WorldWideScience

Sample records for astrocytes

  1. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes...... subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions...... of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system....

  2. Histamine and astrocyte function.

    Science.gov (United States)

    Jurič, Damijana M; Kržan, Mojca; Lipnik-Stangelj, Metoda

    2016-09-01

    Astrocytes support the brain through numerous functional interactions in health and disease. The recent advances in our knowledge of astrocyte involvement in various neurological disorders raised up several questions about their role and functioning in the central nervous system. From the evidence discussed in this review, we show that histamine importantly influences the main astrocytic activities such as ion homeostasis, energy metabolism, neurotransmitter clearance, neurotrophic activity and immune response. These processes are mediated through at least three histamine receptor subtypes, H1, H2 and H3, expressed on the astrocyte surface. Thus, we recognize histamine as an important player in the modulation of astrocytic functions that deserves further considerations in exploring involvement of astrocytes in neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation......, regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  4. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are repo......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli....... Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors...... and by confounding changes associated with genetically modified animal models. This review attempts to critically assess the gating, inhibition and permeability of astrocytic connexin hemichannels and proposes that connexins in their hemichannel configuration act as gated pores with isoform-specific permeant...

  5. Astrocytes in Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Verkhratsky, Alexei; Olabarria, M.; Noristani, H. N.; Yeh, C. Y.; Rodríguez Arellano, Jose Julio

    2010-01-01

    Roč. 7, č. 4 (2010), s. 399-412 ISSN 1933-7213 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Astrocytes * neuroglia * neurodegeneration Subject RIV: FH - Neurology Impact factor: 6.084, year: 2010

  6. Astrocytes: Orchestrating synaptic plasticity?

    Science.gov (United States)

    De Pittà, M; Brunel, N; Volterra, A

    2016-05-26

    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Intracellular Polyamines Enhance Astrocytic Coupling

    OpenAIRE

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V.; Rivera, Yomarie; Kucheryavykh, Lilia Y; Nichols, Colin G.; Misty J Eaton; Skatchkov, Serguei N.

    2012-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncit...

  8. Memory in astrocytes: a hypothesis

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-01-01

    Full Text Available Abstract Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary

  9. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrec...

  10. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  11. Functional Oxygen Sensitivity of Astrocytes.

    Science.gov (United States)

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  12. Isolation and culture of human astrocytes.

    Science.gov (United States)

    Sharif, Ariane; Prevot, Vincent

    2012-01-01

    Although rodent models have been essential to unveil the emerging functions of astrocytes, the existence of interspecies differences calls for caution in extrapolating data from rodent to human astrocytes. We have developed highly enriched primary astrocyte cultures from human fetuses and adult cerebro-cortical biopsies from neurosurgery patients. Immunocytochemical characterization shows that cultures are composed of more than 95% of cells expressing in vitro astrocytic markers. Examination of the morphological and proliferative properties of cultures derived from the cerebral cortex and the hypothalamus both in untreated conditions and after treatment with EGF-related ligands illustrates the high plasticity of human astrocytes and their functional heterogeneity according to the cerebral region of origin. Our preparation offers the opportunity to characterize human astrocyte functions in vitro and also provides a valuable tool for studying the functional heterogeneity of human astrocytes isolated from distinct brain regions.

  13. Intracellular polyamines enhance astrocytic coupling.

    Science.gov (United States)

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V; Rivera, Yomarie; Kucheryavykh, Lilia Y; Nichols, Colin G; Eaton, Misty J; Skatchkov, Serguei N

    2012-12-05

    Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.

  14. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    ... and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis ...

  15. Targeting astrocytes in bipolar disorder.

    Science.gov (United States)

    Peng, Liang; Li, Baoman; Verkhratsky, Alexei

    2016-06-01

    Astrocytes are homeostatic cells of the central nervous system, which are critical for development and maintenance of synaptic transmission and hence of synaptically connected neuronal ensembles. Astrocytic densities are reduced in bipolar disorder, and therefore deficient astroglial function may contribute to overall disbalance in neurotransmission and to pathological evolution. Classical anti-bipolar drugs (lithium salts, valproic acid and carbamazepine) affect expression of astroglial genes and modify astroglial signalling and homeostatic cascades. Many effects of both antidepressant and anti-bipolar drugs are exerted through regulation of glutamate homeostasis and glutamatergic transmission, through K(+) buffering, through regulation of calcium-dependent phospholipase A2 (that controls metabolism of arachidonic acid) or through Ca(2+) homeostatic and signalling pathways. Sometimes anti-depressant and anti-bipolar drugs exert opposite effects, and some effects on gene expression in drug treated animals are opposite in neurones vs. astrocytes. Changes in the intracellular pH induced by anti-bipolar drugs affect uptake of myo-inositol and thereby signalling via inositoltrisphosphate (InsP3), this being in accord with one of the main theories of mechanism of action for these drugs.

  16. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  17. Astrocyte scar formation aids CNS axon regeneration

    Science.gov (United States)

    Anderson, Mark A.; Burda, Joshua E.; Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S.; Deming, Timothy J.; Sofroniew, Michael V.

    2017-01-01

    Summary Transected axons fail to regrow in the mature central nervous system (CNS). Astrocyte scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or deleting chronic astrocyte scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. In striking contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocyte scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth supporting molecules. Our findings show that contrary to prevailing dogma, astrocyte scar formation aids rather than prevents CNS axon regeneration. PMID:27027288

  18. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  19. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  20. HIV-1 Tat Promotes Lysosomal Exocytosis in Astrocytes and Contributes to Astrocyte-mediated Tat Neurotoxicity.

    Science.gov (United States)

    Fan, Yan; He, Johnny J

    2016-10-21

    Tat interaction with astrocytes has been shown to be important for Tat neurotoxicity and HIV/neuroAIDS. We have recently shown that Tat expression leads to increased glial fibrillary acidic protein (GFAP) expression and aggregation and activation of unfolded protein response/endoplasmic reticulum (ER) stress in astrocytes and causes neurotoxicity. However, the exact molecular mechanism of astrocyte-mediated Tat neurotoxicity is not defined. In this study, we showed that neurotoxic factors other than Tat protein itself were present in the supernatant of Tat-expressing astrocytes. Two-dimensional gel electrophoresis and mass spectrometry revealed significantly elevated lysosomal hydrolytic enzymes and plasma membrane-associated proteins in the supernatant of Tat-expressing astrocytes. We confirmed that Tat expression and infection of pseudotyped HIV.GFP led to increased lysosomal exocytosis from mouse astrocytes and human astrocytes. We found that Tat-induced lysosomal exocytosis was tightly coupled to astrocyte-mediated Tat neurotoxicity. In addition, we demonstrated that Tat-induced lysosomal exocytosis was astrocyte-specific and required GFAP expression and was mediated by ER stress. Taken together, these results show for the first time that Tat promotes lysosomal exocytosis in astrocytes and causes neurotoxicity through GFAP activation and ER stress induction in astrocytes and suggest a common cascade through which aberrant astrocytosis/GFAP up-regulation potentiates neurotoxicity and contributes to neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. HIV-1 Tat Promotes Lysosomal Exocytosis in Astrocytes and Contributes to Astrocyte-mediated Tat Neurotoxicity*

    Science.gov (United States)

    Fan, Yan

    2016-01-01

    Tat interaction with astrocytes has been shown to be important for Tat neurotoxicity and HIV/neuroAIDS. We have recently shown that Tat expression leads to increased glial fibrillary acidic protein (GFAP) expression and aggregation and activation of unfolded protein response/endoplasmic reticulum (ER) stress in astrocytes and causes neurotoxicity. However, the exact molecular mechanism of astrocyte-mediated Tat neurotoxicity is not defined. In this study, we showed that neurotoxic factors other than Tat protein itself were present in the supernatant of Tat-expressing astrocytes. Two-dimensional gel electrophoresis and mass spectrometry revealed significantly elevated lysosomal hydrolytic enzymes and plasma membrane-associated proteins in the supernatant of Tat-expressing astrocytes. We confirmed that Tat expression and infection of pseudotyped HIV.GFP led to increased lysosomal exocytosis from mouse astrocytes and human astrocytes. We found that Tat-induced lysosomal exocytosis was tightly coupled to astrocyte-mediated Tat neurotoxicity. In addition, we demonstrated that Tat-induced lysosomal exocytosis was astrocyte-specific and required GFAP expression and was mediated by ER stress. Taken together, these results show for the first time that Tat promotes lysosomal exocytosis in astrocytes and causes neurotoxicity through GFAP activation and ER stress induction in astrocytes and suggest a common cascade through which aberrant astrocytosis/GFAP up-regulation potentiates neurotoxicity and contributes to neurodegenerative diseases. PMID:27609518

  2. Astrocyte loss and astrogliosis in neuroinflammatory disorders

    NARCIS (Netherlands)

    Hostenbach, Stephanie; Cambron, Melissa; D'haeseleer, Miguel; Kooijman, Ron; De Keyser, Jacques

    2014-01-01

    Neuroinflammation can lead to either damage of astrocytes or astrogliosis. Astrocyte loss may be caused by cytotoxic T cells as seen in Rasmussen encephalitis, auto-antibodies such as in neuromyelitis optica (aquaporin-4 antibodies), or cytokines such as TNF-alpha in major depressive disorder.

  3. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...... knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes....

  4. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  5. Disorders of Astrocytes: Alexander Disease as a Model.

    Science.gov (United States)

    Olabarria, Markel; Goldman, James E

    2017-01-24

    Astrocytes undergo important phenotypic changes in many neurological disorders, including strokes, trauma, inflammatory diseases, infectious diseases, and neurodegenerative diseases. We have been studying the astrocytes of Alexander disease (AxD), which is caused by heterozygous mutations in the GFAP gene, which is the gene that encodes the major astrocyte intermediate filament protein. AxD is a primary astrocyte disease because GFAP expression is specific to astrocytes in the central nervous system (CNS). The accumulation of extremely large amounts of GFAP causes many molecular changes in astrocytes, including proteasome inhibition, stress kinase activation, mechanistic target of rapamycin (mTOR) activation, loss of glutamate and potassium buffering capacity, loss of astrocyte coupling, and changes in cell morphology. Many of these changes appear to be common to astrocyte reactions in other neurological disorders. Using AxD to illuminate common mechanisms, we discuss the molecular pathology of AxD astrocytes and compare that to astrocyte pathology in other disorders.

  6. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  7. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...... bind with high affinity to MHC class II antigen expressing astrocytes; binding is displaceable with excess cold toxin. Competition experiments further indicate that TSST-1 and SEB at least partially compete with each other for binding to astrocytes suggesting they bind to the same HLA-DR region...

  8. Methodological limitations in determining astrocytic gene expression.

    Science.gov (United States)

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-11-25

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked.

  9. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  10. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Vartak-Sharma Neha

    2012-08-01

    Full Text Available Abstract Background Reactive astrogliosis is a ubiquitous but poorly understood hallmark of central nervous system pathologies such as trauma and neurodegenerative diseases. In vitro and in vivo studies have identified proinflammatory cytokines and chemokines as mediators of astrogliosis during injury and disease; however, the molecular mechanism remains unclear. In this study, we identify astrocyte elevated gene-1 (AEG-1, a human immunodeficiency virus 1 or tumor necrosis factor α-inducible oncogene, as a novel modulator of reactive astrogliosis. AEG-1 has engendered tremendous interest in the field of cancer research as a therapeutic target for aggressive tumors. However, little is known of its role in astrocytes and astrocyte-mediated diseases. Based on its oncogenic role in several cancers, here we investigate the AEG-1-mediated regulation of astrocyte migration and proliferation during reactive astrogliosis. Methods An in vivo brain injury mouse model was utilized to show AEG-1 induction following reactive astrogliosis. In vitro wound healing and cell migration assays following AEG-1 knockdown were performed to analyze the role of AEG-1 in astrocyte migration. AEG-1-mediated regulation of astrocyte proliferation was assayed by quantifying the levels of cell proliferation markers, Ki67 and proliferation cell nuclear antigen, using immunocytochemistry. Confocal microscopy was used to evaluate nucleolar localization of AEG-1 in cultured astrocytes following injury. Results The in vivo mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein and AEG-1 colocalization at the wound site. AEG-1 knockdown in cultured human astrocytes significantly reduced astrocyte migration into the wound site and cell proliferation. Confocal analysis showed colocalization of AEG-1 to the nucleolus of injured cultured human astrocytes. Conclusions The present findings report for the first time the novel role of AEG-1

  11. Distinct repertoires of microRNAs present in mouse astrocytes compared to astrocyte-secreted exosomes.

    Science.gov (United States)

    Jovičić, Ana; Gitler, Aaron D

    2017-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and secrete various factors that regulate neuron development, function and connectivity. microRNAs (miRNAs) are small regulatory RNAs involved in posttranslational gene regulation. Recent findings showed that miRNAs are exchanged between cells via nanovesicles called exosomes. In this study, we sought to define which miRNAs are contained within exosomes secreted by astrocytes. We also explored whether astroglial miRNA secretion via exosomes is perturbed in a mouse model of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease where astrocytes play a crucial role in driving disease progression. By isolating and profiling the expression of miRNAs from primary mouse astrocytes and from the exosomes that astrocytes secrete, we compared miRNA expression in the cells and secreted vesicles. We established that miRNA expression profiles of astrocytes and their exosomes are vastly different. In addition, we determined that exosomal miRNA expression in astrocytes is not significantly perturbed in a mouse model of ALS. Astrocytes secrete numerous miRNAs via exosomes and miRNA species contained in exosomes are considerably different from miRNAs detectable in astrocytes, suggesting the existence of a mechanism to select certain miRNAs for inclusion or exclusion from exosomes. The exosomal miRNA profiling dataset we have generated will provide a resource to aid in the investigation of this selection mechanism. Finally, the miRNA expression profile in astrocyte-secreted exosomes is not perturbed by expression of mutant SOD1-G93A.

  12. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  13. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  14. Astrocytes: Tailored to Support the Demand of Neural Circuits?

    DEFF Research Database (Denmark)

    Rasmussen, Rune

    2017-01-01

    Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits.......Anatomy, physiology, proteomics, and genomics reveal the prospect of distinct highly specialized astrocyte subtypes within neural circuits....

  15. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease

    DEFF Research Database (Denmark)

    Khakh, Baljit S; Beaumont, Vahri; Cachope, Roger

    2017-01-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter...

  16. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...

  17. Isolation and characterization of ischemia-derived astrocytes (IDA with ability to transactivate quiescent astrocytes

    Directory of Open Access Journals (Sweden)

    Alejandro eVillarreal

    2016-06-01

    Full Text Available Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDA were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation (OGD. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis.

  18. From stem cell to astrocyte: Decoding the regulation of GFAP

    NARCIS (Netherlands)

    Kanski, R.

    2014-01-01

    The research presented in this thesis focuses on glial fibrillary acidic protein (GFAP), the main intermediate filament (IF) in astrocytes and astrocyte subpopulations such as neural stem cells (NSCs). In neurodegenerative diseases or upon brain damage, astrocytes respond to an injury with an

  19. Spatial organization of astrocytes in ferret visual cortex

    Science.gov (United States)

    López‐Hidalgo, Mónica; Hoover, Walter B.

    2016-01-01

    ABSTRACT Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the “tiling” of the brain with non‐overlapping territories. There are some documented species and brain region–specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two‐photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo‐recipient cortical layers (“kissing” astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit‐specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561–3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27072916

  20. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  1. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder.

    Science.gov (United States)

    Di Malta, Chiara; Fryer, John D; Settembre, Carmine; Ballabio, Andrea

    2012-08-28

    The role of astrocytes in neurodegenerative processes is increasingly appreciated. Here we investigated the contribution of astrocytes to neurodegeneration in multiple sulfatase deficiency (MSD), a severe lysosomal storage disorder caused by mutations in the sulfatase modifying factor 1 (SUMF1) gene. Using Cre/Lox mouse models, we found that astrocyte-specific deletion of Sumf1 in vivo induced severe lysosomal storage and autophagy dysfunction with consequential cytoplasmic accumulation of autophagic substrates. Lysosomal storage in astrocytes was sufficient to induce degeneration of cortical neurons in vivo. Furthermore, in an ex vivo coculture assay, we observed that Sumf1(-/-) astrocytes failed to support the survival and function of wild-type cortical neurons, suggesting a non-cell autonomous mechanism for neurodegeneration. Compared with the astrocyte-specific deletion of Sumf1, the concomitant removal of Sumf1 in both neurons and glia in vivo induced a widespread neuronal loss and robust neuroinflammation. Finally, behavioral analysis of mice with astrocyte-specific deletion of Sumf1 compared with mice with Sumf1 deletion in both astrocytes and neurons allowed us to link a subset of neurological manifestations of MSD to astrocyte dysfunction. This study indicates that astrocytes are integral components of the neuropathology in MSD and that modulation of astrocyte function may impact disease course.

  2. Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices

    Science.gov (United States)

    Sasaki, Takuya; Ishikawa, Tomoe; Abe, Reimi; Nakayama, Ryota; Asada, Akiko; Matsuki, Norio; Ikegaya, Yuji

    2014-01-01

    Astrocytes are thought to detect neuronal activity in the form of intracellular calcium elevations; thereby, astrocytes can regulate neuronal excitability and synaptic transmission. Little is known, however, about how the astrocyte calcium signal regulates the activity of neuronal populations. In this study, we addressed this issue using functional multineuron calcium imaging in hippocampal slice cultures. Under normal conditions, CA3 neuronal networks exhibited temporally correlated activity patterns, occasionally generating large synchronization among a subset of cells. The synchronized neuronal activity was correlated with astrocyte calcium events. Calcium buffering by an intracellular injection of a calcium chelator into multiple astrocytes reduced the synaptic strength of unitary transmission between pairs of surrounding pyramidal cells and caused desynchronization of the neuronal networks. Uncaging the calcium in the astrocytes increased the frequency of neuronal synchronization. These data suggest an essential role of the astrocyte calcium signal in the maintenance of basal neuronal function at the circuit level. PMID:24710057

  3. New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca!

    Science.gov (United States)

    Horner, Philip J; Palmer, Theo D

    2003-11-01

    Like a newly popular nightspot, the biology of adult stem cells has emerged from obscurity to become one of the most lively new disciplines of the decade. The neurosciences have not escaped this trendy pastime and, from amid the noise and excitement, the astrocyte emerges as a beguiling companion to the adult neural stem cell. A once receding partner to neurons and oligodendrocytes, the astrocyte even takes on an alter ego of the stem cell itself (S. Goldman, this issue of TINS). Putting ego aside, the 'astrocyte' is also (and perhaps more importantly) an integral component of neural progenitor hotspots, where the craziness or 'la vida loca' of the nightlife might not be so wild when compared with our traditional understanding of the astrocyte. Here, astrocytes contribute to the instructive confluence of location, atmosphere and cellular neighbors that define the daily 'vida local' or everyday local life of an adult stem cell. This review discusses astrocytes as influential components in the local stem cell niche.

  4. Lrp4 in astrocytes modulates glutamatergic transmission.

    Science.gov (United States)

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity.

  5. The pathophysiological role of astrocytic endothelin-1

    NARCIS (Netherlands)

    Hostenbach, Stephanie; D'haeseleer, Miguel; Kooijman, Ron; De Keyser, Jacques

    In the normal central nervous system, endothelin-1 (ET-1) is found in some types of neurons, epithelial cells of the choroid plexus, and endothelial cells of microvessels, but it is usually not detectable in glial cells. However, in different pathological conditions, astrocytes adapting a reactive

  6. Mitochondrial Calcium Sparkles Light Up Astrocytes.

    Science.gov (United States)

    MacVicar, Brian A; Ko, Rebecca W Y

    2017-02-27

    Discrete calcium signals in the fine processes of astrocytes are a recent discovery and a new mystery. In a recent issue of Neuron, Agarwal et al. (2017) report that calcium efflux from mitochondria during brief openings of the mitochondrial permeability transition pore (mPTP) contribute to calcium microdomains. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  8. Phenotypic conversions of "protoplasmic" to "reactive" astrocytes in Alexander disease.

    Science.gov (United States)

    Sosunov, Alexander A; Guilfoyle, Eileen; Wu, Xiaoping; McKhann, Guy M; Goldman, James E

    2013-04-24

    Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP, and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology, we have examined hippocampal astrocytes in three mouse models of AxD, a transgenic line (GFAP(Tg)) in which the normal human GFAP is expressed in several copies, a knock-in line (Gfap(+/R236H)) in which one of the Gfap genes bears an R236H mutation, and a mouse derived from the mating of these two lines (GFAP(Tg); Gfap(+/R236H)). We report changes in astrocyte phenotype in all lines, with the most severe in the GFAP(Tg);Gfap(+/R236H), resulting in the conversion of protoplasmic astrocytes to cells that have lost their bushy-like morphology because of a reduction of distal fine processes, and become multinucleated and hypertrophic. Astrocytes activate the mTOR cascade, acquire CD44, and lose GLT-1. The altered astrocytes display a microheterogeneity in phenotypes, even neighboring cells. Astrocytes also show diminished glutamate transporter current, are significantly depolarized, and not coupled to adjacent astrocytes. Thus, the accumulation of GFAP in the AxD mouse astrocytes initiates a conversion of normal, protoplasmic astrocytes to astrocytes that display severely "reactive" characteristics, many of which may be detrimental to neighboring neurons and oligodendrocytes.

  9. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  10. Role of astrocytes in neurovascular coupling.

    Science.gov (United States)

    Petzold, Gabor C; Murthy, Venkatesh N

    2011-09-08

    Neural activity is intimately tied to blood flow in the brain. This coupling is specific enough in space and time that modern imaging methods use local hemodynamics as a measure of brain activity. In this review, we discuss recent evidence indicating that neuronal activity is coupled to local blood flow changes through an intermediary, the astrocyte. We highlight unresolved issues regarding the role of astrocytes and propose ways to address them using novel techniques. Our focus is on cellular level analysis in vivo, but we also relate mechanistic insights gained from ex vivo experiments to native tissue. We also review some strategies to harness advances in optical and genetic methods to study neurovascular coupling in the intact brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material

    Directory of Open Access Journals (Sweden)

    Rebecca A. Russell

    2017-02-01

    Full Text Available HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.

  13. Do stars govern our actions? Astrocyte involvement in rodent behavior.

    Science.gov (United States)

    Oliveira, João Filipe; Sardinha, Vanessa Morais; Guerra-Gomes, Sónia; Araque, Alfonso; Sousa, Nuno

    2015-09-01

    Astrocytes have emerged as important partners of neurons in information processing. Important progress has been made in the past two decades in understanding the role of astrocytes in the generation of neuron-astrocyte network outputs resulting in behavior. We review evidence for astrocyte involvement across four different behavioral domains: cognition, emotion, motor, and sensory processing. Accumulating evidence from animal models has provided a wealth of data that largely supports a direct involvement of astrocytes on diverse aspects of behavior. The development of tools for selectively controlling the temporal and spatial properties of astrocyte activity will help to consolidate our knowledge of the mechanisms underlying this involvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Imaging neurotransmitter uptake and depletion in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tan, W. [Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 (United States); Haydon, P.G. [Department of Zoology and Genetics, Laboratory of Cellular Signaling, Iowa State University, Ames, Iowa 50011 (United States); Yeung, E.S. [Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1997-08-01

    An ultraviolet (UV) laser-based optical microscope and charge-coupled device (CCD) detection system was used to obtain chemical images of biological cells. Subcellular structures can be easily seen in both optical and fluorescence images. Laser-induced native fluorescence detection provides high sensitivity and low limits of detection, and it does not require coupling to fluorescent dyes. We were able to quantitatively monitor serotonin that has been taken up into and released from individual astrocytes on the basis of its native fluorescence. Different regions of the cells took up different amounts of serotonin with a variety of uptake kinetics. Similarly, we observed different serotonin depletion dynamics in different astrocyte regions. There were also some astrocyte areas where no serotonin uptake or depletion was observed. Potential applications include the mapping of other biogenic species in cells as well as the ability to image their release from specific regions of cells in response to external stimuli. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  15. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  16. The multi-dimensional roles of astrocytes in ALS.

    Science.gov (United States)

    Yamanaka, Koji; Komine, Okiru

    2017-10-17

    Despite significant progress in understanding the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, the precise and comprehensive pathomechanisms remain largely unknown. In addition to motor neuron involvement, recent studies using cellular and animal models of ALS indicate that there is a complex interplay between motor neurons and neighboring non-neuronal cells, such as astrocytes, in non-cell autonomous neurodegeneration. Astrocytes are key homeostatic cells that play numerous supportive roles in maintaining the brain environment. In neurodegenerative diseases such as ALS, astrocytes change their shape and molecular expression patterns and are referred to as reactive or activated astrocytes. Reactive astrocytes in ALS lose their beneficial functions and gain detrimental roles. In addition, interactions between motor neurons and astrocytes are impaired in ALS. In this review, we summarize growing evidence that astrocytes are critically involved in the survival and demise of motor neurons through several key molecules and cascades in astrocytes in both sporadic and inherited ALS. These observations strongly suggest that astrocytes have multi-dimensional roles in disease and are a viable therapeutic target for ALS. Copyright © 2017. Published by Elsevier B.V.

  17. Astrocyte Hypertrophy Contributes to Aberrant Neurogenesis after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Clark Robinson

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is a widespread epidemic with severe cognitive, affective, and behavioral consequences. TBIs typically result in a relatively rapid inflammatory and neuroinflammatory response. A major component of the neuroinflammatory response is astrocytes, a type of glial cell in the brain. Astrocytes are important in maintaining the integrity of neuronal functioning, and it is possible that astrocyte hypertrophy after TBIs might contribute to pathogenesis. The hippocampus is a unique brain region, because neurogenesis persists in adults. Accumulating evidence supports the functional importance of these newborn neurons and their associated astrocytes. Alterations to either of these cell types can influence neuronal functioning. To determine if hypertrophied astrocytes might negatively influence immature neurons in the dentate gyrus, astrocyte and newborn neurons were analyzed at 30 days following a TBI in mice. The results demonstrate a loss of radial glial-like processes extending through the granule cell layer after TBI, as well as ectopic growth and migration of immature dentate neurons. The results further show newborn neurons in close association with hypertrophied astrocytes, suggesting a role for the astrocytes in aberrant neurogenesis. Future studies are needed to determine the functional significance of these alterations to the astrocyte/immature neurons after TBI.

  18. Astrocyte-Derived Tissue Transglutaminase Interacts with Fibronectin: A Role in Astrocyte Adhesion and Migration?

    NARCIS (Netherlands)

    van Strien, M.E.; Breve, J.J.P.; Fratantoni, S.; Schreurs, M.W.J.; Bol, J.G.J.M.; Jongenelen, C.A.M.; Drukarch, B.; van Dam, A.M.W.

    2011-01-01

    An important neuropathological feature of neuroinflammatory processes that occur during e.g. Multiple Sclerosis (MS) is the formation of an astroglial scar. Astroglial scar formation is facilitated by the interaction between astrocytes and extracellular matrix proteins (ECM) such as fibronectin.

  19. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...

  20. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  1. TREK-1 mediates isoflurane-induced cytotoxicity in astrocytes.

    Science.gov (United States)

    Guo, Haiyun; Peng, Zhengwu; Yang, Liu; Liu, Xue; Xie, Yaning; Cai, Yanhui; Xiong, Lize; Zeng, Yi

    2017-09-05

    There are growing concerns that anaesthetic exposure can cause extensive apoptotic degeneration of neurons and the impairment of normal synaptic development and remodelling. However, little attention has been paid to exploring the possible cytotoxicity of inhalation anaesthetics, such as isoflurane, in astrocytes. In this research, we determined that prolonged exposure to an inhalation anaesthetic caused cytotoxicity in astrocytes, and we identified the underlying molecular mechanism responsible for this process. Astrocytes were exposed to isoflurane, and astrocytic survival was then measured via LDH release assays, MTT assays, and TUNEL staining. TWIK-related potassium (K+) channel-1 (TREK-1) over-expression and knockdown models were also created using lentiviruses. The levels of TREK-1 and brain-derived neurotrophic factor (BDNF) were measured via Western blot and qRT-PCR. Prolonged exposure to isoflurane decreased primary astrocytic viability in a dose- and time-dependent manner. Moreover, with prolonged exposure to isoflurane, the TREK-1 level increased, and the BDNF level was reduced. TREK-1 knockdown promoted the survival of astrocytes and increased BDNF expression following isoflurane exposure. Overdoses of and prolonged exposure to isoflurane induce cytotoxicity in primary astrocytes. TREK-1 plays an important role in isoflurane-induced cultured astrocytic cytotoxicity by down-regulating the expression of BDNF.

  2. Neuroimmunological Implications of AQP4 in Astrocytes

    Directory of Open Access Journals (Sweden)

    Hiroko Ikeshima-Kataoka

    2016-08-01

    Full Text Available The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4, a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS. Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN. The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed.

  3. Probing astrocytes with carbon nanotubes and assessing their effects on astrocytic structural and functional properties

    Science.gov (United States)

    Gottipati, Manoj K.

    Single-walled carbon nanotubes, chemically-functionalized with polyethylene glycol (SWCNT-PEG) have been shown to modulate the morphology and proliferation characteristics of astrocytes in culture, when applied to the cells as colloidal solutes or as films upon which the cells can attach and grow. These changes were associated with a change in the immunoreactivity of the astrocyte-specific protein, glial fibrillary acidic protein (GFAP); the solutes and films caused an increase and a decrease in GFAP levels, respectively. To assess if these morpho-functional changes induced by the SWCNT-PEG modalities are dependent on GFAP or if the changes in GFAP levels are independent events, I used astrocytes isolated from GFAP knockout mice and found that selected changes induced by the SWCNT-PEG modalities are mediated by GFAP, namely the changes in perimeter, shape and cell death for colloidal solutes and the rate of proliferation for films. Since the loss GFAP has been shown to hamper the trafficking of glutamate transporters to the surface of astrocytes, which plays a vital role in the uptake of extracellular glutamate and maintaining homeostasis in the brain and spinal cord, in a subsequent study, I assessed if the SWCNT-PEG solute causes any change in the glutamate uptake characteristics of astrocytes. Using a radioactive glutamate uptake assay and immunolabeling, I found that SWCNT-PEG solute causes an increase in the uptake of glutamate from the extracellular space along with an increase in the immunoreactivity of the glutamate transporter, L-glutamate L-aspartate transporter (GLAST), on their cell surface, a likely consequence of the increase in GFAP levels induced by the SWCNT-PEG solute. These results imply that SWCNT-PEG could potentially be used as a viable candidate in neural prosthesis applications to prevent glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries, and alleviate the death toll of neurons surrounding the injury

  4. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis.

    Science.gov (United States)

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Verheijen, Mark H G; Posthuma, Danielle

    2015-11-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.

  5. Optical modulation of astrocyte network using ultrashort pulsed laser

    Science.gov (United States)

    Yoon, Jonghee; Ku, Taeyun; Chong, Kyuha; Ryu, Seung-Wook; Choi, Chulhee

    2012-03-01

    Astrocyte, the most abundant cell type in the central nervous system, has been one of major topics in neuroscience. Even though many tools have been developed for the analysis of astrocyte function, there has been no adequate tool that can modulates astrocyte network without pharmaceutical or genetic interventions. Here we found that ultrashort pulsed laser stimulation can induce label-free activation of astrocytes as well as apoptotic-like cell death in a dose-dependent manner. Upon irradiation with high intensity pulsed lasers, the irradiated cells with short exposure time showed very rapid mitochondria fragmentation, membrane blebbing and cytoskeletal retraction. We applied this technique to investigate in vivo function of astrocyte network in the CNS: in the aspect of neurovascular coupling and blood-brain barrier. We propose that this noninvasive technique can be widely applied for in vivo study of complex cellular network.

  6. Hypothalamic lipid-laden astrocytes induce microglia migration and activation.

    Science.gov (United States)

    Kwon, Yoon-Hee; Kim, Jiye; Kim, Chu-Sook; Tu, Thai Hien; Kim, Min-Seon; Suk, Kyoungho; Kim, Dong Hee; Lee, Byung Ju; Choi, Hye-Seon; Park, Taesun; Choi, Myung-Sook; Goto, Tsuyoshi; Kawada, Teruo; Ha, Tae Youl; Yu, Rina

    2017-06-01

    Obesity-induced hypothalamic inflammation is closely associated with various metabolic complications and neurodegenerative disorders. Astrocytes, the most abundant glial cells in the central nervous system, play a crucial role in pathological hypothalamic inflammatory processes. Here, we demonstrate that hypothalamic astrocytes accumulate lipid droplets under saturated fatty acid-rich conditions, such as obese environment, and that the lipid-laden astrocytes increase astrogliosis markers and inflammatory cytokines (TNFα, IL-1β, IL-6, MCP-1) at the transcript and/or protein level. Medium conditioned by the lipid-laden astrocytes stimulate microglial chemotactic activity and upregulate transcripts of the microglia activation marker Iba-1 and inflammatory cytokines. These findings indicate that the lipid-laden astrocytes formed in free fatty acid-rich obese condition may participate in obesity-induced hypothalamic inflammation through promoting microglia migration and activation. © 2017 Federation of European Biochemical Societies.

  7. A critical role for astrocytes in hypercapnic vasodilation in brain

    DEFF Research Database (Denmark)

    Howarth, C; Sutherland, B A; Choi, H B

    2017-01-01

    is decreased and vasodilation triggered by astrocyte [Ca(2+)]i in vitro and by hypercapnia in vivo is inhibited.Astrocyte synthetic pathways, dependent on glutathione, are involved in cerebrovascular reactivity to CO2 Reductions in glutathione levels in ageing, stroke or schizophrenia could lead...... increases in astrocyte calcium signaling which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator, PgE2, is critically dependent on brain levels of the antioxidant, glutathione. These data suggest a novel...... role for astrocytes in the regulation of CO2-evoked CBF responses. Furthermore, these results suggest that depleted glutathione levels, which occur in ageing and stroke, will give rise to dysfunctional cerebral blood flow regulation and may result in subsequent neuronal damage....

  8. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  9. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Noble, E.P.; Ritchie, T.; de Vellis, J.

    1986-03-01

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca/sup + +/ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10/sup -5/ M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (/sup 3/H)inositol, and basal (/sup 3/H) inositol phosphate (IP/sub 1/) accumulation was measured in the presence of Li/sup +/. Epinephrine > norepinephrine (NE) were the most active stimulants of IP/sub 1/ production. The ..cap alpha../sub 1/ adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP/sub 1/ production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP/sub 1/ below basal levels and when added together diminished IP/sub 1/ accumulation even further. The role of adrenergic stimulation in the production of c-AMP.

  10. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  11. The role of astrocytes in multiple sclerosis pathogenesis.

    Science.gov (United States)

    Guerrero-García, J J

    2017-09-25

    Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  13. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  14. Overexpression of Eg5 correlates with high grade astrocytic neoplasm.

    Science.gov (United States)

    Liu, Liqiong; Liu, Xichun; Mare, Marcus; Dumont, Aaron S; Zhang, Haitao; Yan, Dong; Xiong, Zhenggang

    2016-01-01

    To investigate the relationship between Eg5 and histopathological grade of astrocytoma, Eg5 expression was evaluated by immunohistochemical examination on 88 specimens including 25 cases of glioblastoma (WHO grade IV), 22 cases of anaplastic astrocytoma (WHO grade III), 20 cases of diffuse astrocytoma (WHO grade II), and 21 cases of pilocytic astrocytoma (WHO grade I). The histopathological characteristics and Eg5 expression level of each tumor were assessed and statistically analyzed. Astrocytic tumors exhibited significant correlation of expression of Eg5 with higher WHO histopathological grades (p neoplasm, and it may represent an independent diagnostic and prognostic factor in grading astrocytic tumors and predicting prognosis of astrocytic tumor patients.

  15. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel B

    2014-01-01

    of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes......In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET...

  16. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...... summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain....

  17. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  18. Stavudine, an anti‑retroviral drug induces reactive astrocytes in ...

    African Journals Online (AJOL)

    Stavudine, an anti‑retroviral drug induces reactive astrocytes in motor cortex of albino mice. Agnes A. Nwakanma, Theresa B. Ekanem, Moses B. Ekong, Mokutima A. Eluwa, Eme E. Osim, Terkula Kpela ...

  19. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available BACKGROUND: The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. PRINCIPAL FINDINGS: In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect. SIGNIFICANCE: Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the

  20. Are astrocytes executive cells within the central nervous system?

    OpenAIRE

    Sica, Roberto E.; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-01-01

    ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dement...

  1. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Julia TCW

    2017-08-01

    Full Text Available Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs, via a neural progenitor cell (NPC intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals. Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium, and rapid (<30 days method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders.

  2. Novel approaches in astrocytic protection following brain injury

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-02-01

    Full Text Available Astrocytes have gained a broad attention in the last years, as they exert multiple functions for brain maintenance and neuronal protection. Astrocytes are metabolic regulators of the brain, important for the preservation of blood–brain barrier characteristics, clearance of toxic substances and generation of antioxidant molecules and growth factors for neurons and other glial cells. For these reasons, the protection of astrocytes has become of primordial importance for the prevention of neuronal death during pathologies such as Parkinson, Alzheimer, Ischemia, and others. Currently, different approaches are being used for the protection of astrocytes diseases, including the use of growth factors, steroid molecules derivatives, mesenchymal stem cell factors, nicotine and others. Moreover, the combined use of experimental approaches with bioinformatics tools such as the ones obtained through system biology has allowed a broader knowledge in astrocytic protection both in normal and pathological conditions. In this work, we highlight some of these recent approaches in astrocytic protection, and how they could be used for the study of restorative therapies for the brain in pathological conditions.

  3. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  4. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate.

    Science.gov (United States)

    Valdebenito, Rocío; Ruminot, Iván; Garrido-Gerter, Pamela; Fernández-Moncada, Ignacio; Forero-Quintero, Linda; Alegría, Karin; Becker, Holger M; Deitmer, Joachim W; Barros, L Felipe

    2016-10-01

    The effectiveness of ketogenic diets and intermittent fasting against neurological disorders has brought interest to the effects of ketone bodies on brain cells. These compounds are known to modify the metabolism of neurons, but little is known about their effect on astrocytes, cells that control the supply of glucose to neurons and also modulate neuronal excitability through the glycolytic production of lactate. Here we have used genetically-encoded Förster Resonance Energy Transfer nanosensors for glucose, pyruvate and ATP to characterize astrocytic energy metabolism at cellular resolution. Our results show that the ketone body beta-hydroxybutyrate strongly inhibited astrocytic glucose consumption in mouse astrocytes in mixed cultures, in organotypic hippocampal slices and in acute hippocampal slices prepared from ketotic mice, while blunting the stimulation of glycolysis by physiological and pathophysiological stimuli. The inhibition of glycolysis was paralleled by an increased ability of astrocytic mitochondria to metabolize pyruvate. These results support the emerging notion that astrocytes contribute to the neuroprotective effect of ketone bodies. © The Author(s) 2015.

