WorldWideScience

Sample records for astrocytes normalizes revascularization

  1. Astrocytes.

    Science.gov (United States)

    Kimelberg, Harold K.; Norenberg, Michael D.

    1989-01-01

    Describes the astrocytes' function as equal partners with neurons in both the normal and the abnormal brain. Discusses the developmental scaffolds, inert scar tissue, Huntington's disease, psychiatric disorders, and the identification of these brain cells. (RT)

  2. Effects of Intermittent Pneumatic Compression on Reduction of Postoperative Lower Extremity Edema and Normalization of Foot Microcirculation Flow in Patients Undergoing Arterial Revascularization

    OpenAIRE

    Pawlaczyk, Katarzyna; Gabriel, Marcin; Urbanek, Tomasz; Dzieciuchowicz, Łukasz; Krasiński, Zbigniew; Gabriel, Zofia; Olejniczak-Nowakowska, Małgorzata; Stanisić, Michał

    2015-01-01

    Background In patients with chronic leg ischemia, the beneficial effect of arterial revascularization can be significantly decreased due to postoperative leg swelling. The aim of this study was to assess the effects of intermittent pneumatic compression (IPC) on skin flow normalization in patients undergoing revascularization procedures due to chronic leg ischemia. Material/Methods We evaluated 116 patients with chronic leg ischemia. The patients were divided into groups according to the perf...

  3. Heroin-Induces Differential Protein Expression by Normal Human Astrocytes (NHA

    Directory of Open Access Journals (Sweden)

    Jessica L. Reynolds

    2006-01-01

    Full Text Available Heroin use is postulated to act as a cofactor in the neuropathogenesis of human immunodeficiency virus (HIV-1 infection. Astrocytes, integral components of the CNS, are reported to be susceptible to HIV-1 infection. Upon activation, astrocytes release a number of immunoregulatory products or modulate the expression of a number of proteins that foster the immunopathogenesis of HIV-1 infection. However, the role of heroin on HIV-1 infectivity and the expression of the proteome of normal human astrocytes (NHA have not been elucidated. We hypothesize that heroin modulates the expression of a number of proteins by NHA that foster the neuoropathogenesis of HIV-1 infection. We utilized LTR amplification and the p24 antigen assay to quantitate the effect of heroin on HIV-1 infectivity while difference gel electrophoresis (DIGE combined with protein identification through high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS to analyze the effects of heroin on the proteomic profile of NHA. Results demonstrate that heroin potentiates HIV-1 replication in NHA. Furthermore, heroin significantly increased protein expression levels for protein kinase C (PKC, reticulocalbin 1 precursor, reticulocalbin 1, tyrosine 3-monooxgenase/tryptophan 5-monooxgenase activation protein, chloride intracellular channel 1, cathepsin D preproprotein, galectin 1 and myosin light chain alkali. Heroin also significantly decreased protein expression for proliferating cell nuclear antigen, proteasome beta 6 subunit, tropomyosin 3, laminin receptor 1, tubulin alpha 6, vimentin, EF hand domain family member D2, Tumor protein D54 (hD54, ATP synthase, H+ transporting, mitochondrial F1 complex and ribosomal protein S14. Identification of unique, heroin-induced proteins may help to develop novel markers for diagnostic, preventative and therapeutic targeting in heroin using subjects.

  4. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Francesca Cerbai

    Full Text Available Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1 increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.

  5. Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Methamphetamine (MA is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.

  6. Copper Metabolism of Astrocytes

    OpenAIRE

    Ralf Dringen; Scheiber, Ivo F.; Julian FB Mercer

    2013-01-01

    This short review will summarize the current knowledge on the uptake, storage, and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothion...

  7. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    International Nuclear Information System (INIS)

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs

  8. Effect of Coriaria Lactone-activated Astrocyte-conditioned Medium on the Cerebral TNF-α of Normal Rats

    Institute of Scientific and Technical Information of China (English)

    LI Zhongyu; LIU Qingying; ZHU Changgeng; WANG Wei

    2006-01-01

    To explore the effect of coriaria lactone (CL)-activated astrocyte-conditioned medium on the cerebral TNF-α of normal rats, the CL-activated astrocyte-conditioned medium (ACM) was injected into the lateral ventricle of SD rats. The rats were observed for behavioral changes, and the changes of the expression of TNF-α in the cerebral cortex and hippocampus were immunohistochemically examined by employing SP method. TNF-α level was assessed by means of radioimmunoassay in homogenate of cerebral cortex and hippocampus as well as cerebrospinal fluid. Seizure episodes were observed in ACM group 30 min after the ACM injection, but they were not observed in the control group.Immunohistochemical detection showed that the immunoreaction of TNF-α in hippocampus and cerebral cortex of rats were stronger than that of the control group 4 h after the ACM injection (P<0.05). In this group, the concentrations of TNF-α in homogenate of cerebral cortex and hippocampus and cerebrospinal fluid were higher than those of the control group (P<0.05). Itis suggested that the ACM activated by CL can enhance the expression of TNF-α in normal rats,and is related to epileptogenesis.

  9. Transmyocardial Laser Revascularization

    Science.gov (United States)

    ... Vascular Access for Hemodialysis Ventricular Assist Devices Transmyocardial Laser Revascularization | Share Like every other organ or tissue ... bypass surgery, there is a procedure called transmyocardial laser revascularization, also called TMLR or TMR. TMLR cannot ...

  10. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  11. Copper Metabolism of Astrocytes

    Directory of Open Access Journals (Sweden)

    Ralf eDringen

    2013-03-01

    Full Text Available This short review will summarize the current knowledge on the uptake, storage and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and of glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic inventions that aim to correct disturbances in brain copper homeostasis.

  12. Posterior circulation revascularization to manage vertebrobasilar occlusion

    Directory of Open Access Journals (Sweden)

    SHANG Yan-guo

    2012-06-01

    Full Text Available Objective To discuss the technique and effect of posterior circulation revascularization to manage vertebrobasilar occlusion. Methods Nine patients with vertebrobasilar occlusion were treated by using occipital artery-posterior inferior cerebellar artery bypass, superficial temporal artery-superior cerebellar artery bypass, superficial temporal artery-posterior cerebral artery bypass and occipital artery-vertebral artery bypass with radial artery graft. Results Intraoperative indocyanine green angiography showed all the bypass arteries were patent. Postoperative DSA or CTA showed bypass arteries patent in 8 patients, among whom seven patients got obvious improvement on MR or CT perfusion. One patient died of heart failure on the 15th day postoperative. During the follow-up of eight patients, no stroke reoccurred, four patients got back to nearly normal life. Conclusion Most of the patients with vertebrobasilar occlusion could benefit from the posterior circulation revascularization, which should be confirmed by randomized controlled clinical trials in the future.

  13. Development of a Novel Method for the Purification and Culture of Rodent Astrocytes

    OpenAIRE

    Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.

    2011-01-01

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo...

  14. Dual Phases of Respiration Chain Defect-Augmented mROS-Mediated mCa2+ Stress during Oxidative Insult in Normal and ρ0 RBA1 Astrocytes

    Directory of Open Access Journals (Sweden)

    Tsung-I Peng

    2013-01-01

    Full Text Available Mitochondrial respiratory chain (RC deficits, resulting in augmented mitochondrial ROS (mROS generation, underlie pathogenesis of astrocytes. However, mtDNA-depleted cells (ρ0 lacking RC have been reported to be either sensitive or resistant to apoptosis. In this study, we sought to determine the effects of RC-enhanced mitochondrial stress following oxidative insult. Using noninvasive fluorescence probe-coupled laser scanning imaging microscopy, the ability to resist oxidative stress and levels of mROS formation and mitochondrial calcium (mCa2+ were compared between two different astrocyte cell lines, control and ρ0 astrocytes, over time upon oxidative stress. Our results showed that the cytoplasmic membrane becomes permeated with YO-PRO-1 dye at 150 and 130 minutes in RBA-1 and ρ0 astrocytes, respectively. In contrast to RBA-1, 30 minutes after 20 mM H2O2 exposure, ρ0 astrocytes formed marked plasma membrane blebs, lost the ability to retain Mito-R, and showed condensation of nuclei. Importantly, H2O2-induced ROS and accompanied mCa2+ elevation in control showed higher levels than ρ0 at early time point but vice versa at late time point. Our findings underscore dual phase of RC-defective cells harboring less mitochondrial stress due to low RC activity during short-term oxidative stress but augmented mROS-mediated mCa2+ stress during severe oxidative insult.

  15. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  16. Transmyocardial laser revascularization. Early clinical experience

    Directory of Open Access Journals (Sweden)

    Oliveira Sérgio Almeida de

    1999-01-01

    Full Text Available OBJECTIVE: To analyze the initial clinical experience of transmyocardial laser revascularization (TMLR in patients with severe diffuse coronary artery disease. METHODS: Between February, 1998 and February, 1999, 20 patients were submitted to TMLR at the Heart Institute (InCor, University of São Paulo Medical School, Brazil, isolated or in association with conventional coronary artery bypass graft (CABG. All patients had severe diffuse coronary artery disease, with angina functional class III/IV (Canadian Cardiovascular Society score unresponsive to medical therapy. Fourteen patients were submitted to TMLR as the sole therapy, whereas 6 underwent concomitant CABG. Fifty per cent of the patients had either been previously submitted to a CABG or to a percutaneous transluminal coronary angioplasty (PTCA. Mean age was 60 years, ranging from 45 to 74 years. RESULTS: All patients had three-vessel disease, with normal or mildly impaired left ventricular global function. Follow-up ranged from 1 to 13 months (mean 6.6 months, with no postoperative short or long term mortality. There was significant symptom improvement after the procedure, with 85% of the patients free of angina, and the remaining 15 % of the patients showing improvement in functional class, as well as in exercise tolerance. CONCLUSION: This novel technique can be considered a low risk alternative for a highly selected group of patients not suitable for conventional revascularization procedures.

  17. Astrocytes in multiple sclerosis.

    Science.gov (United States)

    Ludwin, Samuel K; Rao, Vijayaraghava Ts; Moore, Craig S; Antel, Jack P

    2016-08-01

    Recent experimental and clinical studies on astrocytes are unraveling the capabilities of these multi-functional cells in normal homeostasis, and in central nervous system (CNS) disease. This review focuses on understanding their behavior in all aspects of the initiation, evolution, and resolution of the multiple sclerosis (MS) lesion. Astrocytes display remarkable flexibility and variability of their physical structure and biochemical output, each aspect finely tuned to the specific stage and location of the disease, participating in both pathogenic and beneficial changes seen in acute and progressive forms. As examples, chemo-attractive or repulsive molecules may facilitate the entry of destructive immune cells but may also aid in the recruitment of oligodendrocyte precursors, essential for repair. Pro-inflammatory cytokines may attack pathogenic cells and also destroy normal oligodendrocytes, myelin, and axons. Protective trophic factors may also open the blood-brain barrier and modulate the extracellular matrix to favor recruitment and persistence of CNS-specific immune cells. A chronic glial scar may confer structural support following tissue loss and inhibit ingress of further noxious insults and also inhibit migration of reparative cells and molecules into the damaged tissue. Continual study into these processes offers the therapeutic opportunities to enhance the beneficial capabilities of these cells while limiting their destructive effects. PMID:27207458

  18. Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery

    OpenAIRE

    Wu, Le-yu; Yu, Xue-li; Feng, Lin-yin

    2015-01-01

    Aim: Connexin 43 (Cx43) is a member of connexin family mainly expressed in astrocytes, which forms gap junctions and hemichannels and maintains the normal shape and function of astrocytes. In this study we investigated the role of Cx43 in astrocytes in facilitating neuronal recovery during ischemic stroke. Methods: Primary culture of astrocytes or a mixed culture of astrocytes and cortical neurons was subjected to oxygen glucose deprivation and reperfusion (OGD/R). The expression of Cx43 and ...

  19. Penile revascularization-contemporary update

    Institute of Scientific and Technical Information of China (English)

    Brian Dicks; Martin Bastuba; Irwin Goldstein

    2013-01-01

    Contemporary therapies for erectile dysfunction are generally targeted towards older men and universally engage pharmacological and/ or device related treatment options.Penile revascularization,using microvascular arterial bypass surgical techniques,is a non-pharmacological,non-device-related,and reconstructive surgical strategy for men with erectile dysfunction that was first described by Dr Vaclav Michal in 1973.Contemporary penile revascularization attempts to‘cure' pure arteriogenic erectile dysfunction in young men with arterial occlusive pathology in the distal internal pudendal,common penile or proximal cavernosal artery secondary to focal endothelial injury from blunt pelvic,perineal or penile trauma.A microvascular anastomosis is fashioned between the donor inferior epigastric and recipient dorsal penile artery.Increased perfusion pressure is theoretically communicated to the cavernosal artery via perforating branches from the dorsal artery.This article will review the history,indications and pathophysiology of blunt trauma-induced focal arterial occlusive disease in young men with erectile dysfunction,current surgical techniques utilized and results of surgery.Contemporary use of penile revascularization is a logical and wanted therapeutic option to attempt to reverse erectile dysfunction in young men who have sustained blunt pelvic,perineal or penile trauma.

  20. Functional Oxygen Sensitivity of Astrocytes.

    Science.gov (United States)

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  1. Astrocytes conspire with neurons during progression of neurological disease

    OpenAIRE

    McGann, James C.; Lioy, Daniel T.; Mandel, Gail

    2012-01-01

    As astrocytes are becoming recognized as important mediators of normal brain function, studies into their roles in neurological disease have gained significance. Across mouse models for neurodevelopmental and neurodegenerative diseases, astrocytes are considered key regulators of disease progression. In Rett syndrome and Parkinson’s disease, astrocytes can even initiate certain disease phenotypes. Numerous potential mechanisms have been offered to explain these results, but research into the ...

  2. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    Science.gov (United States)

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  3. Carotid revascularization: risks and benefits

    Directory of Open Access Journals (Sweden)

    O'Brien M

    2014-07-01

    Full Text Available Marlene O'Brien, Ankur Chandra Department of Surgery, Division of Vascular Surgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA Abstract: Despite a decline during the recent decades in stroke-related death, the incidence of stroke has remained unchanged or slightly increased, and extracranial carotid artery stenosis is implicated in 20%–30% of all strokes. Medical therapy and risk factor modification are first-line therapies for all patients with carotid occlusive disease. Evidence for the treatment of patients with symptomatic carotid stenosis greater than 70% with either carotid artery stenting (CAS or carotid endarterectomy (CEA is compelling, and several trials have demonstrated a benefit to carotid revascularization in the symptomatic patient population. Asymptomatic carotid stenosis is more controversial, with the largest trials only demonstrating a 1% per year risk stroke reduction with CEA. Although there are sufficient data to advocate for aggressive medical therapy as the primary mode of treatment for asymptomatic carotid stenosis, there are also data to suggest that certain patient populations will benefit from a stroke risk reduction with carotid revascularization. In the United States, consensus and practice guidelines dictate that CEA is reasonable in patients with high-grade asymptomatic stenosis, a reasonable life expectancy, and perioperative risk of less than 3%. Regarding CAS versus CEA, the best-available evidence demonstrates no difference between the two procedures in early perioperative stroke, myocardial infarction, or death, and no difference in 4-year ipsilateral stroke risk. However, because of the higher perioperative risks of stroke in patients undergoing CAS, particularly in symptomatic, female, or elderly patients, it is difficult to recommend CAS over CEA except in populations with prohibitive cardiac risk, previous carotid surgery, or prior neck radiation. Current treatment

  4. Astrocyte Aquaporin Dynamics in Health and Disease.

    Science.gov (United States)

    Potokar, Maja; Jorgačevski, Jernej; Zorec, Robert

    2016-01-01

    The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state. PMID:27420057

  5. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    . Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were...

  6. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    of 18S ribosomal RNA and the Rab13, Pkp4, Ankrd25, and Inpp1 mRNAs in astrocyte protrusions. The Boyden chamber isolated RNA from both primary astrocytes and C8S cells was analyzed by next generation sequencing (NGS), which revealed that >250 polyadenylated (polyA) RNA species accumulated in the cell...

  7. Revascularization options in stable coronary artery disease: it is not how to revascularize, it is whether and when to revascularize.

    Science.gov (United States)

    Torosoff, Mikhail T; Sidhu, Mandeep S; Desai, Karan P; Fein, Steven A; Boden, William E

    2015-09-01

    Patients with acute coronary syndromes and severe multivessel or left main coronary artery disease have better outcomes when prompt revascularization is performed in addition to optimal medical therapy (OMT). However, in patients with stable ischemic heart disease, randomized strategy trials have revealed equipoise between initial strategies of OMT alone and OMT plus revascularization. Conducted in diverse stable ischemic heart disease patient populations and throughout the spectrum of atherosclerotic and ischemic burden, the RITA-2, MASS II, COURAGE, BARI 2D and FAME 2 trials demonstrate that OMT alone and OMT plus revascularization yield similar outcomes with respect to mortality and myocardial infarction. What remains unclear is whether there may be one or more subsets of patients with stable ischemic heart disease in whom revascularization may be associated with a reduction in mortality or myocardial infarction, which is to be addressed in the ongoing ISCHEMIA trial.

  8. Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    OpenAIRE

    Martin Heni; Hennige, Anita M.; Andreas Peter; Dorothea Siegel-Axel; Anna-Maria Ordelheide; Norbert Krebs; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring; Harald Staiger

    2011-01-01

    INTRODUCTION: In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone. METHODS: Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathwa...

  9. Evaluation of the patients with renovascular hypertension after percutaneous revascularization by Doppler ultrasonography

    International Nuclear Information System (INIS)

    Objective: Evaluation of the effectiveness of percutaneous revascularization is based primarily on clinical criteria, and laboratory findings rather than direct investigation of luminal width. The purpose of this study was to evaluate the success of endovascular revascularization with serial Doppler ultrasound (US) examinations. Methods and material: 19 patients (14 were atherosclerotic, five were with fibromuscular dysplasia) with suspected renovascular hypertension treated by percutaneous revascularization were included in a prospective study. Patients had 23 renal artery stenoses reducing the diameter by more than 50%. Doppler US examinations were performed before intervention, and 1 day, 3 and 6 months after intervention. Results: Initial revascularization was technically successful in 21 of 23 stenoses (91.3%) (18 PTRA, three stent placement). Hypertension was cured in five atherosclerotic and in five fibromuscular dysplasia (FMD) patients, and improved in four atherosclerotic patients. Residual stenosis was determined in six patients and the others were evaluated as normal by initial postprocedure Doppler US. As based on Doppler US, restenosis (>60%-narrowing) was depicted in four of six (66.6%) renal arteries with residual stenosis, and one of 15 (6.6%) normal renal arteries at 1 year. This difference in restenosis rates (residual stenosis vs. normal) was significant (P<0.05). Conclusion: Positive predictor for recurrence was a residual renal artery stenosis documented by Doppler US 1 day after percutaneous revascularization in atherosclerotic cases

  10. Surgical myocardial revascularization without extracorporeal circulation

    Directory of Open Access Journals (Sweden)

    Salomón Soriano Ordinola Rojas

    2003-05-01

    Full Text Available OBJECTIVE: To assess the immediate postoperative period of patients undergoing myocardial revascularization without extracorporeal circulation with different types of grafts. METHODS: One hundred and twelve patients, 89 (79.5% of whom were males, were revascularized without extracorporeal circulation. Their ages ranged from 39 to 85 years. The criteria for indicating myocardial revascularization without extracorporeal circulation were as follows: revascularized coronary artery caliber > 1.5 mm, lack of intramyocardial trajectory on coronary angiography, noncalcified coronary arteries, and tolerance of the heart to the different rotation maneuvers. RESULTS: Myocardial revascularization without extracorporeal circulation was performed in 112 patients. Three were converted to extracorporeal circulation, which required a longer hospital stay but did not impact mortality. During the procedure, the following events were observed: atrial fibrillation in 10 patients, ventricular fibrillation in 4, total transient atrioventricular block in 2, ventricular extrasystoles in 58, use of a device to retrieve red blood cells in 53, blood transfusion in 8, and arterial hypotension in 89 patients. Coronary angiography was performed in 20 patients on the seventh postoperative day when the grafts were patent. CONCLUSION: Myocardial revascularization without extracorporeal circulation is a reproducible technique that is an alternative for treating ischemic heart disease.

  11. The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals.

    Science.gov (United States)

    Michelucci, Alessandro; Bithell, Angela; Burney, Matthew J; Johnston, Caroline E; Wong, Kee-Yew; Teng, Siaw-Wei; Desai, Jyaysi; Gumbleton, Nigel; Anderson, Gregory; Stanton, Lawrence W; Williams, Brenda P; Buckley, Noel J

    2016-08-01

    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes. PMID:26138449

  12. Targeting astrocytes in major depression

    OpenAIRE

    Verkhratsky, Alexej; Peng, Liang; Gu, Li; Li, Baoman

    2015-01-01

    Astrocytes represent a highly heterogeneous population of neural cells primarily responsible for the homeostasis of the central nervous system. Astrocytes express multiple receptors for neurotransmitters, including the serotonin 5-HT2B receptors and interact with neurones at the synapse. Astroglia contribute to neurological diseases through homeostatic response, neuroprotection and reactivity. In major depression, astrocytes show signs of degeneration and are decreased in numbe...

  13. Nuclear Factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes

    OpenAIRE

    Wilczynska, Katarzyna M.; Singh, Sandeep K.; Adams, Bret; Bryan, Lauren; Rao, Raj R.; Valerie, Kristoffer; Wright, Sarah; Griswold-Prenner, Irene; Kordula, Tomasz

    2009-01-01

    Even though astrocytes are critical for both normal brain functions and the development and progression of neuropathological states, including neuroinflammation associated with neurodegenerative diseases, the mechanisms controlling gene expression during astrocyte differentiation are poorly understood. Thus far, several signaling pathways were shown to regulate astrocyte differentiation, including JAK-STAT, BMP-2/Smads, and Notch. More recently, a family of Nuclear Factor-1 (NFI-A, -B, -C, an...

  14. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  15. Benefit of cardiac rehabilitation programme in revascularized coronary patient

    OpenAIRE

    Laura Crăciun; Claudiu Avram; Adina Avram; Stela Iurciuc; Dan Gaiţă

    2009-01-01

    Objective: Evaluating the cardiovascular risk profile in revascularized coronary patients at 16 months after revascularization(PCI+CABG). Material and method: We evaluated the cardiovascular risk profile, compliance to the secondary preventionmeasures and reaching guideline targets in revascularized coronary patients included in EuroASpire III Romania. The patientswere divided in two groups: the selection criteria was the adherence to cardiac rehabilitation programme (CRP+/CRP-). Result:The p...

  16. 33. Moderate ischemic mitral regurgitation: Revascularization alone versus revascularization and mitral valve repair

    Directory of Open Access Journals (Sweden)

    H. bakr

    2016-07-01

    Study made from January, 2014 to August, 2015, at Medina Cardiac Centre that the presence of moderate (2+ ischaemic mitral regurgitation in ischaemic heart disease patients undergoing revascularization alone does not add any additional burden to the operative risk nor does it affect the immediate and early outcome of these patients. That revascularization alone can ameliorate moderate ischaemic mitral regurgitation in most patients postoperatively. This improvement is translated into an improvement in the functional class and the quality of life postoperatively there is no statistical difference between two groups.Also a procedure to address the mitral valve in moderate IMR should be considered in patients with a worse preoperative left ventricular profile.

  17. Astrocytic role in synapse formation after injury.

    Science.gov (United States)

    Li, Ying; Li, Daqing; Raisman, Geoffrey

    2016-08-15

    In 1969 a paper entitled Neuronal plasticity in the septal nuclei of the adult rat proposed that new synapses are formed in the adult brain after injury (Raisman, 1969). The quantitative electron microscopic study of the timed responses to selective partial denervation of the neuropil of the adult rat septal nuclei after distant transection of the hippocampal efferent axons in the fimbria showed that the new synapses arise by sprouting of surviving adjacent synapses which selectively take over the previously denervated sites and thus restore the number of synapses to normal. This article presents the evidence for the role of perisynaptic astrocytic processes in the removal and formation of synapses and considers its significance as one of the three major divisions of the astrocytic surface in terms of the axonal responses to injury and regeneration. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26746338

  18. Astrocytes as therapeutic targets of estrogenic compounds following brain injuries

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-03-01

    Full Text Available For decades, astrocytes have been considered to be non-excitable support cells that are relatively resistant to brain injury. This view has changed radically during the past twenty years. Multiple essential functions are performed by astrocytes in normal brain. Astrocytes are dynamically involved in synaptic transmission, metabolic and ionic homeostasis, and inflammatory maintenance of the blood brain barrier. Advances in our understanding of astrocytes include new observations about their structure, organization, and function. Astrocytes play an active and important role in the pathophysiology of brain damage. Brain injury impairs mitochondrial function and this is accompanied by increased oxidative stress, leading to prominent astrogliosis, which involves changes in gene expression and morphology, and therefore glial scar formation. Recent works have demonstrated a protective role of reactive astrocytes after brain injury. Nevertheless, others have pointed to an inhibitory role of astrocytes in axonal regeneration after injury. Reactive astrogliosis is a complex phenomenon that includes a mixture of positive and negative responses for neuronal survival and regeneration. Reactive astroglia maintains the integrity of the blood-brain barrier and the survival of the perilesional tissue, but may prevent axonal and damaged tissue regeneration. Neuroprotective strategies aiming at reducing gliosis and enhance brain plasticity are of potential interest for translational neuroscience research in brain injuries. In this context, neurosteroids have shown to be a promising strategy to protect brain against injury, as their effects may rely on reducing gliosis, brain inflammation and potentially modulating recovery from brain injury by engaging mechanisms of neural plasticity. In conclusion, in this work we will consider particularly the two-edged sword role of reactive astrocytes, which is an experimental paradigm helpful in discriminating destructive

  19. Carotid artery revascularization : Surgical and endovascular developments

    OpenAIRE

    de Borst, G. J.

    2007-01-01

    Carotid artery revascularization. Surgical and endovascular developments. Stroke is among the most disabling chronic diseases and the third major cause of death in the Western world. In the Netherlands around 12 per 1000 inhabitants suffers a stroke, and in 2005 over 10.000 people died as a result of stroke representing 7.6% of all deaths. In 10-20% of patients stroke is heralded by transient cerebral deficit. These harbingers of stroke allow a certain amount of time to search for the cause o...

  20. Astrocytes: Key Regulators of Neuroinflammation.

    Science.gov (United States)

    Colombo, Emanuela; Farina, Cinthia

    2016-09-01

    Astrocytes are crucial regulators of innate and adaptive immune responses in the injured central nervous system. Depending on timing and context, astrocyte activity may exacerbate inflammatory reactions and tissue damage, or promote immunosuppression and tissue repair. Recent literature has unveiled key factors and intracellular signaling pathways that govern astrocyte behavior during neuroinflammation. Here we have re-visited in vivo studies on astrocyte signaling in neuroinflammatory models focusing on evidences obtained from the analysis of transgenic mice where distinct genes involved in ligand binding, transcriptional regulation and cell communication have been manipulated in astrocytes. The integration of in vivo observations with in vitro data clarifies precise signaling steps, highlights the crosstalk among pathways and identifies shared effector mechanisms in neuroinflammation.

  1. [Novel function of astrocytes revealed by optogenetics].

    Science.gov (United States)

    Beppu, Kaoru; Matsui, Ko

    2014-12-01

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  2. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    Science.gov (United States)

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  3. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes

    OpenAIRE

    Christian Schnell; Yohannes Hagos; Swen Hülsmann

    2012-01-01

    Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrol...

  4. Heterogeneity of Astrocytic Form and Function

    OpenAIRE

    Oberheim, Nancy Ann; Goldman, Steven A.; NEDERGAARD, Maiken

    2012-01-01

    Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structu...

  5. Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease

    OpenAIRE

    Lange, Sofie C.; Bak, Lasse K.; Helle S. Waagepetersen; Schousboe, Arne; Norenberg, Michael D.

    2012-01-01

    During the past decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium s...

  6. Substrate-dependent regulation of ascorbate transport in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na+-dependent L-ascorbate transporter in the plasma membrane. The present study examined the effects of ascorbate deprivation and supplementation on the activity of the transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 minute at 37C. They observed that the maximal uptake rate, Vmax, rapidly (m) of the transport system for ascorbate. Vmax returned to normal following addition of L-ascorbate, but not D-isoascorbate, to the medium. The authors conclude that astrocytes adapt ascorbate transport rates to changes in substrate availability. Furthermore, the data suggest that the transport system located in the astroglial plasma membrane regulates intracellular ascorbate concentration, because changes in transport rate may compensate for regional differences and temporal fluctuations in extracellular ascorbate levels

  7. Localized 1H-MR spectroscopy in moyamoya disease before and after revascularization surgery

    International Nuclear Information System (INIS)

    To evaluate, using localized proton magnetic resonance spectroscopy (1H-MRS), the cerebral metabolic change apparent after revascularization surgery in patients with moyamoya disease. Sixteen children with moyamoya disease and eight age-matched normal controls underwent MR imaging, MR angiography, conventional angiography, and 99mTc- ECD SPECT. Frontal white matter and the basal ganglia of both hemispheres were subjected to localized 1H-MRS, and after revascularization surgery, four patients underwent follow-up 1H-MRS. Decreased NAA/Cr ratios (1.35±0.14 in patients vs. 1.55±0.24 in controls) and Cho/Cr ratios (0.96±0.13 in patients vs. 1.10±0.11 in controls) were observed in frontal white matter. After revascularization surgery, NAA/Cr and Cho/Cr ratios in this region increased. In the basal ganglia, there is no abnormal metabolic ratios. Localized 1H-MRS revealed abnormal metabolic change in both hemispheres of children with moyamoya disease. Because of its non-invasive nature, 1H-MRS is potentially useful for the preoperative evaluation of metabolic abnormalities and their postoperative monitoring

  8. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    International Nuclear Information System (INIS)

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  9. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  10. Co-culture of astrocytes with neurons from injured brain A time-dependent dichotomy

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Xu; Min Wang; Jing Liu; Jingya Lv; Yanan Hu; Huanxiang Zhang

    2011-01-01

    As supportive cells for neuronal growth and development, much effort has been devoted to the role of astrocytes in the normal state. However, the effect of the astrocytes after injury remains elusive. In the present study, neurons isolated from the subventricular zone of injured neonatal rat brains were co-cultured with astrocytes. After 6 days, these astrocytes showed a mature neuron-like appearance and the number of survivingneurons, primary dendrites and total branches was significantly higher than those at 3 days. The neurons began to shrink at 9 days after co-culture with shorter and thinner processes and the number of primary dendrites and total branches was significantly reduced. These experimental findings indicate that astrocytes in the injured brain promote the development of neurons in the early stages of co-culture while these cells reversely inhibit neuronal growth and development at the later states.

  11. Access to myocardial revascularization procedures: Closing the gap with time?

    OpenAIRE

    Niyonsenga Théophile; Vanasse Alain; Courteau Josiane; Hemiari Abbas

    2006-01-01

    Abstract Background Early access to revascularization procedures is known to be related to a more favorable outcome in myocardial infarction (MI) patients, but access to specialized care varies widely amongst the population. We aim to test if the early gap found in the revascularization rates, according to distance between patients' location and the closest specialized cardiology center (SCC), remains on a long term basis. Methods We conducted a population-based cohort study using data from t...

  12. Effect of fatty acids isolated from edible oils like mustard, linseed or coconut on astrocytes maturation.

    Science.gov (United States)

    Joardar, Anindita; Das, Sumantra

    2007-12-01

    The omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA, 22:6n-3) has been previously shown to facilitate some of the vital functions of astrocytes. Since some dietary oils contain alpha-linolenic acid (ALA, 18:3n-3), which is a precursor of DHA, we examined their effect on astrocyte development. Fatty acids (FAs) were isolated from commonly used oils and their compositions were determined by GLC. FAs from three oils, viz. coconut, mustard and linseed were studied for their effect on astrocyte morphology. Parallel studies were conducted with FAs from the same oils after heating for 72 h. Unlike coconut oil, FAs from mustard and linseed, both heated and raw, caused significant morphogenesis of astrocytes in culture. ss-AR binding was also substantially increased in astrocytes treated with FAs from raw mustard and linseed oils as compared to astrocytes grown in normal medium. The expression profile of the isoforms of GFAP showed that astrocyte maturation by FAs of mustard and linseed oil was associated with appearance of acidic variants of GFAP and disappearance of some neutral isoforms similar to that observed in cultures grown in serum containing medium or in the presence of DHA. Taken together, the study highlights the contribution of specific dietary oils in facilitating astrocyte development that can have potential impact on human health.

  13. [Revascularization of the carotid and vertebral arteries in the elderly].

    Science.gov (United States)

    Illuminati, G; Bezzi, M; D'Urso, A; Giacobbi, D; Ceccanei, G; Vietri, F

    2004-01-01

    From January 1994 to July 2004, 323 patients underwent 348 revascularization of carotid bifurcation for atherosclerotic stenoses. Eighty eight patients (group A) were 75 year-old or older, whereas 235 (group B) were younger than 75 years. Postoperative mortality/neurologic morbidity rate was 1% in group A, and 1.4% in group B. At 5 years, patency and freedom from symptoms/stroke were, respectively, 91% and 92% in group A, and 89% and 91% in group B. None of these differences was statistically significant. In the same time period, 26 internal carotid arteries were revascularized in 24 patients, 75 or more aged, for a symptomatic kinking. Postoperative mortality/morbidity rate was absent, whereas, at 5 years, patency and freedom from symptoms/stroke were, respectively, 88% and 92%. Twelve vertebral arteries were revascularized in 12 patients, 75 or more aged, for invalidating symptoms of vertebrobasilar insufficiency. Postoperative mortality/neurologic morbidity rate was absent. In one case postoperative recurrence of symptoms occurred, despite a patent revascularization. Patency and freedom from symptoms/stroke were 84% and 75%, at 5 years. Revascularization of carotid and vertebral arteries in the elderly can be accomplished with good results, superposable to those of standard revascularization of carotid bifurcation in a younger patients' population. PMID:15803810

  14. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Octavio Garcia

    Full Text Available BACKGROUND: Down's syndrome (DS is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology. METHODOLOGY/PRINCIPAL FINDINGS: Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1, an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes. CONCLUSIONS/SIGNIFICANCE: These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.

  15. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties

    Directory of Open Access Journals (Sweden)

    Sandra J Hewett

    2011-07-01

    Full Text Available Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia–ischaemia injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2. Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase, EAAT-1 (excitatory amino acid transporter-1; also known as GLAST, MCT-1 (monocarboxylate transporter-1 and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP, which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.

  16. Hemodynamic and metabolic effects of cerebral revascularization.

    Science.gov (United States)

    Leblanc, R; Tyler, J L; Mohr, G; Meyer, E; Diksic, M; Yamamoto, L; Taylor, L; Gauthier, S; Hakim, A

    1987-04-01

    hemodynamic function and oxygen hypometabolism. Cerebral revascularization results in decreased CBV, indicating improved hemodynamic reserve, but does not consistently improve oxygen metabolism. PMID:3494109

  17. Validation of the SYNTAX revascularization index to quantify reasonable level of incomplete revascularization after percutaneous coronary intervention.

    Science.gov (United States)

    Généreux, Philippe; Campos, Carlos M; Farooq, Vasim; Bourantas, Christos V; Mohr, Friedrich W; Colombo, Antonio; Morel, Marie-Angèle; Feldman, Ted E; Holmes, David R; Mack, Michael J; Morice, Marie-Claude; Kappetein, A Pieter; Palmerini, Tullio; Stone, Gregg W; Serruys, Patrick W

    2015-07-15

    Incomplete revascularization is common after percutaneous coronary intervention (PCI). Whether a "reasonable" degree of incomplete revascularization is associated with a similar favorable long-term prognosis compared with complete revascularization remains unknown. We sought to quantify the proportion of coronary artery disease burden treated by PCI and evaluate its impact on outcomes using a new prognostic instrument-the Synergy Between PCI with Taxus and Cardiac Surgery (SYNTAX) Revascularization Index (SRI). The baseline SYNTAX score (bSS), the residual SYNTAX score, and the delta SYNTAX score (ΔSS) were determined from 888 angiograms of patients enrolled in the prospective SYNTAX trial. The SRI was then calculated for each patient using the following formula: SRI = (ΔSS/bSS]) × 100. Outcomes were examined according to the proportion of revascularized myocardium (SRI = 100% [complete revascularization], 50% to SYNTAX score was 4.5 ± 6.9. The mean SRI was 85.3 ± 21.2% and was 100% in 385 patients (43.5%), <100% to 50% in 454 patients (51.1%), and <50% in 48 patients (5.4%). Five-year adverse outcomes, including death, were inversely proportional to the SRI. An SRI cutoff of <70% (present in 142 patients [16.0%] after PCI) had the best prognostic accuracy for prediction of death and, by multivariable analysis, was an independent predictor of 5-year mortality (hazard ratio [HR] 4.13, 95% confidence interval [CI] 2.79 to 6.11, p <0.0001). In conclusion, the SRI is a newly described method for quantifying the proportion of coronary artery disease burden treated by PCI. The SRI is a useful tool in assessing the degree of revascularization after PCI, with SRI ≥70% representing a "reasonable" goal for patients with complex coronary artery disease.

  18. Revascularization options in patients with chronic kidney disease.

    Science.gov (United States)

    Ashrith, Guha; Elayda, MacArthur A; Wilson, James M

    2010-01-01

    Cardiovascular disease is the leading cause of death in patients who have chronic kidney disease or end-stage renal disease and are undergoing hemodialysis. Chronic kidney disease is a recognized risk factor for premature atherosclerosis. Unfortunately, most major randomized clinical trials that form the basis for evidence-based use of revascularization procedures exclude patients who have renal insufficiency. Retrospective, observational studies suggest that patients with end-stage renal disease and severe coronary occlusive disease have a lower risk of death if they undergo coronary revascularization rather than medical therapy alone. Due to a lack of prospective studies, however, the relative merits of percutaneous versus surgical revascularization are merely a matter of opinion. Several small, retrospective studies have shown that coronary artery bypass grafting is associated with higher procedural death but better long-term survival than is percutaneous coronary intervention. This difference appears to result from poor long-term results of percutaneous coronary intervention in patients who have chronic kidney disease or end-stage renal disease.Because randomized trials comparing percutaneous coronary intervention and coronary artery bypass grafting have included patients undergoing balloon angioplasty and placement of bare-metal stents, their conclusions are suspect in the era of drug-eluting stents. In this review, we discuss different revascularization options for patients with chronic kidney disease, the outcomes of revascularization procedures, and the risk factors for adverse outcomes.

  19. the Perspective of an Angiosome-Oriented Revascularization Strategy

    Directory of Open Access Journals (Sweden)

    Francisco Acín

    2014-01-01

    Full Text Available Our aim was to describe our experience with infrapopliteal endovascular procedures performed in diabetic patients with ischemic ulcers and critical ischemia (CLI. A retrospective study of 101 procedures was performed. Our cohort was divided into groups according to the number of tibial vessels attempted and the number of patent tibial vessels achieved to the foot. An angiosome anatomical classification of ulcers were used to describe the local perfusion obtained after revascularization. Ischemic ulcer healing and limb salvage rates were measured. Ischemic ulcer healing at 12 months and limb salvage at 24 months was similar between a single revascularization and multiple revascularization attempts. The group in whom none patent tibial vessel to the foot was obtained presented lower healing and limb salvage rates. No differences were observed between obtaining a single patent tibial vessel versus more than one tibial vessel. Indirect revascularization of the ulcer through arterial-arterial connections provided similar results than those obtained after direct revascularization via its specific angiosome tibial artery. Our results suggest that, in CLI diabetic patients with ischemic ulcers that undergo infrapopliteal endovascular procedures, better results are expected if at least one patent vessel is obtained and flow is restored to the local ischemic area of the foot.

  20. Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

    OpenAIRE

    Gourav Roy Choudhury; Ali Winters; Ryan M Rich; Myoung-Gwi Ryou; Zygmunt Gryczynski; Fang Yuan; Shao-Hua Yang; Ran Liu

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the prote...

  1. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Pankaj Seth; Nitin Koul

    2008-09-01

    Until recently, the neuroscience community held the belief that glial cells such as astrocytes and oligodendrocytes functioned solely as “support” cells of the brain. In this role, glial cells simply provide physical support and housekeeping functions for the more important cells of the brain, the neurons. However, this view has changed radically in recent years with the discovery of previously unrecognized and surprising functions for this underappreciated cell type. In the past decade or so, emerging evidence has provided new insights into novel glial cell activities such as control of synapse formation and function, communication, cerebrovascular tone regulation, immune regulation and adult neurogenesis. Such advances in knowledge have effectively elevated the role of the astrocyte to one that is more important than previously realized. This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis on astrocytes.

