvironment, resulting in a layer of reactive astrocytes surrounding the gliomas. Reactive astrocytes are universally characterized with the upregulation of glial fibrillary protein and glycoprotein podoplanin. In this work, we investigated the role of reactive astrocytes on malignant glioma microenvironment and the potential mechanism by which glioma cells activated the tumor-associated astrocytes (TAAs). The reactive astrocytes were observed around gliomas in the intracranial syngeneic implantation of rat C6 and mouse GL261 glioma cells in vivo, as well as primary astrocytes cultured with glioma cells condition medium in vitro. Besides, reactive astrocytes exhibited distinct epithelial-to-mesenchymal (-like) transition and enhanced migration and invasion activity, with the decrease of E-cadherin and concomitant increase of vimentin and matrix metalloproteinases. Furthermore, canonical Wnt/β-catenin signaling was activated in TAAs. The Wnt/β-catenin pathway inhibitor XAV939 and β-catenin plasmid were used to verify the regulation of Wnt/β-catenin signaling on TAAs and their invasion ability. Taken together, our findings established that glioma cells remarkably activated astrocytes via upregulating Wnt/β-catenin signaling, with obviously mesenchymal-like transition and increased migration and invasion ability, indicating that glioma cells may stimulate adjacent astrocytes to degrade extracellular matrix and thereby promoting tumor invasiveness. PMID:27236327

  16. A Role for Astrocytes in Sensing the Brain Microenvironment and Neuro-Metabolic Integration.

    Science.gov (United States)

    Teschemacher, A G; Gourine, A V; Kasparov, S

    2015-12-01

    Astrocytes occupy a strategic position in the brain where they can act as an interface between neurones and blood vessels, and neurones and the cerebro-spinal fluid. This location is ideal for functioning as interoceptors, as they may sense changes in brain microenvironment and contribute to the adaptive homeostatic responses coordinated by neuronal networks. Here we briefly review some of the recent evidence, which implicates the involvement of astrocytes in the central nervous control of breathing, sympathetic tone and blood glucose levels. L-lactate appears a potentially crucial signaling molecule in the communication between astrocytes and neurones. Based on the available evidence, we conclude that astrocytes contribute to the homeostasis by playing a significant role in the brain's interoceptive mechanisms. PMID:25837670

  17. Mechanical Properties of Membrane Surface of Cultured Astrocyte Revealed by Atomic Force Microscopy

    Science.gov (United States)

    Shiga, Hatsuki; Yamane, Yukako; Ito, Etsuro; Abe, Kazuhiro; Kawabata, Kazushige; Haga, Hisashi

    2000-06-01

    In order to examine the mechanical properties of the membrane surface of astrocytes, we observed living astrocytes by atomic force microscopy (AFM) both in contact mode and force-mapping mode. Ridge-like structures reflecting actin filaments were observed in the topographic images in contact mode, but not in force-mapping mode, using a zero-loading force. When we measured the elasticity of astrocytes, we observed that the cell membrane above the nucleus was soft and the cell membrane above the cytosol was stiff. In particular, the parts reflecting actin filaments were very stiff. This effect of actin filaments on the elasticity of astrocytes was confirmed by the loss of actin filaments after application of actin-polymerization inhibitor.

  18. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  19. Glutamate-induced glutamate release: A proposed mechanism for calcium bursting in astrocytes

    Science.gov (United States)

    Larter, Raima; Craig, Melissa Glendening

    2005-12-01

    Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.

  20. Novel Spiking Neuron-Astrocyte Networks based on nonlinear transistor-like models of tripartite synapses.

    Science.gov (United States)

    Valenza, Gaetano; Tedesco, Luciano; Lanata, Antonio; De Rossi, Danilo; Scilingo, Enzo Pasquale

    2013-01-01

    In this paper a novel and efficient computational implementation of a Spiking Neuron-Astrocyte Network (SNAN) is reported. Neurons are modeled according to the Izhikevich formulation and the neuron-astrocyte interactions are intended as tripartite synapsis and modeled with the previously proposed nonlinear transistor-like model. Concerning the learning rules, the original spike-timing dependent plasticity is used for the neural part of the SNAN whereas an ad-hoc rule is proposed for the astrocyte part. SNAN performances are compared with a standard spiking neural network (SNN) and evaluated using the polychronization concept, i.e., number of co-existing groups that spontaneously generate patterns of polychronous activity. The astrocyte-neuron ratio is the biologically inspired value of 1.5. The proposed SNAN shows higher number of polychronous groups than SNN, remarkably achieved for the whole duration of simulation (24 hours). PMID:24111245

  1. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space

    DEFF Research Database (Denmark)

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T;

    2009-01-01

    Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...

  2. Cyclic AMP regulates NCAM expression and phosphorylation in cultured mouse astrocytes

    DEFF Research Database (Denmark)

    Gegelashvili, George; Andersson, A M; Schousboe, Arne;

    1993-01-01

    The neural cell adhesion molecule (NCAM) plays a key morphoregulatory role during neural development. Patterns of NCAM expression were investigated in cultured astrocytes exhibiting distinct states of morphological differentiation. In vitro differentiation of confluent primary cultures of...... astrocytes was enhanced by a long-term (7 days) treatment with dibutyryl cyclic AMP (dBcAMP). The diversity of NCAM mRNAs arising from alternative splicing of a single primary transcript was analyzed by Northern blotting. Synthetic DNA-oligonucleotide probes, designed to recognize selected exons (exons 7, 15......, and VASE) or exon combinations (exons 7/8, exons 12/13, and exons 12/a/AAG/13), revealed NCAM mRNA classes of 6.7, 5.2, and 2.9 kilobases (kb) in both control and dBcAMP-treated astrocytes. Although long-term treatment of astrocytes with dBcAMP did not change the qualitative pattern of NCAM...

  3. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    Science.gov (United States)

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  4. Quantitative Evaluation of Changes in the Striatal Astrocyte Axons in Simulated Parkinsonism.

    Science.gov (United States)

    Voronkov, D N; Khudoerkov, R M; Dikalova, Yu V; Sheloukhova, L I

    2016-02-01

    Three parkinsonism models using neurotoxin 6-OHDA and pesticides rotenone and paraquat were reproduced in Wistar rats and parameters of astrocyte processes in the striatum (axon number and length, area occupied by them, and axon branching pattern) detected by immunohistochemical reaction for acid glial fibrillary protein were studied by computer morphometry. By these parameters, three morphological types of astrocytes were distinguished. Two variants of changes were found in the used parkinsonism models: 1) more intense branching and even elongation of all axons and 2) reduction of small and elongation of the main remaining stems, which manifested in polarization of glial cell. Type 1 reaction was obviously associated with compensatory increase in astrocyte interaction with neurons, while type 2 reflected astrocyte response to injury and impaired glioneuronal interactions. PMID:26899846

  5. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  6. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice

    International Nuclear Information System (INIS)

    Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.

  7. Modelling the anesthetized brain with ensembles of neuronal and astrocytic oscillators

    Science.gov (United States)

    Hansard, T.; Hale, A. C.; Stefanovska, A.

    2013-01-01

    We propose a minimalistic model of the anesthetized brain in order to study the generation of rhythms observed in electroencephalograms (EEGs) recorded from anesthetized humans. We propose that non-neuronal brain cells-astrocytes-play an important role in brain dynamics and that oscillation-based models may provide a simple way to study such dynamics. The model is capable of replicating the main features (i.e. slow and alpha oscillations) observed in EEGs. In addition, this model suggests that astrocytes are integral to the generation of slow EEG (˜0.7 Hz) rhythms. By including astrocytes in the model we take a first step towards investigating the interaction of the brain and cardiovasular system which are primarily connected via astrocytes. The model also illustrates that rich nonlinear dynamics can arise from basic oscillatory "building blocks" and therefore complex systems may be modelled in an uncomplicated way.

  8. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosung [Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, 1500 Highland Ave, Rm 713, Madison, WI 53705 (United States); Messing, Albee, E-mail: messing@waisman.wisc.edu [Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, 1500 Highland Ave, Rm 713, Madison, WI 53705 (United States)

    2009-04-15

    Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.

  9. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny;

    2003-01-01

    animals such as mice and rats. In addition, we have recently shown that BACE1 protein is expressed by reactive astrocytes in close proximity to beta-amyloid plaques in the brains of aged transgenic Tg2576 mice that overexpress human amyloid precursor protein carrying the double mutation K670N-M671L. To...... address the question whether astrocytic BACE1 expression is an event specifically triggered by beta-amyloid plaques or whether glial cell activation by other mechanisms also induces BACE1 expression, we used six different experimental strategies to activate brain glial cells acutely or chronically. Brain...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  10. Three-Dimensional Environment Sustains Morphological Heterogeneity and Promotes Phenotypic Progression During Astrocyte Development.