  5. Astrocyte functions in the copper homeostasis of the brain.

    Science.gov (United States)

    Scheiber, Ivo F; Dringen, Ralf

    2013-04-01

    Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency but also excess of copper can seriously affect cellular functions, the cellular copper metabolism is tightly regulated. In brain, astrocytes appear to play a pivotal role in the copper metabolism. With their strategically important localization between capillary endothelial cells and neuronal structures they are ideally positioned to transport copper from the blood-brain barrier to parenchymal brain cells. Accordingly, astrocytes have the capacity to efficiently take up, store and to export copper. Cultured astrocytes appear to be remarkably resistant against copper-induced toxicity. However, copper exposure can lead to profound alterations in the metabolism of these cells. This article will summarize the current knowledge on the copper metabolism of astrocytes, will describe copper-induced alterations in the glucose and glutathione metabolism of astrocytes and will address the potential role of astrocytes in the copper metabolism of the brain in diseases that have been connected with disturbances in brain copper homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  7. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  8. Fatty acid oxidation and ketogenesis in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  9. MeCP2 modulates gene expression pathways in astrocytes

    Directory of Open Access Journals (Sweden)

    Yasui Dag H

    2013-01-01

    Full Text Available Abstract Background Mutations in MECP2 encoding methyl-CpG-binding protein 2 (MeCP2 cause the X-linked neurodevelopmental disorder Rett syndrome. Rett syndrome patients exhibit neurological symptoms that include irregular breathing, impaired mobility, stereotypic hand movements, and loss of speech. MeCP2 protein epigenetically modulates gene expression through genome-wide binding to methylated CpG dinucleotides. While neurons have the highest level of MeCP2 expression, astrocytes and other cell types also express detectable levels of MeCP2. Recent studies suggest that astrocytes likely control the progression of Rett syndrome. Thus, the object of these studies was to identify gene targets that are affected by loss of MeCP2 binding in astrocytes. Methods To identify gene targets of MeCP2 in astrocytes, combined approaches of expression microarray and chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq were compared between wild-type and MeCP2-deficient astrocytes. MeCP2 gene targets were compared with genes in the top 10% of MeCP2 binding levels in gene windows either within 2 kb upstream of the transcription start site, or the ‘gene body’ that extended from transcription start to end site, or 2 kb downstream of the transcription end site. Results A total of 118 gene transcripts surpassed the highly significant threshold (P 1.2 in expression microarray analysis from triplicate cultures. The top 10% of genes with the highest levels of MeCP2 binding were identified in two independent ChIP-seq experiments. Together this integrated, genome-wide screen for MeCP2 target genes provided an overlapping list of 19 high-confidence MeCP2-responsive gene transcripts in astrocytes. Validation of candidate target gene transcripts by RT-PCR revealed that expression of Apoc2, Cdon, Csrp and Nrep were consistently responsive to MeCP2 deficiency in astrocytes. Conclusions The first MeCP2 ChIP-seq and gene expression microarray analysis in

  10. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  11. Reactive astrocytes in Alzheimer's disease: A double-edged sword.

    Science.gov (United States)

    Chun, Heejung; Lee, C Justin

    2018-01-01

    Alzheimer's disease (AD) is a chronic and fatal disease, in which neuronal damage at its late stage cannot be easily reversed. Because AD progression is caused by multiple factors including diverse cellular processes, studies on AD pathogenesis at the molecular and cellular level are challenging. Based on the lessons from unsuccessful neuron-focused research for an AD cure, non-cell autonomous mechanisms including brain inflammation and reactive astrocytes have recently been in the spotlight as potential therapeutic targets for AD. Studies have shown that reactive astrocytes are not only the result of inflammatory defense reactions, but also an active catabolic decomposer that acts by taking up amyloid beta toxins. Here, we give an overview of the characteristics of reactive astrocytes as pathological features of AD. Reactive astrocytes exert biphasic effects, that is, beneficial or detrimental depending on multiple factors. Many efforts have been put forth for defining and characterizing molecular signatures for the beneficial and detrimental reactive astrocytes. In the foreseeable future, manipulating and targeting each established molecular signature should have profound therapeutic implications for the treatment of AD. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  12. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  13. Interferon-Gamma Promotes Infection of Astrocytes by Trypanosoma cruzi

    Science.gov (United States)

    Silva, Rafael Rodrigues; Mariante, Rafael M.; Silva, Andrea Alice; dos Santos, Ana Luiza Barbosa; Roffê, Ester; Santiago, Helton; Gazzinelli, Ricardo Tostes; Lannes-Vieira, Joseli

    2015-01-01

    The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD. PMID:25695249

  14. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  15. Investigation on the suitable pressure for the preservation of astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: sotome_shinichi@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4{sup 0}C, in an effort to establish the best conditions for the preservation. Survival rate at 4{sup 0}C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4{sup 0}C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4{sup 0}C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  16. Effects of Hydro Alcoholic Extraction of Valeriana on Astrocyte Raphe Magnus in Adult Rats

    Directory of Open Access Journals (Sweden)

    sajad Hatami joni

    2014-12-01

    Conclusion: Oral administration of hydro alcoholic extract of valerian increases astrocytes number and decreases their size in nucleus of raphe Magna, which indicated the effect of this extraction on proliferation of astrocytes increasing.

  17. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC

    National Research Council Canada - National Science Library

    Hakan Kucukdereli; Nicola J. Allen; Anthony T. Lee; Ava Feng; M. Ilcim Ozlu; Laura M. Conatser; Chandrani Chakraborty; Gail Workman; Matthew Weaver; E. Helene Sage; Ben A. Barres; Cagla Eroglu

    2011-01-01

    Astrocytes regulate synaptic connectivity in the CNS through secreted signals. Here we identified two astrocyte-secreted proteins, hevin and SPARC, as regulators of excitatory synaptogenesis in vitro and in vivo...

  18. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network

    NARCIS (Netherlands)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W.; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, P.; van Strien, Miriam E; Hol, Elly M

    2014-01-01

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with

  19. Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

    Science.gov (United States)

    Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M.; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration. PMID:25848957

  20. Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration.

    Science.gov (United States)

    Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.

  1. Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS.

    Science.gov (United States)

    Lee, Kim M; Chiu, Kevin B; Renner, Nicole A; Sansing, Hope A; Didier, Peter J; MacLean, Andrew G

    2014-10-01

    Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of glial fibrillary acidic protein (GFAP)-labeled astrocytes per square millimeter and the proportion of astrocytes immunopositive for Toll-like receptor 2 (TLR2) to examine innate immune activation in astrocytes. We also performed detailed morphometric analyses of gray and white matter astrocytes in the frontal and parietal lobes of rhesus macaques infected with simian immunodeficiency virus (SIV), both with and without encephalitis, an established model of AIDS neuropathogenesis. Protoplasmic astrocytes (gray matter) and fibrous astrocytes (deep white matter) were imaged, and morphometric features were analyzed using Neurolucida. Gray matter and white matter astrocytes showed no change in cell body size in animals infected with SIV regardless of encephalitic status. In SIV-infected macaques, both gray and white matter astrocytes had shorter, less ramified processes, resulting in decreased cell arbor compared with controls. SIV-infected macaques with encephalitis showed decreases in arbor length in white matter astrocytes and reduced complexity in gray matter astrocytes compared to controls. These results provide the first evidence that innate immune activation of astrocytes is linked to altered cortical astrocyte morphology in SIV/HIV infection. Here, we demonstrate that astrocyte remodeling is correlated with infection. Perturbed neuron-glia signaling may be a driving factor in the development of HAND.

  2. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model.

    Science.gov (United States)

    Rivetti di Val Cervo, Pia; Romanov, Roman A; Spigolon, Giada; Masini, Débora; Martín-Montañez, Elisa; Toledo, Enrique M; La Manno, Gioele; Feyder, Michael; Pifl, Christian; Ng, Yi-Han; Sánchez, Sara Padrell; Linnarsson, Sten; Wernig, Marius; Harkany, Tibor; Fisone, Gilberto; Arenas, Ernest

    2017-05-01

    Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs). Reprogramming efficiency in vitro is improved by small molecules that promote chromatin remodeling and activate the TGFβ, Shh and Wnt signaling pathways. The reprogramming efficiency of human astrocytes reaches up to 16%, resulting in iDANs with appropriate midbrain markers and excitability. In a mouse model of Parkinson's disease, NeAL218 alone reprograms adult striatal astrocytes into iDANs that are excitable and correct some aspects of motor behavior in vivo, including gait impairments. With further optimization, this approach may enable clinical therapies for Parkinson's disease by delivery of genes rather than cells.

  3. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  4. Astrocytes as an HIV Reservoir: Mechanism of HIV Infection.

    Science.gov (United States)

    Li, Guan-Han; Henderson, Lisa; Nath, Avindra

    2016-01-01

    If we have any hope of achieving a cure for HIV infection, close attention to the cell types capable of getting infected with HIV is necessary. Of these cell types, astrocytes are the most ideal cell type for the formation of such a reservoir. These are long-lived cells with a very low turnover rate and are found in the brain and the gastrointestinal tract. Although astrocytes are evidently resistant to infection of cell-free HIV in vitro, these cells are efficiently infected via cell-tocell contact by which immature HIV virions bud off lymphocytes and have the ability to directly bind to CXCR4, triggering the process of fusion in the absence of CD4. In this review, we closely examine the evidence for HIV infection of astrocytes in the brain and the mechanisms for viral entry and regulation in this cell type, and discuss an approach for controlling this viral reservoir.

  5. Autophagy in astrocytes: a novel culprit in lysosomal storage disorders.

    Science.gov (United States)

    Di Malta, Chiara; Fryer, John D; Settembre, Carmine; Ballabio, Andrea

    2012-12-01

    Neurodegeneration is a prominent feature of lysosomal storage disorders (LSDs). Emerging data identify autophagy dysfunction in neurons as a major component of the phenotype. However, the autophagy pathway in the CNS has been studied predominantly in neurons, whereas in other cell types it has been largely unexplored. We studied the lysosome-autophagic pathway in astrocytes from a murine model of multiple sulfatase deficiency (MSD), a severe form of LSD. Similar to what was observed in neurons, we found that lysosomal storage in astrocytes impairs autophagosome maturation and this, in turn, has an impact upon the survival of cortical neurons and accounts for some of the neurological features found in MSD. Thus, our data indicate that lysosomal/autophagic dysfunction in astrocytes is an important component of neurodegeneration in LSDs.

  6. Astrocytes and synaptic plasticity in health and disease.

    Science.gov (United States)

    Singh, A; Abraham, Wickliffe C

    2017-06-01

    Activity-dependent synaptic plasticity phenomena such as long-term potentiation and long-term depression are candidate mechanisms for storing information in the brain. Regulation of synaptic plasticity is critical for healthy cognition and learning and this is provided in part by metaplasticity, which can act to maintain synaptic transmission within a dynamic range and potentially prevent excitotoxicity. Metaplasticity mechanisms also allow neurons to integrate plasticity-associated signals over time. Interestingly, astrocytes appear to be critical for certain forms of synaptic plasticity and metaplasticity mechanisms. Synaptic dysfunction is increasingly viewed as an early feature of AD that is correlated with the severity of cognitive decline, and the development of these pathologies is correlated with a rise in reactive astrocytes. This review focuses on the contributions of astrocytes to synaptic plasticity and metaplasticity in normal tissue, and addresses whether astroglial pathology may lead to aberrant engagement of these mechanisms in neurological diseases such as Alzheimer's disease.

  7. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures

    NARCIS (Netherlands)

    Goudriaan, A.; Camargo, N.K.; Carney, K.E.; Oliet, S.H.R.; Smit, A.B.; Verheijen, M.H.G.

    2014-01-01

    Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a

  8. File list: Oth.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Astrocytes.bed ...

  9. File list: Oth.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Astrocytes.bed ...

  10. File list: ALL.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Astrocytes.bed ...

  11. File list: ALL.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Astrocytes.bed ...

  12. File list: ALL.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Astrocytes.bed ...

  13. File list: ALL.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Astrocytes.bed ...

  14. File list: Oth.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Astrocytes.bed ...

  15. File list: Oth.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Astrocytes.bed ...

  16. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  17. Expression of neuronal antigens by astrocytes derived from EGF-generated neuroprogenitor cells.

    Science.gov (United States)

    Schinstine, M; Iacovitti, L

    1996-09-01

    Previous studies have demonstrated that astrocytes reacting to CNS injury can express antigens normally associated with neurons. The origin of the reactive astrocytes, i.e., whether they are newly differentiated glial cells or preexisting astrocytes somehow triggered to express neuronal markers, remains difficult to determine using an in vivo model system. An in vitro model may prove more manageable. In the present study, primary brain cultures and EGF-generated neuroprogenitor cells were used to study the expression of neuronal antigens by established (primary) and nascent astrocytes, respectively. Astrocytes derived directly from dissociated mouse brains exhibited a flat morphology typical of type 1 astrocytes. These cells were nestin and GFAP positive and, in most cases, the antigens were colocalized. Primary astrocytes did not appear to express the putative neuronal markers GABA, Tau, or MAP2. Nascent astrocytes derived from EGF-generated progenitor cells showed a similar pattern of GFAP and nestin immunoreactivity. Contrary to primary astrocytes, many GFAP-intensive, stellate astrocytes exhibited Tau and MAP2. These cells also exhibited an intense nestin immunoreactivity. These data suggest that the reactive astrocytes expressing neuronal antigens in response to CNS trauma may be derived from neural progenitor cells rather than from previously differentiated astrocytes.

  18. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    Science.gov (United States)

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  19. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  20. Astrocytes pathology in ALS: A potential therapeutic target?

    Science.gov (United States)

    Johann, Sonja

    2017-06-15

    The mechanisms underlying neurodegeneration in amyotrophic lateral sclerosis (ALS) are multifactorial and include genetic and environmental factors. Nowadays, it is well accepted that neuronal loss is driven by non-cell autonomous toxicity. Non-neuronal cells, such as astrocytes, have been described to significantly contribute to motoneuron cell death and disease progression in cell culture experiments and animal models of ALS. Astrocytes are essential for neuronal survival and function by regulating neurotransmitter and ion homeostasis, immune response, blood flow and glucose uptake, antioxidant defence and growth factor release. Based on their significant functions in "housekeeping" the central nervous system (CNS), they are no longer thought to be passive bystanders but rather contributors to ALS pathogenesis. Findings from animal models have broadened our knowledge about different pathomechanisms in ALS, but therapeutic approaches to impede disease progression failed. So far, there is no cure for ALS and effective medication to slow down disease progression is limited. Targeting only a single aspect of this multifactorial disease may exhibit therapeutic limitations. Hence, novel cellular targets must be defined and new pharmaceutical strategies, such as combinatorial drug therapies are urgently needed. The present review discusses the physiological role of astrocytes and current hypotheses of astrocyte pathology in ALS. Furthermore, recent investigation of potential drug candidates in astrocyte cell culture systems and animal models, as well as data obtained from clinical trials, will be addressed. The central role of astrocytes in ALS pathogenesis makes them a promising target for pharmaceutical interventions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Astrocytes in oligodendrocyte lineage development and white matter pathology

    Directory of Open Access Journals (Sweden)

    Jiasi eLi

    2016-05-01

    Full Text Available White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in grey matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica. In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  2. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  3. Theophylline potentiates lipopolysaccharide-induced NO production in cultured astrocytes.

    Science.gov (United States)

    Ogawa, Mizue; Takano, Katsura; Kawabe, Kenji; Moriyama, Mitsuaki; Ihara, Hideshi; Nakamura, Yoichi

    2014-01-01

    Elucidation of the functions of astrocytes is important for understanding of the pathogenic mechanism of various neurodegenerative diseases. Theophylline is a common drug for bronchial asthma and occasionally develops side-effects, such as acute encephalopathy; although the pathogenic mechanism of the side-effects is unknown. The lipopolysaccharide (LPS)-induced nitricoxide (NO) production is generally used for an index of the activation of astrocyte in vitro. In this study, in order to elucidate the effect of theophylline on the astrocytic functions, we examined the LPS-induced NO production and the expression of iNOS in cultured rat cortex astrocytes.Theophylline alone could not induce the NO production; however, NO production induced by LPS was enhanced by theophylline in a dose-dependent manner; and by isobutylmethylxanthine, a phosphodiesterase inhibitor. The theophylline enhancement of LPS-induced NO production was further increased by dibutyryl cyclic AMP, a membrane-permeable cAMP analog; and by forskolin, an adenylate cyclase activator. When the cells were preincubated with Rp-8-Br-cAMP, an inhibitor of protein kinase A, the theophylline enhancement of LPS-induced NO production was decreased. The extent of iNOS protein expression induced by LPS was also enhanced by theophylline.It is likely that phosphodiesterase inhibition is a major action mechanism for the theophylline enhancement of LPS-induced NO production in astrocytes. Theophylline-induced acute encephalopathy might be due to the hyper-activation of astrocytes via cAMP signaling to produce excess amount of NO.

  4. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  5. Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus.

    Directory of Open Access Journals (Sweden)

    Antje Grosche

    Full Text Available BACKGROUND: Besides their neuronal support functions, astrocytes are active partners in neuronal information processing. The typical territorial structure of astrocytes (the volume of neuropil occupied by a single astrocyte is pivotal for many aspects of glia-neuron interactions. METHODS: Individual astrocyte territorial volumes are measured by Golgi impregnation, and astrocyte densities are determined by S100β immunolabeling. These data are compared with results from conventionally applied methods such as dye filling and determination of the density of astrocyte networks by biocytin loading. Finally, we implemented our new approach to investigate age-related changes in astrocyte territories in the cortex and hippocampus of 5- and 21-month-old mice. RESULTS: The data obtained by our simplified approach based on Golgi impregnation were compared to previously published dye filling experiments, and yielded remarkably comparable results regarding astrocyte territorial volumes. Moreover, we found that almost all coupled astrocytes (as indicated by biocytin loading were immunopositive for S100β. A first application of this new experimental approach gives insight in age-dependent changes in astrocyte territorial volumes. They increased with age, while cell densities remained stable. In 5-month-old mice, the overlap factor was close to 1, revealing little or no interdigitation of astrocyte territories. However, in 21-month-old mice, the overlap factor was more than 2, suggesting that processes of adjacent astrocytes interdigitate. CONCLUSION: Here we verified the usability of a simple, versatile method for assessing astrocyte territories and the overlap factor between adjacent territories. Second, we found that there is an age-related increase in territorial volumes of astrocytes that leads to loss of the strict organization in non-overlapping territories. Future studies should elucidate the physiological relevance of this adaptive reaction of

  6. Small RNA interference-mediated gene silencing of TREK-1 potassium channel in cultured astrocytes.

    Science.gov (United States)

    Wu, Xiao; Tang, Ronghua; Liu, Yang; Song, Jingjiao; Yu, Zhiyuan; Wang, Wei; Xie, Minjie

    2012-12-01

    This study was aimed to examine the effect of TREK-1 silencing on the function of astrocytes. Three 21-nucleotide small interfering RNA (siRNA) duplexes (siT1, siT2, siT3) targeting TREK-1 were constructed. Cy3-labeled dsRNA oligmers were used to determine the transfection efficiency in cultured astrocytes. TREK-1-specific siRNA duplexes (siT1, siT2, siT3) at the optimal concentration were transfected into cultured astrocytes, and the most efficient siRNA was identified by the method of immunocytochemical staining and Western blotting. The proliferation of astrocytes tranfected with TREK-1-targeting siRNA under hypoxia condition was measured by fluorescence-activated cell sorting (FACS). The results showed that TREK-1 was expressed in cultured astrocytes. The dsRNA oligmers targeting TREK-1 could be transfected efficiently in cultured astrocytes and down-regulate the expression of TREK-1 in astrocytes. Moreover, the down-regulation of TREK-1 in astrocytes contributed to the proliferation of astrocytes under hypoxia condition as determined by cell cycle analysis. It was concluded that siRNA is a powerful technique that can be used to knockdown the expression of TREK-1 in astrocytes, which helps further investigate the function of TREK-1 channel in astrocytes under physicological and pathological condition.

  7. Coincident Generation of Pyramidal Neurons and Protoplasmic Astrocytes in Neocortical Columns

    Science.gov (United States)

    Magavi, Sanjay; Friedmann, Drew; Banks, Garrett; Stolfi, Alberto

    2012-01-01

    Astrocytes, one of the most common cell types in the brain, are essential for processes ranging from neural development through potassium homeostasis to synaptic plasticity. Surprisingly, the developmental origins of astrocytes in the neocortex are still controversial. To investigate the patterns of astrocyte development in the neocortex we examined cortical development in a transgenic mouse in which a random, sparse subset of neural progenitors undergoes CRE/lox recombination, permanently labeling their progeny. We demonstrate that neural progenitors in neocortex generate discrete columnar structures that contain both projection neurons and protoplasmic astrocytes. Ninety-five percent of developmental cortical columns labeled in our system contained both astrocytes and neurons. The astrocyte to neuron ratio of labeled cells in a developmental column was 1:7.4, similar to the overall ratio of 1:8.4 across the entire gray matter of the neocortex, indicating that column-associated astrocytes account for the majority of protoplasmic astrocytes in neocortex. Most of the labeled columns contained multiple clusters of several astrocytes. Dividing cells were found at the base of neuronal columns at the beginning of gliogenesis, and later within the cortical layers, suggesting a mechanism by which astrocytes could be distributed within a column. These data indicate that radial glia are the source of both neurons and astrocytes in the neocortex, and that these two cell types are generated in a spatially restricted manner during cortical development. PMID:22492032

  8. Astrocytes in development, aging and disease: starring GFAP

    NARCIS (Netherlands)

    Middeldorp, J.

    2010-01-01

    We show in this thesis that different subtypes of astrocytes comprise specialized GFAP-IF networks, that change during development, aging and Alzheimer’s disease. The novel functions that have emerged for the IF network suggest these changes can play an important part in the specialized function of

  9. The Indispensable Roles of Microglia and Astrocytes during Brain Development

    NARCIS (Netherlands)

    Reemst, Kitty; Noctor, Stephen C; Lucassen, Paul J; Hol, E.M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same

  10. The indispensable roles of microglia and astrocytes during brain development

    NARCIS (Netherlands)

    Reemst, Kitty; Noctor, Stephen C.; Lucassen, Paul J.; Hol, Elly M.|info:eu-repo/dai/nl/F-1891-2013

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same

  11. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup

    2016-01-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back t...

  12. Homocysteine Induces Glial Reactivity in Adult Rat Astrocyte Cultures.

    Science.gov (United States)

    Longoni, Aline; Bellaver, Bruna; Bobermin, Larissa Daniele; Santos, Camila Leite; Nonose, Yasmine; Kolling, Janaina; Dos Santos, Tiago M; de Assis, Adriano M; Quincozes-Santos, André; Wyse, Angela T S

    2017-03-02

    Astrocytes are dynamic glial cells associated to neurotransmitter systems, metabolic functions, antioxidant defense, and inflammatory response, maintaining the brain homeostasis. Elevated concentrations of homocysteine (Hcy) are involved in the pathogenesis of age-related neurodegenerative disorders, such as Parkinson and Alzheimer diseases. In line with this, our hypothesis was that Hcy could promote glial reactivity in a model of cortical primary astrocyte cultures from adult Wistar rats. Thus, cortical astrocytes were incubated with different concentrations of Hcy (10, 30, and 100 μM) during 24 h. After the treatment, we analyzed cell viability, morphological parameters, antioxidant defenses, and inflammatory response. Hcy did not induce any alteration in cell viability; however, it was able to induce cytoskeleton rearrangement. The treatment with Hcy also promoted a significant decrease in the activities of Na(+), K(+) ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in the glutathione (GSH) content. Additionally, Hcy induced an increase in the pro-inflammatory cytokine release. In an attempt to elucidate the putative mechanisms involved in the Hcy-induced glial reactivity, we measured the nuclear factor kappa B (NFκB) transcriptional activity and heme oxygenase 1 (HO-1) expression, which were activated and inhibited by Hcy, respectively. In summary, our findings provide important evidences that Hcy modulates critical astrocyte parameters from adult rats, which might be associated to the aging process.

  13. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    Directory of Open Access Journals (Sweden)

    Glenn eDallérac

    2013-10-01

    Full Text Available A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

  14. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China); Wang, Guang-Hui [College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 (China); Chen, Zhong, E-mail: chenzhong@zju.edu.cn [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China)

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5{sup −/−} mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the

  15. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux.

    Directory of Open Access Journals (Sweden)

    Clare M Florence

    Full Text Available Astrocytes, the major type of non-neuronal cells in the brain, play an important functional role in extracellular potassium ([K(+](o and pH homeostasis. Pathological brain states that result in [K(+](o and pH dysregulation have been shown to cause astrocyte swelling. However, whether astrocyte volume changes occur under physiological conditions is not known. In this study we used two-photon imaging to visualize real-time astrocyte volume changes in the stratum radiatum of the hippocampus CA1 region. Astrocytes were observed to swell by 19.0±0.9% in response to a small physiological increase in the concentration of [K(+](o (3 mM. Astrocyte swelling was mediated by the influx of bicarbonate (HCO(3- ions as swelling was significantly decreased when the influx of HCO(3- was reduced. We found: 1 in HCO(3- free extracellular solution astrocytes swelled by 5.4±0.7%, 2 when the activity of the sodium-bicarbonate cotransporter (NBC was blocked the astrocytes swelled by 8.3±0.7%, and 3 in the presence of an extracellular carbonic anhydrase (CA inhibitor astrocytes swelled by 11.4±0.6%. Because a significant HCO(3- efflux is known to occur through the γ-amino-butyric acid (GABA channel, we performed a series of experiments to determine if astrocytes were capable of HCO(3- mediated volume shrinkage with GABA channel activation. Astrocytes were found to shrink -7.7±0.5% of control in response to the GABA(A channel agonist muscimol. Astrocyte shrinkage from GABA(A channel activation was significantly decreased to -5.0±0.6% of control in the presence of the membrane-permeant CA inhibitor acetazolamide (ACTZ. These dynamic astrocyte volume changes may represent a previously unappreciated yet fundamental mechanism by which astrocytes regulate physiological brain functioning.

  16. Decreased functions of astrocytes on carbon nanofiber materials.

    Science.gov (United States)

    McKenzie, Janice L; Waid, Michael C; Shi, Riyi; Webster, Thomas J

    2004-01-01

    Carbon nanofibers possess excellent conductivity properties, which may be beneficial in the design of more effective neural prostheses; however, limited evidence on their cytocompatibility properties currently exists. The objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers pertinent to neural implant applications. Substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 100 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Carbon fibers were compacted in a manual hydraulic press via a uniaxial loading cycle. Astrocytes (glial scar tissue-forming cells) were seeded onto the substrates for adhesion, proliferation, and long-term function studies (such as total intracellular protein and alkaline phosphatase activity). Results provided the first evidence that astrocytes preferentially adhered and proliferated on carbon fibers that had the largest diameter and the lowest surface energy. Based on these results, composite substrates were also formed using different weight percentages (0-25 wt%) of the nanophase, high surface energy fibers in a polycarbonate urethane matrix. Results provided the first evidence of decreased adhesion of astrocytes with increasing weight percents of the high surface energy carbon nanofibers in the polymer composite; this further demonstrates that formulations containing carbon fibers in the nanometer regime may limit astrocyte functions leading to decreased glial scar tissue formation. Positive interactions with neurons, and, at the same time, limited astrocyte functions leading to decreased gliotic scar tissue formation are essential for increased neuronal implant efficacy.

  17. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  18. Astrocyte uncoupling as a cause of human temporal lobe epilepsy.

    Science.gov (United States)

    Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A; Henneberger, Christian; Theis, Martin; Steinhäuser, Christian

    2015-05-01

    Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. H1-antihistamines induce vacuolation in astrocytes through macroautophagy.

    Science.gov (United States)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan; Wang, Guang-Hui; Chen, Zhong

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine>pyrilamine>astemizole>triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5⁻/⁻ mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  20. Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning.

    Science.gov (United States)

    Hertz, Leif; Chen, Ye

    2018-02-01

    In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, l-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high potassium ion (K + ) concentrations - possibly because noradrenaline in contrast to high K + stimulates glycogenolysis by an increase not only in free cytosolic Ca 2+ concentration ([Ca 2+ ] i ) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K + and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K + following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released l-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), including induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning, LTP and all related molecular events, but all changes can be reversed by injection of l-lactate. The effect of extracellular l-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  2. Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis.

    Science.gov (United States)

    Sreetama, S C; Takano, T; Nedergaard, M; Simon, S M; Jaiswal, J K

    2016-04-01

    Astrocytes are known to facilitate repair following brain injury; however, little is known about how injured astrocytes repair themselves. Repair of cell membrane injury requires Ca(2+)-triggered vesicle exocytosis. In astrocytes, lysosomes are the main Ca(2+)-regulated exocytic vesicles. Here we show that astrocyte cell membrane injury results in a large and rapid calcium increase. This triggers robust lysosome exocytosis where the fusing lysosomes release all luminal contents and merge fully with the plasma membrane. In contrast to this, receptor stimulation produces a small sustained calcium increase, which is associated with partial release of the lysosomal luminal content, and the lysosome membrane does not merge into the plasma membrane. In most cells, lysosomes express the synaptotagmin (Syt) isoform Syt VII; however, this isoform is not present on astrocyte lysosomes and exogenous expression of Syt VII on lysosome inhibits their exocytosis. Deletion of one of the most abundant Syt isoform in astrocyte--Syt XI--suppresses astrocyte lysosome exocytosis. This identifies lysosome as Syt XI-regulated exocytic vesicle in astrocytes. Further, inhibition of lysosome exocytosis (by Syt XI depletion or Syt VII expression) prevents repair of injured astrocytes. These results identify the lysosomes and Syt XI as the sub-cellular and molecular regulators, respectively of astrocyte cell membrane repair.

  3. Inhibition of DNA methyltransferases and histone deacetylases induces astrocytic differentiation of neural progenitors.

    Science.gov (United States)

    Majumder, Anirban; Dhara, Sujoy K; Swetenburg, Raymond; Mithani, Miloni; Cao, Kaixiang; Medrzycki, Magdalena; Fan, Yuhong; Stice, Steven L

    2013-07-01

    Understanding how to specify rapid differentiation of human neural progenitor towards enriched non-transformed human astrocyte progenitors will provide a critical cell source to further our understanding of how astrocytes play a pivotal role in neural function and development. Human neural progenitors derived from pluripotent embryonic stem cells and propagated in adherent serum-free cultures provide a fate restricted renewable source for quick production of neural cells; however, such cells are highly refractive to astrocytogenesis and show a strong neurogenic bias, similar to neural progenitors from the early embryonic central nervous system (CNS). We found that several astrocytic genes are hypermethylated in such progenitors potentially preventing generation of astrocytes and leading to the proneuronal fate of these progenitors. However, epigenetic modification by Azacytidine (Aza-C) and Trichostatin A (TSA), with concomitant signaling from BMP2 and LIF in neural progenitor cultures shifts this bias, leading to expression of astrocytic markers as early as 5days of differentiation, with near complete suppression of neuronal differentiation. The resultant cells express major astrocytic markers, are amenable to co-culture with neurons, can be propagated as astrocyte progenitors and are cryopreservable. Although previous reports have generated astrocytes from pluripotent cells, the differentiation required extensive culture or selection based on cell surface antigens. The development of a label free and rapid differentiation process will expedite future derivation of astrocytes from various sources pluripotent cells including, but not limited to, human astrocytes associated with various neurological diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse.

    Science.gov (United States)

    Zhang, Ye; Sloan, Steven A; Clarke, Laura E; Caneda, Christine; Plaza, Colton A; Blumenthal, Paul D; Vogel, Hannes; Steinberg, Gary K; Edwards, Michael S B; Li, Gordon; Duncan, John A; Cheshier, Samuel H; Shuer, Lawrence M; Chang, Edward F; Grant, Gerald A; Gephart, Melanie G Hayden; Barres, Ben A

    2016-01-06

    The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here, we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains and to maintain these cells in serum-free cultures. We found that human astrocytes have abilities similar to those of murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to existing observations in mice, we found that mature human astrocytes respond robustly to glutamate. Next, we performed RNA sequencing of healthy human astrocytes along with astrocytes from epileptic and tumor foci and compared these to human neurons, oligodendrocytes, microglia, and endothelial cells (available at http://www.brainrnaseq.org). With these profiles, we identified novel human-specific astrocyte genes and discovered a transcriptome-wide transformation between astrocyte precursor cells and mature post-mitotic astrocytes. These data represent some of the first cell-type-specific molecular profiles of the healthy and diseased human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions.

    Science.gov (United States)

    Wu, Xiao; Liu, Yang; Chen, Xiaojing; Sun, Qian; Tang, Ronghua; Wang, Wei; Yu, Zhiyuan; Xie, Minjie

    2013-03-01

    Astrocytes play a fundamental role in the pathogenesis of ischemic neuronal death. The optimal operation of electrogenic astrocytic transporters and exchangers for some well-defined astrocyte brain homeostatic functions depends on the presence of K(+) channels in the cell membranes and the hyperpolarized membrane potential. Our previous study showed that astrocytes functionally express two-pore domain K(+) channel TREK-1, which helps to set the negative resting membrane potential. However, the roles of TREK-1 on astrocytic function under normal and ischemic conditions remain unclear. In this study, we investigated the expression of TREK-1 protein on cultured astrocytes and the effect of TREK-1 activity on astrocytic glutamate clearance capacity and release of s100β after simulated ischemic insult. TREK-1 immunoreactivity was up-regulated after hypoxia. Suppression of TREK-1 activity inhibited the glutamate clearance capability, enhanced the inflammatory secretion of astrocytes derived s100β and led to increased neuronal apoptosis after ischemic insult. Our results suggest that TREK-1 activity is involved in astrocytic function and neuronal survival. This would provide evidence showing astrocytic TREK-1 involvement in ischemia pathology which may serve as a potential therapeutic target in stroke.

  6. Unperturbed posttranscriptional regulatory Rev protein function and HIV-1 replication in astrocytes.

    Directory of Open Access Journals (Sweden)

    Ashok Chauhan

    Full Text Available Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase and TRBP (anti-PKR in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.

  7. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Directory of Open Access Journals (Sweden)

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  8. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  9. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-09-24

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms.

  10. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  11. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  12. Spinal dorsal horn astrocytes: New players in chronic itch

    Directory of Open Access Journals (Sweden)

    Makoto Tsuda

    2017-01-01

    Full Text Available Chronic itch is a debilitating symptom of inflammatory skin conditions, such as atopic dermatitis, and systemic diseases, for which existing treatment is largely ineffective. Recent studies have revealed the selective neuronal pathways that are involved in itch sensations; however, the mechanisms by which itch turns into a pathological chronic state are poorly understood. Recent advances in our understanding of the mechanisms producing chronic itch have been made by defining causal roles for astrocytes in the spinal dorsal horn in mouse models of chronic itch including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for itch chronicity and lead to a previously unrecognized target for treating chronic itch.

  13. Biomechanical and proteomic analysis of INF- {beta}-treated astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, Daniele; Leporatti, Stefano; Maruccio, Giuseppe; Cingolani, Roberto; Rinaldi, Ross [National Nanotechnology Laboratory of CNR-INFM, ISUFI, University of Lecce, Italian Institute of Technology (IIT) Research Unit, via Arnesano, I-73100 Lecce (Italy); Martignago, Roberta; Nuccio, Franco De; Nicolardi, Giuseppe; Maffia, Michele [Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, I-73100 Lecce (Italy); Bonsegna, Stefania; Santino, Angelo, E-mail: michele.maffia@unile.i, E-mail: ross.rinaldi@unile.i [Institute of Sciences of Food Production CNR, Unit of Lecce I-73100 (Italy)

    2009-11-11

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- {beta} (IFN-{beta}) treatment. Our results indicated that IFN-{beta} treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  14. Involvement of Astrocytes in Mediating the Central Effects of Ghrelin

    Science.gov (United States)

    Frago, Laura M.; Chowen, Julie A.

    2017-01-01

    Although astrocytes are the most abundant cells in the mammalian brain, much remains to be learned about their molecular and functional features. Astrocytes express receptors for numerous hormones and metabolic factors, including the appetite-promoting hormone ghrelin. The metabolic effects of ghrelin are largely opposite to those of leptin, as it stimulates food intake and decreases energy expenditure. Ghrelin is also involved in glucose-sensing and glucose homeostasis. The widespread expression of the ghrelin receptor in the central nervous system suggests that this hormone is not only involved in metabolism, but also in other essential functions in the brain. In fact, ghrelin has been shown to promote cell survival and neuroprotection, with some studies exploring the use of ghrelin as a therapeutic agent against metabolic and neurodegenerative diseases. In this review, we highlight the possible role of glial cells as mediators of ghrelin’s actions within the brain. PMID:28257088

  15. [Astrocytes and microglia: active players in synaptic plasticity].

    Science.gov (United States)

    Ronzano, Rémi

    2017-12-01

    Synaptic plasticity consists in a change in structure and composition of presynaptic and postsynaptic compartments. For a long time, synaptic plasticity had been thought as a neuronal mechanism only under the control of neural network activity. However, recently, with the growing knowledge about glial physiology, plasticity has been reviewed as a mechanism influenced by the synaptic environment. Thus, it appears that astrocytes and microglia modulate these mechanisms modifying neural environment by clearance of neurotransmitters, releasing essential factors and modulating inflammation. Moreover, glia can change its own activity and the expression pattern of many factors that modulate synaptic plasticity according to the environment. Hence, these populations of "non-neuronal" cells in the central nervous system seem to be active players in synaptic plasticity. This review discusses how glia modulates synaptic plasticity focusing on long-term potentiation and depression, and questions the role of the signaling processes between astrocytes and microglia in these mechanisms. © 2017 médecine/sciences – Inserm.