  2. Astrocytes Underlie Neuroinflammatory Memory Impairment

    OpenAIRE

    Osso, LA; Chan, JR

    2015-01-01

    © 2015 Elsevier Inc. All rights reserved. Neuroinflammation is being increasingly recognized as a potential mediator of cognitive impairments in various neurological conditions. Habbas et al. demonstrate that the pro-inflammatory cytokine tumor necrosis factor alpha signals through astrocytes to alter synaptic transmission and impair cognition in a mouse model of multiple sclerosis.

  3. Assessment of left ventricular torsion in patients with anterior wall myocardial infarction before and after revascularization using speckle tracking imaging

    Institute of Scientific and Technical Information of China (English)

    HAN Wei; XIE Ming-xing; WANG Xin-fang; L(U) Qing; WANG Jing; ZHANG li; ZHANG Jing

    2008-01-01

    Background Rotation of the left ventricular(LV)apex to the base,or LV torsion,is related to myocardial contractility and structure and has recently been recognized as a sensitive indicator of cardiac performance,but it has been difficult to measure.The recent development of 2-dimensional(2D)speckle tracking imaging(STI)may provide a powerful means of assessing LV torsion.This study was conducted to evaluate the global and regional LV twist in patients with anterior wall myocardial infarction(AMI)disease before and after revascularization by STI.Methods 2D STI was performed in 35 AMI patients before and one month after revascularization,as well as in 32 normal controls.Left ventricular global and regional rotations were obtained at basal and apical short-axis levels;LV torsion was defined as apical rotation relative to the base.The time sequences were normalized to the percentage of systolic and diastolic duration.Results Before revascularization,LV peak regional and global torsion in patients with Aml were significantly reduced as the result of reduced apical and basal rotation relative to those of normal control group(all P<0.001):most significantly in the anterior and anterior-septal regions(P<0.001);one month after revascularization,there were significant changes in peak rotation at either the base or apex relative to pre-revascularization values(all P<0.001).Similarly,peak regional and global LV torsion were increased significantly(all P<0.001).Global torsion inversely correlated with EDV(r=0.605,P=0.028)and ESV(r=-0.638,P=-0.019):and positively correlated with LVEF(r=0.630,P=0.021).tlght relations were also found between torsion and.LV longitudinal and short axis function.Conclusions Systolic torsion was decreased in AMI patients.Revascularization therapy can improve the LV function of the AMI patients.STI has a potential to quantify left ventricular global and segment torsion in patients with AMI,and may make the assessment more available in clinical and

  4. Benefit of cardiac rehabilitation programme in revascularized coronary patient

    Directory of Open Access Journals (Sweden)

    Laura Crăciun

    2009-06-01

    Full Text Available Objective: Evaluating the cardiovascular risk profile in revascularized coronary patients at 16 months after revascularization(PCI+CABG. Material and method: We evaluated the cardiovascular risk profile, compliance to the secondary preventionmeasures and reaching guideline targets in revascularized coronary patients included in EuroASpire III Romania. The patientswere divided in two groups: the selection criteria was the adherence to cardiac rehabilitation programme (CRP+/CRP-. Result:The prevelence of cardiovascular risk factors was about 76%, with an increased significance in CRP- group (p0.05, OR>1. Conclusion: At 16 months after revascularisation, the patientsstill present a high risk. The level of cardio-metabolic and hemodynamic risk are maintained the same by unreaching thetargeted values recomended by ESC prevention guideline. The patients in CPR+ group had a significant improvement ofcardiovascular risk factors. Indication but also compliance to structured cardiac rehabilitation programme after myocardialrevascularisation remains at a suboptimal level.

  5. Neighborhood Variation in Rate of Revascularization among Acute Myocardial Infarction Patients in New York City

    Directory of Open Access Journals (Sweden)

    Abdissa Negassa

    2011-01-01

    Full Text Available Objective. To identify modifiable neighborhood factors and quantify their effect on the rate of revascularization among acute myocardial infarction (AMI patients. Method. Using the New York City hospital discharge records during 1998–2002, we employed a hierarchical regression model that integrates patient-level risk factors and neighborhood-level factors to retrospectively examine revascularization patterns among AMI patients. Results. Access to revascularization varied substantially (27%–88% among neighborhoods. Ready access to a hospital with on-site capacity of revascularization increased the likelihood of receiving the procedure after adjusting for individual-level sociodemographic factors and comorbidity. More than 64% of the variation in rate of revascularization is explained by access to revascularization. Conclusion. Optimizing the AMI patients' delivery system to hospitals with on-site capacity of revascularization might enhance access to needed care thereby help to alleviate the prevailing variation in the rate of revascularization among New York City neighborhoods.

  6. Coronary revascularization in ischemic heart disease: lessons from observational studies and randomized clinical trials

    NARCIS (Netherlands)

    N.F. Mercado (Nestor)

    2003-01-01

    textabstractThis thesis presents an overview of clinical trials and observational studies on coronary revascularization and evaluates the results obtained with revascularization in different subsets of patients treated with percutaneous coronary intervention or coronary artery bypass graft surgery.

  7. Three-Dimensional Environment Sustains Morphological Heterogeneity and Promotes Phenotypic Progression During Astrocyte Development.

    Science.gov (United States)

    Balasubramanian, Swarnalatha; Packard, John A; Leach, Jennie B; Powell, Elizabeth M

    2016-06-01

    Astrocytes are critical for coordinating normal brain function by regulating brain metabolic homeostasis, synaptogenesis and neurotransmission, and blood-brain barrier permeability and maintenance. Dysregulation of normal astrocyte ontogeny contributes to neurodevelopmental and neurodegenerative disorders, epilepsies, and adverse responses to injury. To achieve these multiple essential roles, astrocyte phenotypes are regionally, morphologically, and functionally heterogeneous. Therefore, the best regenerative medicine strategies may require selective production of distinct astrocyte subpopulations at defined maturation levels. However, little is known about the mechanisms that direct astrocyte diversity or whether heterogeneity is represented in biomaterials. In vitro studies report lack of normal morphologies and overrepresentation of the glial scar type of reactive astrocyte morphology and expression of markers, questioning how well the in vitro astrocytes represent glia in vivo and whether in vitro tissue engineering methods are suitable for regenerative medicine applications. Our previous work with neurons suggests that the three-dimensional (3D) environment, when compared with standard two-dimensional (2D) substrate, yields cellular and molecular behaviors that more closely approximately normal ontogeny. To specifically study the effects of dimensionality, we used purified glial fibrillary acidic protein (GFAP)-expressing primary cerebral cortical astrocyte cultures from single pups and characterized the cellular maturation profiles in 2D and 3D milieu. We identified four morphological groups in vitro: round, bipolar, stellate, and putative perivascular. In the 3D hydrogel culture environment, postnatal astrocytes transitioned from a population of nearly all round cells and very few bipolar cells toward a population with significant fractions of round, stellate, and putative perivascular cells within a few days, following the in vivo ontogeny. In 2D, however

  8. Impact of myocardial perfusion imaging on in-hospital coronary angiography and revascularization of patients with suspected coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    HAN Ping-ping; HE Zuo-xiang; TIAN Yue-qin; FANG Wei; YANG Min-fu; ZHANG Xiao-li; SHEN Rui; SUN Xiao-xin; QIAO Shu-bin; YANG Yue-jin

    2011-01-01

    Background Noninvasive cardiac imaging is now central to the diagnosis and management of patients with moderate probability for coronary artery disease. The aim of this study was to assess the impact of stress myocardial perfusion single photon emission computerized tomography (SPECT) on in-hospital coronary angiography and revascularization for such patients.Methods Between January 2005 and June 2007, 1053 consecutive in-hospital patients (423 women, the average age of (57.2±11.2) years) with suspected coronary artery disease but without any prior interventional treatment were retrospectively analyzed. All patients underwent a 2-day stress/rest 99m Tc-methoxyisobutylisonitrile (MIBI) myocardial perfusion SPECT, including 984 exercise test and 69 adenosine test.Results Overall, stress/rest myocardial perfusion SPECT was normal in 973 patients (92.4%) and abnormal in 80 patients (7.6%). A total of 190 patients underwent coronary angiography, 46 underwent percutaneous coronary intervention and 10 coronary artery bypass grafting during hospitalization. From the whole perspective, only 14.7% of patients with normal SPECT underwent coronary angiography, so did 58.8% of patients with abnormal SPECT (x2=97.0,P<0.001); furthermore, the rates of revascularization in patients with normal and abnormal SPECT were 2.8% and 36.3%,respectively (27 out of 973 vs. 29 out of 80, x2=157.9, P<0.001). The extent and severity of ischemia did not add more predictive value for subsequent coronary angiography, but did have impact on revascularization. Multivariate analysis showed that reversible perfusion defect was the most predictive variable for referral rate to coronary angiography (odds ratio=7.5, P<0.001).Conclusions Abnormal myocardial perfusion SPECT is a powerful referral for in-hospital coronary angiography and revascularization during the same hospitalization. Thus, stress/rest SPECT is an effective gatekeeper for early coronary angiography and invasive treatment for

  9. Moyamoya disease: Experience with direct and indirect revascularization in 70 patients from a nonendemic region

    Directory of Open Access Journals (Sweden)

    Nishanth Sadashiva

    2016-01-01

    Conclusion: Both the combined and indirect revascularization procedures are effective in treating MMD. Pediatric patients had a better clinical improvement after surgery than the adult patients . Patients undergoing combined revascularization had a better clinical status compared to those who only underwent indirect revascularization. Combined revascularization surgery should be the surgical strategy in all age groups as it is feasible in a significant proportion of pediatric patients too.

  10. [Angiosome-directed revascularization of critical limb ischaemia].

    Science.gov (United States)

    Houlind, Kim

    2015-07-27

    Critical limb ischaemia is the major cause of amputation in the developed world. When performing revascularization of the lower limb, guidelines recommend grafting of the "least diseased distal artery with the best continuous run-off to the ankle/foot... regardless of location" often implying indirect perfusion of the ischaemic area through collaterals. An alter-native strategy, called the "angiosome model", advocates a strategy which provides blood supply directly to the ischaemic area. This paper reviews the current evidence of indirect versus angiosome-directed revascularization of the lower limb.

  11. Reviewing hybrid coronary revascularization: challenges, controversies and opportunities.

    Science.gov (United States)

    Kayatta, Michael O; Halkos, Michael E

    2016-07-01

    Two main approaches to myocardial revascularization currently exist, coronary artery bypass and percutaneous coronary intervention. In patients with advanced coronary artery disease, coronary artery bypass surgery is associated with improved long term outcomes while percutaneous coronary intervention is associated with lower periprocedural complications. A new approach has emerged in the last decade that attempts to reap the benefits of bypass surgery and stenting while minimizing the shortcomings of each approach. This new approach, hybrid coronary revascularization, has shown encouraging early results. Minimally invasive techniques for bypass surgery have played a large part of bringing this approach into contemporary practice. PMID:27042753

  12. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    Science.gov (United States)

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.

  13. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    Science.gov (United States)

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  14. Comparably improved health-related quality of life after total arterial revascularization versus conventional coronary surgery--Copenhagen arterial revascularization randomized patency and outcome trial

    DEFF Research Database (Denmark)

    Damgaard, Sune; Lund, Jens T; Lilleør, Nikolaj B;

    2011-01-01

    OBJECTIVE: We compared health-related quality of life up to 11 months after coronary artery bypass grafting using total arterial revascularization versus conventional coronary surgery. METHODS: In this randomized single-center trial, 161 patients underwent total arterial revascularization using.......01). For total arterial revascularization, there were also not statistically significant improvements for 'physical component summary' (P=0.09), 'bodily pain' (P=0.07) and 'vitality' (P=0.08). CONCLUSION: Health-related quality of life up to 1 year after total arterial revascularization is equal or slightly...... of the general Danish population. On all scales of the SF-36, there was statistically significant improvement at 3 and 11 months in both groups. For 'social functioning', the improvement following total arterial revascularization was significantly higher than following conventional revascularization (P=0...

  15. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  16. Triptolide protects astrocytes from hypoxia/ reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    Minfang Guo; Hongcui Fan; Jiezhong Yu; Ning Ji; Yongsheng Sun; Liyun Liang; Baoguo Xiao; Cungen Ma

    2011-01-01

    Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.

  17. Astrocytes in the tempest of multiple sclerosis.

    Science.gov (United States)

    Miljković, Djordje; Timotijević, Gordana; Mostarica Stojković, Marija

    2011-12-01

    Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is perfectly performed in the healthy CNS as they support functions of neurons. The omnipresence of astrocytes throughout the white and grey matter and their intimate relation with blood vessels of the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis (MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS therapeutics on astrocytes. PMID:21443873

  18. Dynamic reactive astrocytes after focal ischemia

    Institute of Scientific and Technical Information of China (English)

    Shinghua Ding

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disor-ders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar for-mation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

  19. Targeting astrocytes in bipolar disorder.

    Science.gov (United States)

    Peng, Liang; Li, Baoman; Verkhratsky, Alexei

    2016-06-01

    Astrocytes are homeostatic cells of the central nervous system, which are critical for development and maintenance of synaptic transmission and hence of synaptically connected neuronal ensembles. Astrocytic densities are reduced in bipolar disorder, and therefore deficient astroglial function may contribute to overall disbalance in neurotransmission and to pathological evolution. Classical anti-bipolar drugs (lithium salts, valproic acid and carbamazepine) affect expression of astroglial genes and modify astroglial signalling and homeostatic cascades. Many effects of both antidepressant and anti-bipolar drugs are exerted through regulation of glutamate homeostasis and glutamatergic transmission, through K(+) buffering, through regulation of calcium-dependent phospholipase A2 (that controls metabolism of arachidonic acid) or through Ca(2+) homeostatic and signalling pathways. Sometimes anti-depressant and anti-bipolar drugs exert opposite effects, and some effects on gene expression in drug treated animals are opposite in neurones vs. astrocytes. Changes in the intracellular pH induced by anti-bipolar drugs affect uptake of myo-inositol and thereby signalling via inositoltrisphosphate (InsP3), this being in accord with one of the main theories of mechanism of action for these drugs. PMID:27015045

  20. Hybrid coronary artery revascularization: logistics and program development.

    Science.gov (United States)

    Friedrich, Guy J; Jonetzko, Patricja; Bonaros, Nikos; Schachner, Thomas; Danzmayr, Michael; Kofler, Ruth; Laufer, G; Pachinger, O; Bonatti, Johannes

    2005-01-01

    Planning hybrid coronary artery revascularization--a combination of cardiac surgery with percutaneous procedures--requires, at first sight, a very complex logistical setup. Technical and equipment related details should be defined as early as possible in order to have time for training of all OR personnel involved. The most challenging aspect in OR-located hybrid coronary revascularization remains a very close cooperation of cardiac surgeons and interventional cardiologists. This teamwork does include indication findings and subsequent referral of multivessel coronary artery disease patients to hybrid procedures, as well as high individual flexibility of interventionalists and surgeons. The major prerequisite for this cooperation is a mutual acceptance of different revascularization approaches and the intent to combine their most striking advantages. Intraoperative graft angiography during coronary artery bypass grafting (CABG) procedures is one important step toward simultaneous hybrid coronary revascularization procedures. We describe our experience with on table angiography using a mobile C-arm for intraoperative imaging. This fluoroscopy system can in selected cases be used for simultaneous hybrid procedures. PMID:16112939

  1. Remote revascularization of abdominal wall transplants using the forearm.

    Science.gov (United States)

    Giele, H; Bendon, C; Reddy, S; Ramcharan, R; Sinha, S; Friend, P; Vaidya, A

    2014-06-01

    Primary abdominal wall closure following small bowel transplantation is frequently impossible due to contraction of the abdominal domain. Although abdominal wall transplantation was reported 10 years ago this, technique has not been widely adopted, partly due to its complexity, but largely because of concerns that storing the abdominal allograft until the end of a prolonged intestinal transplant procedure would cause severe ischemia-reperfusion injury. We report six cases of combined small bowel and abdominal wall transplantation where the ischemic time was minimized by remotely revascularizing the abdominal wall on the forearm vessels, synchronous to the intestinal procedure. When the visceral transplant was complete, the abdominal wall was removed from the forearm and revascularized on the abdomen (n = 4), or used to close the abdomen while still vascularized on the forearm (n = 2). Primary abdominal wall closure was achieved in all. Mean cold ischemia was 305 min (300-330 min), and revascularization on the arm was 50 min (30-60 min). Three patients had proven abdominal wall rejection, all treated successfully. Immediate revascularization of the abdominal wall allograft substantially reduces cold ischemia without imposing constraints on the intestinal transplant. Reducing storage time may also have benefits with respect to ischemia-reperfusion-related graft immunogenicity. PMID:24797611

  2. White matter astrocytes in health and disease

    OpenAIRE

    Lundgaard, Iben; Osório, Maria Joana; Kress, Benjamin; Sanggaard, Simon; NEDERGAARD, Maiken

    2013-01-01

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and oligodendrocyte. Astrocytes also have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and grey matter astrocytes, how astrocytes support myelination, how their dysfunc...

  3. Glutamate Pays Its Own Way in Astrocytes

    OpenAIRE

    MaryC.McKenna

    2013-01-01

    In vitro and in vivo studies have shown that glutamate can be oxidized for energy by brain astrocytes. The ability to harvest the energy from glutamate provides astrocytes with a mechanism to offset the high ATP cost of the uptake of glutamate from the synaptic cleft. This brief review focuses on oxidative metabolism of glutamate by astrocytes, the specific pathways involved in the complete oxidation of glutamate and the energy provided by each reaction.

  4. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells.

    Science.gov (United States)

    Kleiderman, Susanne; Sá, João V; Teixeira, Ana P; Brito, Catarina; Gutbier, Simon; Evje, Lars G; Hadera, Mussie G; Glaab, Enrico; Henry, Margit; Sachinidis, Agapios; Alves, Paula M; Sonnewald, Ursula; Leist, Marcel

    2016-05-01

    Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. PMID:26689134

  5. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  6. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  7. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  8. Tacrolimus inhibits the revascularization of isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Ryuichi Nishimura

    Full Text Available AIMS: Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS: Islets isolated from C57BL/6-Tg (CAG-EGFP mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9 and tacrolimus-treated group (n = 7. The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS: The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05. Although the expression of Vegfa (p<0.05 and Ccnd1 (p<0.05 was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS: The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.

  9. Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster.

    OpenAIRE

    Suarez Najera, I; Fernandez Ruiz, B; Garcia Segura, L M

    1980-01-01

    Adult hamsters were used for this electron microscopic study of the hypothalamic region. Specialized contacts between astrocytes and astrocytes, and between astrocytes and other cellular elements, are described and illustrated. The specialized inter-astrocytic junctions occur primarily in perivascular and subpial regions, but also in areas of high synaptic density. The junctions between astrocytic processes are of hemidesmosomal type. Astrocytes are connected to oligodendroglial cells by mean...

  10. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle.

    Science.gov (United States)

    Petit, J-M; Magistretti, P J

    2016-05-26

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust energy production to neuronal energy needs through different mechanisms grouped under the term "neurometabolic coupling" (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in the firing rate such as during the sleep/wake transitions. Investigations into brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose (Gluc) consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, Gluc and lactate (Lac) with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolite regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and NMC in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the "local and use dependent" sleep hypothesis. PMID:26704637

  11. Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes.

    Directory of Open Access Journals (Sweden)

    Florence Appaix

    Full Text Available Fluorescent staining of astrocytes without damaging or interfering with normal brain functions is essential for intravital microscopy studies. Current methods involved either transgenic mice or local intracerebral injection of sulforhodamine 101. Transgenic rat models rarely exist, and in mice, a backcross with GFAP transgenic mice may be difficult. Local injections of fluorescent dyes are invasive. Here, we propose a non-invasive, specific and ubiquitous method to stain astrocytes in vivo. This method is based on iv injection of sulforhodamine dyes and is applicable on rats and mice from postnatal age to adulthood. The astrocytes staining obtained after iv injection was maintained for nearly half a day and showed no adverse reaction on astrocytic calcium signals or electroencephalographic recordings in vivo. The high contrast of the staining facilitates the image processing and allows to quantify 3D morphological parameters of the astrocytes and to characterize their network. Our method may become a reference for in vivo staining of the whole astrocytes population in animal models of neurological disorders.

  12. Regulation of Neuron-Astrocyte Metabolic Coupling across the Sleep-Wake Cycle

    KAUST Repository

    Petit, Jean-Marie

    2015-12-17

    Over the last thirty years, a growing number of studies showed that astrocytes play a pivotal role in the energy support to synapses. More precisely, astrocytes adjust the energy production to the neuronal energy needs through different mechanisms grouped under the term “neurometabolic coupling” (NMC). In this review we describe these mechanisms of coupling and how they involve astrocytes. From a physiological point of view, these mechanisms of coupling are particularly important to ensure normal synaptic functioning when neurons undergo rapid and repetitive changes in firing rate such as during the sleep/wake transitions. Investigations on brain energy metabolism during the sleep/wake cycle have been mainly focused on glucose consumption and on glycogen metabolism. However, the recent development of substrate-specific biosensors allowed measurements of the variation in extracellular levels of glutamate, glucose and lactate with a time resolution compatible with sleep stage duration. Together with gene expression data these experiments allowed to better define the variations of energy metabolites regulation across the sleep/wake cycle. The aim of this review is to bring into perspective the role of astrocytes and neurometabolic coupling in the regulation of the sleep/wake cycle. The data reviewed also suggest an important role of the astrocytic network. In addition, the role of astrocytes in NMC mechanisms is consistent with the “local and use dependent” sleep hypothesis.

  13. Astrocytes and Developmental White Matter Disorders

    Science.gov (United States)

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  14. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  15. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  16. Micropatterned substrates for studying astrocytes in culture

    Directory of Open Access Journals (Sweden)

    William Lee

    2009-12-01

    Full Text Available Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.

  17. Oxidative Stress Induction of DJ-1 Protein in Reactive Astrocytes Scavenges Free Radicals and Reduces Cell Injury

    Directory of Open Access Journals (Sweden)

    Takashi Yanagida

    2009-01-01

    Full Text Available Astrocytes, one of the predominant types of glial cells, function as both supportive and metabolic cells for the brain. Under cerebral ischemia/reperfusion-induced oxidative conditions, astrocytes accumulate and activate in the ischemic region. DJ-1 has recently been shown to be a sensor of oxidative stress in living cells. However, the function of astrocytic DJ-1 is still unknown. In the present study, to clarify the effect of astrocytic DJ-1 protein under massive oxidative insult, we used a focal ischemic rat model that had been subjected to middle cerebral artery occlusion (MCAO and reperfusion. We then investigated changes in the distribution of DJ-1 in astrocytes, DJ-1 release from cultured astrocytes, and the effects of recombinant DJ-1 protein on hydrogen peroxide (H2O2-induced death in normal and DJ-1-knockdown SH-SY5Y cells and on in vitro scavenging of hydroxyl radicals (•OH by electron spin resonance spectrometry. At 24 h after 2-h MCAO and reperfusion, an infarct lesion was markedly observed using magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining. In addition, reactive astrocytes enhanced DJ-1 expression in the penumbral zone of the ischemic core and that DJ-1 protein was extracellularly released from astrocytes by H2O2 in in vitro primary cultures. Although DJ-1-knockdown SH-SY5Y cells were markedly vulnerable to oxidative stress, treatment with glutathione S-transferase-tagged recombinant human DJ-1 protein (GST-DJ-1 significantly inhibited H2O2-induced cell death. In addition, GST-DJ-1 protein directly scavenged •OH. These results suggest that oxidative stress induces the release of astrocytic DJ-1 protein, which may contribute to astrocyte-mediated neuroprotection.

  18. Revascularization in severe left ventricular dysfunction.

    Science.gov (United States)

    Velazquez, Eric J; Bonow, Robert O

    2015-02-17

    The highest-risk patients with heart failure with reduced ejection fraction are those with ischemic cardiomyopathy and severe left ventricular systolic dysfunction (ejection fraction≤35%). The cornerstone of treatment is guideline-driven medical therapy for all patients and implantable device therapy for appropriately selected patients. Surgical revascularization offers the potential for improved survival and quality of life, particularly in patients with more extensive multivessel disease and the greatest degree of left ventricular systolic dysfunction and remodeling. These are also the patients at greatest short-term risk of mortality with coronary artery bypass graft surgery. The short-term risks of surgery need to be balanced against the potential for long-term benefit. This review discusses the evolving data on the role of surgical revascularization, surgical ventricular reconstruction, and mitral valve surgery in this high-risk patient population.

  19. Combining PCI and CABG: the Role of Hybrid Revascularization

    OpenAIRE

    Green, Kelly D.; Lynch, Donald R.; Chen, Tyffany P.; Zhao, David

    2013-01-01

    Hybrid coronary revascularization combines the benefits of both percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) in the treatment of multivessel coronary artery disease (CAD) by combining the benefits of the LIMA-to-LAD graft and drug eluting stent (DES) to non-LAD regions. Through this approach, a patient receives the long-term benefit of the LIMA graft and avoids the morbidity of a full sternotomy and saphenous vein grafts. Available data related to outcom...

  20. Chronic mesenteric ischemia: Time to remember open revascularization

    OpenAIRE

    Keese, Michael; Schmitz-Rixen, Thomas; Schmandra, Thomas

    2013-01-01

    Chronic mesenteric ischemia is caused by stenosis or occlusion of one or more visceral arteries. It represents a therapeutic challenge and diagnosis and treatment require close interdisciplinary cooperation between gastroenterologist, vascular surgeon and radiologist. Although endovascular treatment modalities have been developed, the number of restenoses ultimately resulting in treatment failure is high. In patients fit for open surgery, the visceral arteries should be revascularized convent...

  1. Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T

    1995-01-01

    Exposure of the adult rat brain parenchyma to zinc induces an increase in the intracerebral expression of the metal-binding protein, metallothionein, which is normally confined to astrocytes, ependymal cells, choroid plexus epithelial cells, and brain endothelial cells. Metallothionein is express...... induces a transient expression of metallothionein in reactive astrocytes, probably as a response to metals released from the site of the brain injury.......Exposure of the adult rat brain parenchyma to zinc induces an increase in the intracerebral expression of the metal-binding protein, metallothionein, which is normally confined to astrocytes, ependymal cells, choroid plexus epithelial cells, and brain endothelial cells. Metallothionein is expressed...... only in diminutive amounts in astrocytes of the neonatal rat brain, which could imply that neonatal rats are devoid of the capacity to detoxify free metals released from a brain wound. In order to examine the influence of a brain injury on the expression of metallothionein in the neonatal brain, PO...

  2. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. PMID:24193059

  3. Susceptibility to glaucoma: differential comparison of the astrocyte transcriptome from glaucomatous African American and Caucasian American donors

    OpenAIRE

    Lukas, Thomas J.; Miao, Haixi; Chen, Lin; Sean M Riordan; Li, Wenjun; Crabb, Andrea M.; Wise, Alexandria; Du, Pan; Lin, Simon M; Hernandez, M Rosario

    2008-01-01

    Background Epidemiological and genetic studies indicate that ethnic/genetic background plays an important role in susceptibility to primary open angle glaucoma (POAG). POAG is more prevalent among the African-descent population compared to the Caucasian population. Damage in POAG occurs at the level of the optic nerve head (ONH) and is mediated by astrocytes. Here we investigated differences in gene expression in primary cultures of ONH astrocytes obtained from age-matched normal and glaucoma...

  4. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  5. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. PMID:26358496

  6. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Qi Yang

    Full Text Available Fragile X syndrome (FXS is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM from KO astrocytes inhibited proper dendritic growth of both wild-type (WT and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3 in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, and ciliary neurotrophic factor (CNTF were normal. FMRP has multiple RNA-binding motifs and is involved in translational regulation. RNA-binding protein immunoprecipitation (RIP showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs. Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.

  7. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    OpenAIRE

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  8. Common astrocytic programs during brain development, injury and cancer

    OpenAIRE

    Silver, Daniel J.; Steindler, Dennis A.

    2009-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during...

  9. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M;

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...... bind with high affinity to MHC class II antigen expressing astrocytes; binding is displaceable with excess cold toxin. Competition experiments further indicate that TSST-1 and SEB at least partially compete with each other for binding to astrocytes suggesting they bind to the same HLA-DR region...

  10. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    OpenAIRE

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (I...

  11. Association of astrocytes with neurons and astrocytes derived from distinct progenitor domains in the subpallium

    OpenAIRE

    Makio Torigoe; Kenta Yamauchi; Yan Zhu; Hiroaki Kobayashi; Fujio Murakami

    2015-01-01

    Astrocytes play pivotal roles in metabolism and homeostasis as well as in neural development and function in a manner thought to depend on their region-specific diversity. In the mouse spinal cord, astrocytes and neurons, which are derived from a common progenitor domain (PD) and controlled by common PD-specific transcription factors, migrate radially and share their final positions. However, whether astrocytes can only interact with neurons from common PDs in the brain remains unknown. Here,...

  12. Astrocytes release ATP through lysosomal exocytosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Astrocytes, the most abundant type of glial cells in the brain, have been found to release signaling molecules, including adenosine triphosphate(ATP), the most important energy carrier inside the cell as well as a universal extracellular signaling molecule.

  13. Role of perfusion-weighted imaging at 3 T in the histopathological differentiation between astrocytic and oligodendroglial tumors

    International Nuclear Information System (INIS)

    Objective: The differentiation of oligodendroglial tumors from astrocytic tumors is important clinically, because oligodendroglial tumors are more chemosensitive than astrocytic tumors. This study was designed to clarify the usefulness of 3 T MR perfusion imaging (PWI) in the histopathological differentiation between astrocytic and oligodendroglial tumors. This is because there is a growing interest in the diagnostic performance of 3 T MR imaging, which has the advantages of a higher signal-to-noise ratio (SNR) and greater spatial and temporal resolution. Materials and methods: This study retrospectively included 24 consecutive patients with supratentorial, WHO grade II and III astrocytic and oligodendroglial tumors (7 astrocytic, 10 oligoastrocytic, and 7 oligodendroglial tumors) that were newly diagnosed and resected between November 2006 and December 2009 at Hiroshima University Hospital. These patients underwent dynamic susceptibility contrast-enhanced (DSC) PWI relative cerebral blood volume (rCBV) measurements before treatment. Astrocytic tumors were designated as the astrocytic group, and oligoastrocytic and oligodendroglial tumors as the oligodendroglial group. The regions of interest with the maximum rCBV values within the tumors were normalized relative to the contra-lateral white matter (rCBVmax). Results: The average rCBVmax of astrocytic tumors (2.01 ± 0.68) was significantly lower than that of the oligoastrocytic (4.60 ± 1.05) and oligodendroglial tumors (6.17 ± 0.867) (P < 0.0001). A cut-off value of 3.0 allowed to differentiate the oligodendroglial group from the astrocytic group at 100% sensitivity and 87.5% specificity. Conclusion: The rCBVmax values obtained from 3 T MR PWI may be useful as an adjunct to the postoperative histopathological diagnosis of glioma patients.

  14. Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in mice

    Directory of Open Access Journals (Sweden)

    Gu Xing-Long

    2010-04-01

    Full Text Available Abstract Background Parkinson's disease (PD is the most common movement disorder. While neuronal deposition of α-synuclein serves as a pathological hallmark of PD and Dementia with Lewy Bodies, α-synuclein-positive protein aggregates are also present in astrocytes. The pathological consequence of astrocytic accumulation of α-synuclein, however, is unclear. Results Here we show that PD-related A53T mutant α-synuclein, when selectively expressed in astrocytes, induced rapidly progressed paralysis in mice. Increasing accumulation of α-synuclein aggregates was found in presymptomatic and symptomatic mouse brains and correlated with the expansion of reactive astrogliosis. The normal function of astrocytes was compromised as evidenced by cerebral microhemorrhage and down-regulation of astrocytic glutamate transporters, which also led to increased inflammatory responses and microglial activation. Interestingly, the activation of microglia was mainly detected in the midbrain, brainstem and spinal cord, where a significant loss of dopaminergic and motor neurons was observed. Consistent with the activation of microglia, the expression level of cyclooxygenase 1 (COX-1 was significantly up-regulated in the brain of symptomatic mice and in cultured microglia treated with conditioned medium derived from astrocytes over-expressing A53T α-synuclein. Consequently, the suppression of COX-1 activities extended the survival of mutant mice, suggesting that excess inflammatory responses elicited by reactive astrocytes may contribute to the degeneration of neurons. Conclusions Our findings demonstrate a critical involvement of astrocytic α-synuclein in initiating the non-cell autonomous killing of neurons, suggesting the viability of reactive astrocytes and microglia as potential therapeutic targets for PD and other neurodegenerative diseases.

  15. Relaxin Protects Astrocytes from Hypoxia In Vitro

    OpenAIRE

    Willcox, Jordan M.; Alastair J S Summerlee

    2014-01-01

    The peptide relaxin has recently been shown to protect brain tissues from the detrimental effects of ischemia. To date, the mechanisms for this remain unclear. In order to investigate the neuroprotective mechanisms by which relaxin may protect the brain, we investigated the possibility that relaxin protects astrocytes from hypoxia or oxygen/glucose deprivation (OGD). Cultured astrocytes were pre-treated with either relaxin-2 or relaxin-3 and exposed to OGD for 24 or 48 hours. Following OGD ex...

  16. Dynamic reactive astrocytes after focal ischemia

    OpenAIRE

    Ding, Shinghua

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advan...

  17. Stargazing: Monitoring subcellular dynamics of brain astrocytes.

    Science.gov (United States)

    Benjamin Kacerovsky, J; Murai, K K

    2016-05-26

    Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain. PMID:26162237

  18. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  19. Astrocytic vesicle mobility in health and disease.

    Science.gov (United States)

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  20. Myocardial revascularization in patient with situs inversus totalis: case report

    Directory of Open Access Journals (Sweden)

    Soncini da Rosa George Ronald

    2002-01-01

    Full Text Available This is a report of an unusual case of a patient, with dextrocardia and a "situs inversus totalis". She presented angina pectoris during an ECG stress test. The coronary arteriography revealed severe obstruction in the main left coronary artery. The patient underwent coronary artery bypass grafting surgery. We did not find a similar case in the national medical literature. The myocardial revascularization performed utilizing the right mammary artery for anterior descending artery and saphenous vein grafts for first diagonal branch and first marginal branch.

  1. Initial experiences of a multicenter transluminal revascularization registry

    International Nuclear Information System (INIS)

    This paper establishes a multicenter registry for collection and analysis of data from a large series of patients undergoing percutaneous transluminal revascularization of peripheral vascular lesions. The registry began as a joint collaboration between the radiology departments of Thomas Jefferson University Hospital and the University of Pennsylvania, through the Philadelphia Society of Angiography/Interventional Radiology. The American College of Radiology research office in Philadelphia is used as the data collection center. A detailed data form has been developed. It includes information about patient history, procedure indications, lesion location and morphology, techniques used, immediate angiographic and clinical outcome, and clinical follow-up at intervals up to 5 years

  2. Chronic mesenteric ischemia: time to remember open revascularization.

    Science.gov (United States)

    Keese, Michael; Schmitz-Rixen, Thomas; Schmandra, Thomas

    2013-03-01

    Chronic mesenteric ischemia is caused by stenosis or occlusion of one or more visceral arteries. It represents a therapeutic challenge and diagnosis and treatment require close interdisciplinary cooperation between gastroenterologist, vascular surgeon and radiologist. Although endovascular treatment modalities have been developed, the number of restenoses ultimately resulting in treatment failure is high. In patients fit for open surgery, the visceral arteries should be revascularized conventionally. These patients will then experience long term relief from the symptoms, a better quality of life and a better overall survival. PMID:23539677

  3. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  4. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa;

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  5. Gene transfer engineering for astrocyte-specific silencing in the CNS.

    Science.gov (United States)

    Merienne, N; Delzor, A; Viret, A; Dufour, N; Rey, M; Hantraye, P; Déglon, N

    2015-10-01

    Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications. PMID:26109254

  6. Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Shang, Yu; Zhao, Youquan; Cheng, Ran; Dong, Lixin; Saha, Sibu P.

    2011-02-01

    Arterial revascularization in patients with peripheral arterial disease (PAD) reestablishes large arterial blood supply to the ischemic muscles in lower extremities via bypass grafts or percutaneous transluminal angioplasty (PTA). Currently no gold standard is available for assessment of revascularization effects in lower extremity muscles. This study tests a novel near-infrared diffuse correlation spectroscopy flow-oximeter for monitoring of blood flow and oxygenation changes in medial gastrocnemius (calf) muscles during arterial revascularization. Twelve limbs with PAD undergoing revascularization were measured using a sterilized fiber-optic probe taped on top of the calf muscle. The optical measurement demonstrated sensitivity to dynamic physiological events, such as arterial clamping/releasing during bypass graft and balloon inflation/deflation during PTA. Significant elevations in calf muscle blood flow were observed after revascularization in patients with bypass graft (+48.1 +/- 17.5%) and patients with PTA (+43.2 +/- 11.0%), whereas acute post-revascularization effects in muscle oxygenation were not evident. The decoupling of flow and oxygenation after revascularization emphasizes the need for simultaneous measurement of both parameters. The acute elevations/improvements in calf muscle blood flow were associated with significant improvements in symptoms and functions. In total, the investigation corroborates potential of the optical methods for objectively assessing the success of arterial revascularization.

  7. EXPERIMENTAL STUDY OF HOMIUM: YAG LASER TRANSMYOCARDIAL REVASCULARIZATION IN ACUTE ISCHEMIC SET TINGS WITH MYOCARDIAL CONTRAST ECHOCARDIOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    王立清; 胡盛寿; 李澎; 谢峰; 吴清玉; 郭加强

    2000-01-01

    Objective. To study the mechanism and effects of blood perfusion to the acute ischemic region of myocardium through Ho-YAG laser channels with myocardial contrast echocardiography. Methods. To produce the model of acute myocardial ischemia, we partially ligated the left anterior decending (LAD)coronary artery of canine hearts between lst. and 2nd. diagonal branches and then performed transmyocardial revascularization in this region with Ho- YAG laser. Myocardial contrast echocardiography was made with a new gen eration of ultrasound contrast agent and second harmonic imaging of this region before, after ischemia and after laser revascularization. Pictures were taken with “R” wave trigger skill. Results. Acoustic density derterming in the ischemia region (anterior wall)with MCE (myocardial contrast e chocardiography )was obviously decreased( 5.40 ± 1.81) after the LAD was ligated, as compared with before( 11.69 ± 1.61, P < 0.01 ). It was increased remarkably after transmyocardial laser revascularizatuon (TMLR) ( 11.2 ± 2.01, P < 0. 01 )as compared with that when ischemia and approximated to that before ischemia(P > 0.05). There were no dif ferences in acoustic density in the lateral wall(as control)among these comprehensive three periods(P > 0.05). Con trast in the laser region developed one cardiac cycle ahead of that in the non-ischemic normal region. Conclusion. Acute ischemic myocardium can be peffused by oxygenated blood from the left ventricle through Ho YAG laser channels. Evidence of blood perfusion through laser channels during systolic phase was detected, and my ocardial contrast ultrasonography using intravenous perfluorocarbon-exposed sonicated dextrose albumin may be regard ed as a reliable method in the study of transmyocardial revascularization.

  8. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  9. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  10. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  11. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Delekate, Andrea; Füchtemeier, Martina; Schumacher, Toni; Ulbrich, Cordula; Foddis, Marco; Petzold, Gabor C

    2014-11-19

    Astrocytic network alterations have been reported in Alzheimer's disease (AD), but the underlying pathways have remained undefined. Here we measure astrocytic calcium, cerebral blood flow and amyloid-β plaques in vivo in a mouse model of AD using multiphoton microscopy. We find that astrocytic hyperactivity, consisting of single-cell transients and calcium waves, is most pronounced in reactive astrogliosis around plaques and is sometimes associated with local blood flow changes. We show that astroglial hyperactivity is reduced after P2 purinoreceptor blockade or nucleotide release through connexin hemichannels, but is augmented by increasing cortical ADP concentration. P2X receptor blockade has no effect, but inhibition of P2Y1 receptors, which are strongly expressed by reactive astrocytes surrounding plaques, completely normalizes astrocytic hyperactivity. Our data suggest that astroglial network dysfunction is mediated by purinergic signalling in reactive astrocytes, and that intervention aimed at P2Y1 receptors or hemichannel-mediated nucleotide release may help ameliorate network dysfunction in AD.

  12. Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus.

    Science.gov (United States)

    Kim, Dong Won; Glendining, Kelly A; Grattan, David R; Jasoni, Christine L

    2016-10-01

    Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6. PMID:27326907

  13. Functions of astrocytes and their potential as therapeutic targets

    OpenAIRE

    Kimelberg, Harold K.; NEDERGAARD, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the s...