    Science.gov (United States)

    Balasubramanian, Swarnalatha; Packard, John A; Leach, Jennie B; Powell, Elizabeth M

    2016-06-01

    Astrocytes are critical for coordinating normal brain function by regulating brain metabolic homeostasis, synaptogenesis and neurotransmission, and blood-brain barrier permeability and maintenance. Dysregulation of normal astrocyte ontogeny contributes to neurodevelopmental and neurodegenerative disorders, epilepsies, and adverse responses to injury. To achieve these multiple essential roles, astrocyte phenotypes are regionally, morphologically, and functionally heterogeneous. Therefore, the best regenerative medicine strategies may require selective production of distinct astrocyte subpopulations at defined maturation levels. However, little is known about the mechanisms that direct astrocyte diversity or whether heterogeneity is represented in biomaterials. In vitro studies report lack of normal morphologies and overrepresentation of the glial scar type of reactive astrocyte morphology and expression of markers, questioning how well the in vitro astrocytes represent glia in vivo and whether in vitro tissue engineering methods are suitable for regenerative medicine applications. Our previous work with neurons suggests that the three-dimensional (3D) environment, when compared with standard two-dimensional (2D) substrate, yields cellular and molecular behaviors that more closely approximately normal ontogeny. To specifically study the effects of dimensionality, we used purified glial fibrillary acidic protein (GFAP)-expressing primary cerebral cortical astrocyte cultures from single pups and characterized the cellular maturation profiles in 2D and 3D milieu. We identified four morphological groups in vitro: round, bipolar, stellate, and putative perivascular. In the 3D hydrogel culture environment, postnatal astrocytes transitioned from a population of nearly all round cells and very few bipolar cells toward a population with significant fractions of round, stellate, and putative perivascular cells within a few days, following the in vivo ontogeny. In 2D, however

  11. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Santos-Galindo María

    2011-07-01

    Full Text Available Abstract Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10, TNFα, IL1β, Toll-like receptor 4 (TLR4, steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to

  12. Ultrastructural analysis of glycogen in hippocampal astrocytic processes using 3D virtual reality

    OpenAIRE

    Corrado Calì; Anna Kreshuk; Madhusudhanan Srinivasan

    2015-01-01

    Glycogen is a major energy store in astrocytes that provides energy support and signals for plasticity to neurons under the form of lactate. While the biochemistry of glycogen is well known, the spatial distribution of glycogen granules within astrocytes remains largely unknown. Recent studies show that glycogen-derived lactate is necessary for synaptic plasticity and memory formation in the hippocampus, but the predominant subcellular target, pre- and post-synaptic profiles, of lactate remai...

  13. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

    OpenAIRE

    Nikolakopoulou, Angeliki M.; Koeppen, Jordan; Garcia, Michael; Leish, Joshua; Obenaus, Andre; Iryna M Ethell

    2016-01-01

    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in ...

  14. Computational model of neuron-astrocyte interactions during focal seizure generation

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2012-10-01

    Full Text Available Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and

  15. N-Cadherin and Integrins: Two Receptor Systems That Mediate Neuronal Process Outgrowth on Astrocyte Surfaces

    OpenAIRE

    Tomaselli, Kevin J.; Neugebauer, Karla M; Bixby, John L.; Lilien, Jack; Reichardt, Louis F.

    2008-01-01

    Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2+-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CC) neurons. β1-class integrin ECM receptor heterodimers function ...

  16. Transplantation of stem cell-derived astrocytes for thetreatment of amyotrophic lateral sclerosis and spinal cordinjury

    Institute of Scientific and Technical Information of China (English)

    Charles Nicaise; Dinko Mitrecic; Aditi Falnikar; Angelo C Lepore

    2015-01-01

    Neglected for years, astrocytes are now recognized tofulfill and support many, if not all, homeostatic functionsof the healthy central nervous system (CNS). Duringneurodegenerative diseases such as amyotrophiclateral sclerosis (ALS) and spinal cord injury (SCI),astrocytes in the vicinity of degenerating areasundergo both morphological and functional changesthat might compromise their intrinsic properties.Evidence from human and animal studies show thatdeficient astrocyte functions or loss-of-astrocytes largelycontribute to increased susceptibility to cell death forneurons, oligodendrocytes and axons during ALS andSCI disease progression. Despite exciting advances inexperimental CNS repair, most of current approachesthat are translated into clinical trials focus on thereplacement or support of spinal neurons throughstem cell transplantation, while none focus on thespecific replacement of astroglial populations. Knowingthe important functions carried out by astrocytesin the CNS, astrocyte replacement-based therapiesmight be a promising approach to alleviate overallastrocyte dysfunction, deliver neurotrophic support todegenerating spinal tissue and stimulate endogenousCNS repair abilities. Enclosed in this review, we gatheredexperimental evidence that argue in favor of astrocytetransplantation during ALS and SCI. Based on theirintrinsic properties and according to the cell typetransplanted, astrocyte precursors or stem cell-derivedastrocytes promote axonal growth, support mechanismsand cells involved in myelination, are able to modulatethe host immune response, deliver neurotrophic factorsand provide protective molecules against oxidative orexcitotoxic insults, amongst many possible benefits.Embryonic or adult stem cells can even be geneticallyengineered in order to deliver missing gene productsand therefore maximize the chance of neuroprotectionand functional recovery. However, before broad clinicaltranslation, further preclinical data on safety

  17. Fluoxetine Requires the Endfeet Protein Aquaporin-4 to Enhance Plasticity of Astrocyte Processes

    OpenAIRE

    Di Benedetto, Barbara; Malik, Victoria A.; Begum, Salina; Jablonowski, Lena; Gómez-González, Gabriela B.; Inga D. Neumann; Rupprecht, Rainer

    2016-01-01

    Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD). Recently, a significant reduction in the coverage of blood vessels (BVs) by aquaporin-4 (AQP-4)-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC) of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its p...

  18. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    OpenAIRE

    Marko Kreft; Bak, Lasse K.; Waagepetersen, Helle S.; Arne Schousboe

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  19. Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron

    OpenAIRE

    Di Garbo, Angelo

    2009-01-01

    In this paper, a biophysical neural network model consisting of a pyramidal neuron, an interneuron, and the astrocyte is studied. The corresponding dynamical properties are mainly investigated by using numerical simulations. The results show that the presence of the adenosine triphosphate and of the interneuron impacts the overall neural activity. It is shown that the fluxes of calcium through the cellular membrane strongly affect the modulation of the neural activity arising from the astrocyte.

  20. Optimal electroacupuncture frequency for maintaining astrocyte structural integrity in cerebral ischemia★

    OpenAIRE

    Xiao, Yicai; Wu, Xingui; Deng, Xiangfa; Huang, Liping; Zhou, Yuancheng; Yang, Xuejie

    2013-01-01

    The astrocyte is a critical regulator of neuronal survival after ischemic brain injury. Electroacupuncture may be an effective therapy for cerebral ischemia, as electroacupuncture frequency can affect the structural integrity of astrocytes. In this study, a rat model of middle cerebral artery occlusion established using the modified thread embolism method was treated with electroacupuncture of the bilateral Quchi (LI11) and Zusanli (ST36) at 15, 30, and 100 Hz frequencies. Behavioral testing,...

  1. Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes

    OpenAIRE

    Inga D. Neumann; Di Benedetto, Barbara; Malik, Victoria A.; Begum, Salina; Jablonowski, Lena; Gómez-González, Gabriela B.; Rupprecht, Rainer

    2016-01-01

    Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD). Recently, a significant reduction in the coverage of blood vessels (BVs) by aquaporin-4 (AQP-4)-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC) of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its p...

  2. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection

    OpenAIRE

    Gunnarson, Eli; Song, Yutong; Kowalewski, Jacob M.; Brismar, Hjalmar; Brines, Michael; Cerami, Anthony; Andersson, Ulf; Zelenina, Marina; Aperia, Anita

    2009-01-01

    Disturbed brain water homeostasis with swelling of astroglial cells is a common complication in stroke, trauma, and meningitis and is considered to be a major cause of permanent brain damage. Astroglial cells possess the water channel aquaporin 4 (AQP4). Recent studies from our laboratory have shown that glutamate, acting on group I metabotropic glutamate receptors (mGluRs), increases the permeability of astrocyte AQP4, which, in situations of hypoxia-ischemia, will increase astrocyte water u...

  3. Inhibition of a SNARE sensitive pathway in astrocytes attenuates damage following stroke

    OpenAIRE

    Hines, Dustin J.; Haydon, Philip G.

    2013-01-01

    A strong body of research has defined the role of excitotoxic glutamate in animal models of brain ischemia and stroke, however clinical trials of glutamate receptor antagonists have demonstrated their limited capacity to prevent brain damage following ischemia. We propose that astrocyte-neuron signaling represents an important modulatory target that may be useful in mediating damage following stroke. To assess the impact of astrocyte signaling on damage following stroke we have used the astro...

  4. Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy

    OpenAIRE

    Clasadonte, Jerome; Dong, Jinghui; Hines, Dustin J.; Haydon, Philip G.