  16. Reactive Astrocytes Protect Melanoma Cells from Chemotherapy by Sequestering Intracellular Calcium through Gap Junction Communication Channels

    Directory of Open Access Journals (Sweden)

    Qingtang Lin

    2010-09-01

    Full Text Available Brain metastases are highly resistant to chemotherapy. Metastatic tumor cells are known to exploit the host microenvironment for their growth and survival. We report here that melanoma brain metastases are surrounded and infiltrated by activated astrocytes, and we hypothesized that these astrocytes can play a role similar to their established ability to protect neurons from apoptosis. In coculture experiments, astrocytes, but not fibroblasts, reduced apoptosis in human melanoma cells treated with various chemotherapeutic drugs. This chemoprotective effect was dependent on physical contact and gap junctional communication between astrocytes and tumor cells. Moreover, the protective effect of astrocytes resulted from their sequestering calcium from the cytoplasm of tumor cells. These data suggest that brain tumors can, in principle, harness the neuroprotective effects of reactive astrocytes for their own survival and implicate a heretofore unrecognized mechanism for resistance in brain metastasis that might be of relevance in the clinic.

  17. The increase in the number of astrocytes in the total cerebral ischemia model in rats

    Science.gov (United States)

    Kudabayeva, M.; Kisel, A.; Chernysheva, G.; Smol'yakova, V.; Plotnikov, M.; Khodanovich, M.

    2017-08-01

    Astrocytes are the most abundant cell class in the CNS. Astrocytic therapies have a huge potential for neuronal repair after stroke. The majority of brain stroke studies address the damage to neurons. Modern studies turn to the usage of morphological and functional changes in astroglial cells after stroke in regenerative medicine. Our study is focused on the changes in the number of astrocytes in the hippocampus (where new glia cells divide) after brain ischemia. Ischemia was modeled by occlusion of tr. brachiocephalicus, a. subclavia sin., a. carotis communis sin. Astrocytes were determined using immunohistochemical labeling with anti GFAP antibody. We found out that the number of astrocytes increased on the 10th and 30th days after stroke in the CA1, CA2 fields, the granular layer of dentate gyrus (GrDG) and hilus. The morphology of astrocytes became reactive in these regions. Therefore, our results revealed long-term reactive astrogliosis in the hippocampus region after total ischemia in rats.

  18. Astrocyte pathology in Alexander disease causes a marked inflammatory environment.

    Science.gov (United States)

    Olabarria, Markel; Putilina, Maria; Riemer, Ellen C; Goldman, James E

    2015-10-01

    Astrocytes and microglia are commonly involved in a wide variety of CNS pathologies. However, they are typically involved in a secondary response in which many cell types are affected simultaneously and therefore it is difficult to know their contributions to the pathology. Here, we show that pathological astrocytes in a mouse model of Alexander disease (AxD; GFAP (Tg);Gfap (+/R236H)) cause a pronounced immune response. We have studied the inflammatory response in the hippocampus and spinal cord of these mice and have found marked microglial activation, which follows that of astrocytes in a spatial pathological progression, as shown by increased levels of Iba1 and microglial cell (Iba1+) density. RNA sequencing and subsequent gene ontology (GO) analysis revealed that a majority of the most upregulated genes in GFAP (Tg);Gfap (+/R236H) mice are directly associated with immune function and that cytokine and chemokine GO attributes represent nearly a third of the total immune attributes. Cytokine and chemokine analysis showed CXCL10 and CCL2 to be the most and earliest increased molecules, showing concentrations as high as EAE or stroke models. CXCL10 was localized exclusively to astrocytes while CCL2 was also present in microglia. Despite the high levels of CXCL10 and CCL2, T cell infiltration was mild and no B cells were found. Thus, mutations in GFAP are sufficient to trigger a profound inflammatory response. The cellular stress caused by the accumulation of GFAP likely leads to the production of inflammatory molecules and microglial activation. Examination of human AxD CNS tissues also revealed microglial activation and T cell infiltrates. Therefore, the inflammatory environment may play an important role in producing the neuronal dysfunction and seizures of AxD.

  19. Methamphetamine compromises gap junctional communication in astrocytes and neurons.

    Science.gov (United States)

    Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A

    2016-05-01

    Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher

  20. Key Metabolic Enzymes Underlying Astrocytic Upregulation of GABAergic Plasticity

    Directory of Open Access Journals (Sweden)

    Przemysław T. Kaczor

    2017-05-01

    Full Text Available GABAergic plasticity is recognized as a key mechanism of shaping the activity of the neuronal networks. However, its description is challenging because of numerous neuron-specific mechanisms. In particular, while essential role of glial cells in the excitatory plasticity is well established, their involvement in GABAergic plasticity only starts to emerge. To address this problem, we used two models: neuronal cell culture (NC and astrocyte-neuronal co-culture (ANCC, where we chemically induced long-term potentiation at inhibitory synapses (iLTP. iLTP could be induced both in NC and ANCC but in ANCC its extent was larger. Importantly, this functional iLTP manifestation was accompanied by an increase in gephyrin puncta size. Furthermore, blocking astrocyte Krebs cycle with fluoroacetate (FA in ANCC prevented enhancement of both mIPSC amplitude and gephyrin puncta size but this effect was not observed in NC, indicating a key role in neuron-astrocyte cross-talk. Blockade of monocarboxylate transport with α-Cyano-4-hydroxycinnamic acid (4CIN abolished iLTP both in NC and ANCC and in the latter model prevented also enlargement of gephyrin puncta. Similarly, blockade of glycogen phosphorylase with BAYU6751 prevented enlargement of gephyrin puncta upon iLTP induction. Finally, block of glutamine synthetase with methionine sulfoxide (MSO nearly abolished mIPSC increase in both NMDA stimulated cell groups but did not prevent enlargement of gephyrin puncta. In conclusion, we provide further evidence that GABAergic plasticity is strongly regulated by astrocytes and the underlying mechanisms involve key metabolic enzymes. Considering the strategic role of GABAergic interneurons, the plasticity described here indicates possible mechanism whereby metabolism regulates the network activity.

  1. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Science.gov (United States)

    Newman, Lori A; Korol, Donna L; Gold, Paul E

    2011-01-01

    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  2. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Directory of Open Access Journals (Sweden)

    Lori A Newman

    Full Text Available When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  3. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  4. Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action

    Directory of Open Access Journals (Sweden)

    Andreu Viader

    2015-08-01

    Full Text Available The endocannabinoid 2-arachidonoylglycerol (2-AG is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis—a reaction that is principally performed by monoacylglycerol lipase (MAGL. MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to the regulation of 2-AG activity in vivo remain poorly understood. Here, we genetically dissect the cellular anatomy of MAGL-mediated 2-AG metabolism in the brain and show that neurons and astrocytes coordinately regulate 2-AG content and endocannabinoid-dependent forms of synaptic plasticity and behavior. We also find that astrocytic MAGL is mainly responsible for converting 2-AG to neuroinflammatory prostaglandins via a mechanism that may involve transcellular shuttling of lipid substrates. Astrocytic-neuronal interplay thus provides distributed oversight of 2-AG metabolism and function and, through doing so, protects the nervous system from excessive CB1 receptor activation and promotes endocannabinoid crosstalk with other lipid transmitter systems.

  5. Expression of Ski and its role in astrocyte proliferation and migration.

    Science.gov (United States)

    Zhao, X; Wang, X-W; Zhou, K-S; Nan, W; Guo, Y-Q; Kou, J-L; Wang, J; Xia, Y-Y; Zhang, H-H

    2017-10-24

    Ski, as an evolutionarily conserved protein, is a versatile transcriptional regulator which widely distributes in various tissues and species. Recently, we have demonstrated for the first time that Ski was strikingly up-regulated in reactive astrocytes after spinal cord injury (SCI) in vivo, which indicates that maybe Ski is a new molecule that controls astrocytes' biological properties after SCI. However, the accurate distributions and functions of Ski in astrocytes after central nervous system (CNS) injury are still unclear. Astrocytes were collected from rats' cerebral cortex. To elucidate the expression and role of Ski in reactive astrocytes, we performed an activated astrocytes model induced by LPS and scratch injury in vitro. Our results showed that Ski gradually increased and reached a peak at 4days, then declined at 6days after induction by LPS. Up-regulation of Ski was accompanied with the increase in proliferation-related proteins including PCNA, CDK4 and CyclinD1. Furthermore, immunofluorescent staining analysis also demonstrated a highly positive relationship between Ski and GFAP, PCNA in astrocytes. These results indicated that Ski might play an important role in astrocyte proliferation. To further explore the role of Ski, astrocytes were transfected with Ski-specific small interfering RNA (siRNA). We found that the primary activated astrocytes' proliferation decreased significantly after transfection with Ski-specific siRNA. Surprisingly, Ski knockdown also weakened the primary astrocyte migration. Based on the above, we could conclude that Ski might play a crucial role in astrocyte proliferation and migration. This discovery might contribute to a promising therapeutic intervention in CNS injury. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    Science.gov (United States)

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  7. Astrocytes Modulate Distribution and Neuronal Signaling of Leptin in the Hypothalamus of Obese Avy Mice

    OpenAIRE

    Pan, Weihong; Hsuchou, Hung; Xu, Changlei; Wu, Xiaojun; Bouret, Sebastien G.; Kastin, Abba J

    2010-01-01

    We tested the hypothesis that astrocytic activity modulates neuronal uptake and signaling of leptin in the adult-onset obese agouti viable yellow (Avy) mouse. In the immunohistochemical study, Avy mice were pretreated with the astrocyte metabolic inhibitor fluorocitrate or phosphate-buffered saline (PBS) vehicle intracerebroventricularly (icv) followed 1 h later by Alexa568-leptin. Confocal microscopy showed that fluorocitrate pretreatment reduced astrocytic uptake of Alexa568-leptin 30 min a...

  8. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  9. Computational simulation: astrocyte-induced depolarization of neighboring neurons mediates synchronous UP states in a neural network.

    Science.gov (United States)

    Kuriu, Takayuki; Kakimoto, Yuta; Araki, Osamu

    2015-09-01

    Although recent reports have suggested that synchronous neuronal UP states are mediated by astrocytic activity, the mechanism responsible for this remains unknown. Astrocytic glutamate release synchronously depolarizes adjacent neurons, while synaptic transmissions are blocked. The purpose of this study was to confirm that astrocytic depolarization, propagated through synaptic connections, can lead to synchronous neuronal UP states. We applied astrocytic currents to local neurons in a neural network consisting of model cortical neurons. Our results show that astrocytic depolarization may generate synchronous UP states for hundreds of milliseconds in neurons even if they do not directly receive glutamate release from the activated astrocyte.

  10. Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture.

    Science.gov (United States)

    Decker, Helena; Francisco, Sheila S; Mendes-de-Aguiar, Cláudia B N; Romão, Luciana F; Boeck, Carina R; Trentin, Andréa G; Moura-Neto, Vivaldo; Tasca, Carla I

    2007-07-01

    Guanine derivatives (GD) have been shown to exert relevant extracellular effects as intercellular messengers, neuromodulators in the central nervous system, and trophic effects on astrocytes and neurons. Astrocytes have been pointed out as the major source of trophic factors in the nervous system, however, several trophic effects of astrocytic-released soluble factors are mediated through modulation of extracellular matrix (ECM) proteins. In this study, we investigated the effects of guanosine-5'-monophosphate (GMP) and guanosine (GUO) on the expression and organization of ECM proteins in cerebellar astrocytes. Moreover, to evaluate the effects of astrocytes pre-treated with GMP or GUO on cerebellar neurons we used a neuron-astrocyte coculture model. GMP or GUO alters laminin and fibronectin organization from a punctate to a fibrillar pattern, however, the expression levels of the ECM proteins were not altered. Guanine derivatives-induced alteration of ECM proteins organization is mediated by activation of mitogen activated protein kinases (MAPK), CA(2+)-calmodulin-dependent protein kinase II (CaMK-II), protein kinase C (PKC), and protein kinase A (PKA) pathways. Furthermore, astrocytes treated with GMP or GUO promoted an increased number of cerebellar neurons in coculture, without altering the neuritogenesis pattern. No proliferation of neurons or astrocytes was observed due to GMP or GUO treatment. Our results show that guanine derivatives promote a reorganization of the ECM proteins produced by astrocytes, which might be responsible for a better interaction with neurons in cocultures.

  11. Striatal astrocytes produce neuroblasts in an excitotoxic model of Huntington's disease.

    Science.gov (United States)

    Nato, Giulia; Caramello, Alessia; Trova, Sara; Avataneo, Valeria; Rolando, Chiara; Taylor, Verdon; Buffo, Annalisa; Peretto, Paolo; Luzzati, Federico

    2015-03-01

    In the adult brain, subsets of astrocytic cells residing in well-defined neurogenic niches constitutively generate neurons throughout life. Brain lesions can stimulate neurogenesis in otherwise non-neurogenic regions, but whether local astrocytic cells generate neurons in these conditions is unresolved. Here, through genetic and viral lineage tracing in mice, we demonstrate that striatal astrocytes become neurogenic following an acute excitotoxic lesion. Similar to astrocytes of adult germinal niches, these activated parenchymal progenitors express nestin and generate neurons through the formation of transit amplifying progenitors. These results shed new light on the neurogenic potential of the adult brain parenchyma. © 2015. Published by The Company of Biologists Ltd.

  12. Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory.

    Science.gov (United States)

    Chompre, Gladys; Cruz, Emmanuel; Maldonado, Lucianette; Rivera-Amill, Vanessa; Porter, James T; Noel, Richard J

    2013-01-01

    Despite the widespread use of antiretroviral therapy that effectively limits viral replication, memory impairment remains a dilemma for HIV infected people. In the CNS, HIV infection of astrocytes leads to the production of the HIV-1 Nef protein without viral replication. Post mortem studies have found Nef expression in hippocampal astrocytes of people with HIV associated dementia suggesting that astrocytic Nef may contribute to HIV associated cognitive impairment even when viral replication is suppressed. To test whether astrocytic expression of Nef is sufficient to induce cognitive deficits, we examined the effect of implanting primary rat astrocytes expressing Nef into the hippocampus on spatial and recognition memory. Rats implanted unilaterally with astrocytes expressing Nef showed impaired novel location and novel object recognition in comparison with controls implanted with astrocytes expressing green fluorescent protein (GFP). This impairment was correlated with an increase in chemokine ligand 2 (CCL2) expression and the infiltration of peripheral macrophages into the hippocampus at the site of injection. Furthermore, the Nef exposed rats exhibited a bilateral loss of CA3 neurons. These results suggest that Nef protein expressed by the implanted astrocytes activates the immune system leading to neuronal damage and spatial and recognition memory deficits. Therefore, the continued expression of Nef by astrocytes in the absence of viral replication has the potential to contribute to HIV associated cognitive impairment. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mutant Huntingtin Inhibits αB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes.

    Science.gov (United States)

    Hong, Yan; Zhao, Ting; Li, Xiao-Jiang; Li, Shihua

    2017-09-27

    In the brain, astrocytes secrete diverse substances that regulate neuronal function and viability. Exosomes, which are vesicles produced through the formation of multivesicular bodies and their subsequent fusion with the plasma membrane, are also released from astrocytes via exocytotic secretion. Astrocytic exosomes carry heat shock proteins that can reduce the cellular toxicity of misfolded proteins and prevent neurodegeneration. Although mutant huntingtin (mHtt) affects multiple functions of astrocytes, it remains unknown whether mHtt impairs the production of exosomes from astrocytes. We found that mHtt is not present in astrocytic exosomes, but can decrease exosome secretion from astrocytes in HD140Q knock-in (KI) mice. N-terminal mHtt accumulates in the nuclei and forms aggregates, causing decreased secretion of exosomes from cultured astrocytes. Consistently, there is a significant decrease in secreted exosomes in both female and male HD KI mouse striatum in which abundant nuclear mHtt aggregates are present. Conversely, injection of astrocytic exosomes into the striatum of HD140Q KI mice reduces the density of mHtt aggregates. Further, mHtt in astrocytes decreased the expression of αB-crystallin, a small heat shock protein that is enriched in astrocytes and mediates exosome secretion, by reducing the association of Sp1 with the enhancer of the αB-crystallin gene. Importantly, overexpression of αB-crystallin rescues defective exosome release from HD astrocytes as well as mHtt aggregates in the striatum of HD140Q KI mice. Our results demonstrate that mHtt reduces the expression of αB-crystallin in astrocytes to decrease exosome secretion in the HD brains, contributing to non-cell-autonomous neurotoxicity in HD.SIGNIFICANCE STATEMENT Huntington's disease (HD) is characterized by selective neurodegeneration that preferentially occurs in the striatal medium spiny neurons. Recent studies in different HD mouse models demonstrated that dysfunction of astrocytes

  14. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  15. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target.

    Science.gov (United States)

    Koyama, Yutaka

    2015-01-01

    Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  16. Astrocytes enhance the invasion potential of glioblastoma stem-like cells.

    Directory of Open Access Journals (Sweden)

    Barbara H Rath

    Full Text Available Glioblastomas (GBMs are characterized as highly invasive; the contribution of GBM stem-like cells (GSCs to the invasive phenotype, however, has not been completely defined. Towards this end, we have defined the invasion potential of CD133+ GSCs and their differentiated CD133- counterparts grown under standard in vitro conditions and in co-culture with astrocytes. Using a trans-well assay, astrocytes or astrocyte conditioned media in the bottom chamber significantly increased the invasion of GSCs yet had no effect on CD133- cells. In addition, a monolayer invasion assay showed that the GSCs invaded farther into an astrocyte monolayer than their differentiated progeny. Gene expression profiles were generated from two GSC lines grown in trans-well culture with astrocytes in the bottom chamber or directly in contact with astrocyte monolayers. In each co-culture model, genes whose expression was commonly increased in both GSC lines involved cell movement and included a number of genes that have been previously associated with tumor cell invasion. Similar gene expression modifications were not detected in CD133- cells co-cultured under the same conditions with astrocytes. Finally, evaluation of the secretome of astrocytes grown in monolayer identified a number of chemokines and cytokines associated with tumor cell invasion. These data suggest that astrocytes enhance the invasion of CD133+ GSCs and provide additional support for a critical role of brain microenvironment in the regulation of GBM biology.

  17. Membrane Biophysics Define Neuron and Astrocyte Progenitors in the Neural Lineage

    National Research Council Canada - National Science Library

    Nourse, J.L; Prieto, J.L; Dickson, A.R; Lu, J; Pathak, M.M; Tombola, F; Demetriou, M; Lee, A.P; Flanagan, L.A

    2014-01-01

    Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self‐renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes...

  18. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  19. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation

    Directory of Open Access Journals (Sweden)

    Youichi Shinozaki

    2017-05-01

    Full Text Available Microglia and astrocytes become reactive following traumatic brain injury (TBI. However, the coordination of this reactivity and its relation to pathophysiology are unclear. Here, we show that microglia transform astrocytes into a neuroprotective phenotype via downregulation of the P2Y1 purinergic receptor. TBI initially caused microglial activation in the injury core, followed by reactive astrogliosis in the peri-injured region and formation of a neuroprotective astrocyte scar. Equivalent changes to astrocytes were observed in vitro after injury. This change in astrocyte phenotype resulted from P2Y1 receptor downregulation, mediated by microglia-derived cytokines. In mice, astrocyte-specific P2Y1 receptor overexpression (Astro-P2Y1OE counteracted scar formation, while astrocyte-specific P2Y1 receptor knockdown (Astro-P2Y1KD facilitated scar formation, suggesting critical roles of P2Y1 receptors in the transformation. Astro-P2Y1OE and Astro-P2Y1KD mice showed increased and reduced neuronal damage, respectively. Altogether, our findings indicate that microglia-astrocyte interaction, involving a purinergic signal, is essential for the formation of neuroprotective astrocytes.

  20. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  1. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  2. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  3. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mächler, Philipp

    2015-11-19

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  4. Gene Profiling of Human Induced Pluripotent Stem Cell-Derived Astrocyte Progenitors Following Spinal Cord Engraftment

    Science.gov (United States)

    Haidet-Phillips, Amanda M.; Roybon, Laurent; Gross, Sarah K.; Tuteja, Alisha; Donnelly, Christopher J.; Richard, Jean-Philippe; Ko, Myungsung; Sherman, Alex; Eggan, Kevin; Henderson, Christopher E.

    2014-01-01

    The generation of human induced pluripotent stem cells (hiPSCs) represents an exciting advancement with promise for stem cell transplantation therapies as well as for neurological disease modeling. Based on the emerging roles for astrocytes in neurological disorders, we investigated whether hiPSC-derived astrocyte progenitors could be engrafted to the rodent spinal cord and how the characteristics of these cells changed between in vitro culture and after transplantation to the in vivo spinal cord environment. Our results show that human embryonic stem cell- and hiPSC-derived astrocyte progenitors survive long-term after spinal cord engraftment and differentiate to astrocytes in vivo with few cells from other lineages present. Gene profiling of the transplanted cells demonstrates the astrocyte progenitors continue to mature in vivo and upregulate a variety of astrocyte-specific genes. Given this mature astrocyte gene profile, this work highlights hiPSCs as a tool to investigate disease-related astrocyte biology using in vivo disease modeling with significant implications for human neurological diseases currently lacking animal models. PMID:24604284

  5. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  6. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation

    NARCIS (Netherlands)

    Bardehle, S.; Kruger, M.; Buggenthin, F.; Schwausch, J.; Ninkovic, J.; Clevers, H.; Snippert, H.J.G.; Theis, F.J.; Meyer-Luehmann, M.; Bechmann, I.; Dimou, L.; Gotz, M.

    2013-01-01

    Astrocytes are thought to have important roles after brain injury, but their behavior has largely been inferred from postmortem analysis. To examine the mechanisms that recruit astrocytes to sites of injury, we used in vivo two-photon laser-scanning microscopy to follow the response of GFP-labeled

  7. Astrocytes take the stage in a tale of signaling-metabolism coupling

    DEFF Research Database (Denmark)

    Bak, Lasse K

    2017-01-01

    Astrocytes are crucial cells in the brain that are intimately coupled with neuronal metabolism. A new paper from San Martín et al. provides evidence that physiological levels of the gaseous signal molecule NO can rapidly and reversibly increase astrocyte metabolism of glucose and production...

  8. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  9. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy...

  10. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawano

    Full Text Available The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.

  11. Do Evolutionary Changes in Astrocytes Contribute to the Computational Power of the Hominid Brain?

    DEFF Research Database (Denmark)

    Oberheim Bush, Nancy Ann; Nedergaard, Maiken

    2017-01-01

    It is now well accepted that astrocytes are essential in all major nervous system functions of the rodent brain, including neurotransmission, energy metabolism, modulation of blood flow, ion and water homeostasis, and, indeed, higher cognitive functions, although the contribution of astrocytes...

  12. A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo

    DEFF Research Database (Denmark)

    Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne

    2014-01-01

    ]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and (13)C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas...

  13. A digital implementation of neuron-astrocyte interaction for neuromorphic applications.

    Science.gov (United States)

    Nazari, Soheila; Faez, Karim; Amiri, Mahmood; Karami, Ehsan

    2015-06-01

    Recent neurophysiologic findings have shown that astrocytes play important roles in information processing and modulation of neuronal activity. Motivated by these findings, in the present research, a digital neuromorphic circuit to study neuron-astrocyte interaction is proposed. In this digital circuit, the firing dynamics of the neuron is described by Izhikevich model and the calcium dynamics of a single astrocyte is explained by a functional model introduced by Postnov and colleagues. For digital implementation of the neuron-astrocyte signaling, Single Constant Multiply (SCM) technique and several linear approximations are used for efficient low-cost hardware implementation on digital platforms. Using the proposed neuron-astrocyte circuit and based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the proposed digital astrocyte is able to change the firing patterns of the neuron through bidirectional communication. Utilizing the proposed digital circuit, it will be illustrated that information processing in synaptic clefts is strongly regulated by astrocyte. Moreover, our results suggest that the digital circuit of neuron-astrocyte crosstalk produces diverse neural responses and therefore enhances the information processing capabilities of the neuromorphic circuits. This is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Determinants of functional coupling between astrocytes and respiratory neurons in the pre-Bötzinger complex.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive.

  15. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-08-01

    Full Text Available Fragile X syndrome (FXS is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP, the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO mice, the factors released by astrocytes are still unclear. We cultured wild type (WT cortical neurons in astrocyte-conditioned medium (ACM from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA levels using high-performance liquid chromatography (HPLC. The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB, a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment.

  16. Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus.

    Science.gov (United States)

    Young, John K; Heinbockel, Thomas; Gondré-Lewis, Marjorie C

    2013-12-01

    Recent research has determined that newborn neurons in the dentate gyrus of the hippocampus of the macaque are frequently adjacent to astrocytes immunoreactive for fatty acid binding protein-7 (FABP7). To investigate if a similar relationship between FABP7-positive (FABP7+) astrocytes and proliferating cells exists in the rodent brain, sections of brains from juvenile rats were stained by immunohistochemistry to demonstrate newborn cells (antibody to Ki67 protein) and FABP7+ astrocytes. In rat brains, FABP7+ astrocytes were particularly abundant in the dentate gyrus of the hippocampus and were frequently close to dividing cells immunoreactive for Ki67 protein. FABP7+ astrocytes were also present in the olfactory bulbs, arcuate nucleus of the hypothalamus, and in the dorsal medulla subjacent to the area postrema, sites where more modest numbers of newborn neurons can also be found. These data suggest that regional accumulations of FABP7+ astrocytes may represent reservoirs of cells having the potential for neurogenesis. Because FABP7+ astrocytes are particularly abundant in the hippocampus, and since the gene for FABP7 has been linked to Alzheimer's disease, age-related changes in FABP7+ astrocytes (mitochondrial degeneration) may be relevant to age-associated disorders of the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  17. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  18. Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes.

    Science.gov (United States)

    Hohnholt, Michaela C; Dringen, Ralf

    2013-12-01

    Astrocytes are considered key regulators of the iron metabolism of the brain. These cells are able to rapidly accumulate iron ions and various iron-containing compounds, store iron efficiently in ferritin and also export iron. The present short review summarizes our current knowledge of the molecular mechanisms involved in the handling of iron by astrocytes. Cultured astrocytes efficiently take up iron as ferrous or ferric iron ions or as haem by specific iron transport proteins in their cell membrane. In addition, astrocytes accumulate large amounts of iron oxide nanoparticles by endocytotic mechanisms. Despite the rapid accumulation of high amounts of iron from various iron-containing sources, the viability of astrocytes is hardly affected. A rather slow liberation of iron from accumulated haem or iron oxide nanoparticles as well as the strong up-regulation of the synthesis of the iron storage protein ferritin are likely to contribute to the high resistance of astrocytes to iron toxicity. The efficient uptake of extracellular iron by cultured astrocytes as well as their strong up-regulation of ferritin after iron exposure also suggests that brain astrocytes deal well with an excess of iron and protect the brain against iron-mediated toxicity.

  19. Role of Rho GTPase in astrocyte morphology and migratory response during in vitro wound healing

    NARCIS (Netherlands)

    Holtje, M.; Hoffmann, A.; Hofmann, F.; Mucke, C.; Grosse, G.; van Rooijen, N.; Kettenmann, H.; Just, I.; Ahnert-Hilger, G.

    2005-01-01

    Small Rho GTPases are key regulators of the cytoskeleton in a great variety of cells. Rho function mediates morphological changes as well as locomotor activity. Using astrocyte cultures established from neonatal mice we investigated the role of Rho in process formation during astrocyte stellation.

  20. Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking

    Science.gov (United States)

    Li, Dongdong; Hérault, Karine; Zylbersztejn, Kathleen; Lauterbach, Marcel A; Guillon, Marc; Oheim, Martin; Ropert, Nicole

    2015-01-01

    Key points Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca2+-independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. Abstract Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca2+-regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca2+-independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes. PMID:25864578

  1. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  2. Astrocytes cultured from specific brain regions differ in their expression of adrenergic binding sites.

    Science.gov (United States)

    Ernsberger, P; Iacovitti, L; Reis, D J

    1990-05-28

    We sought to characterize regional heterogeneity of astrocytes using adrenergic receptor sites as cellular markers. Primary cultures made from 6 regions of neonatal rat brain consisted almost exclusively of astrocytes. Membranes from astrocytes cultured 1-3 weeks were prepared for radioligand binding assays of beta- and alpha 2-adrenergic sites using the ligands [3H]dihydroalprenolol and [3H]p-aminoclonidine, respectively. Receptor expression was not affected by time in culture. Astrocytes from different brain regions varied up to 3-fold with respect to number but not affinity for both classes of adrenergic binding site with a rank order of cerebral cortex = superior colliculus greater than hippocampus = ventral midbrain greater than or equal to caudate nucleus greater than or equal to hypothalamus. Binding to beta- and alpha 2-adrenergic receptors was positively correlated across brain regions. Astrocytic receptor binding in each region did not correspond to total receptor levels assessed by quantitative autoradiography. We conclude that: (a) astrocytes are markedly heterogeneous between major brain regions with respect to expression of adrenergic binding sites; (b) regional variations in the density of adrenergic binding sites in brain reflect, in part, local specialization of astrocytes; and (c) a substantial proportion of the adrenergic binding sites in some brain regions may be on astrocytes.

  3. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system

    NARCIS (Netherlands)

    Hol, Elly M.; Pekny, Milos

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a

  4. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system

    NARCIS (Netherlands)

    Hol, E.M.; Pekny, M.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a

  5. Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance.

    Science.gov (United States)

    Reiner, David J; Mietlicki-Baase, Elizabeth G; McGrath, Lauren E; Zimmer, Derek J; Bence, Kendra K; Sousa, Gregory L; Konanur, Vaibhav R; Krawczyk, Joanna; Burk, David H; Kanoski, Scott E; Hermann, Gerlinda E; Rogers, Richard C; Hayes, Matthew R

    2016-03-23

    Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9-39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9-39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS

  6. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Kardassis, Dimitris [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete (Greece); Simionescu, Maya [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania)

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  7. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes.

    Science.gov (United States)

    Kondo, Takayuki; Funayama, Misato; Miyake, Michiyo; Tsukita, Kayoko; Era, Takumi; Osaka, Hitoshi; Ayaki, Takashi; Takahashi, Ryosuke; Inoue, Haruhisa

    2016-07-11

    Alexander disease is a fatal neurological illness characterized by white-matter degeneration and formation of Rosenthal fibers, which contain glial fibrillary acidic protein as astrocytic inclusion. Alexander disease is mainly caused by a gene mutation encoding glial fibrillary acidic protein, although the underlying pathomechanism remains unclear. We established induced pluripotent stem cells from Alexander disease patients, and differentiated induced pluripotent stem cells into astrocytes. Alexander disease patient astrocytes exhibited Rosenthal fiber-like structures, a key Alexander disease pathology, and increased inflammatory cytokine release compared to healthy control. These results suggested that Alexander disease astrocytes contribute to leukodystrophy and a variety of symptoms as an inflammatory source in the Alexander disease patient brain. Astrocytes, differentiated from induced pluripotent stem cells of Alexander disease, could be a cellular model for future translational medicine.

  8. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...... of the astrocyte marker proteins. The metabolic pattern of the cultures from 7-day-old animals of the labeled substrates was comparable to that seen previously in astrocyte cultures prepared from new-born mouse brain showing pronounced glycolytic and oxidative metabolism of glucose. Glutamate was metabolized both...... cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes....

  9. Astrocyte-neuron interactions: from experimental research-based models to translational medicine.

    Science.gov (United States)

    Linne, Marja-Leena; Jalonen, Tuula O

    2014-01-01

    In this chapter, we review the principal astrocyte functions and the interactions between neurons and astrocytes. We then address how the experimentally observed functions have been verified in computational models and review recent experimental literature on astrocyte-neuron interactions. Benefits of computational neuroscience work are highlighted through selected studies with neurons and astrocytes by analyzing the existing models qualitatively and assessing the relevance of these models to experimental data. Common strategies to mathematical modeling and computer simulation in neuroscience are summarized for the nontechnical reader. The astrocyte-neuron interactions are then further illustrated by examples of some neurological and neurodegenerative diseases, where the miscommunication between glia and neurons is found to be increasingly important. © 2014 Elsevier Inc. All rights reserved.

  10. Inhibitions of PKC and CaMK-II synergistically rescue ischemia-induced astrocytic dysfunction.

    Science.gov (United States)

    Liu, Zhan; Huang, Ying; Liu, Lina; Zhang, Li

    2017-09-14

    Ischemic neuronal death is presumably caused by glutamate-induced excitotoxicity, in which the increased glutamate release and impaired glutamate reuptake lead to glutamate accumulation. Mechanisms underlying the ischemic deficiency of astrocytic glutamate reuptake remain unclear, which we have studied by analyzing the effect of calmodulin-dependent protein kinase II (CaMK-II) and protein kinase C (PKC) inhibitions on astrocytic glutamate transporter during ischemia. Glutamate transporter current was recorded on the astrocytes in cortical slices. KN-62 (CaMK-II inhibitor) or chelerythrine (PKC inhibitor) partially reverses the ischemic deficiency of astrocytic glutamate transporter. A combined use of PKC and CaMK-II inhibitors synergistically reverses this deficiency. Thus, one of potential therapeutic strategies is to secure the ischemia-induced deficiency of astrocytic glutamate reuptake by inhibiting PKC and CaMK-II. Copyright © 2017. Published by Elsevier B.V.

  11. Astrocyte behavior and GFAP expression on Spirulina extract-incorporated PCL nanofiber.

    Science.gov (United States)

    Min, Seul Ki; Kim, Cho Rong; Jung, Sang Myung; Shin, Hwa Sung

    2013-12-01

    Nanomaterials are attractive for use in biological systems due to their ability to control the microenvironment of cells. Additionally, nanofibers can mimic fibrous characteristics of natural tissues. This study was conducted to assess astrocyte activity and infiltration behavior on Spirulina extract-embedded polycaprolactone (SP-PCL) nanofiber. Astrocytes moved along with the nanofiber, and developed an elongated and stellate shape, which is similar to those in the natural neural tissue. In addition, the expression of GFAP, a biomarker representing the activation of astrocytes, was gradually up-regulated with the increase of the concentration of Spirulina extract, indicating that Spirulina extract can control astrocyte activation. Overall, the results presented herein indicate that SP-PCL nanofiber could be used in astrocyte tissue engineering for neuronal regeneration. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  12. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease......, a process referred to as reactive astrogliosis/ astrocytosis. In addition, the review will discuss (3) the role of astrocytes as an abundant cellular source for immunoregulatory (cytokines) factors, and their fundamental roles in the type and extent of CNS immune and inflammatory responses. (4) Recent...

  13. Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: a fiery path to its destination.

    Science.gov (United States)

    Chauhan, Ashok; Khandkar, Mehrab

    2015-01-01

    Despite successful suppression of peripheral HIV-1 infection by combination antiretroviral therapy, immune activation by residual virus in the brain leads to HIV-associated neurocognitive disorders (HAND). In the brain, several types of cells, including microglia, perivascular macrophage, and astrocytes have been reported to be infected by HIV-1. Astrocytes, the most abundant cells in the brain, maintain homeostasis. The general consensus on HIV-1 infection in astrocytes is that it produces unproductive viral infection. HIV-1 enters astrocytes by pH-dependent endocytosis, leading to degradation of the virus in endosomes, but barely succeeds in infection. Here, we have discussed endocytosis-mediated HIV-1 entry and viral programming in astrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Norio Takata

    Full Text Available Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca(2+ concentration is important for astrocytes as Ca(2+ surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1 of the somatosensory cortex was different from layer 2/3 (L2/3 in spontaneous astrocytic Ca(2+ activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca(2+ activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca(2+ dynamics by investigating two distinct EEG states ("synchronized" vs. "de-synchronized" states. We found that astrocytes in L1 had nearly twice higher Ca(2+ activity than L2/3. Furthermore, Ca(2+ fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca(2+ activity. These results suggest that spontaneous astrocytic Ca(2+ surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity.

  15. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  16. Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes.

    Science.gov (United States)

    Huang, Hui-Ting; Liao, Chih-Kai; Chiu, Wen-Tai; Tzeng, Shun-Fen

    2017-05-01

    Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker-EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  18. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Anna P Miller

    Full Text Available Blast traumatic brain injury (bTBI affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low or 273 ± 23 kPa (high overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1, demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1 expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in

  19. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Directory of Open Access Journals (Sweden)

    Maurizio De Pittà

    2011-12-01

    Full Text Available Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression and/or increase (facilitation of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes

  20. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Science.gov (United States)

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity. © 2016 International Society for Neurochemistry.

  1. Altered microtubule dynamics in Mecp2-deficient astrocytes.

    Science.gov (United States)

    Nectoux, Juliette; Florian, Cedrick; Delepine, Chloe; Bahi-Buisson, Nadia; Khelfaoui, Malik; Reibel, Sophie; Chelly, Jamel; Bienvenu, Thierry

    2012-05-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the gene MECP2 encoding the methyl-CpG binding protein 2. This genetic disease affects predominantly girls and is characterized by a period of normal development that lasts for 8-18 months, followed by neurologic regression affecting both motor and mental abilities. Previous studies performed on brains from RTT subjects and Mecp2-deficient mice showed striking changes in neuronal maturation and dendritic arborization. Recently, we showed that expression of stathmin-like 2 (STMN2) was significantly reduced in fibroblasts from RTT patients, and similar results were obtained in the cerebellum of Mecp2-deficient mice. Because assembly and dynamics of microtubules are known to be modulated by STMN2, we studied microtubule dynamics in brain cells from Mecp2-deficient mice. We observed that Mecp2 deficiency affects microtubule dynamics in astrocytes from Mecp2-deficient mice. Our data reinforce the fact that the loss of Mecp2 in astrocytes may influence the onset and progression of RTT. These results imply that Mecp2 has a stabilizing role in microtubule dynamics and that Mecp2 deficiency, which is associated with STMN2 down-regulation, could lead to impaired microtubule stability, hence explaining the dendritic abnormalities observed in RTT brains. Copyright © 2012 Wiley Periodicals, Inc.

  2. HIV-1, Methamphetamine and Astrocytes at Neuroinflammatory crossroads

    Directory of Open Access Journals (Sweden)

    Kathleen eBorgmann

    2015-10-01

    Full Text Available As a popular psychostimulant, methamphetamine (METH use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10-15% of human immunodeficiency virus-1 (HIV-1 patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND through direct and indirect mechanisms. Repetitive METH use decreases adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression towards AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte number and activity, cytokine signaling, phagocytic function, and CNS infiltration through the blood brain barrier. Further, METH triggers the neuronal dopamine reward pathway and leads to altered neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation. Neuroinflammation modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress and excitotoxicity. Pathologically, glial activation is a hallmark of both HIV-1 and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, neuroinflammation and HAND are carefully reviewed. Interventions targeting astrocytes in HAND and METH are presented as potential novel therapeutic approaches.