  14. Injury and repair of astrocyte after ionizing radiation

    International Nuclear Information System (INIS)

    Astrocyte is the most glial cell in the central nervous system. In the present experiment, radiation injury to the central nervous system (CNS) triggers a large network of cellular changes including neuron, glial cell and endothelial cell in morphology and metabolism and function. Astrocyte changes rapidly after ionizing radiation. There is a relationship between astrocyte and the pathologic process and function recover of damaged brain tissue following CNS injury. This suggests that astrocyte plays an important role in cure of clinical radiation injury

  15. Epigenetic Regulation of HIV-1 Latency in Astrocytes

    OpenAIRE

    Narasipura, Srinivas D.; Kim, Stephanie; Al-Harthi, Lena

    2014-01-01

    HIV infiltrates the brain at early times postinfection and remains latent within astrocytes and macrophages. Because astrocytes are the most abundant cell type in the brain, we evaluated epigenetic regulation of HIV latency in astrocytes. We have shown that class I histone deacetylases (HDACs) and a lysine-specific histone methyltransferase, SU(VAR)3-9, play a significant role in silencing of HIV transcription in astrocytes. Our studies add to a growing body of evidence demonstrating that ast...

  16. Astrocytes contribute to gamma oscillations and recognition memory

    OpenAIRE

    Lee, Hosuk Sean; Ghetti, Andrea; Pinto-Duarte, António; Xin WANG; Dziewczapolski, Gustavo; Galimi, Francesco; Huitron-Resendiz, Salvador; Piña-Crespo, Juan C.; Roberts, Amanda J.; Verma, Inder M.; Sejnowski, Terrence J.; Heinemann, Stephen F.

    2014-01-01

    Astrocytes are well placed to modulate neural activity. However, the functions typically attributed to astrocytes are associated with a temporal dimension significantly slower than the timescale of synaptic transmission of neurons. Consequently, it has been assumed that astrocytes do not play a major role in modulating fast neural network dynamics known to underlie cognitive behavior. By creating a transgenic mouse in which vesicular release from astrocytes can be reversibly blocked, we found...

  17. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  18. Myocutaneous revascularization following graded ischemia in lean and obese mice

    Directory of Open Access Journals (Sweden)

    Clark RM

    2016-09-01

    Full Text Available Ross M Clark,1 Brittany Coffman,2 Paul G McGuire,3 Thomas R Howdieshell1,3 1Department of Surgery, 2Department of Pathology, 3Department of Cell Biology and Vascular Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA Background: Murine models of diabetes and obesity have provided insight into the pathogenesis of impaired epithelialization of excisional skin wounds. However, knowledge of postischemic myocutaneous revascularization in these models is limited. Materials and methods: A myocutaneous flap was created on the dorsum of wild type (C57BL/6, genetically obese and diabetic (ob/ob, db/db, complementary heterozygous (ob+/ob− , db+/db−, and diet-induced obese (DIO mice (n=48 total; five operative mice per strain and three unoperated mice per strain as controls. Flap perfusion was documented by laser speckle contrast imaging. Local gene expression in control and postoperative flap tissue specimens was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR. Image analysis of immunochemically stained histologic sections confirmed microvascular density and macrophage presence. Results: Day 10 planimetric analysis revealed mean flap surface area necrosis values of 10.8%, 12.9%, 9.9%, 0.4%, 1.4%, and 23.0% for wild type, db+/db−, ob+/ob−, db/db, ob/ob, and DIO flaps, respectively. Over 10 days, laser speckle imaging documented increased perfusion at all time points with revascularization to supranormal perfusion in db/db and ob/ob flaps. In contrast, wild type, heterozygous, and DIO flaps displayed expected graded ischemia with failure of perfusion to return to baseline values. RT-PCR demonstrated statistically significant differences in angiogenic gene expression between lean and obese mice at baseline (unoperated and at day 10. Conclusion: Unexpected increased baseline skin perfusion and augmented myocutaneous revascularization accompanied by a control proangiogenic transcriptional

  19. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  20. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes.

    Directory of Open Access Journals (Sweden)

    Martin Heni

    Full Text Available INTRODUCTION: In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone. METHODS: Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay. RESULTS: We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment. DISCUSSION: This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain.

  1. From stem cell to astrocyte: Decoding the regulation of GFAP

    NARCIS (Netherlands)

    R. Kanski

    2014-01-01

    The research presented in this thesis focuses on glial fibrillary acidic protein (GFAP), the main intermediate filament (IF) in astrocytes and astrocyte subpopulations such as neural stem cells (NSCs). In neurodegenerative diseases or upon brain damage, astrocytes respond to an injury with an upregu

  2. The Effect of Endovascular Revascularization of Common Iliac Artery Occlusions on Erectile Function

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Serkan, E-mail: mserkangur@yahoo.com [Sifa Hospital, Department of Radiology (Turkey); Ozkan, Ugur [Baskent University, Department of Radiology, Faculty of Medicine (Turkey); Onder, Hakan; Tekbas, Gueven [Dicle University, Department of Radiology, Faculty of Medicine (Turkey); Oguzkurt, Levent [Baskent University, Department of Radiology, Faculty of Medicine (Turkey)

    2013-02-15

    To determine the incidence of erectile dysfunction in patients with common iliac artery (CIA) occlusive disease and the effect of revascularization on erectile function using the sexual health inventory for males (SHIM) questionnaire. All patients (35 men; mean age 57 {+-} 5 years; range 42-67 years) were asked to recall their sexual function before and 1 month after iliac recanalization. Univariate and multivariate analyses were performed to determine variables effecting improvement of impotence. The incidence of impotence in patients with CIA occlusion was 74% (26 of 35) preoperatively. Overall 16 (46%) of 35 patients reported improved erectile function after iliac recanalization. The rate of improvement of impotence was 61.5% (16 of 26 impotent patients). Sixteen patients (46%), including seven with normal erectile function before the procedure, had no change. Three patients (8%) reported deterioration of their sexual function, two of whom (6%) had normal erectile function before the procedure. The median SHIM score increased from 14 (range 4-25) before the procedure to 20 (range 1-25) after the procedure (P = 0.005). The type of recanalization, the age of the patients, and the length of occlusion were related to erectile function improvement in univariate analysis. However, these factors were not independent factors for improvement of erectile dysfunction in multivariate analysis (P > 0.05). Endovascular recanalization of CIA occlusions clearly improves sexual function. More than half of the patients with erectile dysfunction who underwent endovascular recanalization of the CIA experienced improvement.

  3. Triple-Vessel Percutaneous Coronary Revascularization In Situs Inversus Dextrocardia

    Directory of Open Access Journals (Sweden)

    Nikolaos Kakouros

    2010-01-01

    Full Text Available Dextrocardia with situs inversus occurs in approximately one in 10,000 individuals of whom 20% have primary ciliary dyskinesia inherited as an autosomal recessive trait. These patients have a high incidence of congenital cardiac disease but their risk of coronary artery disease is similar to that of the general population. We report what is, to our knowledge, the first case of total triple-vessel coronary revascularization by percutaneous stent implantation in a 79-year-old woman with situs inversus dextrocardia. We describe the successful use of standard diagnostic and interventional guide catheters with counter rotation and transversely inversed image acquisition techniques. The case also highlights that the right precordial pain may represent cardiac ischemia in this population.

  4. Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Talsnes, O;

    1994-01-01

    area of harvest of bone graft is important regarding early revascularization, but the results do not support the theory that different embryological mode of development is the cause since mandibula (high 141Ce index) and calvaria (low 141Ce index) are of membranous origin and iliac bone (high 141Ce...... index) and tibia (low 141Ce index) are of endochondral origin. The difference in revascularization between the different grafts may be explained by differences in quantity of cancellous bone since cancellous bone is revascularized faster than cortical bone....

  5. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  6. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  7. Effect of the control proliferation of astrocyte on the formation of glial scars by antisense GFAP retrovirus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Astrocytes play an important role in the formation of glial scars.In order to investigate the effect of inhibiting GFAP gene expression on normal,reactive astrocytes and on glial scar formation,the efficiency of the recombinant antisense GFAP retrovirus (PLBskG) on the growth,cell cycle,morphology and GFAP gene expression of astrocytes in vitro and on the formation of glial scars in vivo has been studied by cell growth curves,flow cytometry,immunocytochemistry,in situ hybridization,RT-PCR and Southern blot.The results confirm the recombinant retrovirus (PLBskG) produced growth suppression and G1 arrest of the normal and injured astrocytes.The infected cells become round or ellipoid.The cell processes become fine or retracted.The intensity of staining of GFAP is reduced.Expression of GFAP mRNA is down regulated.However,in the control experiment,no obvious effects on the morphology or synthesis of GFAP on cultured normal and scratched astrocytes infected by primary retrovirus vector (PLXSN) have been observed.The supernatant of PLBskG has been injected into an injured site by microinjection in vivo.The number and process lengths of GFAP positive cells are obviously reduced around the injured site.The formation of the glial scar is inhibited,showing that the recombinant antisense GFAP retrovirus can effectively inhibit the growth and GFAP expression of normal and injured astrocytes in vitro and the formation of glial scar in vivo.It is suggested that GFAP plays an important role in glial scar formation.

  8. Motor neuron-astrocyte interactions and levels of Cu,Zn superoxide dismutase in sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    O'Reilly, S A; Roedica, J; Nagy, D; Hallewell, R A; Alderson, K; Marklund, S L; Kuby, J; Kushner, P D

    1995-02-01

    Copper, zinc superoxide dismutase (SOD1) is involved in neutralizing free radicals within cells, and mutant forms of the enzyme have recently been shown to occur in about 20% of familial cases of amyotrophic lateral sclerosis (ALS). To explore the mechanism of SOD1 involvement in ALS, we have analyzed SOD1 in sporadic ALS using activity assays and immunocyto-chemistry. Analyses of SOD1 activity in washed erythrocytes revealed no difference between 13 ALS cases and 4 controls. Spinal cord sections from 6 ALS cases, 1 primary lateral sclerosis (PLS) case, and 1 control case were stained using three different antibodies to SOD1. Since astrocytes are closely associated with motor neurons, antibodies to glial fibrillary acidic protein (GFAP) and vimentin were used as independent monitors of astrocytes. The principal findings from localizations are: (1) normal motor neurons do not have higher levels of SOD1 than other neurons, (2) there was no detectable difference in SOD1 levels in motor neurons of ALS cases and controls, (3) ALS spinal cord displayed a reduction or absence of SOD1-reactive astrocytes compared to the control and PLS cases, and (4) examination of GFAP-stained sections and morphometry showed that the normal close association between astrocytic processes and motor neuron somata was decreased in the ALS and PLS cases. These results indicate the disease mechanism in sporadic ALS may involve alterations in spinal cord astrocytes.

  9. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C;

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...

  10. Lrp4 in astrocytes modulates glutamatergic transmission.

    Science.gov (United States)

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity. PMID:27294513

  11. Astrocytes : a central element in neurological diseases

    NARCIS (Netherlands)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin Moo; Parpura, Vladimir; Hol, Elly M.; Sofroniew, Michael V.; Verkhratsky, Alexei

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  12. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  13. Metabolic pathways for glucose in astrocytes.

    Science.gov (United States)

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  14. Astrocytes: a central element in neurological diseases

    NARCIS (Netherlands)

    M. Pekny; M. Pekna; A. Messing; C. Steinhäuser; J.M. Lee; V. Parpura; E.M. Hol; M.V. Sofroniew; A. Verkhratsky

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  15. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy

    Directory of Open Access Journals (Sweden)

    Nicholas K.H. Khoo

    2013-01-01

    Full Text Available Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas.

  16. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  17. MYOCARDIAL REVASCULARIZATION IN PATIENTS WITH LEFT VENTRICULAR SYSTOLIC DYSFUNCTION: PROBLEM STATEMENT

    Directory of Open Access Journals (Sweden)

    A. B. Mironkov

    2013-01-01

    Full Text Available Outcomes of myocardium revascularization in patients with chronic left ventricular systolic dysfunction due to coronary artery disease are still unclear. The identification of dysfunctional myocardial with residual viability that can improve after revascularization are very important for further patient treatment. Hibernating myocardium can be identified by different methods and its presence and extent can predict functional and structural recovery after revascularization. New medical treatments and devices, have improved the prognosis of this patients and their use is supported by a number of clinical trials. The prognostic benefits of coronary revascularization for patients with chronic left ventricular dysfunction on optimal medical therapy and novel devices a randomized trial is still needed. 

  18. REVASCULARIZATION FOR FEMOROPOPLITEAL DISEASE - A DECISION AND COST-EFFECTIVENESS ANALYSIS

    NARCIS (Netherlands)

    HUNINK, MGM; WONG, JB; DONALDSON, MC; MEYEROVITZ, MF; DEVRIES, J; HARRINGTON, DP

    1995-01-01

    Objective.-To evaluate the relative benefits and cost-effectiveness of revascularization for femoropopliteal disease using percutaneous transluminal angioplasty or bypass surgery. Design.-Decision analysis using a multistate transition simulation model (Markov process) and cost-effectiveness analysi

  19. One-year results of total arterial revascularization vs. conventional coronary surgery: CARRPO trial

    DEFF Research Database (Denmark)

    Damgaard, Sune; Wetterslev, Jørn; Lund, Jens T;

    2009-01-01

    revascularization (CR) using left ITA and vein grafts. The primary angiographic outcome was the patency index: number of patent grafts (Mean patency index (+/-SD) was 87 +/- 22% in the TAR group and 88...

  20. Ictal but not interictal epileptic discharges activate astrocyte endfeet and elicit cerebral arteriole responses.

    Directory of Open Access Journals (Sweden)

    Marta eGomez-Gonzalo

    2011-06-01

    Full Text Available Activation of astrocytes by neuronal signals plays a central role in the control of neuronal activity-dependent blood flow changes in the normal brain. The cellular pathways that mediate neurovascular coupling in the epileptic brain remain, however, poorly defined. In a cortical slice model of epilepsy, we found that the ictal, seizure-like discharge, and only to a minor extent the interictal discharge, evokes both a Ca2+ increase in astrocyte endfeet and a vasomotor response. We also observed that rapid ictal discharge-induced arteriole responses were regularly preceded by Ca2+ elevations in endfeet and were abolished by pharmacological inhibition of Ca2+ signals in these astrocyte processes. Under these latter conditions, arterioles exhibited after the ictal discharge only slowly developing vasodilations. The poor efficacy of interictal discharges, compared with ictal discharges, to activate endfeet was confirmed also in the intact in vitro isolated guinea pig brain. Although the possibility of a direct contribution of neurons, in particular in the late response of cerebral blood vessels to epileptic discharges, should be taken into account, our study supports the view that astrocytes are central for neurovascular coupling also in the epileptic brain. The massive endfeet Ca2+ elevations evoked by ictal discharges and the poor response to interictal events represent new information potentially relevant to interpret data from diagnostic brain imaging techniques, such as functional magnetic resonance, utilized in the clinic to localize neural activity and to optimize neurosurgery of untreatable epilepsies.

  1. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  2. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes

    DEFF Research Database (Denmark)

    Lau, Cl; O'Shea, Rd; Bischof, L;

    2011-01-01

    BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes...... undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT...... activity and astrocytic morphology. EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA-1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed...

  3. Partial hepatectomy improves the outcome of intraportal islet transplantation by promoting revascularization

    OpenAIRE

    Saito, Yukihiko; Chan, Nathaniel K.; Hathout, Eba

    2012-01-01

    Revascularization of grafts is one of the important key factors for the success of islet transplantation. After partial hepatectomy, many growth factors such as hepatocyte growth factor and vascular endothelial growth factor are increased in the remnant liver. These growth factors have properties that promote angiogenesis. This might be an optimal environment for revascularization of islets transplanted intraportally. To verify this hypothesis, syngeneic islets (330 per recipient) were transp...

  4. Quality of life and functional status after revascularization or conservative treatment in patients with intermittent claudication

    DEFF Research Database (Denmark)

    Hedeager Momsen, Anne-Mette; Bach Jensen, Martin; Norager, Charlotte Buchard;

    2011-01-01

    Revascularization of patients with intermittent claudication (IC) is recommended only for selected patients who have chronic pain or disabling disease. However, improvement in the quality of life (QoL) could justify more widespread use.......Revascularization of patients with intermittent claudication (IC) is recommended only for selected patients who have chronic pain or disabling disease. However, improvement in the quality of life (QoL) could justify more widespread use....

  5. Effect of revascularization strategy in patients with acute myocardial infarction and renal insufficiency with multivessel disease

    OpenAIRE

    Park, Hyukjin; Hong, Young Joon; Rhew, Si Hyun; Kim, Sung Soo; Jeong, Young Wook; Jeong, Hae Chang; Cho, Jae Yeong; Jang, Soo Young; Lee, Ki Hong; Park, Keun Ho; Sim, Doo Sun; Yoon, Nam Sik; Yoon, Hyun Ju; Kim, Kye Hun; Park, Hyung Wook

    2015-01-01

    Background/Aims The aim of this study was to compare the risk of complications and outcome between infarct-related artery (IRA)-only revascularization and multivessel (MV) revascularization in patients with acute myocardial infarction (MI) with renal insufficiency and MV disease. Methods A total of 1,031 acute MI patients with renal insufficiency and MV disease who were registered in the Korea Working Group on Myocardial Infarction were enrolled. They were divided into two groups (IRA-only re...

  6. Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies

    OpenAIRE

    Yu, Guoqiang; Shang, Yu; Zhao, Youquan; Cheng, Ran; Dong, Lixin; Saha, Sibu P

    2011-01-01

    Arterial revascularization in patients with peripheral arterial disease (PAD) reestablishes large arterial blood supply to the ischemic muscles in lower extremities via bypass grafts or percutaneous transluminal angioplasty (PTA). Currently no gold standard is available for assessment of revascularization effects in lower extremity muscles. This study tests a novel near-infrared diffuse correlation spectroscopy flow-oximeter for monitoring of blood flow and oxygenation changes in medial gastr...

  7. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

    OpenAIRE

    Jin, David K.; Shido, Koji; Kopp, Hans-Georg; Petit, Isabelle; Shmelkov, Sergey V.; Young, Lauren M.; Hooper, Andrea T.; Amano, Hideki; Avecilla, Scott T.; Heissig, Beate; Hattori, Koichi; Zhang, Fan; Hicklin, Daniel J; Wu, Yan; Zhu, Zhenping

    2006-01-01

    The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, ‘hemangiocytes,’ constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor ...

  8. Diabetes does not influence treatment decisions regarding revascularization in patients with stable coronary artery disease

    OpenAIRE

    Breeman, A.; de Boer, M.J.; Bertrand, M. E.; Wijns, W.; Ottervanger, J.P.; Boersma, E.; Hoeks, S; Lenzen, M. (Prof. Dr.); Sechtem, U; Legrand, Victor

    2006-01-01

    OBJECTIVE - To evaluate whether in stable angina preference for coronary revascularization by either percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG) is influenced by diabetes status and whether this has prognostic implications. RESEARCH DESIGN AND METHODS - A total of 2,928 consecutive patients with stable angina who were enrolled in the prospective Euro Heart Survey on Coronary Revascularization were studied. Multivariable analyses were applied to evaluate t...

  9. Coronary revascularization in adults with dextrocardia: surgical implications of the anatomic variants.

    Science.gov (United States)

    Murtuza, Bari; Gupta, Prity; Goli, Giri; Lall, Kulvinder S

    2010-01-01

    Most reports of coronary artery bypass grafting in adult patients with dextrocardia have focused on the surgeon's position with respect to the operating table. Herein, we describe the cases of 2 patients with dextrocardia who underwent surgery at our own institution, then discuss preoperative evaluation, surgical approaches, and patient outcomes that have been reported in the medical literature. Whereas most patients, including ours, have presented with classic situs inversus totalis and dextrocardia, a few patients have had other associated anomalies or atypical morphologic conditions. Careful imaging, and perhaps cardiac catheterization, is required. Particular attention should be paid to cannulation technique and conduits that can best be used within the altered orientation of the heart. Morbidity rates in these revascularized patients seem comparable with those in coronary artery bypass patients whose coronary anatomy is normal. Anatomic variants in dextrocardia are important from the surgical viewpoint due to the increasing population of patients with repaired congenital heart disease who reach adulthood, and in whom other cardiac defects and abnormalities of cardiac position are common.

  10. Lower-extremity arterial revascularization: Is there any evidence for diabetic foot ulcer-healing?

    Science.gov (United States)

    Vouillarmet, J; Bourron, O; Gaudric, J; Lermusiaux, P; Millon, A; Hartemann, A

    2016-02-01

    The presence of peripheral arterial disease (PAD) is an important consideration in the management of diabetic foot ulcers. Indeed, arteriopathy is a major factor in delayed healing and the increased risk of amputation. Revascularization is commonly performed in patients with critical limb ischaemia (CLI) and diabetic foot ulcer (DFU), but also in patients with less severe arteriopathy. The ulcer-healing rate obtained after revascularization ranges from 46% to 91% at 1 year and appears to be improved compared to patients without revascularization. However, in those studies, healing was often a secondary criterion, and there was no description of the initial wound or its management. Furthermore, specific alterations associated with diabetes, such as microcirculation disorders, abnormal angiogenesis and glycation of proteins, can alter healing and the benefits of revascularization. In this review, critical assessment of data from the literature was performed on the relationship between PAD, revascularization and healing of DFUs. Also, the impact of diabetes on the effectiveness of revascularization was analyzed and potential new therapeutic targets described. PMID:26072053

  11. Manganese inhibits the ability of astrocytes to promote neuronal differentiation

    International Nuclear Information System (INIS)

    Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 μM) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrix protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H2O2 and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.

  12. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline.

    Science.gov (United States)

    Sharma, Arpita; Patro, Nisha; Patro, Ishan K

    2016-05-01

    Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline. PMID:26188416

  13. Study on the effects of thrombin on AQP4 mRNA and AQP4 protein expression in rat primary astrocytes

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhou; Xuebing Cao; Shenggang Sun

    2006-01-01

    Objective: To study the biologic effects of various concentrations of thrombin on aquaporin 4 (AQP4) expression in rat primary cultured astrocytes, and to explore the regulation mechanism of transmembrane water transportation in astrocytes after intracerebral hemorrhage (ICH). Methods: Primary cultured astrocytes were incubated in culture mediums containing various concentrations of thrombin for 24 h and harvested. AQP4 mRNA and AQP4 protein expression were determined by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical technique. Cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL) technique. Cell morphology was observed by phase contrast microscope, and cell viability was assayed by MTT. Results: AQP4 mRNA and AQP4 protein showed a low expression in normal astrocytes. The expression of AQP4 mRNA and AQP4 protein significantly increased in the astrocytes treated with 100 U/ml or 200 U/ml thrombin (P < 0.01),and these astrocytes swelled. The number of TUNEL positive cells significantly increased. On the other hand, AQP4 mRNA and AQP4 protein expression were down-regulated in the astrocytes treated with 0.5 U/ml or l U/ml thrombin (P < 0.05),and the cell morphology did not change. Few TUNEL positive cells were observed. Conclusion: AQP4 over-expression induced by high concentrations of thrombin causes an increased permeability of water in astrocytic membrane. On the contrary, the decreased AQP4 expression prevents the astrocytes from swelling and apoptosis.

  14. Radionuclide evaluation before and after medical or surgical myocardial revascularization

    International Nuclear Information System (INIS)

    Myocardial perfusion scintigraphy and radionuclide angiography performed in the resting state or during the course of exercise testing may provide clinically relevant information that is helpful in decision making in patients with coronary artery disease. These noninvasive techniques may be particularly useful in assessing the functional severity of coronary artery disease in patients presenting with chest pain, and could be employed to assist in differentiating between ischemic and infarcted or scarred myocardium. By the identification of high-risk and low-risk subsets based on certain radionuclide and exercise test findings, coronary arteriography with a view toward revascularization would be recommended in the former and medical therapy in the latter. Patients with mild symptoms and a low-risk scintigraphic pattern or functional response to stress could be spared an invasive procedure until symptoms became progressive and refractory to medical treatment. In this review, the value and limitations of /sup 201/Tl scintigraphy and radionuclide angiography in the patient being considered for coronary bypass surgery, transluminal angioplasty, or who receives thrombolytic therapy are discussed

  15. Astrocytes: everything but the glue

    OpenAIRE

    Oscar Gonzalez-Perez; Veronica Lopez-Virgen; Alfredo Quiñones-Hinojosa

    2015-01-01

    The current knowledge in neuroscience indicates that neural tissue has two major cell populations: neurons and glia (term derived from the Greek word for glue). Neuronal population is characterized by the capacity to produce action potentials, whereas glial cells are typically identified as the subordinate cell population of neurons. To date, this point of view has changed dramatically and growing evidence indicates that glial cells play a crucial role in normal mental functions and the patho...

  16. Influence of X-rays on early response gene expression in rat astrocytes and brain tumour cell lines

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on c-fos, c-jun and jun-B mRNA levels were determined in cultures of rat perinatal type 1 astrocytes and two rat brain tumour cell lines, 175A and 9L. In astrocyte cultures X-ray doses as low as 1 Gy induced the expression of c-fos and jun-B but had essentially no effect on c-jun. The maximum increase in expression was found 1 h after irradiation, which then rapidly returned to control levels. These findings suggest that astrocytes may play a role in mediating the radiation response of the central nervous system via X-ray-induced changes in gene expression. In contrast, doses of up to 20 Gy had no effect on c-fos, c-jun and jun-B mRNA levels in the two brain tumour cell lines. In addition, whereas 12-0-tetradecanoylphorbol-13-acetate induced the expression of these genes in astrocytes, it had little or no effect on fos or jun expression in 9L or 175A cells. These results suggest that the signal transduction pathways mediating radiation-induced genes expression may be different in normal astrocytes and brain tumour cells. (author)

  17. Physiopathologic dynamics of vesicle traffic in astrocytes.

    Science.gov (United States)

    Potokar, Maja; Stenovec, Matjaž; Kreft, Marko; Gabrijel, Mateja; Zorec, Robert

    2011-02-01

    The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability mediated release of chemical messengers, has also been demonstrated in astrocytes. In this process, following an increase in cytosolic calcium activity, membrane bound vesicles, storing chemical messengers (gliotransmitters), fuse with the plasma membrane, a process known as exocytosis, permitting the exit of vesicle cargo into the extracellular space. Vesicles are delivered to and are removed from the site of exocytosis by an amazingly complex set of processes that we have only started to learn about recently. In this paper we review vesicle traffic, which is subject to physiological regulation and may be changed under pathological conditions.

  18. Perspectives on the 2014 ESC/EACTS Guidelines on Myocardial Revascularization: Fifty Years of Revascularization: Where Are We and Where Are We Heading?

    NARCIS (Netherlands)

    F. Costa (Francesco); S. Ariotti (Sara); M. Valgimigli (Marco); P.H. Kolh (Philippe); S. Windecker (Stephan)

    2015-01-01

    textabstractThe joint European Society of Cardiology and European Association of Cardio-Thoracic Surgery (ESC/EACTS) guidelines on myocardial revascularization collect and summarize the evidence regarding decision-making, diagnostics, and therapeutics in various clinical scenarios of coronary artery

  19. Impact of previous percutaneous transluminal coronary angioplasty and/or stenting revascularization on outcomes after surgical revascularization : insights from the imagine study

    NARCIS (Netherlands)

    Chocron, Sidney; Baillot, Richard; Rouleau, Jean Lucien; Warnica, Wayne J.; Block, Pierre; Johnstone, David; Myers, Martin G.; Calciu, Cristina Dana; Nozza, Anna; Martineau, Pierre; van Gilst, Wiek H.

    2008-01-01

    Aim To determine the impact of previous coronary artery revascularization by percutaneous transluminal coronary angioplasty and/or stenting (PCI) on outcome after subsequent coronary artery bypass grafting (CABG). Methods and results The ischaemia management with Accupril post-bypass Graft via Inhib

  20. Astrocyte glutamine synthetase: pivotal in health and disease.

    Science.gov (United States)

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  1. Spatiotemporal characteristics of calcium dynamics in astrocytes

    Science.gov (United States)

    Kang, Minchul; Othmer, Hans G.

    2009-09-01

    Although Cai2+ waves in networks of astrocytes in vivo are well documented, propagation in vivo is much more complex than in culture, and there is no consensus concerning the dominant roles of intercellular and extracellular messengers [inositol 1,4,5-trisphosphate (IP3) and adenosine-5'-triphosphate (ATP)] that mediate Cai2+ waves. Moreover, to date only simplified models that take very little account of the geometrical struture of the networks have been studied. Our aim in this paper is to develop a mathematical model based on realistic cellular morphology and network connectivity, and a computational framework for simulating the model, in order to address these issues. In the model, Cai2+ wave propagation through a network of astrocytes is driven by IP3 diffusion between cells and ATP transport in the extracellular space. Numerical simulations of the model show that different kinetic and geometric assumptions give rise to differences in Cai2+ wave propagation patterns, as characterized by the velocity, propagation distance, time delay in propagation from one cell to another, and the evolution of Ca2+ response patterns. The temporal Cai2+ response patterns in cells are different from one cell to another, and the Cai2+ response patterns evolve from one type to another as a Cai2+ wave propagates. In addition, the spatial patterns of Cai2+ wave propagation depend on whether IP3, ATP, or both are mediating messengers. Finally, two different geometries that reflect the in vivo and in vitro configuration of astrocytic networks also yield distinct intracellular and extracellular kinetic patterns. The simulation results as well as the linear stability analysis of the model lead to the conclusion that Cai2+ waves in astrocyte networks are probably mediated by both intercellular IP3 transport and nonregenerative (only the glutamate-stimulated cell releases ATP) or partially regenerative extracellular ATP signaling.

  2. Taurine Biosynthesis by Neurons and Astrocytes*

    OpenAIRE

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capab...

  3. Correlation between Patient-Reported Symptoms and Ankle-Brachial Index after Revascularization for Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Hyung Gon Je

    2015-05-01

    Full Text Available Improvement in quality of life (QoL is a primary treatment goal for patients with peripheral arterial disease (PAD. The current study aimed to quantify improvement in the health status of PAD patients following peripheral revascularization using the peripheral artery questionnaire (PAQ and ankle-brachial index (ABI, and to evaluate possible correlation between the two methods. The PAQ and ABI were assessed in 149 symptomatic PAD patients before, and three months after peripheral revascularization. Mean PAQ summary scores improved significantly three months after revascularization (+49.3 ± 15 points, p < 0.001. PAQ scores relating to patient symptoms showed the largest improvement following revascularization. The smallest increases were seen in reported treatment satisfaction (all p’s < 0.001. As expected the ABI of treated limbs showed significant improvement post-revascularization (p < 0.001. ABI after revascularization correlated with patient-reported changes in the physical function and QoL domains of the PAQ. Twenty-two percent of PAD patients were identified as having a poor response to revascularization (increase in ABI < 0.15. Interestingly, poor responders reported improvement in symptoms on the PAQ, although this was less marked than in patients with an increase in ABI > 0.15 following revascularization. In conclusion, data from the current study suggest a significant correlation between improvement in patient-reported outcomes assessed by PAQ and ABI in symptomatic PAD patients undergoing peripheral revascularization.

  4. Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    OpenAIRE

    Halnes, Geir; Pettersen, Klas H.; Øyehaug, Leiv; Rognes, Marie E.; Langtangen, Hans Petter; Einevoll, Gaute T.

    2016-01-01

    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate mic...

  5. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  6. Transcriptomic analyses of primary astrocytes under TNFα treatment

    OpenAIRE

    Birck, Cindy; Koncina, Eric; Heurtaux, Tony; Glaab, Enrico; Michelucci, Alessandro; Heuschling, Paul; Grandbarbe, Luc

    2016-01-01

    Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1], [2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set o...

  7. Striatal Astrocytes Act as a Reservoir for L-DOPA

    OpenAIRE

    Masato Asanuma; Ikuko Miyazaki; Shinki Murakami; Diaz-Corrales, Francisco J.; Norio Ogawa

    2014-01-01

    L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, D...

  8. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K;

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways at...

  9. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  10. A Digital Realization of Astrocyte and Neural Glial Interactions.

    Science.gov (United States)

    Hayati, Mohsen; Nouri, Moslem; Haghiri, Saeed; Abbott, Derek

    2016-04-01

    The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms. PMID:26390499

  11. Coronary artery bypass grafting versus percutaneous intervention in coronary revascularization: a historical perspective and review

    Directory of Open Access Journals (Sweden)

    Burgess SN

    2015-06-01

    Full Text Available Sonya N Burgess,1 John J Edmond,2 Craig P Juergens,1 John K French11Department of Cardiology, Liverpool Hospital and South Western Sydney Clinical School, The University of New South Wales, Sydney, NSW, Australia; 2Department of Cardiology, Dunedin Public Hospital, Dunedin, New Zealand Background: Coronary artery bypass graft surgery is arguably the most intensively studied surgical procedure, and percutaneous coronary intervention (PCI has been subjected to more randomized clinical trials than any other interventional procedure. Changes seen in revascularization techniques have been numerous. The rapid evolution of evidence-based revascularization procedures has occurred as a result of many pivotal large randomized clinical trials. Objective: This review compares and contrasts outcomes from two coronary revascularization techniques, coronary artery bypass grafting (CABG and PCI, with particular reference to the landmark trials that inform practice guidelines. Methods: We undertook a comprehensive review of published literature addressing trials in this field performed to address current knowledge both in the predrug-eluting stent and postdrug-eluting stent era. Results and discussion: Surgical and percutaneous revascularization strategies have different strengths and weaknesses, and neither strategy is superior in all patients, clinical presentations, or anatomical subgroups. Current data support the use of percutaneous intervention in ST elevation myocardial infarction and in single-vessel disease. In noncomplex multivessel disease and isolated left main stem PCI, the data support non-inferiority of PCI compared to CABG as reflected in the 2014 European Society of Cardiology guidelines. Landmark revascularization trials of multivessel disease comparing CABG to PCI found no survival benefit to CABG over PCI, except in patients with complex disease. In these trials, revascularization drove differences in primary endpoints and in all but the

  12. Selenoprotein S expression in reactive astrocytes following brain injury.

    Science.gov (United States)

    Fradejas, Noelia; Serrano-Pérez, Maria Del Carmen; Tranque, Pedro; Calvo, Soledad

    2011-06-01

    Selenoprotein S (SelS) is an endoplasmic reticulum (ER)-resident protein involved in the unfolded protein response. Besides reducing ER-stress, SelS attenuates inflammation by decreasing pro-inflammatory cytokines. We have recently shown that SelS is responsive to ischemia in cultured astrocytes. To check the possible association of SelS with astrocyte activation, here we investigate the expression of SelS in two models of brain injury: kainic acid (KA) induced excitotoxicity and cortical mechanical lesion. The regulation of SelS and its functional consequences for neuroinflammation, ER-stress, and cell survival were further analyzed using cultured astrocytes from mouse and human. According to our immunofluorescence analysis, SelS expression is prominent in neurons and hardly detectable in astrocytes from control mice. However, brain injury intensely upregulates SelS, specifically in reactive astrocytes. SelS induction by KA was evident at 12 h and faded out after reaching maximum levels at 3-4 days. Analysis of mRNA and protein expression in cultured astrocytes showed SelS upregulation by inflammatory stimuli as well as ER-stress inducers. In turn, siRNA-mediated SelS silencing combined with adenoviral overexpression assays demonstrated that SelS reduces ER-stress markers CHOP and spliced XBP-1, as well as inflammatory cytokines IL-1β and IL-6 in stimulated astrocytes. SelS overexpression increased astrocyte resistance to ER-stress and inflammatory stimuli. Conversely, SelS suppression compromised astrocyte viability. In summary, our results reveal the upregulation of SelS expression in reactive astrocytes, as well as a new protective role for SelS against inflammation and ER-stress that can be relevant to astrocyte function in the context of inflammatory neuropathologies. PMID:21456042

  13. Revascularization Strategies in Patients with Diabetes Mellitus and Acute Coronary Syndrome.

    Science.gov (United States)

    Buntaine, Adam J; Shah, Binita; Lorin, Jeffrey D; Sedlis, Steven P

    2016-08-01

    Patients with diabetes mellitus (DM) have more severe CAD and higher mortality in acute coronary syndrome (ACS) than patients without DM. The optimal mode of revascularization-coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI)-remains controversial in this setting. For patients with DM and ST-segment elevation myocardial infarction, prompt revascularization of the culprit artery via PCI is generally preferable. In non-ST-elevation ACS, the decision on mode of revascularization is more challenging. Trials comparing CABG with percutaneous transluminal coronary angioplasty, bare metal stents, and first-generation drug-eluting stents in DM patients with multivessel have demonstrated decreased mortality in those receiving CABG. On the other hand, trials and retrospective analyses comparing CABG to PCI with second-generation drug-eluting stents have not shown a statistically significant mortality benefit favoring CABG. This potentially narrowed that gap between CABG and PCI requires further investigation. PMID:27339854

  14. Application of radionuclide infarct scintigraphy to diagnose perioperative myocardial infarction following revascularization

    International Nuclear Information System (INIS)

    To evaluate the application of radionuclide infarct scintigraphy to diagnose myocardial infarction after revascularization, we obtained postoperative technetium 99m pyrophosphate myocardial scintigrams, serial electrocardiograms and CPK-MB isoenzymes in ten control and 51 revascularized patients. All control patients had negative electrocardiograms and scintigrams, but eight had positive isoenzymes. Eight revascularized patients had positive electrocardiograms, images and enzymes and two had positive scintigrams and enzymes with negative electrocardiograms. Thirty-four patients with negative electrocardiograms and scintigrams had positive isoenzymes; in only seven patients were all tests negative. Our data suggest radionuclide infarct scintigraphy is a useful adjunct to the electrocardiogram in diagnosing perioperative infarction. The frequent presence of CPK-MB in postoperative patients without other evidence of infarction suggests that further studies are required to identify all factors responsible for its release

  15. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury [v2; ref status: indexed, http://f1000r.es/38u

    Directory of Open Access Journals (Sweden)

    Laura Genis

    2014-04-01

    Full Text Available Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H2O2. Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H2O2 such as stem cell factor (SCF to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.

  16. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury [v1; ref status: indexed, http://f1000r.es/2lf

    Directory of Open Access Journals (Sweden)

    Laura Genis

    2014-01-01

    Full Text Available Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. The protection mediated by IGF-I against oxidative stress (H2O2 in astrocytes is probably needed for these cells to provide adequate neuroprotection. Indeed, in astrocytes but not in neurons, IGF-I helps decrease the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H2O2 such as stem cell factor (SCF to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.

  17. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  18. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    Science.gov (United States)

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  19. Emergency revascularization of acute internal carotid artery occlusion: Follow the spike, it guides you.

    Science.gov (United States)

    Cohen, José E; Gomori, John M; Leker, Ronen R; Eichel, Roni; Itshayek, Eyal

    2016-07-01

    The present study sought to examine the incidence of the angiographic "spike sign" and to assess its predictive significance for achieving carotid revascularization in 54 patients with acute internal carotid artery (ICA) occlusions that required urgent endovascular revascularization. Clinical and imaging files of consecutive patients with ICA occlusion who were treated in a tertiary care academic medical center from 2011-2015 were retrospectively examined under Institutional Review Board approval with a waiver of the requirement for informed consent. All proximal ICA occlusions were treated by stent-assisted carotid angioplasty, and all distal embolic occlusions were managed with stent-assisted mechanical thrombectomy. The study included 24 patients with acute ICA occlusion (group 1) and 30 patients with tandem ICA-intracranial occlusions (group 2). The spike sign was seen in 16/24 patients in group 1 (67%), and successful ICA revascularization was achieved in 14/16 (88%). The sign was seen in 26/30 patients in group 2 (87%), and ICA revascularization was successful in all 26 (100%). The remaining 12 patients had no spike sign, and ICA revascularization was successful in only 7/12 (58%). The spike sign is a transient finding that represents the proximal patent remnant of the stenotic corridor in fresh clot. Acute ICA occlusion frequently leaves the spike sign as a marker of the recent thrombotic event. The spike vertex points to the "path of least resistance" for the guidewire to cross the occlusion and engage the true arterial lumen, a critical step during ICA endovascular revascularization. PMID:26935747

  20. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    Y. He; T.B.M. Hakvoort; J.L.M. Vermeulen; W.T. Labruyere; D.R. de Waart; W.S. van der Hel; J.M. Ruijter; H.B.M. Uylings; W.H. Lamers

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in astrocyte

  1. Neuroimmunological Implications of AQP4 in Astrocytes

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  2. Neuroimmunological Implications of AQP4 in Astrocytes.

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4's role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  3. Probing astrocytes with carbon nanotubes and assessing their effects on astrocytic structural and functional properties

    Science.gov (United States)

    Gottipati, Manoj K.