    2013-01-01

    Temporal lobe epilepsy (TLE) is a chronic brain disorder characterized by the occurrence of spontaneous recurrent seizures. Much of our knowledge of epilepsy is based on how neurons contribute to this disorder. Here we provide a view in which glial cells (astrocytes) contribute to the progressive development of TLE. We have combined a model of epilepsy that more closely mimics the complex features of seizures in epileptic patients, with astrocyte-specific molecular genetics to identify how as...

  5. Spatial properties of astrocyte gap junction coupling in the rat hippocampus

    OpenAIRE

    Anders, Stefanie; Minge, Daniel; Griemsmann, Stephanie; Herde, Michel K.; Steinhäuser, Christian; Henneberger, Christian

    2014-01-01

    Gap junction coupling enables astrocytes to form large networks. Its strength determines how easily a signalling molecule diffuses through the network and how far a locally initiated signal can spread. Changes of coupling strength are well-documented during development and in response to various stimuli. Precise quantification of coupling is needed for studying such modifications and their functional consequences. We therefore explored spatial properties of astrocyte coupling in a model simul...

  6. Ictal but Not Interictal Epileptic Discharges Activate Astrocyte Endfeet and Elicit Cerebral Arteriole Responses

    OpenAIRE

    Gómez-Gonzalo, Marta; Losi, Gabriele; Brondi, Marco; Uva, Laura; Sato, Sebastian Sulis; Curtis, Marco de; Ratto, Gian Michele; Carmignoto, Giorgio

    2011-01-01

    Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal discharge, evokes both a Ca2+ increase in astrocyte endfeet and a vasomotor response. We also observe...

  7. Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space

    OpenAIRE

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T.; Nagelhus, Erlend A.; Plahte, Erik; Zeuthen, Thomas; Lloyd, Catherine M.; Ottersen, Ole P.; Stig W. Omholt

    2009-01-01

    Neuronal stimulation causes ∼30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individu...

  8. Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure

    OpenAIRE

    Jayakumar, A.R.; Valdes, V.; Tong, X. Y.; Shamaladevi, N.; W Gonzalez; Norenberg, M.D.

    2014-01-01

    Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, non-selective cation channel (NCCa-ATP ch...

  9. Disparate effects of serum on basal and evoked NFAT activity in primary astrocyte cultures

    OpenAIRE

    Furman, Jennifer L.; Artiushin, Irina A.; Norris, Christopher M.

    2009-01-01

    In astrocytes, the Ca2+-dependent protein phosphatase calcineurin (CN) strongly regulates neuro-immune/inflammatory cascades through activation of the transcription factor, nuclear factor of activated T cells (NFAT). While primary cell cultures provide a useful model system for investigating astrocytic CN/NFAT signaling, variable results may arise both within and across labs because of differences in culture conditions. Here, we determined the extent to which serum and cell confluency affect ...

  10. Contributions of Astrocytes to Epileptogenesis Following Status Epilepticus: Opportunities for Preventive Therapy?

    OpenAIRE

    Gibbons, M.B.; Smeal, R.M.; Takahashi, D.K.; Vargas, J.R.; Wilcox, K.S.

    2012-01-01

    Status epilepticus (SE) is a life threatening condition that often precedes the development of epilepsy. Traditional treatments for epilepsy have been focused on targeting neuronal mechanisms contributing to hyperexcitability, however, approximately 30% of patients with epilepsy do not respond to existing neurocentric pharmacotherapies. A growing body of evidence has demonstrated that profound changes in the morphology and function of astrocytes accompany SE and persist in epilepsy. Astrocyte...

  11. Astrocytes alignment and reactivity on collagen hydrogels patterned with ECM proteins

    OpenAIRE

    Hsiao, Tony W.; Tresco, Patrick A.; Hlady, Vladimir

    2014-01-01

    To modulate the surface properties of collagen and subsequent cell-surface interactions, a method was developed to transfer protein patterns from glass coverslips to collagen type I hydrogel surfaces. Two proteins and one proteoglycan found in central nervous system extracellular matrix as well as fibrinogen were patterned in stripes onto collagen hydrogel and astrocytes were cultured on these surfaces. The addition of the stripe protein patterns to hydrogels created astrocyte layers in which...

  12. An excitatory loop with astrocytes contributes to drive neurons to seizure threshold.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Gonzalo

    Full Text Available Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures.

  13. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Directory of Open Access Journals (Sweden)

    Marko Kreft

    2012-04-01

    Full Text Available Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  14. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  15. Fingolimod—A Sphingosine-Like Molecule Inhibits Vesicle Mobility and Secretion in Astrocytes

    OpenAIRE

    Trkov, Saša; Stenovec, Matjaž; Kreft, Marko; Potokar, Maja; Parpura, Vladimir; Davletov, Bazbek; Zorec, Robert

    2012-01-01

    In the brain, astrocytes signal to the neighboring cells by the release of chemical messengers (gliotransmitters) via regulated exocytosis. Recent studies uncovered a potential role of signaling lipids in modulation of exocytosis. Hence, we investigated whether sphingosine and the structural analog fingolimod/FTY720, a recently introduced therapeutic for multiple sclerosis, affect (i) intracellular vesicle mobility and (ii) vesicle cargo discharge from cultured rat astrocytes. Distinct types ...

  16. Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome.

    Science.gov (United States)

    Turovsky, Egor; Karagiannis, Anastassios; Abdala, Ana Paula; Gourine, Alexander V

    2015-07-15

    Rett syndrome, a prototypical neurological disorder caused by loss of function of the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2) gene, is associated with a severely disordered breathing pattern and reduced ventilatory CO2 sensitivity. In a mouse model of Rett syndrome (MeCP2 knockout), re-introduction of the MeCP2 gene selectively in astrocytes rescues normal respiratory phenotype. In the present study we determined whether the metabolic and/or signalling functions of astrocytes are affected by testing the hypotheses that in conditions of MeCP2 deficiency, medullary astrocytes are unable to produce/release appropriate amounts of lactate or detect changes in PCO2/[H(+) ], or both. No differences in tonic or hypoxia-induced release of lactate from the ventral surface of the medulla oblongata or cerebral cortex in brain slices of MeCP2-knockout and wild-type mice were found. In brainstem slices of wild-type mice, respiratory acidosis triggered robust elevations in [Ca(2+) ]i in astrocytes residing near the ventral surface of the medulla oblongata. The magnitude of CO2 -induced [Ca(2+) ]i responses in medullary astrocytes was markedly reduced in conditions of MeCP2 deficiency, whereas [Ca(2+) ]i responses to ATP were unaffected. These data suggest that (i) metabolic function of astrocytes in releasing lactate into the extracellular space is not affected by MeCP2 deficiency, and (ii) MeCP2 deficiency impairs the ability of medullary astrocytes to sense changes in PCO2/[H(+) ]. Taken together with the evidence of severely blunted ventilatory sensitivity to CO2 in mice with conditional MeCP2 deletion in astroglia, these data support the hypothesis of an important role played by astrocytes in central respiratory CO2 /pH chemosensitivity. PMID:25981852

  17. Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes

    OpenAIRE

    Paulose, Jiffin K.; Peters, Jennifer L.; Karaganis, Stephen P.; Cassone, Vincent M.

    2009-01-01

    Melatonin is rhythmically synthesized and released by the avian pineal gland and retina during the night, targeting an array of tissues and affecting a variety of physiological and behavioral processes. Among these targets, astrocytes express two melatonin receptor subtypes in vitro, the Mel1A and Mel1C receptors, which play a role in regulating metabolic activity and calcium homeostasis in these cells. Molecular characterization of chick astrocytes has revealed the expression of orthologs of...

  18. Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions.

    Science.gov (United States)

    Song, Dan; Li, Baoman; Yan, Enzhi; Man, Yi; Wolfson, Marina; Chen, Ye; Peng, Liang

    2012-11-01

    Bipolar disorder I and II are affective disorders with mood changes between depressive and manic (bipolar I) or hypomanic (bipolar II) periods. Current therapy of these conditions is chronic treatment with one or more of the anti-bipolar drugs, Li(+) ('lithium'), carbamazepine and valproic acid. The pathophysiology of bipolar disorder is multifactorial and far from clear. Recent data on the dependence of normal brain function on neuronal-astrocytic interactions raise the possibility of astrocytic involvement. We will discuss our previously published and new results on effects of chronic treatment of primary cultures of normal mouse astrocytes with any of three conventional anti-bipolar drugs. The focus will be on several drug-induced events in relation to therapeutic effects of the drugs, such as myo-inositol uptake, intracellular pH and alkalinization, drug-induced modulation of glutamatergic activity in astrocytes and release of astrocytic 'gliotransmitters'. Finally, we will discuss the importance of phospholipase A2 (PLA(2)) and arachidonic acid cascade in drug-treated astrocytes, partly based on Dr. Barneda Cuirana's published thesis. All three drugs cause gradual intracellular alkalinization through different mechanisms. Alkalinization inhibit myo-inositol uptake, resulting in reduced inositolphosphate/phospholipid signaling. Accordingly, transmitter-induced increase in free intracellular Ca(2+) ([Ca(2+)](i)) becomes inhibited, aborting release of astrocytic 'gliotransmitters'. The reduction of "gliotransmitter" effects on neurons may have therapeutic effects in mania. Alkalinization also up-regulates expression of cPLA(2), an enzyme releasing arachidonic acid, and triggered arachidonic acid cascade and production, but perhaps not release, of prostaglandins. Whenever tested, identical effects were observed in freshly isolated astrocytes, but not neurons, from carbamazepine-treated healthy animals. PMID:22965852

  19. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    OpenAIRE

    Yazan S. Batarseh; Quoc-Viet Duong; Youssef M. Mousa; Al Rihani, Sweilem B.; Khaled Elfakhri; Amal Kaddoumi

    2016-01-01

    Amyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process m...