  3. Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice.

    Science.gov (United States)

    Miyazaki, Ikuko; Murakami, Shinki; Torigoe, Nao; Kitamura, Yoshihisa; Asanuma, Masato

    2016-01-01

    Astrocytes but not neurons express cystine/glutamate exchange transporter (xCT), which takes up cystine, and consequently supplies the substrate for GSH synthesis in neurons. It is recognized that GSH synthesis in neurons is dependent on the expression of xCT in astrocytes. Previous studies reported that levetiracetam (LEV), an anti-epileptic drug, increased xCT expression in vivo. The purpose of this study was to examine neuroprotective effects of LEV in parkinsonian models and demonstrate xCT in astrocytes as a target of neuroprotection against dopaminergic neurodegeneration. We identified striatal astrocytes cultured with LEV showed significant increase in xCT expression and GSH levels. Preincubation of primary cultured mesencephalic dopamine neurons with conditioned media from LEV-treated astrocytes protected against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. These protective effects were canceled by xCT inhibitor. Furthermore, reduction of nigrostriatal dopaminergic neurons in 6-OHDA-lesioned parkinsonian mice was significantly abrogated by repeated injections of LEV. Treatment with LEV significantly increased the expression of xCT in striatal astrocytes in the hemi-parkinsonian mice. In conclusion, LEV exerts neuroprotective effects against neurodegeneration via up-regulation of xCT and GSH in astrocytes. Thus, xCT in astrocytes could be a potential target in novel neuroprotective approaches to prevent degeneration of dopaminergic neurons. Glutathione (GSH) is the most potent intrinsic antioxidant. Since extracellular cysteine is readily oxidized to form cystine, cystine transport mechanisms are essential to provide cells with cysteine. Cystine uptake is mediated by cystine/glutamate exchange transporter (xCT), expressed primarily on astrocytes, but not on neurons. Astrocytes take up cystine via xCT and reduce it to cysteine to supply cysteine, the substrate for GSH synthesis in neurons. This study demonstrated that levetiracetam (LEV), an anti

  4. Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson's disease.

    Science.gov (United States)

    Chen, Liang-Wei; Yung, Kin-Lam; Chan, Ying-Shing

    2005-11-01

    Parkinson' disease (PD) is a most common and debilitating degenerative disease resulted from massive loss of dopamine neurons in the substantia nigra pars compacta, which is characterized by severe motor symptoms of tremor, bradykinesia, rigidity and postural instability. Protection of nigral dopamine neurons from progressive degenerative death and cell replacement of novel dopamine neurons are hopeful strategies against PD in humans. The reactive astrocytes or functional activation of astrocytes abundantly occurred in brain insults including trauma, ischemia, and 6-OHDA or MPTP-treated PD animal models. Although they were traditionally assumed to impede neuronal regeneration by forming glial scars, growing evidence has indicated that reactive astrocytes do offer crucial benefits in functional recovery of brain injuries. The reactive astrocytes can produce various neurotrophic factors for neuron survival, synthesize extracellular substrates for axonal outgrowth and synaptogenesis, act as scavengers for free radical and excess glutamate, and promote neurogenesis of neural progenitor cells in the adult brains. We thereafter hypothesize that reactive astrocytes may also play important roles in the protection of nigral dopamine neurons or transplanted dopamine cells through their neurotrophic functions and active interaction with dopamine neurons or neural progenitor cells. Future approaches deserve to target on neurotrophic functions of reactive astrocytes in the basal ganglia and interventions to facilitate survival and axonal regeneration of dopamine neurons or differentiation of dopamine progenitor cells. Novel pharmaceutical and cell replacement strategies will hopefully be developed by potential manipulation of reactive astrocytes in the basal ganglia in prevention and treatment of Parkinson's disease.

  5. Central role of maladapted astrocytic plasticity in ischemic brain edema formation

    Directory of Open Access Journals (Sweden)

    Yu-Feng eWang

    2016-05-01

    Full Text Available Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the ensuing reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas; the two processes are interactive closely under the driving of maladapted astrocytic plasticity. The astrocytic plasticity includes both morphologic and functional plasticity. The former involves a reactive gliosis and the ensuing glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier. The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein and water channel protein aquaporin 4 to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the blood-brain barrier. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the blood-brain barrier, but also lead to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  6. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  7. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes

    Directory of Open Access Journals (Sweden)

    Fernanda Hansen

    2017-01-01

    Full Text Available The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG, a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  8. Binaural blood flow control by astrocytes: listening to synapses and the vasculature.

    Science.gov (United States)

    Mishra, Anusha

    2017-03-15

    Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+ -dependent signalling pathways such as K+ release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Electrophysiology and pharmacology of tandem domain potassium channel TREK-1 related BDNF synthesis in rat astrocytes.

    Science.gov (United States)

    Lu, Li; Wang, Weiping; Peng, Ying; Li, Jiang; Wang, Ling; Wang, Xiaoliang

    2014-04-01

    In the present study, the functional properties and pharmacology of two-pore domain potassium channel (K2P) TREK-1 in primary cultured rat brain astrocytes were investigated. Western blot, patch clamping techniques, and ELISA were used to detect the distribution and function of TREK-1 as well as the expression of brain-derived neurotrophic factor (BDNF) on the primary cultured astrocytes. It was shown that TREK-1 protein expressed in astrocytes was 2.4-fold higher than it was expressed in microglia. Single channel recording via patch clamping showed that the TREK-1 outward currents in astrocytes could be activated by arachidonic acid (AA) or chloroform with the conductance of 113 ± 14 and 120 ± 13 pS, respectively. The current was also sensitive to mechanical stretch and intracellular acidification. Negative pressure (-30 cm H2O) and acidification of intracellular solution (pH 6.8 or 6.3) both enhanced TREK-1 channel open probability significantly. Further pharmacological studies showed that TREK-1 antagonist penfluridol inhibited AA-induced currents, and both penfluridol and methionine (TREK-1 blockers) significantly increased BDNF level in astrocytes by 50 %. These results indicated that TREK-1 channel current was a major component of K2P currents in astrocytes. TREK-1 channels might play important roles in regulating the function of astrocytes and might be used as a drug target for neuroprotection.

  10. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors

    Directory of Open Access Journals (Sweden)

    Nicolas eMerienne

    2013-07-01

    Full Text Available Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during CNS development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.

  11. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

    Science.gov (United States)

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  12. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yue Wang

    Full Text Available The blood-brain barrier (BBB is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Interleukin-1β (IL-1β, a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.

  13. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  14. Bi-directional astrocytic regulation of neuronal activity within a network

    Science.gov (United States)

    Gordleeva, S. Yu; Stasenko, S. V.; Semyanov, A. V.; Dityatev, A. E.; Kazantsev, V. B.

    2012-01-01

    The concept of a tripartite synapse holds that astrocytes can affect both the pre- and post-synaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin–Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs) obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the PSCs. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them. PMID:23129997

  15. Bi-directionally protective communication between neurons and astrocytes under ischemia

    Directory of Open Access Journals (Sweden)

    Xiao-Mei Wu

    2017-10-01

    Full Text Available The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.

  16. Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature.

    Directory of Open Access Journals (Sweden)

    Andrew Scott

    2010-07-01

    Full Text Available Vascular endothelial growth factor (VEGF plays a critical role in normal development as well as retinal vasculature disease. During retinal vascularization, VEGF is most strongly expressed by not yet vascularized retinal astrocytes, but also by retinal astrocytes within the developing vascular plexus, suggesting a role for retinal astrocyte-derived VEGF in angiogenesis and vessel network maturation. To test the role of astrocyte-derived VEGF, we used Cre-lox technology in mice to delete VEGF in retinal astrocytes during development. Surprisingly, this only had a minor impact on retinal vasculature development, with only small decreases in plexus spreading, endothelial cell proliferation and survival observed. In contrast, astrocyte VEGF deletion had more pronounced effects on hyperoxia-induced vaso-obliteration and led to the regression of smooth muscle cell-coated radial arteries and veins, which are usually resistant to the vessel-collapsing effects of hyperoxia. These results suggest that VEGF production from retinal astrocytes is relatively dispensable during development, but performs vessel stabilizing functions in the retinal vasculature and might be relevant for retinopathy of prematurity in humans.

  17. Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research

    Directory of Open Access Journals (Sweden)

    Abinaya Chandrasekaran

    2016-09-01

    Full Text Available Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system (CNS diseases, such as Amyotrophic lateral sclerosis, Alzheimer’s disease or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.

  18. Different Astrocytic Activation between Adult Gekko japonicus and Rats during Wound Healing In Vitro.

    Directory of Open Access Journals (Sweden)

    Yun Gu

    Full Text Available Glial scar formation is a major obstacle to regeneration after spinal cord injury. Moreover, it has been shown that the astrocytic response to injury differs between species. Gekko japonicas is a type of reptile and it shows differential glial activation compared to that of rats. The purpose of the present study was to compare the proliferation and migration of astrocytes in the spinal cords of geckos and rats after injury in vitro. Spinal cord homogenate stimulation and scratch wound models were used to induce astrocytic activation in adult and embryonic rats, as well as in adult geckos. Our results indicated that astrocytes from the adult rat were likely activated by mechanical stimulation, even though they showed lower proliferation abilities than the astrocytes from the gecko under normal conditions. Furthermore, a transcriptome analysis revealed that the differentially expressed genes in astrocytes from adult rats and those from geckos were enriched in pathways involved in proliferation and the response to stimuli. This implies that intrinsic discrepancies in gene expression patterns might contribute to the differential activation of astrocytes between species.

  19. TNF-α promotes extracellular vesicle release in mouse astrocytes through glutaminase.

    Science.gov (United States)

    Wang, Kaizhe; Ye, Ling; Lu, Hongfang; Chen, Huili; Zhang, Yanyan; Huang, Yunlong; Zheng, Jialin C

    2017-04-20

    Extracellular vesicles (EVs) are membrane-contained vesicles shed from cells. EVs contain proteins, lipids, and nucleotides, all of which play important roles in intercellular communication. The release of EVs is known to increase during neuroinflammation. Glutaminase, a mitochondrial enzyme that converts glutamine to glutamate, has been implicated in the biogenesis of EVs. We have previously demonstrated that TNF-α promotes glutaminase expression in neurons. However, the expression and the functionality of glutaminase in astrocytes during neuroinflammation remain unknown. We posit that TNF-α can promote the release of EVs in astrocytes through upregulation of glutaminase expression. Release of EVs, which was demonstrated by electron microscopy, nanoparticle tracking analysis (NTA), and Western Blot, increased in mouse astrocytes when treated with TNF-α. Furthermore, TNF-α treatment significantly upregulated protein levels of glutaminase and increased the production of glutamate, suggesting that glutaminase activity is increased after TNF-α treatment. Interestingly, pretreatment with a glutaminase inhibitor blocked TNF-α-mediated generation of reactive oxygen species in astrocytes, which indicates that glutaminase activity contributes to stress in astrocytes during neuroinflammation. TNF-α-mediated increased release of EVs can be blocked by either the glutaminase inhibitor, antioxidant N-acetyl-L-cysteine, or genetic knockout of glutaminase, suggesting that glutaminase plays an important role in astrocyte EV release during neuroinflammation. These findings suggest that glutaminase is an important metabolic factor controlling EV release from astrocytes during neuroinflammation.

  20. Studying subcellular detail in fixed astrocytes: dissociation of morphologically intact glial cells (DIMIGs).

    Science.gov (United States)

    Haseleu, Julia; Anlauf, Enrico; Blaess, Sandra; Endl, Elmar; Derouiche, Amin

    2013-01-01

    Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs), since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a time-consuming procedure. Even in high resolution light microscopy, antigen localization is difficult to detect due to the small dimensions of these processes, and overlay from antigen in surrounding non-glial cells. Yet, PAPs frequently display antigens related to motility and glia-synaptic interaction. Here, we describe the dissociation of morphologically intact glial cells (DIMIGs), permitting unambiguous antigen localization using epifluorescence microscopy. Astrocytes are dissociated from juvenile (p13-15) mouse cortex by applying papain treatment and cytospin centrifugation to attach the cells to a slide. The cells and their complete processes including the PAPs is thus projected in 2D. The entire procedure takes 2.5-3 h. We show by morphometry that the diameter of DIMIGs, including the PAPs is similar to that of astrocytes in situ. In contrast to cell culture, results derived from this procedure allow for direct conclusions relating to (1) the presence of an antigen in cortical astrocytes, (2) subcellular antigen distribution, in particular when localized in the PAPs. The detailed resolution is shown in an exemplary study of the organization of the astrocytic cytoskeleton components actin, ezrin, tubulin, and GFAP. The distribution of connexin 43 in relation to a single astrocyte's process tree is also investigated.

  1. Fast Ca2+ responses in astrocyte end-feet and neurovascular coupling in mice

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Jessen, Sanne Barsballe; Lønstrup, Micael

    2018-01-01

    implications of fast Ca2+ changes in astrocytes versus neurons. Here, we used two-photon microscopy to assess Ca2+ changes in neuropil, astrocyte processes, and astrocyte end-feet in response to whisker pad stimulation in mice. We also developed a pixel-based analysis to improve the detection of rapid Ca2......+ signals in the subcellular compartments of astrocytes. Fast Ca2+ responses were observed using both chemical and genetically encoded Ca2+ indicators in astrocyte end-feet prior to dilation of arterioles and capillaries. A low dose of the NMDA receptor antagonist (5R,10s)-(+)-5-methyl-10,11-dihydro-5H......-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) attenuated fast Ca2+ responses in the neuropil and astrocyte processes, but not in astrocyte end-feet, and the evoked CBF response was preserved. In addition, a low dose of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist for the extrasynaptic...

  2. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifcally regulated in cortical astrocytes following sleep deprivation in mice

    KAUST Repository

    Petit, Jean Marie

    2013-10-01

    Study Objectives: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifcally in astrocytes following sleep deprivation. Astrocytes were purifed by fuorescence-activated cell sorting from transgenic mice expressing the green fuorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. Design: 6-hour instrumental sleep deprivation (TSD). Setting: Animal sleep research laboratory. Participants: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Interventions: Basal sleep recordings and sleep deprivation achieved using a modifed cage where animals were gently forced to move. Measurements and Results: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, a-2-Na/K pump, Glt1, and Ldha mRNAs were signifcantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not signifcant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. Conclusions: This study shows that TSD induces the expression of genes associated with ANLS specifcally in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  3. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice.

    Science.gov (United States)

    Petit, Jean-Marie; Gyger, Joël; Burlet-Godinot, Sophie; Fiumelli, Hubert; Martin, Jean-Luc; Magistretti, Pierre J

    2013-10-01

    There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. 6-hour instrumental sleep deprivation (TSD). Animal sleep research laboratory. Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  4. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms.

    Science.gov (United States)

    Alberini, Cristina M; Cruz, Emmanuel; Descalzi, Giannina; Bessières, Benjamin; Gao, Virginia

    2017-10-27

    Memory, the ability to retain learned information, is necessary for survival. Thus far, molecular and cellular investigations of memory formation and storage have mainly focused on neuronal mechanisms. In addition to neurons, however, the brain comprises other types of cells and systems, including glia and vasculature. Accordingly, recent experimental work has begun to ask questions about the roles of non-neuronal cells in memory formation. These studies provide evidence that all types of glial cells (astrocytes, oligodendrocytes, and microglia) make important contributions to the processing of encoded information and storing memories. In this review, we summarize and discuss recent findings on the critical role of astrocytes as providers of energy for the long-lasting neuronal changes that are necessary for long-term memory formation. We focus on three main findings: first, the role of glucose metabolism and the learning- and activity-dependent metabolic coupling between astrocytes and neurons in the service of long-term memory formation; second, the role of astrocytic glucose metabolism in arousal, a state that contributes to the formation of very long-lasting and detailed memories; and finally, in light of the high energy demands of the brain during early development, we will discuss the possible role of astrocytic and neuronal glucose metabolisms in the formation of early-life memories. We conclude by proposing future directions and discussing the implications of these findings for brain health and disease. Astrocyte glycogenolysis and lactate play a critical role in memory formation. Emotionally salient experiences form strong memories by recruiting astrocytic β2 adrenergic receptors and astrocyte-generated lactate. Glycogenolysis and astrocyte-neuron metabolic coupling may also play critical roles in memory formation during development, when the energy requirements of brain metabolism are at their peak. © 2017 Wiley Periodicals, Inc.

  5. Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury.

    Science.gov (United States)

    Liu, Xue; Tian, Fengfeng; Wang, Shiquan; Wang, Feng; Xiong, Lize

    2017-11-10

    The role of autophagy varies with the type of acute brain injury. In general, autophagy mediates a clear neuroprotective effect in intoxication caused by various psychoactive agents, subarachnoid hemorrhage and spinal cord injury. In contrast, autophagic cell death has also been reported to actively contribute to neuronal loss in neonatal hypoxic ischemic encephalopathy. However, it still remains to be determined whether autophagy pays a cytoprotective or a cytotoxic role in stroke. Previous studies focused primarily on the role of neurons rather than the role of astrocytes in brain injury. Thus, it is unknown whether modulating the autophagy flux of astrocytes contributes to improving neuronal survival after stroke. In the current study, we investigated the time course of autophagy flux in vitro using co-cultured astrocytes and neurons exposed to oxygen-glucose deprivation/re-oxygenation which mimicked the process of ischemia/reperfusion. Autophagy flux of astrocytes was regulated by treatment with the autophagy inducer rapamycin, autophagy inhibitor 3-methyladenine, and the transduction of small interfering RNA against autophagy-related gene 5. In addition, AAV-GFAP-ATG7 was used to induce astrocyte autophagy flux in mice subjected to focal cerebral ischemia. We found that induction of autophagy flux of astrocytes in vitro enhanced the viability of neurons and decreased neuronal apoptosis. Furthermore, induction of astrocyte autophagy flux in mice improved neurological outcomes. In contrast, inhibition of autophagy flux in astrocytes decreased the viability of neurons and increased neuronal apoptosis. These results suggest that upregulation of autophagy flux in astrocytes may contribute to endogenous neuroprotective and neurorecovery mechanisms after stroke.

  6. Targeting Astrocytes for Treating Neurological Disorders: Carbon Monoxide and Noradrenaline-Induced Increase in Lactate.

    Science.gov (United States)

    Horvat, Anemari; Vardjan, Nina; Zorec, Robert

    2017-06-22

    There are at least three reasons why brain astrocytes represent a new target for treating neurological disorders. First, although the human neocortex represents over 80% of brain mass, neurons are outnumbered by non-neuronal cells, including astrocytes, a neuroglial cell type. Second, as in neurons, vesicle-based release of transmitters is present in astrocytes, however with much slower kinetics than in neurons. Third, astrocytes contain glycogen, which can be transformed to L-lactate in glycolysis. L-lactate is considered to be a fuel and a signalling molecule involved in cognition and neuroprotection. The mechanisms of neuroprotection are unclear but may be linked to carbon monoxide, a product of the heme oxygenase, an evolutionarily conserved cellular cytoprotectant. Increased levels of local carbon monoxide arising from heme oxygenase activity may increase L-lactate, but direct measurements of cytosolic L-lactate are lacking. A fluorescence resonance energy transfer-based nanosensor selective for L-lactate was used to monitor cytosolic levels of L-lactate while cultured astrocytes were exposed to carbon monoxide. The results revealed that in astrocytes exposed to carbon monoxide there is no significant increase in L-lactate, however, when noradrenaline, a potent glycogenolytic agent, is applied, cytosolic levels of L-lactate are increased, but strongly attenuated in astrocytes pretreated with carbon monoxide. These first measurements of carbon monoxide-modulated L-lactate levels in astrocytes provide evidence that the L-lactate and heme oxygenase neuroprotective systems may interact. In conclusion, not only the abundance of astrocytes but their signalling capacity using vesicles and metabolites, such as L-lactate, are valid targets for neurological disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Probenecid protects against oxygen-glucose deprivation injury in primary astrocytes by regulating inflammasome activity.

    Science.gov (United States)

    Jian, Zhihong; Ding, Shuai; Deng, Hongping; Wang, Jun; Yi, Wei; Wang, Lei; Zhu, Shengmei; Gu, Lijuan; Xiong, Xiaoxing

    2016-07-15

    Inflammation is extremely important in the development of cerebral ischemia/reperfusion injury. Pannexin 1 (Panx1) channel has been reported to activate inflammasome in astrocytes and be involved in ischemic injury, but this damage effect is reversed by a Panx1 inhibitor-probenecid. However, the mechanism of probenecid protects against cerebral ischemia/reperfusion injury remains unclear. In present study, we hypothesized that probenecid protected astrocytes from ischemia/reperfusion injury in vitro by modulating the inflammasome. Primary cultured neocortical astrocytes were exposed to oxygen-glucose deprivation/reoxygenation (OGD/RX) and probenecid was added in this model. Viability and nuclear morphology of astrocytes, production of reactive oxygen species (ROS), protein expressions of NLRP3 (NOD-like receptor protein 3), caspase-1, and AQP4 (Aquaporins 4), as well as release of cellular HMGB1 and IL-1β were observed to evaluate the effect and mechanisms of probenecid on OGD/reoxygenated astrocytes. Probenecid did not affect cell viability at concentrations of 1, 5, 10, and 100μM but induced significant astrocytes death at 500μM. Probenecid inhibited cell death and ROS generation in astrocytes subjected to 6h of OGD and 24h of reoxygenation. The expression levels of NLRP3, caspase-1, and AQP4 increased after 6h of OGD, but probenecid treatment attenuated this increase. Moreover, the extracellular release of IL-1β and HMGB1 from OGD/reoxygenated astrocytes increased significantly. However, treatment by probenecid resulted in substantial reduction of these proteins levels in extracellular space. In conclusion, The Panx1 inhibitor, probenecid, which was administered before OGD, provided protective effects on the OGD/reoxygenation model of cultured astrocytes by modulating inflammasome activity and downregulating AQP4 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    Science.gov (United States)

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  9. Abundance of Flt3 and its ligand in astrocytic tumors

    Directory of Open Access Journals (Sweden)

    Eßbach C

    2013-05-01

    Full Text Available C Eßbach,1 N Andrae,1 D Pachow,1 J-P Warnke,2 A Wilisch-Neumann,1 E Kirches,1 C Mawrin11Department of Neuropathology, Otto-von-Guericke University, Magdeburg, 2Department of Neurosurgery, Paracelsus Hospital, Zwickau, GermanyBackground: Molecular targeted therapies for astrocytic tumors are the subject of growing research interest, due to the limited response of these tumors, especially glioblastoma multiforme, to conventional chemotherapeutic regimens. Several of these approaches exploit the inhibition of receptor tyrosine kinases. To date, it has not been elucidated if fms-like tyrosine kinase-3 (Flt3 and its natural ligand (Flt3L are expressed in astrocytic tumors, although some of the clinically intended small-molecule receptor tyrosine kinase inhibitors affect Flt3, while others do not. More importantly, the recent proof of principle for successful stimulation of the immune system against gliomas in preclinical models via local Flt3L application requires elucidation of this receptor tyrosine kinase pathway in these tumors in more detail. This therapy is based on recruitment of Flt3-positive dendritic cells, but may be corroborated by activity of this signaling pathway in glioma cells.Methods: Receptor and ligand expression was analyzed by real-time polymerase chain reaction in 31 astrocytic tumors (six diffuse and 11 anaplastic astrocytomas, 14 glioblastomas derived from patients of both genders and in glioblastoma cell lines. The two most common activating mutations of the Flt3 gene, ie, internal tandem duplication and D835 point mutation, were assessed by specific polymerase chain reaction.Results: A relatively high abundance of Flt3L mRNA (4%–6% of the reference, β2 microglobulin could be demonstrated in all tumor samples. Flt3 expression could generally be demonstrated by 40 specific polymerase chain reaction cycles and gel electrophoresis in 87% of the tumors, including all grades, although the small quantities of the receptor did

  10. Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes

    Directory of Open Access Journals (Sweden)

    Barbara eDi Benedetto

    2016-02-01

    Full Text Available Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD. Recently, a significant reduction in the coverage of blood vessels (BVs by aquaporin-4 (AQP-4-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its progress. Antidepressant drugs (ADs regulate the expression of several proteins, including astrocyte-specific ones. Thus, they may target AQP-4 to induce morphological changes in astrocytes and restore their proper shape or relocate AQP-4 to endfeet. Using an animal model of depression, rats selectively bred for high anxiety-like behavior (HAB, we confirmed a reduced coverage of BVs in the adult PFC by AQP-4-immunoreactive (AQP-4-IR astrocyte processes with respect to nonselected Wistar rats (NAB, thereby validating it for our study. A further evaluation of the morphology of astrocyte in brain slices (ex vivo and in vitro using an antibody against the astrocyte-specific cytoskeletal protein glial fibrillary acidic protein (GFAP revealed that HAB astrocytes extended less processes than NAB cells. Furthermore, short-term drug treatment in vitro with the AD fluoxetine (FLX was sufficient to increase the plasticity of astrocyte processes, enhancing their number in NAB-derived cells and recovering their basal number in HAB-derived cells. This enhanced FLX-dependent plasticity occurred, however, only in the presence of intact AQP-4, as demonstrated by the lack of effect after the downregulation of AQP-4 with RNAi in both NAB and HAB cells. Nonetheless, a similar short-term treatment did neither modulate the coverage of BVs with AQP-4-positive astrocyte endfeet in NAB nor in HAB rats, although dosage and time of treatment were sufficient to fully recover GFAP expression

  11. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie

    2017-01-01

    We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release...... look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal...... and mechanistic roles of astrocytes in complex behaviors within a very near future....

  12. Nanoscale Properties of Neural Cell Prosthetic and Astrocyte Response

    Science.gov (United States)

    Flowers, D. A.; Ayres, V. M.; Delgado-Rivera, R.; Ahmed, I.; Meiners, S. A.

    2009-03-01

    Preliminary data from in-vivo investigations (rat model) suggest that a nanofiber prosthetic device of fibroblast growth factor-2 (FGF-2)-modified nanofibers can correctly guide regenerating axons across an injury gap with aligned functional recovery. Scanning Probe Recognition Microscopy (SPRM) with auto-tracking of individual nanofibers is used for investigation of the key nanoscale properties of the nanofiber prosthetic device for central nervous system tissue engineering and repair. The key properties under SPRM investigation include nanofiber stiffness and surface roughness, nanofiber curvature, nanofiber mesh density and porosity, and growth factor presentation and distribution. Each of these factors has been demonstrated to have global effects on cell morphology, function, proliferation, morphogenesis, migration, and differentiation. The effect of FGF-2 modification on the key nanoscale properties is investigated. Results from the nanofiber prosthetic properties investigations are correlated with astrocyte response to unmodified and FGF-2 modified scaffolds, using 2D planar substrates as a control.

  13. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  14. Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nina Vardjan

    2017-02-01

    Full Text Available Although the central nervous system (CNS consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.

  15. DREAM-Dependent Activation of Astrocytes in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Larrodé, Pilar; Calvo, Ana Cristina; Moreno-Martínez, Laura; de la Torre, Miriam; Moreno-García, Leticia; Molina, Nora; Castiella, Tomás; Iñiguez, Cristina; Pascual, Luis Fernando; Mena, Francisco Javier Miana; Zaragoza, Pilar; Y Cajal, Santiago Ramón; Osta, Rosario

    2017-08-24

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.

  16. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  17. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    Science.gov (United States)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  18. Insensitivity of Astrocytes to Interleukin-10 Signaling following Peripheral Immune Challenge Results in Prolonged Microglial Activation in the Aged Brain

    Science.gov (United States)

    Norden, Diana M.; Trojanowski, Paige J.; Walker, Frederick R.; Godbout, Jonathan P.

    2017-01-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial IL-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher GFAP, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 Receptor-1 (IL-10R1). Following in vivo LPS immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and TGFβ and resolve microglial activation. Additionally, adult astrocytes reduced microglial activation when co-cultured ex vivo, while aged astrocytes did not. Consistent with the aging studies, IL-10RKO astrocytes did not augment TGFβ after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  19. Loss of Local Astrocyte Support Disrupts Action Potential Propagation and Glutamate Release Synchrony from Unmyelinated Hippocampal Axon Terminals In Vitro.

    Science.gov (United States)

    Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven

    2015-08-05

    Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal

  20. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C

    2012-01-01

    and in several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic...... immunohistochemistry revealed significantly less perivascular MCT2 immunoreactivity in the hippocampal formation in MTLE (n = 6) than in non-MTLE (n = 6) patients, and to a lesser degree in non-MTLE than in nonepilepsy patients (n = 4). Immunogold electron microscopy indicated that the loss of MCT2 protein occurred...... on perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE...

  1. Bystander attenuation of neuronal and astrocyte intercellular communication by murine cytomegalovirus infection of glia.

    Science.gov (United States)

    Ho, Winson S C; van den Pol, Anthony N

    2007-07-01

    Astrocytes are the first cells infected by murine cytomegalovirus (MCMV) in primary cultures of brain. These cells play key roles in intercellular signaling and neuronal development, and they modulate synaptic activity within the nervous system. Using ratiometric fura-2 digital calcium imaging of >8,000 neurons and glia, we found that MCMV-infected astrocytes showed an increase in intracellular basal calcium levels and an enhanced response to neuroactive substances, including glutamate and ATP, and to high potassium levels. Cultured neurons with no sign of MCMV infection showed attenuated synaptic signaling after infection of the underlying astrocyte substrate, and intercellular communication between astrocytes with no sign of infection was reduced by the presence of infected glia. These bystander effects would tend to cause further deterioration of cellular communication in the brain in addition to the problems caused by the loss of directly infected cells.

  2. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  3. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosung [Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, 1500 Highland Ave, Rm 713, Madison, WI 53705 (United States); Messing, Albee, E-mail: messing@waisman.wisc.edu [Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, 1500 Highland Ave, Rm 713, Madison, WI 53705 (United States)

    2009-04-15

    Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.

  4. Novel Spiking Neuron-Astrocyte Networks based on nonlinear transistor-like models of tripartite synapses.

    Science.gov (United States)

    Valenza, Gaetano; Tedesco, Luciano; Lanata, Antonio; De Rossi, Danilo; Scilingo, Enzo Pasquale

    2013-01-01

    In this paper a novel and efficient computational implementation of a Spiking Neuron-Astrocyte Network (SNAN) is reported. Neurons are modeled according to the Izhikevich formulation and the neuron-astrocyte interactions are intended as tripartite synapsis and modeled with the previously proposed nonlinear transistor-like model. Concerning the learning rules, the original spike-timing dependent plasticity is used for the neural part of the SNAN whereas an ad-hoc rule is proposed for the astrocyte part. SNAN performances are compared with a standard spiking neural network (SNN) and evaluated using the polychronization concept, i.e., number of co-existing groups that spontaneously generate patterns of polychronous activity. The astrocyte-neuron ratio is the biologically inspired value of 1.5. The proposed SNAN shows higher number of polychronous groups than SNN, remarkably achieved for the whole duration of simulation (24 hours).

  5. Role of astrocytes as neural stem cells in the adult brain

    Science.gov (United States)

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo

    2012-01-01

    In the adult mammalian brain, bona fide neural stem cells were discovered in the subventricular zone (SVZ), the largest neurogenic niche lining the striatal wall of the lateral ventricles of the brain. In this region resides a subpopulation of astrocytes that express the glial fibrillary acidic protein (GFAP), nestin and LeX. Astonishingly, these GFAP-expressing progenitors display stem-cell-like features both in vivo and in vitro. Throughout life SVZ astrocytes give rise to interneurons and oligodendrocyte precursors, which populate the olfactory bulb and the white matter, respectively. The role of the progenies of SVZ astrocytes has not been fully elucidated, but some evidence indicates that the new neurons play a role in olfactory discrimination, whereas oligodendrocytes contribute to myelinate white matter tracts. In this chapter, we describe the astrocytic nature of adult neural stem cells, their organization into the SVZ and some of their molecular and genetic characteristics. PMID:23619383

  6. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro.

    Science.gov (United States)

    Pang, Yi; Fan, Lir-Wan; Tien, Lu-Tai; Dai, Xuemei; Zheng, Baoying; Cai, Zhengwei; Lin, Rick C S; Bhatt, Abhay

    2013-09-01

    Oligodendrocyte (OL) development relies on many extracellular cues, most of which are secreted cytokines from neighboring neural cells. Although it is generally accepted that both astrocytes and microglia are beneficial for OL development, there is a lack of understanding regarding whether astrocytes and microglia play similar or distinct roles. The current study examined the effects of astrocytes and microglia on OL developmental phenotypes including cell survival, proliferation, differentiation, and myelination in vitro. Our data reveal that, although both astrocytes- and microglia-conditioned medium (ACDM and MCDM, respectively) protect OL progenitor cells (OPCs) against growth factor withdrawal-induced apoptosis, ACDM is significantly more effective than MCDM in supporting long-term OL survival. In contrast, MCDM preferentially promotes OL differentiation and myelination. These differential effects of ACDM and MCDM on OL development are highlighted by distinct pattern of cytokine/growth factors in the conditioned medium, which correlates with differentially activated intracellular signaling pathways in OPCs upon exposure to the conditioned medium.

  7. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Santos-Galindo María

    2011-07-01

    Full Text Available Abstract Background Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response. Methods Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10, TNFα, IL1β, Toll-like receptor 4 (TLR4, steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired t-test or by one-way analysis of variance followed by the Tukey post hoc test. Results The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to

  8. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes.

    Directory of Open Access Journals (Sweden)

    Lachlan R Gray

    Full Text Available HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS. Certain antiretroviral drugs (ARVs can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs abacavir (ABC, lamivudine (3TC, stavudine (d4T and zidovudine (ZDV, the non-NRTIs efavirenz (EFV, etravirine (ETR and nevirapine (NVP, and the integrase inhibitor raltegravir (RAL. Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G. All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF. Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens.

  9. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  10. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  11. Accumulation of amyloid-? by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons

    OpenAIRE

    Söllvander, Sofia; Nikitidou, Elisabeth; Brolin, Robin; Soderberg, Linda; Sehlin, Dag; Lannfelt, Lars; Erlandsson, Anna

    2016-01-01

    Background Despite the clear physical association between activated astrocytes and amyloid-? (A?) plaques, the importance of astrocytes and their therapeutic potential in Alzheimer?s disease remain elusive. Soluble A? aggregates, such as protofibrils, have been suggested to be responsible for the widespread neuronal cell death in Alzheimer?s disease, but the mechanisms behind this remain unclear. Moreover, ineffective degradation is of great interest when it comes to the development and progr...

  12. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex.

    Directory of Open Access Journals (Sweden)

    Ulyana Lalo

    2014-01-01

    Full Text Available Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca(2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca(2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using "sniff-cell" approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca(2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca(2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca(2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of

  13. Atomic force microscopy study of the arrangement and mechanical properties of astrocytic cytoskeleton in growth medium

    OpenAIRE

    Efremov, Yu.; Dzyubenko, E.; Bagrov, D.; Maksimov, G.; Shram, S.; Shaitan, K.

    2011-01-01

    Astrocytes are quite interesting to study because of their role in the development of various neurodegenerative disorders. The present work describes an examination of the arrangement and mechanical properties of cytoskeleton of living astrocytes using atomic force microscopy (AFM). The experiments were performed with an organotypic culture of dorsal root ganglia (DRG) obtained from a chicken embryo. The cells were cultivated on a gelatinous substrate and showed strong adhesion. AFM allows on...

  14. The contribution of astrocytes to the regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    Clare eHowarth

    2014-05-01

    Full Text Available In order to maintain normal brain function, it is critical that cerebral blood flow (CBF is matched to neuronal metabolic needs. Accordingly, blood flow is increased to areas where neurons are more active (a response termed functional hyperemia. The tight relationships between neuronal activation, glial cell activity, cerebral energy metabolism and the cerebral vasculature, known as neurometabolic and neurovascular coupling, underpin functional MRI (fMRI signals but are incompletely understood. As functional imaging techniques, particularly BOLD fMRI, become more widely used, their utility hinges on our ability to accurately and reliably interpret the findings. A growing body of data demonstrates that astrocytes can serve as a ‘bridge’, relaying information on the level of neural activity to blood vessels in order to coordinate oxygen and glucose delivery with the energy demands of the tissue. It is widely assumed that calcium-dependent release of vasoactive substances by astrocytes results in arteriole dilation and the increased blood flow which accompanies neuronal activity. However, the signaling molecules responsible for this communication between astrocytes and blood vessels are yet to be definitively confirmed. Indeed, there is controversy over whether activity-induced changes in astrocyte calcium are widespread and fast enough to elicit such functional hyperemia responses. In this review, I will summarise the evidence which has convincingly demonstrated that astrocytes are able to modify the diameter of cerebral arterioles. I will discuss the prevalence, presence and timing of stimulus-induced astrocyte calcium transients and describe the evidence for and against the role of calcium-dependent formation and release of vasoactive substances by astrocytes. I will also review alternative mechanisms of astrocyte-evoked changes in arteriole diameter and consider the questions which remain to be answered in this exciting area of research.

  15. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  16. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  17. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity.

    Science.gov (United States)

    Karus, Claudia; Mondragão, Miguel A; Ziemens, Daniel; Rose, Christine R

    2015-06-01

    Influx of sodium ions into active neurons is a highly energy-expensive process which must be strictly limited. Astrocytes could play an important role herein because they take up glutamate and potassium from the extracellular space, thereby dampening neuronal excitation. Here, we performed sodium imaging in mouse hippocampal slices combined with field potential and whole-cell patch-clamp recordings and measurement of extracellular potassium ([K(+)]o). Network activity was induced by Mg(2+)-free, bicuculline-containing saline, during which neurons showed recurring epileptiform bursting, accompanied by transient increases in [K(+)]o and astrocyte depolarizations. During bursts, neurons displayed sodium increases by up to 22 mM. Astrocyte sodium concentration increased by up to 8.5 mM, which could be followed by an undershoot below baseline. Network sodium oscillations were dependent on action potentials and activation of ionotropic glutamate receptors. Inhibition of glutamate uptake caused acceleration, followed by cessation of electrical activity, irreversible sodium increases, and swelling of neurons. The gliotoxin NaFAc (sodium-fluoroacetate) resulted in elevation of astrocyte sodium concentration and reduced glial uptake of glutamate and potassium uptake through Na(+) /K(+)-ATPase. Moreover, NaFAc extended epileptiform bursts, caused elevation of neuronal sodium, and dramatically prolonged accompanying sodium signals, most likely because of the decreased clearance of glutamate and potassium by astrocytes. Our experiments establish that recurrent neuronal bursting evokes sodium transients in neurons and astrocytes and confirm the essential role of glutamate transporters for network activity. They suggest that astrocytes restrict discharge duration and show that an intact astrocyte metabolism is critical for the neurons' capacity to recover from sodium loads during synchronized activity. © 2015 Wiley Periodicals, Inc.