    Single-walled carbon nanotubes, chemically-functionalized with polyethylene glycol (SWCNT-PEG) have been shown to modulate the morphology and proliferation characteristics of astrocytes in culture, when applied to the cells as colloidal solutes or as films upon which the cells can attach and grow. These changes were associated with a change in the immunoreactivity of the astrocyte-specific protein, glial fibrillary acidic protein (GFAP); the solutes and films caused an increase and a decrease in GFAP levels, respectively. To assess if these morpho-functional changes induced by the SWCNT-PEG modalities are dependent on GFAP or if the changes in GFAP levels are independent events, I used astrocytes isolated from GFAP knockout mice and found that selected changes induced by the SWCNT-PEG modalities are mediated by GFAP, namely the changes in perimeter, shape and cell death for colloidal solutes and the rate of proliferation for films. Since the loss GFAP has been shown to hamper the trafficking of glutamate transporters to the surface of astrocytes, which plays a vital role in the uptake of extracellular glutamate and maintaining homeostasis in the brain and spinal cord, in a subsequent study, I assessed if the SWCNT-PEG solute causes any change in the glutamate uptake characteristics of astrocytes. Using a radioactive glutamate uptake assay and immunolabeling, I found that SWCNT-PEG solute causes an increase in the uptake of glutamate from the extracellular space along with an increase in the immunoreactivity of the glutamate transporter, L-glutamate L-aspartate transporter (GLAST), on their cell surface, a likely consequence of the increase in GFAP levels induced by the SWCNT-PEG solute. These results imply that SWCNT-PEG could potentially be used as a viable candidate in neural prosthesis applications to prevent glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries, and alleviate the death toll of neurons surrounding the injury

  4. Complete versus culprit-only revascularization for ST-segment-elevation myocardial infarction and multivessel disease

    DEFF Research Database (Denmark)

    Bangalore, Sripal; Toklu, Bora; Wetterslev, Jørn

    2015-01-01

    increase in contrast volume use (mean difference 85.12 [70.41-83.00] ml) and procedure time (mean difference 16.42 [13.22-19.63] mins) with complete revascularization without increase in contrast-induced nephropathy. CONCLUSIONS: In patients with ST-segment-elevation myocardial infarction, immediate or...... infarction. Efficacy outcomes were major adverse cardiovascular events, as well as death, cardiovascular death, myocardial infarction, and repeat revascularization. Safety outcomes were contrast-induced nephropathy, contrast volume used, and procedure time. Five trials with 1165 patients fulfilled the...

  5. Arterial hypertension and associated factors in patients submitted to myocardial revascularization

    Directory of Open Access Journals (Sweden)

    Flávia Cortez Colósimo

    2015-04-01

    Full Text Available OBJECTIVE To identify the prevalence of arterial hypertension and associated factors in patients submitted to myocardial revascularization. METHOD Cross-sectional study using the database of a hospital in São Paulo (SP, Brazil containing 3010 patients with coronary artery disease submitted to myocardial revascularization. A multiple logistic regression was performed to identify variables independently associated with hypertension (statistical significance: p1.3: (OR=1.37;CI:1.09-1.72. CONCLUSION A high prevalence of arterial hypertension and association with both non-modifiable and modifiable factors was observed.

  6. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 40C, in an effort to establish the best conditions for the preservation. Survival rate at 40C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 40C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 40C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  7. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  8. Optical modulation of astrocyte network using ultrashort pulsed laser

    Science.gov (United States)

    Yoon, Jonghee; Ku, Taeyun; Chong, Kyuha; Ryu, Seung-Wook; Choi, Chulhee

    2012-03-01

    Astrocyte, the most abundant cell type in the central nervous system, has been one of major topics in neuroscience. Even though many tools have been developed for the analysis of astrocyte function, there has been no adequate tool that can modulates astrocyte network without pharmaceutical or genetic interventions. Here we found that ultrashort pulsed laser stimulation can induce label-free activation of astrocytes as well as apoptotic-like cell death in a dose-dependent manner. Upon irradiation with high intensity pulsed lasers, the irradiated cells with short exposure time showed very rapid mitochondria fragmentation, membrane blebbing and cytoskeletal retraction. We applied this technique to investigate in vivo function of astrocyte network in the CNS: in the aspect of neurovascular coupling and blood-brain barrier. We propose that this noninvasive technique can be widely applied for in vivo study of complex cellular network.

  9. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis.

    Directory of Open Access Journals (Sweden)

    Behzad Ebrahimi

    Full Text Available Atherosclerotic renal artery stenosis (ARAS raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC to percutaneous transluminal renal angioplasty (PTRA can restore stenotic-kidney medullary tubular transport function and attenuate its remodeling. Twenty-seven swine were divided into three ARAS (high-cholesterol diet and renal artery stenosis and a normal control group. Six weeks after ARAS induction, two groups were treated with PTRA alone or PTRA supplemented with adipose-tissue-derived MSC (10 × 10(6 cells intra-renal. Multi-detector computed tomography and blood-oxygenation-level-dependent (BOLD MRI studies were performed 4 weeks later to assess kidney hemodynamics and function, and tissue collected a few days later for histology and micro-CT imaging. PTRA effectively decreased blood pressure, yet medullary vascular density remained low. Addition of MSC improved medullary vascularization in ARAS+PTRA+MSC and increased angiogenic signaling, including protein expression of vascular endothelial growth-factor, its receptor (FLK-1, and hypoxia-inducible factor-1α. ARAS+PTRA+MSC also showed attenuated inflammation, although oxidative-stress remained elevated. BOLD-MRI indicated that MSC normalized oxygen-dependent tubular response to furosemide (-4.3 ± 0.9, -0.1 ± 0.4, -1.6 ± 0.9 and -3.6 ± 1.0 s(-1 in Normal, ARAS, ARAS+PTRA and ARAS+PTRA+MSC, respectively, p<0.05, which correlated with a decrease in medullary tubular injury score (R(2 = 0.33, p = 0.02. Therefore, adjunctive MSC delivery in addition to PTRA reduces inflammation, fibrogenesis and vascular remodeling, and restores oxygen-dependent tubular function in the stenotic-kidney medulla, although additional interventions might be required to reduce oxidative-stress. This study supports development of

  10. Study of red wine neuroprotection on astrocytes.

    Science.gov (United States)

    Gómez-Serranillos, M Pilar; Martín, Sara; Ortega, Teresa; Palomino, Olga M; Prodanov, Marín; Vacas, Visitación; Hernández, Teresa; Estrella, Isabel; Carretero, M Emilia

    2009-12-01

    Phenolic composition of wine depends not only on the grape variety from which it is made, but on some external factors such as winemaking technology. Red wine possesses the most antioxidant effect because of its high polyphenolic content. The aim of this work is to study for the first time, the neuroprotective activity of four monovarietal Spanish red wines (Merlot (ME), Tempranillo (T), Garnacha (G) and Cabernet-Sauvignon (CS)) through its antioxidant ability, and to relate this neuroprotection to its polyphenolic composition, if possible. The wine effect on neuroprotection was studied through its effect as free radical scavenger against FeSO4, H2O2 and FeSO4 + H2O2. Effect on cell survival was determined by 3(4,5-dimethyltiazol-2-il)-2,5-diphenyltetrazolium reduction assay (MTT) and lactate dehydrogenase (LDH) release assay on astrocytes cultures. Results showed that most of the studied wine varieties induced neuroprotection through their antioxidant ability in astrocytes, Merlot being the most active; this variety is especially rich in phenolic compounds, mainly catechins and oligomeric proanthocyanidins. Our results show that red wine exerts a protection against oxidative stress generated by different toxic agents and that the observed neuroprotective activity is related to their polyphenolic content.

  11. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10-5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (3H)inositol, and basal (3H) inositol phosphate (IP1) accumulation was measured in the presence of Li+. Epinephrine > norepinephrine (NE) were the most active stimulants of IP1 production. The α1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP1 below basal levels and when added together diminished IP1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  12. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  13. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2010-08-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1–40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50–70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5–14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10–2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  14. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  15. PCBP2 Modulates Neural Apoptosis and Astrocyte Proliferation After Spinal Cord Injury.

    Science.gov (United States)

    Mao, Xingxing; Liu, Jin; Chen, Chen; Zhang, Weidong; Qian, Rong; Chen, Xinlei; Lu, Hongjian; Ge, Jianbing; Zhao, Chengjin; Zhang, Dongmei; Wang, Youhua

    2016-09-01

    PCBP2, a member of the poly(C)-binding protein (PCBP) family, plays a pivotal role in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. It is reported that several PCBP family members are involved in human malignancies. However, the distribution and function of PCBP2 in the central nervous system (CNS) remain unclear. In this study, we performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of PCBP2 expression in the spinal cord. Western blot and immunohistochemistry analysis revealed that PCBP2 presented in normal spinal cord. It gradually increased, reached a peak at 3 day, and then declined to basal levels at 14 days after SCI. We observed that the expression of PCBP2 was enhanced in the gray and white matter. Immunofluorescence indicated that PCBP2 was located in the neurons and astrocytes. Moreover, colocalization of PCBP2/active caspase-3 was detected in neurons, and colocalization of PCBP2/proliferating cell nuclear antigen was detected in astrocytes after SCI. These results indicated that PCBP2 might play an important role in neuronal apoptosis and astrocyte proliferation. In vitro, PCBP2-specific siRNA-transfected neuron showed significantly decrease of neuronal apoptosis and expression of cell cycle related proteins following glutamate stimulation. Meanwhile, PCBP2 knockdown also reduced primary astrocytes proliferation. All above indicated that PCBP2 might play a crucial role in cell proliferation and apoptosis. Collectively, our data suggested that PCBP2 might play important roles in CNS pathophysiology after SCI. PMID:27209304

  16. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia.

    Science.gov (United States)

    Churchill, Melissa J; Wesselingh, Steven L; Cowley, Daniel; Pardo, Carlos A; McArthur, Justin C; Brew, Bruce J; Gorry, Paul R

    2009-08-01

    Astrocyte infection with human immunodeficiency virus (HIV) is considered rare, so astrocytes are thought to play a secondary role in HIV neuropathogenesis. By combining double immunohistochemistry, laser capture microdissection, and highly sensitive multiplexed polymerase chain reaction to detect HIV DNA in single astrocytes in vivo, we showed that astrocyte infection is extensive in subjects with HIV-associated dementia, occurring in up to 19% of GFAP+ cells. In addition, astrocyte infection frequency correlated with the severity of neuropathological changes and proximity to perivascular macrophages. Our data indicate that astrocytes can be extensively infected with HIV, and suggest an important role for HIV-infected astrocytes in HIV neuropathogenesis.

  17. Chronic non-transmural infarction has a delayed recovery of function following revascularization

    Directory of Open Access Journals (Sweden)

    Palmer John

    2010-01-01

    Full Text Available Abstract Background The time course of regional functional recovery following revascularization with regards to the presence or absence of infarction is poorly known. We studied the effect of the presence of chronic non-transmural infarction on the time course of recovery of myocardial perfusion and function after elective revascularization. Methods Eighteen patients (mean age 69, range 52-84, 17 men prospectively underwent cine magnetic resonance imaging (MRI, delayed contrast enhanced MRI and rest/stress 99m-Tc-tetrofosmin single photon emission computed tomography (SPECT before, one and six months after elective coronary artery bypass grafting (CABG or percutaneous coronary intervention (PCI. Results Dysfunctional myocardial segments (n = 337/864, 39% were classified according to the presence (n = 164 or absence (n = 173 of infarction. Infarct transmurality in dysfunctional segments was largely non-transmural (transmurality = 31 ± 22%. Quantitative stress perfusion and wall thickening increased at one month in dysfunctional segments without infarction (p Conclusions Dysfunctional segments without infarction represent repetitively stunned or hibernating myocardium, and these segments improved both perfusion and function within one month after revascularization with no improvement thereafter. Although dysfunctional segments with non-transmural infarction improved in perfusion at one month, functional recovery was mostly seen between one and six months, possibly reflecting a more severe ischemic burden. These findings may be of value in the clinical assessment of regional functional recovery in the time period after revascularization.

  18. Management of Vascular Risk Factors in the Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST)

    OpenAIRE

    Meschia, James F; Voeks, Jenifer H.; Leimgruber, Pierre P.; Mantese, Vito A.; Timaran, Carlos H; Chiu, David; Bart M. Demaerschalk; Howard, Virginia J; Hughes, Susan E.; Longbottom, Mary; Howard, Annie Green; Brott, Thomas G

    2014-01-01

    Background The Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST) is a multicenter randomized trial of stenting versus endarterectomy in patients with symptomatic and asymptomatic carotid disease. This study assesses management of vascular risk factors. Methods and Results Management was provided by the patient's physician, with biannual monitoring results collected by the local site. Therapeutic targets were low‐density lipoprotein, cholesterol

  19. Percutaneous Revascularization in a Case of Vasospastic Angina Associated with Polymorphic Ventricular Tachycardia

    Directory of Open Access Journals (Sweden)

    Roxana Rudzik

    2015-12-01

    Full Text Available Introduction: Coronary vasospasm is a possible cause of ventricular tachyarrhythmias and is frequently associated with atherosclerotic lesions. The revascularization of mild to moderate coronary artery stenosis which causes symptoms only due to associated vasospasm is still a matter of debate, as the standard treatment of Prinzmetal angina is represented by the long term administration of calcium-channel blockers.

  20. Endovascular Therapy as a Primary Revascularization Modality in Acute Mesenteric Ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kärkkäinen, Jussi M., E-mail: jkarkkai@gmail.com [Kuopio University Hospital, Heart Center (Finland); Lehtimäki, Tiina T., E-mail: tiina.lehtimaki@kuh.fi; Saari, Petri, E-mail: petri.saari@kuh.fi [Kuopio University Hospital, Department of Clinical Radiology (Finland); Hartikainen, Juha, E-mail: juha.hartikainen@kuh.fi [Kuopio University Hospital, Heart Center (Finland); Rantanen, Tuomo, E-mail: tuomo.rantanen@kuh.fi; Paajanen, Hannu, E-mail: hannu.paajanen@kuh.fi [Kuopio University Hospital, Department of Gastrointestinal Surgery (Finland); Manninen, Hannu, E-mail: hannu.manninen@kuh.fi [Kuopio University Hospital, Department of Clinical Radiology (Finland)

    2015-10-15

    PurposeTo evaluate endovascular therapy (EVT) as the primary revascularization method for acute mesenteric ischemia (AMI).MethodsA retrospective review was performed on all consecutive patients treated for AMI during a 5-year period (January 2009 to December 2013). EVT was attempted in all patients referred for emergent revascularization. Surgical revascularization was performed selectively after failure of EVT. Patient characteristics, clinical presentation, and outcomes were studied. Failures and complications of EVT were recorded.ResultsFifty patients, aged 79 ± 9 years (mean ± SD), out of 66 consecutive patients with AMI secondary to embolic or thrombotic obstruction of the superior mesenteric artery were referred for revascularization. The etiology of AMI was embolism in 18 (36 %) and thrombosis in 32 (64 %) patients. EVT was technically successful in 44 (88 %) patients. Mortality after successful or failed EVT was 32 %. The rates of emergency laparotomy, bowel resection, and EVT-related complication were 40, 34, and 10 %, respectively. Three out of six patients with failure of EVT were treated with surgical bypass. EVT failure did not significantly affect survival.ConclusionsEVT is feasible in most cases of AMI, with favorable patient outcome and acceptable complication rate.

  1. Utilizing risk scores in determining the optimal revascularization strategy for complex coronary artery disease

    NARCIS (Netherlands)

    V. Farooq (Vasim); S. Brugaletta (Salvatore); P.W.J.C. Serruys (Patrick)

    2011-01-01

    textabstractPercutaneous coronary intervention (PCI) of multivessel and/or left main stem disease have been shown to be potentially legitimate revascularization alternatives in appropriately selected patients. Risk stratification is an important component in guiding patients to identify the most app

  2. Endovascular Revascularization of Symptomatic Infrapopliteal Arteriosclerotic Occlusive Disease: Comparison of Atherectomy and Angioplasty

    OpenAIRE

    Tan, Tze-Woei; Semaan, Elie; Nasr, Wael; Eberhardt, Robert T.; Hamburg, Naomi; Doros, Gheorghe; Rybin, Denis; Shaw, Palma M; Farber, Alik

    2011-01-01

    The preferred method for revascularization of symptomatic infrapopliteal arterial occlusive disease (IPAD) has traditionally been open vascular bypass. Endovascular techniques have been increasingly applied to treat tibial disease with mixed results. We evaluated the short-term outcome of percutaneous infrapopliteal intervention and compared the different techniques used. A retrospective analysis of consecutive patients undergoing endovascular treatment for infrapopliteal arterial occlusive l...

  3. Endovascular Therapy as a Primary Revascularization Modality in Acute Mesenteric Ischemia

    International Nuclear Information System (INIS)

    PurposeTo evaluate endovascular therapy (EVT) as the primary revascularization method for acute mesenteric ischemia (AMI).MethodsA retrospective review was performed on all consecutive patients treated for AMI during a 5-year period (January 2009 to December 2013). EVT was attempted in all patients referred for emergent revascularization. Surgical revascularization was performed selectively after failure of EVT. Patient characteristics, clinical presentation, and outcomes were studied. Failures and complications of EVT were recorded.ResultsFifty patients, aged 79 ± 9 years (mean ± SD), out of 66 consecutive patients with AMI secondary to embolic or thrombotic obstruction of the superior mesenteric artery were referred for revascularization. The etiology of AMI was embolism in 18 (36 %) and thrombosis in 32 (64 %) patients. EVT was technically successful in 44 (88 %) patients. Mortality after successful or failed EVT was 32 %. The rates of emergency laparotomy, bowel resection, and EVT-related complication were 40, 34, and 10 %, respectively. Three out of six patients with failure of EVT were treated with surgical bypass. EVT failure did not significantly affect survival.ConclusionsEVT is feasible in most cases of AMI, with favorable patient outcome and acceptable complication rate

  4. Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function.

    Science.gov (United States)

    Pleiss, Melanie M; Sompol, Pradoldej; Kraner, Susan D; Abdul, Hafiz Mohmmad; Furman, Jennifer L; Guttmann, Rodney P; Wilcock, Donna M; Nelson, Peter T; Norris, Christopher M

    2016-09-01

    Mounting evidence suggests that astrocyte activation, found in most forms of neural injury and disease, is linked to the hyperactivation of the protein phosphatase calcineurin. In many tissues and cell types, calcineurin hyperactivity is the direct result of limited proteolysis. However, little is known about the proteolytic status of calcineurin in activated astrocytes. Here, we developed a polyclonal antibody to a high activity calcineurin proteolytic fragment in the 45-48kDa range (ΔCN) for use in immunohistochemical applications. When applied to postmortem human brain sections, the ΔCN antibody intensely labeled cell clusters in close juxtaposition to amyloid deposits and microinfarcts. Many of these cells exhibited clear activated astrocyte morphology. The expression of ΔCN in astrocytes near areas of pathology was further confirmed using confocal microscopy. Multiple NeuN-positive cells, particularly those within microinfarct core regions, also labeled positively for ΔCN. This observation suggests that calcineurin proteolysis can also occur within damaged or dying neurons, as reported in other studies. When a similar ΔCN fragment was selectively expressed in hippocampal astrocytes of intact rats (using adeno-associated virus), we observed a significant reduction in the strength of CA3-CA1 excitatory synapses, indicating that the hyperactivation of astrocytic calcineurin is sufficient for disrupting synaptic function. Together, these results suggest that proteolytic activation of calcineurin in activated astrocytes may be a central mechanism for driving and/or exacerbating neural dysfunction during neurodegenerative disease and injury. PMID:27212416

  5. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  6. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  7. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  8. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  9. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  10. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Because thallium-201 uptake relates directly to the amount of viable myocardium and nutrient blood flow, the potential for exercise scintigraphy to predict response to coronary revascularization surgery was investigated in 47 consecutive patients. All patients underwent thallium-201 scintigraphy and coronary angiography at a mean (+/- standard deviation) of 4.3 +/- 3.1 weeks before and 7.5 +/- 1.6 weeks after surgery. Thallium uptake and washout were computer-quantified and each of six segments was defined as normal, showing total or partial redistribution or a persistent defect. Persistent defects were further classified according to the percent reduction in regional thallium activity; PD25-50 denoted a 25 to 50% constant reduction in relative thallium activity and PD greater than 50 denoted a greater than 50% reduction. Of 82 segments with total redistribution before surgery, 76 (93%) showed normal thallium uptake and washout postoperatively, versus only 16 (73%) of 22 with partial redistribution (probability [p] . 0.01). Preoperative ventriculography revealed that 95% of the segments with total redistribution had preserved wall motion, versus only 74% of those with partial redistribution (p . 0.01). Of 42 persistent defects thought to represent myocardial scar before surgery, 19 (45%) demonstrated normal perfusion postoperatively. Of the persistent defects that showed improved thallium perfusion postoperatively, 75% had normal or hypokinetic wall motion before surgery, versus only 14% of those without improvement (p less than 0.001). Whereas 57% of the persistent defects that showed a 25 to 50% decrease in myocardial activity demonstrated normal thallium uptake and washout postoperatively, only 21% of the persistent defects with a decrease in myocardial activity greater than 50% demonstrated improved perfusion after surgery (p . 0.02)

  11. Correlation between Patient-Reported Symptoms and Ankle-Brachial Index after Revascularization for Peripheral Arterial Disease.

    Science.gov (United States)

    Je, Hyung Gon; Kim, Bo Hyun; Cho, Kyoung Im; Jang, Jae Sik; Park, Yong Hyun; Spertus, John

    2015-01-01

    Improvement in quality of life (QoL) is a primary treatment goal for patients with peripheral arterial disease (PAD). The current study aimed to quantify improvement in the health status of PAD patients following peripheral revascularization using the peripheral artery questionnaire (PAQ) and ankle-brachial index (ABI), and to evaluate possible correlation between the two methods. The PAQ and ABI were assessed in 149 symptomatic PAD patients before, and three months after peripheral revascularization. Mean PAQ summary scores improved significantly three months after revascularization (+49.3 ± 15 points, p PAQ scores relating to patient symptoms showed the largest improvement following revascularization. The smallest increases were seen in reported treatment satisfaction (all p's PAQ. Twenty-two percent of PAD patients were identified as having a poor response to revascularization (increase in ABI PAQ, although this was less marked than in patients with an increase in ABI > 0.15 following revascularization. In conclusion, data from the current study suggest a significant correlation between improvement in patient-reported outcomes assessed by PAQ and ABI in symptomatic PAD patients undergoing peripheral revascularization.

  12. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter

    OpenAIRE

    Vanzulli, Ilaria; Butt, Arthur M

    2015-01-01

    Astrocytes perform essential neuron-supporting functions in the central nervous system (CNS) and their disruption has devastating effects on neuronal integrity in multiple neuropathologies. Although astrocytes are considered resistant to most pathological insults, ischemia can result in astrocyte injury and astrocytes in postnatal white matter are particularly vulnerable. Metabotropic glutamate receptors (mGluR) are neuroprotective in ischemia and are widely expressed by astrocytes throughout...

  13. Colchicine to Reduce Atrial Fibrillation in the Postoperative Period of Myocardial Revascularization

    Science.gov (United States)

    Zarpelon, Camila Stuchi; Netto, Miguel Chomiski; Jorge, José Carlos Moura; Fabris, Cátia Carolina; Desengrini, Dieli; Jardim, Mariana da Silva; da Silva, Diego Guedes

    2016-01-01

    Background The high prevalence of atrial fibrillation (AF) in the postoperative period of myocardial revascularization surgery increases morbidity and mortality. Objective To assess the efficacy of colchicine to prevent AF in the postoperative period of myocardial revascularization surgery, the impact of AF on hospital length of stay and death, and to identify its risk factors. Methods Between May 2012 and November 2013, 140 patients submitted to myocardial revascularization surgery were randomized, 69 to the control group and 71 to the colchicine group. Colchicine was used at the dose of 1 mg orally, twice daily, preoperatively, and of 0.5 mg, twice daily, until hospital discharge. A single dose of 1 mg was administered to those admitted 12 hours or less before surgery. Results The primary endpoint was AF rate in the postoperative period of myocardial revascularization surgery. Colchicine group patients showed no reduction in AF incidence as compared to control group patients (7.04% versus 13.04%, respectively; p = 0.271). There was no statistically significant difference between the groups regarding death from any cause rate (5.6% versus 10.1%; p = 0,363) and hospital length of stay (14.5 ± 11.5 versus 13.3 ± 9.4 days; p = 0.490). However, colchicine group patients had a higher infection rate (26.8% versus 8.7%; p = 0.007). Conclusion The use of colchicine to prevent AF after myocardial revascularization surgery was not effective in the present study. Brazilian Registry of Clinical Trials number RBR-556dhr. PMID:27223641

  14. Colchicine to Reduce Atrial Fibrillation in the Postoperative Period of Myocardial Revascularization

    Directory of Open Access Journals (Sweden)

    Camila Stuchi Zarpelon

    2016-01-01

    Full Text Available Abstract Background: The high prevalence of atrial fibrillation (AF in the postoperative period of myocardial revascularization surgery increases morbidity and mortality. Objective: To assess the efficacy of colchicine to prevent AF in the postoperative period of myocardial revascularization surgery, the impact of AF on hospital length of stay and death, and to identify its risk factors. Methods: Between May 2012 and November 2013, 140 patients submitted to myocardial revascularization surgery were randomized, 69 to the control group and 71 to the colchicine group. Colchicine was used at the dose of 1 mg orally, twice daily, preoperatively, and of 0.5 mg, twice daily, until hospital discharge. A single dose of 1 mg was administered to those admitted 12 hours or less before surgery. Results: The primary endpoint was AF rate in the postoperative period of myocardial revascularization surgery. Colchicine group patients showed no reduction in AF incidence as compared to control group patients (7.04% versus 13.04%, respectively; p = 0.271. There was no statistically significant difference between the groups regarding death from any cause rate (5.6% versus 10.1%; p = 0,363 and hospital length of stay (14.5 ± 11.5 versus 13.3 ± 9.4 days; p = 0.490. However, colchicine group patients had a higher infection rate (26.8% versus 8.7%; p = 0.007. Conclusion: The use of colchicine to prevent AF after myocardial revascularization surgery was not effective in the present study. Brazilian Registry of Clinical Trials number RBR-556dhr.

  15. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-01

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  16. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    OpenAIRE

    Dienel, Gerald A.; Nancy F Cruz

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net g...

  17. Pyk2 is essential for astrocytes mobility following brain lesion

    OpenAIRE

    Giralt, Albert; Coura, Renata; Girault, Jean-Antoine

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a calcium-dependent, non-receptor protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Pyk2 is enriched in the brain, especially the forebrain. Pyk2 is highly expressed in neurons but is also present in astrocytes, where its role is not known. We used Pyk2 knockout mice (Pyk2−/−) developed in our laboratory to investigate the function of Pyk2 in astrocytes. Morphology and basic properties of astrocytes in vivo and in culture were not alte...

  18. Computational models of neuron-astrocyte interaction in epilepsy

    Directory of Open Access Journals (Sweden)

    Vladislav eVolman

    2012-08-01

    Full Text Available Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computational models of astrocytic involvement in epileptogenesis, focusing on their relevance to existing physiological data.

  19. Astrocytes produce an insulin-like neurotrophic factor

    International Nuclear Information System (INIS)

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fraction of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of 125I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation

  20. Immunohistological Evaluation of Revascularized Immature Permanent Necrotic Teeth Treated by Platelet-Rich Plasma: An Animal Investigation

    Directory of Open Access Journals (Sweden)

    Saeed Moradi

    2016-09-01

    Full Text Available Objective: Pulp regeneration within the root canal of necrotic teeth is considered an ideal treatment to allow for continued root development and recover teeth vitality. This study aims to evaluate the inductive effect of platelet-rich plasma (PRP on expression of angiogenesis factors and pulpal revascularization of immature necrotic teeth. Materials and Methods: In this experimental animal study, we randomly divided 28 immature premolars from two mixed breed dogs into four groups, two experimental, negative and a positive control. Premolars in negative control group were left intact to develop normally. In the positive control and experimental groups, we removed the pulps and induced pulp necrosis, after which the chambers were sealed. Then, we applied the revascularization protocol in the experimental teeth located in the right quadrant. Two months later, the same protocol was applied to the left quadrant. The root canals were disinfected by irrigation with sodium hypochlorite (NaOCl solution and application a triple antibiotic past. Following the induction of a blood clot (BC inside the canal space, the coronal portion of the canals was assigned to either of two experimental groups: group 1 [BC+PRP+ mineral trioxide aggregate (MTA], group 2 (BC+MTA. Access cavities were sealed with a Glass Ionomer. The jaws that held the teeth were processed for histologic analysis of newly formed tissue and immunohistochemical evaluation according to vascular endothelial growth factor (VEGF and factor VIII expressions in the canals. Results: Histological analysis demonstrated no significant difference in the formation of new vital tissue inside the root canals between groups1 (42.8% and 2 (43.5%, P>0.05. Based on immunohistochemical evaluation, micro-vessel density (MVD of the granulation tissues in both groups were similar and were higher compared with the normal pulp. We observed strongly positive expressions of VEGF and factor VIII in the stromal and

  1. Intercellular synchronization of diffusively coupled astrocytes

    CERN Document Server

    Alam, Md Jahoor; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2010-01-01

    We examine the synchrony of the dynamics of localized [Ca^{2+}]_i oscillations in internal pool of astrocytes via diffusing coupling of a network of such cells in a certain topology where cytosolic Ca^{2+} and inositol 1,4,5-triphosphate (IP3) are coupling molecules; and possible long range interaction among the cells. Our numerical results claim that the cells exhibit fairly well coordinated behaviour through this coupling mechanism. It is also seen in the results that as the number of coupling molecular species is increased, the rate of synchrony is also increased correspondingly. Apart from the topology of the cells taken, as the number of coupled cells around any one of the cells in the system is increased, the cell process information faster.

  2. Evidence for the existence of secretory granule (dense-core vesicle-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yong Suk Hur

    Full Text Available BACKGROUND: The gliotransmitters released from astrocytes are deemed to play key roles in the glial cell-neuron communication for normal function of the brain. The gliotransmitters, such as glutamate, ATP, D-serine, neuropeptide Y, are stored in vesicles of astrocytes and secreted following the inositol 1,4,5-trisphosphate (IP3-induced intracellular Ca2+ releases. Yet studies on the identity of the IP3-dependent intracellular Ca2+ stores remain virtually unexplored. PRINCIPAL FINDINGS: We have therefore studied the potential existence of the IP3-sensitive intracellular Ca2+ stores in the cytoplasm of astrocytes using human brain tissue samples in contrast to cultured astrocytes that had primarily been used in the past. It was thus found that secretory granule marker proteins chromogranins and secretogranin II localize in the large dense core vesicles of astrocytes, thereby confirming the large dense core vesicles as bona fide secretory granules. Moreover, consistent with the major IP3-dependent intracellular Ca2+ store role of secretory granules in secretory cells, secretory granules of astrocytes also contained all three (types 1, 2, and 3 IP3R isoforms. SIGNIFICANCE: Given that the secretory granule marker proteins chromogranins and secretogranin II are high-capacity, low-affinity Ca2+ storage proteins and chromogranins interact with the IP3Rs to activate the IP3R/Ca2+ channels, i.e., increase both the mean open time and the open probability of the channels, these results imply that secretory granules of astrocytes function as the IP3-sensitive intracellular Ca2+ store.

  3. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel Bo;

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET of the...... brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes and...... astrocyte metabolism of [(11)C]acetate. No significant differences of the rate constant of oxidation of [(11)C]acetate (k 3) were found among the three groups of subjects. The net metabolic clearance of [(11)C]acetate from blood was lower in the group of patients with cirrhosis and HE than in the group of...

  4. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer;

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...... summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain....

  5. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  6. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes

    OpenAIRE

    Chao Zhang; Wenliang Chen; Xin Zhang; Bin Huang; Aanjing Chen; Ying He; Jian Wang; Xingang Li

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic ...

  7. Group B streptococcal infection and activation of human astrocytes.

    Directory of Open Access Journals (Sweden)

    Terri D Stoner

    Full Text Available Streptococcus agalactiae (Group B Streptococcus, GBS is the leading cause of life-threatening meningitis in human newborns in industrialized countries. Meningitis results from neonatal infection that occurs when GBS leaves the bloodstream (bacteremia, crosses the blood-brain barrier (BBB, and enters the central nervous system (CNS, where the bacteria contact the meninges. Although GBS is known to invade the BBB, subsequent interaction with astrocytes that physically associate with brain endothelium has not been well studied.We hypothesize that human astrocytes play a unique role in GBS infection and contribute to the development of meningitis. To address this, we used a well- characterized human fetal astrocyte cell line, SVG-A, and examined GBS infection in vitro. We observed that all GBS strains of representative clinically dominant serotypes (Ia, Ib, III, and V were able to adhere to and invade astrocytes. Cellular invasion was dependent on host actin cytoskeleton rearrangements, and was specific to GBS as Streptococcus gordonii failed to enter astrocytes. Analysis of isogenic mutant GBS strains deficient in various cell surface organelles showed that anchored LTA, serine-rich repeat protein (Srr1 and fibronectin binding (SfbA proteins all contribute to host cell internalization. Wild-type GBS also displayed an ability to persist and survive within an intracellular compartment for at least 12 h following invasion. Moreover, GBS infection resulted in increased astrocyte transcription of interleukin (IL-1β, IL-6 and VEGF.This study has further characterized the interaction of GBS with human astrocytes, and has identified the importance of specific virulence factors in these interactions. Understanding the role of astrocytes during GBS infection will provide important information regarding BBB disruption and the development of neonatal meningitis.

  8. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    OpenAIRE

    Tommaso eFellin; Jeffrey M Ellenbogen; Maurizio eDe Pittà; Eshel eBen-Jacob; Michael M Halassa

    2012-01-01

    Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges...

  9. Astrocytes Directly Influence Tumor Cell Invasion and Metastasis In Vivo

    OpenAIRE

    Wang, Ling; Cossette, Stephanie M.; Rarick, Kevin R.; Gershan, Jill; Michael B Dwinell; Harder, David R.; Ramchandran, Ramani

    2013-01-01

    Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among wh...

  10. A Common Progenitor for Retinal Astrocytes and Oligodendrocytes

    OpenAIRE

    Rompani, Santiago B.; Cepko, Constance L.

    2010-01-01

    Developing neural tissue undergoes a period of neurogenesis followed by a period of gliogenesis. The lineage relationships among glial cell types have not been defined for most areas of the nervous system. Here we use retroviruses to label clones of glial cells in the chick retina. We found that almost every clone had both astrocytes and oligodendrocytes. In addition, we discovered a novel glial cell type, with features intermediate between those of astrocytes and oligodendrocytes, which we h...

  11. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling

    OpenAIRE

    Parpura, Vladimir; VERKHRATSKY, ALEXEI

    2012-01-01

    Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is...

  12. Nrf2 activation in astrocytes contributes to spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning.

    Science.gov (United States)

    Xu, Jiajun; Huang, Guoyang; Zhang, Kun; Sun, Jinchuan; Xu, Tao; Li, Runping; Tao, Hengyi; Xu, Weigang

    2014-08-01

    In this study, we investigated whether nuclear factor erythroid 2-related factor 2 (Nrf2) activation in astrocytes contributes to the neuroprotection induced by a single hyperbaric oxygen preconditioning (HBO-PC) against spinal cord ischemia/reperfusion (SCIR) injury. In vivo: At 24 h after a single HBO-PC at 2.5 atmospheres absolute for 90 min, the male ICR mice underwent SCIR injury by aortic cross-clamping surgery and observed for 48 h. HBO-PC significantly improved hindlimb motor function, reduced secondary spinal cord edema, ameliorated the reactivity of spinal motor-evoked potentials, and slowed down the process of apoptosis to exert neuroprotective effects against SCIR injury. At 12 h or 24 h after HBO-PC without aortic cross-clamping surgery, Western blot, enzyme-linked immunosorbent assay, realtime-polymerase chain reaction and double-immunofluorescence staining were used to detect the Nrf2 activity of spinal cord tissue, such as mRNA level, protein content, DNA binding activity, and the expression of downstream gene, such as glutamate-cysteine ligase, γ-glutamyltransferase, multidrug resistance protein 1, which are key proteins for intracellular glutathione synthesis and transit. The Nrf2 activity and downstream genes expression were all enhanced in normal spinal cord with HBO-PC. Glutathione content of spinal cord tissue with HBO-PC significantly increased at all time points after SCIR injury. Moreover, Nrf2 overexpression mainly occurs in astrocytes. In vitro: At 24 h after HBO-PC, the primary spinal astrocyte-neuron co-cultures from ICR mouse pups were subjected to oxygen-glucose deprivation (OGD) for 90 min to simulate the ischemia-reperfusion injury. HBO-PC significantly increased the survival rate of neurons and the glutathione content in culture medium, which was mainly released from asctrocytes. Moreover, the Nrf2 activity and downstream genes expression induced by HBO-PC were mainly enhanced in astrocytes, but not in neurons. In

  13. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  14. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    International Nuclear Information System (INIS)

    Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 μM. This stimulation was blocked by the low concentration of the α1-adrenergic antagonist prazosin but not by the α2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables

  15. Two-pore Domain Potassium Channels in Astrocytes

    Science.gov (United States)

    Ryoo, Kanghyun

    2016-01-01

    Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes. PMID:27790056

  16. Unveiling astrocytic control of cerebral blood flow with optogenetics.

    Science.gov (United States)

    Masamoto, Kazuto; Unekawa, Miyuki; Watanabe, Tatsushi; Toriumi, Haruki; Takuwa, Hiroyuki; Kawaguchi, Hiroshi; Kanno, Iwao; Matsui, Ko; Tanaka, Kenji F; Tomita, Yutaka; Suzuki, Norihiro

    2015-06-16

    Cortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex. A brief photostimulation induced a fast transient increase in CBF. The average response onset time was 0.7 ± 0.7 sec at the activation foci, and this CBF increase spread widely from the irradiation spot with an apparent propagation speed of 0.8-1.1 mm/sec. The broad increase in the CBF could be due to a propagation of diffusible vasoactive signals derived from the stimulated astrocytes. Pharmacological manipulation showed that topical administration of a K(+) channel inhibitor (BaCl2; 0.1-0.5 mM) significantly reduced the photostimulation-induced CBF responses, which indicates that the ChR2-evoked astrocytic activity involves K(+) signalling to the vascular smooth muscle cells. These findings demonstrate a unique model for exploring the role of the astrocytes in gliovascular coupling using non-invasive, time-controlled, cell-type specific perturbations.

  17. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  18. Stroke Status Evoked Adhesion Molecule Genetic Alterations in Astrocytes Isolated from Stroke-Prone Spontaneously Hypertensive Rats and the Apigenin Inhibition of Their Expression

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    2010-01-01

    Full Text Available We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM rats than in those from Wistar Kyoto rats (WKY/IZM by tumor necrosis factor-alpha (TNF- or hypoxia and reoxygenation (H/R and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1 by TNF- in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1 mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF--induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.

  19. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes

    OpenAIRE

    Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei; Zhou, Min

    2015-01-01

    Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and ...

  20. Improved regional ventricular function after successful surgical revascularization

    International Nuclear Information System (INIS)

    Left ventricular segments with reversible asynergy at rest demonstrate reversible myocardial perfusion defects on exercise thallium-201 scintigrams. To determine if improved perfusion eliminates asynergy at rest, 23 patients with angina (stable in 21, unstable in 2) were studied before and after coronary artery bypass surgery. All patients underwent exercise myocardial perfusion scintigraphy, contrast ventriculography and coronary arteriography before and after surgery. Selective graft angiography was performed during the postoperative catheterization to determine graft patency. Segmental ventricular function was quantitated by a regional fraction method. The scintigrams were divided into five regions and compared with the corresponding regions of the ventriculogram. Seventy-one of a possible 142 ventricular segments exhibited exercise-induced perfusion deficits. Preoperative regional ejection fraction was normal in 42 of these segments and abnormal in 29. Postoperatively, in 19 of the abnormal segments, function improved or normalized. All these segments had improved perfusion during exercise after surgery and were supplied by a patent bypass graft. Nine of the 10 segments in which abnormal wall motion persisted postoperatively continued to have exercise-induced perfusion deficits, and 9 of the 10 segments were supplied by an occluded or stenotic graft or one with poor run off. Of the 42 segments with normal wall motion preoperatively, 30 had improved perfusion after surgery and 35 maintained normal function. This study indicates that asynergy at rest is permanently reversed after coronary bypass surgery if improved myocardial perfusion can be documented. These findings are consistent with but do not prove the concept that reversible rest asynergy may reflect chronic ischemia or a prolonged effect from previous ischemic episodes

  1. Is myocardial stress perfusion MR-imaging suitable to predict the long term clinical outcome after revascularization?

    International Nuclear Information System (INIS)

    Introduction: Aim of our study was to evaluate, whether myocardial ischemia or myocardial infarction (MI) depicted by myocardial stress perfusion MR imaging (SP CMR) can predict the clinical outcome in patients with coronary artery disease (CAD). Materials and method: 220 patients were included. Myocardial perfusion was assessed at stress and at rest, using a 2D saturation recovery gradient echo sequence (SR GRE) and myocardial viability by late gadolinium enhancement magnetic resonance images (LGE CMR). MR-images were assessed in regard of presence and extent of MI and ischemia. Patients were monitored for major adverse cardiac events (MACE) (monitoring period: 5–7 years). MACE were correlated with the initial results of SP CMR. Results: Ischemia was found in 143 patients, MI in 107 patients. Number of MACE was in patients with normal SP CMR 0 (51 patients), with ischemia 21 (62 patients), with MI 14 (26 patients), with ischemia and MI 52 (81 patients). In all patients with severe MACE (MI, death) and in 63 of those with recurring symptoms LGE CMR revealed MI at baseline. Conclusion: Negative SP CMR indicates low risk for MACE. In patients with stress induced ischemia, MACE might occur even after myocardial revascularization. The presence of MI proved by LGE CMR is associated with a significantly increased risk for MACE

  2. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2010-01-01

    Full Text Available Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.