  20. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G;

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse i...... microglia rather than astrocytes are implicated in demyelinating pathology, we propose that microglial NO may be cytopathic whereas astrocyte-derived NO may be protective in EAE....

  1. Reciprocal neuron-astrocyte signaling in epileptic seizure generation and propagation

    OpenAIRE

    Cammarota, Mario

    2013-01-01

    The idea that astrocytes – the main population of glial cells in the brain – are active partners of neurons in many aspects of brain functions represented a Copernican Revolution in neurobiology. Astrocytes, which were for many years considered just like the cement (from Greek glia i.e. glue) that keeps neuronal cells together, have now been moved from the periphery to the centre of the universe of information processing in the brain providing a radically different point of obs...

  2. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  3. Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis

    OpenAIRE

    Vargas, Marcelo R.; Johnson, Delinda A.; Sirkis, Daniel W.; Messing, Albee; Jeffrey A. Johnson

    2008-01-01

    Activation of the transcription factor Nrf2 in astrocytes coordinates the up-regulation of antioxidant defenses and confers protection to neighboring neurons. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. Non-neuronal cells, including astrocytes, shape motor neuron survival in ALS and are a potential target to prevent motor neuron degeneration. The pr...

  4. Neurosphere Based Differentiation of Human iPSC Improves Astrocyte Differentiation

    DEFF Research Database (Denmark)

    Zhou, Shuling; Szczesna, Karolina; Ochalek, Anna;

    2016-01-01

    expression when compared to 2D culture methods. Furthermore, the 3D propagation method for NPCs resulted in a significant higher expression of the astrocyte markers  GFAP and aquaporin 4 (AQP4) in the differentiated cells. Thus, our 3D propagation method could constitute a useful tool to promote NPC...... homogeneity and also to increase the differentiation potential of iPSC towards astrocytes....

  5. Expression of preproenkephalin mRNA by cultured astrocytes and neurons.

    OpenAIRE

    Vilijn, M H; Vaysse, P J; Zukin, R S; Kessler, J A

    1988-01-01

    Expression of preproenkephalin mRNA by developing glia and neurons was examined in cultures of embryonic and neonatal rat brain. Cultured glia from specific regions of embryonic day 17 and neonatal day 1 rat brain were identified as astrocytes on the basis of both morphology and expression of immunoreactivity for glial fibrillary acidic protein. The level of preproenkephalin mRNA in cultured neonatal hypothalamic astrocytes was comparable to levels present in cultured embryonic striatal and h...

  6. Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors

    OpenAIRE

    Massimiliano Caiazzo; Serena Giannelli; Pierluigi Valente; Gabriele Lignani; Annamaria Carissimo; Alessandro Sessa; Gaia Colasante; Rosa Bartolomeo; Luca Massimino; Stefano Ferroni; Carmine Settembre; Fabio Benfenati; Vania Broccoli

    2014-01-01

    Summary Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute t...

  7. Glia Maturation Factor Deficiency Suppresses 1-Methyl-4-Phenylpyridinium-Induced Oxidative Stress in Astrocytes

    OpenAIRE

    Khan, Mohammad Moshahid; Kempuraj, Duraisamy; Zaheer, Smita; Zaheer, Asgar

    2014-01-01

    Inflammation is closely intertwined with pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that inhibition of glia-mediated inflammation might represent a promising therapeutic target for PD. Glia maturation factor (GMF), an inflammatory protein, predominantly localized in astrocytes is previously isolated, sequenced and cloned in our laboratory. In the present investigation, we demonstrate that GMF-deficiency in astrocytes upregulates the antioxidant status and limit the...

  8. Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

    OpenAIRE

    Gourav Roy Choudhury; Ali Winters; Ryan M Rich; Myoung-Gwi Ryou; Zygmunt Gryczynski; Fang Yuan; Shao-Hua Yang; Ran Liu

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the prote...

  9. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery.

    Science.gov (United States)

    Ouyang, Li; Tian, Yueyang; Bao, Yun; Xu, Huijuan; Cheng, Jiaoyan; Wang, Bingyu; Shen, Yao; Chen, Zhong; Lyu, Jianxin

    2016-06-01

    Previously, we showed that carnosine upregulated the expression level of glutamate transporter 1 (GLT-1), which has been recognized as an important participant in the astrocyte-neuron lactate shuttle (ANLS), with ischemic model in vitro and in vivo. This study was designed to investigate the protective effect of carnosine on neuron/astrocyte co-cultures exposed to OGD/recovery, and to explore whether the ANLS or any other mechanism contributes to carnosine-induced neuroprotection on neuron/astrocyte. Co-cultures were treated with carnosine and exposed to OGD/recovery. Cell death and the extracellular levels of glutamate and GABA were measured. The mitochondrial respiration and glycolysis were detected by Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results showed that carnosine decreased neuronal cell death, increased extracellular GABA level, and abolished the increase in extracellular glutamate and reversed the mitochondrial energy metabolism disorder induced by OGD/recovery. Carnosine also upregulated the mRNA level of neuronal glutamate transporter EAAC1 at 2h after OGD. Dihydrokainate, a specific inhibitor of GLT-1, decreased glycolysis but it did not affect mitochondrial respiration of the cells, and it could not reverse the increase in mitochondrial OXPHOS induced by carnosine in the co-cultures. The levels of mRNAs for monocarboxylate transporter1, 4 (MCT1, 4), which were expressed in astrocytes, and MCT2, the main neuronal MCT, were significantly increased at the early stage of recovery. Carnosine only partly reversed the increased expression of astrocytic MCT1 and MCT4. These results suggest that regulating astrocytic energy metabolism and extracellular glutamate and GABA levels but not the ANLS are involved in the carnosine-induced neuroprotection. PMID:27040711

  10. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle.

    Science.gov (United States)

    Petit, J-M; Magistretti, P J

    2016-05-26

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in the firing rate such as during the sleep/wake transitions. Investigations into brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose (Gluc) consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, Gluc and lactate (Lac) with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolite regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and NMC in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the "local and use dependent" sleep hypothesis. PMID:26704637

  11. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  12. Knockdown of MLC1 in primary astrocytes causes cell vacuolation: a MLC disease cell model

    Science.gov (United States)

    Duarri, Anna; de Heredia, Miguel Lopez; Capdevila-Nortes, Xavier; Ridder, Margreet C.; Montolio, Marisol; López-Hernández, Tania; Boor, Ilja; Lien, Chun-Fu; Hagemann, Tracy; Messing, Albee; Gorecki, Dariusz C.; Scheper, Gert C.; Martínez, Albert; Nunes, Virginia; van der Knaap, Marjo S.; Estévez, Raúl

    2013-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, in the majority of cases caused by mutations in the MLC1 gene. MRI from MLC patients shows diffuse cerebral white matter signal abnormality and swelling, with evidence of increased water content. Histopathology in a MLC patient shows vacuolation of myelin, which causes the cerebral white matter swelling. MLC1 protein is expressed in astrocytic processes that are part of blood- and cerebrospinal fluid-brain barriers. We aimed to create an astrocyte cell model of MLC disease. The characterization of rat astrocyte cultures revealed MLC1 localization in cell-cell contacts, which contain other proteins described typically in tight and adherent junctions. MLC1 localization in these contacts was demonstrated to depend on the actin cytoskeleton; it was not altered when disrupting the microtubule or the GFAP networks. In human tissues, MLC1 and the protein Zonula Occludens 1 (ZO-1), which is linked to the actin cytoskeleton, co-localized by EM immunostaining and were specifically co-immunoprecipitated. To create an MLC cell model, knockdown of MLC1 in primary astrocytes was performed. Reduction of MLC1 expression resulted in the appearance of intracellular vacuoles. This vacuolation was reversed by the co-expression of human MLC1. Reexamination of a human brain biopsy from an MLC patient revealed that vacuoles were also consistently present in astrocytic processes. Thus, vacuolation of astrocytes is also a hallmark of MLC disease. PMID:21440627

  13. Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes.