  18. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype.

    Science.gov (United States)

    Salminen, Antero; Ojala, Johanna; Kaarniranta, Kai; Haapasalo, Annakaisa; Hiltunen, Mikko; Soininen, Hilkka

    2011-07-01

    Cellular stress increases progressively with aging in mammalian tissues. Chronic stress triggers several signaling cascades that can induce a condition called cellular senescence. Recent studies have demonstrated that senescent cells express a senescence-associated secretory phenotype (SASP). Emerging evidence indicates that the number of cells expressing biomarkers of cellular senescence increases in tissues with aging, which implies that cellular senescence is an important player in organismal aging. In the brain, the aging process is associated with degenerative changes, e.g. synaptic loss and white matter atrophy, which lead to progressive cognitive impairment. There is substantial evidence for the presence of oxidative, proteotoxic and metabolic stresses in aging brain. A low-level, chronic inflammatory process is also present in brain during aging. Astrocytes demonstrate age-related changes that resemble those of the SASP: (i) increased level of intermediate glial fibrillary acidic protein and vimentin filaments, (ii) increased expression of several cytokines and (iii) increased accumulation of proteotoxic aggregates. In addition, in vitro stress evokes a typical senescent phenotype in cultured astrocytes and, moreover, isolated astrocytes from aged brain display the proinflammatory phenotype. All of these observations indicate that astrocytes are capable of triggering the SASP and the astrocytes in aging brain display typical characteristics of cellular senescence. Bearing in mind the many functions of astrocytes, it is evident that the age-related senescence of astrocytes enhances the decline in functional capacity of the brain. We will review the astroglial changes occurring during aging and emphasize that senescent astrocytes can have an important role in age-related neuroinflammation and neuronal degeneration. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Studying subcellular detail in fixed astrocytes: Dissociation of morphologically intact glial cells (DIMIGs)

    OpenAIRE

    Julia eHaseleu; Enrico eAnlauf; Enrico eAnlauf; Sandra eBlaess; Elmar eEndl; Amin eDerouiche; Amin eDerouiche; Amin eDerouiche

    2013-01-01

    Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs), since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a time-consuming procedure. Even in high resolution light microscopy, antigen localization is difficult to detect due to the small dimensions of these processes, and overlay from a...

  20. Studying subcellular detail in fixed astrocytes: dissociation of morphologically intact glial cells (DIMIGs)

    OpenAIRE

    Haseleu, Julia; Anlauf, Enrico; Blaess, Sandra; Endl, Elmar; Derouiche, Amin

    2013-01-01

    Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs), since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a time-consuming procedure. Even in high resolution light microscopy, antigen localization is difficult to detect due to the small dimensions of these processes, and overlay from a...

  1. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space

    DEFF Research Database (Denmark)

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T

    2009-01-01

    Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astr......Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...

  2. The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes.

    Science.gov (United States)

    König, Hans-Georg; Coughlan, Karen S; Kinsella, Sinéad; Breen, Bridget A; Prehn, Jochen H M

    2014-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons in the spinal cord, brainstem and motor cortex. Mutations in the superoxide dismutase 1 (SOD1) gene represent a frequent genetic determinant and recapitulate a disease phenotype similar to ALS when expressed in mice. Previous studies using SOD1(G93A) transgenic mice have suggested a paracrine mechanism of neuronal loss, in which cytokines and other toxic factors released from astroglia or microglia trigger motoneuron degeneration. Several pro-inflammatory cytokines activate death receptors and may downstream from this activate the Bcl-2 family protein, Bid. We here sought to investigate the role of Bid in astrocyte activation and non-cell autonomous motoneuron degeneration. We found that spinal cord Bid protein levels increased significantly during disease progression in SOD1(G93A) mice. Subsequent experiments in vitro indicated that Bid was expressed at relatively low levels in motoneurons, but was enriched in astrocytes and microglia. Bid was strongly induced in astrocytes in response to pro-inflammatory cytokines or exposure to lipopolysaccharide. Experiments in bid-deficient astrocytes or astrocytes treated with a small molecule Bid inhibitor demonstrated that Bid was required for the efficient activation of transcription factor nuclear factor-κB in response to these pro-inflammatory stimuli. Finally, we found that conditioned medium from wild-type astrocytes, but not from bid-deficient astrocytes, was toxic when applied to primary motoneuron cultures. Collectively, our data demonstrate a new role for the Bcl-2 family protein Bid as a mediator of astrocyte activation during neuroinflammation, and suggest that Bid activation may contribute to non-cell autonomous motoneuron degeneration in ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Heterogeneity of astrocytes: from development to injury - single cell gene expression.

    Directory of Open Access Journals (Sweden)

    Vendula Rusnakova

    Full Text Available Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K(+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10-50 days of postnatal development (P10-P50. The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20 was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50. Within 14 days after ischemia (D3, D7, D14, additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3, transcriptionally active early reactive glia (mainly from D7 and permanent reactive glia (solely from D14. Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.

  4. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Regulation of Neuron-Astrocyte Metabolic Coupling across the Sleep-Wake Cycle

    KAUST Repository

    Petit, Jean-Marie

    2015-12-17

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust the energy production to the neuronal energy needs through different mechanisms grouped under the term “neurometabolic coupling” (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in firing rate such as during the sleep/wake transitions. Investigations on brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, glucose and lactate with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolites regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and neurometabolic coupling in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the “local and use dependent” sleep hypothesis.

  6. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease

    Science.gov (United States)

    Cabezas, Ricardo; Ávila, Marcos; Gonzalez, Janneth; El-Bachá, Ramon Santos; Báez, Eliana; García-Segura, Luis Miguel; Jurado Coronel, Juan Camilo; Capani, Francisco; Cardona-Gomez, Gloria Patricia; Barreto, George E.

    2014-01-01

    The blood–brain barrier (BBB) is a tightly regulated interface in the Central Nervous System (CNS) that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells (ECs), pericytes and astrocytes that create a neurovascular unit (NVU) with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson’s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the ECs and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson’s disease (PD) and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions. PMID:25136294

  7. Heterogeneity of Astrocytes: From Development to Injury – Single Cell Gene Expression

    Science.gov (United States)

    Rusnakova, Vendula; Honsa, Pavel; Dzamba, David; Ståhlberg, Anders; Kubista, Mikael; Anderova, Miroslava

    2013-01-01

    Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10–50 days of postnatal development (P10–P50). The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20) was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50). Within 14 days after ischemia (D3, D7, D14), additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3), transcriptionally active early reactive glia (mainly from D7) and permanent reactive glia (solely from D14). Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers. PMID:23940528

  8. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  9. Nanosecond UV lasers stimulate transient Ca2+ elevations in human hNT astrocytes

    Science.gov (United States)

    Raos, B. J.; Graham, E. S.; Unsworth, C. P.

    2017-06-01

    Objective. Astrocytes respond to various stimuli resulting in intracellular Ca2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca2+ signals in vivo. Approach. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca2+ transients in human hNT astrocytes. Main results. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca2+. These Ca2+ transients then propagate to adjacent astrocytes as intercellular Ca2+ waves. Significance. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  10. Nanosecond UV lasers stimulate transient Ca(2+) elevations in human hNT astrocytes.

    Science.gov (United States)

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca(2+) signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca(2+) signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca(2+) transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca(2+). These Ca(2+) transients then propagate to adjacent astrocytes as intercellular Ca(2+) waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca(2+) dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  11. Studying subcellular detail in fixed astrocytes: Dissociation of morphologically intact glial cells (DIMIGs

    Directory of Open Access Journals (Sweden)

    Julia eHaseleu

    2013-05-01

    Full Text Available Studying the distribution of astrocytic antigens is particularly hard when they are localized in their fine, peripheral astrocyte processes (PAPs, since these processes often have a diameter comparable to vesicles and small organelles. The most appropriate technique is immunoelectron microscopy, which is, however, a time-consuming procedure. Even in high resolution light microscopy, antigen localization is difficult to detect due to the small dimensions of these processes, and overlay from antigen in surrounding non-glial cells. Yet, PAPs frequently display antigens related to motility and glia-synaptic interaction. Here, we describe the dissociation of morphologically intact glial cells (DIMIGs, permitting unambiguous antigen localization using epifluorescence microscopy. Astrocytes are dissociated from juvenile (p13-15 mouse cortex by applying papain treatment and cytospin centrifugation to attach the cells to a slide. The cells and their complete processes including the PAPs is thus projected in 2D. The entire procedure takes 2½-3 hours. We show by morphometry that the diameter of DIMIGs, including the PAPs is similar to that of astrocytes in situ. In contrast to cell culture, results derived from this procedure allow for direct conclusions relating to (i the presence of an antigen in cortical astrocytes, (ii subcellular antigen distribution, in particular when localized in the PAPs. The detailed resolution is shown in an exemplary study of the organization of the astrocytic cytoskeleton components actin, ezrin, tubulin, and GFAP. The distribution of connexin 43 in relation to a single astrocyte’s process tree is also investigated.

  12. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection.

    Science.gov (United States)

    Ovanesov, Mikhail V; Ayhan, Yavuz; Wolbert, Candie; Moldovan, Krisztina; Sauder, Christian; Pletnikov, Mikhail V

    2008-11-11

    Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  13. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection

    Directory of Open Access Journals (Sweden)

    Sauder Christian

    2008-11-01

    Full Text Available Abstract Neonatal Borna disease virus (BDV infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  14. Astrocyte reactivity after brain injury—: The role of galectins 1 and 3

    Science.gov (United States)

    Sirko, Swetlana; Irmler, Martin; Gascón, Sergio; Bek, Sarah; Schneider, Sarah; Dimou, Leda; Obermann, Jara; De Souza Paiva, Daisylea; Poirier, Francoise; Beckers, Johannes; Hauck, Stefanie M.; Barde, Yves‐Alain

    2015-01-01

    Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins—Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere‐forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes. GLIA 2015;63:2340–2361 PMID:26250529

  15. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3.

    Science.gov (United States)

    Sirko, Swetlana; Irmler, Martin; Gascón, Sergio; Bek, Sarah; Schneider, Sarah; Dimou, Leda; Obermann, Jara; De Souza Paiva, Daisylea; Poirier, Francoise; Beckers, Johannes; Hauck, Stefanie M; Barde, Yves-Alain; Götz, Magdalena

    2015-12-01

    Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes. © 2015 The Authors. Glia Published by Wiley Periodicals, Inc.

  16. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Beaulé

    2009-10-01

    Full Text Available Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian.We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice.We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  17. Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Muzikansky, Alona; Gómez-Isla, Teresa; Growdon, John H.; Betensky, Rebecca A.; Frosch, Matthew P.; Hyman, Bradley T.

    2013-01-01

    While it is clear that astrocytes and microglia cluster around dense-core amyloid plaques in Alzheimer disease (AD), whether they are primarily attracted to amyloid deposits or are just reacting to plaque-associated neuritic damage remains elusive. We postulate that astrocytes and microglia may differentially respond to fibrillar amyloid β (Aβ). Therefore, we quantified the size distribution of dense-core Thioflavin-S (ThioS)-positive plaques in the temporal neocortex of 40 AD patients and the microglial and astrocyte responses in their vicinity (≤50 μm), and performed correlations between both measures. As expected, both astrocytes and microglia were clearly spatially associated with ThioS-positive plaques (p = 0.0001, ≤50 μm vs. >50 μm from their edge), but their relationship to ThioS-positive plaque size differed; larger ThioS-positive plaques were associated with more surrounding activated microglia (p = 0.0026), but this effect was not observed with reactive astrocytes. Microglial response to dense-core plaques appears to be proportional to their size, which we postulate reflects a chemotactic effect of Aβ. By contrast, plaque-associated astrocytic response does not correlate with plaque size and seems to parallel the behavior of plaque-associated neuritic damage. PMID:23656989

  18. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity.

    Science.gov (United States)

    Huang, Li; Zhao, Shidi; Lu, Wei; Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.

  19. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain

    Science.gov (United States)

    Losi, Gabriele; Mariotti, Letizia; Carmignoto, Giorgio

    2014-01-01

    GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders. PMID:25225102

  20. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle.

    Science.gov (United States)

    Petit, J-M; Magistretti, P J

    2016-05-26

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in the firing rate such as during the sleep/wake transitions. Investigations into brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose (Gluc) consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, Gluc and lactate (Lac) with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolite regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and NMC in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the "local and use dependent" sleep hypothesis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Astrocytic modulation of Blood Brain Barrier: Perspectives on Parkinson´s Disease

    Directory of Open Access Journals (Sweden)

    Ricardo eCabezas

    2014-08-01

    Full Text Available TThe blood–brain barrier (BBB is a tightly regulated interface in the Central Nervous System that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells, pericytes and astrocytes that create a neurovascular unit with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson´s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the endothelial cells and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson´s disease and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.

  2. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells

    Directory of Open Access Journals (Sweden)

    Tetsuro Yasui

    2017-06-01

    Full Text Available Human neural precursor cells (hNPCs derived from pluripotent stem cells display a high propensity for neuronal differentiation, but they require long-term culturing to differentiate efficiently into astrocytes. The mechanisms underlying this biased fate specification of hNPCs remain elusive. Here, we show that hypoxia confers astrocytic differentiation potential on hNPCs through epigenetic gene regulation, and that this was achieved by cooperation between hypoxia-inducible factor 1α and Notch signaling, accompanied by a reduction of DNA methylation level in the promoter region of a typical astrocyte-specific gene, Glial fibrillary acidic protein. Furthermore, we found that this hypoxic culture condition could be applied to rapid generation of astrocytes from Rett syndrome patient-derived hNPCs, and that these astrocytes impaired neuronal development. Thus, our findings shed further light on the molecular mechanisms regulating hNPC differentiation and provide attractive tools for the development of therapeutic strategies for treating astrocyte-mediated neurological disorders.

  3. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances.

    Science.gov (United States)

    Theparambil, Shefeeq M; Naoshin, Zinnia; Defren, Sabrina; Schmaelzle, Jana; Weber, Tobias; Schneider, Hans-Peter; Deitmer, Joachim W

    2017-04-15

    The present study suggests that the electrogenic sodium-bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes. A decrease in extracellular [HCO3(-) ] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3(-) ] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1-knockout astrocytes. Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1- and CAII-expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes. We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3(-) ]-dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3(-) ] in brain tissue. Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi ) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium-bicarbonate cotransporter, NBCe1, is a high-affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H(+) and Na(+) in astrocytes from wild-type (WT

  4. Low-dose DHA-induced astrocyte proliferation can be attenuated by insufficient expression of BLBP in vitro.

    Science.gov (United States)

    Li, Haoming; Yang, Qingqing; Han, Xiao; Tan, Xuefeng; Qin, Jianbing; Jin, Guohua

    2017-09-14

    Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid (PUFA) that is involved in a wide range of cellular processes in human cells. Brain lipid binding protein (BLBP) exhibits a high affinity for n-3 PUFAs, especially DHA, but the precise functional contributions of DHA and BLBP in astrocytes are not clear. We analyzed cell viability and the ratio of Ki67 positive cells after manipulating DHA and/or BLBP levels in cultured astrocytes, and found that low-dose DHA stimulated proliferation of astrocytes, whereas this proliferative effect could be attenuated by downregulation of BLBP. Moreover, we found that astrocyte proliferation was directly regulated by BLBP independently of DHA. Taken together, low-dose DHA-induced astrocyte proliferation was disturbed by insufficient BLBP; and besides acting as a fatty acid transporter, BLBP was also involved in the proliferation of astrocytes directly. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Extracellular Polymeric Substances of Aphanizomenon flos-aquae (EPS-A) Induced Apoptosis in Astrocytes of Zebrafish.

    Science.gov (United States)

    Lv, Ying; Xue, Xing; Tao, Ling; Zhang, Delu; Hu, Chunxiang; Ren, Jun

    2016-03-01

    In this study, extracellular polymeric substances of Aphanizomenon flos-aquae (EPS-A) were investigated in order to explore their effect on astrocytes of zebrafish and potential risk for environment. Astrocytes were treated with varying concentrations of EPS-A, the results showed that EPS-A inhibited astrocytes growth in a dose-and time-dependent manner. With the concentrations of EPS-A increasing, the adherent ability of astrocytes decreased and the number of astrocytes floating in the culture medium increased. When treated with 2.35 µg/mL EPS-A, EPS-A induced cell cycle arrest and made the collapse of mitochondrial membrane potential and then led to astrocytes apoptosis. The results suggested that EPS-A could pose a threat to zebrafish and represent risk for environment, so regularly monitoring the presence of EPS-A was very important in nutrient-rich freshwaters when A. flos-aquae blooms broke out.

  6. Sialic acid residues on astrocytes regulate neuritogenesis by controlling the assembly of laminin matrices.

    Science.gov (United States)

    Freire, Elisabete; Gomes, Flávia C A; Jotha-Mattos, Tatiana; Neto, Vivaldo Moura; Silva Filho, Fernando C; Coelho-Sampaio, Tatiana

    2004-08-15

    In the developing nervous system migrating neurons and growing axons are guided by diffusible and/or substrate-bound cues, such as extracellular matrix-associated laminin. In a previous work we demonstrated that laminin molecules could self-assemble in two different manners, giving rise to matrices that could favor either neuritogenesis or proliferation of cortical precursor cells. We investigated whether the ability of astrocytes to promote neuritogenesis of co-cultivated neurons was modulated by the assembling mode of the laminin matrix secreted by them. We compared the morphologies and neuritogenic potentials of laminin deposited by in vitro-differentiated astrocytes obtained from embryonic or neonatal rat brain cortices. We showed that, while permissive astrocytes derived from embryonic brain produced a flat laminin matrix that remained associated to the cell surface, astrocytes derived from newborn brain secreted a laminin matrix resembling a fibrillar web that protruded from the cell plane. The average neurite lengths obtained for E16 neurons cultured on each astrocyte layer were 198+/-22 and 123+/-13 microm, respectively. Analyses of surface-associated electrostatic potentials revealed that embryonic astrocytes presented a pI of -2.8, while in newborn cells this value was -3.8. Removal of the sialic acid groups on the embryonic monolayer by neuraminidase treatment led to the immediate release of matrix-associated laminin. Interestingly, laminin reassembled 1 hour after neuraminidase removal converted to the features of the newborn matrix. Alternatively, treatment of astrocytes with the cholesterol-solubilizing detergent methyl-beta-cyclodextrin also resulted in release of the extracellular laminin. To test the hypothesis that sialic-acid-containing lipids localized at cholesterol-rich membrane domains could affect the process of laminin assembly, we devised a cell-free assay where laminin polymerization was carried out over artificial lipid films. Films of

  7. Costimulation of N-methyl-D-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes.

    Science.gov (United States)

    Rouach, N; Tencé, M; Glowinski, J; Giaume, C

    2002-01-22

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types of receptors contribute synergistically to this inhibitory response, as the reduction in astrocyte GJC was not observed after the blockade of either NMDA or muscarinic receptors. The involvement of a neuronal release of arachidonic acid (AA) in this inhibition was investigated because the costimulation of neuronal NMDA and muscarinic receptors markedly enhanced the release of AA in neuronal cultures and in cocultures. In addition, both the reduction of astrocyte GJC and the release of AA evoked by NMDA and muscarinic receptor costimulation were prevented by mepacrine, a phospholipase A(2) inhibitor, and this astrocyte GJC inhibition was mimicked by the exogenous application of AA. Metabolites of AA formed through the cyclooxygenase pathway seem to be responsible for the effects induced by either the costimulation of NMDA and muscarinic neuronal receptors or the application of exogenous AA because, in both cases, astrocyte GJC inhibition was prevented by indomethacin. Altogether, these data provide evidence for a neuronal control of astrocytic communication and open perspectives for the understanding of the modalities through which cholinergic interneurons and glutamatergic inputs affect local circuits in the striatum.

  8. Diversity of Evoked Astrocyte Ca2+ Dynamics Quantified through Experimental Measurements and Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Marsa Taheri

    2017-10-01

    Full Text Available Astrocytes are a major cell type in the mammalian brain. They are not electrically excitable, but generate prominent Ca2+ signals related to a wide variety of critical functions. The mechanisms driving these Ca2+ events remain incompletely understood. In this study, we integrate Ca2+ imaging, quantitative data analysis, and mechanistic computational modeling to study the spatial and temporal heterogeneity of cortical astrocyte Ca2+ transients evoked by focal application of ATP in mouse brain slices. Based on experimental results, we tune a single-compartment mathematical model of IP3-dependent Ca2+ responses in astrocytes and use that model to study response heterogeneity. Using information from the experimental data and the underlying bifurcation structure of our mathematical model, we categorize all astrocyte Ca2+ responses into four general types based on their temporal characteristics: Single-Peak, Multi-Peak, Plateau, and Long-Lasting responses. We find that the distribution of experimentally-recorded response types depends on the location within an astrocyte, with somatic responses dominated by Single-Peak (SP responses and large and small processes generating more Multi-Peak responses. On the other hand, response kinetics differ more between cells and trials than with location within a given astrocyte. We use the computational model to elucidate possible sources of Ca2+ response variability: (1 temporal dynamics of IP3, and (2 relative flux rates through Ca2+ channels and pumps. Our model also predicts the effects of blocking Ca2+ channels/pumps; for example, blocking store-operated Ca2+ (SOC channels in the model eliminates Plateau and Long-Lasting responses (consistent with previous experimental observations. Finally, we propose that observed differences in response type distributions between astrocyte somas and processes can be attributed to systematic differences in IP3 rise durations and Ca2+ flux rates.

  9. Astrocyte-neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton.

    Science.gov (United States)

    Heimfarth, Luana; da Silva Ferreira, Fernanda; Pierozan, Paula; Mingori, Moara Rodrigues; Moreira, José Cláudio Fonseca; da Rocha, João Batista Teixeira; Pessoa-Pureur, Regina

    2017-03-15

    Diphenylditelluride (PhTe)2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe)2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca(2+) influx downstream of NMDA receptors activated Ca(2+)-dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. βIII tubulin staining showed that neurite meshworks are not altered by (PhTe)2, suggesting greater susceptibility of astrocytes than neurons to (PheTe)2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in co-cultured astrocytes and neurons and highlights the cytoskeleton as an end-point of the neurotoxicity of this compound. Cytoskeletal misregulation is associated with cell dysfunction, therefore, the understanding of the molecular mechanisms mediating the neurotoxicity of this compound is a matter of increasing interest since tellurium compounds are increasingly released in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cytoskeleton of cortical astrocytes as a target to proline through oxidative stress mechanisms.

    Science.gov (United States)

    Loureiro, Samanta Oliveira; Heimfarth, Luana; Scherer, Emilene B S; da Cunha, Maira J; de Lima, Bárbara Ortiz; Biasibetti, Helena; Pessoa-Pureur, Regina; Wyse, Angela T S

    2013-02-01

    Hyperprolinemia is an inherited disorder of proline (Pro) metabolism and patients affected by this disease may present neurological manifestations. However, the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering the pivotal role of cytoskeletal remodeling in several neurodegenerative pathologies and the potential links between cytoskeleton, reactive oxygen species production and cell death, the aim of the present work was to study the effects of Pro on astrocyte and neuron cytoskeletal remodeling and the possible oxidative stress involvement. Pro induced a shift of actin cytoskeleton in stress fibers together with increased RhoA immunocontent and ERK1/2 phosphorylation/activation in cortical astrocytes. Unlike astrocytes, results evidenced little susceptibility of neuron cytoskeleton remodeling, since Pro-treated neurons presented unaltered neuritogenesis. We observed increased hydrogen peroxide production characterizing oxidative stress together with decreased superoxide dismutase (SOD) and catalase (CAT) activities in cortical astrocytes after Pro treatment, while glutathione peroxidase (GSHPx) activity remained unaltered. However, coincubation with Pro and Trolox/melatonin prevented decreased SOD and CAT activities in Pro-treated astrocytes. Accordingly, these antioxidants were able to prevent the remodeling of the actin cytoskeleton, RhoA increased levels and ERK1/2 phosphorylation in response to high Pro exposure. Taken together, these findings indicated that the cytoskeleton of cortical astrocytes, but not of neurons in culture, is a target to Pro and such effects could be mediated, at least in part, by redox imbalance, RhoA and ERK1/2 signaling pathways. The vulnerability of astrocyte cytoskeleton may have important implications for understanding the effects of Pro in the neurotoxicity linked to inborn errors of Pro metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice.

    Directory of Open Access Journals (Sweden)

    Miroslava Anderova

    Full Text Available Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4. As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD or 50 mM K(+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+.

  12. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization.

    Science.gov (United States)

    Lee, Sook-Jeong; Seo, Bo-Ra; Koh, Jae-Young

    2015-12-04

    Astrocytes may play important roles in the pathogenesis of Alzheimer's disease (AD) by clearing extracellular amyloid beta (Aβ) through endocytosis and degradation. We recently showed that metallothionein 3 (Mt3), a zinc-binding metallothionein that is enriched in the central nervous system, contributes to actin polymerization in astrocytes. Because actin is likely involved in the endocytosis of Aβ, we investigated the possible role of Mt3 in Aβ endocytosis by cortical astrocytes in this study. To assess the route of Aβ uptake, we exposed cultured astrocytes to fluorescently labeled Aβ1-40 or Aβ1-42 together with chloropromazine (CP) or methyl-beta-cyclodextrin (MβCD), inhibitors of clathrin- and caveolin-dependent endocytosis, respectively. CP treatment almost completely blocked Aβ1-40 and Aβ1-42 endocytosis, whereas exposure to MβCD had no significant effect. Actin disruption with cytochalasin D (CytD) or latrunculin B also completely blocked Aβ1-40 and Aβ1-42 endocytosis. Because the absence of Mt3 also results in actin disruption, we examined Aβ1-40 and Aβ1-42 uptake and expression in Mt3 (-/-) astrocytes. Compared with wild-type (WT) cells, Mt3 (-/-) cells exhibited markedly reduced Aβ1-40 and Aβ1-42 endocytosis and expression of Aβ1-42 monomers and oligomers. A similar reduction was observed in CytD-treated WT cells. Finally, actin disruption and Mt3 knockout each increased the overall levels of clathrin and the associated protein phosphatidylinositol-binding clathrin assembly protein (PICALM) in astrocytes. Our results suggest that the absence of Mt3 reduces Aβ uptake in astrocytes through an abnormality in actin polymerization. In light of evidence that Mt3 is downregulated in AD, our findings indicate that this mechanism may contribute to the extracellular accumulation of Aβ in this disease.

  13. Interferon Lambda Inhibits Herpes Simplex Virus Type I Infection of Human Astrocytes and Neurons

    Science.gov (United States)

    LI, JIELIANG; HU, SHUXIAN; ZHOU, LIN; YE, LI; WANG, XU; HO, JIE; HO, WENZHE

    2010-01-01

    Herpes simplex virus type I (HSV-1) is a neurotropic virus that is capable of infecting not only neurons, but also microglia and astrocytes and can establish latent infection in the central nervous system (CNS). We investigated whether IFN lambda (IFN-λ), a newly identified member of IFN family, has the ability to inhibit HSV-1 infection of primary human astrocytes and neurons. Both astrocytes and neurons were found to be highly susceptible to HSV-1 infection. However, upon IFN-λ treatment, HSV-1 replication in both astrocytes and neurons was significantly suppressed, which was evidenced by the reduced expression of HSV-1 DNA and proteins. This IFN-λ-mediated action on HSV-1 could be partially neutralized by antibody to IFN-λ receptor. Investigation of the mechanisms showed that IFN-λ treatment of astrocytes and neurons resulted in the upregulation of endogenous IFN-α/β and several IFN-stimulated genes (ISGs). To block IFN-α/β receptor by a specific antibody could compromise the IFN-λ actions on HSV-1 inhibition and ISG induction. In addition, IFN-λ treatment induced the expression of IFN regulatory factors (IRFs) in astrocytes and neurons. Furthermore, IFN-λ treatment of astrocytes and neurons resulted in the suppression of suppressor of cytokine signaling 1 (SOCS-1), a key negative regulator of IFN pathway. These data suggest that IFN-λ possesses the anti-HSV-1 function by promoting type I IFN-mediated innate antiviral immune response in the CNS cells. PMID:20878770

  14. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice.

    Science.gov (United States)

    Giocanti-Auregan, Audrey; Vacca, Ophélie; Bénard, Romain; Cao, Sijia; Siqueiros, Lourdes; Montañez, Cecilia; Paques, Michel; Sahel, José-Alain; Sennlaub, Florian; Guillonneau, Xavier; Rendon, Alvaro; Tadayoni, Ramin

    2016-05-01

    Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided. © 2015 Wiley Periodicals, Inc.

  15. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    Science.gov (United States)

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  16. Priming astrocytes with TNF enhances their susceptibility to Trypanosoma cruzi infection and creates a self-sustaining inflammatory milieu.

    Science.gov (United States)

    Silva, Andrea Alice; Silva, Rafael Rodrigues; Gibaldi, Daniel; Mariante, Rafael Meyer; Dos Santos, Jessica Brandão; Pereira, Isabela Resende; Moreira, Otacílio Cruz; Lannes-Vieira, Joseli

    2017-09-06

    In conditions of immunosuppression, the central nervous sty 5ystem (CNS) is the main target tissue for the reactivation of infection by Trypanosoma cruzi, the causative agent of Chagas disease. In experimental T. cruzi infection, interferon gamma (IFNγ) + microglial cells surround astrocytes harboring amastigote parasites. In vitro, IFNγ fuels astrocyte infection by T. cruzi, and IFNγ-stimulated infected astrocytes are implicated as potential sources of tumor necrosis factor (TNF). Pro-inflammatory cytokines trigger behavioral alterations. In T. cruzi-infected mice, administration of anti-TNF antibody hampers depressive-like behavior. Herein, we investigated the effects of TNF on astrocyte susceptibility to T. cruzi infection and the regulation of cytokine production. Primary astrocyte cultures of neonatal C57BL/6 and C3H/He mice and the human U-87 MG astrocyte lineage were infected with the Colombian T. cruzi strain. Cytokine production, particularly TNF, and TNF receptor 1 (TNFR1/p55) expression were analyzed. Recombinant cytokines (rIFNγ and rTNF), the anti-TNF antibody infliximab, and the TNFR1 modulator pentoxifylline were used to assess the in vitro effects of TNF on astrocyte susceptibility to T. cruzi infection. To investigate the role of TNF on CNS colonization by T. cruzi, infected mice were submitted to anti-TNF therapy. rTNF priming of mouse and human astrocytes enhanced parasite/astrocyte interaction (i.e., the percentage of astrocytes invaded by trypomastigote parasites and the number of intracellular parasite forms/astrocyte). Furthermore, T. cruzi infection drove astrocytes to a pro-inflammatory profile with TNF and interleukin-6 production, which was amplified by rTNF treatment. Adding rTNF prior to infection fueled parasite growth and trypomastigote egression, in parallel with increased TNFR1 expression. Importantly, pentoxifylline inhibited the TNF-induced increase in astrocyte susceptibility to T. cruzi invasion. In T. cruzi-infected mice

  17. Chronic vs. Acute Interactions between Supraoptic Oxytocin Neurons and Astrocytes during Lactation: Role of Glial Fibrillary Acidic Protein Plasticity

    Directory of Open Access Journals (Sweden)

    Yu-Feng Wang

    2009-01-01

    Full Text Available In this article, we review studies of astrocytic-neuronal interactions and their effects on the activity of oxytocin (OXT neurons within the magnocellular hypothalamo-neurohypophysial system. Previous work over several decades has shown that withdrawal of astrocyte processes increases OXT neuron excitability in the hypothalamic supraoptic nucleus (SON during lactation. However, chronically disabling astrocyte withdrawal does not significantly affect the functioning of OXT neurons during suckling. Nevertheless, acute changes in a cytoskeletal element of astrocytes, glial fibrillary acidic protein (GFAP, occur in concert with changes in OXT neuronal activity during suckling. Here, we compare these changes in GFAP and related proteins with chronic changes that persist throughout lactation. During lactation, a decrease in GFAP levels accompanies retraction of astrocyte processes surrounding OXT neurons in the SON, resulting from high extracellular levels of OXT. During the initial stage of suckling, acute increases in OXT levels further strengthen this GFAP reduction and facilitate the retraction of astrocyte processes. This change, in turn, facilitates burst discharges of OXT neurons and leads to a transient increase in excitatory neurochemicals. This transient neurochemical surge acts to reverse GFAP expression and results in postburst inhibition of OXT neurons. The acute changes in astrocyte GFAP levels seen during suckling likely recur periodically, accompanied by rhythmic changes in glutamate metabolism, water transport, gliotransmitter release, and spatial relationships between astrocytes and OXT neurons. In the neurohypophysis, astrocyte retraction and reversal with accompanying GFAP plasticity also likely occur during lactation and suckling, which facilitates OXT release coordinated with its action in the SON. These studies of the dynamic interactions that occur between astrocytes and OXT neurons mediated by GFAP extend our understanding of

  18. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes

    Science.gov (United States)

    Jackson, Joshua G.

    2015-01-01

    We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na+/Ca2+-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca2+ signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca2+. As recently reported, we observed spontaneous Ca2+ spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca2+ spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca2+ signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca2+-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1KK had a modest effect on the frequency of these Ca2+ spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca2+ followed by an increase in the decay time and the spread of the spontaneous Ca2+ spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca2+. Together, these studies show that Ca2+ regulates mitochondrial mobility, and mitochondria in turn regulate Ca2+ signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca2+ buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response

  19. Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes

    Directory of Open Access Journals (Sweden)

    Robert Krencik

    2017-12-01

    Full Text Available Summary: Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC-derived astrocytes (hAstros combined with neurons generated from hPSC-derived neural stem cells (hNeurons or directly induced via Neurogenin 2 overexpression (iNeurons. Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations. : In this article, Krencik and colleagues show that high-density cocultures of pre-differentiated human astrocytes with induced neurons, from pluripotent stem cells, elicit mature characteristics by 3–5 weeks. This provides a faster and more defined alternative method to organoid cultures for investigating human neural circuit function. Keywords: human pluripotent stem cells, neurons, astrocytes, synapses, coculture, three-dimensional spheres, organoids, disease modeling

  20. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.

    Science.gov (United States)

    Pekny, Tulen; Faiz, Maryam; Wilhelmsson, Ulrika; Curtis, Maurice A; Matej, Radoslav; Skalli, Omar; Pekny, Milos

    2014-01-01

    Alexander disease (AxD) is a neurodegenerative disorder with prominent white matter degeneration and the presence of Rosenthal fibers containing aggregates of glial fibrillary acidic protein (GFAP), and small stress proteins HSP27 and αB-crystallin, and widespread reactive gliosis. AxD is caused by mutations in GFAP, the main astrocyte intermediate filament protein. We previously showed that intermediate filament protein synemin is upregulated in reactive astrocytes after neurotrauma. Here, we examined immunohistochemically the presence of synemin in reactive astrocytes and Rosenthal fibers in two patients with AxD. There was an abundance of GFAP-positive Rosenthal fibers and widespread reactive gliosis in the white matter and subpial regions. Many of the GFAP-positive reactive astrocytes were positive for synemin, and synemin was also present in Rosenthal fibers. We show that synemin is expressed in reactive astrocytes in AxD, and is also present in Rosenthal fibers. The potential role of synemin in AxD pathogenesis remains to be investigated. © 2013 APMIS Published by Blackwell Publishing Ltd.

  1. Transglutaminase-6 is an autoantigen in progressive multiple sclerosis and is upregulated in reactive astrocytes.

    Science.gov (United States)

    Cristofanilli, Massimiliano; Gratch, Daniel; Pagano, Benjamin; McDermott, Kelsey; Huang, Jessie; Jian, Jeffrey; Bates, Deneb; Sadiq, Saud A

    2017-11-01

    Transglutaminase-6 (TGM6), a member of the transglutaminase enzyme family, is found predominantly in central nervous system (CNS) neurons under physiological conditions. It has been proposed as an autoimmune target in cerebral palsy, gluten-sensitive cerebellar ataxia, and schizophrenia. To investigate TGM6 involvement in multiple sclerosis (MS). Antibody levels against TGM6 (TGM6-IgG) were measured in the cerebrospinal fluid (CSF) of 62 primary progressive multiple sclerosis (PPMS), 85 secondary progressive multiple sclerosis (SPMS), and 50 relapsing-remitting multiple sclerosis (RRMS) patients and 51 controls. TGM6 protein expression was analyzed in MS brain autopsy, murine experimental autoimmune encephalomyelitis (EAE), and cultured astrocytes. CSF levels of TGM6-IgG were significantly higher in PPMS and SPMS compared to RRMS and controls. Notably, patients with clinically active disease had the highest TGM6-IgG levels. Additionally, brain pathology revealed strong TGM6 expression by reactive astrocytes within MS plaques. In EAE, TGM6 expression in the spinal cord correlated with disease course and localized in reactive astrocytes infiltrating white matter lesions. Finally, knocking down TGM6 expression in cultured reactive astrocytes reduced their glial fibrillary acidic protein (GFAP) expression. TGM6-IgG may be a candidate CSF biomarker to predict and monitor disease activity in progressive MS patients. Furthermore, TGM6 expression by reactive astrocytes within both human and mouse lesions suggests its involvement in the mechanisms of glial scar formation.