  3. FREEDOM, SYNTAX, FAME and FUNCTIONALITY: the future of surgical revascularization in stable ischemic heart disease.

    Science.gov (United States)

    Ferguson, T Bruce; Chen, Cheng

    2014-01-01

    At the age of nearly 50 years, the procedure of coronary artery bypass grafting (CABG) now has the most solid evidence supporting its role in revascularization for stable ischemic heart disease in its history. In what is a relatively infrequent occurrence in medicine, the results from large-scale observational database analyses are now aligned with and supported by data from recent randomized trials, providing important contemporary evidence in support of CABG. However, even with strong evidence, the changing landscape of revascularization for stable ischemic heart disease threatens to make this evidence irrelevant in deciding which patients should be referred for CABG in the future. How the procedure of CABG could be modified and optimized for incorporation into this new landscape is discussed in this article. PMID:24344664

  4. Total Arterial Revascularization: Bypassing Antiquated Notions to Better Alternatives for Coronary Artery Disease

    Science.gov (United States)

    Samak, Mostafa; Fatullayev, Javid; Sabashnikov, Anton; Zeriouh, Mohamed; Schmack, Bastian; Ruhparwar, Arjang; Karck, Matthias; Popov, Aron-Frederik; Dohmen, Pascal M.; Weymann, Alexander

    2016-01-01

    Total arterial revascularization is the leading trend in coronary artery bypass grafting (CABG) for the treatment of coronary artery disease (CAD). Adding to its superiority to vein conduits, arteries allow for a high degree of versatility and long-term patency, while minimizing the need for reintervention. This is especially important for patients with multi-vessel coronary artery disease, as well as young patients. However, arterial revascularization has come a long way before being widely appreciated, with some yet unresolved debates, and advances that never cease to impress. In this review, we discuss the evolution of this surgical technique and its clinical success, as well as its most conspicuous limitations in light of accumulated published date from decades of experience. PMID:27698339

  5. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes.

    Science.gov (United States)

    Petr, Geraldine T; Sun, Yan; Frederick, Natalie M; Zhou, Yun; Dhamne, Sameer C; Hameed, Mustafa Q; Miranda, Clive; Bedoya, Edward A; Fischer, Kathryn D; Armsen, Wencke; Wang, Jianlin; Danbolt, Niels C; Rotenberg, Alexander; Aoki, Chiye J; Rosenberg, Paul A

    2015-04-01

    GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake. PMID:25834045

  6. Off - Pump Coronary Artery Bypass Graft Surgery: A Safe Method For Complete Revascularization

    Directory of Open Access Journals (Sweden)

    Mirkhani S. H

    2002-07-01

    Full Text Available In recent years off-pump coronary artery bypass surgery (OPCAB has emerged as preferred method for revascularization of coronary arteries in relatively selected group of patients. Considering patients receiving incomplete revascularization need significantly higher postoperative catheterization and re-intervention (PTCA or CABG, we performed this study to identify safety and feasibility of this technique for total revascularization in nearly all patients requiring coronary artery graft surgery."nMaterials and Methods: In this study, 150 consecutive patients underwent OPCAB by one surgeon. Octopus device used for regional wall stabilization. Vascular control achieved by ethibond loops, occluder, and shunts. Situations such as cardiomegaly, poor ventricular function, advanced age, hemodynamic instability, and small coronary arteries were not considered contraindications to OPCAB."nResults: Of 150 OPCAB cases, 146 (97.3 percent were completely off-pump. The mean number of grafts per patient was 4.1 (range, 2 to 6. Total 595 distal grafts anastomosed to LAD (140 diagonals (140, right coronary artery (145, left circumflex (164. Thirty-day mortality and myocardial infarction were 0.6 percent and 3.3 percent respectively OPCAB patient experienced lesser postoperative bleeding had shorter stay at surgical intensive care unit and extubated earlier. Conduits used were left internal mammary artery, radial artery and greater saphenous vein."nConclusion: OPCAB is a safe method for complete revascularization in nearly all patients. The OPCAB patients experience less complications, have shorter hospital stay, absolute contraindication for OPCAB other than severe, diffuse coronary artery disease with poor run-off which is better treated by cardiopulmonary bypass.

  7. Passive Leg Raising Correlates with Future Exercise Capacity after Coronary Revascularization

    OpenAIRE

    Huang, Shu-Chun; Wong, May-Kuen; Lin, Pyng-Jing; Tsai, Feng-Chun; Wen, Ming-Shien; Kuo, Chi-Tai; Hsu, Chih-Chin; Wang, Jong-Shyan

    2015-01-01

    Hemodynamic properties affected by the passive leg raise test (PLRT) reflect cardiac pumping efficiency. In the present study, we aimed to further explore whether PLRT predicts exercise intolerance/capacity following coronary revascularization. Following coronary bypass/percutaneous coronary intervention, 120 inpatients underwent a PLRT and a cardiopulmonary exercise test (CPET) 2–12 days during post-surgery hospitalization and 3–5 weeks after hospital discharge. The PLRT included head-up, le...

  8. Surgical revascularization versus amputation for peripheral vascular disease in dialysis patients: a cohort study

    Directory of Open Access Journals (Sweden)

    Ramkumar Nirupama

    2005-03-01

    Full Text Available Abstract Background Surgical treatment of peripheral vascular disease (PVD in dialysis patients is controversial. Methods We examined the post-operative morbidity and mortality of surgical revascularization or amputation for PVD in a retrospective analysis of United States Renal Data System. Propensity scores for undergoing amputation were derived from a multivariable logistic regression model of amputation. Results Of the Medicare patients initiated on dialysis from Jan 1, 1995 to Dec 31, 1999, patients underwent surgical revascularization (n = 1,896 or amputation (n = 2,046 in the first 6 months following initiation of dialysis were studied. In the logistic regression model, compared to claudication, presence of gangrene had a strong association with amputation [odds ratio (OR 19.0, 95% CI (confidence interval 13.86–25.95]. The odds of dying within 30 days and within1 year were higher (30 day OR: 1.85, 95% CI: 1.45–2.36; 1 yr OR: 1.46, 95% CI: 1.25–1.71 in the amputation group in logistic regression model adjusted for propensity scores and other baseline factors. Amputation was associated with increased odds of death in patients with low likelihood of amputation (rd percentile of propensity score and moderate likelihood of amputation (33rd to 66th percentile but not in high likelihood group (>66th percentile. The number of hospital days in the amputation and revascularization groups was not different. Conclusion Amputation might be associated with higher mortality in dialysis patients. Where feasible, revascularization might be preferable over amputation in dialysis patients.

  9. Population-level differences in revascularization treatment and outcomes among various United States subpopulations.

    Science.gov (United States)

    Graham, Garth; Xiao, Yang-Yu Karen; Rappoport, Dan; Siddiqi, Saima

    2016-01-26

    Despite recent general improvements in health care, significant disparities persist in the cardiovascular care of women and racial/ethnic minorities. This is true even when income, education level, and site of care are taken into consideration. Possible explanations for these disparities include socioeconomic considerations, elements of discrimination and racism that affect socioeconomic status, and access to adequate medical care. Coronary revascularization has become the accepted and recommended treatment for myocardial infarction (MI) today and is one of the most common major medical interventions in the United States, with more than 1 million procedures each year. This review discusses recent data on disparities in co-morbidities and presentation symptoms, care and access to medical resources, and outcomes in revascularization as treatment for acute coronary syndrome, looking especially at women and minority populations in the United States. The data show that revascularization is used less in both female and minority patients. We summarize recent data on disparities in co-morbidities and presentation symptoms related to MI; access to care, medical resources, and treatments; and outcomes in women, blacks, and Hispanics. The picture is complicated among the last group by the many Hispanic/Latino subgroups in the United States. Some differences in outcomes are partially explained by presentation symptoms and co-morbidities and external conditions such as local hospital capacity. Of particular note is the striking differential in both presentation co-morbidities and mortality rates seen in women, compared to men, especially in women ≤ 55 years of age. Surveillance data on other groups in the United States such as American Indians/Alaska Natives and the many Asian subpopulations show disparities in risk factors and co-morbidities, but revascularization as treatment for MI in these populations has not been adequately studied. Significant research is required to

  10. Tissue characterization following revascularization of immature dog teeth using different disinfection pastes.

    Science.gov (United States)

    Pagliarin, Claudia Medianeira Londero; Londero, Clacir de Lourdes Dotto; Felippe, Mara Cristina Santos; Felippe, Wilson Tadeu; Danesi, Cristiane Cademartori; Barletta, Fernando Branco

    2016-01-01

    Revascularization of immature teeth with necrotic pulps traditionally involves the use of triple antibiotic paste, which may sometimes lead to undesirable complications. The objective of this study was to assess tissue repair in immature dog teeth with apical periodontitis subjected to revascularization, comparing two different pastes used for root canal disinfection. Apical periodontitis was induced in 30 dog premolars. Teeth were randomly divided into three experimental groups: root canals filled with triple antibiotic paste (n = 10); root canals filled with 1% propolis paste (n = 10); and no medication (n = 10). An additional group (n = 10, no intervention) was used as control. After 7 months, the jaws were histologically evaluated for the following variables: newly formed mineralized tissue (present/absent); vital tissue in the canal space (absent/periodontal ligament-like/pulp-like); apical extension of root (present/absent); and severity of inflammatory process (absent/mild/moderate/severe). There were no statistically significant differences among the experimental groups in new mineralized tissue formation and apical root development. The formation of vital tissue in the canal space, in turn, was statistically different between the triple paste and propolis groups: vital tissues were present in all revascularized teeth disinfected with propolis paste (100%), compared to 71% of those disinfected with the triple paste. Severity of inflammatory process was different between the triple paste and no medication groups. The new tissues formed onto canal walls and in the root canal space showed characteristics of cementum and periodontal ligament, respectively. Propolis may have some advantages over the triple paste for the revascularization of immature teeth. PMID:27556552

  11. Population-level differences in revascularization treatment and outcomes among various United States subpopulations

    OpenAIRE

    Graham, Garth; Xiao, Yang-Yu Karen; Rappoport, Dan; Siddiqi, Saima

    2016-01-01

    Despite recent general improvements in health care, significant disparities persist in the cardiovascular care of women and racial/ethnic minorities. This is true even when income, education level, and site of care are taken into consideration. Possible explanations for these disparities include socioeconomic considerations, elements of discrimination and racism that affect socioeconomic status, and access to adequate medical care. Coronary revascularization has become the accepted and recomm...

  12. Quality of life of women submitted to myocardial revascularization surgery in a public hospital

    Directory of Open Access Journals (Sweden)

    Rafaela Melo de Oliveira

    2010-09-01

    Full Text Available Objective: To analyze the sociodemografic profile, risck factors and the quality of life of women submitted to myocardial revascularization surgery. Methods: We conducted a qualitative study by applying a questionnaire on lifestyle and risk factors and an interview with four guiding questions to 15 revascularized inpatients of cardiology units of a referral public hospital and who had no manifestations of depression prior to surgery. Results: The patients profile showed that 9 (60% were Caucasian, 8 (54% had incomplete primary education, 4(27% were housewives, 9 (60% lived in urban area, 10 (67% were married, all had a family income lower than three minimum wages and 4(27% had only two kids. From the content analysis of the interviews, the following categories aroused: religiosity, disruption with everyday life, family and quality of life. Conclusion: We found out that the knowledge about the psychosocial structure of each patient helps in the treatment of the individual submitted to myocardial revascularization. By identifying the lifestyle and risk factors, women promote self-knowledge, which can avoid habits that lead to cardiovascular diseases. We suggest the development of strategies for prevention and health promotion involving the patients and their families so that there is an extension of hospital care at home and a betteradaptation to the new condition.

  13. Pulp Revascularization in Immature Permanent Tooth with Apical Periodontitis Using Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Katsura Saeki

    2014-01-01

    Full Text Available Mineral trioxide aggregate (MTA is a material that has been used worldwide in several clinical applications, such as apical barriers in teeth with immature apices, repair of root perforations, root-end filling, pulp capping, and pulpotomy. The purpose of this case report was to describe successful revascularization treatment of an immature mandibular right second premolar with apical periodontitis in a 9-year-old female patient. After preparing an access cavity without anesthesia, the tooth was isolated using a rubber dam and accessed. The canal was gently debrided using 5% sodium hypochlorite (NaOCl and 3% hydrogen peroxide irrigant. And then MTA was packed into the canal. X-ray photographic examination showed the dentin bridge 5 months after the revascularization procedure. Thickening of the canal wall and complete apical closure were confirmed 10 months after the treatment. In this case, MTA showed clinical and radiographic success at revascularization treatment in immature permanent tooth. The successful outcome of this case suggests that MTA is reliable and effective for endodontic treatment in the pediatric dentistry.

  14. The Evolution of Coronary Revascularization Appropriateness Use Criteria: From Mandatory to Forgotten.

    Science.gov (United States)

    Sattur, Sudhakar; Brener, Sorin J

    2015-01-01

    The appropriateness use criteria (AUC) for coronary revascularization have been formulated through the joint efforts of several professional societies. The goals of AUC were to aid in physician decision making and to objectively define the need and context for revascularization. These criteria, developed using a standardized approach, were widely promoted and adopted in many practices. Rigorous use in daily practice and public reporting of adherence to these criteria has exposed some of their deficiencies. Revisions to the original version were made to accommodate public and physician sentiments. Not surprisingly, the recent percutaneous coronary intervention performance measures developed by the same professional societies that have proposed AUC, have suggested that AUC should be used for internal quality improvement only at this time. Therefore, the present role and future application of AUC to cardiology practice is uncertain. The goals of this review are to describe methodology and development of the coronary revascularization AUC, to focus on the strengths and limitations of AUC, and to identify challenges related to application of these criteria in daily practice. PMID:26827745

  15. Results of distal revascularization in elderly patients for critical ischemia of the lower limbs.

    Science.gov (United States)

    Illuminati, G; Calio, F G; Bertagni, A; Piermattei, A; Vietri, F; Martinelli, V

    1999-04-01

    Thirty eight patients over 75 years of age were operated upon of 40 distal arterial revascularizations for critical ischaemia of the lower limbs. Arterial reconstruction was proposed to ambulatory, self sufficient patients, with a patent artery of the leg or the foot in continuity with pedal arch, at arteriography. The revascularized artery was the peroneal in 14 cases, the anterior tibial in 11, the posterior tibial in 9, the dorsalis pedis in 5, and the external plantar artery in 1 case. Postoperative mortality was 2.6%. No postoperative arterial occlusion occurred and no postoperative amputation needed to be performed. The mean follow-up of 37 patients surviving operation was 21 months (ext. 2-52 months). At 36 months interval, patients' survival was 43%, primary patency rate was 57%, and limb salvage rate was 76%, at life-table analysis. Distal revascularization enables a good number of elderly patients in critical ischaemia of the lower limb, to enjoy an active, independent life, with a viable limb. PMID:10352735

  16. Small Islets Transplantation Superiority to Large Ones: Implications from Islet Microcirculation and Revascularization

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2014-01-01

    Full Text Available Pancreatic islet transplantation is a promising therapy to regain glycemic control in diabetic patients. The selection of ideal grafts is the basis to guarantee short-term effectivity and longevity of the transplanted islets. Contradictory to the traditional notion, recent findings implied the superiority of small islets for better transplantation outcomes rather than the large and intact ones. However, the mechanisms remain to be elucidated. Recent evidences emphasized the major impact of microcirculation on islet β-cell mass and function. And potentials in islet graft revascularization are crucial for their survival and preserved function in the recipient. In this study, we verified the distinct histological phenotype and functionality of small islets versus large ones both in vitro and in vivo. With efforts to exploring the differences in microcirculation and revascularization of islet grafts, we further evaluated local expressions of angiotensin and vascular endothelial growth factor A (VEGF-A at different levels. Our findings reveal that, apart from the higher density of insulin-producing β-cells, small islets express less angiotensin and more angiotrophic VEGF-A. We therefore hypothesized a logical explanation of the small islet superiority for transplantation outcome from the aspects of facilitated microcirculation and revascularization intrinsically in small islets.

  17. To Stent or Not to Stent? Update on Revascularization for Atherosclerotic Renovascular Disease.

    Science.gov (United States)

    Noory, Elias; Sritharan, Kaji; Zeller, Thomas

    2016-06-01

    Renal artery stenosis (RAS) is increasingly encountered in clinical practice. The two most common etiologies are fibromuscular dysplasia (FMD) and atherosclerotic renal artery disease (ARAS), with the latter accounting for the vast majority of cases. Significant RAS activates the renin-angiotensin-aldosterone system and is associated with three major clinical syndromes: ischemic nephropathy, hypertension, and destabilizing cardiac syndromes. Over the past two decades, advancements in diagnostic and interventional techniques have led to improved detection and the widespread use of endovascular renal artery revascularization strategies in the management of ARAS. However, renal artery stenting for ARAS remains controversial. Although several studies have demonstrated some benefit with renal artery revascularization, this has not been to the extent anticipated or predicted. Moreover, these trials have significant flaws in their study design and are hampered with inherent bias which make their interpretation challenging. In this review, we evaluate the existing body of evidence and offer an approach to the management of patients with ARAS in light of the current literature. From the data provided, identification of subgroup of patients, namely, those with a hemodynamically significant RAS in the context of progressive renal insufficiency and/or deteriorating arterial hypertension, seems possible and may derive clinical benefit from ARAS stent revascularization. Appropriate patient selection is therefore the key and more robust studies are required. PMID:27130448

  18. Hand replantation and revascularization--six years experience in Hospital Kuala Lumpur 1990-1995.

    Science.gov (United States)

    Razana, A; Hyzan, M Y; Pathmanathan, V; Gill, R S

    1998-09-01

    A retrospective study was conducted in 130 patients who underwent replantation or revascularization of 195 amputations in Hand and Microsurgery Unit Hospital Kuala Lumpur from 1990 to 1995. There were 130 patients with 195 amputations in the duration of 6 years study, which were mainly males (111 patients, 85.4%). The commonest age group involved was 19-25 years old (49 cases, 63.7%). There were 146 complete amputations replanted and 49 cases of incomplete amputations were revascularized. The commonest part involved was thumb and index finger (23% of cases each) and majority was caused by industrial accident (60.8%). However in pediatric age group home accident was the leading cause of the amputation (93.8%). The overall survival rate for the amputation was 65.6%. Revascularization had a better survival rate (77.6%) than replantation (61.6%). A clean cut wound and ischaemic time less than 12 hours gave better survival rate. However, there was no significant different chance of survival on distribution of injured parts and ischaemic time (< 12 hours).

  19. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  20. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes

    Directory of Open Access Journals (Sweden)

    Gautam K Gandhi

    2010-03-01

    Full Text Available Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin-treated rats at 20–24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  1. Effects of aspartame metabolites on astrocytes and neurons.

    Science.gov (United States)

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  2. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  3. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  4. Voluntary Exercise Induces Astrocytic Structural Plasticity in the Globus Pallidus.

    Science.gov (United States)

    Tatsumi, Kouko; Okuda, Hiroaki; Morita-Takemura, Shoko; Tanaka, Tatsuhide; Isonishi, Ayami; Shinjo, Takeaki; Terada, Yuki; Wanaka, Akio

    2016-01-01

    Changes in astrocyte morphology are primarily attributed to the fine processes where intimate connections with neurons form the tripartite synapse and participate in neurotransmission. Recent evidence has shown that neurotransmission induces dynamic synaptic remodeling, suggesting that astrocytic fine processes may adapt their morphologies to the activity in their environment. To illustrate such a neuron-glia relationship in morphological detail, we employed a double transgenic Olig2(CreER/WT); ROSA26-GAP43-EGFP mice, in which Olig2-lineage cells can be visualized and traced with membrane-targeted GFP. Although Olig2-lineage cells in the adult brain usually become mature oligodendrocytes or oligodendrocyte precursor cells with NG2-proteoglycan expression, we found a population of Olig2-lineage astrocytes with bushy morphology in several brain regions. The globus pallidus (GP) preferentially contains Olig2-lineage astrocytes. Since the GP exerts pivotal motor functions in the indirect pathway of the basal ganglionic circuit, we subjected the double transgenic mice to voluntary wheel running to activate the GP and examined morphological changes of Olig2-lineage astrocytes at both the light and electron microscopic levels. The double transgenic mice were divided into three groups: control group mice were kept in a cage with a locked running wheel for 3 weeks, Runner group were allowed free access to a running wheel for 3 weeks, and the Runner-Rest group took a sedentary 3-week rest after a 3-week running period. GFP immunofluorescence analysis and immunoelectron microscopy revealed that astrocytic fine processes elaborated complex arborization in the Runner mice, and reverted to simple morphology comparable to that of the Control group in the Runner-Rest group. Our results indicated that the fine processes of the Olig2-lineage astrocytes underwent plastic changes that correlated with overall running activities, suggesting that they actively participate in motor

  5. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [14C]acetoacetate formed from the [1-14C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [14C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  6. Type 2 Deiodinase Disruption in Astrocytes Results in Anxiety-Depressive-Like Behavior in Male Mice.

    Science.gov (United States)

    Bocco, Barbara M L C; Werneck-de-Castro, João Pedro; Oliveira, Kelen C; Fernandes, Gustavo W; Fonseca, Tatiana L; Nascimento, Bruna P P; McAninch, Elizabeth A; Ricci, Esther; Kvárta-Papp, Zsuzsanna; Fekete, Csaba; Bernardi, Maria Martha; Gereben, Balázs; Bianco, Antonio C; Ribeiro, Miriam O

    2016-09-01

    Millions of levothyroxine-treated hypothyroid patients complain of impaired cognition despite normal TSH serum levels. This could reflect abnormalities in the type 2 deiodinase (D2)-mediated T4-to-T3 conversion, given their much greater dependence on the D2 pathway for T3 production. T3 normally reaches the brain directly from the circulation or is produced locally by D2 in astrocytes. Here we report that mice with astrocyte-specific Dio2 inactivation (Astro-D2KO) have normal serum T3 but exhibit anxiety-depression-like behavior as found in open field and elevated plus maze studies and when tested for depression using the tail-suspension and the forced-swimming tests. Remarkably, 4 weeks of daily treadmill exercise sessions eliminated this phenotype. Microarray gene expression profiling of the Astro-D2KO hippocampi identified an enrichment of three gene sets related to inflammation and impoverishment of three gene sets related to mitochondrial function and response to oxidative stress. Despite normal neurogenesis, the Astro-D2KO hippocampi exhibited decreased expression of four of six known to be positively regulated genes by T3, ie, Mbp (∼43%), Mag (∼34%), Hr (∼49%), and Aldh1a1 (∼61%) and increased expression of 3 of 12 genes negatively regulated by T3, ie, Dgkg (∼17%), Syce2 (∼26%), and Col6a1 (∼3-fold) by quantitative real-time PCR. Notably, in Astro-D2KO animals, there was also a reduction in mRNA levels of genes known to be affected in classical animal models of depression, ie, Bdnf (∼18%), Ntf3 (∼43%), Nmdar (∼26%), and GR (∼20%), which were also normalized by daily exercise sessions. These findings suggest that defects in Dio2 expression in the brain could result in mood and behavioral disorders. PMID:27501182

  7. Myocardial revascularization using on-pump beating heart among patients with left ventricular dysfunction

    Directory of Open Access Journals (Sweden)

    Isleem Ismail

    2010-11-01

    Full Text Available Abstract Objectives On-pump beating heart technique for myocardial revascularization has been used successfully among both low and high risk patients. Its application among low ejection fraction patients is limited. The aim of our study is to evaluate this technique among patients with low ejection fraction and to compare results with off-pump bypass technique. Methods This retrospective study includes 137 patients with ejection fraction below 0.35 who underwent isolated coronary artery bypass surgery. 39 patients underwent myocardial revascularization using on-pump beating heart (ONCAB/BH, while 98 patients had off-pump beating heart (OPCAB. Different preoperative, operative and postoperative variables were evaluated among both groups. Results Patients profiles and risk factors were similar among both groups, except for the number of patients undergoing redo CABG which was significantly higher among ONCAB/BH (13% vs 3%; p = 0.025. Ejection fraction (EF varied from 10-34%. The mean EF for patients who underwent ONCAB/BH was 28 ± 6 in comparison to 26 ± 5 for OPCAB patients (P = 0.093. Predicted risk for surgery according to EuroSCORE was similar among both groups (P = 0.443. The number of grafts performed per patient was significantly more among patients who underwent ONCAB/BH (2.2 ± 0.7 Vs 1.7 ± 0.7; P = 0.002. Completeness of revascularization was significantly greater in the ONCAB/BH patients (72% Vs 46%, P = 0.015. The incidence of hospital mortality and combined major morbidity was more among ONCAB/BH in comparison to OPCAB, but the difference was not significant. However, the incidence of blood loss, ventricular arrythmias, inotropic support, ICU, hospital stay and blood transfusion were significantly greater among patients who underwent ONCAB/BH. Conclusions On-pump beating heart technique can be used in myocardial revascularization among patients with left ventricular dysfunction. The technique was found to be associated with better

  8. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. PMID:26839375

  9. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    Science.gov (United States)

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes. PMID:26976322

  10. Astrocytes directly influence tumor cell invasion and metastasis in vivo.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2 and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.

  11. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  12. Investigation on the suitable pressure for the preservation of astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: sotome_shinichi@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4{sup 0}C, in an effort to establish the best conditions for the preservation. Survival rate at 4{sup 0}C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4{sup 0}C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4{sup 0}C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  13. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Science.gov (United States)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  14. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  15. Investigation on the suitable pressure for the preservation of astrocyte

    Science.gov (United States)

    Sotome, S.; Nakajima, K.; Yoshimura, Y.; Shimizu, A.

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4°C, in an effort to establish the best conditions for the preservation. Survival rate at 4°C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4°C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4°C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  16. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  17. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  18. Simultaneous neuron- and astrocyte-specific fluorescent marking.

    Science.gov (United States)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille; Hashimoto, Ryota; Baba, Akemichi; Hashimoto, Hitoshi

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains.

  19. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  20. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network

    NARCIS (Netherlands)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W.; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, P.; van Strien, Miriam E; Hol, Elly M

    2014-01-01

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostati

  1. Effects of Hydro Alcoholic Extraction of Valeriana on Astrocyte Raphe Magnus in Adult Rats

    Directory of Open Access Journals (Sweden)

    sajad Hatami joni

    2014-12-01

    Conclusion: Oral administration of hydro alcoholic extract of valerian increases astrocytes number and decreases their size in nucleus of raphe Magna, which indicated the effect of this extraction on proliferation of astrocytes increasing.

  2. Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo.

    Science.gov (United States)

    Unemura, Kazuhiro; Kume, Toshiaki; Kondo, Minami; Maeda, Yuki; Izumi, Yasuhiko; Akaike, Akinori

    2012-01-01

    Glucocorticoids are stress hormones released from the adrenal cortex and their concentration is controlled by the hypothalamic-pituitary-adrenal axis. In this study, we investigated the effect of glucocorticoids on the number of astrocytes and glucocorticoid receptor (GR) expression in vitro and in vivo. Proliferation of cultured astrocytes was reduced following treatment with corticosterone and dexamethasone for 72 h. Corticosterone and dexamethasone also reduced GR expression in astrocytes. RU486, a GR antagonist, inhibited the reduction in both astrocyte proliferation and GR expression. Furthermore, GR knockdown by siRNA inhibited astrocyte proliferation. We also examined the effect of excessive glucocorticoid release on GR expression and the number of astrocytes in vivo by administering adrenocorticotropic hormone to rats for 14 days. GR expression was reduced in the prefrontal cortex and hippocampus and the number of astrocytes was reduced in the frontal cortex. Overall, our results suggest that glucocorticoids decrease the number of astrocytes by reducing GR expression.

  3. Neurotoxic potential and cellular uptake of T-2 toxin in human astrocytes in primary culture.

    Science.gov (United States)

    Weidner, Maria; Lenczyk, Marlies; Schwerdt, Gerald; Gekle, Michael; Humpf, Hans-Ulrich

    2013-03-18

    The trichothecene mycotoxin T-2 toxin, which is produced by fungi of the Fusarium species, is a worldwide occurring contaminant of cereal based food and feed. The cytotoxic properties of T-2 toxin are already well described with apoptosis being a major mechanism of action in various cell lines as well as in primary cells of different origin. However, only few data on neurotoxic properties of T-2 toxin are reported so far, but in vivo studies showed different effects of T-2 toxin on behavior as well as on levels of brain amines in animals. To further investigate the cytotoxic properties of T-2 toxin on cells derived from brain tissue, normal human astrocytes in primary culture (NHA) were used in this study. Besides studies of cytotoxicity, apoptosis (caspase-3-activation, Annexin V) and necrosis (LDH-release), the cellular uptake and metabolism of T-2 toxin in NHA was analyzed and compared to the uptake in an established human cell line (HT-29). The results show that human astrocytes were highly sensitive to the cytotoxic properties of T-2 toxin, and apoptosis, induced at low concentrations, was identified for the first time as the mechanism of toxic action in NHA. Furthermore, a strong accumulation of T-2 toxin in NHA and HT-29 cells was detected, and T-2 toxin was subjected to metabolism leading to HT-2 toxin, a commonly found metabolite after T-2 toxin incubation in both cell types. This formation seems to occur within the cells since incubations of T-2 toxin with cell depleted culture medium did not lead to any degradation of the parent toxin. The results of this study emphasize the neurotoxic potential of T-2 toxin in human astrocytes at low concentrations after short incubation times. PMID:23363530

  4. The association between socioeconomic position, use of revascularization procedures and five-year survival after recovery from acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Lindström Martin

    2008-02-01

    Full Text Available Abstract Background Patients living under better socioeconomic circumstances often receive more active treatments after an acute myocardial infarction (AMI compared to less affluent patients. However, most previous studies were performed in countries with less comprehensive coverage for medical services. In this Swedish nation-wide longitudinal study we wanted to evaluate long-term survival after AMI in relation to socioeconomic position (SEP and use of revascularization. Methods From the Swedish Myocardial Infarction Register we identified all 45 to 84-year-old patients (16,041 women and 30,366 men alive 28 days after their first AMI during the period 1993 to 1996. We obtained detailed information on the use of revascularization, cumulative household income from the 1975 and 1990 censuses and 5-year survival after the AMI. Results Patients with the highest cumulative income (adding the values of the quartile categories of income in 1975 and 1990 underwent a revascularization procedure within one month after their first AMI two to three times as often as patients with the lowest cumulative income and had half the risk of death within five years. The socioeconomic differences in the use of revascularization procedures could not be explained by differences in co-morbidity or type of hospital at first admission. Patients who underwent revascularization showed a similar lowered mortality risk in the different income groups, while there were strong socioeconomic differences in long-term mortality among patients who did not undergo revascularization. Conclusion This nationwide Swedish study showed that patients with high income had a better long-term survival after recovery from their AMI compared to patients with low income. Furthermore, even though the use of revascularization procedures is beneficial, low SEP groups receive it less often than high SEP groups.

  5. Mechanical Thrombectomy using a solitaire stent in acute ischemic stroke; The relationship between the visible antegrade flow on first device deployment and final success in revascularization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Lee, Byung Hon; Hwang, Yoon Joon; Kim, Su Young; Lee, Ji Young; Hong, Keun Sik; Cho, Yong Jin [Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of)

    2015-05-15

    The purpose of the study was to evaluate the relationship between the successful revascularization on the first Solitaire stent deployment and the successful revascularization on the final angiography in acute ischemic stroke. From February 2012 to April 2014, 24 patients who underwent Solitaire stent thrombectomy as the first thrombectomy method for treatment of acute ischemic strokes were retrospectively reviewed. When the first Solitaire stent was deployed, 9 patients showed revascularization (Group 1) and 15 patients did not show revascularization (Group 2). Revascularization immediately after the first Solitaire stent removal and on the final angiography were comparatively assessed between the 2 groups. Statistical analysis was performed by the Fisher exact test and Student's t-test. The rates of revascularization maintenance immediately after the first Solitaire stent removal were 89% in Group 1 and 27% in Group 2, respectively (p = 0.009), and the rates of final successful revascularization were 100% in Group 1 and 47% in Group 2, respectively (p = 0.009). There was a statistically significant difference between the 2 groups. Revascularization on the first Solitaire stent deployment can be a useful predictor in evaluating the success of final revascularization in the treatment of acute ischemic stroke.

  6. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    OpenAIRE

    Chen, Lei-lei; Wu, Jun-Chao; Wang, Lin-Hui; Wang, Jin; Qin, Zheng-hong; Difiglia, Marian; Lin, Fang

    2012-01-01

    Aim: To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552). Methods: Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups. An astrocytes model of Huntington's disease was established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin. The protein levels of glutamate transporters GLT-1 and GLAST, the autoph...

  7. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes

    OpenAIRE

    Renner, Nicole A.; Sansing, Hope A.; Inglis, Fiona M; Mehra, Smriti; Kaushal, Deepak; Lackner, Andrew A; Andrew G MacLean

    2013-01-01

    The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukoc...

  8. Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain

    OpenAIRE

    Sosunov, Alexander A.; Wu, Xiaoping; Tsankova, Nadejda M.; Guilfoyle, Eileen; Guy M McKhann; Goldman, James E.

    2014-01-01

    To examine the diversity of astrocytes in the human brain, we immunostained surgical specimens of temporal cortex and hippocampus and autopsy brains for CD44, a plasma membrane protein and extracellular matrix receptor. CD44 antibodies outline the details of astrocyte morphology to a degree not possible with glial fibrillary acidic protein (GFAP) antibodies. CD44+ astrocytes could be subdivided into two groups. First, CD44+ astrocytes with long processes were consistently found in the subpial...

  9. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    OpenAIRE

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-01-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astroc...

  10. Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    OpenAIRE

    Yuan Liu; Li Wang; Zaiyun Long; Lin Zeng; Yamin Wu

    2012-01-01

    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific...

  11. Neuronal cadherin (NCAD) increases sensory neurite formation and outgrowth on astrocytes

    OpenAIRE

    Ferguson, Toby A.; Scherer, Steven S.

    2012-01-01

    We examined the neurite outgrowth of sensory neurons on astrocytes following the genetic deletion of N-cadherin (NCAD). Deletion abolished immunostaining for NCAD and the other classical cadherins, indicating that NCAD is likely the only classical cadherin expressed by astrocytes. Only 38% of neurons grown on NCAD-deficient astrocytes for 24 hours produced neurites, as compared to 74% of neurons grown on NCAD-expressing astrocytes. Of the neurons that produced neurites, those grown on NCAD-de...

  12. Don't fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair

    OpenAIRE

    White, Robin E.; Jakeman, Lyn B.

    2008-01-01

    Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent...

  13. GLUT2 Immunoreactivity in Gomori-positive Astrocytes of the Hypothalamus

    OpenAIRE

    Young, John K.; McKenzie, James C.

    2004-01-01

    A specialized subtype of astrocyte, the Gomori-positive (GP) astrocyte, is unusually abundant and prominent in the arcuate nucleus of the hypothalamus. GP astro-cytes possess cytoplasmic granules derived from degenerating mitochondria. GP granules are highly stained by Gomori's chrome alum hematoxylin stain, by the Perl's reaction for iron, or by toluidine blue. The source of the oxidative stress causing mitochondrial damage in GP astrocytes is uncertain, but such damage could arise from the ...

  14. Form Follows Function: Astrocyte Morphology and Immune Dysfunction in SIV neuroAIDS

    OpenAIRE

    Lee, Kim M.; Chiu, Kevin B.; Renner, Nicole A.; Sansing, Hope A.; Didier, Peter J.; Andrew G MacLean

    2014-01-01

    Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of GFAP-labeled astrocytes per mm2 and the proporti...

  15. Phenotypic Conversions of “Protoplasmic” to “Reactive” Astrocytes in Alexander Disease

    OpenAIRE

    Sosunov, Alexander A.; Guilfoyle, Eileen; Wu, Xiaoping; Guy M McKhann; Goldman, James E.

    2013-01-01

    Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology we have examined hippocam...

  16. In vivo astrocytic Ca2+ signaling in health and brain disorders

    OpenAIRE

    Ding, Shinghua

    2013-01-01

    Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron–glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellul...

  17. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity

    OpenAIRE

    Yoon, Seo-Yeon; Robinson, Caleb R.; Zhang, Haijun; Dougherty, Patrick M.

    2013-01-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific ...

  18. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q)suppresses brain-derived neurotrophic factor transcription in astrocytes

    Institute of Scientific and Technical Information of China (English)

    Linhui Wang; Fang Lin; Jin Wang; Junchao Wu; Rong Han; Lujia Zhu; Guoxing Zhang; Marian DiFiglia; Zhenghong Qin

    2012-01-01

    Although huntingtin (htt) can be cleaved at many sites by caspases,calpains,and aspartyl proteases,amino acid (aa) 552 was defined as a preferred site for cleavage in human Huntington disease (HD) brains in vivo.To date,the normal function of wild-type N-terminal htt fragment 1-552 aa (htt552) and its pathological roles of mutant htt552 are still unknown.Although mutant htt (mhtt) is also expressed in astrocytes,whether and how mhtt contributes to the neurodegeneration through astrocytes in HD remains largely unknown.In this study,a glia HD model,using an adenoviral vector to express wild-type htt552 (htt552-18Q) and its mutation (htt552-100Q) in rat primary cortical astrocytes,was generated to investigate the influence of htt552 on the transcription of brainderived neurotrophic factor (BDNF). Results from enzyme linked immunosorbent assay showed that the level of BDNF in astrocyte-conditioned medium was decreased in the astrocytes expressing htt552-100Q.Quantitative real-time polymerase chain reaction demonstrated that htt552-100Q reduced the transcripts of the BDNF Ⅲ and Ⅳ, hence, repressed the transcription of BDNF.Furthermore,immunofluorescence showed that aggregates formed by htt552-100Q entrapped transcription factors cAMP-response element-binding protein and stimulatory protein 1,which might account for the reduction of BDNF transcription.These findings suggest that mhtt552 reduces BDNF transcription in astrocytes,which might contribute to the neuronal dysfunction in HD.

  19. Are astrocytes executive cells within the central nervous system?

    Science.gov (United States)

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. PMID:27556379

  20. File list: Oth.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Astrocytes.bed ...

  1. File list: ALL.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Astrocytes.bed ...

  2. File list: Oth.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Astrocytes.bed ...

  3. File list: ALL.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Astrocytes.bed ...

  4. File list: ALL.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Astrocytes.bed ...

  5. File list: Oth.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Astrocytes.bed ...

  6. File list: Oth.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Astrocytes.bed ...

  7. File list: ALL.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Astrocytes.bed ...

  8. Astrocytes Grown in Alvetex(®) Three Dimensional Scaffolds Retain a Non-reactive Phenotype.

    Science.gov (United States)

    Ugbode, Christopher I; Hirst, Warren D; Rattray, Marcus

    2016-08-01

    Protocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embryonic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype. PMID:27099962

  9. Comparison of the Gene Expression Profiles of Human Fetal Cortical Astrocytes with Pluripotent Stem Cell Derived Neural Stem Cells Identifies Human Astrocyte Markers and Signaling Pathways and Transcription Factors Active in Human Astrocytes

    OpenAIRE

    Nasir Malik; Xiantao Wang; Sonia Shah; Efthymiou, Anastasia G.; Bin Yan; Sabrina Heman-Ackah; Ming Zhan; Mahendra Rao

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression anal...

  10. Astrocytes in oligodendrocyte lineage development and white matter pathology

    Directory of Open Access Journals (Sweden)

    Jiasi eLi

    2016-05-01

    Full Text Available White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in grey matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica. In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  11. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  12. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  13. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  14. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A...... reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids....