    Directory of Open Access Journals (Sweden)

    Florence Appaix

    Full Text Available Fluorescent staining of astrocytes without damaging or interfering with normal brain functions is essential for intravital microscopy studies. Current methods involved either transgenic mice or local intracerebral injection of sulforhodamine 101. Transgenic rat models rarely exist, and in mice, a backcross with GFAP transgenic mice may be difficult. Local injections of fluorescent dyes are invasive. Here, we propose a non-invasive, specific and ubiquitous method to stain astrocytes in vivo. This method is based on iv injection of sulforhodamine dyes and is applicable on rats and mice from postnatal age to adulthood. The astrocytes staining obtained after iv injection was maintained for nearly half a day and showed no adverse reaction on astrocytic calcium signals or electroencephalographic recordings in vivo. The high contrast of the staining facilitates the image processing and allows to quantify 3D morphological parameters of the astrocytes and to characterize their network. Our method may become a reference for in vivo staining of the whole astrocytes population in animal models of neurological disorders.

  14. Experimental study of astrocytic swelling in rats and evaluation with CT perfusion imaging and histopathology

    International Nuclear Information System (INIS)

    Objective: To evaluate the influence of astrocytic swelling on regional cerebral blood flow. Methods: Sixteen male Wistar rats weighing from 280 g to 360 g were used. 1-aminocyclopentanetrans-1, 3-dicarboxylic acid (tACPD) was microinjected into the right caudatum. Brain water content was determined by a wet weight/dry weight technique. Dynamic CT perfusion imaging was achieved from personal computer aided mapping. Extravasation of Evan's blue (EB) into the brain was determined as an indicator of disturbance in the blood-brain barrier (BBB) and endothelial cells. Histopathologic examination by both light and electron microscopy was performed in 6 hours after injection surgery. Results: Brain edema was induced after tACPD injection and astrocytic swelling was showed in histopathologic examination. EB extravasation showed no blue stain, indicating no increase in BBB permeability induced by tACPD-injection. Electron microscope study confirmed this finding and revealed remarkable swelling of astrocytes, especially endfoot processes of astrocytes around capillaries at 6 h after tACPD-injection. The abnormal extent on CT perfusion images matched with abnormal extent on histopathologic examination. There were statistical significant differences between operated group and control group (P<0.05). Conclusion: Astrocytic swelling can induce or deteriorate the decrease of regional cerebral blood flow. The effectually remission of primary astrocytic swelling may provide new clues for the therapeutic intervention

  15. Spatial properties of astrocyte gap junction coupling in the rat hippocampus.

    Science.gov (United States)

    Anders, Stefanie; Minge, Daniel; Griemsmann, Stephanie; Herde, Michel K; Steinhäuser, Christian; Henneberger, Christian

    2014-10-19

    Gap junction coupling enables astrocytes to form large networks. Its strength determines how easily a signalling molecule diffuses through the network and how far a locally initiated signal can spread. Changes of coupling strength are well-documented during development and in response to various stimuli. Precise quantification of coupling is needed for studying such modifications and their functional consequences. We therefore explored spatial properties of astrocyte coupling in a model simulating dye loading of single astrocytes. Dye spread into the astrocyte network could be characterized by a coupling length constant and coupling anisotropy. In experiments, the fluorescent marker Alexa Fluor 594 was used to measure these parameters in CA1 and dentate gyrus of the rat hippocampus. Coupling did not differ between regions but showed a temperature-dependence, partially owing to changes of intracellular diffusivity, detected by measuring coupling length constants but not the more variable cell counts of dye-coupled astrocytes. We further found that coupling is anisotropic depending on distance to the pyramidal cell layer, which correlated with regional differences of astrocyte morphology. This demonstrates that applying these new analytical approaches provides useful quantitative information on gap junction coupling and its heterogeneity. PMID:25225094

  16. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism.

    Science.gov (United States)

    Aubert, Agnès; Costalat, Robert

    2005-11-01

    Understanding cerebral energy metabolism in neurons and astrocytes is necessary for the interpretation of functional brain imaging data. It has been suggested that astrocytes can provide lactate as an energy fuel to neurons, a process referred to as astrocyte-neuron lactate shuttle (ANLS). Some authors challenged this hypothesis, defending the classical view that glucose is the major energy substrate of neurons, at rest as well as in response to a stimulation. To test the ANLS hypothesis from a theoretical point of view, we developed a mathematical model of compartmentalized energy metabolism between neurons and astrocytes, adopting hypotheses highly unfavorable to ANLS. Simulation results can be divided between two groups, depending on the relative neuron versus astrocyte stimulation. If this ratio is low, ANLS is observed during all the stimulus and poststimulus periods (continuous ANLS), but a high ratio induces ANLS only at the beginning of the stimulus and during the poststimulus period (triphasic behavior). Finally, our results show that current experimental data on lactate kinetics are compatible with the ANLS hypothesis, and that it is essential to assess the neuronal and astrocytic NADH/NAD+ ratio changes to test the ANLS hypothesis. PMID:15931164

  17. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    Science.gov (United States)

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  18. Heterogeneity of astrocytes: from development to injury - single cell gene expression.

    Directory of Open Access Journals (Sweden)

    Vendula Rusnakova

    Full Text Available Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K(+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10-50 days of postnatal development (P10-P50. The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20 was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50. Within 14 days after ischemia (D3, D7, D14, additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3, transcriptionally active early reactive glia (mainly from D7 and permanent reactive glia (solely from D14. Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.

  19. Regulation of Neuron-Astrocyte Metabolic Coupling across the Sleep-Wake Cycle

    KAUST Repository

    Petit, Jean-Marie

    2015-12-17

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust the energy production to the neuronal energy needs through different mechanisms grouped under the term “neurometabolic coupling” (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in firing rate such as during the sleep/wake transitions. Investigations on brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, glucose and lactate with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolites regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and neurometabolic coupling in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the “local and use dependent” sleep hypothesis.

  20. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Beaulé

    Full Text Available BACKGROUND: Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian. METHODOLOGY/PRINCIPAL FINDINGS: We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice. CONCLUSION/SIGNIFICANCE: We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  1. Hyperbaric oxygen preserves neurotrophic activity of carbon monoxide-exposed astrocytes.

    Science.gov (United States)

    Jurič, Damijana M; Šuput, Dušan; Brvar, Miran

    2016-06-24

    In astrocytes, carbon monoxide (CO) poisoning causes oxidative stress and mitochondrial dysfunction accompanied by caspase and calpain activation. Impairment in astrocyte function can be time-dependently reduced by hyperbaric (3bar) oxygen (HBO). Due to the central role of astrocytes in maintaining neuronal function by offering neurotrophic support we investigated the hypothesis that HBO therapy may exert beneficial effect on acute CO poisoning-induced impairment in intrinsic neurotrophic activity. Exposure to 3000ppm CO in air followed by 24-72h of normoxia caused a progressive decline of gene expression, synthesis and secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) to different extent. 1h treatment with 100% oxygen disclosed a pressure- and time-dependent efficacy in preserving astrocytic neurotrophic support. The beneficial effect was most evident when the astrocytes were exposed to HBO 1-5h after exposure to CO. The results further support an active role of hyperbaric, not normobaric, oxygenation in reducing dysfunction of astrocytes after acute CO poisoning. By preserving endogenous neurotrophic activity HBO therapy might promote neuronal protection and thus prevent the occurrence of late neuropsychological sequelae. PMID:27113706

  2. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    Science.gov (United States)

    Cambron, Melissa; D'Haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β2 adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies. PMID:22214904

  3. Astrocytic modulation of Blood Brain Barrier: Perspectives on Parkinson´s Disease

    Directory of Open Access Journals (Sweden)

    Ricardo eCabezas

    2014-08-01

    Full Text Available TThe blood–brain barrier (BBB is a tightly regulated interface in the Central Nervous System that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells, pericytes and astrocytes that create a neurovascular unit with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson´s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the endothelial cells and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson´s disease and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.