  2. Characterization of Subcellular Responses Induced by Exposure of Microbubbles to Astrocytes.

    Science.gov (United States)

    Sun, Shan; Kanagaraj, Johnwesly; Cho, Lindsey; Kang, Dongkoo; Xiao, Shu; Cho, Michael

    2015-10-01

    Blast traumatic brain injury (bTBI) has now been identified to associate with adverse health consequences among combat veterans. Post-traumatic stress disorder linked with explosive blasts, for example, may result from such brain injury. The fundamental questions about the nature, diagnosis, and long-term consequences of bTBI and causative relationship to post-traumatic stress disorder remain elusive, however. A better understanding of brain tissue injury requires elucidation of potential mechanisms. One such mechanism may be generation of microcavitation bubbles in the brain after an explosive blast and their subsequent interaction with brain cells. Using a controlled electrical discharge system, we have successfully generated shock waves (∼10 MPa) and microbubbles (20-30 μm) in the cell culture of mouse astrocytes. Detachment of astrocytes from the substrate after exposure to microbubbles was observed, and it depended on repetitive exposures. Of the cells that survived the initial assault, several subcellular changes were monitored and determined using fluorescent microscopy, including cell viability, cytoskeletal reorganization, changes in focal adhesion, membrane permeability, and potential onset of apoptosis. While the astrocytes impacted by the shock wave only demonstrated essentially unaltered cellular behavior, the astrocytes exposed to microbubbles exhibited significantly different responses, including production of reactive oxygen species by collapse of microbubbles. In the present study, we characterized and report for the first time the altered biophysical and subcellular properties in astrocytes in response to exposure to the combination of shock waves and microbubbles.

  3. Protective and Antioxidant Effects of a Chalconoid from Pulicaria incisa on Brain Astrocytes

    Directory of Open Access Journals (Sweden)

    Anat Elmann

    2013-01-01

    Full Text Available Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF. Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.

  4. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Javier M. Urquiza

    2017-08-01

    Full Text Available The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV, the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  5. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo.

    Science.gov (United States)

    Liu, Yueguang; Miao, Qinglong; Yuan, Jiacheng; Han, Su'e; Zhang, Panpan; Li, Sanlan; Rao, Zhiping; Zhao, Wenlong; Ye, Qian; Geng, Junlan; Zhang, Xiaohui; Cheng, Leping

    2015-06-24

    In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo. Copyright © 2015 the authors 0270-6474/15/359336-20$15.00/0.

  6. Astrocytes modulate distribution and neuronal signaling of leptin in the hypothalamus of obese A vy mice.

    Science.gov (United States)

    Pan, Weihong; Hsuchou, Hung; Xu, Changlei; Wu, Xiaojun; Bouret, Sebastien G; Kastin, Abba J

    2011-03-01

    We tested the hypothesis that astrocytic activity modulates neuronal uptake and signaling of leptin in the adult-onset obese agouti viable yellow (A vy) mouse. In the immunohistochemical study, A vy mice were pretreated with the astrocyte metabolic inhibitor fluorocitrate or phosphate-buffered saline (PBS) vehicle intracerebroventricularly (icv) followed 1 h later by Alexa568-leptin. Confocal microscopy showed that fluorocitrate pretreatment reduced astrocytic uptake of Alexa568-leptin 30 min after icv while increasing neuronal uptake in the arcuate nucleus and dorsomedial hypothalamus. Fluorocitrate also induced mild astrogliosis and moderately increased pSTAT3 immunopositive neurons in response to Alexa568-leptin in the dorsomedial hypothalamus. In the Western blotting study, A vy mice were pretreated with either PBS or fluorocitrate, and received PBS or leptin 1 h later followed by determination of pSTAT3 and GFAP expression an additional 30 min afterward. The results show that fluorocitrate induced a mild pSTAT3 activation but attenuated leptin-induced pSTAT3 activation and decreased GFAP expression independently of leptin treatment. We conclude that inhibition of astrocytic activity resulted in enhanced neuronal leptin uptake and signaling. This suggests opposite roles of astrocytes and neurons in leptin's actions in the A vy mouse with adult-onset obesity.

  7. Investigations of hippocampal astrocytes in lipopolysaccharide-preconditioned rats in the pilocarpine model of epilepsy.

    Science.gov (United States)

    Jaworska-Adamu, Jadwiga; Dmowska, Mirosława; Cybulska, Regina; Krawczyk, Aleksandra; Pawlikowska-Pawlęga, Bożena

    2011-01-01

    The present paper is the first work to determine the effect of lipopolysaccharide (LPS) in the pilocarpine model of epilepsy on the morphology of rat hippocampal astrocytes in vivo. The study involved adult male Wistar rats, which 72 hours prior to administration of pilocarpine hydrochloride (PILO) were intraperitoneally (ip) preconditioned with LPS at a dose of 0.5 mg/kg b.w. The control animals were administered (ip) saline or LPS alone. The astrocytes in the control animals displayed characteristic stellate morphology. Examinations of the astrocytes were performed on days one, three and 21 of the pilocarpine model of epilepsy (i.e. in the acute, silent and chronic periods). The astrocytes of the CA1 and CA3 pyramidal layers of the hippocampus were observed and analyzed at the structural and ultrastructural levels. It was demonstrated that on days one and three, glial cells from both the nonpreconditioned and the LPS-preconditioned animals displayed similar reactive changes, manifesting themselves as swelling of cell bodies, glial processes, and astrocytosis. Moreover, reduction in cell organelles aggregated at one pole and the presence of vacuoles were observed. The most pronounced astrogliosis and cell swelling occurred on day 21. We conclude that LPS has no effect on the morphology of astrocytes in the pilocarpine model of epilepsy, unlike the results obtained by other authors in vitro.

  8. Investigations of hippocampal astrocytes in lipopolysaccharide-preconditioned rats in the pilocarpine model of epilepsy

    Directory of Open Access Journals (Sweden)

    Bożena Pawlikowska-Pawlęga

    2011-07-01

    Full Text Available The present paper is the first work to determine the effect of lipopolysaccharide (LPS in the pilocarpine model of epilepsy on the morphology of rat hippocampal astrocytes in vivo. The study involved adult male Wistar rats, which 72 hours prior to administration of pilocarpine hydrochloride (PILO were intraperitoneally (ip preconditioned with LPS at a dose of 0.5 mg/kg b.w. The control animals were administered (ip saline or LPS alone. The astrocytes in the control animals displayed characteristic stellate morphology. Examinations of the astrocytes were performed on days one, three and 21 of the pilocarpine model of epilepsy (i.e. in the acute, silent and chronic periods. The astrocytes of the CA1 and CA3 pyramidal layers of the hippocampus were observed and analyzed at the structural and ultrastructural levels. It was demonstrated that on days one and three, glial cells from both the nonpreconditioned and the LPS-preconditioned animals displayed similar reactive changes, manifesting themselves as swelling of cell bodies, glial processes, and astrocytosis. Moreover, reduction in cell organelles aggregated at one pole and the presence of vacuoles were observed. The most pronounced astrogliosis and cell swelling occurred on day 21. We conclude that LPS has no effect on the morphology of astrocytes in the pilocarpine model of epilepsy, unlike the results obtained by other authors in vitro. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 219–224

  9. Activated spinal astrocytes are involved in the maintenance of chronic widespread mechanical hyperalgesia after cast immobilization

    Science.gov (United States)

    2014-01-01

    Background In the present study, we examined spinal glial cell activation as a central nervous system mechanism of widespread mechanical hyperalgesia in rats that experienced chronic post-cast pain (CPCP) 2 weeks after cast immobilization. Activated spinal microglia and astrocytes were investigated immunohistologically in lumbar and coccygeal spinal cord segments 1 day, 5 weeks, and 13 weeks following cast removal. Results In the lumbar cord, astrocytes were activated after microglia. Astrocytes also were activated after microglia in the coccygeal cord, but with a delay that was longer than that observed in the lumbar cord. This activation pattern paralleled the observation that mechanical hyperalgesia occurred in the hindleg or the hindpaw before the tail. The activating transcription factor 3 (ATF3) immune response in dorsal root ganglia (DRG) on the last day of cast immobilization suggested that nerve damage might not occur in CPCP rats. The neural activation assessed by the phosphorylated extracellular signal-regulated kinase (pERK) immune response in DRG arose 1 day after cast removal. In addition, L-α-aminoadipate (L-α-AA), an inhibitor of astrocyte activation administered intrathecally 5 weeks after cast removal, inhibited mechanical hyperalgesia in several body parts including the lower leg skin and muscles bilaterally, hindpaws, and tail. Conclusions These findings suggest that activation of lumbar cord astrocytes is an important factor in widespread mechanical hyperalgesia in CPCP. PMID:24456903

  10. Glycogen serves as an energy source that maintains astrocyte cell proliferation in the neonatal telencephalon.

    Science.gov (United States)

    Gotoh, Hitoshi; Nomura, Tadashi; Ono, Katsuhiko

    2017-06-01

    Large amounts of energy are required when cells undergo cell proliferation and differentiation for mammalian neuronal development. Early neonatal mice face transient starvation and use stored energy for survival or to support development. Glycogen is a branched polysaccharide that is formed by glucose, and serves as an astrocytic energy store for rapid energy requirements. Although it is present in radial glial cells and astrocytes, the role of glycogen during development remains unclear. In the present study, we demonstrated that glycogen accumulated in glutamate aspartate transporter (GLAST)+ astrocytes in the subventricular zone and rostral migratory stream. Glycogen levels markedly decreased after birth due to the increase of glycogen phosphorylase, an essential enzyme for glycogen metabolism. In primary cultures and in vivo, the inhibition of glycogen phosphorylase decreased the proliferation of astrocytic cells. The number of cells in the G1 phase increased in combination with the up-regulation of cyclin-dependent kinase inhibitors or down-regulation of the phosphorylation of retinoblastoma protein (pRB), a determinant for cell cycle progression. These results suggest that glycogen accumulates in astrocytes located in specific areas during the prenatal stage and is used as an energy source to maintain normal development in the early postnatal stage.

  11. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi.

    Science.gov (United States)

    Urquiza, Javier M; Burgos, Juan M; Ojeda, Diego S; Pascuale, Carla A; Leguizamón, M Susana; Quarleri, Jorge F

    2017-01-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  12. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons

    Science.gov (United States)

    Wu, Xuefei; Chen, Po See; Dallas, Shannon; Wilson, Belinda; Block, Michelle L.; Wang, Chao-Chuan; Kinyamu, Harriet; Lu, Nick; Gao, Xi; Leng, Yan; Chuang, De-Maw; Zhang, Wanqin; Lu, Ru Band; Hong, Jau-Shyong

    2008-01-01

    Parkinson’s disease (PD) is characterized by the selective and progressive loss of dopaminergic (DA) neurons in the midbrain substantia nigra. Currently, available treatment is unable to alter PD progression. Previously, we demonstrated that valproic acid (VPA), a mood stabilizer, anticonvulsant and histone deacetylase (HDAC) inhibitor, increases the expression of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in astrocytes to protect DA neurons in midbrain neuron-glia cultures. The present study investigated whether these effects are due to HDAC inhibition and histone acetylation. Here, we show that two additional HDAC inhibitors, sodium butyrate (SB) and trichostatin A (TSA), mimic the survival-promoting and protective effects of VPA on DA neurons in neuron-glia cultures. Similar to VPA, both SB and TSA increased GDNF and BDNF transcripts in astrocytes in a time-dependent manner. Furthermore, marked increases in GDNF promoter activity and promoter-associated histone H3 acetylation were noted in astrocytes treated with all three compounds, where the time-course for acetylation was similar to that for gene transcription. Taken together, our results indicate that HDAC inhibitors up-regulate GDNF and BDNF expression in astrocytes and protect DA neurons, at least in part, through HDAC inhibition. This study indicates that astrocytes may be a critical neuroprotective mechanism of HDAC inhibitors, revealing a novel target for the treatment of psychiatric and neurodegenerative diseases. PMID:18611290

  13. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Science.gov (United States)

    Urquiza, Javier M.; Burgos, Juan M.; Ojeda, Diego S.; Pascuale, Carla A.; Leguizamón, M. Susana; Quarleri, Jorge F.

    2017-01-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis. PMID:28824880

  14. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    Science.gov (United States)

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Beta-hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes.

    Science.gov (United States)

    Suzuki, Yuka; Takahashi, Hisaaki; Fukuda, Mitsumasa; Hino, Hitomi; Kobayashi, Kana; Tanaka, Junya; Ishii, Eiichi

    2009-05-01

    The ketogenic diet has long been recognized as an effective treatment for medically refractory epilepsy. Despite nearly a century of use, the mechanisms underlying its clinical efficacy remain unknown. One of the proposed hypotheses for its anti-epileptic actions involves increased GABA concentration in the brain due to ketone bodies that become elevated with a ketogenic diet. In recent years, the notion that astrocytes could play a role in the evolution of abnormal cortical excitability in chronic neurological disorders, such as epilepsy, has received renewed attention. The present study examined the effects of beta-hydroxybutyrate, a ketone body, on GABA metabolism in rat primary cultured astrocytes. When beta-hydroxybutyrate was added to culture medium, GABA-transaminase (GABA-T) mRNA expression was significantly suppressed in time- and dose-dependent manners. GABA-T enzymatic activity in beta-hydroxybutyrate-treated astrocytes was also suppressed, in accordance with its gene expression. These effects were evident after 3 days of culture, which might coincide with depleted intracellular glycogen. GABA transporter, GAT-1, gene expression was strongly suppressed in cultured astrocytes after 5 days of culture with beta-hydroxybutyrate, although other type of GABA transporters did not display significant changes. These results suggest that beta-hydroxybutyrate induced by ketogenic diet may increase GABA concentration in the epileptic brain by suppressing astrocytic GABA degradation, leading to antiepileptic effects.

  16. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  17. Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia.

    Science.gov (United States)

    Caito, Samuel W; Yu, Yingchun; Aschner, Michael

    2014-05-01

    Acrylonitrile (ACN) is extensively used in the production of plastics, resins, nitriles and other commercial products. Chronic low dose exposures to ACN cause glial cell tumors in rats, primarily microglial in origin. Recently it has been determined that astrocytes and microglia respond to ACN-induced oxidative stress differently, which may influence cell-specific activation of inflammatory and carcinogenic pathways. This study was conducted to compare the inflammatory responses of astrocytes and microglia following ACN treatment in vitro to further characterize differential sensitivities and adaptive responses in these cell types. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 levels were measured along with levels of 12 different cytokines and chemokines in primary rat microglia and astrocytes. Additionally levels of cytochrome P450 2E1 (CYP2E1) were measured to evaluate the cells' ability to metabolize ACN. Results indicate that while both cells upregulate p53 and NF-κB, the cytokines and chemokines produced differ between the cell types. Astrocytes, but not microglia, upregulated CYP2E1 in response to ACN, which may be due to the astrocytes accumulating more ACN than the microglia. Altogether our data implicate the inflammatory response as an important event in ACN-induced neurotoxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Physical exercise reverses spatial memory deficit and induces hippocampal astrocyte plasticity in diabetic rats.

    Science.gov (United States)

    de Senna, Priscylla Nunes; Bagatini, Pamela Brambilla; Galland, Fabiana; Bobermin, Larissa; do Nascimento, Patrícia Severo; Nardin, Patrícia; Tramontina, Ana Carolina; Gonçalves, Carlos Alberto; Achaval, Matilde; Xavier, Léder Leal

    2017-01-15

    Physical exercise can induce brain plasticity and reduce the cognitive decline observed in type 1 diabetes mellitus (T1DM). We investigated the effects of physical exercise to prevent or reverse spatial memory deficits produced by diabetes and some biochemical and immunohistochemical changes in hippocampal astrocytes of T1DM model. In this study, 56 male Wistar rats were divided in four groups: trained control (TC), non-trained control (NTC), trained diabetic (TD) and non-trained diabetic (NTD). 27 days after streptozotocin-induced (STZ) diabetes, the exercise groups were submitted to 5 weeks of aerobic exercise. All groups were assessed in place recognition (PR) test before and after training. The glial fibrillary acidic protein (GFAP) positive astrocytes were evaluated using planar morphology, optical densitometry and Sholl's concentric circles method. Glucose and glutamate uptake, reduced glutathione (GSH) and glutamine synthetase (GS) levels were measured using biochemical assays. Our main results are: 1-Exercise reverses spatial memory impairments generated by T1DM; 2-Exercise increases GSH and GS in TC but not in TD rats; 3-Exercise increases density of GFAP positive astrocytes in the TC and TD groups and increases astrocytic ramification in TD animals. Our findings indicate that physical exercise reverses the cognitive deficits present in T1DM and induces important biochemical and immunohistochemical astrocytic changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  20. Astrocyte-targeted expression of interleukin-6 protects the central nervous system during neuroglial degeneration induced by 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Hadberg, Hanne

    2003-01-01

    6-aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes mainly in the brainstem. We have examined the role of interleukin-6 (IL-6) in this degenerative process by using transgenic mice with astrocyte-targeted IL-6 expression (GFAP-IL6 mice...

  1. Disappearance of beta(2)-adrenergic receptors on astrocytes in canine distemper encephalitis : possible implications for the pathogenesis of multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N; Zurbriggen, A

    2001-01-01

    It has been reported that astrocytes in the white matter of patients with multiple sclerosis (MS) lack beta (2)-adrenergic receptors. This abnormality might explain why astrocytes in active MS plaques aberrantly express major histocompatibility (MHC) class II molecules, which play an important role

  2. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.

    Science.gov (United States)

    Ruminot, Iván; Schmälzle, Jana; Leyton, Belén; Barros, L Felipe; Deitmer, Joachim W

    2017-01-01

    The potassium ion, K+, a neuronal signal that is released during excitatory synaptic activity, produces acute activation of glucose consumption in cultured astrocytes, a phenomenon mediated by the sodium bicarbonate cotransporter NBCe1 ( SLC4A4). We have explored here the relevance of this mechanism in brain tissue by imaging the effect of neuronal activity on pH, glucose, pyruvate and lactate dynamics in hippocampal astrocytes using BCECF and FRET nanosensors. Electrical stimulation of Schaffer collaterals produced fast activation of glucose consumption in astrocytes with a parallel increase in intracellular pyruvate and biphasic changes in lactate . These responses were blocked by TTX and were absent in tissue slices prepared from NBCe1-KO mice. Direct depolarization of astrocytes with elevated extracellular K+ or Ba2+ mimicked the metabolic effects of electrical stimulation. We conclude that the glycolytic pathway of astrocytes in situ is acutely sensitive to neuronal activity, and that extracellular K+ and the NBCe1 cotransporter are involved in metabolic crosstalk between neurons and astrocytes. Glycolytic activation of astrocytes in response to neuronal K+ helps to provide an adequate supply of lactate, a metabolite that is released by astrocytes and which acts as neuronal fuel and an intercellular signal.

  3. Transport of BMAA into Neurons and Astrocytes by System xc.

    Science.gov (United States)

    Albano, Rebecca; Lobner, Doug

    2018-01-01

    The study of the mechanism of β-N-methylamino-L-alanine (BMAA) neurotoxicity originally focused on its effects at the N-methyl-D-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects on the cystine/glutamate antiporter (system x c -) were involved in the toxicity. The effects on system x c - are of particular interest. System x c - mediates the transport of cystine into the cell in exchange for releasing glutamate into the extracellular fluid. By releasing glutamate, system x c - can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported into the cells by system x c -. We now present direct evidence that BMAA is transported into both astrocytes and neurons through system x c -. The fact that BMAA is transported by system x c - also provides a mechanism for BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding.

  4. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  5. Immunofluorescence characterization of spinal cord dorsal horn microglia and astrocytes in horses

    Directory of Open Access Journals (Sweden)

    Constanza Stefania Meneses

    2017-10-01

    Full Text Available The role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. Five adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP and a polyclonal rabbit antibody against Connexin 43 (Cx-43. For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1 was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid spherical shape with a mean cell area of 92.4 + 34 µm2 (in lamina I, II and III was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent are mainly detected using GFAP. Thus, double GFAP/Cx-43 immunolabeling was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 µm, with a main process length of 28 + 8 µm, and thickness of 1.4 + 0.3 µm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first

  6. The Transcriptome of Type I Murine Astrocytes under Interferon-Gamma Exposure and Remyelination Stimulus

    Directory of Open Access Journals (Sweden)

    Anna Kudriaeva

    2017-05-01

    Full Text Available Astrocytes are considered to be an important contributor to central nervous system (CNS disorders, particularly multiple sclerosis. The transcriptome of these cells is greatly affected by cytokines released by lymphocytes, penetrating the blood–brain barrier—in particular, the classical pro-inflammatory cytokine interferon-gamma (IFNγ. We report here the transcriptomal profiling of astrocytes treated using IFNγ and benztropine, a putative remyelinization agent. Our findings indicate that the expression of genes involved in antigen processing and presentation in astrocytes are significantly upregulated upon IFNγ exposure, emphasizing the critical role of this cytokine in the redirection of immune response towards self-antigens. Data reported herein support previous observations that the IFNγ-induced JAK-STAT signaling pathway may be regarded as a valuable target for pharmaceutical interventions.

  7. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF

    Science.gov (United States)

    Nam, Jin H.; Park, Eun S.; Won, So-Yoon; Lee, Yu A.; Kim, Kyoung I.; Jeong, Jae Y.; Baek, Jeong Y.; Cho, Eun J.; Jin, Minyoung; Chung, Young C.; Lee, Byoung D.; Kim, Sung Hyun; Kim, Eung-Gook; Byun, Kyunghee; Lee, Bonghee; Woo, Dong Ho; Lee, C. Justin; Kim, Sang R.; Bok, Eugene; Kim, Yoon-Seong; Ahn, Tae-Beom; Ko, Hyuk Wan; Brahmachari, Saurav; Pletinkova, Olga; Troconso, Juan C.; Dawson, Valina L.; Dawson, Ted M.

    2015-01-01

    Currently there is no neuroprotective or neurorestorative therapy for Parkinson’s disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP+-lesioned or adeno-associated virus α-synuclein rat models of Parkinson’s disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson’s disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson’s disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson’s disease. PMID:26490328

  8. Immunofluorescence characterization of spinal cord dorsal horn microglia and astrocytes in horses.

    Science.gov (United States)

    Meneses, Constanza Stefania; Müller, Heine Yacob; Herzberg, Daniel Eduardo; Uberti, Benjamín; Bustamante, Hedie Almagro; Werner, Marianne Patricia

    2017-01-01

    The role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. Five adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP) and a polyclonal rabbit antibody against Connexin 43 (Cx-43). For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1) was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid spherical shape with a mean cell area of 92.4 + 34 µm2 (in lamina I, II and III) was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent) are mainly detected using GFAP. Thus, double GFAP/Cx-43 immunolabeling was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 µm, with a main process length of 28 + 8 µm, and thickness of 1.4 + 0.3 µm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first

  9. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes.

    Science.gov (United States)

    Hwang, Eun Mi; Kim, Eunju; Yarishkin, Oleg; Woo, Dong Ho; Han, Kyung-Seok; Park, Nammi; Bae, Yeonju; Woo, Junsung; Kim, Donggyu; Park, Myeongki; Lee, C Justin; Park, Jae-Yong

    2014-01-01

    TWIK-1 is a member of the two-pore domain K(+) (K2P) channel family that plays an essential part in the regulation of resting membrane potential and cellular excitability. The physiological role of TWIK-1 has remained enigmatic because functional expression of TWIK-1 channels is elusive. Here we report that native TWIK-1 forms a functional channel at the plasma membrane of astrocytes. A search for TWIK-1-binding proteins led to the identification of TREK-1, another member of the K2P family. The TWIK-1/TREK-1 heterodimeric channel is formed via a disulphide bridge between residue C69 in TWIK-1 and C93 in TREK-1. Gene silencing demonstrates that surface expression of TWIK-1 and TREK-1 are interdependent. TWIK-1/TREK-1 heterodimers mediate astrocytic passive conductance and cannabinoid-induced glutamate release from astrocytes. Our study sheds new light on the diversity of K2P channels.

  10. DIFFERENTIATION OF RETINAL ASTROCYTIC HAMARTOMA FROM OTHER RETINAL NEOPLASMS: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    A. S. Olshanskaya

    2017-01-01

    Full Text Available Astrocytic retinal hamartoma (phacoma, astrocytoma is a benign tumor, formed through proliferation of glial astrocytes and blood vessels of the sensory part of the retina. For the first time, eye involvement in tuberous sclerosis (TS was described by J. van der Hoeva, Dutch ophthalmologist in 1921. A characteristic glial tumor is still considered a classic manifestation of this disease, however, retinal astrocytoma can be observed in practically healthy young people or children. We present the case of a 19-year-old woman diagnosed with multiple retinal hamartomas in the right eye. In addition to ophthalmoscopy, we used the additional diagnostic methods to determine the form of hamartomas (calcined or uncalcined and differentiate astrocytic retinal hamartoma from other tumors of the retina and choroid as well as to exclude pathological changes in the central nervous system. 

  11. STRUCTURAL AND FUNCTIONAL HETEROGENEITY OF ASTROCYTES IN THE BRAIN: ROLE IN NEURODEGENERATION AND NEUROINFLAMMATION

    Directory of Open Access Journals (Sweden)

    A. V. Morgun

    2014-01-01

    Full Text Available The review covers the current concepts on structural and functional heterogeneity of brain astrocytes that serve for numerous (pathophysiological processes in the central nervous system. Astrocytes from various subpopulations demonstrate different sensitivity to the action of pathogenic factors, varied behaviors in reactive processes and within the local immune response. Key functions of astrocytes like neurogenesis, neuron-astroglia metabolic coupling, glial control of local blood flow greatly depend on the origin and characteristics of astroglial cells. Changes at the initial stages of neurodegeneration or in neurodevelopmental disorders are associated with significant alterations in astroglial structural and functional properties, thus suggesting new approaches to therapeutic strategies implementing astroglia-expressing molecules and targets for effective

  12. Astrocytes contain amyloid-β annular protofibrils in Alzheimer's disease brains.

    Science.gov (United States)

    Lasagna-Reeves, Cristian A; Kayed, Rakez

    2011-10-03

    Annular protofibrils (APFs) represent a newly described and distinct class of amyloid structures formed by disease-associated proteins. In vitro, these pore-like structures have been implicated in membrane permeabilization and ion homeostasis via pore formation. Still, their formation and relevance in vivo are poorly understood. Herein, we report that APFs are in human Alzheimer's disease brain samples and that amyloid-β APFs were associated with activated astrocytes. Moreover, we show that amyloid-β APFs in astrocytes adopt a conformation in which the N-terminal region is buried inside the wall of the pore. Our results together with previous studies suggest that the formation of amyloid-β APFs in astrocytes could be a relevant event in the pathogenesis of Alzheimer's disease and validate this amyloidogenic structure as a target for the prevention of the disease. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; MacAulay, Nanna

    2017-01-01

    .1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K(+) ]o and [H......(+) ]o /pHo during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K(+) and glutamate released into the extracellular space (the K(+) /Cl(-) cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate...... the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na(+) / HCO3- cotransporter 1 (NBCe1), is activated by the K(+) -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without...

  14. Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Anna Kraft

    2017-03-01

    Full Text Available Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase their self-renewal as well as migratory behavior. These changes are due to an upregulation of the Notch signaling pathway. This introduces the concept of propagating astrocytic calcium waves transmitting brain injury signals over long distances.

  15. Paroxetine prevented the down-regulation of astrocytic L-Glu transporters in neuroinflammation.

    Science.gov (United States)

    Fujimori, Koki; Takaki, Junpei; Shigemoto-Mogami, Yukari; Sekino, Yuko; Suzuki, Takeshi; Sato, Kaoru

    2015-01-01

    The extracellular L-glutamate (L-Glu) concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  16. Paroxetine prevented the down-regulation of astrocytic L-Glu transporters in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Koki Fujimori

    2015-01-01

    Full Text Available The extracellular L-glutamate (L-Glu concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation.

  17. Up-regulation of TREK-2 potassium channels in cultured astrocytes requires de novo protein synthesis: relevance to localization of TREK-2 channels in astrocytes after transient cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Aixa F Rivera-Pagán

    Full Text Available Excitotoxicity due to glutamate receptor over-activation is one of the key mediators of neuronal death after an ischemic insult. Therefore, a major function of astrocytes is to maintain low extracellular levels of glutamate. The ability of astrocytic glutamate transporters to regulate the extracellular glutamate concentration depends upon the hyperpolarized membrane potential of astrocytes conferred by the presence of K+ channels in their membranes. We have previously shown that TREK-2 potassium channels in cultured astrocytes are up-regulated by ischemia and may support glutamate clearance by astrocytes during ischemia. Thus, herein we determine the mechanism leading to this up-regulation and assess the localization of TREK-2 channels in astrocytes after transient middle cerebral artery occlusion. By using a cell surface biotinylation assay we confirmed that functional TREK-2 protein is up-regulated in the astrocytic membrane after ischemic conditions. Using real time RT-PCR, we determined that the levels of TREK-2 mRNA were not increased in response to ischemic conditions. By using Western blot and a variety of protein synthesis inhibitors, we demonstrated that the increase of TREK-2 protein expression requires De novo protein synthesis, while protein degradation pathways do not contribute to TREK-2 up-regulation after ischemic conditions. Immunohistochemical studies revealed TREK-2 localization in astrocytes together with increased expression of the selective glial marker, glial fibrillary acidic protein, in brain 24 hours after transient middle cerebral occlusion. Our data indicate that functional TREK-2 channels are up-regulated in the astrocytic membrane during ischemia through a mechanism requiring De novo protein synthesis. This study provides important information about the mechanisms underlying TREK-2 regulation, which has profound implications in neurological diseases such as ischemia where astrocytes play an important role.

  18. Up-regulation of TREK-2 potassium channels in cultured astrocytes requires de novo protein synthesis: relevance to localization of TREK-2 channels in astrocytes after transient cerebral ischemia.

    Science.gov (United States)

    Rivera-Pagán, Aixa F; Rivera-Aponte, David E; Melnik-Martínez, Katya V; Zayas-Santiago, Astrid; Kucheryavykh, Lilia Y; Martins, Antonio H; Cubano, Luis A; Skatchkov, Serguei N; Eaton, Misty J

    2015-01-01

    Excitotoxicity due to glutamate receptor over-activation is one of the key mediators of neuronal death after an ischemic insult. Therefore, a major function of astrocytes is to maintain low extracellular levels of glutamate. The ability of astrocytic glutamate transporters to regulate the extracellular glutamate concentration depends upon the hyperpolarized membrane potential of astrocytes conferred by the presence of K+ channels in their membranes. We have previously shown that TREK-2 potassium channels in cultured astrocytes are up-regulated by ischemia and may support glutamate clearance by astrocytes during ischemia. Thus, herein we determine the mechanism leading to this up-regulation and assess the localization of TREK-2 channels in astrocytes after transient middle cerebral artery occlusion. By using a cell surface biotinylation assay we confirmed that functional TREK-2 protein is up-regulated in the astrocytic membrane after ischemic conditions. Using real time RT-PCR, we determined that the levels of TREK-2 mRNA were not increased in response to ischemic conditions. By using Western blot and a variety of protein synthesis inhibitors, we demonstrated that the increase of TREK-2 protein expression requires De novo protein synthesis, while protein degradation pathways do not contribute to TREK-2 up-regulation after ischemic conditions. Immunohistochemical studies revealed TREK-2 localization in astrocytes together with increased expression of the selective glial marker, glial fibrillary acidic protein, in brain 24 hours after transient middle cerebral occlusion. Our data indicate that functional TREK-2 channels are up-regulated in the astrocytic membrane during ischemia through a mechanism requiring De novo protein synthesis. This study provides important information about the mechanisms underlying TREK-2 regulation, which has profound implications in neurological diseases such as ischemia where astrocytes play an important role.

  19. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe

    2013-01-01

    Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevat...... brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.......Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2......+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified...

  20. Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance.

    Science.gov (United States)

    Seidel, Jessica L; Faideau, Mathilde; Aiba, Isamu; Pannasch, Ulrike; Escartin, Carole; Rouach, Nathalie; Bonvento, Gilles; Shuttleworth, C William

    2015-01-01

    Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD. © 2014 Wiley Periodicals, Inc.

  1. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.

    Science.gov (United States)

    Sosunov, Alexander A; McKhann, Guy M; Goldman, James E

    2017-03-31

    Rosenthal fibers (RFs) are cytoplasmic, proteinaceous aggregates. They are the pathognomonic feature of the astrocyte pathology in Alexander Disease (AxD), a neurodegenerative disorder caused by heterozygous mutations in the GFAP gene, encoding glial fibrillary acidic protein (GFAP). Although RFs have been known for many years their origin and significance remain elusive issues. We have used mouse models of AxD based on the overexpression of human GFAP (transgenic, TG) and a point mutation in mouse GFAP (knock-in, KI) to examine the formation of RFs and to find astrocyte changes that correlate with the appearance of RFs. We found RFs of various sizes and shapes. The smallest ones appear as granular depositions on intermediate filaments. These contain GFAP and the small heat shock protein, alphaB-crystallin. Their aggregation appears to give rise to large RFs. The appearance of new RFs and the growth of previously formed RFs occur over time. We determined that DAPI is a reliable marker of RFs and in parallel with Fluoro-Jade B (FJB) staining defined a high variability in the appearance of RFs, even in neighboring astrocytes. Although many astrocytes in AxD with increased levels of GFAP and with or without RFs change their phenotype, only some cells with large numbers of RFs show a profound reconstruction of cellular processes, with a loss of fine distal processes and the appearance of large, lobulated nuclei, likely due to arrested mitosis. We conclude that 1) RFs appear to originate as small, osmiophilic masses containing both GFAP and alphaB-crystallin deposited on bundles of intermediate filaments. 2) RFs continue to form within AxD astrocytes over time. 3) DAPI is a reliable marker for RFs and can be used with immunolabeling. 4) RFs appear to interfere with the successful completion of astrocyte mitosis and cell division.

  2. Discerning neurogenic vs. non-neurogenic postnatal lateral ventricular astrocytes via activity-dependent input

    Directory of Open Access Journals (Sweden)

    Elena W. Adlaf

    2016-03-01

    Full Text Available Throughout development, neural stem cells (NSCs give rise to differentiated neurons, astrocytes, and oligodendrocytes which together modulate perception, memory, and behavior in the adult nervous system. To understand how NSCs contribute to postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV neurogenic niche in the rodent postnatal brain serves as an excellent model system. It is a specialized area containing self-renewing GFAP+ astrocytes functioning as NSCs generating new neurons throughout life. In addition to this now well-studied regenerative process, the LV niche also generates astrocytes, playing an important role for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic identity of NSCs has complicated their distinction from terminally-differentiated astrocytes in the niche. Our current models of postnatal/adult LV neurogenesis do not take into account local astrogenesis, or the possibility that cellular markers may be similar between non-dividing GFAP+ NSCs and their differentiated astrocyte daughters. Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with extracellular/niche-driven cues. It is generally believed that these local effects are responsible for sustaining neurogenesis, though behavioral paradigms and disease states have suggested possibilities for neural circuit-level modulation. With recent experimental findings that neuronal stimulation can directly evoke responses in LV NSCs, it is possible that this exciting property will add a new dimension to identifying postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia.

  3. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro

    KAUST Repository

    Bortell, Nikki

    2017-03-09

    BackgroundAstrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use.MethodsWe developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders.ResultsWe identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes.ConclusionsGene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.

  4. Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death.

    Science.gov (United States)

    Rossi, Daniela

    2015-07-01

    Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes.

    Directory of Open Access Journals (Sweden)

    Martin Heni

    Full Text Available INTRODUCTION: In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone. METHODS: Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay. RESULTS: We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment. DISCUSSION: This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain.

  6. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    Directory of Open Access Journals (Sweden)

    Eva Meier Carlsen

    2014-06-01

    Full Text Available Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice. Neurons responded to electrical stimulation by monosynaptic EPSCs. We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting an inhibition occurring at the presynaptic side of synapses. In the presence of blockers for extracellular ectonucleotidases, TFLLR did not induce presynaptic inhibition. Puffing adenosine reproduced the effect of TFLLR and blocking adenosine A1 receptors with DPCPX prevented it. Altogether our results show that ventral horn astrocytes are responsible for a tonic and a phasic inhibition of excitatory synaptic transmission by releasing ATP, which gets converted into adenosine that binds to inhibitory

  7. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis.

    Science.gov (United States)

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Burchett, Jack M; Schuler, Dorothy R; Cirrito, John R; Diwan, Abhinav; Lee, Jin-Moo

    2014-07-16

    In sporadic Alzheimer's disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood-brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aβ removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aβ localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aβ uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aβ42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aβ. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aβ levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aβ removal and counter amyloid plaque pathogenesis in AD. Copyright © 2014 the authors 0270-6474/14/349607-14$15.00/0.

  8. Supplementary Material for: Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro

    KAUST Repository

    Bortell, Nikki

    2017-01-01

    Abstract Background Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. Methods We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. Results We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. Conclusions Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.

  9. Flavonoid Hesperidin Induces Synapse Formation and Improves Memory Performance through the Astrocytic TGF-β1

    Directory of Open Access Journals (Sweden)

    Isadora Matias

    2017-06-01

    Full Text Available Synapse formation and function are critical events for the brain function and cognition. Astrocytes are active participants in the control of synapses during development and adulthood, but the mechanisms underlying astrocyte synaptogenic potential only began to be better understood recently. Currently, new drugs and molecules, including the flavonoids, have been studied as therapeutic alternatives for modulation of cognitive processes in physiological and pathological conditions. However, the cellular targets and mechanisms of actions of flavonoids remain poorly elucidated. In the present study, we investigated the effects of hesperidin on memory and its cellular and molecular targets in vivo and in vitro, by using a short-term protocol of treatment. The novel object recognition test (NOR was used to evaluate memory performance of mice intraperitoneally treated with hesperidin 30 min before the training and again before the test phase. The direct effects of hesperidin on synapses and astrocytes were also investigated using in vitro approaches. Here, we described hesperidin as a new drug able to improve memory in healthy adult mice by two main mechanisms: directly, by inducing synapse formation and function between hippocampal and cortical neurons; and indirectly, by enhancing the synaptogenic ability of cortical astrocytes mainly due to increased secretion of transforming growth factor beta-1 (TGF-β1 by these cells. Our data reinforces the known neuroprotective effect of hesperidin and, by the first time, characterizes its synaptogenic action on the central nervous system (CNS, pointing astrocytes and TGF-β1 signaling as new cellular and molecular targets of hesperidin. Our work provides not only new data regarding flavonoid’s actions on the CNS but also shed light on possible new therapeutic alternative based on astrocyte biology.