  15. CCL2 modulates cytokine production in cultured mouse astrocytes

    Directory of Open Access Journals (Sweden)

    Frugier Tony

    2010-10-01

    Full Text Available Abstract Background The chemokine CCL2 (also known as monocyte chemoattractant protein-1, or MCP-1 is upregulated in patients and rodent models of traumatic brain injury (TBI, contributing to post-traumatic neuroinflammation and degeneration by directing the infiltration of blood-derived macrophages into the injured brain. Our laboratory has previously reported that Ccl2-/- mice show reduced macrophage accumulation and tissue damage, corresponding to improved motor recovery, following experimental TBI. Surprisingly, Ccl2-deficient mice also exhibited delayed but exacerbated secretion of key proinflammatory cytokines in the injured cortex. Thus we sought to further characterise CCL2's potential ability to modulate immunoactivation of astrocytes in vitro. Methods Primary astrocytes were isolated from neonatal wild-type and Ccl2-deficient mice. Established astrocyte cultures were stimulated with various concentrations of lipopolysaccharide (LPS and interleukin (IL-1β for up to 24 hours. Separate experiments involved pre-incubation with mouse recombinant (rCCL2 prior to IL-1β stimulation in wild-type cells. Following stimulation, cytokine secretion was measured in culture supernatant by immunoassays, whilst cytokine gene expression was quantified by real-time reverse transcriptase polymerase chain reaction. Results LPS (0.1-100 μg/ml; 8 h induced the significantly greater secretion of five key cytokines and chemokines in Ccl2-/- astrocytes compared to wild-type cells. Consistently, IL-6 mRNA levels were 2-fold higher in Ccl2-deficient cells. IL-1β (10 and 50 ng/ml; 2-24 h also resulted in exacerbated IL-6 production from Ccl2-/- cultures. Despite this, treatment of wild-type cultures with rCCL2 alone (50-500 ng/ml did not induce cytokine/chemokine production by astrocytes. However, pre-incubation of wild-type astrocytes with rCCL2 (250 ng/ml, 12 h prior to stimulation with IL-1β (10 ng/ml, 8 h significantly reduced IL-6 protein and gene

  16. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro.

    Science.gov (United States)

    Cheli, Veronica T; Santiago González, Diara A; Smith, Jessica; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2016-08-01

    We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415. PMID:27247164

  17. Astrocytes protect neurons against methylmercury via ATP/P2Y(1 receptor-mediated pathways in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yusuke Noguchi

    Full Text Available Methylmercury (MeHg is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i inhibited by a P2Y1 receptor antagonist, MRS2179, (ii abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii mimicked by exogenously applied ATP. In addition, (iv MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  18. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

    LENUS (Irish Health Repository)

    Stevens, Niall T

    2009-03-01

    Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and\\/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N-acetyl-beta-d-glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta-periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.

  19. Immediate hemodynamic changes after revascularization of complete infrarenal aortic occlusion: A classic issue revisited.

    Science.gov (United States)

    Georgakarakos, Efstratios; Argyriou, Christos; Georgiadis, George S; Ioannou, Christos V; Lazarides, Miltos K

    2016-02-01

    Chronic total occlusion of the infrarenal aorta (CTOA) is a rare disease, characterized by severe impairment of limb perfusion. It is advocated that revascularization may improve survival rates, presumably due to improved cardiovascular performance; however no experimental or clinical data exist to identify a clear causative correlation and provide a relevant pathophysiologic background. Therefore we conducted a pilot study based on pulse wave analysis to detect the hemodynamic changes immediately after revascularization, in a group of six consecutive patients with CTOA. All patients were subjected to non-invasive measurements 1 day before surgery and at the end of the 1st postoperative month. Pulse wave analysis was performed noninvasively with a novel validated brachial cuff-based automatic oscillometric device. All patients had markedly preoperative high Augmentation Index (adjusted at heart rate 75 beats/min, AI@75). The AI@75 decreased from 46 ± 6.6 preoperatively to 24 ± 5.7 (p 0.0002). Wave reflection magnitude decreased from 72.3 ± 5.2% to 63 ± 6.7% (p 0.02). Cardiax index increased from 2.8 ± 1.2 to 3.4 ± 1.2l/min × 1/m(2) (p 0.41). Pulse wave velocity remained practically unchanged post-interventionally. These findings show that central aorta hemodynamics can be improved immediately following revascularization procedures in patients with complete occlusion of the entire length of the infrarenal aorta and can constitute the background of improved postoperative life-expectancy. PMID:26826635

  20. Myocardial revascularization in the elderly patient: with or without cardiopulmonary bypass?

    Directory of Open Access Journals (Sweden)

    Iglézias José Carlos Rossini

    2003-01-01

    Full Text Available OBJECTIVE: To verify if there is advantage in myocardial revascularization the elderly without cardiopulmonary bypass (CPB in relation to the use of the same, being considered the viability of complete myocardial revascularization (MR and the hospital morbidity and mortality. METHOD: We prospectively studied a hundred consecutive, no randomized patients, with age > or = 70 years, submitted to the primary and isolated myocardial revascularization between January and December of 2000. The patients were divided in two groups, G1 - 50 patients operated with CPB and G2 - 50 patients operated without CPB. Univariate testing of variables was performed with chi-squared analysis in the SPSS 10.0 Program and a p value less than 0.005 was considered significant. RESULTS: There was no renal failure or myocardial infarction (MI in both groups; the incidence of respiratory failure was identical in the two groups (4%; two patient of G1 they had Strokes, and 12 presented low output syndrome, occurrences not registered in G2. The need of ventilatory support > 24 hs was not significant between groups. Medium time of hospital stay was 21.8 and 11.7 days respectively (NS and the survival after 30 days were similar in the two groups. The patients' of G1 eighty percent had more than two approached arteries, against only 48% of G2 (p < 0.0001. CONCLUSION: Because the largest number of grafts in the patients of G1, we can affirm that the use of CPB can provide a larger probability of complete RM.

  1. Prevalence and 1-year prognosis of transient heart failure following coronary revascularization.

    Science.gov (United States)

    Ambrosetti, Marco; Griffo, Raffaele; Tramarin, Roberto; Fattirolli, Francesco; Temporelli, Pier Luigi; Faggiano, Pompilio; De Feo, Stefania; Vestri, Anna Rita; Giallauria, Francesco; Greco, Cesare

    2014-09-01

    The occurrence of heart failure during the whole pre-discharge course of coronary revascularization, as far as its influence on subsequent prognosis, is poorly understood. The present study examined the effect of transient heart failure (THF) developing in the acute and rehabilitative phase on survival after coronary artery bypass graft surgery (CABG) and percutaneous coronary intervention (PCI). Patients in the Italian survey on cardiac rehabilitation and secondary prevention after cardiac revascularization (ICAROS) were analyzed for THF, the latter being defined either as signs and symptoms consistent with decompensation or cardiogenic shock. ICAROS was a prospective, multicenter registry of 1,262 consecutive patients discharged from 62 cardiac rehabilitation (CR) facilities, providing data on risk factors, lifestyle habits, drug treatments, and major cardiovascular events (MACE) during a 1-year follow-up. Records were linked to the official website of the Italian Association of Cardiovascular Prevention and Rehabilitation (GICR-IACPR). The overall prevalence of pre-discharge THF was 7.6%, with 69.8% of cases in acute wards, 22.9% during CR, and 7.3% in both settings. THF affected more frequently patients with chronic cardiac condition (42.7 vs. 30.6%; p After discharge, THF patients showed good maintenance rates of RAAS modulators (90.6%) and beta-blockers (83.3%), while statin therapy significantly decreased from 81.3 to 64.6% (p after coronary revascularization had increased post-discharge mortality and cardiovascular events. Hemodynamic instability, rather than recurrent myocardial ischemia, seems to be linked with worse prognosis. PMID:24146110

  2. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling.

    Science.gov (United States)

    Farmer, W Todd; Abrahamsson, Therése; Chierzi, Sabrina; Lui, Christopher; Zaelzer, Cristian; Jones, Emma V; Bally, Blandine Ponroy; Chen, Gary G; Théroux, Jean-Francois; Peng, Jimmy; Bourque, Charles W; Charron, Frédéric; Ernst, Carl; Sjöström, P Jesper; Murai, Keith K

    2016-02-19

    Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties. PMID:26912893

  3. Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-γ

    OpenAIRE

    Lee, Jeonggi; Shin, Jeon-Soo; Choi, In-Hong

    2006-01-01

    TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1β, TNF-α or IFN-γ, TRAIL was induced in cultured fetal astrocytes. In particular, IFN-γ induced the highest levels of TRAIL in cultured astrocytes. When astrocytes were prereated with IFN-γ, they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-γ modulates the expression of TRAIL i...

  4. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  5. INFLUENCE OF COMPLETENESS HEART REVASCULARIZATION ON A FUNCTIONAL CONDITION OF MYOCARDIUM AT ISCHEMIC CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    V. V. Chestukhin

    2013-01-01

    Full Text Available The aim of this study was to define influence of completeness heart revascularization on a functional condition of myocardium at ischemic cardiomyopathy. Materials and methods. 61 men and 5 women aged from 46 till 73 years with the diagnosis an ischemic cardiomyopathy were investigated before and after coronary angioplasty (EDV LV – 256,1 ± 7,4 ml, EF LV – 36,1 ± 1,1%. 46 patients had at receipt CHF with NYHA functional class 4, 20 – CHF with NYHA functional class 3. Functional status (6-minute walking test – 109,7 ± 20,5 m. Chronic total occlusion was the major type of coronary artery disease (92 of 176 epicardial branches. By means of echocardiography and quantitative gated SPECT estimated dynamics of systolic and diastolic function, change of perfusion, thickening and myocardial movement. Results. The full revascularization managed to be executed to 32 patients, incomplete – to 34 patients (34 occluded arteries didn't manage to be opened. In the whole group the 6-minute walking test incre- ased to 268,2 ± 19,9 m (p < 0,001, EF LV grew to 39,9±1,1% (p < 0,01 due to reduction of end systolic volume, degree of mitral regurgitation decreased from 1,6 ± 0,1 to 1,2 ± 0,1 (p < 0,007, pulmonary artery pressure decreased from 39,1 ± 1,7 to 32,1 ± 1,2 mm Hg (p < 0,01. Distinctions in dynamics of the main functional indicators between groups of complete and incomplete revascularization it isn't revealed. The factor of expressiveness of collateral blood flow in the region of occluded arteries probably compensates violation of an antegrade blood flow and defines a myocardial condition. Conclusion. The volume of myocardial revascularization at patients with ischemic cardio- myopathy isn't defining factor in a clinical condition of them after executed percutaneous coronary intervention. 

  6. [The transplantation of revascularized thyroid-trachea-lung complex: the experimental study].

    Science.gov (United States)

    Parshin, V D; Zhidkov, I L; Bazarov, D V; Parshin, V V; Chernyĭ, S S

    2012-01-01

    The osteoplastic tracheobronchopathy affects the trachea, main, lobar and smaller bronchi, causing their stenosis. Nowadays the mainstay of the treatment of such patients is the cryodestruction, laser destruction and the endoscopic buginage of the trachea and bronchi. The palliative nature and low efficacy of these procedures forces to search new ways of treatment. The traditional lung transplantation or separate trachea and lung transplantation is inappropriate because of the complex affection of both trachea and bronchi. The experimental study aimed the possibility of thyreotracheolung revascularized donor complex transplantation.

  7. Use of arterial conduit for arterial revascularization during liver and multivisceral transplantation

    Institute of Scientific and Technical Information of China (English)

    MA Yi; LI Qiang; YE Zhi-ming; ZHU Xiao-feng; HE Xiao-shun

    2011-01-01

    Background At present, revascularization is still one of the most critical technologies in orthotopic liver transplantation (OLT). Hepatic artery (HA) variations occur frequently in both donors and recipients. Moreover, there are always some pathological changes in the recipient hepatic artery. If handled improperly, it may cause complications after anastomosis.Therefore, arterial conduit could be used in primary OLT, re-OLT and multiple-OLT. This study aimed to investigate the indications, methods and techniques with usage of arterial conduit for HA revascularization during adult OLT.Methods We reviewed 1200 patients of consecutive OLTs performed during 2000-2009 in the First Affiliated Hospital of Sun Yat-sen University. Of these patients, 48 recipients with artery variations received HA revascularization with usage of arterial conduit and special postoperative managements. The indications, methods, techniques, and the managements of postoperative complications in adult OLT with usage of arterial conduit for HA revascularization were analyzed.Results In 48 cases with artery bypass, the arterial conduit were anastomosed between donor hepatic artery and recipient infrarenal aorta (n=32), between donor hepatic artery and recipient suprarenal aorta (n=10), and between donor upper abdominal organ cluster artery and recipient suprarenal aorta (n=6). The technique was applied in 4% (48/1200 cases) of the whole OLTs performed in the same period, and the patency rate of the conduits was 100%. Forty patients (83.3%) survived, and the average survival time was 3.9 years. Eight patients (16.7%) died (all due to tumor recurrence),while the average survival time was 1.2 years. All these patients have not experienced artery-related complications in their survival time.Conclusions When recipient HA has variations or pathological changes in OLT, the donor artery should be anastomosed to recipient abdominal aorta with an arterial conduit to achieve satisfactory outcomes

  8. Serum YKL-40 for monitoring myocardial ischemia after revascularization in patients with stable coronary artery disease

    DEFF Research Database (Denmark)

    Harutyunyan, Marina Jurjevna; Johansen, Julia S; Mygind, Naja D;

    2014-01-01

    AIM: The aim was to investigate the inflammatory biomarker YKL-40 as a monitor of myocardial ischemia in patients with coronary artery disease (CAD). METHODS: A total of 311 patients with stable CAD were included. Blood samples were taken at baseline, the day after coronary angiography and/or after...... percutaneous coronary intervention and after 6 months. RESULTS: A total of 148 (48%) patients were revascularized and 163 patients underwent only coronary angiography. In the entire population, serum YKL-40 increased significantly from baseline to 6 months (p = 0.05). This tendency was seen...... of disease progression but not of myocardial ischemia in patients with stable CAD....

  9. Perspectives of anatomical and clinical criteria use in revascularization of patients with stable coronary artery disease

    Directory of Open Access Journals (Sweden)

    Genkal E.N.

    2015-09-01

    Full Text Available The aim of the study is to describe the development of the algorithm for the data analysis of Russian coronary artery disease (CAD Registry. The algorithm allows determining the need in percutaneous coronary intervention (PCI and evaluation the validity of PCI in patients with stable CAD on the basis of appropriate use criteria for coronary revascularization by the American College of Cardiology. Two measures propose for clinical decision support and automated assessment of PCI appropriateness «The need in PCI in patients with stable CAD» and «PCI validity in patients with stable CAD».

  10. Has the time come for another breakthrough in surgical myocardial revascularization?

    Institute of Scientific and Technical Information of China (English)

    WAN Song

    2009-01-01

    @@ Surgical myocardial revascularization has completed its fourth successful decade following the world's first clinical trial on coronary artery bypass grafting (CABG) in May 1967.1 Being one of the most popular and best investigated procedures in the history of surgery, CABG has stood the test of time with excellent results as measured by a variety of outcome markers. Even with the recent progress in percutaneous coronary intervention (PCI) and rapid development of intra-coronary stents (including drug-eluting stents), the advantage of CABG over PCI is likely to continue in the foreseeable future.

  11. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe;

    2013-01-01

    in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have...

  12. Impact of myocardial ischemia on myocardial revascularization in stable ischemic heart disease. Lessons from the COURAGE and FAME 2 trials.

    Science.gov (United States)

    Torosoff, M T; Sidhu, M S; Boden, W E

    2013-06-01

    In patients with stable ischemic heart disease (SIHD), myocardial revascularization should be performed to either improve survival or improve symptoms and functional status among patients who are not well controlled with optimal medical therapy (OMT). A general consensus exists on the core elements of OMT, which include both lifestyle intervention and intensive secondary prevention with proven pharmacotherapies. By contrast, however, there is less general agreement as to what constitutes the optimal approach to revascularization in SIHD patients. The COURAGE and FAME 2 randomized trials form the foundation of the current clinical evidence base and raise the important question: "What is the impact of myocardial ischemia on myocardial revascularization in stable ischemic heart disease?" PMID:23695652

  13. Expression and cellular function of vSNARE proteins in brain astrocytes.

    Science.gov (United States)

    Ropert, N; Jalil, A; Li, D

    2016-05-26

    Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo. PMID:26518463

  14. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. PMID:27383770

  15. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  16. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct.

    Directory of Open Access Journals (Sweden)

    George E Barreto

    Full Text Available Reactive gliosis is a hallmark of brain pathology and the injury response, yet the extent to which astrocytes proliferate, and whether this is central to astrogliosis is still controversial. We determined the fraction of mature astrocytes that proliferate in a mouse stroke model using unbiased stereology as a function of distance from the infarct edge. Cumulatively 11.1±1.2% of Aldh1l1(+ astrocytes within 400 µm in the cortical penumbra incorporate BrdU in the first week following stroke, while the overall number of astrocytes does not change. The number of astrocytes proliferating fell sharply with distance with more than half of all proliferating astrocytes found within 100 µm of the edge of the infarct. Despite extensive cell proliferation primarily of microglia and neutrophils/monocytes in the week following stroke, few mature astrocytes re-enter cell cycle, and these are concentrated close to the infarct boundary.

  17. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  18. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  19. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    Directory of Open Access Journals (Sweden)

    Glenn eDallérac

    2013-10-01

    Full Text Available A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

  20. Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Fenghong Zhao; Yingjun Liao; Yaping Jin; Guifan Sun

    2012-01-01

    The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 μM arsenite for 24 hours. Cell viability and morphological observations revealed that 5 μM arsenic exposure could induce cytotoxicity. Cells were then cultured in the presence of 0, 2.5, 5, or 10 μM arsenite for 24 hours and stimulated with 25 μM glutamate for 10 minutes. Results showed that [Ca2+]i in astrocytes exposed to 5 and 10 μM arsenite was significantly increased and levels of D-serine, γ-aminobutyric acid and glycine in cultures exposed to 2.5–10 μM arsenite were also increased. However, glutamate levels in the media were significantly increased only after treatment with 10 μM arsenite. In conclusion, our findings suggest that arsenic exposure may affect glutamate-induced gliotransmitter release from astrocytes and further disturb neuronal function.

  1. Microglia is activated by astrocytes in trimethyltin intoxication

    International Nuclear Information System (INIS)

    Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) how the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 μmol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown

  2. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  3. Neurorestorative Role of Stem Cells in Alzheimer's Disease: Astrocyte Involvement.

    Science.gov (United States)

    Choi, Sung S; Lee, Sang-Rae; Lee, Hong J

    2016-01-01

    Neurogenesis is maintained in both neonatal and adult brain, although it is dramatically reduced in aged neurogenic brain region such as the subgranular layer and subventricular zone of the dentate gyrus (DG). Astrocytes play important roles for survival and maintenance of neurons as well as maintenance of neurogenic niche in quiescent state. Aβ can induce astrocyte activation which give rise to produce reactive oxygen species (ROS) and cytotoxic cytokines and chemokines, and subsequently induce neuronal death. Unfortunately, the current therapeutic medicines have been limited to reduce the symptoms and delay the pathogenesis of Alzheimer's disease (AD), but not to cure it. Stem cells enhance neurogenesis and Aβ clearing as well as improved cognitive impairment. Neurotrophins and growth factors which are produced from both stem cells and astrocytes also have neuroprotective effects via neurogenesis. Secreted factors from both astrocytes and neural stem cells also are influenced in neurogenesis and neuron survival in neurodegenerative diseases. Transplanted stem cells overexpressing neurogenic factors may be an effective and therapeutic tool to enhance neurogenesis for AD. PMID:27018261

  4. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death.

    Science.gov (United States)

    Wang, Xin-shang; Tian, Zhen; Zhang, Nan; Han, Jing; Guo, Hong-liang; Zhao, Ming-gao; Liu, Shui-bing

    2016-03-01

    Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS. PMID:26643508

  5. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    International Nuclear Information System (INIS)

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5−/− mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  6. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China); Wang, Guang-Hui [College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 (China); Chen, Zhong, E-mail: chenzhong@zju.edu.cn [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China)

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5{sup −/−} mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the

  7. Astrocyte signaling in the presence of spatial inhomogeneities

    Science.gov (United States)

    Stamatakis, Michail; Mantzaris, Nikos V.

    2007-09-01

    Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the

  8. Cellular mechanism for spontaneous calcium oscillations in astrocytes

    Institute of Scientific and Technical Information of China (English)

    Tong-fei WANG; Chen ZHOU; Ai-hui TANG; Shi-qiang WANG; Zhen CHAI

    2006-01-01

    Aim: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+ oscillations in hippocampal astrocytes. Methods: The cultured cells were loaded with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ transients were visualized with confocal laser-scanning microscopy. Results: The spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured hippocampal neurons and astrocytes. These oscillations were not affected by tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes. The spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx. Furthermore, the correlation between the spontaneous Ca2+ oscillations and the Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological experiments. The oscillations were: 1) enhanced when cells were exposed to both low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely by 2 μmol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and 2) still robust after the application with either 50 μmol/L ryanodine or 400 μmol/L tetracaine, two specific antagonists of ryanodine receptors, but depressed in a dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker. Conclusion: InsP3R-induced ER Ca2+ release is an important cellular mechanism for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes.

  9. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  10. Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics.

    Science.gov (United States)

    Crunelli, Vincenzo; Blethyn, Kate L; Cope, David W; Hughes, Stuart W; Parri, H Rheinallt; Turner, Jonathan P; Tòth, Tibor I; Williams, Stephen R

    2002-12-29

    In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant 'window' component of the low-voltage-activated, T-type Ca(2+) current (I(Twindow)) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity. It is also likely that I(Twindow) underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye-injection experiments support the existence of gap junction-mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling-mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca(2+) ([Ca(2+)](i)) waves propagating among thalamic astrocytes are able to elicit large and long-lasting N-methyl-D-aspartate-mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca(2+)](i) transients and the selective activation of these glutamate receptors point to a role for this astrocyte-to-neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho)physiological functions of glial and neuronal elements in other brain areas.

  11. H1-antihistamines induce vacuolation in astrocytes through macroautophagy.

    Science.gov (United States)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan; Wang, Guang-Hui; Chen, Zhong

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine>pyrilamine>astemizole>triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5⁻/⁻ mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  12. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Science.gov (United States)

    Korenić, Andrej; Boltze, Johannes; Deten, Alexander; Peters, Myriam; Andjus, Pavle; Radenović, Lidija

    2014-01-01

    Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m)) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m), visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m) during reperfusion, whereas GD caused a robust Δψ(m) negativation. In case no Δψ(m) negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m) hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψ(m) during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury. PMID:24587410

  13. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes*

    Institute of Scientific and Technical Information of China (English)

    Sung Min Nam; Yo Na Kim; Dae Young Yoo; Sun Shin Yi; Jung Hoon Choi; In Koo Hwang; Je Kyung Seong; Yeo Sung Yoon

    2013-01-01

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To in-duce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age oral y received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in al groups for blood chemistry and immunohistochemical staining. In the methimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating tri odothyronine (T3) and thyroxine (T4) levels were significantly decreased compared to levels ob-served in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibril ary acidic protein immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibril ary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibril ary acidic protein immunoreactive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the mor-phology of astrocytes and microglia and that hypothyroidism during the onset of diabetes promi-nently reduces the processes of astrocytes and microglia.

  14. Characterization of the BAC Id3-enhanced green fluorescent protein transgenic mouse line for in vivo imaging of astrocytes

    OpenAIRE

    Lamantia, Cassandra; Tremblay, Marie-Eve; Majewska, Ania

    2014-01-01

    Astrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes. Here, we characterize the bacterial artificial chromosome transgenic Id3-EGFP knock-in mouse to establish its usefulness for in vivo imaging of astrocyte processes....

  15. Endocytosis-Mediated HIV-1 Entry and Its Significance in the Elusive Behavior of the Virus in Astrocytes

    OpenAIRE

    Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder; Handy, Indhira

    2014-01-01

    Astrocytes protect neurons but also evoke a proinflammatory response to injury and viral infections including HIV. We investigated the mechanism of HIV-1 infection in primary astrocytes, which showed minimal but productive viral infection independent of CXCR4. As with ectopic-CD4-expressing astrocytes, lysosomotropic agents led to increased HIV-1 infection in wild-type but not Rab 5, 7, and 11-ablated astrocytes. Instead, HIV-1 infection was decreased in Rab-depleted astrocytes, corroborating...

  16. Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis.

    Science.gov (United States)

    Guo, Yijing; Wang, Pin; Sun, Haixia; Cai, Rongrong; Xia, Wenqing; Wang, Shaohua

    2014-01-01

    This study aims to investigate the roles of the Notch-Hes1 pathway in the advanced glycation end product (AGE)-mediated differentiation of neural stem cells (NSCs). We prepared pLentiLox3.7 lentiviral vectors that express short hairpin RNA (shRNA) against Notch1 and transfected it into NSCs. Cell differentiation was analyzed under confocal laser-scanning microscopy. The percentage of neurons and astrocytes was quantified by normalizing the total number of TUJ1+ (Neuron-specific class III β-tubulin) and GFAP+ (Glial fibrillary acidic protein) cells to the total number of Hoechst 33342-labeled cell nuclei. The protein and gene expression of Notch-Hes1 pathway components was examined via western blot analysis and real-time PCR. After 1 week of incubation, we found that AGE-bovine serum albumin (BSA) (400 μg/mL) induced the astrocytic differentiation of cultured neurospheres and inhibited neuronal formation. The expression of Notch-Hes1 pathway components was upregulated in the cells in the AGE-BSA culture medium. Immunoblot analysis indicated that shRNA silencing of Notch1 expression in NSCs significantly increases neurogenesis and suppresses astrocytic differentiation in NSCs incubated with AGE-BSA. AGEs promote the astrocytic differentiation of cultured neurospheres by inhibiting neurogenesis through the Notch-Hes1 pathway, providing a potential therapeutic target for hyperglycemia-related cognitive deficits.

  17. Revascularization of Immature Necrotic Teeth: Platelet rich Fibrin an Edge over Platelet rich Plasma

    Directory of Open Access Journals (Sweden)

    Neelam Mittal

    2012-03-01

    Full Text Available Introduction: Revascularization is one such entity that has found its clinical application in the field of endodontics for the manage-ment of immature permanent necrotic teeth. The protocols for revascularization of such teeth focus especially on delivery of stem cells and scaffolds in a nonsurgical manner rather than concentrated growth micro molecules.The hypothesis: This article proposes the role of platelet concentrates such as platelet rich fibrin (PRF and platelet rich plasma (PRP in accelerating the regenerative process in such teeth. PRF unlike PRP is associated with slow, continuous and substantial re-lease of morphogens. It is hypothesized further if PRF instead of PRP when placed through immature apices in an orthograde manner can open newer gates for fast and controlled growth in young, ne-crotic, non-infected teeth.Evaluation of the hypothesis: Enhancement of the healing kinetics can be evaluated by change in size of periapical radiolucency, thickness of the dentinal walls, root elongation and apical closure compared between preoperative and postoperative standardized two dimensional/three dimensional radiographs taken on regular follow ups.

  18. Combined Microencapsulated Islet Transplantation and Revascularization of Aortorenal Bypass in a Diabetic Nephropathy Rat Model

    Directory of Open Access Journals (Sweden)

    Yunqiang He

    2016-01-01

    Full Text Available Objective. Revascularization of aortorenal bypass is a preferred technique for renal artery stenosis (RAS in diabetic nephropathy (DN patients. Restenosis of graft vessels also should be considered in patients lacking good control of blood glucose. In this study, we explored a combined strategy to prevent the recurrence of RAS in the DN rat model. Methods. A model of DN was established by intraperitoneal injection of streptozotocin. Rats were divided into 4 groups: SR group, MIT group, Com group, and the untreated group. The levels of blood glucose and urine protein were measured, and changes in renal pathology were observed. The expression of monocyte chemoattractant protein-1 (MCP-1 in graft vessels was assessed by immunohistochemical staining. Histopathological staining was performed to assess the pathological changes of glomeruli and tubules. Results. The levels of urine protein and the expression of MCP-1 in graft vessels were decreased after islet transplantation. The injury of glomerular basement membrane and podocytes was significantly ameliorated. Conclusions. The combined strategy of revascularization and microencapsulated islet transplantation had multiple protective effects on diabetic nephropathy, including preventing atherosclerosis in the graft vessels and alleviating injury to the glomerular filtration barrier. This combined strategy may be helpful for DN patients with RAS.

  19. Considerations in Cardiac Revascularization for the Elderly Patient: Age Isn't Everything.

    Science.gov (United States)

    O'Neill, Deirdre E; Knudtson, Merril L; Kieser, Teresa M; Graham, Michelle M

    2016-09-01

    Coronary artery disease is the leading cause of morbidity and mortality even in the elderly population. Treatment opportunities in the elderly population are often underappreciated. Revascularization procedures (coronary artery bypass graft surgery and percutaneous coronary intervention) can be associated with important benefits in symptom control, quality of life, and long-term mortality, at an upfront cost of an increased risk of in-hospital mortality and morbidity. Risk models to assess periprocedural risk are useful. The best models would balance unique aspects of risk with the very real potential benefit of revascularization. Current models fall short in this regard. Frailty, a clinical syndrome of vulnerability, is present in 25%-50% of cardiac patients, and is associated with increased morbidity and mortality. The addition of frailty can improve the discrimination of risk models. Elderly patients commonly consider quality of life to have greater importance than mortality outcomes. Furthermore, hospital admission is associated with a reduction in mobilization, loss of muscle strength, and worsening frailty, and interferes with a fundamental value in the elderly: the maintenance of independence. Therefore, an understanding of frailty, quality of life, and other unique aspects of risk, as well as individual patient goals, can assist in further defining prognosis and refine decision-making in this important and vulnerable population.

  20. CT Angiography for Revascularization of CTO: Crossing the Borders of Diagnosis and Treatment.

    Science.gov (United States)

    Opolski, Maksymilian P; Achenbach, Stephan

    2015-07-01

    Coronary computed tomography angiography (CTA) is increasingly used to diagnose and rule out coronary artery disease. Beyond stenosis detection, the ability of CTA to visualize and characterize coronary atherosclerotic plaque, as well as to obtain 3-dimensional coronary vessel trajectories, has generated considerable interest in the context of pre-procedural planning for revascularization of chronic total occlusions (CTOs). Coronary CTA can characterize features that influence the success rate of percutaneous coronary intervention (PCI) for CTOs such as the extent of calcification, vessel tortuosity, stump morphology, presence of multiple occlusions, and lesion length. Single features and combined scoring systems based on CTA may be used to grade the level of difficulty of the CTOs before PCI and have been shown to predict procedural success rates in several trials. In addition, the procedure itself may be facilitated by real-time integration of 3-dimensional CTA data and fluoroscopic images in the catheterization laboratory. Finally, the ability of coronary CTA to assess anatomy, perfusion, and viability in 1 single examination makes it a potential "one stop shop" that predicts not only the likelihood of successful PCI but also the clinical benefit of CTO revascularization. Further research is clearly needed, but many experienced sites have already integrated coronary CTA into the routine planning and guiding of CTO procedures.

  1. 52. Early revascularization on veno-arterial ECMO for patients with cardiogenic shock post stemi

    Directory of Open Access Journals (Sweden)

    K. Alkhamees

    2016-07-01

    Full Text Available Refractory Cardiogenic shock (CS complicates 5–7% of cases of ST-elevation myocardial infarction (STEMI, and is a leading cause of hospital death after myocardial infarction. CS complicating acute myocardial infarction continues to have a high mortality of 60–80% despite early revascularization and adjunctive therapies. We studied the effectiveness of veno-arterial (VA – Extracorporeal Membrane Oxygenator (ECMO for the patients with CS post STEMI during coronary angiography at our institute. Between January 2014 to April 2015, 8 male patients who suffered from progressive severe refractory CS post STEMI underwent emergent peripheral VA-ECMO implantation while performing cardiopulmonary resuscitation during coronary angiography. 7 patients of underwent PCI, while 1 patient was not amenable to PCI or CABG. The mean duration of support was 8.5 ± 5.8 days. 6 patients were successfully weaned from ECMO. While on ECMO support, 2 patients died. Mean EF after ECMO explantation was 32.5% ± 10.5%. The 30-day survival was 50%. Early revascularization on ECMO allows supporting hemodynamic efficiently in cardiogenic shock patients.

  2. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Ying Cheng; Yong-Feng Liu; Jia-Lin Zhang; Tie-Min Li; Ning Zhao

    2007-01-01

    AIM: To determine whether the elevated vascular endothelial growth factor (VEGF) expression produced by the transfected vascular endothelial cells (VECs) could stimulate angiogenesis of the graft islets and exert its effect on the graft function.METHODS: Thirty diabetic recipient rats were divided into three groups (n = 10 per group). In the control group, 300 IEQ islets were transplanted in each rat under the capsule of the right kidney, which were considered as marginal grafts. In the VEC group, VEC together with the islets were transplanted in each rat.In the VEGF group, VEC transfected by pIRES2-EGFP/VEGF165 plasmid and the islets were transplanted in each rat. Blood glucose and insulin levels were evaluated every other day after operation. Intravenous glucose tolerance test (IVGTT) was performed 10 d after the transplantation. Hematoxylin and eosin (HE) staining was used to evaluate the histological features of the graft islets. Immunohistochemical staining was used to detect insulin-6, VEGF and CD34 (MVD) expression in the graft islets.RESULTS: Blood glucose and insulin levels in the VEGF group restored to normal 3 d after transplantation. In contrast, diabetic rats receiving the same islets with or without normal VECs displayed moderate hyperglycemia and insulin, without a significant difference between these two groups. IVGTT showed that both the amplitude of blood glucose induction and the kinetics of blood glucose in the VEGF group restored to normal after transplantation. H&E and immunohistochemical staining showed the presence of a large amount of graft islets under the capsule of the kidney, which were positively stained with insulin-6 and VEGF antibodies in the VEGF group. In the cell masses, CD34-stained VECs were observed. The similar masses were also seen in the other two groups, but with a fewer positive cells stained with insulin-6 and CD34 antibodies. No VEGF-positive cells appeared in these groups. Microvessel density (MVD)was significantly

  3. Effects of low-level laser exposure on calcium channels and intracellular release in cultured astrocytes

    Science.gov (United States)

    Mang, Thomas S.; Maneshi, Mohammed M.; Shucard, David W.; Hua, Susan; Sachs, Frederick

    2016-03-01

    Prompted by a study of traumatic brain injury (TBI) in a model system of cultured astrocytes, we discovered that low level laser illumination (LLL) at 660nm elevates the level of intracellular Ca2+. The coherence of the illumination was not essential since incoherent red light also worked. For cells bathed in low Ca2+ saline so that influx was suppressed, the Ca2+ level rose with no significant latency following illumination and consistent with a slow leak of Ca2+ from storage such as from the endoplasmic reticulum and/or mitochondria. When the cells were bathed in normal Ca2+ saline, the internal Ca2+ rose, but with a latency of about 17 seconds from the beginning of illumination. Pharmacologic studies with ryanodine inhibited the light effect. Testing the cells with fluid shear stress as used in the TBI model showed that mechanically induced elevation of cell Ca2+ was unaffected by illumination.

  4. Pharmacological treatment and perceived health status during 1-year follow up in patients diagnosed with coronary artery disease, but ineligible for revascularization. Results from the Euro Heart Survey on Coronary Revascularization

    NARCIS (Netherlands)

    Lenzen, M.; Scholte op Reimer, W.; Norekval, T.M.; De Geest, S.; Fridlund, B.; Heikkila, J.; Jaarsma, Trijntje (Tiny); Martensson, J.; Moons, P.; Smith, K; Stewart, S.; Stromberg, A; Thompson, D.R.; Wijns, W.

    2006-01-01

    BACKGROUND: It has been recognized that a clinically significant portion of patients with coronary artery disease (CAD) continue to experience anginal and other related symptoms that are refractory to the combination of medical therapy and revascularization. The Euro Heart Survey on Revascularizatio

  5. Effects of AGEs on Oxidation Stress and Antioxidation Abilities in Cultured Astrocytes

    Institute of Scientific and Technical Information of China (English)

    JIAN-MING JIANG; ZHEN WANG; DIAN-DONG LI

    2004-01-01

    Objective To investigate whether two kinds of in vitro prepared advanced glycation end products (AGEs), Glu-BSA and Gal-BSA, could change oxidation stress and anti-oxidation abilities in astrocytes, and thus might contribute to brain injury. Methods Changes of GSH, MDA, SOD,MAO-B, nitric oxide were measured after AGEs treatment. Results Both 0.1 g/L Glu-BSA and Gal-BSA could slightly decrease GSH level, while 1 g/L of them significantly decreased GSH level by 35% and 43% respectively. The MDA levels of both 1 g/L AGEs treated groups (306±13 and 346±22) were higher than that of the normal group (189±18), which could be inhibited by free radical scavenger NAC. The SOD activities of both 1 g/L AGEs treated groups (67.0±5.2 and 74.0±11.0)were lower than that of the normal group (85.2±8.0). Both 0.1 g/L AGEs could slightly increase the activity of MAO-B, while 1 g/L of them could increase MAO-B activity by 1.5 and 1.7 folds respectively. Both AGEs stimulation could produce NO level by 1.7 and 2 folds respectively.Conclusion Enhanced levels of astrocytic oxidation stress and decrease of antioxidation abilities may contribute to, at least partially, the detrimental effects of AGEs in neuronal disorders and aging brain.

  6. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-01-01

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome. PMID:27485117

  7. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse.

    Science.gov (United States)

    Zhang, Ye; Sloan, Steven A; Clarke, Laura E; Caneda, Christine; Plaza, Colton A; Blumenthal, Paul D; Vogel, Hannes; Steinberg, Gary K; Edwards, Michael S B; Li, Gordon; Duncan, John A; Cheshier, Samuel H; Shuer, Lawrence M; Chang, Edward F; Grant, Gerald A; Gephart, Melanie G Hayden; Barres, Ben A

    2016-01-01

    The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here, we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains and to maintain these cells in serum-free cultures. We found that human astrocytes have abilities similar to those of murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to existing observations in mice, we found that mature human astrocytes respond robustly to glutamate. Next, we performed RNA sequencing of healthy human astrocytes along with astrocytes from epileptic and tumor foci and compared these to human neurons, oligodendrocytes, microglia, and endothelial cells (available at http://www.brainrnaseq.org). With these profiles, we identified novel human-specific astrocyte genes and discovered a transcriptome-wide transformation between astrocyte precursor cells and mature post-mitotic astrocytes. These data represent some of the first cell-type-specific molecular profiles of the healthy and diseased human brain.

  8. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  9. In vitro differentiation of cultured human CD34+ cells into astrocytes

    Directory of Open Access Journals (Sweden)

    Katari Venkatesh

    2013-01-01

    Full Text Available Background: Astrocytes are abundantly present as glial cells in the brain and play an important role in the regenerative processes. The possible role of stem cell derived astrocytes in the spinal cord injuries is possible related to their influence at the synaptic junctions. Aim: The present study is focused on in vitro differentiation of cultured human CD34+ cells into astrocytes. Materials and Methods: Granulocyte-colony stimulating factor mobilized human CD34+ cells were isolated from peripheral blood using apheresis method from a donor. These cells were further purified by fluorescence-activated cell sorting and cultured in Dulbecco′s modified eagle′s medium. Thus, cultured cells were induced with astrocyte defined medium (ADM and in the differentiated astrocytes serine/threonine protein kinases (STPK and glutamine synthetase (GLUL activities were estimated. The expression of glial fibrillary acidic protein (GFAP and GLUL were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR. Results: The cultured human CD34+ cells differentiated into astrocytes after 11 h of incubation in ADM. The RT-PCR experiment showed the expression of GLUL (1.5 kb and GFAP (2.9 kb in differentiated astrocytes. The high enzyme activities of GLUL and STPK in differentiated astrocytes compared with cultured human CD34+ cells confirmed astrocyte formation. Conclusion: In the present study, in vitro differentiation of stem cells with retinoic acid induction may result in the formation of astrocytes.

  10. Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

    Directory of Open Access Journals (Sweden)

    Giovanni Cirillo

    2012-01-01

    Full Text Available Astrocytic Ca2+ dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca2+ signaling in living central nervous system. Ca2+ waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101 and imaged astrocytic Ca2+ levels with Oregon-Green BAPTA-1 (OGB. Then, we studied astrocytic Ca2+ levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca2+ levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  11. Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury.