  4. The astrocytes proliferative activity after immunoglobulin G uptake in the injured mouse cerebral hemisphere

    International Nuclear Information System (INIS)

    Dividing cells were labelled with 3H-thymidine injected at different intervals following the injury of the rat cerebral hemisphere. Brain sections were double immunostained for GFAP and for immunoglobulin G (IgG), and subjected to autoradiography. Thereafter, three cell types were counted within the injury area: 1) autoradiographically labelled and 2) unlabelled astrocytes immunopositive both for GFAP and IgG (GFAP+/IgG+), and 3) autoradiographically labelled astrocytes immunopositive exclusively for GFAP (GFAP+/IgG-). Reactive proliferation of GFAP+/IgG- astrocytes began on the 1st day after injury and reached its maximal intensity on day 4, whereas the population of non-proliferating GFAP+/IgG+ astrocytes increased continuously during 8 days after injury and then decreased. Proliferating GFAP+/IgG+ astrocytes were found only occasionally during the whole examined period and did not display significant quantitative changes. The results suggest that the ability of astrocytes to proliferate after IgG uptake is very low in comparison with those containing no IgG. (author). 9 refs, 3 figs

  5. Astrocyte/neuron ratio and its importance on glutamate toxicity: an in vitro voltammetric study.

    Science.gov (United States)

    Hacimuftuoglu, Ahmet; Tatar, Abdulgani; Cetin, Damla; Taspinar, Numan; Saruhan, Fatih; Okkay, Ufuk; Turkez, Hasan; Unal, Deniz; Stephens, Robert Louis; Suleyman, Halis

    2016-08-01

    The purpose of this study was to clarify the relationship between neuron cells and astrocyte cells in regulating glutamate toxicity on the 10th and 20th day in vitro. A mixed primary culture system from newborn rats that contain cerebral cortex neurons cells was employed to investigate the glutamate toxicity. All cultures were incubated with various glutamate concentrations, then viability tests and histological analyses were performed. The activities of glutamate transporters were determined by using in vitro voltammetry technique. Viable cell number was decreased significantly on the 10th day at 10(-7) M and at 10(-6) M glutamate applications, however, viable cell number was not decreased at 20th day. Astrocyte number was increased nearly six times on the 20th day as compared to the 10th day. The peak point of glutamate reuptake capacity was about 2 × 10(-4) M on the 10th day and 10(-3) M on the 20th day. According to our results, we suggested that astrocyte age was important to maintain neuronal survival against glutamate toxicity. Thus, we revealed activation or a trigger point of glutamate transporters on astrocytes due to time since more glutamate was taken up by astrocytes when glutamate transporters on the astrocyte were triggered with high exogenous glutamate concentrations. In conclusion, the present investigation is the first voltammetric study on the reuptake parameters of glutamate in vitro. PMID:26438331

  6. Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I.

    Directory of Open Access Journals (Sweden)

    Silvia Olivera-Bravo

    Full Text Available BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA, a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I, an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0 to induce an acute, transient rise of GA levels in the central nervous system (CNS. GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal

  7. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway

    OpenAIRE

    Haskew-Layton, Renée E.; Payappilly, Jimmy B.; Smirnova, Natalya A.; Ma, Thong C.; Chan, Kelvin K.; Murphy, Timothy H.; Guo, Hengchang; Langley, Brett; Sultana, Rukhsana; Butterfield, D. Allan; Santagata, Sandro; Alldred, Melissa J.; Gazaryan, Irina G.; Bell, George W.; Ginsberg, Stephen D

    2010-01-01

    Neurons rely on their metabolic coupling with astrocytes to combat oxidative stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) appears important for astrocyte-dependent neuroprotection from oxidative insults. Indeed, Nrf2 activators are effective in stroke, Parkinson disease, and Huntington disease models. However, key endogenous signals that initiate adaptive neuroprotective cascades in astrocytes, including activation of Nrf2-mediated gene expression, remai...

  8. Inflammatory Mediators Alter the Astrocyte Transcriptome and Calcium Signaling Elicited by Multiple G-Protein-Coupled Receptors

    OpenAIRE

    Hamby, Mary E.; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H.; Khakh, Baljit S.; Sofroniew, Michael V.

    2012-01-01

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured ...

  9. Characterization of mouse cell line IMA 2.1 as a potential model system to study astrocyte functions

    OpenAIRE

    Schildknecht, Stefan; Kirner, Susanne; Henn, Anja; Gasparic, Karlo; Pape, Regina; Efremova, Liudmila; Maier, Olaf; Fischer, Roman; Leist, Marcel

    2012-01-01

    Astrocytes are activated in most chronic neurodegenerative diseases associated with inflammatory events such as Parkinson’s disease or Alzheimer’s disease, but also in stroke. Due to an aging population worldwide, research efforts in these areas are likely to expand in the future. This will entail an increaseddemand for appropriate experimental models. We introduce here the new immortalized mouse astrocyte cell line IMA 2.1 as an alternative to currently used primary astrocyte cultures. IMA 2...

  10. Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks

    OpenAIRE

    Maurizio De Pittà; Eshel Ben Jacob; Hugues Berry

    2014-01-01

    Traditionally, astrocytes have been considered to couple via gap-junctions into a syncytium with only rudimentary spatial organization. However, this view is challenged by growing experimental evidence that astrocytes organize as a proper gap-junction mediated network with more complex region-dependent properties. On the other hand, the propagation range of intercellular calcium waves (ICW) within astrocyte populations is as well highly variable, depending on the brain region considered. This...

  11. Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus

    OpenAIRE

    Höft, Simon; Griemsmann, Stephanie; Seifert, Gerald; Steinhäuser, Christian

    2014-01-01

    Astrocytes may express ionotropic glutamate and gamma-aminobutyric acid (GABA) receptors, which allow them to sense and to respond to neuronal activity. However, so far the properties of astrocytes have been studied only in a few brain regions. Here, we provide the first detailed receptor analysis of astrocytes in the murine ventrobasal thalamus and compare the properties with those in other regions. To improve voltage-clamp control and avoid indirect effects during drug applications, freshly...

  12. Effect of type-2 astrocytes on the viability of dorsal root ganglion neurons and length of neuronal processes

    OpenAIRE

    Fan, Chunling; Wang, Hui; Chen, Dan; Cheng, Xiaoxin; Xiong, Kun; Luo, Xuegang; Cao, Qilin

    2014-01-01

    The role of type-2 astrocytes in the repair of central nervous system injury remains poorly understood. In this study, using a relatively simple culture condition in vitro, type-2 astrocytes, differentiated from oligodendrocyte precursor cells by induction with bone morphogenetic protein-4, were co-cultured with dorsal root ganglion neurons. We examined the effects of type-2 astrocytes differentiated from oligodendrocyte precursor cells on the survival and growth of dorsal root ganglion neuro...

  13. Astrocyte-Specific Disruption of SynCAM1 Signaling Results in ADHD-Like Behavioral Manifestations

    OpenAIRE

    Sandau, Ursula S.; Alderman, Zefora; Ojeda, Sergio R.; Raber, Jacob; Corfas, Gabriel

    2012-01-01

    SynCAM1 is an adhesion molecule involved in synaptic differentiation and organization. SynCAM1 is also expressed in astroglial cells where it mediates astrocyte-to astrocyte and glial-neuronal adhesive communication. In astrocytes, SynCAM1 is functionally linked to erbB4 receptors, which are involved in the control of both neuronal/glial development and mature neuronal and glial function. Here we report that mice carrying a dominant-negative form of SynCAM1 specifically targeted to astrocytes...

  14. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?

    Science.gov (United States)

    Ceyzériat, Kelly; Abjean, Laurene; Carrillo-de Sauvage, María-Angeles; Ben Haim, Lucile; Escartin, Carole

    2016-08-25

    Astrocytes play multiple important roles in brain physiology. In pathological conditions, they become reactive, which is characterized by morphological changes and upregulation of intermediate filament proteins. Besides these descriptive hallmarks, astrocyte reactivity involves significant transcriptional and functional changes that are far from being fully understood. Most importantly, astrocyte reactivity seems to encompass multiple states, each having a specific influence on surrounding cells and disease progression. These diverse functional states of reactivity must be regulated by subtle signaling networks. Many signaling cascades have been associated with astrocyte reactivity, but among them, the JAK-STAT3 pathway is emerging as a central regulator. In this review, we aim (i) to show that the JAK-STAT3 pathway plays a key role in the control of astrocyte reactivity, (ii) to illustrate that STAT3 is a pleiotropic molecule operating multiple functions in reactive astrocytes, and (iii) to suggest that each specific functional state of reactivity is governed by complex molecular interactions within astrocytes, which converge on STAT3. More research is needed to precisely identify the signaling networks controlling the diverse states of astrocyte reactivity. Only then, we will be able to precisely delineate the therapeutic potential of reactive astrocytes in each neurological disease context. PMID:27241943

  15. Modulation of morpho-functional characteristics of astrocytes using chemically-functionalized water-soluble single-walled carbon nanotubes

    Science.gov (United States)

    Gottipati, Manoj K.

    In this thesis, I report the use of chemically functionalized water-soluble single-walled carbon nanotubes (ws-SWCNTs) for the modulation of morpho-functional characteristics of astrocytes. When added to the culturing medium, ws-SWCNTs were able to make astrocytes larger and stellate/mature, changes associated with the increase in glial fibrillary acidic protein immunoreactivity. Thus, ws-SWCNTs could have more beneficial effects at the injury site than previously thought; by affecting astrocytes, they could provide for a more comprehensive re-establishment of the brain computational power. Keywords: Carbon nanotubes, graft copolymers, astrocytes, glial fibrillary acidic protein.