  10. Flavonoid Hesperidin Induces Synapse Formation and Improves Memory Performance through the Astrocytic TGF-β1

    Science.gov (United States)

    Matias, Isadora; Diniz, Luan P.; Buosi, Andrea; Neves, Gilda; Stipursky, Joice; Gomes, Flávia Carvalho Alcantara

    2017-01-01

    Synapse formation and function are critical events for the brain function and cognition. Astrocytes are active participants in the control of synapses during development and adulthood, but the mechanisms underlying astrocyte synaptogenic potential only began to be better understood recently. Currently, new drugs and molecules, including the flavonoids, have been studied as therapeutic alternatives for modulation of cognitive processes in physiological and pathological conditions. However, the cellular targets and mechanisms of actions of flavonoids remain poorly elucidated. In the present study, we investigated the effects of hesperidin on memory and its cellular and molecular targets in vivo and in vitro, by using a short-term protocol of treatment. The novel object recognition test (NOR) was used to evaluate memory performance of mice intraperitoneally treated with hesperidin 30 min before the training and again before the test phase. The direct effects of hesperidin on synapses and astrocytes were also investigated using in vitro approaches. Here, we described hesperidin as a new drug able to improve memory in healthy adult mice by two main mechanisms: directly, by inducing synapse formation and function between hippocampal and cortical neurons; and indirectly, by enhancing the synaptogenic ability of cortical astrocytes mainly due to increased secretion of transforming growth factor beta-1 (TGF-β1) by these cells. Our data reinforces the known neuroprotective effect of hesperidin and, by the first time, characterizes its synaptogenic action on the central nervous system (CNS), pointing astrocytes and TGF-β1 signaling as new cellular and molecular targets of hesperidin. Our work provides not only new data regarding flavonoid’s actions on the CNS but also shed light on possible new therapeutic alternative based on astrocyte biology. PMID:28659786

  11. Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet.

    Science.gov (United States)

    Price, Diana L; Ludwig, Jeffrey W; Mi, Huaiyu; Schwarz, Thomas L; Ellisman, Mark H

    2002-11-29

    Evidence that Ca(2+)-activated K(+) (K(Ca)) channels play a role in cell volume changes and K(+) homeostasis led to a prediction that astrocytes would have K(Ca) channels near blood vessels in order to maintain K(+) homeostasis. Consistent with this thinking the present study demonstrates that rSlo K(Ca) channels are in glial cells of the adult rat central nervous system (CNS) and highly localized to specializations of astrocytes associated with the brain vasculature. Using confocal and thin-section electron microscopic immunolabeling methods the distribution of rSlo was examined in adult rat brain. Strong rSlo immunolabeling was present around the vasculature of most brain regions. Examination of dye-filled hippocampal astrocytes revealed rSlo immunolabeling polarized in astrocytic endfeet. Ultrastructural analysis confirmed that the rSlo staining was concentrated in astrocytic endfeet ensheathing capillaries as well as abutting the pia mater. Immunostaining within the endfeet was predominantly distributed at the plasma membrane directly adjacent to either the vascular basal lamina or the pial surface. The distribution of the aquaporin-4 (AQP-4) water channel was also examined using dye-filled hippocampal astrocytes. In confirmation of earlier reports, intense AQP-4 immunolabeling was generally observed at the perimeter of blood vessels, and coincided with perivascular endfeet and rSlo labeling. We propose that rSlo K(Ca) channels, with their sensitivity to membrane depolarization and intracellular calcium, play a role in the K(+) modulation of cerebral blood flow. Additional knowledge of the molecular and cellular machinery present at perivascular endfeet may provide insight into the structural and functional molecular elements responsible for the neuronal activity-dependent regulation of cerebral blood flow. Copyright 2002 Elsevier Science B.V.

  12. Proteomic and Metabolomic Analyses of Vanishing White Matter Mouse Astrocytes Reveal Deregulation of ER Functions

    Directory of Open Access Journals (Sweden)

    Lisanne E. Wisse

    2017-12-01

    Full Text Available Vanishing white matter (VWM is a leukodystrophy with predominantly early-childhood onset. Affected children display various neurological signs, including ataxia and spasticity, and die early. VWM patients have bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (eIF2B. eIF2B regulates protein synthesis rates under basal and cellular stress conditions. The underlying molecular mechanism of how mutations in eIF2B result in VWM is unknown. Previous studies suggest that brain white matter astrocytes are primarily affected in VWM. We hypothesized that the translation rate of certain astrocytic mRNAs is affected by the mutations, resulting in astrocytic dysfunction. Here we subjected primary astrocyte cultures of wild type (wt and VWM (2b5ho mice to pulsed labeling proteomics based on stable isotope labeling with amino acids in cell culture (SILAC with an L-azidohomoalanine (AHA pulse to select newly synthesized proteins. AHA was incorporated into newly synthesized proteins in wt and 2b5ho astrocytes with similar efficiency, without affecting cell viability. We quantified proteins synthesized in astrocytes of wt and 2b5ho mice. This proteomic profiling identified a total of 80 proteins that were regulated by the eIF2B mutation. We confirmed increased expression of PROS1 in 2b5ho astrocytes and brain. A DAVID enrichment analysis showed that approximately 50% of the eIF2B-regulated proteins used the secretory pathway. A small-scale metabolic screen further highlighted a significant change in the metabolite 6-phospho-gluconate, indicative of an altered flux through the pentose phosphate pathway (PPP. Some of the proteins migrating through the secretory pathway undergo oxidative folding reactions in the endoplasmic reticulum (ER, which produces reactive oxygen species (ROS. The PPP produces NADPH to remove ROS. The proteomic and metabolomics data together suggest a deregulation of ER function in 2b5

  13. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection....... These results indicate that the principal CNS targets for JCV infection are astrocytes and GPCs and that infection is associated with progressive mutation, while demyelination is a secondary occurrence, following T antigen-triggered oligodendroglial apoptosis. More broadly, this study provides a model by which...... to further assess the biology and treatment of human-specific gliotropic viruses....

  14. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny

    2003-01-01

    The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  15. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes.

    Science.gov (United States)

    Logan, Sreemathi; Pharaoh, Gavin A; Marlin, M Caleb; Masser, Dustin R; Matsuzaki, Satoshi; Wronowski, Benjamin; Yeganeh, Alexander; Parks, Eileen E; Premkumar, Pavithra; Farley, Julie A; Owen, Daniel B; Humphries, Kenneth M; Kinter, Michael; Freeman, Willard M; Szweda, Luke I; Van Remmen, Holly; Sonntag, William E

    2018-02-01

    A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-Cre TAM /igfr f/f ). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfr f/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30-50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H 2 O 2 -induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction

  16. Sophorolipid Butyl Ester Diacetate Does Not Affect Macrophage Polarization but Enhances Astrocytic Glial Fibrillary Acidic Protein Expression at Micromolar Concentrations in Vitro.

    Science.gov (United States)

    Ziemba, Alexis M; Gottipati, Manoj K; Totsingan, Filbert; Hanes, Cheryl M; Gross, Richard A; Lennartz, Michelle R; Gilbert, Ryan J

    2017-04-19

    Peritoneal macrophages (PMACs) and spinal cord astrocytes were exposed to varying concentrations of soluble sophorolipid butyl ester diacetate (SLBEDA) in vitro. Macrophages and astrocytes demonstrated no decrease in viability in response to SLBEDA. Studying pro- and anti-inflammatory genes, PMACs did not show a shift toward a pro-inflammatory phenotype. However, at higher concentrations (3 and 30 μM), astrocytes showed an increase in their expression of glial acidic fibrillary protein. This novel category of compounds poses low risk to PMAC and astrocyte viability; however, the effect on PMAC polarization and astrocyte reactivity requires more elucidation.

  17. The astrocytic GABA(A)/benzodiazepine-like receptor: the Joker receptor for benzodiazepine-mimetic drugs?

    Science.gov (United States)

    Hertz, Leif; Zhao, Zhong; Chen, Ye

    2006-01-01

    Long-term use of benzodiazepines as hypnotics, anxiolytics, anticonvulsants and muscle relaxing drugs is jeopardized by adverse effects on memory, addictive properties, and development of tolerance. Major efforts have gone into developing 'benzodiazepine-like' drugs that are more selective in their therapeutic effect, have additional uses and/or lack the adverse effects of benzodiazepines. The reviewed prototype patent exemplifies such efforts. Newer drugs are thought to act selectively on one of the two neuronal benzodiazepine receptors, on the astrocytic mitochondrial benzodiazepine receptor and/or on GABA(A)/benzodiazepine receptor complexes displaying specific subunits. It is overlooked that astrocytes also express benzodiazepine receptors that enhance depolarization-mediated entry of Ca(2+) by interacting with membrane-associated GABA(A)-like receptors, mediating depolarization because of a high Cl(-) concentration within astrocytes. The resulting increase in free cytosolic Ca(2+), which stimulates glycogenolysis, is inhibited not only by the 'peripheral-type" benzodiazepine antagonist PK11195 but also by the 'neuronal' antagonist flumazenil. Increasing awareness of the role(s) of astrocytic Ca(2+) homeostasis and energy metabolism for CNS function suggests that activation of this receptor might contribute to both therapeutic and adverse effects of benzodiazepine-like drugs. This receptor should be kept in mind when developing and testing new drugs; in turn these drugs may help elucidating its functional role.

  18. Glial fibrillary acidic protein (GFAP: modulation by growth factors and its implication in astrocyte differentiation

    Directory of Open Access Journals (Sweden)

    F.C.A. Gomes

    1999-05-01

    Full Text Available Intermediate filament (IF proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGFß, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones.

  19. Proton Fall or Bicarbonate Rise: GLYCOLYTIC RATE IN MOUSE ASTROCYTES IS PAVED BY INTRACELLULAR ALKALINIZATION.

    Science.gov (United States)

    Theparambil, Shefeeq M; Weber, Tobias; Schmälzle, Jana; Ruminot, Ivàn; Deitmer, Joachim W

    2016-09-02

    Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. G-protein coupled receptor-evoked glutamate exocytosis from astrocytes: role of prostaglandins.

    Science.gov (United States)

    Cali, Corrado; Lopatar, Jan; Petrelli, Francesco; Pucci, Luca; Bezzi, Paola

    2014-01-01

    Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.

  1. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA

    DEFF Research Database (Denmark)

    Schousboe, Arne; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2013-01-01

    that GS is exclusively expressed in astrocytes. It should be kept in mind that the operation of the cycle is associated with movement of ammonia nitrogen between the two cell types and different mechanisms which can mediate this have been proposed. This review is intended to delineate the above mentioned...

  2. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Moshayedi, Pouria; Christ, Andreas; Guck, Jochen; Franze, Kristian [Department of Physics, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Da F Costa, Luciano [Instituto de Fisica de Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Lacour, Stephanie P [Nanoscience Centre, University of Cambridge, 11 J J Thomson Avenue, Cambridge CB3 0FF (United Kingdom); Fawcett, James, E-mail: jg473@cam.ac.u [Cambridge Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY (United Kingdom)

    2010-05-19

    Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G' 100 Pa and G' = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells' morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 {mu}g ml{sup -1} PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.

  3. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture.

    NARCIS (Netherlands)

    Sinke, A.P.; Jayakumar, A.R.; Panickar, K.S.; Moriyama, M.; Reddy, P.V.; Norenberg, M.D.

    2008-01-01

    Astrocyte swelling and brain edema are major neuropathological findings in the acute form of hepatic encephalopathy (fulminant hepatic failure), and substantial evidence supports the view that elevated brain ammonia level is an important etiological factor in this condition. Although the mechanism

  4. Assessment of Morphology, Activity, and Infiltration of Astrocytes on Marine EPS-Imbedded Electrospun PCL Nanofiber

    Directory of Open Access Journals (Sweden)

    Seul Ki Min

    2014-01-01

    Full Text Available Tissue engineering using a biomaterial including bioactive compounds has been researched as a way to restore injured neural systems. Extracellular polymeric substances (EPS extracted from marine seaweeds have been known to produce positive effects on physiological activities in human tissues. In this study, an electrospun nanofiber containing brown seaweed EPS was proven to be a candidate biomaterial for neural tissue engineering. Glial fibrillary acidic protein (GFAP as a specific marker protein increased in the astrocytes cultured on the polycaprolactone (PCL nanofiber containing EPS (EPS-PCL nanofiber, compared with PCL nanofiber. The upregulation of GFAP indicates that the EPS-PCL nanofiber induced astrocyte activation, which supports physiological agents favorable to restore injured neural tissue. Astrocytes could infiltrate into the EPS-PCL nanofiber mat without toxicity, comparable to PCL nanofiber. These results imply that EPS-PCL nanofiber could be a useful biomaterial to regulate astrocyte activity at a molecular level and could be considered as a novel therapeutic material for neural tissue engineering.

  5. High-Fat Diet Feeding Causes Rapid, Non-apoptotic Cleavage of Caspase-3 in Astrocytes

    Science.gov (United States)

    Guyenet, Stephan J.; Nguyen, Hong T.; Hwang, Bang H.; Schwartz, Michael W.; Baskin, Denis G.; Thaler, Joshua P.

    2013-01-01

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. PMID:23548599

  6. Astrocyte´s RAGE: More Than Just a Question of Mood.

    Science.gov (United States)

    Gonzalez-Reyes, Rodrigo E; Rubiano, Maria G

    2018-01-26

    Adequate function of the nervous system depends on the balance of glianeuron complex interactions. Astrocytes, in particular, are key elements in this process due to the significant participation of these cells in essential properties of the nervous system such as neuroinflammation, regulation of neurotransmitters, release of gliotransmitters and control of synaptic plasticity, among others. Astrocytes express the receptor for advanced glycation end products (RAGE) which is very important in the recognition of endogenous molecules released in the context of infection, physiological stress or chronic inflammation. RAGE can bind several advanced glycation end products, S100 proteins, HMGB1, amyloid-β and other additional DAMP molecules. The nuclear factorkappa B (NF-κB) transcription pathway is the main intracellular signaling pathway activated by the RAGE receptor, inducing an increase in the expression and release of proinflammatory cytokines. Due to its numerous interactions, RAGE is suspected to be involved in various physiological and pathological processes. It is plausible that a prolonged exposure to RAGE ligands or abnormally increased concentrations of some ligands may induce lengthy periods of intracellular proinflammatory activation, which may induce the appearance of reactive astrocytes involved in the development and/or progression of neurodegenerative disorders. Blocking or reducing the duration of activation of RAGE/NF-κB signaling in astrocytes may become an important therapeutic alternative for the treatment of neurodegenerative disorders in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Glucose-Coated Gold Nanoparticles Transfer across Human Brain Endothelium and Enter Astrocytes In Vitro

    Science.gov (United States)

    Gromnicova, Radka; Davies, Heather A.; Sreekanthreddy, Peddagangannagari; Romero, Ignacio A.; Lund, Torben; Roitt, Ivan M.; Phillips, James B.; Male, David K.

    2013-01-01

    The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier. PMID:24339894

  8. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  9. Ictal but not interictal epileptic discharges activate astrocyte endfeet and elicit cerebral arteriole responses.

    Directory of Open Access Journals (Sweden)

    Marta eGomez-Gonzalo

    2011-06-01

    Full Text Available Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal discharge, evokes both a Ca2+ increase in astrocyte endfeet and a vasomotor response. We also observed that rapid ictal discharge-induced arteriole responses were regularly preceded by Ca2+ elevations in endfeet and were abolished by pharmacological inhibition of Ca2+ signals in these astrocyte processes. Under these latter conditions, arterioles exhibited after the ictal discharge only slowly developing vasodilations. The poor efficacy of interictal discharges, compared with ictal discharges, to activate endfeet was confirmed also in the intact in vitro isolated guinea pig brain. Although the possibility of a direct contribution of neurons, in particular in the late response of cerebral blood vessels to epileptic discharges, should be taken into account, our study supports the view that astrocytes are central for neurovascular coupling also in the epileptic brain. The massive endfeet Ca2+ elevations evoked by ictal discharges and the poor response to interictal events represent new information potentially relevant to interpret data from diagnostic brain imaging techniques, such as functional magnetic resonance, utilized in the clinic to localize neural activity and to optimize neurosurgery of untreatable epilepsies.

  10. Associative learning down-regulates PKCβ2- and γ-immunoreactivity in astrocytes

    NARCIS (Netherlands)

    Zee, E.A. van der; Kronforst-Collins, M.A.; Disterhoft, J.F.

    1996-01-01

    We showed previously that associative learning induced a twofold increase in protein kinase Cγ-immunoreactivity (PKCγ-ir) in rabbit CA1 pyramidal neurons, whereas subicular neurons remained unchanged. Here, we investigated the effects of associative learning on PKC-positive astrocytes by determining

  11. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF

    OpenAIRE

    Nam, Jin H.; Park, Eun S.; Won, So-Yoon; Lee, Yu A.; Kim, Kyoung I.; Jeong, Jae Y.; Baek, Jeong Y; Cho, Eun J.; Jin, Minyoung; Chung, Young C.; Lee, Byoung D.; Kim, Sung Hyun; Kim, Eung-Gook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Ciliary neurotrophic factor (CNTF) has a neuroprotective effect on dopaminergic neurons. Nam et al. report that the capsaicin receptor TRPV1 expressed on astrocytes mediates the production of endogenous CNTF to inhibit degeneration of dopaminergic neurons in two rodent models of Parkinson's disease.

  12. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex.

    Science.gov (United States)

    Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato

    2017-01-29

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    to AMPA (30 microM) in the presence of cyclothiazide (50 microM) to block desensitization, was of a vesicular origin. Pulses of 55 mM K+ caused a DL-TBOA resistant efflux of preloaded D-[3H]aspartate from astrocytes, indicating that this release was not mediated by glutamate transporters. The results...

  14. Astrocytic beta 2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    NARCIS (Netherlands)

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnes; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the beta

  15. Astrocytic tracer dynamics estimated from [1-11C]-acetate PET measurements

    DEFF Research Database (Denmark)

    Arnold, Andrea; Calvetti, Daniela; Gjedde, Albert

    2014-01-01

    of [1-11C]-acetate-derived tracer accumulation, estimating the transport rates in a three-compartment model of astrocytic uptake and metabolism of the tracer for a cohort of 18 volunteers from 3 groups, corresponding to healthy control individuals, cirrhotic liver and hepatic encephalopathy patients...

  16. Insights into Human Astrocyte Response to H5N1 Infection by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Xian Lin

    2015-05-01

    Full Text Available Influenza virus infects not only the respiratory system but also the central nervous system (CNS, leading to influenza-associated encephalopathy and encephalitis. Astrocytes are essential for brain homeostasis and neuronal function. These cells can also be infected by influenza virus. However, genome-wide changes in response to influenza viral infection in astrocytes have not been defined. In this study, we performed gene profiling of human astrocytes in response to H5N1. Innate immune and pro-inflammatory responses were strongly activated at 24 h post-infection (hpi. Antiviral genes, as well as several cytokines and chemokines, including CXCL9, CXCL10, and CXCL11, were robustly induced. Phosphorylation of p65 and p38 can be activated by viral infection, suggesting their potential critical roles in H5N1-induced pro-inflammatory response. Moreover, H5N1 infection significantly upregulated the gene expressions related to the neuroactive ligand-receptor interaction pathway at 24 hpi, such as MC2R, CHRNG, P2RY13, GABRA1, and HRH2, which participant in synaptic transmission and may take part in CNS disorders induced by H5N1 infection. Targeting key components of innate immune response and the neuroactive ligand-receptor interaction pathway may provide a strategy to control H5N1-induced encephalopathy and encephalitis. This research can contribute to the understanding of H5N1 pathogenesis in astrocytes.

  17. Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Hardin-Pouzet, H; Krakowski, M; Bourbonnière, L

    1997-01-01

    Experimental allergic encephalomyelitis (EAE) was induced in SJL/J mice by adoptive transfer of MBP-reactive T cells in order to investigate the role of astrocytes in pathology. GFAP protein and mRNA expression (analyzed using semiquantitative Western blot and RT-PCR techniques) were upregulated...

  18. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  19. Detection of mouse endogenous type B astrocytes migrating towards brain lesions

    Directory of Open Access Journals (Sweden)

    Gema Elvira

    2015-01-01

    Full Text Available Neuroblasts represent the predominant migrating cell type in the adult mouse brain. There are, however, increasing evidences of migration of other neural precursors. This work aims at identifying in vivo endogenous early neural precursors, different from neuroblasts, able to migrate in response to brain injuries. The monoclonal antibody Nilo1, which unequivocally identifies type B astrocytes and embryonic radial glia, was coupled to magnetic glyconanoparticles (mGNPs. Here we show that Nilo1–mGNPs in combination with magnetic resonance imaging in living mice allowed the in vivo identification of endogenous type B astrocytes at their niche, as well as their migration to the lesion site in response to glioblastoma, demyelination, cryolesion or mechanical injuries. In addition, Nilo1+ adult radial glia-like structures were identified at the lesion site a few hours after damage. For all damage models used, type B astrocyte migration was fast and orderly. Identification of Nilo1+ cells surrounding an induced glioblastoma was also possible after intraperitoneal injection of the antibody. This opens up the possibility of an early identification of the initial damage site(s after brain insults, by the migration of type B astrocytes.

  20. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.

    Science.gov (United States)

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-02-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.

  1. Pazopanib Reduces Phosphorylated Tau Levels and Alters Astrocytes in a Mouse Model of Tauopathy.

    Science.gov (United States)

    Javidnia, Monica; Hebron, Michaeline L; Xin, Yue; Kinney, Nikolas G; Moussa, Charbel E-H

    2017-01-01

    Hyperphosphorylation and aggregation of tau protein is a critical factor in many neurodegenerative diseases. These diseases are increasing in prevalence, and there are currently no cures. Previous work from our group and others has shown that tyrosine kinase inhibitors (TKIs) can stimulate autophagy, decrease pathological proteins, and improve symptoms in models of neurodegeneration. Here we examined the role of pazopanib in mouse models that express either human mutant P301L tau (TauP301L) or triple mutant amyloid precursor protein (3x-AβPP). The TauP301L mouse expresses P301L tau under the control of a prion promoter in both neurons and astrocytes, reminiscent of some human tauopathies. Pazopanib crosses the blood-brain barrier with no detectable peripheral off-side effects, and decreases p-tau in TauP301L mice. Pazopanib reaches a brain concentration sufficient for inhibition of several tyrosine kinases, including vascular endothelial growth factor receptors (VEGFRs). Further, pazopanib does not affect microglia but reduces astrocyte levels toward nontransgenic controls in TauP301L mice. Pazopanib does not alter amyloid beta levels or astrocytes in 3x-AβPP mice but modulates a number of inflammatory markers (IP-10, MIP-1α, MIP-1β, and RANTES). These data suggest that pazopanib may be involved in p-tau clearance and modulation of astrocytic activity in models of tauopathies.

  2. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    Directory of Open Access Journals (Sweden)

    Brittany M. Winner

    2017-12-01

    Full Text Available Parkinson disease (PD is prevalent in elderly individuals and is characterized by selective degeneration of nigrostriatal dopamine (NSDA neurons. Interestingly, not all dopamine (DA neurons are affected equally by PD and aging, particularly mesolimbic (ML DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA neurons and astrocyte DA metabolism. There were no differences in phenotypic markers of DA synthesis, reuptake or metabolism in NSDA or MLDA neurons in aged mice, but MLDA neurons displayed lower DA stores. Astrocyte metabolism of DA to 3-methoxytyramine (3-MT in the striatum was decreased in aged mice, but was maintained in the nucleus accumbens. Despite diminished DA vesicular storage capacity in MLDA neurons, susceptibility to acute neurotoxicant exposure was similar in young and aged mice. These results reveal an age- and neurotoxicant-induced impairment of DA metabolic activity in astrocytes surrounding susceptible NSDA neurons as opposed to maintenance of DA metabolism in astrocytes surrounding resistant MLDA neurons, and suggest a possible therapeutic target for PD.

  3. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    NARCIS (Netherlands)

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  4. Sulfatase-mediated manipulation of the astrocyte-Schwann cell interface

    NARCIS (Netherlands)

    O'Neill, Paul; Lindsay, Susan L; Pantiru, Andreea; Guimond, Scott E; Fagoe, N.D.; Verhaagen, J.; Turnbull, Jeremy E; Riddell, John S; Barnett, Susan C

    2017-01-01

    Schwann cell (SC) transplantation following spinal cord injury (SCI) may have therapeutic potential. Functional recovery is limited however, due to poor SC interactions with host astrocytes and the induction of astrogliosis. Olfactory ensheathing cells (OECs) are closely related to SCs, but intermix

  5. MIRNAS in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity

    Directory of Open Access Journals (Sweden)

    Carlos Lafourcade

    2016-01-01

    Full Text Available Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.

  6. Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18.

    Science.gov (United States)

    Liu, Ziqing; Zhao, Fang; He, Johnny J

    2014-06-01

    Hepatitis C virus (HCV) infection causes the central nervous system (CNS) abnormalities in more than 50 % of chronically infected subjects. However, the underlying mechanisms are largely unknown. In this study, we characterized the HCV interactions with astrocytes, one of the putative HCV target cells in the brain. We demonstrated that primary human astrocytes (PHA) were very inefficiently infected by HCV, either in the cell-free form or through cell-cell contact. We then determined the potential restriction steps of HCV infection and replication in these cells. PHA expressed all known HCV receptors but failed to support HCV entry. HCV IRES-mediated RNA translation was functional in PHA and further enhanced by miR122 expression. Nevertheless, PHA did not support HCV replication regardless of miR122 expression. To our great surprise, we found that HCV exposure induced robust IL-18 expression in PHA and exhibited direct neurotoxicity. Taken together, these results showed that astrocytes did not support productive HCV infection and replication, but HCV interactions with astrocytes and neurons alone might be sufficient to cause CNS dysfunction.

  7. Ischemic tolerance in pre-myelinated white matter: the role of astrocyte glycogen in brain pathology.

    Science.gov (United States)

    Fern, Robert

    2015-06-01

    In isolated white matter, ischemic tolerance changes dramatically in the period immediately before the onset of myelination. In the absence of an extrinsic energy source, postnatal day 0 to 2 (P0 to P2) white matter axons are here shown to maintain excitability for over twice as long as axons >P2, a differential that was dependent on glycogen metabolism. Prolonged withdrawal of extrinsic energy supply tended to spare axons in zones around astrocytes, which are shown to be the sole repository for glycogen particles in developing white matter. Analysis of mitochondrial volume fraction revealed that neither axons nor astrocytes had a low metabolic rate in neonatal white matter, while oligodendroglia at older ages had an elevated metabolism. The astrocyte population is established early in neural development, and exhibits reduced cell density as maturation progresses and white matter expands. The findings show that this event establishes the necessary conditions for ischemia sensitivity in white matter and indicates that astrocyte proximity may be significant for the survival of neuronal elements in conditions associated with compromised energy supply.

  8. G-Protein Coupled Receptor-Evoked Glutamate Exocytosis from Astrocytes: Role of Prostaglandins

    Directory of Open Access Journals (Sweden)

    Corrado Cali

    2014-01-01

    Full Text Available Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca2+-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP, which are known to stimulate Ca2+ elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2. Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%. Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.

  9. Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys?

    Science.gov (United States)

    Lukovic, Dunja; Stojkovic, Miodrag; Moreno-Manzano, Victoria; Jendelova, Pavla; Sykova, Eva; Bhattacharya, Shomi S; Erceg, Slaven

    2015-04-01

    Spinal cord injury (SCI) usually results in long lasting locomotor and sensory neuron degeneration below the injury. Astrocytes normally play a decisive role in mechanical and metabolic support of neurons, but in the spinal cord they cause injury, exerting well-known detrimental effects that contribute to glial scar formation and inhibition of axon outgrowth. Cell transplantation is considered a promising approach for replacing damaged cells and promoting neuroprotective and neuroregenerative repair, but the effects of the grafted cells on local tissue and the regenerative properties of endogenous neural stem cells in the injured spinal cord are largely unknown. During the last 2 decades cumulative evidence from diverse animal models has indicated that reactive astrocytes in synergy with transplanted cells could be beneficial for injury in multiple ways, including neuroprotection and axonal growth. In this review, we specifically focus on the dual opposing roles of reactive astrocytes in SCI and how they contribute to the creation of a permissive environment when combined with transplanted cells as the influential components for a local regenerative niche. Modulation of reactive astrocyte function might represent an extremely attractive new therapy to enhance the functional outcomes in patients. © 2015 AlphaMed Press.

  10. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells

    Science.gov (United States)

    Cockbill, Louisa M. R.; Murk, Kai; Love, Seth; Hanley, Jonathan G.

    2015-01-01

    Astrocytic tumors are the most common form of primary brain tumor. Astrocytic tumor cells infiltrate the surrounding CNS tissue, allowing them to evade removal upon surgical resection of the primary tumor. Dynamic changes to the actin cytoskeleton are crucial to cancer cell invasion, but the specific mechanisms that underlie the particularly invasive phenotype of astrocytic tumor cells are unclear. Protein interacting with C kinase 1 (PICK1) is a PDZ and BAR domain–containing protein that inhibits actin-related protein 2/3 (Arp2/3)-dependent actin polymerization and is involved in regulating the trafficking of a number of cell-surface receptors. Here we report that, in contrast to other cancers, PICK1 expression is down-regulated in grade IV astrocytic tumor cell lines and also in clinical cases of the disease in which grade IV tumors have progressed from lower-grade tumors. Exogenous expression of PICK1 in the grade IV astrocytic cell line U251 reduces their capacity for anchorage-independent growth, two-dimensional migration, and invasion through a three-dimensional matrix, strongly suggesting that low PICK1 expression plays an important role in astrocytic tumorigenesis. We propose that PICK1 negatively regulates neoplastic infiltration of astrocytic tumors and that manipulation of PICK1 is an attractive possibility for therapeutic intervention. PMID:26466675

  11. Gestational Hypothyroxinemia Imprints a Switch in the Capacity of Astrocytes and Microglial Cells of the Offspring to React in Inflammation.

    Science.gov (United States)

    Opazo, María C; González, Pablo A; Flores, Betsi D; Venegas, Luis F; Albornoz, Eduardo A; Cisternas, Pablo; Bohmwald, Karen; Nieto, Pamela A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A

    2017-06-27

    Hypothyroxinemia (Hpx) is a highly frequent condition characterized by low thyroxine (T4) and normal 3,3',5'-triiodothyronine (T3) and thyroid stimulating hormone (TSH) levels in the blood. Gestational Hpx is closely related to cognitive impairment in the human offspring. In animal models gestational Hpx causes impairment at glutamatergic synapsis, spatial learning, and the susceptibility to suffer strong autoimmune diseases like experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying these phenotypes are unknown. On the other hand, it has been shown that astrocytes and microglia affect the outcome of EAE. In fact, the activation of astrocytes and microglia in the central nervous system (CNS) contributes to EAE progression. Thus, in this work, the reactivity of astrocytes and microglia from rats gestated in Hpx was evaluated aiming to understand whether these cells are targets of gestational Hpx. Interestingly, microglia derived from the offspring gestated in Hpx were less reactive compared to microglia derived from offspring gestated in euthyroidism. Instead, astrocytes derived from the offspring gestated in Hpx were significantly more reactive than the astrocytes from the offspring gestated in euthyroidism. This work contributes with novel information regarding the effects of gestational Hpx over astrocytes and microglia in the offspring. It suggests that astrocyte could react strongly to an inflammatory insult inducing neuronal death in the CNS.

  12. Aberrant astrocyte Ca2+signals "AxCa signals" exacerbate pathological alterations in an Alexander disease model.

    Science.gov (United States)

    Saito, Kozo; Shigetomi, Eiji; Yasuda, Rei; Sato, Ryuichi; Nakano, Masakazu; Tashiro, Kei; Tanaka, Kenji F; Ikenaka, Kazuhiro; Mikoshiba, Katsuhiko; Mizuta, Ikuko; Yoshida, Tomokatsu; Nakagawa, Masanori; Mizuno, Toshiki; Koizumi, Schuichi

    2018-01-31

    Alexander disease (AxD) is a rare neurodegenerative disorder caused by gain of function mutations in the glial fibrillary acidic protein (GFAP) gene. Accumulation of GFAP proteins and formation of Rosenthal fibers (RFs) in astrocytes are hallmarks of AxD. However, malfunction of astrocytes in the AxD brain is poorly understood. Here, we show aberrant Ca 2+ responses in astrocytes as playing a causative role in AxD. Transcriptome analysis of astrocytes from a model of AxD showed age-dependent upregulation of GFAP, several markers for neurotoxic reactive astrocytes, and downregulation of Ca 2+ homeostasis molecules. In situ AxD model astrocytes produced aberrant extra-large Ca 2+ signals "AxCa signals", which increased with age, correlated with GFAP upregulation, and were dependent on stored Ca 2+ . Inhibition of AxCa signals by deletion of inositol 1,4,5-trisphosphate type 2 receptors (IP3R2) ameliorated AxD pathogenesis. Taken together, AxCa signals in the model astrocytes would contribute to AxD pathogenesis. © 2018 Wiley Periodicals, Inc.

  13. Involvement of monocarboxylate transporter 1 (SLC16A1) in the uptake of l-lactate in human astrocytes.

    Science.gov (United States)

    Ideno, Masaya; Kobayashi, Masaki; Sasaki, Shotaro; Futagi, Yuya; Narumi, Katsuya; Furugen, Ayako; Iseki, Ken

    2018-01-01

    Astrocytes, the most abundant glial cells in the central nervous system (CNS), help neurons survive. Monocarboxylate transporters (MCTs) are reported to transport l-lactate, which is important for CNS physiology and cognitive function. However, it remains unclear which MCT isoform is functionally expressed by human astrocytes. The aim of this study was to establish the contribution of each MCT isoform to l-lactate transport in human astrocytes. The function of l-lactate transport was studied using NHA cells as a human astrocyte model and radiolabeled l-lactate. The expression of MCT in human astrocytes was detected by immunohistochemistry staining. The cellular uptake of l-lactate was found to be pH- and concentration-dependent with a Km value for l-lactate uptake of 0.64mM. This Km was similar to what has been previously established for MCT1-mediated l-lactate uptake. α-Cyano-4- hydroxycinnamate (CHC) and 5-oxoproline, which are both MCT1 inhibitors, were found to significantly inhibit the uptake of l-lactate, suggesting MCT1 is primarily responsible for l-lactate transport. Moreover, MCT1 protein was expressed in human astrocytes. pH-dependent l-lactate transport is mediated by MCT1 in human astrocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Gene expression and functional studies of the optic nerve head astrocyte transcriptome from normal African Americans and Caucasian Americans donors.

    Directory of Open Access Journals (Sweden)

    Haixi Miao

    2008-08-01

    Full Text Available To determine whether optic nerve head (ONH astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA donors compared to astrocytes from normal Caucasian American (CA donors.We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM. Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH assay detected levels of intracellular GSH.Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01. The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion.These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA.

  15. Arachidonic acid has protective effects on oxygen-glucose deprived astrocytes mediated through enhancement of potassium channel TREK-1 activity.

    Science.gov (United States)

    Lu, Li; Zhang, Guangru; Song, Chunli; Wang, Xuexi; Qian, Weina; Wang, Zhuanling; Liu, Yanan; Gong, Sheng; Zhou, Shuning

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) have neuroprotective effects against ischemic brain diseases. The newly discovered potassium channel "TREK-1" is a promising target for therapies against neurodegeneration. Arachidonic acid (AA) is an n-6 PUFA, as well as a potent TREK-1 activator. We previously showed that TREK-1 is expressed at high levels in astrocytes. However, the effect of AA on astrocytes in ischemia remains unknown. Here, we assessed the effects of 3-30μM AA on astrocyte apoptosis, glutamate uptake, and expression of the astrocytic glutamate transporter 1 (GLT-1) and TREK-1 under different conditions. Under normal conditions, 3-30μM AA showed no effect on astrocytic apoptosis or TREK-1 expression, whereas glutamate uptake decreased significantly and its change paralleled the decreased expression of GLT-1. When astrocytes were subjected to 4h of oxygen-glucose deprivation (OGD), 10μM AA markedly alleviated OGD-induced cell death, recovering from 63.50±1.90% to 82.96±4.63% of the control value. AA also rescued the decreased glutamate uptake and increased mRNA, as well as protein levels of GLT-1 and TREK-1. Our results provide new evidence of a protective effect of AA on astrocytes under OGD conditions, suggesting that a low concentration of AA may protect against brain ischemic diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach.

    Directory of Open Access Journals (Sweden)

    John J Wade

    Full Text Available In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a "learning signal" to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity, and the modeling strategy may be extended to coordination among remote neuron clusters.

  17. In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains.

    Science.gov (United States)

    Cavaliere, Fabio; Cerf, Loic; Dehay, Benjamin; Ramos-Gonzalez, Paula; De Giorgi, Francesca; Bourdenx, Mathieu; Bessede, Alban; Obeso, Jose A; Matute, Carlos; Ichas, François; Bezard, Erwan

    2017-07-01

    Synucleinopathies are a group of diseases characterized by the presence of intracellular protein aggregates containing α-synuclein (α-syn). While α-syn aggregates have been shown to induce multimodal cellular dysfunctions, uptake and transport mechanisms remain unclear. Using high-content imaging on cortical neurons and astrocytes, we here define the kinetics of neuronal and astrocytic abnormalities induced by human-derived α-syn aggregates grounding the use of such system to identify and test putative therapeutic compounds. We then aimed at characterizing uptake and transport mechanisms using primary cultures of cortical neurons and astrocytes either in single well or in microfluidic chambers allowing connection between cells and cell-types. We report that astrocytes take up α-syn-aggregates far more efficiently than neurons through an endocytic event. We also highlight that active α-syn transport occurs between cells and any cell-types. Of special interest regarding the disease, we also show that uptake and spreading of α-syn from astrocytes to neurons can lead to neuronal death. Altogether, we here show that patients-derived α-synuclein aggregates, which are taken up by neurons and astrocytes, induce a differential endogenous response in the two cell types including a peculiar astrocytic toxic gain-of-function that leads to neuronal death. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  19. The Anti-Inflammatory Effects of Dimethyl Fumarate in Astrocytes Involve Glutathione and Haem Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Shao Xia Lin

    2011-03-01

    Full Text Available DMF (dimethyl fumarate exerts anti-inflammatory and prometabolic effects in a variety of cell types, and a formulation (BG-12 is being evaluated for monotherapy in multiple sclerosis patients. DMF modifies glutathione (GSH levels that can induce expression of the anti-inflammatory protein HO-1 (haem oxygenase-1. In primary astrocytes and C6 glioma cells, BG-12 dose-dependently suppressed nitrite production induced by either LI [LPS (lipopolysaccharide at 1 μg/ml plus IFNγ (interferon γ at 20 units/ml] or a mixture of proinflammatory cytokines, with greater efficacy in C6 cells. BG-12 reduced NOS2 (nitric oxide synthase 2 mRNA levels and activation of a NOS2 promoter, reduced nuclear levels of NF-κB (nuclear factor κB p65 subunit and attenuated loss of |κBα (inhibitory κBα in both cell types, although with greater effects in astrocytes. In astrocytes, LI decreased mRNA levels for GSHr (GSH reductase and GCL (c-glutamylcysteine synthetase, and slightly suppressed GSHs (GSH synthetase mRNAs. Co-treatment with BG-12 prevented those decreased and increased levels above control values. In contrast, LI reduced GSHp (GSH peroxidase and GCL in C6 cells, and BG-12 had no effect on those levels. BG-12 increased nuclear levels of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2, an inducer of GSH-related enzymes, in astrocytes but not C6 cells. In astrocytes, GSH was decreased by BG-12 at 2 h and increased at 24 h. Prior depletion of GSH using buthionine-sulfoximine increased the ability of BG-12 to reduce nitrites. In astrocytes, BG-12 increased HO-1 mRNA levels and effects on nitrite levels were blocked by an HO-1 inhibitor. These results demonstrate that BG-12 suppresses inflammatory activation in astrocytes and C6 glioma cells, but with distinct mechanisms, different dependence on GSH and different effects on transcription factor activation.