    Science.gov (United States)

    Gleixner, Amanda M; Posimo, Jessica M; Pant, Deepti B; Henderson, Matthew P; Leak, Rehana K

    2016-09-01

    Astrocytes are one of the major cell types to combat cellular stress and protect neighboring neurons from injury. In order to fulfill this important role, astrocytes must sense and respond to toxic stimuli, perhaps including stimuli that are severely stressful and kill some of the astrocytes. The present study demonstrates that primary astrocytes that managed to survive severe proteotoxic stress were protected against subsequent challenges. These findings suggest that the phenomenon of preconditioning or tolerance can be extended from mild to severe stress for this cell type. Astrocytic stress adaptation lasted at least 96 h, the longest interval tested. Heat shock protein 70 (Hsp70) was raised in stressed astrocytes, but inhibition of neither Hsp70 nor Hsp32 activity abolished their resistance against a second proteotoxic challenge. Only inhibition of glutathione synthesis abolished astrocytic stress adaptation, consistent with our previous report. Primary neurons were plated upon previously stressed astrocytes, and the cocultures were then exposed to another proteotoxic challenge. Severely stressed astrocytes were still able to protect neighboring neurons against this injury, and the protection was unexpectedly independent of glutathione synthesis. Stressed astrocytes were even able to protect neurons after simultaneous application of proteasome and Hsp70 inhibitors, which otherwise elicited synergistic, severe loss of neurons when applied together. Astrocyte-induced neuroprotection against proteotoxicity was not elicited with astrocyte-conditioned media, suggesting that physical cell-to-cell contacts may be essential. These findings suggest that astrocytes may adapt to severe stress so that they can continue to protect neighboring cell types from profound injury. PMID:26374549

  12. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo, E-mail: mnuriya@z2.keio.jp

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  13. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  14. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Science.gov (United States)

    Davies, Stephen J A; Shih, Chung-Hsuan; Noble, Mark; Mayer-Proschel, Margot; Davies, Jeannette E; Proschel, Christoph

    2011-03-02

    Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that

  15. Inpatient and outpatient cardiac rehabilitation programmes improve cardiometabolic risk in revascularized coronary patients with type 2 diabetes

    OpenAIRE

    Claudiu Avram; Adina Avram; L.aura Crăciun; Stela Iurciuc; Lucian Hoble; Alexandra Rusu; Bogdan Almăjan-Guţă; Silvia Mancaş

    2010-01-01

    The purpose of this paper is to evaluate cardiometabolic risk reduction of diabetic patients following coronary revascularizationprocedures after participation in outpatients or inpatients cardiac rehabilitation programmes. Materials and methods: weperformed a retrospective analytical study which included a group of 103 revascularized coronary patients with diabetesmellitus. Depending on participation in a cardiac rehabilitation program we have defined the following subgroups of patients:Grou...

  16. Target vessel revascularization following percutaneous coronary intervention. A 10-year report from the Danish Percutaneous Transluminal Coronary Angioplasty Registry

    DEFF Research Database (Denmark)

    Jensen, Lisette Okkels; Thayssen, Per; Kassis, Eli;

    2005-01-01

    OBJECTIVE: To present the rate of target vessel revascularization (TVR) in a consecutive and unselected national population over 10 years. DESIGN: From 1989 to 1998 all percutaneous coronary interventions (PCIs) performed in Denmark were recorded in the Danish PTCA Registry. RESULTS: From 1989 to...

  17. Biomechanical and proteomic analysis of INF- {beta}-treated astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, Daniele; Leporatti, Stefano; Maruccio, Giuseppe; Cingolani, Roberto; Rinaldi, Ross [National Nanotechnology Laboratory of CNR-INFM, ISUFI, University of Lecce, Italian Institute of Technology (IIT) Research Unit, via Arnesano, I-73100 Lecce (Italy); Martignago, Roberta; Nuccio, Franco De; Nicolardi, Giuseppe; Maffia, Michele [Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, I-73100 Lecce (Italy); Bonsegna, Stefania; Santino, Angelo, E-mail: michele.maffia@unile.i, E-mail: ross.rinaldi@unile.i [Institute of Sciences of Food Production CNR, Unit of Lecce I-73100 (Italy)

    2009-11-11

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- {beta} (IFN-{beta}) treatment. Our results indicated that IFN-{beta} treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  18. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma

    Directory of Open Access Journals (Sweden)

    Pilar González-Gómez

    2014-01-01

    Full Text Available Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer.

  19. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  20. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    Science.gov (United States)

    Vergara, Daniele; Martignago, Roberta; Leporatti, Stefano; Bonsegna, Stefania; Maruccio, Giuseppe; De Nuccio, Franco; Santino, Angelo; Cingolani, Roberto; Nicolardi, Giuseppe; Maffia, Michele; Rinaldi, Ross

    2009-11-01

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  1. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of [3H] D- and L-3-hydroxybutyrate and 3-hydroxy-[3-14C] butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells

  2. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    International Nuclear Information System (INIS)

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  3. Inpatient and outpatient cardiac rehabilitation programmes improve cardiometabolic risk in revascularized coronary patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Claudiu Avram

    2010-12-01

    Full Text Available The purpose of this paper is to evaluate cardiometabolic risk reduction of diabetic patients following coronary revascularizationprocedures after participation in outpatients or inpatients cardiac rehabilitation programmes. Materials and methods: weperformed a retrospective analytical study which included a group of 103 revascularized coronary patients with diabetesmellitus. Depending on participation in a cardiac rehabilitation program we have defined the following subgroups of patients:Group O (N=37 - attended the outpatient cardiac rehabilitation program; Group H (N=37 - attended the inpatient cardiacrehabilitation program; Group C (N=34 - did not participate in any cardiac rehabilitation program. Between those two momentsof assessment: T0 - revascularization / early post-revascularization and T1 - time of the interview (16±2.3 months afterrevascularization, patients in groups A and S participated in outpatient cardiac rehabilitation program (12 weeks, 3sessions/week of exercise training, with clinical and paraclinical evaluation scheduled at 1, 6, 12 months afterrevascularization, or inpatient cardiac rehabilitation program (3 weeks, intensive sessions, scheduled at 1, 3, 6 and 12months after revascularization. Results: at the end of the study, we found significant differences among the three groups forthe following parameters: body mass index (p=0.01, systolic blood pressure (p=0.002, total cholesterol (p<0.001, LDLcholesterol(p<0.001 and non-HDL cholesterol (p=0.004 in favor of groups A and S, that have participated in comprehensivecardiac rehabilitation programs. Conclusions: comprehensive cardiac rehabilitation programmes, performed outpatient orinpatient, are effective methods of reducing the high cardiometabolic risk, specific in revascularized coronary patients withdiabetes.

  4. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C;

    2012-01-01

    astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in...... several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic...... perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE...

  5. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes.

    Science.gov (United States)

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan; Mao, Hai-Quan

    2016-06-21

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  6. Morphological assessment of neurite outgrowth in hippocampal neuron-astrocyte co-cultures.

    Science.gov (United States)

    Giordano, Gennaro; Costa, Lucio G

    2012-05-01

    Neurite outgrowth is a fundamental event in brain development, as well as in regeneration of damaged neurons. Astrocytes play a major role in neuritogenesis, by expressing and releasing factors that facilitate neurite outgrowth, such as extracellular matrix proteins, and factors that can inhibit neuritogenesis, such as the chondroitin sulfate proteoglycan neurocan. In this unit we describe a noncontact co-culture system of hippocampal neurons and cortical (or hippocampal) astrocytes for measurement of neurite outgrowth. Hippocampal pyramidal neurons are plated on glass coverslips, which are inverted onto an astrocyte feeder layer, allowing exposure of neurons to astrocyte-derived factors without direct contact between these two cell types. After co-culture, neurons are stained and photographed, and processes are assessed morphologically using Metamorph software. This method allows exposing astrocytes to various agents before co-culture in order to assess how these exposures may influence the ability of astrocytes to foster neurite outgrowth. PMID:22549268

  7. Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS

    Directory of Open Access Journals (Sweden)

    Bettina Schreiner

    2015-09-01

    Full Text Available Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS. Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.

  8. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes†

    Science.gov (United States)

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan

    2016-01-01

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  9. Effects of propofol on ammonium chloride-exposed astrocyte morphology and aquaporin-4 expression

    Institute of Scientific and Technical Information of China (English)

    Hanjian Chen; Caifei Pan; Peng Guo; Yueying Zheng; Shengmei Zhu

    2011-01-01

    Ammonia induces astrocyte swelling, which is strongly associated with overexpression of aquaporin-4.However, the mechanisms by which ammonia induces astrocyte swelling, and subsequently upregulating aquaporin-4 expression, remain unknown.In the present study,astrocytes were cultured in vitro and exposed to ammonium chloride (NH4CI), followed by propofol,protein kinase C agonist, or antagonist, respectively.Astrocyte morphology was observed by light microscopy, and aquaporin-4 expression was detected by western blot analysis.Results showed that propofol or protein kinase C agonist significantly attenuated the degree of NH4CI-induced astrocyte swelling and inhibited increased aquaporin-4 expression.Propofol treatment inhibited aquaporin-4 overexpression in cultured astrocyte induced by NH4CI; protein kinase C pathway activation is potentially involved.

  10. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes

    OpenAIRE

    Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Yi, Sun Shin; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2013-01-01

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the methima...

  11. The effects of trypsin on rat brain astrocyte activation

    OpenAIRE

    Masoud Fereidoni; Farzaneh Sabouni; Ali Moghimi; Shirin Hosseini

    2013-01-01

    Background Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO), and sometimes they induce apoptosis. Their protease-activated receptors (PARs) can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of di...

  12. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission

    Science.gov (United States)

    Shinozaki, Youichi; Nomura, Masatoshi; Iwatsuki, Ken; Moriyama, Yoshinori; Gachet, Christian; Koizumi, Schuichi

    2014-03-01

    Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia sense low concentrations of the neurotoxicant methylmercury (MeHglow) and provide neuroprotection against MeHg, for which astrocytes are also required. When exposed to MeHglow, microglia exocytosed ATP via p38 MAPK- and vesicular nucleotide transporter (VNUT)-dependent mechanisms. Astrocytes responded to the microglia-derived ATP via P2Y1 receptors and released interleukin-6 (IL-6), thereby protecting neurons against MeHglow. These neuroprotective actions were also observed in organotypic hippocampal slices from wild-type mice, but not in slices prepared from VNUT knockout or P2Y1 receptor knockout mice. These findings suggest that microglia sense and respond to even non-hazardous toxicants such as MeHglow and change their phenotype into a neuroprotective one, for which astrocytic support is required.

  13. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Directory of Open Access Journals (Sweden)

    Lori A Newman

    Full Text Available When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  14. Bilateral presumed astrocytic hamartomas in a patient with retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Kinori M

    2011-11-01

    Full Text Available Michael Kinori1, Iris Moroz1,2, Ygal Rotenstreich1,2, Hagith Yonath2,3, Ido Didi Fabian1, Vicktoria Vishnevskia-Dai1,21Department of Ophthalmology, Chaim Sheba Medical Center, Tel Hashomer, Israel; 2Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Danek Gertner Genetic Institute and Internal Medicine A, Chaim Sheba Medical Center, Tel Hashomer, IsraelAbstract: Retinal astrocytic hamartomas are benign intraocular tumors classically associated with phacomatoses. Their appearance in isolation is rare. An association between astrocytic hamartomas and retinitis pigmentosa (RP has been described previously, but controversy still exists regarding the precise nature of these lesions in RP patients. The authors present a case report of a 24-year-old male with RP and multiple bilateral lesions clinically consistent with retinal astrocytic hamartomas. Optical coherence tomography revealed multiple bilateral hyper-reflective intraretinal masses, loss of retinal architecture, intralesional calcifications, and prominent optical posterior shadowing. Comprehensive systemic evaluation was negative for phacomatoses. However, given that a biopsy was not performed, the diagnosis of optic nerve head drusen could not be excluded.Keywords: giant drusen, optic nerve head drusen, optical coherence tomography, intraocular tumor

  15. "Cell therapy for stroke: use of local astrocytes"

    Directory of Open Access Journals (Sweden)

    Melek eChouchane

    2012-10-01

    Full Text Available Stroke refers to a variety of conditions caused by the occlusion or hemorrhage of blood vessels supplying the brain, which is one of the main causes of death and the leading cause of disability worldwide. In the last years, cell-based therapies have been proposed as a new approach to ameliorate post stroke deficits. However, the most appropriate type of cell to be used in such therapies, as well as their sources, remains a matter of intense research. A good candidate cell should, in principle, display high plasticity to generate diverse types of neurons and, at the same type, low risk to cause undesired outcomes, such as malignant transformation. Recently, a new approach grounded on the reprogramming of endogenous astrocytes towards neuronal fates emerged as an alternative to restore neurological functions in several central nervous system diseases. In this perspective, we review data about the potential of astrocytes to become functional neurons following expression of neurogenic genes and discuss the potential benefits and risks of reprogramming astrocytes in the glial scar to replace neurons lost after stroke.

  16. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    OpenAIRE

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate ...

  17. Human-derived neural progenitors functionally replace astrocytes in adult mice

    OpenAIRE

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal co...

  18. Astrocyte-neuron lactate transport is required for long-term memory formation

    OpenAIRE

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M

    2011-01-01

    We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter...

  19. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  20. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning.

    Science.gov (United States)

    Ostroff, Linnaea E; Manzur, Mustfa K; Cain, Christopher K; Ledoux, Joseph E

    2014-06-15

    There is growing evidence that astrocytes, long held to merely provide metabolic support in the adult brain, participate in both synaptic plasticity and learning and memory. Astrocytic processes are sometimes present at the synaptic cleft, suggesting that they might act directly at individual synapses. Associative learning induces synaptic plasticity and morphological changes at synapses in the lateral amygdala (LA). To determine whether astrocytic contacts are involved in these changes, we examined LA synapses after either threat conditioning (also called fear conditioning) or conditioned inhibition in adult rats by using serial section transmission electron microscopy (ssTEM) reconstructions. There was a transient increase in the density of synapses with no astrocytic contact after threat conditioning, especially on enlarged spines containing both polyribosomes and a spine apparatus. In contrast, synapses with astrocytic contacts were smaller after conditioned inhibition. This suggests that during memory consolidation astrocytic processes are absent if synapses are enlarging but present if they are shrinking. We measured the perimeter of each synapse and its degree of astrocyte coverage, and found that only about 20-30% of each synapse was ensheathed. The amount of synapse perimeter surrounded by astrocyte did not scale with synapse size, giving large synapses a disproportionately long astrocyte-free perimeter and resulting in a net increase in astrocyte-free perimeter after threat conditioning. Thus astrocytic processes do not mechanically isolate LA synapses, but may instead interact through local signaling, possibly via cell-surface receptors. Our results suggest that contact with astrocytic processes opposes synapse growth during memory consolidation.

  1. Chloroquine mediated molecular tuning of astrocytes for enhanced permissiveness to HIV infection

    OpenAIRE

    Vijaykumar, Theophilus S.; Nath, Avindra; Chauhan, Ashok

    2008-01-01

    We report in this study that minimum productive HIV infection in astrocytes (a predominant cell type in brain and persists for the entire life) occurs through endocytosis. The lysosomotropic agent chloroquine enhanced permissiveness of astrocytes to HIV infection possibly by circumventing degradation of endosome-entrapped viral particles. In particular, chloroquine may promote establishment of a stable long term viral reservoir in astrocytes and may eventually facilitate early onset of neurol...

  2. Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: a fiery path to its destination

    OpenAIRE

    Chauhan, Ashok; Khandkar, Mehrab

    2014-01-01

    Despite successful suppression of peripheral HIV-1 infection by combination antiretroviral therapy, immune activation by residual virus in the brain leads to HIV-associated neurocognitive disorders (HAND). In the brain, several types of cells, including microglia, perivascular macrophage, and astrocytes have been reported to be infected by HIV-1. Astrocytes, the most abundant cells in the brain, maintain homeostasis. The general consensus on HIV-1 infection in astrocytes is that it produces u...

  3. Sex Differences and Laterality in Astrocyte Number and Complexity in the Adult Rat Medial Amygdala

    OpenAIRE

    JOHNSON, RYAN T.; Breedlove, S. Marc; Jordan, Cynthia L.

    2008-01-01

    The posterodorsal portion of the medial amygdala (MePD) is sexually dimorphic in several rodent species. In several other brain nuclei, astrocytes change morphology in response to steroid hormones. We visualized MePD astrocytes using glial-fibrillary acidic protein (GFAP) immunocytochemistry. We compared the number and process complexity of MePD astrocytes in adult wildtype male and female rats and testicular feminized mutant (TFM) male rats that lack functional androgen receptors (ARs) to de...

  4. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Lei-lei CHEN; Jun-chao WU; Lin-hui WANG; Jin WANG; Zhen-hong QIN; Marian DIFIGLIA; Fang LIN

    2012-01-01

    To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552).Methods:Primary astrocyte cultures were prepared from the cortex of postnatal rat pups.An astrocytes model of Huntington's diseasewas established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin.The protein levels of glutamate transporters GLT-1 and GLAST,the autophagic marker microtubule-associated protein 1A/1B-light chain 3(LC3) and the autophagy substrate p62 in the astrocytes were examined using Western blotting.The mRNA expression levels of GLT-1and GLAST in the astrocytes were determined using Real-time PCR.[3H]glutamate uptake by the astrocytes was measured with liquid scintillation counting.Results:The expression of mutant Htt-552 in the astrocytes significantly decreased both the mRNA and protein levels of GLT-1 but not those of GLAST.Furthermore,Htt-552 significantly reduced [3H]glutamate uptake by the astrocytes.Treatment with the autophagy inhibitor 3-MA (10 mmol/L) significantly increased the accumulation of mutant Htt-552,and reduced the expression of GLT-1 and [3H]glutamate uptake in the astrocytes.Treatment with the autophagy stimulator rapamycin (0.2 mg/mL) significantly reduced the accumulation of mutant Htt-552,and reversed the changes in GLT-1 expression and [3H]glutamate uptake in the astrocytes.Conclusion:Rapamcin,an autophagy stimulator,can prevent the suppression of GLT-1 expression and glutamate uptake by mutant Htt-552 in cultured astrocytes.

  5. Control of CNS synapse development by γ-protocadherin-mediated astrocyte-neuron contact

    OpenAIRE

    Garrett, Andrew M.; Weiner, Joshua A.

    2009-01-01

    Recent studies indicate that astrocytes, whose processes enwrap synaptic terminals, promote synapse formation both by releasing soluble factors and through contact-dependent mechanisms. While astrocyte-secreted synaptogenic factors have been identified, the molecules underlying perisynaptic astroctye-neuron contacts are unknown. Here we show that the γ-Protocadherins (γ-Pcdhs), a family of 22 neuronal adhesion molecules encoded by a single gene cluster, are also expressed by astrocytes and lo...

  6. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  7. Insights into Human Astrocyte Response to H5N1 Infection by Microarray Analysis

    OpenAIRE

    Xian Lin; Ruifang Wang; Jun Zhang; Xin Sun; Zhong Zou; Shengyu Wang; Meilin Jin

    2015-01-01

    Influenza virus infects not only the respiratory system but also the central nervous system (CNS), leading to influenza-associated encephalopathy and encephalitis. Astrocytes are essential for brain homeostasis and neuronal function. These cells can also be infected by influenza virus. However, genome-wide changes in response to influenza viral infection in astrocytes have not been defined. In this study, we performed gene profiling of human astrocytes in response to H5N1. Innate immune and p...

  8. Off-Pump Complete Coronary Revascularization with 860 Cases and Two Year Experience

    Institute of Scientific and Technical Information of China (English)

    谢斌; 张镜芳; Pravin Kuma; Devi Prasad Shetty

    2002-01-01

    Background Cardiopulmonary bypass (CPB) produces a well-documented diffuse inflammatory response that affects multiple organ systems. To avoid the deleterious effects of cardiopulmonary bypass, off-pump coronary artery bypass grafting is becoming increasingly popular world- wide.We reviewed our experience of complete coronary artery revascularization on the beating heart without CPB.Methods From Aug 1998 to Aug 2000, 860off-pump revascularizations (99 % since January 1999) were performed at Manipal Hospital Heart Foundation. The patients consist of males 757(88%), females 103(12%) . Averaged age 64. 2±15years. All surgeries were performed through a median sternotomy. Exposure techniques are tailored to individual vessels and cardiac regions. Local immobilization is performed with octopus. Vascular control is achieved with occluders and shunts. Results Among 860 off-pump CABG patients. Single graft 72(8.3 % ), two grafts 208 (24. 2 % ), three grafts 469(54.5 % ), four grafts 101 (11.8 % ), five graft 10(1.2 % ) . The average number of grafts per patient was 2.72 ±0. 32. Operative mortality was 0.69 % (6patients). Anesthetic time 3.9 + 1.2hours, extubation time 6 ± 2. 5 hours, Blood requirement 360 ±90 ml,Preoperative LVEF 60.2 + 8.5 %, Post LVEF 64. 1 +14 % Low cardiac output 48 patients (5.6 % ), IABP requirement: 25 patients(2.9 %), 25 patients converted to CPB during OP-CAB (2.9 % ) and 20 of them were done with on pump beating heart. 25 patientsshowed myocardial ischemic and 16 patients showed perioperative myocardial infarction. ICU stay 1. 1 ± 0.8days, hospital stay 6.2±1.1 days. Conclusion Off-pump coronary artery bypass in complete revas cularization is a safe, effective technique and suitable.

  9. Voxel Based Analysis of Surgical Revascularization for Moyamoya Disease: Pre- and Postoperative SPECT Studies.

    Directory of Open Access Journals (Sweden)

    Yasutaka Fushimi

    Full Text Available Moyamoya disease (MMD is a chronic, progressive, cerebrovascular occlusive disease that causes abnormal enlargement of collateral pathways (moyamoya vessels in the region of the basal ganglia and thalamus. Cerebral revascularization procedures remain the preferred treatment for patients with MMD, improving the compromised cerebral blood flow (CBF. However, voxel based analysis (VBA of revascularization surgery for MMD based on data from pre- and postoperative data has not been established. The latest algorithm called as Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL has been introduced for VBA as the function of statistical parametric mapping (SPM8, and improved registration has been achieved by SPM8 with DARTEL. In this study, VBA was conducted to evaluate pre- and postoperative single photon emission computed tomography (SPECT images for MMD by SPM8 with DARTEL algorithm, and the results were compared with those from SPM8 without DARTEL (a conventional method. Thirty-two patients with MMD who underwent superficial temporal artery-middle cerebral artery (STA-MCA bypass surgery as the first surgery were included and all patients underwent pre- and postoperative 3D T1-weighted imaging and SPECT. Pre- and postoperative SPECT images were registered to 3D T1-weighted images, then VBA was conducted. Postoperative SPECT showed more statistically increased CBF areas in the bypassed side cerebral hemisphere by using SPM8 with DARTEL (58,989 voxels; P<0.001, and increased ratio of CBF after operation was less than 15%. Meanwhile, postoperative SPECT showed less CBF increased areas by SPM8 without DARTEL. In conclusion, VBA was conducted for patients with MMD, and SPM8 with DARTEL revealed that postoperative SPECT showed statistically significant CBF increases over a relatively large area and with at most 15% increase ratio.

  10. Emergency endovascular revascularization of tandem occlusions: Internal carotid artery dissection and intracranial large artery embolism.

    Science.gov (United States)

    Cohen, José E; Leker, Ronen R; Eichel, Roni; Gomori, Moshe; Itshayek, Eyal

    2016-06-01

    Internal carotid artery dissection (ICAD) with concomitant occlusive intracranial large artery emboli is an infrequent cause of acute stroke, with poor response to intravenous thrombolysis. Reports on the management of this entity are limited. We present our recent experience in the endovascular management of occlusive ICAD and major intracranial occlusion. Consecutive anterior circulation acute stroke patients meeting Medical Center criteria for endovascular management of ICAD from June 2011 to June 2015 were included. Clinical, imaging, and procedure data were collected retrospectively under Institutional Review Board approval. The endovascular procedure for carotid artery revascularization and intracranial stent thrombectomy is described. Six patients met inclusion criteria (National Institutes of Health Stroke Scale score 12-24, time from symptom onset 2-8hours). Revascularization of the extracranial carotid dissection and stent thrombectomy were achieved in 5/6 patients, resulting in complete recanalization (Thrombolysis in Myocardial Infarction flow grade 3 in a mean 2.7hours), and modified Rankin Scale score 0-2 at 90 day follow-up. In one patient, attempts to microcatheterize the true arterial lumen failed and thrombectomy was therefore not feasible. No arterial dissection, arterial rupture or accidental stent detachment occurred, and there was no intracerebral hemorrhage or hemorrhagic transformation. Our preliminary data on this selected subgroup of patients suggest the presented approach is safe, feasible in a significant proportion of patients, and efficacious in achieving arterial recanalization and improving patient outcome. Crossing the dissected segment remains the most important limiting factor in achieving successful ICA recanalization. Further evaluation in larger series is warranted. PMID:26924182

  11. Total Arterial Revascularization with Internal Mammary Artery or Radial Artery Graft Configuration

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the clinical use of π graft in total arterial revascularization and its outcomes, a retrospective analysis of 23 patients out of 1000 patients undergoing total arterial coronary bypass surgery with a π graft between September 1994 and December 2004 was performed. In the selected patients for the management of triple vessel disease with middle diagonal/intermediate ramus disease such that a skip with the left internal mammary artery (LIMA) or radial artery (RA),the main stem of π graft, to the left anterior descending coronary artery (LAD) will not work and the right internal mammary artery (RIMA) or right gastroepiploic artery (RGEA) cannot pick up the diagonal/intermediate ramus, hence the LAD and diagonal/intermediate ramus were grafted with a mini Y graft using the distal segment of LIMA, RIMA, RA or RGEA, together with the bilateral internal mammary artery (BIMA) or LIMA-RA T graft to compose π graft. Twenty-three patients (18 males, 5 females) underwent the π graft procedure. There were no deaths or episodes of myocardial infarction, stroke, and deep sternal wound infection. One patient required reopening for controlling bleeding. Until the end of 2004, during a mean follow-up of 81.0 ±28.4 months, no angina needing re-intervention or operative therapy or coronary related death occurred. In conclusion, in patients with specific coronary artery anatomy/stenosis, the BIMA (sometimes LIMA with RA or RGEA) π graft can be successfully performed for total arterial revascularization with good midterm outcomes.

  12. Voxel Based Analysis of Surgical Revascularization for Moyamoya Disease: Pre- and Postoperative SPECT Studies.

    Science.gov (United States)

    Fushimi, Yasutaka; Okada, Tomohisa; Takagi, Yasushi; Funaki, Takeshi; Takahashi, Jun C; Miyamoto, Susumu; Togashi, Kaori

    2016-01-01

    Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disease that causes abnormal enlargement of collateral pathways (moyamoya vessels) in the region of the basal ganglia and thalamus. Cerebral revascularization procedures remain the preferred treatment for patients with MMD, improving the compromised cerebral blood flow (CBF). However, voxel based analysis (VBA) of revascularization surgery for MMD based on data from pre- and postoperative data has not been established. The latest algorithm called as Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) has been introduced for VBA as the function of statistical parametric mapping (SPM8), and improved registration has been achieved by SPM8 with DARTEL. In this study, VBA was conducted to evaluate pre- and postoperative single photon emission computed tomography (SPECT) images for MMD by SPM8 with DARTEL algorithm, and the results were compared with those from SPM8 without DARTEL (a conventional method). Thirty-two patients with MMD who underwent superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery as the first surgery were included and all patients underwent pre- and postoperative 3D T1-weighted imaging and SPECT. Pre- and postoperative SPECT images were registered to 3D T1-weighted images, then VBA was conducted. Postoperative SPECT showed more statistically increased CBF areas in the bypassed side cerebral hemisphere by using SPM8 with DARTEL (58,989 voxels; P<0.001), and increased ratio of CBF after operation was less than 15%. Meanwhile, postoperative SPECT showed less CBF increased areas by SPM8 without DARTEL. In conclusion, VBA was conducted for patients with MMD, and SPM8 with DARTEL revealed that postoperative SPECT showed statistically significant CBF increases over a relatively large area and with at most 15% increase ratio. PMID:26867219

  13. Coronary bypass revascularization with radial artery and internal mammary artery grafts

    Institute of Scientific and Technical Information of China (English)

    甄文俊; 佟宏峰; 王永忠; 孙耀光; 黄文; 马玉健; 田家政; 吴良洪

    2002-01-01

    Objective To evaluate radial artery (RA) and internal mammary artery (IMA) grafts in coronary artery bypass and the use of color Doppler ultrasound in the peri-operative evaluation of IMA and radial-ulnar collateral circulation.Methods From June 1998 to June 2000, sixty cases of coronary bypass revascularization with RA and IMA were performed. Preoperatively, the radial-ulnar collateral circulation was evaluated with the modified Allen's test, color Doppler ultrasound and noninvasive oxygen saturation measurement. The IMA lumen and blood flow were measured at the first intercostal space with color Doppler ultrasound preoperatively and postoperatively.Results One patient (1.7%) died of serious cardiac arrhythmia on the fourth postoperative day. There were no arterial graft harvest related complications. Before harvesting, the ulnar artery blood flow was 30.78±9.71?ml/min, and it increased to 43.36±13.98?ml/min (40.87% increase, P0.05), but the systolic/diastolic flow ratio markedly decreased from 8.57±3.98?ml/min to 3.41±4.87?ml/min (P<0.01).Conclusions Arterial grafts can be safely used for coronary bypass revascularization with good results. The ulnar artery blood flow can increase compensatively after RA harvesting. The diastolic blood flow of grafted IMA markedly increased postoperatively. Color Doppler ultrasound was very helpful both in evaluating the radial-ulnar collateral circulation before RA harvesting and in assessing the patency of the grafted IMA after coronary artery bypass grafting (CABG).

  14. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  15. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes

    OpenAIRE

    Luo, Xiaoyu; He, Johnny J.

    2014-01-01

    Astrocytes are the most abundant cells in the central nervous system and play important roles in HIV/neuroAIDS. Detection of HIV proviral DNA, RNA and early gene products but not late structural gene products in astrocytes in vivo and in vitro indicates that astrocytes are susceptible to HIV infection albeit in a restricted manner. We as well as others have shown that cell-free HIV is capable of entering CD4− astrocytes through human mannose receptor-mediated endocytosis. In this study, we to...

  16. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons.

    Science.gov (United States)

    Pierret, P; Quenneville, N; Vandaele, S; Abbaszadeh, R; Lanctôt, C; Crine, P; Doucet, G

    1998-01-01

    Astrocytes from the ventral mesencephalon and from the striatum respectively promote the dendritic and axonal arborization of dopamine (DA) neurons in vitro. To test this response in vivo, astrocytes in primary cultures from the neonatal cerebral cortex, ventral mesencephalon, or striatum were coimplanted with fetal ventral mesencephalic tissue into the intact or DA-denervated striatum of adult rats and these cografts examined after 3-6 months by tyrosine hydroxylase (TH) immunohistochemistry (intact recipients) or after 5-6 months by in vitro [3H]DA-uptake autoradiography (DA-denervated recipients). In contrast with single ventral mesencephalic grafts, all types of cograft displayed a rather uniform distribution of TH-immunoreactive perikarya. The average size of TH-immunoreactive cell bodies was not significantly different in cografts containing cortical or mesencephalic astrocytes and in single ventral mesencephalic grafts, but it was significantly larger in cografts containing striatal astrocytes. Nevertheless, the number of [3H]DA-labeled terminals in the DA-lesioned host striatum was clearly smaller with cografts of striatal astrocytes than with single mesencephalic grafts or with cografts containing cortical astrocytes. On the other hand, cografts of striatal astrocytes contained much higher numbers of [3H]DA-labeled terminals than the other types of graft or cograft. Thus, while cografted astrocytes in general influence the distribution of DA neurons within the graft, astrocytes from the neonatal striatum have a trophic effect on DA perikarya and a tropic effect on DA axons, keeping the latter within the graft.

  17. CD81 Inhibits the Proliferation of Astrocytes by Inducing G_0/G_1 Arrest In Vitro

    Institute of Scientific and Technical Information of China (English)

    马俊芳; 刘仁刚; 彭会明; 周洁萍; 李海朋

    2010-01-01

    Astrocytes play a major role in the reactive processes in response to neuronal injuries in the brain.Excessive gliosis is detrimental and can contribute to neuronal damage.CD81(TAPA),a member of the tetraspanin family of proteins,is upregulated by astrocytes after traumatic injury to the rat central nervous system(CNS).To further understand the role of CD81 in the inhibition of astrocytes,we analyzed the effects of a CD81 antibody,on cultured rat astrocytes.The results indicated that the effect worked in a ...

  18. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  19. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours

    Directory of Open Access Journals (Sweden)

    Thomas N Seyfried

    2009-05-01

    Full Text Available The mitochondrial lipidome influences ETC (electron transport chain and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma, both syngeneic with the C57BL/6J (B6 mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production.

  20. The impact of renal function on clinical outcomes of patients without chronic kidney disease undergoing coronary revascularization%无慢性肾病冠心病患者肾功能对预后的影响

    Institute of Scientific and Technical Information of China (English)

    张强; 马长生; 聂绍平; 吕强; 康俊平; 刘小慧

    2008-01-01

    This study determined the profile of renal insufficiency in patients without chronic kidney disease(CKD)undergoing coronary revascularization and elucidated the effect of renal insufficiency of different degrees on clinical outcomes after revascularization and examined whether the reasonable choice of the mode of revasoularization could favourably influence prognosis.Methods Patients undergoing coronary revascularization were grouped by estimated creatinine clearance(CrCl)(Group Ⅰ,CrCl≥90 ml/min;Group Ⅱ,60 CrCl<90 ml/min;Group Ⅲ,30≤CrCl<60 ml/min;Group Ⅳ,CrCl<30 ml/min).We evaluated the relationship between the CrCl and the clinical outcomes of all of the patients.Results The mean Scr level of 2896 patients was(80.0±35.4)μmol/L There were 1035 patients(35.7%)in Group Ⅰ,1337 patients(46.2%)in Group Ⅱ,524 patients(18.1%)in Group Ⅲ and no patient in Group Ⅳ.During hospitalization,significant difference was found among Group Ⅰ-Ⅲ on mortality (1.0%.2.5% and 2.9%,P=0.009)and major adverse cardiar cerebra tvents(MACCE)(1.4%,3.5% and 4.6%.P=0.001).Compared with the normal renal function group,there were significantly higher rate of mortality(2.5% vs.1.0%,P=0.007).new-onset myocardial infarction(1.0% vs.0.2%,P=0.018)and MACCE(3.5% vs.1.4%,P=0.002)in miid renal insufficiency(Group Ⅱ).During follow-up,there were significant difference among Group Ⅰ-Ⅲ on mortality(2.0%,3.0% and 5.7%,P=0.002),stroke(1.0%,1.8% and 3.1%,P=0.023)and MACCE(9.9%,10.3% and 16.6%,P=0.001).The independent risk factors for all-cause death in patients after revascularization were the mode of revascularization(OR 8.332,95% CI 2.386-22.869,P=0.001).age(OR 1.184,95% CI 1.020-1.246,P=0.001).and the level of CrCl(OR 0.503,95% CI 0.186-0.988,P=0.045).In patients with normal renal function and mild renal insufficiency.the all-cause mortality after PCI was significantly lower that than after CABG(both P<0.01).Conclusions Renal insufficiency is common in patients without CKD

  1. The inhibitory neurotransmitter GABA evokes long-lasting Ca(2+) oscillations in cortical astrocytes.

    Science.gov (United States)

    Mariotti, Letizia; Losi, Gabriele; Sessolo, Michele; Marcon, Iacopo; Carmignoto, Giorgio

    2016-03-01

    Studies over the last decade provided evidence that in a dynamic interaction with neurons glial cell astrocytes contribut to fundamental phenomena in the brain. Most of the knowledge on this derives, however, from studies monitoring the astrocyte Ca(2+) response to glutamate. Whether astrocytes can similarly respond to other neurotransmitters, including the inhibitory neurotransmitter GABA, is relatively unexplored. By using confocal and two photon laser-scanning microscopy the astrocyte response to GABA in the mouse somatosensory and temporal cortex was studied. In slices from developing (P15-20) and adult (P30-60) mice, it was found that in a subpopulation of astrocytes GABA evoked somatic Ca(2+) oscillations. This response was mediated by GABAB receptors and involved both Gi/o protein and inositol 1,4,5-trisphosphate (IP3 ) signalling pathways. In vivo experiments from young adult mice, revealed that also cortical astrocytes in the living brain exibit GABAB receptor-mediated Ca(2+) elevations. At all astrocytic processes tested, local GABA or Baclofen brief applications induced long-lasting Ca(2+) oscillations, suggesting that all astrocytes have the potential to respond to GABA. Finally, in patch-clamp recordings it was found that Ca(2+) oscillations induced by Baclofen evoked astrocytic glutamate release and slow inward currents (SICs) in pyramidal cells from wild type but not IP3 R2(-/-) mice, in which astrocytic GABAB receptor-mediated Ca(2+) elevations are impaired. These data suggest that cortical astrocytes in the mouse brain can sense the activity of GABAergic interneurons and through their specific recruitment contribut to the distinct role played on the cortical network by the different subsets of GABAergic interneurons. PMID:26496414

  2. Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro

    International Nuclear Information System (INIS)

    Microglial activation has been implicated in many astrogliosis-related pathological conditions including astroglioma; however, the detailed mechanism is not clear. In this study, we used primary enriched microglia and astrocyte cultures to determine the role of microglial prostaglandin E2 (PGE2) in the proliferation of astrocytes. The proliferation of astrocytes was measured by BrdU incorporation. The level of PGE2 was measured by ELISA method. Pharmacological inhibition or genetic ablation of COX-2 in microglia were also applied in this study. We found that proliferation of astrocytes increased following lipopolysaccharide (LPS) treatment in the presence of microglia. Furthermore, increased proliferation of astrocytes was observed in the presence of conditioned media from LPS-treated microglia. The potential involvement of microglial PGE2 in enhanced astrocyte proliferation was suggested by the findings that PGE2 production and COX-2 expression in microglia were increased by LPS treatment. In addition, activated microglia-induced increases in astrocyte proliferation were blocked by the PGE2 antagonist AH6809, COX-2 selective inhibitor DuP-697 or by genetic knockout of microglial COX-2. These findings were further supported by the finding that addition of PGE2 to the media significantly induced astrocyte proliferation. These results indicate that microglial PGE2 plays an important role in astrocyte proliferation, identifying PGE2 as a key neuroinflammatory molecule that triggers the pathological response related to uncontrollable astrocyte proliferation. These findings are important in elucidating the role of activated microglia and PGE2 in astrocyte proliferation and in suggesting a potential avenue in the use of anti-inflammatory agents for the therapy of astroglioma.

  3. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U-14C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  4. Revascularization Using an Extracorporeal Pump for the Treatment of Cerebral Embolism in the Acute Stage: For Protection of the Brain Tissue from Irreversible Change due to Cerebral Embolism

    OpenAIRE

    Sonobe, M.; Nakai, Y.; Matsumaru, Y.; Sugita, K.

    2001-01-01

    Object. For patients with cerebral embolism, we are using an extracorporeal pump to revascularize the more peripheral brain tissues far from the thrombus, proceeding the microcatheter beyond the thrombus, and dissolving the thrombus during a satisfactory time as required.

  5. B-type natriuretic peptide as predictor of heart failure in patients with acute ST elevation myocardial infarction, single-vessel disease, and complete revascularization: follow-up study.

    LENUS (Irish Health Repository)

    Manola, Sime

    2012-01-31

    AIM: To assess the concentration of B-type natriuretic peptide (BNP) as a predictor of heart failure in patients with acute ST elevation myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention (PCI) with successful and complete revascularization. METHODS: Out of a total of 220 patients with acute STEMI admitted to the Sisters of Mercy University Hospital in the period January 1 to December 31, 2007, only patients with acute STEMI undergoing primary PCI who had single vessel disease and were successfully revascularized were included in the study. Selected patients had no history of myocardial infarction or heart failure and a normal or near-normal left ventricular ejection fraction (> or =50%) assessed by left ventriculography at admission. Only 58 patients met the inclusion criteria for the study. Out of those, 6 patients refused to participate in the study, and another 5 could not be followed up, so a total of 47 patients were evaluated. Blood samples were taken for measurement of BNP levels at admission, 24 hours later, and 7 days later. Patients were followed up for 1 year. The primary outcome was reduction in left ventricular ejection fraction (LVEF) to <50% after 1 year. RESULTS: Patients who developed echocardiographic signs of reduced systolic function defined as LVEF<50% had significantly higher values of BNP (> or =80 pg\\/mL) at 24 hours (P=0.001) and 7 days (P=0.020) after STEMI and successful reperfusion. Patients who had BNP levels > or =80 pg\\/mL after 7 days were 21 times more likely to develop LVEF<50 (odds ratio, 20.8; 95% confidence interval, 2.2-195.2; P=0.008). CONCLUSION: BNP can be used as a predictor of reduced systolic function in patients with STEMI who underwent successful reperfusion and had normal ejection fraction at admission.