  16. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian;

    2012-01-01

    IFN responses in astrocytes. Tlr3-/- mice were hypersusceptible to HSV-2 infection in the CNS after vaginal inoculation. HSV-2 exhibited broader neurotropism in Tlr3-/- mice than it did in WT mice, with astrocytes being most abundantly infected. Tlr3-/- mice did not exhibit a global defect in innate...... immune responses to HSV, but astrocytes were defective in HSV-induced type I IFN production. Thus, TLR3 acts in astrocytes to sense HSV-2 infection immediately after entry into the CNS, possibly preventing HSV from spreading beyond the neurons mediating entry into the CNS....

  17. Astrocyte sodium signaling and neuro-metabolic coupling in the brain.

    Science.gov (United States)

    Rose, C R; Chatton, J-Y

    2016-05-26

    At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain. PMID:25791228

  18. Excitable properties in astrocytes derived from human embryonic CNS stem cells.

    Science.gov (United States)

    Gritti, A; Rosati, B; Lecchi, M; Vescovi, A L; Wanke, E

    2000-10-01

    Although it is widely believed that astrocytes lack excitability in adult tissue, primitive action potential-like responses have been elicited from holding potentials negative to -80 mV, in cultured and injury-induced gliotic rodent astrocytes and in human glia under pathological conditions such as glioblastomas and temporal lobe epilepsy. The present study was designed to investigate the properties of astrocytes (identified by immunoreactivity for glial fibrillary acidic protein) derived from multipotent human embryonic CNS stem cells and cultured for 12-25 days in differentiating conditions. We describe here for the first time that brief (1 ms) current pulses elicit spikes from a resting potential (VREST) of approximately -37 mV and, more interestingly, that spontaneous firing can be occasionally recorded in human astrocytes. A voltage-clamp study revealed that in these cells: (i) the half-inactivation of the tetrodotoxin (TTX)-sensitive Na+ channels is around VREST; (ii) the delayed rectifier K+ current is very small; (iii) the ever-present transient outward A-type K+ channels are paradoxically capable of inhibiting the action potentials elicited from a negative membrane potential (-55 to -60 mV); and (iv) inwardly rectifying currents are not present. The responses predicted from a simulation model are in agreement with the experiments. As suggested by recent studies, the decrease of Na+ channel expression and the changes of the electrophysiological properties during the postnatal maturation of the CNS seem to exclude the possibility that astrocytes may play an excitable role in adult tissue. Our data show that excitability and firing should be considered an intrinsic attribute of human astrocytes during CNS development. This is likely to have physiological importance because the role of astrocytes during development is different from the [K+]o-buffering role played in adult CNS, namely the glutamate release and/or the guiding of migrating neurons. PMID:11029624

  19. Mitochondrial fission and fusion in astrocytes: a new pathway towards senescence

    Directory of Open Access Journals (Sweden)

    Sonia Luz Albarracin

    2015-02-01

    Full Text Available Astrocytes are highly specialized cells that can maintain the integrity of the synapse, facilitate nutrition and trophic support to neurons, and regulate metabolic coupling between neurons and glia. However, astrocytes are involved in resolving different types of injuries and in aging processes in the brain. Senescence has also been reported in the brain, and senescence-associated loss of astrocyte function is linked to neuronal dysfunction in age-related neurodegenerative diseases such as Alzheimer’s disease and Parkinson's disease. For example, astrocyte senescence per se inhibits synapse maturation and affects synaptic transmission. In response to the cell’s bio-energetic state, mitochondria continuously undergo structural remodeling through fission and fusion processes. These tightly regulated events are believed to be involved in many cellular events such as apoptosis, senescence, and age-related diseases. Although, little is known about the age-related changes that occur in astrocytes and if these cells are able to generate a senescent phenotype mediated by mitochondria, in the present study we evaluated the involvement of mitochondrial remodeling in the senescence process of rat astrocytes in vitro. The results obtained showed that when comparing cells at population doubling two (PD2 with cells at population doubling ten (PD10 there is a significant increase in the activity of the senescence-associated β-galactosidase marker in PD10 cells. In addition, PD10 cells had increased mitochondrial volume, decreased superoxide production, and decreased mitochondrial membrane potential. Protein characterization evidenced changes in the balance between mitochondrial fission and fusion proteins. Collectively, our results demonstrated a senescent-astrocyte phenotype at PD10, which is associated with metabolic and mitochondrial phenotype changes.

  20. Transcriptomic analysis and 3D bioengineering of astrocytes indicate ROCK inhibition produces cytotrophic astrogliosis

    Directory of Open Access Journals (Sweden)

    Ross D O'Shea

    2015-02-01

    Full Text Available Astrocytes provide trophic, structural and metabolic support to neurons, and are considered genuine targets in regenerative neurobiology, as their phenotype arbitrates brain integrity during injury. Inhibitors of Rho kinase (ROCK cause stellation of cultured 2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated expression of BDNF and anti-oxidant genes. Here we further explored the signposts of a cytotrophic, healthy phenotype by data-mining of our astrocytic transcriptome in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular cascades and inflammatory / angiogenic responses were all inhibited, favouring adoption of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can influence the extracellular matrix. We built upon our evidence that astrocytes maintained on 3D poly-Ɛ-caprolactone (PCL electrospun scaffolds adopt a cytotrophic phenotype similar to that produced by Fasudil. Using these procedures, employing mature 3D cultured astrocytes, Fasudil (100 µM or Y27632 (30 µM added for the last 72 h of culture altered arborization, which featured numerous additional minor processes as shown by GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased G-actin labelling, indicative of disassembly of actin stress fibres. ROCK inhibitors provide additional beneficial effects for bioengineered 3D astrocytes, including enlargement of the overall arbour. Potentially, the combined strategy of bio-compatible scaffolds with ROCK inhibition offers unique advantages for the management of glial scarring. Overall these data emphasize that manipulation of the astrocyte phenotype to achieve a healthy biology offers new hope for the management of inflammation in neuropathologies.

  1. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice.

    Science.gov (United States)

    Giocanti-Auregan, Audrey; Vacca, Ophélie; Bénard, Romain; Cao, Sijia; Siqueiros, Lourdes; Montañez, Cecilia; Paques, Michel; Sahel, José-Alain; Sennlaub, Florian; Guillonneau, Xavier; Rendon, Alvaro; Tadayoni, Ramin

    2016-05-01

    Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided. GLIA 2016;64:716-729. PMID:26711882

  2. Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes.

    Science.gov (United States)

    Paulose, Jiffin K; Peters, Jennifer L; Karaganis, Stephen P; Cassone, Vincent M

    2009-04-01

    Melatonin is rhythmically synthesized and released by the avian pineal gland and retina during the night, targeting an array of tissues and affecting a variety of physiological and behavioral processes. Among these targets, astrocytes express two melatonin receptor subtypes in vitro, the Mel(1A) and Mel(1C) receptors, which play a role in regulating metabolic activity and calcium homeostasis in these cells. Molecular characterization of chick astrocytes has revealed the expression of orthologs of the mammalian clock genes including clock, cry1, cry2, per2, and per3. To test the hypothesis that pineal melatonin entrains molecular clockworks in downstream cells, we asked whether coculturing astrocytes with pinealocytes or administration of exogenous melatonin cycles would entrain metabolic rhythms of 2-deoxy [14C]-glucose (2DG] uptake and/or clock gene expression in cultured astrocytes. Rhythmic secretion of melatonin from light-entrained pinealocytes in coculture as well as cyclic administration of exogenous melatonin entrained rhythms of 2DG uptake and expression of Gallus per2 (gper2) and/or gper3, but not of gcry1 mRNA. Surprisingly, melatonin also caused a dose-dependent increase in mitotic activity of astrocytes, both in coculture and when administered exogenously. The observation that melatonin stimulates mitotic activity in diencephalic astrocytes suggests a trophic role of the hormone in brain development. The data suggest a dual role for melatonin in avian astrocytes: synchronization of rhythmic processes in these cells and regulation of growth and differentiation. These two processes may or may not be mutually exclusive. PMID:19196435

  3. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

    Science.gov (United States)

    Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N

    2016-06-01

    Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. PMID:27032721

  4. ATP and potassium ions: a deadly combination for astrocytes

    Science.gov (United States)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  5. Astrocytes produce an insulin-like neurotrophic factor

    International Nuclear Information System (INIS)

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fraction of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of 125I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation

  6. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein.

    Science.gov (United States)

    Guitart, Kathrin; Loers, Gabriele; Buck, Friedrich; Bork, Ute; Schachner, Melitta; Kleene, Ralf

    2016-06-01

    Prion protein (PrP) protects neural cells against oxidative stress, hypoxia, ischemia, and hypoglycemia. In the present study we confirm that cultured PrP-deficient neurons are more sensitive to oxidative stress than wild-type neurons and present the novel findings that wild-type, but not PrP-deficient astrocytes protect wild-type cerebellar neurons against oxidative stress and that exosomes released from stressed wild-type, but not from stressed PrP-deficient astrocytes reduce neuronal cell death induced by oxidative stress. We show that neuroprotection by exosomes of stressed astrocytes depends on exosomal PrP but not on neuronal PrP and that astrocyte-derived exosomal PrP enters into neurons, suggesting neuronal uptake of astrocyte-derived exosomes. Upon exposure of wild-type astrocytes to hypoxic or ischemic conditions PrP levels in exosomes were increased. By mass spectrometry and Western blot analysis, we detected increased levels of 37/67 kDa laminin receptor, apolipoprotein E and the ribosomal proteins S3 and P0, and decreased levels of clusterin/apolipoprotein J in exosomes from wild-type astrocytes exposed to oxygen/glucose deprivation relative to exosomes from astrocytes maintained under normoxic conditions. The levels of these proteins were not altered in exosomes from stressed PrP-deficient astrocytes relative to unstressed PrP-deficient astrocytes. These results indicate that PrP in astrocytes is a sensor for oxidative stress and mediates beneficial cellular responses, e.g. release of exosomes carrying PrP and other molecules, resulting in improved survival of neurons under hypoxic and ischemic conditions. GLIA 2016;64:896-910. PMID:26992135

  7. Functional deficits in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    John J Hablitz

    2014-12-01

    Full Text Available Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21-28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in

  8. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells.

    Science.gov (United States)

    Kleiderman, Susanne; Sá, João V; Teixeira, Ana P; Brito, Catarina; Gutbier, Simon; Evje, Lars G; Hadera, Mussie G; Glaab, Enrico; Henry, Margit; Sachinidis, Agapios; Alves, Paula M; Sonnewald, Ursula; Leist, Marcel

    2016-05-01

    Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. PMID:26689134

  9. Reactive astrocytes over express TSPO and are detected by TSPO Positron Emission Tomography Imaging

    International Nuclear Information System (INIS)

    Astrocytes and micro-glia become reactive under most brain pathological conditions, making this neuro-inflammation process a surrogate marker of neuronal dysfunction. Neuro-inflammation is associated with increased levels of translocator protein 18kDa(TSPO) and binding sites for TSPO ligands. Positron emission tomography (PET) imaging of TSPO is thus commonly used to monitor neuro-inflammation in preclinical and clinical studies. It is widely considered that TSPO PET signal reveals reactive micro-glia, although a few studies suggested a potential contribution of reactive astrocytes. Because astrocytes and micro-glia play very different roles, it is crucial to determine whether reactive astrocytes can also over-express TSPO and yield to a detectable TSPO PET signal in vivo. We used a model of selective astrocyte activation through lentiviral gene transfer of the cytokine ciliary neuro-trophic factor (CNTF) into the rat striatum, in the absence of neuro-degeneration. CNTF induced an extensive activation of astrocytes, which over-expressed GFAP and become hypertrophic, whereas micro-glia displayed minimal increase in reactive markers.Two TSPO radioligands, [18F]DPA-714[N,N-diethyl-2-(2-(4-(2-[18F]fluoroethoxy)phenyl) - 5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide] and [11C]SSR180575 (7-chloro-N,N-dimethyl-5-[11C]methyl-4-oxo-3-phenyl - 3,5-dihydro-4H-pyridazino[4,5- b]indole-1-acetamide),showed a significant binding in the lenti-CNTF-injected striatum that was saturated and displaced by PK11195[N-methyl- N-(1-methylpropyl)-1-(2-chlorophenyl)-isoquinoline-3-carboxamide]. The volume of radioligand binding matched the GFAP immuno-positive volume. TSPO mRNA levels were significantly increased, and TSPO protein was over-expressed by CNTF-activated astrocytes. We show that reactive astrocytes over-express TSPO, yielding to a significant and selective binding of TSPO radioligands. Therefore, caution must be used when interpreting TSPO PET imaging in animals or

  10. Protective and Antioxidant Effects of a Chalconoid from Pulicaria incisa on Brain Astrocytes

    Directory of Open Access Journals (Sweden)

    Anat Elmann

    2013-01-01

    Full Text Available Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF. Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.

  11. Working Memory Learning Method and Astrocytes Number in Different Subfields of Rat's Hippocampus

    Directory of Open Access Journals (Sweden)

    Jahanshahi Mehrdad

    2008-01-01

    Full Text Available The aim of this study was evaluation of the astrocytes number in different subfields of rat's Hippocampus after spatial learning with usage of Morris Water Maze technique and working memory method. In this study, between 2005-2006 years in Pasteur institute of Iran-Tehran and histological department of Gorgan University with usage of Morris Water Maze and working memory technique, we used 14 male albino wistar rats. Seventh rats were in control group and 7 rats in working memory group. After histological preparation, the slides were stained with PTAH staining for showing the Astrocytes. Present results showed significant difference in astrocytes number in CA1, CA2 and CA3 areas of hippocampus between control and reference memory group. The number of astrocytes is increased in working memory group. Then we divided the hippocampus to three parts: Anterior, middle and posterior and with compare of different area (CA1, CA2 and CA3 of hippocampus, we found that the differences between Anterior-middle and Middle-Posterior of CA1 and CA2 area of hippocampus were significant, whereas the difference between Anterior-Posterior parts was not significant in CA1 and CA2 areas. In CA3 area, the difference between Anterior-Middle and Anterior-Posterior parts was significant, whereas the difference between middle and posterior parts was not significant. We concluded that the number of astrocytes increased due to spatial learning and working memory technique.

  12. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    Science.gov (United States)

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-01

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. PMID:26968765

  13. Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available Network signaling through astrocyte syncytiums putatively contribute to the regulation of a number of both physiological and pathophysiological processes in the mammalian central nervous system. As such, an understanding of the underlying mechanisms is critical to determining any roles played by signaling through astrocyte networks. Astrocyte signaling is primarily mediated by the propagation of intercellular calcium waves in the sense that paracrine signaling results in measurable intracellular calcium transients. Although the molecular mechanisms are relatively well known, there is conflicting data regarding the mechanism by which the signal propagates through the network. Experimentally there is evidence for both a point source signaling model in which adenosine triphosphate (ATP is released by an initially activated astrocyte only, and a regenerative signaling model in which downstream astrocytes release ATP. We modeled both conditions as a simple lumped parameter phenomenological diffusion model and show that the only possible mechanism that can accurately reproduce experimentally measured results is a dual signaling mechanism that incorporates elements of both proposed signaling models. Specifically, we were able to accurately simulate experimentally measured in vitro intercellular calcium wave dynamics by assuming a point source signaling model with a downstream regenerative component. These results suggest that seemingly conflicting data in the literature are actually complimentary, and represents a highly efficient and robustly engineered signaling mechanism.

  14. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  15. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes.

    Science.gov (United States)

    Delépine, Chloé; Meziane, Hamid; Nectoux, Juliette; Opitz, Matthieu; Smith, Amos B; Ballatore, Carlo; Saillour, Yoann; Bennaceur-Griscelli, Annelise; Chang, Qiang; Williams, Emily Cunningham; Dahan, Maxime; Duboin, Aurélien; Billuart, Pierre; Herault, Yann; Bienvenu, Thierry

    2016-01-01

    Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT. PMID:26604147

  16. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  17. GLT-1 promoter activity in astrocytes and neurons of mouse hippocampus and somatic sensory cortex

    Directory of Open Access Journals (Sweden)

    Luisa De Vivo

    2010-01-01

    Full Text Available GLT-1 eGFP BAC reporter transgenic adult mice were used to detect GLT-1 gene expression in individual cells of CA1, CA3 and SI, and eGFP fluorescence was measured to analyze quantitatively GLT-1 promoter activity in different cells of neocortex and hippocampus. Virtually all GFAP+ astrocytes were eGFP+; we also found that about 80% of neurons in CA3 pyramidal layer, 10-70% of neurons in I-VI layers of SI and rare neurons in all strata of CA1 and in strata oriens and radiatum of CA3 were eGFP+. Analysis of eGFP intensity showed that astrocytes had a higher GLT-1 promoter activity in SI than in CA1 and CA3, and that neurons had the highest levels of GLT-1 promoter activity in CA3 stratum pyramidale and in layer VI of SI. Finally, we observed that the intensity of GLT-1 promoter activity in neurons is 1-20% of that measured in astrocytes. These results showed that in the hippocampus and neocortex GLT-1 promoter activity is observed in astrocytes and neurons, detailed the distribution of GLT-1 expressing neurons, and indicated that GLT-1 promoter activity in both astrocytes and neurons varies in different brain regions.

  18. In vitro caloric restriction induces protective genes and functional rejuvenation in senescent SAMP8 astrocytes.

    Science.gov (United States)

    García-Matas, Silvia; Paul, Rajib K; Molina-Martínez, Patricia; Palacios, Hector; Gutierrez, Vincent M; Corpas, Rubén; Pallas, Mercè; Cristòfol, Rosa; de Cabo, Rafael; Sanfeliu, Coral

    2015-06-01

    Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology. PMID:25711920

  19. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  20. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes. PMID:20413894