  20. Evidence for a wide extra-astrocytic distribution of S100B in human brain

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2007-01-01

    Full Text Available Abstract Background S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity. Results Contrary to glial fibrillary acidic protein (GFAP, which selectively labels astrocytes and shows only faint ependymal immunopositivity, a less uniform staining pattern was seen in the case of S100B. Cells with astrocytic morphology were primarily stained by S100B in the human cortex, while only 20% (14–30% or 14% (7–35% of all immunopositive cells showed oligodendrocytic morphology in the dorsolateral prefrontal and temporal cortices, respectively. In the white matter, however, most immunostained cells resembled oligodendrocytes [frontal: 75% (57–85%; temporal: 73% (59–87%; parietal: 79% (62–89%; corpus callosum: 93% (86–97%]. S100B was also found in ependymal cells, the choroid plexus epithelium, vascular endothelial cells, lymphocytes, and several neurones. Anti-myelin basic protein (MBP immunolabelling showed an association of S100B with myelinated fibres, whereas GFAP double staining revealed a distinct subpopulation of cells with astrocytic morphology, which solely expressed S100B but not GFAP. Some of these cells showed co-localization of S100B and A2B5 and may be characterized as O2A glial progenitor cells. However, S100B was not detected in microglial cells, as revealed by double-immunolabelling with HLA-DR. Conclusion S100B is localized in many neural cell-types and is less astrocyte-specific than GFAP. These are important results in order to avoid misinterpretation in the identification of normal and pathological cell types in situ and in clinical studies since S100B is continuously used as an astrocytic marker in animal models and various human

  1. AQP4e-Based Orthogonal Arrays Regulate Rapid Cell Volume Changes in Astrocytes.

    Science.gov (United States)

    Lisjak, Marjeta; Potokar, Maja; Rituper, Boštjan; Jorgačevski, Jernej; Zorec, Robert

    2017-11-01

    Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. It is predominantly expressed in astrocytes at the blood-brain and blood-liquor interfaces. Although several AQP4 isoforms have been identified in the mammalian brain, two, AQP4a (M1) and AQP4c (M23), have been confirmed to cluster into plasma membrane supramolecular structures, termed orthogonal arrays of particles (OAPs) and to enhance water transport through the plasma membrane. However, the role of the newly described water-conductive mammalian isoform AQP4e is unknown. Here, the dynamics of AQP4e aggregation into OAPs and its role in the regulation of astrocyte water homeostasis have been studied. Using super-resolution structured illumination, atomic force, and confocal microscopies, the results revealed that, in female rat astrocytes, AQP4e isoform colocalizes with OAPs, affecting its structural dynamics. In hypoosmotic conditions, which elicit cell edema, OAP formation was considerably enhanced by overexpressed AQP4e. Moreover, the kinetics of the cell swelling and of the regulatory volume decrease was faster in astrocytes overexpressing AQP4e compared with untransfected controls. Furthermore, the increase in maximal cell volume elicited by hypoosmotic stimulation was significantly smaller in AQP4e-overexpressing astrocytes. For the first time, this study demonstrates an active role of AQP4e in the regulation of OAP structural dynamics and in water homeostasis.SIGNIFICANCE STATEMENT Water channel aquaporin 4 (AQP4) plays a key role in the regulation of water homeostasis in the brain. To date, only AQP4a and AQP4c isoforms have been confirmed to enhance water transport through plasmalemma and to cluster into orthogonal arrays of particles (OAPs). We here studied the dynamics, aggregation, and role in the regulation of astrocyte water homeostasis of the newly described water-conductive mammalian isoform AQP4e. Our main findings are as follows: brain edema

  2. α7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer's mouse model.

    Directory of Open Access Journals (Sweden)

    Tiina Maria Pirttimaki

    Full Text Available It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ, the toxic trigger for Alzheimer's disease (AD, interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs. Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT. The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline.

  3. Role of perfusion-weighted imaging at 3 T in the histopathological differentiation between astrocytic and oligodendroglial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Taiichi, E-mail: t-saitou@qc4.so-net.ne.jp [Department of Neurosurgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Yamasaki, Fumiyuki, E-mail: fyama@hiroshima-u.ac.jp [Department of Neurosurgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Kajiwara, Yoshinori, E-mail: kaji@hiroshima-u.ac.jp [Department of Neurosurgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Abe, Nobukazu, E-mail: abebe@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Akiyama, Yuji, E-mail: uakiyama@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Kakuda, Takako, E-mail: taka4121@hiroshima-u.ac.jp [Department of Clinical Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Takeshima, Yukio, E-mail: ykotake@hiroshima-u.ac.jp [Department of Pathology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Sugiyama, Kazuhiko, E-mail: brain@hiroshima-u.ac.jp [Department of Neurosurgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan); Okada, Yoshikazu, E-mail: yokada@nij.twmu.ac.jp [Department of Neurosurgery, Tokyo Women' s Medical University, 8-1 Kawada, Shinjuku-ku, Tokyo 162-8666 (Japan); Kurisu, Kaoru, E-mail: kuka422@hiroshima-u.ac.jp [Department of Neurosurgery, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551 (Japan)

    2012-08-15

    Objective: The differentiation of oligodendroglial tumors from astrocytic tumors is important clinically, because oligodendroglial tumors are more chemosensitive than astrocytic tumors. This study was designed to clarify the usefulness of 3 T MR perfusion imaging (PWI) in the histopathological differentiation between astrocytic and oligodendroglial tumors. This is because there is a growing interest in the diagnostic performance of 3 T MR imaging, which has the advantages of a higher signal-to-noise ratio (SNR) and greater spatial and temporal resolution. Materials and methods: This study retrospectively included 24 consecutive patients with supratentorial, WHO grade II and III astrocytic and oligodendroglial tumors (7 astrocytic, 10 oligoastrocytic, and 7 oligodendroglial tumors) that were newly diagnosed and resected between November 2006 and December 2009 at Hiroshima University Hospital. These patients underwent dynamic susceptibility contrast-enhanced (DSC) PWI relative cerebral blood volume (rCBV) measurements before treatment. Astrocytic tumors were designated as the astrocytic group, and oligoastrocytic and oligodendroglial tumors as the oligodendroglial group. The regions of interest with the maximum rCBV values within the tumors were normalized relative to the contra-lateral white matter (rCBVmax). Results: The average rCBVmax of astrocytic tumors (2.01 {+-} 0.68) was significantly lower than that of the oligoastrocytic (4.60 {+-} 1.05) and oligodendroglial tumors (6.17 {+-} 0.867) (P < 0.0001). A cut-off value of 3.0 allowed to differentiate the oligodendroglial group from the astrocytic group at 100% sensitivity and 87.5% specificity. Conclusion: The rCBVmax values obtained from 3 T MR PWI may be useful as an adjunct to the postoperative histopathological diagnosis of glioma patients.

  4. CSF from Parkinson disease Patients Differentially Affects Cultured Microglia and Astrocytes

    Directory of Open Access Journals (Sweden)

    Dinh Kha

    2010-11-01

    Full Text Available Abstract Background Excessive and abnormal accumulation of alpha-synuclein (α-synuclein is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for α-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; α-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging. Results After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in α-synuclein content by day 4 compared to other treatments (p ≤ 0.02. In microglia only, α-synuclein aggregated and redistributed to peri-nuclear locations. Conclusions Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and α-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.

  5. Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival

    KAUST Repository

    Lambert, Hélène Perreten

    2014-09-18

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

  6. THYROID HORMONE TREATED ASTROCYTES INDUCE MATURATION OF CEREBRAL CORTICAL NEURONS THROUGH MODULATION OF PROTEOGLYCAN LEVELS

    Directory of Open Access Journals (Sweden)

    Romulo Sperduto Dezonne

    2013-08-01

    Full Text Available Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4 play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formation. The lack of thyroid hormones during childhood is associated with several impair neuronal connections, cognitive deficits, and mental disorders. Many of the thyroid hormones effects are mediated by astrocytes, although the mechanisms underlying these events are still unknown. In this work, we investigated the effect of 3, 5, 3’-triiodothyronine-treated (T3-treated astrocytes on cerebral cortex neuronal differentiation. Culture of neural progenitors from embryonic cerebral cortex mice onto T3-treated astrocyte monolayers yielded an increment in neuronal population, followed by enhancement of neuronal maturation, arborization and neurite outgrowth. In addition, real time PCR assays revealed an increase in the levels of the heparan sulfate proteoglycans, Glypican 1 (GPC-1 and Syndecans 3 e 4 (SDC-3 e SDC-4, followed by a decrease in the levels of the chondroitin sulfate proteoglycan, Versican. Disruption of glycosaminoglycan chains by chondroitinase AC or heparanase III completely abolished the effects of T3-treated astrocytes on neuronal morphogenesis. Our work provides evidence that astrocytes are key mediators of T3 actions on cerebral cortex neuronal development and identified potential molecules and pathways involved in neurite extension; which might eventually contribute to a better understanding of axonal regeneration, synapse formation and neuronal circuitry recover.

  7. Effects of Protons and HZE Particles on Glutamate Transport in Astrocytes, Neurons and Mixed Cultures

    Science.gov (United States)

    Sanchez, Martha C.; Nelson, Gregory A.; Green, Lora M.

    2010-01-01

    Radiation-induced neurotoxicity is a well-characterized phenomenon. However, the underlying mechanism of this toxicity is poorly understood. In the central nervous system (CNS), excitotoxic mechanisms are implicated in many neurodegenerative disease processes. Pivotal to the excitotoxic pathway is dysfunction of glutamate signaling. We reported previously that exposure to low-LET γ radiation results in altered glutamate transport in neurons and astrocytes. In the present study, we sought to investigate the effects of various particle radiations of differing LET on glutamate transport as a measure of the neurochemical vulnerability of the CNS. NTera2-derived neurons and astrocytes isolated as pure and mixed cultures were exposed to doses of 10 cGy, 50 cGy or 2 Gy of 250 MeV protons, 290 MeV/nucleon carbon ions, or 1000 MeV/nucleon iron ions. Transporter function was assessed at 3 h, 2 days and 7days after exposure. Functional assessment of glutamate transport revealed that neurons and astrocytes respond in a reciprocal manner after exposure to particle radiation. Uptake activity in neurons increased after particle irradiation. This effect was evident as late as our last time (7 days) after exposure (P < 0.05). In astrocytes, transporter activity decreased after exposure. The decrease in uptake observed in astrocytes was evident 7 days after exposure to carbon and iron ions. Uptake in mixed cultures after exposure to all three forms of radiation revealed a muted interactive response suggestive of the individual responses of each cellular phenotype acting in opposition. PMID:21128790

  8. Mitochondrial reactive oxygen species generation and calcium increase induced by visible light in astrocytes.

    Science.gov (United States)

    Jou, Mei-Jie; Jou, Shuo-Bin; Guo, Mei-Jin; Wu, Hong-Yueh; Peng, Tsung-I

    2004-04-01

    Mitochondria contain photosensitive chromophores that can be activated or inhibited by light in the visible range. Rather than utilizing light energy, however, mitochondrial electron transport oxidation-reduction reaction and energy coupling could be stimulated or damaged by visible light. Our previous work demonstrated that reactive oxygen species (ROS) were generated in cultured astrocytes after visible laser irradiation. With confocal fluorescence microscopy, we found that ROS were generated mostly from mitochondria. This mitochondrial ROS (mROS) formation plays a critical role in photoirradiation-induced phototoxicity and apoptosis. In this study, we measured changes of mitochondrial calcium level ([Ca(2+)](m)) in cultured astrocytes (RBA-1 cell line) irradiated with blue light and examined the association between mROS formation and [Ca(2+)](m) level changes. Changes of intracellular ROS and [Ca(2+)](m) were visualized using fluorescent probes 2',7'-dichlorodihydrofluorescein (DCF), and rhod-2. After exposure to visible light irradiation, RBA-1 astrocytes showed a rapid increase in ROS accumulation particularly in the mitochondrial area. Increase in [Ca(2+)](m) was also induced by photoirradiation. The levels of increase in DCF fluorescence intensity varied among different astrocytes. Some of the cells generated much higher levels of ROS than others. For those cells that had high ROS levels, mitochondrial Ca(2+) levels were also high. In cells that had mild ROS levels, mitochondrial Ca(2+) levels were only slightly increased. The rate of increase in DCF fluorescence seemed to be close to the rate of rhod-2 fluorescence increase. There is a positive and close correlation between mitochondrial ROS levels and mitochondrial Ca(2+) levels in astrocytes irradiated by visible light.

  9. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  10. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    Science.gov (United States)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  11. Phospholipase A2 is involved in galactosylsphingosine-induced astrocyte toxicity, neuronal damage and demyelination.

    Directory of Open Access Journals (Sweden)

    Cedric Misslin

    Full Text Available Krabbe disease is a fatal rare inherited lipid storage disorder affecting 1:100,000 births. This illness is caused by mutations in the galc gene encoding for the enzyme galactosylceramidase (GALC. Dysfunction of GALC has been linked to the toxic build-up of the galactolipid, galactosylsphingosine (psychosine, which induces cell death of oligodendrocytes. Previous studies show that phospholipase A2 (PLA2 may play a role in psychosine induce cell death. Here, we demonstrate that non-selective inhibition of cPLA2/sPLA2 and selective inhibition of cPLA2, but not sPLA2, also attenuates psychosine-induced cell death of human astrocytes. This study shows that extracellular calcium is required for psychosine induced cell death, but intracellular calcium release, reactive oxygen species or release of soluble factors are not involved. These findings suggest a cell autonomous effect, at least in human astrocytes. Supporting a role for PLA2 in psychosine-induced cell death of oligodendrocytes and astrocytes, the results show inhibition of PLA2 attenuates psychosine-induced decrease in the expression of astrocyte marker vimentin as well as myelin basic protein (MBP, myelin oligodendrocyte glycoprotein (MOG and the neuronal marker SMI-32 in organotypic slice cultures. These findings provide further mechanistic details of psychosine-induced death of glia and suggest a role for PLA2 in the process. This work also supports the proposal that novel drugs for Krabbe disease may require testing on astrocytes as well as oligodendrocytes for more holistic prediction of pre-clinical and clinical efficacy.

  12. Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis

    Science.gov (United States)

    Stenzel, Denise; Lundkvist, Andrea; Sauvaget, Dominique; Busse, Marta; Graupera, Mariona; van der Flier, Arjan; Wijelath, Errol S.; Murray, Jacqueline; Sobel, Michael; Costell, Mercedes; Takahashi, Seiichiro; Fässler, Reinhard; Yamaguchi, Yu; Gutmann, David H.; Hynes, Richard O.; Gerhardt, Holger

    2011-01-01

    Fibronectin (FN) is a major component of the extracellular matrix and functions in cell adhesion, cell spreading and cell migration. In the retina, FN is transiently expressed and assembled on astrocytes (ACs), which guide sprouting tip cells and deposit a provisional matrix for sprouting angiogenesis. The precise function of FN in retinal angiogenesis is largely unknown. Using genetic tools, we show that astrocytes are the major source of cellular FN during angiogenesis in the mouse retina. Deletion of astrocytic FN reduces radial endothelial migration during vascular plexus formation in a gene dose-dependent manner. This effect correlates with reduced VEGF receptor 2 and PI3K/AKT signalling, and can be mimicked by selectively inhibiting VEGF-A binding to FN through intraocular injection of blocking peptides. By contrast, AC-specific replacement of the integrin-binding RGD sequence with FN-RGE or endothelial deletion of itga5 shows little effect on migration and PI3K/AKT signalling, but impairs filopodial alignment along AC processes, suggesting that FN-integrin α5β1 interaction is involved in filopodial adhesion to the astrocytic matrix. AC FN shares its VEGF-binding function and cell-surface distribution with heparan-sulfate (HS), and genetic deletion of both FN and HS together greatly enhances the migration defect, indicating a synergistic function of FN and HS in VEGF binding. We propose that in vivo the VEGF-binding properties of FN and HS promote directional tip cell migration, whereas FN integrin-binding functions to support filopodia adhesion to the astrocytic migration template. PMID:21880786

  13. Astrocyte Transcriptome from the Mecp2(308)-Truncated Mouse Model of Rett Syndrome.

    Science.gov (United States)

    Delépine, Chloé; Nectoux, Juliette; Letourneur, Franck; Baud, Véronique; Chelly, Jamel; Billuart, Pierre; Bienvenu, Thierry

    2015-12-01

    Mutations in the gene encoding the transcriptional modulator methyl-CpG binding protein 2 (MeCP2) are responsible for the neurodevelopmental disorder Rett syndrome which is one of the most frequent sources of intellectual disability in women. Recent studies showed that loss of Mecp2 in astrocytes contributes to Rett-like symptoms and restoration of Mecp2 can rescue some of these defects. The goal of this work is to compare gene expression profiles of wild-type and mutant astrocytes from Mecp2(308/y) mice (B6.129S-MeCP2/J) by using Affymetrix mouse 2.0 microarrays. Results were confirmed by quantitative real-time RT-PCR and by Western blot analysis. Gene set enrichment analysis utilizing Ingenuity Pathways was employed to identify pathways disrupted by Mecp2 deficiency. A total of 2152 genes were statistically differentially expressed between wild-type and mutated samples, including 1784 coding transcripts. However, only 257 showed fold changes >1.2. We confirmed our data by replicative studies in independent primary cultures of cortical astrocytes from Mecp2-deficient mice. Interestingly, two genes known to encode secreted proteins, chromogranin B and lipocalin-2, showed significant dysregulation. These proteins secreted from Mecp2-deficient glia may exert negative non-cell autonomous effects on neuronal properties, including dendritic morphology. Moreover, transcriptional profiling revealed altered Nr2f2 expression which may explain down- and upregulation of several target genes in astrocytes such as Ccl2, Lcn2 and Chgb. Unraveling Nr2f2 involvement in Mecp2-deficient astrocytes could pave the way for a better understanding of Rett syndrome pathophysiology and offers new therapeutic perspectives.

  14. Chemically functionalized single-walled carbon nanotube films modulate the morpho-functional and proliferative characteristics of astrocytes.

    Science.gov (United States)

    Gottipati, Manoj K; Samuelson, Josheua J; Kalinina, Irina; Bekyarova, Elena; Haddon, Robert C; Parpura, Vladimir

    2013-09-11

    We used single-walled carbon nanotube (CNT) films to modulate the morpho-functional and proliferative characteristics of astrocytes. When plated on the CNT films of various thicknesses, astrocytes grow bigger and rounder in shape with a decrease in the immunoreactivity of glial fibrillary acidic protein along with an increase in their proliferation, changes associated with the dedifferentiation of astrocytes in culture. Thus, CNT films, as a coating material for electrodes used in brain machine interface, could reduce astrogliosis around the site of implantation.

  15. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes

    Directory of Open Access Journals (Sweden)

    Tong Xiaoying

    2010-10-01

    Full Text Available Abstract Background Brain edema leading to high intracranial pressure is a lethal complication of acute liver failure (ALF, which is believed to be cytotoxic due to swelling of astrocytes. In addition to the traditional view that elevated levels of blood and brain ammonia are involved in the mechanism of brain edema in ALF, emerging evidence suggests that inflammatory cytokines also contribute to this process. We earlier reported that treatment of astrocyte cultures with a pathophysiological concentration of ammonia (5 mM NH4Cl resulted in the activation of nuclear factor-kappaB (NF-κB and that inhibition of such activation diminished astrocyte swelling, suggesting a key role of NF-κB in the mechanism of ammonia-induced astrocyte swelling. Since cytokines are also well-known to activate NF-κB, this study examined for additive/synergistic effects of ammonia and cytokines in the activation of NF-κB and their role in astrocyte swelling. Methods Primary cultures of astrocytes were treated with ammonia and cytokines (TNF-α, IL-1, IL-6, IFN-γ, each at 10 ng/ml, individually or in combination, and cell volume was determined by the [3H]-O-methylglucose equilibration method. The effect of ammonia and cytokines on the activation of NF-κB was determined by immunoblots. Results Cell swelling was increased by ammonia (43% and by cytokines (37% at 24 h. Simultaneous co-treatment with cytokines and ammonia showed no additional swelling. By contrast, cultures pretreated with ammonia for 24 h and then exposed to cytokines for an additional 24 h, showed a marked increase in astrocyte swelling (129%. Treatment of cultures with ammonia or cytokines alone also activated NF-κB (80-130%, while co-treatment had no additive effect. However, in cultures pre-treated with ammonia for 24 h, cytokines induced a marked activation of NF-κB (428%. BAY 11-7082, an inhibitor of NF-κB, completely blocked the astrocyte swelling in cultures pre-treated with ammonia and

  16. In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology

    DEFF Research Database (Denmark)

    Herwerth, Marina; Kalluri, Sudhakar Reddy; Srivastava, Rajneesh

    2016-01-01

    of astrocyte injury in NMO and the mechanisms by which toxicity spreads to axons are not understood. METHODS: Here, we establish in vivo imaging of the spinal cord, one of the main sites of NMO pathology, as a powerful tool to study the formation of experimental NMO-related lesions caused by human AQP4...... antibodies in mice. RESULTS: We found that human AQP4 antibodies caused acute astrocyte depletion with initial oligodendrocyte survival. Within two hours of antibody application, we observed secondary axon injury in the form of progressive swellings. Astrocyte toxicity and axon damage were dependent on AQP4...... of NMO pathology beyond astrocytes, as well as in evaluating potential neuroprotective interventions. This article is protected by copyright. All rights reserved....

  17. The long-term risk of malignant astrocytic tumors after structural brain injury--a nationwide cohort study

    DEFF Research Database (Denmark)

    Munch, Tina Noergaard; Gørtz, Sanne; Wohlfahrt, Jan

    2015-01-01

    BACKGROUND: Neoplastic transformation of damaged astrocytes has been proposed as a possible pathological mechanism behind malignant astrocytic tumors. This study investigated the association between structural brain injuries causing reactive astrogliosis and long-term risk for malignant astrocytic...... for an association between structural brain injury and malignant astrocytic tumors within the first 5 years of follow-up. However, our study indicated a protective effect of astrogliosis-causing injuries 5 or more years after structural brain injury....... tumors. METHODS: The cohort consisted of all individuals living in Denmark between 1978 and 2011. The personal identification number assigned to all individuals allowed retrieval of diagnoses of traumatic brain injury, cerebral ischemic infarction, and intracerebral hemorrhage from the National Patient...

  18. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    Science.gov (United States)

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-10-29

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.

  19. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  20. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes.

    Science.gov (United States)

    O'Donnell, John C; Jackson, Joshua G; Robinson, Michael B

    2016-07-06

    Recently, mitochondria have been localized to astrocytic processes where they shape Ca(2+) signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca(2+) channel blocker), two inhibitors of reversed Na(+)/Ca(2+) exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca(2+) indicator Lck-GCaMP-6S, we observed two types of Ca(2+) signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca(2+) through reversed Na(+)/Ca(2+) exchange triggers mitochondrial loss and dramatic increases in Ca(2+) signaling in astrocytic processes. Astrocytes, the most abundant cell type in the brain

  1. Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex.

    Science.gov (United States)

    Bellesi, Michele; de Vivo, Luisa; Chini, Mattia; Gilli, Francesca; Tononi, Giulio; Cirelli, Chiara

    2017-05-24

    We previously found that Mertk and its ligand Gas6, astrocytic genes involved in phagocytosis, are upregulated after acute sleep deprivation. These results suggested that astrocytes may engage in phagocytic activity during extended wake, but direct evidence was lacking. Studies in humans and rodents also found that sleep loss increases peripheral markers of inflammation, but whether these changes are associated with neuroinflammation and/or activation of microglia, the brain's resident innate immune cells, was unknown. Here we used serial block-face scanning electron microscopy to obtain 3D volume measurements of synapses and surrounding astrocytic processes in mouse frontal cortex after 6-8 h of sleep, spontaneous wake, or sleep deprivation (SD) and after chronic (∼5 d) sleep restriction (CSR). Astrocytic phagocytosis, mainly of presynaptic components of large synapses, increased after both acute and chronic sleep loss relative to sleep and wake. MERTK expression and lipid peroxidation in synaptoneurosomes also increased to a similar extent after short and long sleep loss, suggesting that astrocytic phagocytosis may represent the brain's response to the increase in synaptic activity associated with prolonged wake, clearing worn components of heavily used synapses. Using confocal microscopy, we then found that CSR but not SD mice show morphological signs of microglial activation and enhanced microglial phagocytosis of synaptic elements, without obvious signs of neuroinflammation in the CSF. Because low-level sustained microglia activation can lead to abnormal responses to a secondary insult, these results suggest that chronic sleep loss, through microglia priming, may predispose the brain to further damage.SIGNIFICANCE STATEMENT We find that astrocytic phagocytosis of synaptic elements, mostly of presynaptic origin and in large synapses, is upregulated already after a few hours of sleep deprivation and shows a further significant increase after prolonged and

  2. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  3. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells

    Directory of Open Access Journals (Sweden)

    Mingfeng He

    2016-02-01

    Full Text Available Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s. Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.

  4. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  5. Arrays of microLEDs and astrocytes: biological amplifiers to optogenetically modulate neuronal networks reducing light requirement.

    Directory of Open Access Journals (Sweden)

    Rolando Berlinguer-Palmini

    Full Text Available In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2 and by means of a matrix of individually addressable super-bright microLEDs (μLEDs with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture.

  6. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation.

    Science.gov (United States)

    Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf

    2012-07-11

    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.

  7. Astrocytic Ca(2+) waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia.

    Science.gov (United States)

    Dong, Qi-Ping; He, Jing-Quan; Chai, Zhen

    2013-10-01

    Excitotoxicity plays a central role in the neuronal damage during ischemic stroke. Although growing evidence suggests that activation of extrasynaptic NMDA receptors initiates neuronal death, no direct evidence demonstrated their activation during ischemia. Using rat hippocampal slices, we detected oxygen-glucose deprivation (OGD) induced slow inward currents (SICs) mediated by extrasynaptic NMDA receptors in CA1 pyramidal neurons. Moreover, Ca(2+) chelator BAPTA dialysis into astrocytic network decreased the frequency of OGD induced SICs, indicating that the activation of extrasynaptic NMDA receptors depended on astrocytic Ca(2+) activity. To further demonstrate the importance of astrocytic Ca(2+) activity, we tested hippocampal slices from inositol triphosphate receptor type 2 (IP3R2) knock-out mice which abolished the astrocytic Ca(2+) activity. As expected, the frequency of OGD induced SICs was reduced. Using two-photon Ca(2+) imaging, we characterized the astrocytic Ca(2+) dynamics. By controlling Ca(2+) level in the individual astrocytes using targeted photolysis, we found that OGD facilitated the propagation of intercellular Ca(2+) waves, which were inhibited by gap junction blocker carbenoxolone (CBX). CBX also inhibited the Ca(2+) activity of the astrocytic network and decreased the SIC frequency during OGD. Functionally, the infarct volumes from brain ischemia were reduced in IP3R2 knock-out mice and in rat intracerebrally delivered with CBX. Our results demonstrate that enhanced Ca(2+) activity of the astrocytic network plays a key role on the activation of extrasynaptic NMDA receptors in hippocampal neurons, which enhances brain damage during ischemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  9. Activation of Protease-Activated Receptor 2-Mediated Signaling by Mast Cell Tryptase Modulates Cytokine Production in Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaoning Zeng

    2013-01-01

    Full Text Available Protease-activated receptor 2 (PAR-2, which is abundantly expressed in astrocytes, is known to play major roles in brain inflammation. However, the influence of the natural agonist of PAR-2, tryptase, on proinflammatory mediator releasedfrom astrocytes remains uninvestigated. In the present study, we found that tryptase at lower concentrations modestly reduced intracellular ROS production but significantly increased IL-6 and TNF-α secretion at higher concentrations without affecting astrocytic viability and proliferation. The actions of tryptase were alleviated by specific PAR-2 antagonist FSLLRY-NH2 (FS, indicating that the actions of tryptase were via PAR-2. PI3K/AKT inhibitor LY294002 reversed the effect of tryptase on IL-6 production, whereas inhibitors specific for p38, JNK, and ERK1/2 abolished the effect of tryptase on TNF-α production, suggesting that different signaling pathways are involved. Moreover, tryptase-induced activation of MAPKs and AKT was eliminated by FS, implicating that PAR-2 is responsible for transmitting tryptase biosignals to MAPKs and AKT. Tryptase provoked also expression of TGF-β and CNTF in astrocytes. The present findings suggest for the first time that tryptase can regulate the release of cytokines from astrocytes via PAR-2-MAPKs or PAR-2-PI3K/AKT signaling pathways, which reveals PAR-2 as a new target actively participating in the regulation of astrocytic functions.

  10. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment.

    Science.gov (United States)

    Vincent, Thierry; Saikali, Philippe; Cayrol, Romain; Roth, Alejandro D; Bar-Or, Amit; Prat, Alexandre; Antel, Jack P

    2008-10-15

    Autoantibody neuromyelitis optica-IgG (NMO-IgG) recognizing aquaporin-4 (AQP4) is implicated as playing a central role in the physiopathology of NMO. The aim of this in vitro-based study was to characterize functional consequences of interaction between NMO-IgG and cells of the neurovascular unit (astrocytes and brain endothelium) that would provide insight into recognized features of NMO, namely altered blood-brain barrier (BBB) permeability and granulocyte recruitment. We used sera from NMO and longitudinally extensive transverse myelitis cases shown to bind in a characteristic perivascular pattern to primate cerebellar slices. Using flow cytometry, we found that sera from NMO-IgG-positive patients reacted with CNS-derived human fetal astrocytes, whereas sera from multiple sclerosis patients did not. We demonstrated that NMO-IgG binding to astrocytes alters aquaporin-4 polarized expression and increases permeability of a human BBB endothelium/astrocyte barrier. We further demonstrated that NMO-IgG binding to human fetal astrocytes can result in NK cell degranulation, astrocyte killing by Ab-dependent cellular cytotoxicity and complement-dependent granulocyte attraction through the BBB model. Our study highlights important functional roles for NMO-IgG that could account for pathological lesions and BBB dysfunction observed in NMO.

  11. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb.

    Science.gov (United States)

    Gengatharan, Archana; Bammann, Rodrigo R; Saghatelyan, Armen

    2016-01-01

    In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future.

  12. The contribution of TWIK-1 channels to astrocyte K+ current is limited by retention in intracellular compartments

    Directory of Open Access Journals (Sweden)

    Wei eWang

    2013-12-01

    Full Text Available TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I-V relationship (passive K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance was not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels was not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55% and mildly hydrophobic internal compartment fraction (41%, with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane.

  13. Puerarin exhibits greater distribution and longer retention time in neurons than astrocytes in a co-cultured system

    Science.gov (United States)

    Wei, Shu-Yong; Tong, Jie; Xue, Qiang; Shang, Fang-hong; Li, Yan-jun; Liu, Yang; Feng, Bin-bin; Xu, Xiao-yu

    2015-01-01

    The phytoestrogen puerarin has been shown to protect neurons and astrocytes in the brain, and is therefore an attractive drug in the treatment of Alzheimer's disease, Parkinson's disease and cerebral ischemia. Whether puerarin exhibits the same biological processes in neurons and astrocytes in vitro has rarely been reported. In this study, cortical neurons and astrocytes of newborn Sprague-Dawley rats were separated, identified and co-cultured in a system based on Transwell membranes. The retention time and distribution of puerarin in each cell type was detected by fluorescence spectrophotometry and fluorescence microscope. The concentration of puerarin in both co-cultured and separately cultured neurons was greater than that of astrocytes. Puerarin concentration reached a maximum 20 minutes after it was added. At 60 minutes after its addition, a scant amount of drug was detected in astrocytes; however in both separately cultured and co-cultured neurons, the concentration of puerarin achieved a stable level of about 12.8 ng/mL. The results indicate that puerarin had a higher concentration and longer retention time in neurons than that observed in astrocytes. PMID:26170822

  14. Antioxidants and NOS inhibitors selectively targets manganese-induced cell volume via Na-K-Cl cotransporter-1 in astrocytes.

    Science.gov (United States)

    Alahmari, Khalid A; Prabhakaran, Harini; Prabhakaran, Krishnan; Chandramoorthy, Harish C; Ramugounder, Ramakrishnan

    2015-06-12

    Manganese has shown to be involved in astrocyte swelling. Several factors such as transporters, exchangers and ion channels are attributed to astrocyte swelling as a result in the deregulation of cell volume. Products of oxidation and nitration have been implied to be involved in the pathophysiology of swelling; however, the direct link and mechanism of manganese induced astrocyte swelling has not been fully elucidated. In the current study, we used rat primary astrocyte cultures to investigate the activation of Na-K-Cl cotransporter-1 (NKCC1) a downstream mechanism for free radical induced astrocyte swelling as a result of manganese toxicity. Our results showed manganese, oxidants and NO donors as potent inducer of oxidation and nitration of NKCC1. Our results further confirmed that manganese (50 μM) increased the total protein, phosphorylation and activity of NKCC1 as well as cell volume (p manganese or oxidants and NO induced activation, oxidation/nitration of NKCC1 play an important role in the astrocyte swelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes

    Science.gov (United States)

    Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole

    2009-01-01

    The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured astrocytes from mouse neocortex. Our data show that: (i) endocytosis is not a major route for FM4-64 uptake into astrocytes; (ii) FM4-64 enters astrocytes through an aqueous pore and strongly affects Ca2+ homeostasis; (iii) partitioning of FM4-64 into the outer leaflet of the plasma membrane results in a facilitation of store-operated Ca2+ entry (SOCE) channel gating; (iv) FM4-64 permeates and competes with Ca2+ for entry through a SOCE channel; (v) intracellular FM4-64 mobilizes Ca2+ from the endoplasmic reticulum stores, conveying a positive feedback to activate SOCE and to sustain dye uptake into astrocytes. Our study demonstrates that FM dyes are not markers of cycling vesicles in astrocytes and calls for a careful interpretation of FM fluorescence. PMID:20007370

  16. Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus.

    Science.gov (United States)

    Kim, Dong Won; Glendining, Kelly A; Grattan, David R; Jasoni, Christine L

    2016-10-01

    Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. A Refined Bead-Free Method to Identify Astrocytic Exosomes in Primary Glial Cultures and Blood Plasma

    Directory of Open Access Journals (Sweden)

    Cory M. Willis

    2017-06-01

    Full Text Available Astrocytes are the most abundant glial cell type in the central nervous system (CNS and are known to fulfill critical homeostatic functions. Dysfunction of activated astrocytes is also known to participate in the development of several neurological diseases. Astrocytes can be uniquely identified by expression of the intermediate filament protein glial acidic fibrillary protein (GFAP. Herein, we report on the development of a rigorous and sensitive methodology to identify GFAP+ exosomes in primary culture using flow cytometry. We then demonstrate that activated astrocytes release increased amounts of exosomes in response to treatment with interleukin-1β. Using this methodology, we report the identification of GFAP+ exosomes in blood and then use a mouse model of inflammatory demyelination, experimental autoimmune encephalomyelitis (EAE, to examine whether the abundance of GFAP+ exosomes in blood circulation changes during clinical illness. We find a detectable increase in the presence of GFAP+ exosomes in EAE mice when compared with non-EAE, control mice. Our data provide a novel perspective on the presence of GFAP in blood as it identifies exosomes as potential astrocyte-derived signals within blood. These data are complementary to previous clinical studies that reported elevated GFAP protein in blood samples from multiple sclerosis (MS patients during a clinical relapse. These data also reveal the existence of a potential systemic role for astrocyte-derived exosomes in CNS conditions involving inflammation such as multiple sclerosis.

  18. Functional network integration of embryonic stem cell-derived astrocytes in hippocampal slice cultures.

    Science.gov (United States)

    Scheffler, Björn; Schmandt, Tanja; Schröder, Wolfgang; Steinfarz, Barbara; Husseini, Leila; Wellmer, Jörg; Seifert, Gerald; Karram, Khalad; Beck, Heinz; Blümcke, Ingmar; Wiestler, Otmar D; Steinhäuser, Christian; Brüstle, Oliver

    2003-11-01

    Embryonic stem (ES) cells provide attractive prospects for neural transplantation. So far, grafting strategies in the CNS have focused mainly on neuronal replacement. Employing a slice culture model, we found that ES cell-derived glial precursors (ESGPs) possess a remarkable capacity to integrate into the host glial network. Following deposition on the surface of hippocampal slices, ESGPs actively migrate into the recipient tissue and establish extensive cell-cell contacts with recipient glia. Gap junction-mediated coupling between donor and host astrocytes permits widespread delivery of dye from single donor cells. During maturation, engrafted donor cells display morphological, immunochemical and electrophysiological properties that are characteristic of differentiating native glia. Our findings provide the first evidence of functional integration of grafted astrocytes, and depict glial network integration as a potential route for widespread transcellular delivery of small molecules to the CNS.

  19. Endothelial Cells and Astrocytes: A Concerto en Duo in Ischemic Pathophysiology

    Directory of Open Access Journals (Sweden)

    Vincent Berezowski

    2012-01-01

    Full Text Available The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.

  20. Lactate release from astrocytes to neurons contributes to cocaine memory formation

    KAUST Repository

    Boury-Jamot, Benjamin

    2016-10-12

    The identification of neural substrates underlying the long lasting debilitating impact of drug cues is critical for developing novel therapeutic tools. Metabolic coupling has long been considered a key