  6. MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia

    Directory of Open Access Journals (Sweden)

    Paul C Guest

    2015-05-01

    Full Text Available As a multifactorial disease, the underlying causes of schizophrenia require analysis by multiplex methods such as proteomics to allow identification of whole protein networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia patients have demonstrated changes in activation of glycolytic and energy metabolism pathways. However, it is not known whether these changes occur in neurons or in glial cells. To address this question, we treated neuronal, astrocyte and oligodendrocyte cell lines with the NMDA receptor antagonist MK-801 and measured the levels of six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic system and has been proposed as a pharmacological means of modeling schizophrenia. Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes in all cell types. Most of the differences were found in oligodendrocytes, which had altered levels of hexokinase 1 (HK1, enolase 2 (ENO2, phosphoglycerate kinase (PGK and phosphoglycerate mutase 1 (PGAM1 after acute MK-801 treatment (8 hours, and HK1, ENO2, PGK and triosphosphate isomerase (TPI following long term treatment (72 hours. Addition of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC under both acute conditions and HK1 and ALDOC following long term treatment, and TPI was the only enzyme affected under long term conditions in the neuronal cells. In conclusion, MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells and this may be modulated by antipsychotic treatment. Although cell culture studies do not necessarily reflect the in vivo pathophysiology and drug effects within the brain, these results suggest that neurons, astrocytes and oligodendrocytes are affected differently in

  7. Enhanced astrocytic nitric oxide production and neuronal modifications in the neocortex of a NOS2 mutant mouse.

    Directory of Open Access Journals (Sweden)

    Yossi Buskila

    Full Text Available BACKGROUND: It has been well accepted that glial cells in the central nervous system (CNS produce nitric oxide (NO through the induction of a nitric oxide synthase isoform (NOS2 only in response to various insults. Recently we described rapid astroglial, NOS2-dependent, NO production in the neocortex of healthy mice on a time scale relevant to neuronal activity. To explore a possible role for astroglial NOS2 in normal brain function we investigated a NOS2 knockout mouse (B6;129P2-Nos2(tm1Lau/J, Jackson Laboratory. Previous studies of this mouse strain revealed mainly altered immune responses, but no compensatory pathways and no CNS abnormalities have been reported. METHODOLOGY/PRINCIPAL FINDINGS: To our surprise, using NO imaging in brain slices in combination with biochemical methods we uncovered robust NO production by neocortical astrocytes of the NOS2 mutant. These findings indicate the existence of an alternative pathway that increases basal NOS activity. In addition, the astroglial mutation instigated modifications of neuronal attributes, shown by changes in the membrane properties of pyramidal neurons, and revealed in distinct behavioral abnormalities characterized by an increase in stress-related parameters. CONCLUSIONS/SIGNIFICANCE: The results strongly indicate the involvement of astrocytic-derived NO in modifying the activity of neuronal networks. In addition, the findings corroborate data linking NO signaling with stress-related behavior, and highlight the potential use of this genetic model for studies of stress-susceptibility. Lastly, our results beg re-examination of previous studies that used this mouse strain to examine the pathophysiology of brain insults, assuming lack of astrocytic nitrosative reaction.

  8. COMPARATIVE EVALUATION OF THE ANTIHYPERTENSIVE EFFECT OF PERINDOPRIL AND LOSARTAN POTASSIUM IN PATIENTS WITH ARTERIAL HYPERTENSION AND STENOTIC CORONARY ATHEROSCLEROSIS BEFORE REVASCULARIZATION: AN OPEN RANDOMIZED COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    O. A. Osipova

    2011-01-01

    Full Text Available Aim. To compare effects of perindopril and losartan potassium on the parameters of the ambulatory blood pressure (BP monitoring (ABPM and circadian BP profile in patients with arterial hypertension (HT and stenotic coronary atherosclerosis before myocardium revascularization. Material and methods. 59 patients with HT degree 2-3 at the age of 35-69 were examined. ABPM was performed in all patients. Daily profile was assessed by the degree of nocturnal BP reduction. Patients were randomized to receive perindopril or losartan potassium. Perindopril was administered at dose of 4 mg/day with subsequent rising up to 8 mg/day in next 7 days. The initial dose of losartan potassium was 25 mg with subsequent rising up to 50 mg 2 times a day. Duration of observation was 8 weeks. Results. Perindopril reduced 24-hour and daytime systolic BP (SBP by 17.2% (p<0.0001, nighttime SBP - by 22.5% (p<0.0001, 24-hour and daytime diastolic BP (DBP - by 18.3% and 17.6% (p<0.0001, respectively , nighttime DBP - by 27.2% (p<0.0001. Losartan potassium reduced 24-hour SBP by 25.7% (p<0.0001, daytime SBP - by 23.6% (p<0.0001, night-time SBP – by 25.5% (p<0.0001, 24-hour DBP - by 27.4%, daytime DBP - by 26.3%, nighttime DBP - by 18.5% (p=0.003. Perindopril decreased in number of non-dippers by 24,3% and night-peakers by 5.4% as well as increased in number of dippers by 27% and over-dippers by 2.7%. A number of patients with SAD profile corresponding to non-dipper type was 45.5% more in losartan taking than this when perindopril receiving (p=0.027. Conclusion. In patients with HT and stenotic coronary atherosclerosis perindopril therapy increases a number of patients with normal BP profile before myocardium revascularization.

  9. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS

    OpenAIRE

    Emiliano eTrias; Pablo eDíaz-Amarilla; Silvia eOlivera-Bravo; Eugenia eIsasi; Drechsel, Derek A.; Nathan eLopez; Charles Samuel Bradford; Kyle Edward Ireton; Beckman, Joseph S; Luis Hector Barbeito

    2013-01-01

    Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular or...

  10. Molecular mechanism of limbs' postischemic revascularization improved by perindopril in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    GAO Lu; YU De-min

    2008-01-01

    Background Currently,there are still divergent opinions about the mechanisms of the impaired neovascularization in diabetic subjects.Due to the remarkable therapeutic effect of angiotensin-converting enzyme inhibititors (ACEIs) on the reduction of blood pressure and the protection of target organs,the clinical application of this kind of drugs is very widespread.However,it is still not clear about the role and related molecular pathway of this kind of drugs in the limbs'postischemic revascularization.It is of major therapeutic importance to resolve these questions.This study aimed to investigate the reasons of the impaired angiogenesis in the hind limbs of rats with diabetic ischemia,the role and related molecular mechanisms of ACEI in postischemic revascularization.Methods Hind limbs ischemia was induced in diabetic rats by right femoral artery excision.Diabetic rats were randomly allocated to one of the following treatments for 4 weeks:ACEI by perindopril;perindopril in combination with a nitric oxide synthase (NOS) inhibitor;perindopril in combination with bradykinin (BK)-B1 receptor (B1R) antagonist or saline.The differences of angiogenesis,the mRNA and protein expression of endothelial nitric oxide synthase (eNOS),vascular endothelial growth factor (VEGF) and basic fibroblast (bFGF),constitutive nitric oxide synthase (cNOS) activity and nitric oxide (NO) content were observed after treatment.Results In non-ischemic hind limbs,no significant changes in capillary density,or the mRNA and protein expression of eNOS,VEGF and bFGF,or the NO content and the cNOS activity were observed among all groups.On the contrary,in ischemic hind limbs,the capillary density in diabetic rats decreased by 27% when compared with the control rats,so did the mRNA and protein expression of eNOS,VEGF and bFGF,or the NO content and the cNOS activity (P<0.05).The capillary density was increased by 1.65-fold in the perindopril treatment group in reference to untreared diabetic rats

  11. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  12. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  13. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mächler, Philipp

    2015-11-19

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  14. Human-derived neural progenitors functionally replace astrocytes in adult mice

    Science.gov (United States)

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair. PMID:25642771

  15. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.;

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...

  16. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hu; Zhou, Wenhao [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Wei, Liming; Zhong, Fan [Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Roda, Shanghai 200032 (China); Yang, Yi, E-mail: yyang@shmu.edu.cn [Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China)

    2010-01-08

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  17. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  18. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle.

    Science.gov (United States)

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  19. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  20. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla;

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...

  1. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    OpenAIRE

    Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.

  2. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. PMID:26210720

  3. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    1993-01-01

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  4. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  5. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  6. Additional right-sided upper “Half-Mini-Thoracotomy” for aortocoronary bypass grafting during minimally invasive multivessel revascularization

    OpenAIRE

    Aubin, Hug; Akhyari, Payam; Lichtenberg, Artur; Albert, Alexander

    2015-01-01

    Background Although minimally invasive coronary artery bypass grafting (MICS-CABG) has been shown to result in excellent clinical outcomes overall adoption rates still remain low. Traditional strategies for minimally invasive multivessel revascularization - usually performed through single-thoracotomy – have to deal with restricted grafting possibilities and possible increased susceptibility of arterial grafts to competitive flow, restraining their applicability to very specific indications o...

  7. Structural-functional State and feature remodeling of left ventricle in patients with coronary artery disease after revascularization

    OpenAIRE

    ALYAVI ANIS LUTFULLAEVICH; KAMILOVA UMIDA KABIROVNA; TULAGANOVA DILDORA KARIMOVNA; RADJABOVA DIYORA ISKANDAROVNA; SHODIEV JASUR DAVLATOVICH

    2016-01-01

    The article estimated the dynamics of systolic and diastolic function in patients with acute myocardial infarction after myocardial revascularization. The study involved 42 patients with acute myocardial infarction with ST segment elevation up to 6 hours of onset. Primary stenting of the infarct-related artery in patients with acute myocardial infarction with ST segment elevation allows most early as possible to prevent the development of pathological remodeling of the left ventricle compared...

  8. Computerized two-lead resting ECG analysis for the detection of coronary artery stenosis after coronary revascularization

    OpenAIRE

    Grube, Eberhard; Bootsveld, Andreas; Buellesfeld, Lutz; Yuecel, Seyrani; Shen, Joseph T; Imhoff, Michael

    2008-01-01

    Background: Resting electrocardiogram (ECG) shows limited sensitivity and specificity for the detection of coronary artery disease (CAD), where patients with a history of coronary revascularization may pose special challenges. Several methods exist to enhance sensitivity and specificity of resting ECG for diagnosis of CAD, but such methods are not better than a specialist's judgement. We compared a new computer-enhanced, resting ECG analysis device, 3DMP, to coronary angiography to evaluate t...

  9. Trends in Coronary Angiography, Revascularization, and Outcomes of Cardiogenic Shock Complicating Non-ST-Elevation Myocardial Infarction.

    Science.gov (United States)

    Kolte, Dhaval; Khera, Sahil; Dabhadkar, Kaustubh C; Agarwal, Shikhar; Aronow, Wilbert S; Timmermans, Robert; Jain, Diwakar; Cooper, Howard A; Frishman, William H; Menon, Venu; Bhatt, Deepak L; Abbott, J Dawn; Fonarow, Gregg C; Panza, Julio A

    2016-01-01

    Early revascularization is the mainstay of treatment for cardiogenic shock (CS) complicating acute myocardial infarction. However, data on the contemporary trends in management and outcomes of CS complicating non-ST-elevation myocardial infarction (NSTEMI) are limited. We used the 2006 to 2012 Nationwide Inpatient Sample databases to identify patients aged ≥ 18 years with NSTEMI with or without CS. Temporal trends and differences in coronary angiography, revascularization, and outcomes were analyzed. Of 2,191,772 patients with NSTEMI, 53,800 (2.5%) had a diagnosis of CS. From 2006 to 2012, coronary angiography rates increased from 53.6% to 60.4% in patients with NSTEMI with CS (ptrend <0.001). Among patients who underwent coronary angiography, revascularization rates were significantly higher in patients with CS versus without CS (72.5% vs 62.6%, p <0.001). Patients with NSTEMI with CS had significantly higher risk-adjusted in-hospital mortality (odds ratio 10.09, 95% confidence interval 9.88 to 10.32) as compared to those without CS. In patients with CS, an invasive strategy was associated with lower risk-adjusted in-hospital mortality (odds ratio 0.43, 95% confidence interval 0.42 to 0.45). Risk-adjusted in-hospital mortality, length of stay, and total hospital costs decreased over the study period in patients with and without CS (ptrend <0.001). In conclusion, we observed an increasing trend in coronary angiography and decreasing trend in in-hospital mortality, length of stay, and total hospital costs in patients with NSTEMI with and without CS. Despite these positive trends, overall coronary angiography and revascularization rates remain less than optimal and in-hospital mortality unacceptably high in patients with NSTEMI and CS.

  10. Passive Leg Raising Correlates with Future Exercise Capacity after Coronary Revascularization.

    Directory of Open Access Journals (Sweden)

    Shu-Chun Huang

    Full Text Available Hemodynamic properties affected by the passive leg raise test (PLRT reflect cardiac pumping efficiency. In the present study, we aimed to further explore whether PLRT predicts exercise intolerance/capacity following coronary revascularization. Following coronary bypass/percutaneous coronary intervention, 120 inpatients underwent a PLRT and a cardiopulmonary exercise test (CPET 2-12 days during post-surgery hospitalization and 3-5 weeks after hospital discharge. The PLRT included head-up, leg raise, and supine rest postures. The end point of the first CPET during admission was the supra-ventilatory anaerobic threshold, whereas that during the second CPET in the outpatient stage was maximal performance. Bio-reactance-based non-invasive cardiac output monitoring was employed during PLRT to measure real-time stroke volume and cardiac output. A correlation matrix showed that stroke volume during leg raise (SVLR during the first PLRT was positively correlated (R = 0.653 with the anaerobic threshold during the first CPET. When exercise intolerance was defined as an anaerobic threshold < 3 metabolic equivalents, SVLR / body weight had an area under curve value of 0.822, with sensitivity of 0.954, specificity of 0.593, and cut-off value of 1504·10-3mL/kg (positive predictive value 0.72; negative predictive value 0.92. Additionally, cardiac output during leg raise (COLR during the first PLRT was related to peak oxygen consumption during the second CPET (R = 0.678. When poor aerobic fitness was defined as peak oxygen consumption < 5 metabolic equivalents, COLR / body weight had an area under curve value of 0.814, with sensitivity of 0.781, specificity of 0.773, and a cut-off value of 68.3 mL/min/kg (positive predictive value 0.83; negative predictive value 0.71. Therefore, we conclude that PLRT during hospitalization has a good screening and predictive power for exercise intolerance/capacity in inpatients and early outpatients following coronary

  11. Passive Leg Raising Correlates with Future Exercise Capacity after Coronary Revascularization.

    Science.gov (United States)

    Huang, Shu-Chun; Wong, May-Kuen; Lin, Pyng-Jing; Tsai, Feng-Chun; Wen, Ming-Shien; Kuo, Chi-Tai; Hsu, Chih-Chin; Wang, Jong-Shyan

    2015-01-01

    Hemodynamic properties affected by the passive leg raise test (PLRT) reflect cardiac pumping efficiency. In the present study, we aimed to further explore whether PLRT predicts exercise intolerance/capacity following coronary revascularization. Following coronary bypass/percutaneous coronary intervention, 120 inpatients underwent a PLRT and a cardiopulmonary exercise test (CPET) 2-12 days during post-surgery hospitalization and 3-5 weeks after hospital discharge. The PLRT included head-up, leg raise, and supine rest postures. The end point of the first CPET during admission was the supra-ventilatory anaerobic threshold, whereas that during the second CPET in the outpatient stage was maximal performance. Bio-reactance-based non-invasive cardiac output monitoring was employed during PLRT to measure real-time stroke volume and cardiac output. A correlation matrix showed that stroke volume during leg raise (SVLR) during the first PLRT was positively correlated (R = 0.653) with the anaerobic threshold during the first CPET. When exercise intolerance was defined as an anaerobic threshold < 3 metabolic equivalents, SVLR / body weight had an area under curve value of 0.822, with sensitivity of 0.954, specificity of 0.593, and cut-off value of 1504·10-3mL/kg (positive predictive value 0.72; negative predictive value 0.92). Additionally, cardiac output during leg raise (COLR) during the first PLRT was related to peak oxygen consumption during the second CPET (R = 0.678). When poor aerobic fitness was defined as peak oxygen consumption < 5 metabolic equivalents, COLR / body weight had an area under curve value of 0.814, with sensitivity of 0.781, specificity of 0.773, and a cut-off value of 68.3 mL/min/kg (positive predictive value 0.83; negative predictive value 0.71). Therefore, we conclude that PLRT during hospitalization has a good screening and predictive power for exercise intolerance/capacity in inpatients and early outpatients following coronary revascularization

  12. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  13. Mitochondrial biogenesis of astrocytes is increased under experimental septic conditions

    Institute of Scientific and Technical Information of China (English)

    Wang Yang; Chen Zhijiang; Zhang Yu; Fang Suzhen; Zeng Qiyi

    2014-01-01

    Background Mitochondrial dysfunction has been reported to be one of the contributing factors of sepsis-associated encephalopathy (SAE).Mitochondrial biogenesis controls mitochondrial homeostasis and responds to changes in cellular energy demand.In addition,it is enhanced or decreased due to mitochondrial dysfunction during SAE.The aim of this study was to explore the changes of mitochondrial biogenesis of astrocytes under septic conditions.Methods Lipopolysaccharide (LPS; 50 ng/ml) and interferon-γ (IFN-γ; 200 U/ml) were incubated with astrocytes to model the effects of a septic insult on astrocytes in vitro.The mitochondrial ultrastructure and volume density were evaluated by transmission electron microscopy.Intracellular adenosine triphosphate (ATP) levels were detected by the firefly luciferase system.The expression of protein markers of mitochondrial biogenesis and the binding ability of mitochondrial transcription factor A (TFAM) were determined by western blot and electrophoretic mobility shift assays,respectively.The mitochondrial DNA (mtDNA) content was detected by real-time polymerase chain reaction.Results The number of mildly damaged mitochondria was found to be significantly greater after treatment for 6 hours,as compared with at 0 hour (P<0.05).The mitochondrial volume density was significantly elevated at 24 hours,as compared with at 0 hour (P<0.05).The ATP levels at 6 hours,12 hours,and 24 hours were significantly greater than those at 0 hour (P<0.05).The protein markers of mitochondrial biogenesis were significantly increased at 6 hours and 12 hours,as compared with at 0 hour (P<0.05).The TFAM binding activity was not significantly changed among the four time points analyzed.The mtDNA contents were significantly increased at 12 hours and 24 hours,as compared with at 0 hour (P<0.05).Conclusions Under septic conditions,mitochonddal biogenesis of astrocytes increased to meet the high-energy demand and to promote mitochondrial recovery

  14. The Role of Intermittent Hypoxia on the Proliferative Inhibition of Rat Cerebellar Astrocytes.

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Chiu

    Full Text Available Sleep apnea syndrome, characterized by intermittent hypoxia (IH, is linked with increased oxidative stress. This study investigates the mechanisms underlying IH and the effects of IH-induced oxidative stress on cerebellar astrocytes. Rat primary cerebellar astrocytes were kept in an incubator with an oscillating O2 concentration between 20% and 5% every 30 min for 1-4 days. Although the cell loss increased with the duration, the IH incubation didn't induce apoptosis or necrosis, but rather a G0/G1 cell cycle arrest of cerebellar astrocytes was noted. ROS accumulation was associated with cell loss during IH. PARP activation, resulting in p21 activation and cyclin D1 degradation was associated with cell cycle G0/G1 arrest of IH-treated cerebellar astrocytes. Our results suggest that IH induces cell loss by enhancing oxidative stress, PARP activation and cell cycle G0/G1 arrest in rat primary cerebellar astrocytes.

  15. Behavioral sequelae of astrocyte dysfunction: focus on animal models of schizophrenia.

    Science.gov (United States)

    Xia, Meng; Abazyan, Sofya; Jouroukhin, Yan; Pletnikov, Mikhail

    2016-09-01

    Astrocytes regulate multiple processes in the brain ranging from trophic support of developing neurons to modulation of synaptic neurotransmission and neuroinflammation in adulthood. It is, therefore, understandable that pathogenesis and pathophysiology of major psychiatric disorders involve astrocyte dysfunctions. Until recently, there has been the paucity of experimental approaches to studying the roles of astrocytes in behavioral disease. A new generation of in vivo models allows us to advance our understanding of the roles of astrocytes in psychiatric disorders. This review will evaluate the recent studies that focus on the contribution of astrocyte dysfunction to behavioral alterations pertinent to schizophrenia and will propose the possible solutions of the limitations of the existing approaches. PMID:25468180

  16. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    OpenAIRE

    Seul Ki Min; Jun Sang Park; Lidan Luo; Yeo Seon Kwon; Hoo Cheol Lee; Hyun Jung Shim; Il-Doo Kim; Ja-Kyeong Lee; Hwa Sung Shin

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administrati...

  17. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. : ErbB signaling in human astrocytes

    OpenAIRE

    Sharif, Ariane; Duhem-Tonnelle, Véronique; Allet, Cécile; Baroncini, Marc; Loyens, Anne; Kerr-Conte, Julie; Collier, Francis; Blond, Serge; Ojeda, Sergio; Junier, Marie-Pierre; Prévot, Vincent

    2009-01-01

    Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of...

  18. Cytochrome c dysregulation induced by HIV infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an IP3 and calcium-dependent mechanism

    OpenAIRE

    Eugenin, Eliseo A.; Berman, Joan W.

    2013-01-01

    HIV entry into the CNS is an early event after peripheral infection, resulting in neurologic dysfunction in a significant number of individuals despite successful anti-retroviral therapy. The mechanisms by which HIV mediates CNS dysfunction are not well understood. Our group recently demonstrated that HIV infection of astrocytes results in survival of HIV infected cells and apoptosis of surrounding uninfected astrocytes by the transmission of toxic intracellular signals through gap junctions....

  19. Effects of coriaria lactone-activated, astrocyte-conditioned medium on estrogen receptor and progesterone receptor expression in rat cortical and hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Jie Rong; Shuhua Zhang

    2009-01-01

    ; seizures reached grade Ⅲ at 45 minutes; rat behavior was nearly normal at 2 hours.CONCLUSION: Activated astrocytes can induce seizures in the rat by enhancing estrogen receptor expression and decreasing progesterone receptor expression in cerebral cortical and hippocampal neurons.

  20. Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin.

    Science.gov (United States)

    Kim, Jung H; Kwon, Soojung J; Stankewich, Michael C; Huh, Gi-Yeong; Glantz, Susan B; Morrow, Jon S

    2016-02-01

    Calpain, a family of calcium-dependent neutral proteases, plays important roles in neurophysiology and pathology through the proteolytic modification of cytoskeletal proteins, receptors and kinases. Alpha 2 spectrin (αII spectrin) is a major substrate for this protease family, and the presence of the αII spectrin breakdown product (αΙΙ spectrin BDP) in a cell is evidence of calpain activity triggered by enhanced intracytoplasmic Ca(2+) concentrations. Astrocytes, the most dynamic CNS cells, respond to micro-environmental changes or noxious stimuli by elevating intracytoplasmic Ca(2+) concentration to become activated. As one measure of whether calpains are involved with reactive glial transformation, we examined paraffin sections of the human cerebral cortex and white matter by immunohistochemistry with an antibody specific for the calpain-mediated αΙΙ spectrin BDP. We also performed conventional double immunohistochemistry as well as immunofluorescent studies utilizing antibodies against αΙΙ spectrin BDP as well as glial fibrillary acidic protein (GFAP). We found strong immunopositivity in selected protoplasmic and fibrous astrocytes, and in transitional forms that raise the possibility of some of fibrous astrocytes emerging from protoplasmic astrocytes. Immunoreactive astrocytes were numerous in brain sections from cases with severe cardiac and/or respiratory diseases in the current study as opposed to our previous study of cases without significant clinical conditions that failed to reveal such remarkable immunohistochemical alterations. Our study suggests that astrocytes become αΙΙ spectrin BDP immunopositive in various stages of activation, and that spectrin cleavage product persists even in fully reactive astrocytes. Immunohistochemistry for αΙΙ spectrin BDP thus marks reactive astrocytes, and highlights the likelihood that calpains and their proteolytic processing of spectrin participate in the morphologic and physiologic transition from

  1. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    International Nuclear Information System (INIS)

    Highlights: → Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. → JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. → Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. → CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  2. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Chan [Department of Pharmacology, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Hyun Joo, So [Department of Pharmacology, School of Medicine, Konkuk University (Korea, Republic of); Shin, Chan Young, E-mail: chanyshin@kku.ac.kr [Department of Pharmacology, School of Medicine, Konkuk University (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  3. Human astrocytic grid networks patterned in parylene-C inlayed SiO2 trenches.

    Science.gov (United States)

    Jordan, M D; Raos, B J; Bunting, A S; Murray, A F; Graham, E S; Unsworth, C P

    2016-10-01

    Recent literature suggests that glia, and in particular astrocytes, should be studied as organised networks which communicate through gap junctions. Astrocytes, however, adhere to most surfaces and are highly mobile cells. In order to study, such organised networks effectively in vitro it is necessary to influence them to pattern to certain substrates whilst being repelled from others and to immobilise the astrocytes sufficiently such that they do not continue to migrate further whilst under study. In this article, we demonstrate for the first time how it is possible to facilitate the study of organised patterned human astrocytic networks using hNT astrocytes in a SiO2 trench grid network that is inlayed with the biocompatible material, parylene-C. We demonstrate how the immobilisation of astrocytes lies in the depth of the SiO2 trench, determining an optimum trench depth and that the optimum patterning of astrocytes is a consequence of the parylene-C inlay and the grid node spacing. We demonstrate high fidelity of the astrocytic networks and demonstrate that functionality of the hNT astrocytes through ATP evoked calcium signalling is also dependent on the grid node spacing. Finally, we demonstrate that the location of the nuclei on the grid nodes is also a function of the grid node spacing. The significance of this work, is to describe a suitable platform to facilitate the study of hNT astrocytes from the single cell level to the network level to improve knowledge and understanding of how communication links to spatial organisation at these higher order scales and trigger in vitro research further in this area with clinical applications in the area of epilepsy, stroke and focal cerebral ischemia. PMID:27521614

  4. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  5. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  6. A tale of two stories: astrocyte regulation of synaptic depression and facilitation.

    Directory of Open Access Journals (Sweden)

    Maurizio De Pittà

    2011-12-01

    Full Text Available Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression and/or increase (facilitation of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca(2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes

  7. Off-pump myocardial revascularization using the octopus tissue stabilizer system

    Directory of Open Access Journals (Sweden)

    Milojević Predrag S.

    2003-01-01

    Full Text Available Off-pump coronary artery bypass surgery (OPCAB has changed the approach to contemporary coronary surgery. Development of new surgical devices and techniques has reduced morbidity and mortality during off-pump surgery. From March 2000 - April 2002, a total of 136 patients underwent open heart surgery using off-pump technique and fast-track anesthesia at Dedinje Cardiovascular Institute. Octopus Medtronic coronary stabilizer was used for stabilization of targeted vessel. Arterial grafts were used 169 times and saphenous vein 69 times. Average number of anastomoses was 1,830,73 per patient. One patient (0.74% died. Three patients (2.21% underwent surgery revision due to postoperative bleeding and one (0.74% because of graft dysfunction Perioperative myocardial infarction was registered 2 times (1.47% pneumothorax 3 times (2.21%, postoperative arrhythmias 11 times (8.09% transitory ischemic attack once (0.74% and deep wound infection once (0.74%. Twelve patients (8.82% required prolonged inotropic support Angiographies early revealed patent grafts in 8 patients (5.88%. OPCAB is a safe and effective alternative approach to coronary artery revascularization Use of coronary stabilizer has improved the safety and quality of OPCAB surgery.

  8. Age and gender disparities in the risk of carotid revascularization procedures.

    Science.gov (United States)

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Vasdekis, Spyros N; Boviatsis, Efstathios; Voumvourakis, Konstantinos Iota; Tsivgoulis, Georgios

    2013-10-01

    The potential effect of age and gender stratification in the outcome of patients with carotid artery stenosis undergoing carotid revascularization procedures (CRP) may have important implications in clinical practice. Both European Stroke Organization and American Heart Association guidelines suggest that age and sex should be taken into account when selecting a CRP for an individual patient. We reviewed available literature data through Medline and Embase. Our search was based on the combination of terms: age, gender, sex, carotid artery stenosis, carotid artery stenting (CAS) and carotid endarterectomy (CEA). Postoperative stroke and mortality rates increased with age after any CRP (CEA or CAS), especially in patients aged over 75 years. Older patients with carotid artery stenosis undergoing CAS were found to have a nearly double risk of stroke or death compared with CEA, while CEA was found to benefit more patients aged over 70 years with symptomatic carotid artery stenosis. Male patients with symptomatic or asymptomatic carotid artery stenosis had lower stroke/mortality rates and benefited more from CEA compared with females. For the periprocedural risk of stroke or death in patients with carotid artery stenosis after CAS no sex differences were found. Therefore, CEA appears to have lower perioperative risks than CAS in patients aged over 70 years, and thus should be the treatment of choice if not contraindicated. The periprocedural risk of CEA is lower in men than in women, while there was no effect of gender on the periprocedural risk of CAS.

  9. How Do Hospitals Respond to Market Entry? Evidence from a Deregulated Market for Cardiac Revascularization.

    Science.gov (United States)

    Li, Suhui; Dor, Avi

    2015-08-01

    Regulatory entry barriers to hospital service markets, namely Certificate of Need (CON) regulations, are enforced in many US states. Policy makers in other states are considering reinstating CON policies in tandem with service expansions mandated under the Affordable Care Act. Although previous studies examined the volume effects of CON, demand responses to actual entry into local hospital markets are not well understood. In this paper, we empirically examine the demand-augmenting, demand-redistribution, and risk-allocation effects of hospital entry by studying the cardiac revascularization markets in Pennsylvania, a state in which dynamic market entry occurred after repeal of CON in 1996. Results from interrupted time-series analyses indicate demand-augmenting effects for coronary artery bypass graft (CABG) and business-stealing effects for percutaneous coronary intervention (PCI) procedures: high entrant market share mitigated the declining incidence of CABG, but it had no significant effect on the rising trend in PCI use, among patients with coronary artery disease. We further find evidence that entry by new cardiac surgery centers tended to sort high-severity patients into the more invasive CABG procedure and low-severity patients into the less invasive PCI procedures. These findings underscore the importance of considering market-level strategic responses by hospitals when regulatory barriers are rescinded.

  10. Effect of low level laser therapy on revascularization of free gingival graft using ultrasound Doppler flowmetry

    Directory of Open Access Journals (Sweden)

    Lalitha T. Arunachalam

    2014-01-01

    Full Text Available Low level laser therapy (LLLT is widely used during the post-operative period to accelerate the healing process. It promotes beneficial biological action on neovascularization with anti-inflammatory and analgesic effects. Two systemically healthy patients with Miller′s grade II recession on 33 and 41, respectively, were treated with free gingival graft. After surgery, second patient received LLLT using a 830 nm diode laser, with output power of 0.1 W on the first day half hour following surgery, on the third day, seventh day, and lastly on the ninth day. Both the patients were asked to assess the pain on second, fourth and tenth day using a Numerical Rating Scale and revascularization of the grafted area was assessed using a color Doppler ultrasound imaging on the fourth and the ninth day. Neovascularization was noted in both the patients but the second patient elicited marked increase in vascularity on the fourth as well as the tenth day and drastic reduction in pain on day four, with no change on the tenth day. The results showed that LLLT was an effective adjunctive treatment in promoting reevascularization and pain control during early healing of free gingival graft.

  11. Single-Visit Pulp Revascularization of a Nonvital Immature Permanent Tooth Using Biodentine

    Science.gov (United States)

    Aldakak, Mohammad Mhd Nader; Capar, Ismail Davut; Rekab, Mohammad Salem; Abboud, Souad

    2016-01-01

    An 11-year-old female patient was referred with a chief complaint of pain in the right mandibular second premolar. Clinical and radiographic examinations showed secondary caries under an old composite restoration, a negative response to a pulp test and an immature root with an open apex. After root canal cleaning and shaping, bleeding was invoked in the canal up to 2 mm short of the cemento-enamel junction (CEJ). After 10 min to allow clotting at this level, a plug of Biodentine was placed over the blood clot and the tooth was temporized with glass ionomer cement. At the next visit, the tooth was free of symptoms and a permanent filling was placed. Clinical and radiographic examinations during a two-year follow-up showed complete root maturation and intact supporting soft tissues without sinus tract, pain or swelling. Conclusion: The use of Biodentine in a single-visit apexification protocol to treat an immature permanent tooth with necrotic pulp can create a suitable environment for revascularization, resulting in the completion of root maturation. PMID:27471541

  12. [Ischemic burden vs. coronary artery morphology : What is crucial for the indication of revascularization?].

    Science.gov (United States)

    Heber, D; Hacker, M

    2016-08-01

    Ischemic heart disease still represents the leading cause of death in the western world despite a decrease of mortality in the last decade. For the diagnostics of coronary artery morphology, invasive coronary angiography represents the gold standard. Nevertheless, in recent years the importance of functional diagnostics of the coronary arteries has increased and various imaging procedures for the measurement of fractional flow reserve (FFR) during coronary angiography were established and recommended for ischemia testing in the actual guidelines on myocardial revascularization.Imaging modalities for diagnostics of the functional relevance of coronary artery disease include stress echocardiography, magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). These procedures enable advanced risk stratification and therapy guiding in patients with suspected or known coronary artery disease. In future algorithms, hybrid imaging may facilitate the determination of anatomical and functional aspects after only one investigation.In the present article, the role of ischemia testing is compared with morphological methods for the diagnosis of coronary artery disease, individual risk stratification, and therapy guiding.

  13. Accuracy of Dobutamine Stress Echocardiography in Detecting Recovery of Contractile Reserve after Revascularization of Ischemic Myocardium

    Directory of Open Access Journals (Sweden)

    Abas Ali karimi

    2007-09-01

    Full Text Available Background: This study was designed to investigate the accuracy of dobutamine stress echocardiography (DSE in detecting the post-revascularization recovery rate of contractile reserve (CR in ischemic myocardium. Methods: A total of 112 segments from seven patients with low ejection fraction (<35% and coronary artery disease were evaluated with DSE one week before and 12 weeks after coronary artery bypass graft surgery (CABG. Sensitivity, specificity, and positive and negative predictive values of DSE for detecting the recovery rate of CR were calculated based upon their standard definition and were presented with 95% confidence intervals (CI. Results: The mean baseline left ventricular ejection fraction was 31±4%, which reached 35±7% after CABG unremarkably. The recovery rates of resting function and CR were 18.2% and 50% for hypokinetic and 15.6% and 24.1 for akinetic segments respectively. Specificity, sensitivity, and positive and negative predictive values of DSE for detecting the recovery of CR were 83% (CI=69-97, 89% (CI=83-96, 94% (CI = 88-99, and 73 % (CI = 55-88, respectively. Conclusion: Despite acceptable sensitivity, specificity, and positive predictive value, DSE has a relatively lower negative predictive value for detecting the recovery of CR in ischemic myocardium and, consequently, the full extent of myocardial viability. Further sensitive techniques may, therefore, be needed to provide complementary information regarding long-term functional outcome.

  14. [Ischemic burden vs. coronary artery morphology : What is crucial for the indication of revascularization?].

    Science.gov (United States)

    Heber, D; Hacker, M

    2016-08-01

    Ischemic heart disease still represents the leading cause of death in the western world despite a decrease of mortality in the last decade. For the diagnostics of coronary artery morphology, invasive coronary angiography represents the gold standard. Nevertheless, in recent years the importance of functional diagnostics of the coronary arteries has increased and various imaging procedures for the measurement of fractional flow reserve (FFR) during coronary angiography were established and recommended for ischemia testing in the actual guidelines on myocardial revascularization.Imaging modalities for diagnostics of the functional relevance of coronary artery disease include stress echocardiography, magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). These procedures enable advanced risk stratification and therapy guiding in patients with suspected or known coronary artery disease. In future algorithms, hybrid imaging may facilitate the determination of anatomical and functional aspects after only one investigation.In the present article, the role of ischemia testing is compared with morphological methods for the diagnosis of coronary artery disease, individual risk stratification, and therapy guiding. PMID:27333984

  15. Reconstruction of Heel With Propeller Flap in Postfasciotomy and Popliteal Artery Revascularization State.

    Science.gov (United States)

    Kang, Jin Seok; Choi, Hwan Jun; Tak, Min Sung

    2016-06-01

    Free flaps are still the gold standard for large defects of the lower limb, but propeller perforator flaps have become a simpler and faster alternative to free flaps because of some advantages such as reliable vascular pedicle, wide mobilization and rotation, great freedom in design, low donor site morbidity, and easy harvest with no requirement for anastomosis. But when the vessels show insufficient findings in preoperative evaluation using a Doppler probe or the vessel is injured, the surgeon should avoid performing free flap surgery to prevent flap failure and should select a propeller perforator flap as an alternative method on the condition that more than one perforator is intact. In this study, we report reconstruction of soft tissue defects of the heel with a pedicled propeller flap in postfasciotomy and popliteal artery revascularization state by making an incision on the central portion above the Achilles tendon, which can be covered by the posterior tibial artery perforator or the peroneal artery perforator based flaps. In conclusion, we showed that although the popliteal artery was injured, the soft tissue defect can be reconstructed using a perforator propeller flap if intact distal flow in the anastomosis site was confirmed. PMID:25673623

  16. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    Science.gov (United States)

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  17. Randomized Trial of Complete Versus Lesion-Only Revascularization in Patients Undergoing Primary Percutaneous Coronary Intervention for STEMI and Multivessel Disease

    Science.gov (United States)

    Gershlick, Anthony H.; Khan, Jamal Nasir; Kelly, Damian J.; Greenwood, John P.; Sasikaran, Thiagarajah; Curzen, Nick; Blackman, Daniel J.; Dalby, Miles; Fairbrother, Kathryn L.; Banya, Winston; Wang, Duolao; Flather, Marcus; Hetherington, Simon L.; Kelion, Andrew D.; Talwar, Suneel; Gunning, Mark; Hall, Roger; Swanton, Howard; McCann, Gerry P.

    2015-01-01

    Background The optimal management of patients found to have multivessel disease while undergoing primary percutaneous coronary intervention (P-PCI) for ST-segment elevation myocardial infarction is uncertain. Objectives CvLPRIT (Complete versus Lesion-only Primary PCI trial) is a U.K. open-label randomized study comparing complete revascularization at index admission with treatment of the infarct-related artery (IRA) only. Methods After they provided verbal assent and underwent coronary angiography, 296 patients in 7 U.K. centers were randomized through an interactive voice-response program to either in-hospital complete revascularization (n = 150) or IRA-only revascularization (n = 146). Complete revascularization was performed either at the time of P-PCI or before hospital discharge. Randomization was stratified by infarct location (anterior/nonanterior) and symptom onset (≤3 h or >3 h). The primary endpoint was a composite of all-cause death, recurrent myocardial infarction (MI), heart failure, and ischemia-driven revascularization within 12 months. Results Patient groups were well matched for baseline clinical characteristics. The primary endpoint occurred in 10.0% of the complete revascularization group versus 21.2% in the IRA-only revascularization group (hazard ratio: 0.45; 95% confidence interval: 0.24 to 0.84; p = 0.009). A trend toward benefit was seen early after complete revascularization (p = 0.055 at 30 days). Although there was no significant reduction in death or MI, a nonsignificant reduction in all primary endpoint components was seen. There was no reduction in ischemic burden on myocardial perfusion scintigraphy or in the safety endpoints of major bleeding, contrast-induced nephropathy, or stroke between the groups. Conclusions In patients presenting for P-PCI with multivessel disease, index admission complete revascularization significantly lowered the rate of the composite primary endpoint at 12 months compared with treating only the

  18. Response of Quiescent Cerebral Cortical Astrocytes to Nanofibrillar Scaffold Properties

    Science.gov (United States)

    Ayres, Virginia; Mujdat Tiryaki, Volkan; Xie, Kan; Ahmed, Ijaz; Shreiber, David I.

    2013-03-01

    We present results of an investigation to examine the hypothesis that the extracellular environment can trigger specific signaling cascades with morphological consequences. Differences in the morphological responses of quiescent cerebral cortical astrocytes cultured on the nanofibrillar matrices versus poly-L-lysine functionalized glass and Aclar, and unfunctionalized Aclar surfaces were demonstrated using atomic force microscopy (AFM) and phalloidin staining of F-actin. The differences and similarities of the morphological responses were consistent with differences and similarities of the surface polarity and surface roughness of the four surfaces investigated in this work, characterized using contact angle and AFM measurements. The three-dimensional capability of AFM was also used to identify differences in cell spreading. An initial quantitative immunolabeling study further identified significant differences in the activation of the Rho GTPases: Cdc42, Rac1, and RhoA, which are upstream regulators of the observed morphological responses: filopodia, lamellipodia, and stress fiber formation. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family with demonstrable morphological consequences for cerebral cortical astrocytes. The support of NSF PHY-095776 is acknowledged.

  19. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    The effect of ATP and other purines on 45Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  20. Substrate regulation of ascorbate transport activity in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-[14C]ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels