WorldWideScience

Sample records for astrocyte stat3 signaling

  1. The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway?

    Science.gov (United States)

    Ceyzériat, Kelly; Abjean, Laurene; Carrillo-de Sauvage, María-Angeles; Ben Haim, Lucile; Escartin, Carole

    2016-08-25

    Astrocytes play multiple important roles in brain physiology. In pathological conditions, they become reactive, which is characterized by morphological changes and upregulation of intermediate filament proteins. Besides these descriptive hallmarks, astrocyte reactivity involves significant transcriptional and functional changes that are far from being fully understood. Most importantly, astrocyte reactivity seems to encompass multiple states, each having a specific influence on surrounding cells and disease progression. These diverse functional states of reactivity must be regulated by subtle signaling networks. Many signaling cascades have been associated with astrocyte reactivity, but among them, the JAK-STAT3 pathway is emerging as a central regulator. In this review, we aim (i) to show that the JAK-STAT3 pathway plays a key role in the control of astrocyte reactivity, (ii) to illustrate that STAT3 is a pleiotropic molecule operating multiple functions in reactive astrocytes, and (iii) to suggest that each specific functional state of reactivity is governed by complex molecular interactions within astrocytes, which converge on STAT3. More research is needed to precisely identify the signaling networks controlling the diverse states of astrocyte reactivity. Only then, we will be able to precisely delineate the therapeutic potential of reactive astrocytes in each neurological disease context. PMID:27241943

  2. Eriocalyxin B Inhibits STAT3 Signaling by Covalently Targeting STAT3 and Blocking Phosphorylation and Activation of STAT3.

    Directory of Open Access Journals (Sweden)

    Xiaokui Yu

    Full Text Available Activated STAT3 plays an important role in oncogenesis by stimulating cell proliferation and resisting apoptosis. STAT3 therefore is an attractive target for cancer therapy. We have screened a traditional Chinese herb medicine compound library and found Eriocalyxin B (EB, a diterpenoid from Isodon eriocalyx, as a specific inhibitor of STAT3. EB selectively inhibited constitutive as well as IL-6-induced phosphorylation of STAT3 and induced apoptosis of STAT3-dependent tumor cells. EB did not affect the upstream protein tyrosine kinases or the phosphatase (PTPase of STAT3, but rather interacted directly with STAT3. The effects of EB could be abolished by DTT or GSH, suggesting a thiol-mediated covalent linkage between EB and STAT3. Site mutagenesis of cysteine in and near the SH2 domain of STAT3 identified Cys712 to be the critical amino acid for the EB-induced inactivation of STAT3. Furthermore, LC/MS/MS analyses demonstrated that an α, β-unsaturated carbonyl of EB covalently interacted with the Cys712 of STAT3. Computational modeling analyses also supported a direct interaction between EB and the Cys712 of STAT3. These data strongly suggest that EB directly targets STAT3 through a covalent linkage to inhibit the phosphorylation and activation of STAT3 and induces apoptosis of STAT3-dependent tumor cells.

  3. A novel missense (M206K STAT3 mutation in diffuse large B cell lymphoma deregulates STAT3 signaling.

    Directory of Open Access Journals (Sweden)

    Guangzhen Hu

    Full Text Available Persistent STAT3 activation has been found in activated B-cell like diffuse large B cell tumors (DLBCL. To investigate whether genetic mutations play a role in aberrant STAT3 signaling in DLBCL, we bi-directionally sequenced all 24 exons of the STAT3 gene in DLBCL tumors (n = 40. We identified 2 novel point mutations in 2 separate (2/40; 5% patients at exon 7 and 24. Point mutation 2552G>A was a silent mutation in the stop codon. Another heterozygous mutation 857T>A encoded a methionine substitution by lysine at codon 206 (M206K in the coiled-coil domain of STAT3. We performed site directed mutagenesis to mutate wild type (WT STAT3α and STAT3β at codon 206 and constructed stable cell lines by lentiviral transfection of STAT3α(WT, STAT3α(M206K, STAT3β(WT and STAT3β(M206K plasmids. The mutation was found to increase STAT3 phosphorylation in STAT3α mutant cell lines with no effect on the STAT3β mutant cell line. Transcriptional activation was also increased in the STAT3α mutant cells compared with STAT3α WT cells as detected by a luciferase reporter assay. Moreover, STAT3α(M206K mutant cells were resistant to JAK2 pathway inhibition compared to STAT3α WT cells. These results indicate that missense mutations in STAT3 increase signaling through the JAK/STAT pathway. JAK2 inhibitors may be useful in the patient with this STAT3 mutation as well as those with pathway activation by other mechanisms.

  4. STAT3 mutations correlated with hyper-IgE syndrome lead to blockage of IL-6/STAT3 signalling pathway

    Indian Academy of Sciences (India)

    Jianxin He; Jie Shi; Ximing Xu; Wenhua Zhang; Yuxin Wang; Xing Chen; Yuping Du; Ning Zhu; Jing Zhang; Qin Wang; Jinbo Yang

    2012-06-01

    Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically identified in autosomal-dominant (AD) HIES patients’ cells, and therefore, the genotype of STAT3 has been associated with the phenotype of HIES. Here, we conducted studies on the functional loss of the seven specific STAT3 mutations correlated with ADHIES. Using STAT3-null human colon carcinoma cell line A4 cells, we generated seven mutants of STAT3 bearing single mutations clinically identified in AD-HIES patients’ cells and studied the functional loss of these mutants in IL-6-Jak/STAT3 signalling pathway. Our results show that five STAT3 mutants bearing mutations in the DNA-binding domain maintain the phosphorylation of Tyr705 and the ability of dimerization while the other two with mutations in SH2 domain are devoid of the phosphorylation of Try705 and abrogate the dimerization in response to IL-6. The phosphorylation of Ser727 in these mutants shows diversity in response to IL-6. These mutations eventually converge on the abnormalities of the IL-6/Gp130/Jak2-mediated STAT3 transactivation on target genes, indicative of the dysregulation of JAK/STAT signalling present in HIES.

  5. IGFBP2 potentiates nuclear EGFR-STAT3 signaling.

    Science.gov (United States)

    Chua, C Y; Liu, Y; Granberg, K J; Hu, L; Haapasalo, H; Annala, M J; Cogdell, D E; Verploegen, M; Moore, L M; Fuller, G N; Nykter, M; Cavenee, W K; Zhang, W

    2016-02-11

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of epidermal growth factor receptor (EGFR), which subsequently activates signal transducer and activator of transcription factor 3 (STAT3) signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from The Cancer Genome Atlas database for human glioma. A high level of all three proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient data set. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by two distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.

  6. IGFBP2 potentiates nuclear EGFR-STAT3 signaling

    Science.gov (United States)

    Chua, Corrine Yingxuan; Liu, Yuexin; Granberg, Kirsi J.; Hu, Limei; Haapasalo, Hannu; Annala, Matti J.; Cogdell, David E.; Verploegen, Maartje; Moore, Lynette M.; Fuller, Gregory N.; Nykter, Matti; Cavenee, Webster K.; Zhang, Wei

    2015-01-01

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from the TCGA database for human glioma. A high level of all 3 proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient dataset. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by 2 distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target. PMID:25893308

  7. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  8. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  9. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD. In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia drive central nervous system (CNS inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS activated monocyte-derived macrophages (MDM inhibit human neural progenitor cell (NPC neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α, in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3, a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM induced Janus kinase 1 (Jak1 and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3 decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID mice with HIV-1 encephalitis (HIVE. In HIVE mice, siRNA control (without target sequence, sicon pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  10. STAT3 can be activated through paracrine signaling in breast epithelial cells

    International Nuclear Information System (INIS)

    Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with

  11. STAT3 can be activated through paracrine signaling in breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Sasser A Kate

    2008-10-01

    Full Text Available Abstract Background Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3 protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Methods Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3 levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Results Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705 in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. Conclusion These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is

  12. Interferon alpha antagonizes STAT3 and SOCS3 signaling triggered by hepatitis C virus.

    Science.gov (United States)

    Zhao, Lan-Juan; He, Sheng-Fei; Wang, Wen; Ren, Hao; Qi, Zhong-Tian

    2016-04-01

    We aimed to investigate regulation of signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) by interferon alpha (IFN-α) and to analyze the relationship between STAT3 and SOCS3 during hepatitis C virus (HCV) infection. Changes in STAT3 and SOCS3 were analyzed at both mRNA and protein levels in human hepatoma cells infected with HCV (J6/JFH1). At 72h of HCV infection, STAT3 expression was decreased with sustained phosphorylation, and IFN-α increased such decrease and phosphorylation. HCV increased SOCS3 expression, while IFN-α impaired such increase, indicating different regulation of STAT3 and SOCS3 by IFN-α. IFN-α-induced expression and phosphorylation of upstream kinases of the JAK/STAT pathway, Tyk2 and Jak1, were suppressed by HCV. Moreover, knockdown of STAT3 by RNA interference led to decreases in HCV RNA replication and viral protein expression, without affecting either the expression of Tyk2 and Jak1 or the SOCS3 induction in response to IFN-α. These results show that IFN-α antagonizes STAT3 and SOCS3 signaling triggered by HCV and that STAT3 regulation correlates inversely with SOCS3 induction by IFN-α, which may be important in better understanding the complex interplay between IFN-α and signal molecules during HCV infection. PMID:26945996

  13. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner

    Directory of Open Access Journals (Sweden)

    Chih-I Tai

    2014-09-01

    Full Text Available Stat3 is essential for mouse embryonic stem cell (mESC self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary “on/off” manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.

  14. The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Jennifer L.; Thaper, Daksh; Zoubeidi, Amina, E-mail: azoubeidi@prostatecentre.com [The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver British Columbia, V6H 3Z6 (Canada)

    2014-04-09

    The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed.

  15. Stat3 inhibition in neural lineage cells.

    Science.gov (United States)

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  16. STAT3 signaling controls satellite cell expansion and skeletal muscle repair

    Science.gov (United States)

    Tierney, Matthew Timothy; Aydogdu, Tufan; Sala, David; Malecova, Barbora; Gatto, Sole; Puri, Pier Lorenzo; Latella, Lucia; Sacco, Alessandra

    2015-01-01

    The progression of disease- and age-dependent skeletal muscle wasting results in part from a decline in the number and function of satellite cells, the direct cellular contributors to muscle repair1–10. However, little is known about the molecular effectors underlying satellite cell impairment and depletion. Elevated levels of inflammatory cytokines, including interleukin-6 (IL-6), are associated with both age-related and muscle-wasting conditions11–13. The levels of STAT3, a downstream effector of IL-6, are also elevated with muscle wasting14,15, and STAT3 has been implicated in the regulation of self-renewal and stem cell fate in several tissues16–19. Here we show that IL-6–activated Stat3 signaling regulates satellite cell behavior, promoting myogenic lineage progression through myogenic differentiation 1 (Myod1) regulation. Conditional ablation of Stat3 in Pax7-expressing satellite cells resulted in their increased expansion during regeneration, but compromised myogenic differentiation prevented the contribution of these cells to regenerating myofibers. In contrast, transient Stat3 inhibition promoted satellite cell expansion and enhanced tissue repair in both aged and dystrophic muscle. The effects of STAT3 inhibition were conserved in human myoblasts. The results of this study indicate that pharmacological manipulation of STAT3 activity can be used to counteract the functional exhaustion of satellite cells, thereby maintaining the endogenous regenerative response and ameliorating muscle-wasting diseases. PMID:25194572

  17. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  18. IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis.

    Science.gov (United States)

    Nakamura, Rei; Sene, Abdoulaye; Santeford, Andrea; Gdoura, Abdelaziz; Kubota, Shunsuke; Zapata, Nicole; Apte, Rajendra S

    2015-01-01

    Macrophage dysfunction plays a pivotal role during neovascular proliferation in diseases of ageing including cancers, atherosclerosis and blinding eye disease. In the eye, choroidal neovascularization (CNV) causes blindness in patients with age-related macular degeneration (AMD). Here we report that increased IL10, not IL4 or IL13, in senescent eyes activates STAT3 signalling that induces the alternative activation of macrophages and vascular proliferation. Targeted inhibition of both IL10 receptor-mediated signalling and STAT3 activation in macrophages reverses the ageing phenotype. In addition, adoptive transfer of STAT3-deficient macrophages into eyes of old mice significantly reduces the amount of CNV. Systemic and CD163(+) eye macrophages obtained from AMD patients also demonstrate STAT3 activation. Our studies demonstrate that impaired SOCS3 feedback leads to permissive IL10/STAT3 signalling that promotes alternative macrophage activation and pathological neovascularization. These findings have significant implications for our understanding of the pathobiology of age-associated diseases and may guide targeted immunotherapy. PMID:26260587

  19. Cardamonin induces apoptosis by suppressing STAT3 signaling pathway in glioblastoma stem cells.

    Science.gov (United States)

    Wu, Ning; Liu, Jia; Zhao, Xiangzhong; Yan, Zhiyong; Jiang, Bo; Wang, Lijun; Cao, Shousong; Shi, Dayong; Lin, Xiukun

    2015-12-01

    Glioblastoma stem cells (GSCs) are the initiating cells in glioblastoma multiforme (GBM) and contribute to the resistance of GBM to chemotherapy and radiation. In the present study, we investigated the effects of cardamonin (3,4,2,4-tetrahydroxychalcone) on the self-renewal and apoptosis of GSCs, and if its action is associated with signal transducer and activator of transcription 3 (STAT3) pathway. CD133(+) GSCs, a kind of GSCs line, was established from human glioblastoma tissues. Cardamonin inhibited the proliferation and induced apoptosis in CD133+ GSCs. The proapoptotic effects of temozolomide (TMZ) were further enhanced by cardamonin in CD133+ GSCs and U87 cells in vitro. For in vivo study, injection of 5 × 10(5) cells of CD133+ GSCs subcutaneously (s.c.) into nude mice, 100 % of large tumors were developed within 8 weeks in all mice; in contrast, only one out of five mice developed a small tumor when 5 × 10(5) cells of CD133(-) GMBs cells were injected. Cardamonin also inhibited STAT3 activation by luciferase assay and suppressed the expression of the downstream genes of STAT3, such as Bcl-XL, Bcl-2, Mcl-1, survivin, and VEGF. Furthermore, cardamonin locked nuclear translocation and dimerization of STAT3 in CD133(+) GSCs. Docking analysis confirmed that cardamonin molecule was successfully docked into the active sites of STAT3 with a highly favorable binding energy of -10.78 kcal/mol. The study provides evidence that cardamonin is a novel inhibitor of STAT3 and has the potential to be developed as a new anticancer agent targeting GSCs. This study also reveals that targeting STAT3 signal pathway is an important strategy for the treatment of human GBM. PMID:26150336

  20. Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways.

    Science.gov (United States)

    Wang, Yongzhi; Chen, Lingchao; Bao, Zhaoshi; Li, Shouwei; You, Gan; Yan, Wei; Shi, Zhendong; Liu, Yanwei; Yang, Pei; Zhang, Wei; Han, Lei; Kang, Chunsheng; Jiang, Tao

    2011-11-01

    Activation of signal transducer and activator of transcription 3 (STAT3) is associated with poor clinical outcome of glioblastoma (GBM). However, the role of STAT3 in resistance to alkylator-based chemotherapy remains unknown. Here, we retrospectively analyzed the phosphorylated STAT3 (p-STAT3) profile of 68 GBM patients receiving alkylator therapy, identifying p-STAT3 as an independent unfavorable prognostic factor for progression-free and overall survival. Additionally, elevated p-STAT3 expression correlated with resistance to alkylator therapy. In vitro analysis revealed that U251 and U87 human glioma cells were refractory to treatment with the common alkylating agent temozolomide (TMZ), with only a modest impact on AKT and β-catenin activation in the context of high p-STAT3. Inhibition of STAT3 in these cells significantly enhanced the effect of TMZ. Inhibition of STAT3 dramatically decreased the IC50 of TMZ, increasing TMZ-induced apoptosis while up-regulating expression of Bcl-2 and down-regulating expression of Bax. Furthermore, inhibition of STAT3 increased TMZ-induced G₀-G₁ arrest and decreased Cyclin D1 expression compared to TMZ alone. Together, these results indicate that inhibition of STAT3 sensitizes glioma cells to TMZ, at least in part, by blocking the p-AKT and β-catenin pathways. These findings strongly support the hypothesis that STAT3 inhibition significantly improves the clinical efficacy of alkylating agents.

  1. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  2. STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation.

    Science.gov (United States)

    Koganti, Siva; Hui-Yuen, Joyce; McAllister, Shane; Gardner, Benjamin; Grasser, Friedrich; Palendira, Umaimainthan; Tangye, Stuart G; Freeman, Alexandra F; Bhaduri-McIntosh, Sumita

    2014-04-01

    DNA damage response (DDR) is a signaling network that senses DNA damage and activates response pathways to coordinate cell-cycle progression and DNA repair. Thus, DDR is critical for maintenance of genome stability, and presents a powerful defense against tumorigenesis. Therefore, to drive cell-proliferation and transformation, viral and cellular oncogenes need to circumvent DDR-induced cell-cycle checkpoints. Unlike in hereditary cancers, mechanisms that attenuate DDR and disrupt cell-cycle checkpoints in sporadic cancers are not well understood. Using Epstein-Barr virus (EBV) as a source of oncogenes, we have previously shown that EBV-driven cell proliferation requires the cellular transcription factor STAT3. EBV infection is rapidly followed by activation and increased expression of STAT3, which mediates relaxation of the intra-S phase cell-cycle checkpoint; this facilitates viral oncogene-driven cell proliferation. We now show that replication stress-associated DNA damage, which results from EBV infection, is detected by DDR. However, signaling downstream of ATR is impaired by STAT3, leading to relaxation of the intra-S phase checkpoint. We find that STAT3 interrupts ATR-to-Chk1 signaling by promoting loss of Claspin, a protein that assists ATR to phosphorylate Chk1. This loss of Claspin which ultimately facilitates cell proliferation is mediated by caspase 7, a protein that typically promotes cell death. Our findings demonstrate how STAT3, which is constitutively active in many human cancers, suppresses DDR, fundamental to tumorigenesis. This newly recognized role for STAT3 in attenuation of DDR, discovered in the context of EBV infection, is of broad interest as the biology of cell proliferation is central to both health and disease.

  3. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling

    Science.gov (United States)

    Liu, Shenbin; Li, Qian; Zhang, Meng-Ting; Mao-Ying, Qi-Liang; Hu, Lang-Yue; Wu, Gen-Cheng; Mi, Wen-Li; Wang, Yan-Qing

    2016-01-01

    Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1β and the processing of the inactive protein to its mature form, which plays an active role in the pathogenesis of neuropathic pain. The present study showed that repeated intraperitoneal injection of curcumin ameliorated SNI-induced mechanical and cold allodynia in a dose-dependent manner and inhibited the elevation of spinal mature IL-1β protein levels. Additionally, repeated curcumin treatment significantly inhibited the aggregation of the NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in spinal astrocytes. Furthermore, the genetic down-regulation of NALP1 inflammasome activation by NALP1 siRNA and the pharmacological inhibition of the JAK2-STAT3 cascade by AG490 markedly inhibited IL-1β maturation and Pro-IL-1β synthesis, respectively, and reduced SNI-induced pain hypersensitivity. Our results suggest that curcumin attenuated neuropathic pain and down-regulated the production of spinal mature IL-1β by inhibiting the aggregation of NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in astrocytes. PMID:27381056

  4. Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway.

    Science.gov (United States)

    Cai, Qiaoyan; Lin, Jiumao; Wei, Lihui; Zhang, Ling; Wang, Lili; Zhan, Youzhi; Zeng, Jianwei; Xu, Wei; Shen, Aling; Hong, Zhenfeng; Peng, Jun

    2012-01-01

    Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer. PMID:22754353

  5. IL-6/STAT3 signaling pathway is activated in plasma cell mastitis.

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Zhou, Yu-Hui; Jiang, Yi-Na; Zhang, Wei; Tang, Xiao-Jiang; Ren, Yu; Han, Shui-Ping; Liu, Pei-Jun; Xu, Jing; He, Jian-Jun

    2015-01-01

    Plasma cell mastitis (PCM), a particular type of mastitis, mainly occurs in females at nonpregnant and nonlactating stages. The infiltration of abundant plasma cells and lymphocytes is the hallmark of the disease. The incidence rate of PCM increased gradually and its pathogenesis remained unclear. In this study, we investigated the expression of IL-6/STAT3 signaling pathway, which is vital not only for the differentiation of plasma cells but also for survival of plasma cells and T lymphocytes, in 30 PCM cases, 10 acute mastitis cases and 10 normal breast tissues by immunohistochemical analysis. IL-6 level was significantly higher in PCM patients than in acute mastitis patients or normal group. The positive rate of IL-6 and p-STAT3 staining in PCM samples was 93.3% (28/30) and 70% (21/30), respectively, and there was a significant positive association between IL-6 and p-STAT3 staining (r=0.408, P=0.025). In PCM group, the rate of nipple retraction was 40% (12/30). Significantly higher IL-6 expression was found in PCM patients with nipple retraction than in other PCM patients. However, no significant difference in IL-6 or p-STAT3 staining was detected between PCM patients experiencing recurrence and other PCM patients. In addition, Bcl-2 level was higher in PCM patients than in acute mastitis patients or normal group, but there was no difference in Bcl-2 immunostaining between PCM patients experiencing recurrence and other PCM patients. These indicate that IL-6/STAT3 signaling is activated in PCM and may play an important role in the pathogenesis of PCM.

  6. IL-6 Trans-signaling-STAT3 Pathway Mediates ECM and Cellular Proliferation in Fibroblasts from Hypertrophic Scar

    Science.gov (United States)

    Ray, Sutapa; Ju, Xiaoxi; Sun, Hong; Finnerty, Celeste C; Herndon, David N; Brasier, Allan R

    2012-01-01

    The molecular mechanisms behind the pathogenesis of post-burn hypertrophic scar (HS) remain unclear. Here, we investigate the role of interleukin-6 (IL-6) trans-signaling-STAT3 pathway in HS fibroblasts (HSF) derived from burned-induced HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation over normal fibroblast (NF) after IL-6•IL-6Rα stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSF and showed increased STAT3 binding on its promoter relative to NF in Chromatin Immunoprecipitation assay. We observed that the cell surface signaling transducer glycoprotein 130 is upregulated in HSF using Q-RT-PCR and flow cytometry. The production of excessive extracellular matrix (ECM), including the expression of alpha2 (1) procollagen (Col1A2) and fibronectin 1 (FN) were seen in HSFs. A STAT3 peptide inhibitor abrogated FN and Col1A2 gene expression in HSF indicating involvement of STAT3 in ECM production. The cellular proliferation markers Cyclin D1, Bcl-Xl and c-Myc were also upregulated in HSF and knockdown of STAT3 by siRNA attenuated c-Myc expression indicating the essential role of STAT3 in fibroblast proliferation. Taken together, our results suggest that the IL-6-trans-signaling-STAT3 pathway may play an integral role in HS pathogenesis and disruption of this pathway could be a potential therapeutic strategy for the treatment of burn-induced HS. PMID:23303450

  7. IL-6 Trans-signaling-STAT3 Pathway Mediates ECM and Cellular Proliferation in Fibroblasts from Hypertrophic Scar

    OpenAIRE

    Ray, Sutapa; Ju, Xiaoxi; Sun, Hong; Finnerty, Celeste C.; Herndon, David N; Allan R Brasier

    2013-01-01

    The molecular mechanisms behind the pathogenesis of post-burn hypertrophic scar (HS) remain unclear. Here, we investigate the role of interleukin-6 (IL-6) trans-signaling-STAT3 pathway in HS fibroblasts (HSF) derived from burned-induced HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation over normal fibroblast (NF) after IL-6•IL-6Rα stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSF and showed increased STAT3 binding on its promoter relative t...

  8. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  9. IL-6/STAT3/TFF3 signaling regulates human biliary epithelial cell migration and wound healing in vitro.

    Science.gov (United States)

    Jiang, Gui-xing; Zhong, Xiang-yu; Cui, Yun-fu; Liu, Wei; Tai, Sheng; Wang, Zhi-dong; Shi, Yu-guang; Zhao, Shi-yong; Li, Chun-long

    2010-12-01

    Interleukin-6 (IL-6), through activation of the signal transducer and activator of transcription 3 (STAT3) and trefoil factor family 3 (TFF3), has been implicated in the promotion of mouse biliary epithelial cell (BEC) proliferation and migration. However, it is still unclear whether the IL-6/STAT3/TFF3 signaling had similar effects on human BECs. Here, we showed that exposure of human BECs to recombinant IL-6 resulted in STAT3 phosphorylation and increased the expression of TFF3 at both mRNA and protein levels. Moreover, inhibition of STAT3 using RNA interference significantly abrogated IL-6-induced TFF3 expression. In an in-vitro wound healing model, IL-6 facilitated human BEC migration. This promotion of cell migration by IL-6 was blocked when STAT3 was knocked down. Interestingly, the addition of exogenous TFF3 could rescue the cell migration defects caused by STAT3 silencing. In conclusion, our data indicate that STAT3 plays a critical role in IL-6-induced TFF3 expression in human BECs and the IL-6/STAT3/TFF3 signaling is involved in human BEC migration and wound healing.

  10. Brevilin A, a novel natural product, inhibits janus kinase activity and blocks STAT3 signaling in cancer cells.

    Directory of Open Access Journals (Sweden)

    Xing Chen

    Full Text Available Signal abnormalities in human cells usually cause unexpected consequences for individual health. We focus on these kinds of events involved in JAK-STAT signal pathways, especially the ones triggered by aberrant activated STAT3, an oncoprotein which participates in essential processes of cell survival, growth and proliferation in many types of tumors, as well as immune diseases. By establishing a STAT3 signal based high-throughput drug screening system in human lung cancer A549 cells, we have screened a library from natural products which contained purified compounds from medicinal herbs. One compound, named Brevilin A, exhibited both strong STAT3 signal inhibition and STAT3 signal dependent cell growth inhibition. Further investigations revealed that Brevilin A not only inhibits STAT3 signaling but also STAT1 signaling for cytokines induced phosphorylation of STAT3 and STAT1 as well as the expression of their target genes. In addition, we found Brevilin A could attenuate the JAKs activity by blocking the JAKs tyrosine kinase domain JH1. The levels of cytokine induced phosphorylation of STATs and other substrates were dramatically reduced by treatment of Brevilin A. The roles of Brevilin A targeting on JAKs activity indicate that Brevilin A may not only be used as a STAT3 inhibitor but also a compound blocking other JAK-STAT hyperactivation. Thus, these findings provided a strong impetus for the development of selective JAK-STAT inhibitors and therapeutic drugs in order to improve survival of patients with hyperactivated JAKs and STATs.

  11. Low-level bisphenol A increases production of glial fibrillary acidic protein in differentiating astrocyte progenitor cells through excessive STAT3 and Smad1 activation

    International Nuclear Information System (INIS)

    The effects of bisphenol A (BPA) on the differentiation of serum-free mouse embryo (SFME) cells, the astrocyte progenitor cells in the central nervous system, were examined. SFME cells were exposed to 10 ng/ml leukemia inhibitory factor (LIF) and 10 ng/ml bone morphogenetic protein 2 (BMP2) to increase glial fibrillary acidic protein (GFAP) expression and induce cell differentiation. Various concentrations of BPA (0.1 pg/ml-1 μg/ml) were then added to determine their effects on the cell differentiation. SFME cells were effectively differentiated by LIF and BMP2 in completely serum-free cultures. Cell proliferation following cell differentiation was not significantly affected by low-level BPA. However, GFAP expression was significantly increased in SFME cells in the presence of 1-100 pg/ml BPA. These increases were due to excessive activation of signal transducer and activator of transcription 3 (STAT3) and mothers against decapentaplegic homolog 1 (Smad1) by the low-level BPA

  12. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling.

    Science.gov (United States)

    Das, Anindita; Salloum, Fadi N; Filippone, Scott M; Durrant, David E; Rokosh, Gregg; Bolli, Roberto; Kukreja, Rakesh C

    2015-05-01

    Diabetic patients suffer augmented severity of myocardial infarction. Excessive activation of the mammalian target of rapamycin (mTOR) and decreased activation of STAT3 are implicated in diabetic complications. Considering the potent cardioprotective effect of mTOR inhibitor, rapamycin, we hypothesized that reperfusion therapy with rapamycin would reduce infarct size in the diabetic hearts through STAT3 signaling. Hearts from adult male db/db or wild type (WT) C57 mice were isolated and subjected to 30 min of normothermic global ischemia and 60 min of reperfusion in Langendorff mode. Rapamycin (100 nM) was infused at the onset of reperfusion. Myocardial infarct size (IS) was significantly reduced in rapamycin-treated mice (13.3 ± 2.4 %) compared to DMSO vehicle control (35.9 ± 0.9 %) or WT mice (27.7 ± 1.1 %). Rapamycin treatment restored phosphorylation of STAT3 and enhanced AKT phosphorylation (target of mTORC2), but significantly reduced ribosomal protein S6 phosphorylation (target of mTORC1) in the diabetic heart. To determine the cause and effect relationship of STAT3 in cardioprotection, inducible cardiac-specific STAT3-deficient (MCM TG:STAT3(flox/flox)) and WT mice (MCM TG:STAT3(flox/flox)) were made diabetic by feeding high fat diet (HFD). Rapamycin given at reperfusion reduced IS in WT mice but not in STAT3-deficient mice following I/R. Moreover, cardiomyocytes isolated from HFD-fed WT mice showed resistance against necrosis (trypan blue staining) and apoptosis (TUNEL assay) when treated with rapamycin during reoxygenation following simulated ischemia. Such protection was absent in cardiomyocytes from HFD-fed STAT3-deficient mice. STAT3 signaling plays critical role in reducing IS and attenuates cardiomyocyte death following reperfusion therapy with rapamycin in diabetic heart.

  13. Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity.

    Directory of Open Access Journals (Sweden)

    James P O'Callaghan

    Full Text Available Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types of central nervous system (CNS injuries. Potential signaling mechanisms driving the conversion of astrocytes into "reactive" phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the blood-brain barrier (BBB. As denervation tools, neurotoxicants have the advantage of selective targeting of brain regions and cell types, often with sparing of the BBB. Previously, we found that neuroinflammation and activation of the JAK2-STAT3 pathway in astrocytes precedes up regulation of GFAP in the MPTP mouse model of dopaminergic neurotoxicity. Here we show that multiple mechanistically distinct mouse models of neurotoxicity (MPTP, AMP, METH, MDA, MDMA, KA, TMT engender the same neuroinflammatory and STAT3 activation responses in specific regions of the brain targeted by each neurotoxicant. The STAT3 effects seen for TMT in the mouse could be generalized to the rat, demonstrating cross-species validity for STAT3 activation. Pharmacological antagonists of the neurotoxic effects blocked neuroinflammatory responses, pSTAT3tyr705 and GFAP induction, indicating that damage to neuronal targets instigated astrogliosis. Selective deletion of STAT3 from astrocytes in STAT3 conditional knockout mice markedly attenuated MPTP-induced astrogliosis. Monitoring STAT3 translocation in GFAP-positive cells indicated that effects of MPTP, METH and KA on pSTAT3tyr705 were localized to astrocytes. These findings strongly implicate the STAT3 pathway in astrocytes as a broadly triggered signaling pathway for astrogliosis. We also observed, however, that the acute neuroinflammatory response to the known inflammogen, LPS, can activate STAT3 in CNS tissue without inducing classical signs of astrogliosis. Thus, acute phase neuroinflammatory responses and neurotoxicity-induced astrogliosis both

  14. Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling.

    Science.gov (United States)

    Sun, Danfeng; Lin, Yanwei; Hong, Jie; Chen, Haoyan; Nagarsheth, Nisha; Peng, Dongjun; Wei, Shuang; Huang, Emina; Fang, Jingyuan; Kryczek, Ilona; Zou, Weiping

    2016-08-01

    Th22 cells traffic to and retain in the colon cancer microenvironment, and target core stem cell genes and promote colon cancer stemness via STAT3 and H3K79me2 signaling pathway and contribute to colon carcinogenesis. However, whether Th22 cells affect colon cancer cell proliferation and apoptosis remains unknown. We studied the interaction between Th22 cells and colon cancer cells in the colon cancer microenvironment. Colon cancer proliferation was examined by flow cytometry analysis and H(3) thymidine incorporation. Cell cycle related genes were quantified by real-time PCR and Western blotting. We transfected colon cancer cells with lentiviral vector encoding specific gene shRNAs and used chromatin immunoprecipitation (ChIP) assay to determine the genetic signaling involved in interleukin (IL)-22-mediated colon cancer cell proliferation. We showed that Th22 cells released IL-22 and stimulated colon cancer proliferation. Mechanistically, IL-22 activated STAT3, and subsequently STAT3 bound to the promoter areas of the Polycomb Repression complex 2 (PRC2) components SUZ12 and EED, and stimulated the expression of PRC2. Consequently, the activated PRC2 catalyzed the promoters of the cell cycle check-point genes p16 and p21, and inhibited their expression through H3K27me3-mediated histone methylation, and ultimately caused colon cancer cell proliferation. Bioinformatics analysis revealed that the levels of IL-22 expression positively correlated with the levels of genes controlling cancer proliferation and cell cycling in colon cancer. In addition to controlling colon cancer stemness, Th22 cells support colon carcinogenesis via affecting colon cancer cell proliferation through a distinct histone modification. PMID:27622053

  15. New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin.

    Directory of Open Access Journals (Sweden)

    Weixun Duan

    Full Text Available Previous studies have shown that the JAK2/STAT3 signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI. In this study, we explored the role of the JAK2/STAT3 signaling pathway in hydrogen peroxide (H2O2-induced OSI and the protective effect of melatonin against (H2O2-induced injury in human umbilical vein endothelial cells (HUVECs. AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway and JAK2 siRNA were used to manipulate JAK2/STAT3 activity, and the results showed that AG490 and JAK2 siRNA inhibited OSI and the levels of p-JAK2 and p-STAT3. HUVECs were then subjected to H2O2 in the absence or presence of melatonin, the main secretory product of the pineal gland. Melatonin conferred a protective effect against H2O2, which was evidenced by improvements in cell viability, adhesive ability and migratory ability, decreases in the apoptotic index and reactive oxygen species (ROS production and several biochemical parameters in HUVECs. Immunofluorescence and Western blotting showed that H2O2 treatment increased the levels of p-JAK2, p-STAT3, Cytochrome c, Bax and Caspase3 and decreased the levels of Bcl2, whereas melatonin treatment partially reversed these effects. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in a protective effect against endothelial OSI. The protective effects of melatonin against OSI, at least partially, depend upon JAK2/STAT3 inhibition.

  16. HiJAK’d Signaling; the STAT3 Paradox in Senescence and Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Junk, Damian J.; Bryson, Benjamin L.; Jackson, Mark W., E-mail: mark.w.jackson@case.edu [Department of Pathology, Case Western Reserve University, Case Comprehensive Cancer Center, 2103 Cornell Road, WRB 3-134, Cleveland, OH 44106 (United States)

    2014-03-26

    Clinical and epidemiological data have associated chronic inflammation with cancer progression. Most tumors show evidence of infiltrating immune and inflammatory cells, and chronic inflammatory disorders are known to increase the overall risk of cancer development. While immune cells are often observed in early hyperplastic lesions in vivo, there remains debate over whether these immune cells and the cytokines they produce in the developing hyperplastic microenvironment act to inhibit or facilitate tumor development. The interleukin-6 (IL-6) family of cytokines, which includes IL-6 and oncostatin M (OSM), among others (LIF, CT-1, CNTF, and CLC), are secreted by immune cells, stromal cells, and epithelial cells, and regulate diverse biological processes. Each of the IL-6 family cytokines signals through a distinct receptor complex, yet each receptor complex uses a shared gp130 subunit, which is critical for signal transduction following cytokine binding. Activation of gp130 results in the activation of Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3K) signaling cascades. Tumor suppressive signaling can often be observed in normal cells following prolonged STAT3 activation. However, there is mounting evidence that the IL-6 family cytokines can contribute to later stages of tumor progression in many ways. Here we will review how the microenvironmental IL-6 family cytokine OSM influences each stage of the transformation process. We discuss the intrinsic adaptations a developing cancer cell must make in order to tolerate and circumvent OSM-mediated growth suppression, as well as the OSM effectors that are hijacked during tumor expansion and metastasis. We propose that combining current therapies with new ones that suppress the signals generated from the tumor microenvironment will significantly impact an oncologist’s ability to treat cancer.

  17. Crosstalk between signaling pathways of adrenoreceptors and signal transducers and activators of transcription 3 (STAT3) in heart

    Institute of Scientific and Technical Information of China (English)

    Kai-zheng GONG; Hui ZHANG; Jian-hai DU; You-yi ZHANG

    2007-01-01

    Recently, there have been important advancements in our understanding of the signaling mechanisms of adrenoreceptors (AR) and signal transducers and activators of transcription 3 (STAT3). While their crucial roles in the pathological processes of the heart are well established, accumulating evidence suggests there is a complex pattern of crosstalk between these 2 signaling pathways. Moreover, the potential for crosstalk occurs at multiple levels in each signaling cascade and involves receptor transactivation, G proteins, small GTPases, cyclic adenosine 3',5'-monophosphate/protein kinase A, protein kinase C, scaffold/adaptor proteins, protein tyrosine kinases, and mitogen-activated protein kinases. In addition, post-translational modification (eg acetylation) of STAT3 may provide a link betweenSTAT3 and AR signaling. In particular, crosstalk between these 2 systems in the heart would appear to be dependent upon the species/tissue studied, develop-mental stage, and eliciting stimulus. This at least partly accounts for the epigenetic effects on biological function that is mediated by the 2 signaling pathways. Elucidation of these mechanisms will provide new targets in the development of novel clinical strategies for heart disorders.

  18. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis

    Science.gov (United States)

    Grabner, Beatrice; Schramek, Daniel; Mueller, Kristina M.; Moll, Herwig P.; Svinka, Jasmin; Hoffmann, Thomas; Bauer, Eva; Blaas, Leander; Hruschka, Natascha; Zboray, Katalin; Stiedl, Patricia; Nivarthi, Harini; Bogner, Edith; Gruber, Wolfgang; Mohr, Thomas; Zwick, Ralf Harun; Kenner, Lukas; Poli, Valeria; Aberger, Fritz; Stoiber, Dagmar; Egger, Gerda; Esterbauer, Harald; Zuber, Johannes; Moriggl, Richard; Eferl, Robert; Győrffy, Balázs; Penninger, Josef M.; Popper, Helmut; Casanova, Emilio

    2015-01-01

    STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-κB-induced IL-8 expression by sequestering NF-κB within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3–NF-κB–IL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance. PMID:25734337

  19. Role of leptin receptor-induced STAT3 signaling in modulation of intestinal and hepatic inflammation in mice

    OpenAIRE

    Gove, Melissa E.; Rhodes, Davina H.; Pini, Maria; van Baal, Jantine W.; Sennello, Joseph A.; Fayad, Raja; Cabay, Robert J.; Myers, Martin G.; Fantuzzi, Giamila

    2008-01-01

    Leptin-deficient ob/ob mice are resistant to dextran sulfate sodium (DSS)-induced colitis and Concanavalin A (Con A)-induced hepatitis. However, the signal transduction pathways involved have not been identified. The present study investigated the effect of leptin-induced STAT3 signaling in the DSS and Con A models. Mice carrying a leptin receptor (LEPR) gene mutant for Y1138 (s/s mice), with abrogated leptin-induced STAT3 signaling, were compared with wild-type (WT) and LEPR-deficient db/db ...

  20. NF-κB/STAT3/PI3K signaling crosstalk in iMycEμ B lymphoma

    Directory of Open Access Journals (Sweden)

    Kim Joong-Su

    2010-04-01

    Full Text Available Abstract Background Myc is a well known driver of lymphomagenesis, and Myc-activating chromosomal translocation is the recognized hallmark of Burkitt lymphoma, an aggressive form of non-Hodgkin's lymphoma. We developed a model that mimics this translocation event by inserting a mouse Myc cDNA gene into the immunoglobulin heavy chain locus, just upstream of the intronic Eμ enhancer. These mice, designated iMycEμ, readily develop B-cell lymphoma. To study the mechanism of Myc-induced lymphoma, we analyzed signaling pathways in lymphoblastic B-cell lymphomas (LBLs from iMycEμ mice, and an LBL-derived cell line, iMycEμ-1. Results Nuclear factor-κB (NF-κB and signal transducer and activator of transcription 3 (STAT3 were constitutively activated in iMycEμ mice, not only in LBLs but also in the splenic B-lymphocytes of young animals months before tumors developed. Moreover, inhibition of either transcription factor in iMycEμ-1 cells suppressed growth and caused apoptosis, and the abrogation of NF-κB activity reduced DNA binding by both STAT3 and Myc, as well as Myc expression. Inhibition of STAT3 signaling eliminated the activity of both NF-κB and Myc, and resulted in a corresponding decrease in the level of Myc. Thus, in iMycEμ-1 cells NF-κB and STAT3 are co-dependent and can both regulate Myc. Consistent with this, NF-κB and phosphorylated STAT3 were physically associated with one another. In addition, LBLs and iMycEμ-1 cells also showed constitutive AKT phosphorylation. Blocking AKT activation by inhibiting PI3K reduced iMycEμ-1 cell proliferation and caused apoptosis, via downregulation of NF-κB and STAT3 activity and a reduction of Myc levels. Co-treatment with NF-κB, STAT3 or/and PI3K inhibitors led to additive inhibition of iMycEμ-1 cell proliferation, suggesting that these signaling pathways converge. Conclusions Our findings support the notion that constitutive activation of NF-κB and STAT3 depends on upstream signaling

  1. STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus.

    Science.gov (United States)

    Ding, Chuanlin; Chen, Xingguo; Dascani, Paul; Hu, Xiaoling; Bolli, Roberto; Zhang, Huang-Ge; Mcleish, Kenneth R; Yan, Jun

    2016-06-01

    Ab maturation as well as memory B and plasma cell differentiation occur primarily in the germinal centers (GCs). Systemic lupus erythematosus (SLE) may develop as a result of enhanced GC activity. Previous studies have shown that the dysregulated STAT3 pathway is linked to lupus pathogenesis. However, the exact role of STAT3 in regulating SLE disease progression has not been fully understood. In this study, we demonstrated that STAT3 signaling in B cells is essential for GC formation and maintenance as well as Ab response. Increased cell apoptosis and downregulated Bcl-xL and Mcl-1 antiapoptotic gene expression were found in STAT3-deficient GC B cells. The follicular helper T cell response positively correlated with GC B cells and was significantly decreased in immunized B cell STAT3-deficient mice. STAT3 deficiency also led to the defect of plasma cell differentiation. Furthermore, STAT3 deficiency in autoreactive B cells resulted in decreased autoantibody production. Results obtained from B cell STAT3-deficient B6.MRL/lpr mice suggest that STAT3 signaling significantly contributes to SLE pathogenesis by regulation of GC reactivity, autoantibody production, and kidney pathology. Our findings provide new insights into the role of STAT3 signaling in the maintenance of GC formation and GC B cell differentiation and identify STAT3 as a novel target for treatment of SLE. PMID:27183592

  2. Heat Shock Protein 72 Antagonizes STAT3 Signaling to Inhibit Fibroblast Accumulation in Renal Fibrogenesis.

    Science.gov (United States)

    Zhou, Yi; Cao, Shirong; Li, Huiyan; Peng, Xuan; Wang, Yating; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-04-01

    Heat shock protein 72 (HSP72) has been shown to attenuate unilateral ureteral obstruction-induced kidney fibrosis. It remains unknown whether HSP72 has direct effects on fibroblast proliferation in the renal fibrotic evolution. Herein, we first confirmed that increased HSP72 expression occurred in fibrotic human kidneys. Using three different animal models of kidney fibrosis, pharmacological down-regulation or genetic deletion of endogenous HSP72 expression exacerbated STAT3 phosphorylation, fibroblast proliferation, and tubulointerstitial fibrosis. In contrast, treatment with geranylgeranyl acetone, a specific inducer of HSP72, reduced phosphorylated STAT3 and protected animals from kidney fibrosis. In cultured renal interstitial fibroblasts, overexpression of HSP72 blocked transforming growth factor (TGF)-β1-induced cell activation and proliferation, as evidenced by inhibiting expression of α-smooth muscle actin, fibronectin, and collagen I/III, as well as by reducing cell numbers and DNA synthesis. Mechanical studies showed that overexpressed HSP72 attenuated TGF-β-induced phosphorylation and nuclear translocation of STAT3 and its downstream protein expression. However, siRNA knockdown of HSP72 increased TGF-β-induced STAT3 activity and fibroblast proliferation. Ectopic expression of a constitutively active STAT3 conferred resistance to HSP72 inhibition of fibroblast proliferation. Thus, HSP72 blocks fibroblast activation and proliferation in renal fibrosis via targeting the STAT3 pathway and may serve as a novel therapeutic agent for chronic kidney disease regardless of the etiology. PMID:26851345

  3. Euglycemia restoration by central leptin in type 1 diabetes requires STAT3 signaling but not fast-acting neurotransmitter release

    Science.gov (United States)

    Central leptin action is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D); however, the underlying mechanism remains poorly understood. To examine the role of intracellular signal transducer and activator of transcription 3 (STAT3) pathways, we used LepRs/s mice with disrupted...

  4. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway.

    Science.gov (United States)

    Ge, Yuqing; Yang, Bo; Chen, Zhe; Cheng, Rubin

    2015-11-01

    Pancreatic cancer remains a challenging disease worldwide. Cryptotanshinone (CPT) is one of the active constituents of Salvia miltiorrhiza Bunge and exhibits significant antitumor activities in several human cancer cells. However, the efficacy and molecular mechanism of CPT in pancreatic cancer remains to be elucidated. In the present study, the effect of CPT on the proliferation, apoptosis and cell cycle of human pancreatic cancer cell BxPC‑3 cells was evaluated. The results demonstrated that CPT inhibited proliferation of the BxPC‑3 cells in a concentration‑dependent manner, and significantly induced cell apoptosis and cell cycle arrest. The protein levels of cleaved caspase‑3, caspase‑9 and poly ADP ribose polymerase were upregulated, while the levels of c‑myc, survivin and cyclin D1 were downregulated following treatment with CPT. In addition, CPT decreased the activities of signal transducer and activator of transcription 3 (STAT3) and several upstream regulatory signaling pathways after 24 h. However, CPT only inhibited the phosphorylation of STAT3 Tyr705 within 30 min, without marked effects on the phosphorylation of the other proteins. These results suggested that the inhibition of STAT3 activity by CPT was directly and independent of the upstream regulators in human pancreatic cancer. The present study demonstrated that CPT exerts anticancer effects by inducing apoptosis and cell cycle arrest via inhibition of the STAT3 signaling pathway in human BxPC-3 cells.

  5. Oncostatin-M Differentially Regulates Mesenchymal and Proneural Signature Genes in Gliomas via STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Kumar Natesh

    2015-02-01

    Full Text Available Glioblastoma (GBM, the most malignant of the brain tumors is classified on the basis of molecular signature genes using TCGA data into four subtypes- classical, mesenchymal, proneural and neural. The mesenchymal phenotype is associated with greater aggressiveness and low survival in contrast to GBMs enriched with proneural genes. The proinflammatory cytokines secreted in the microenvironment of gliomas play a key role in tumor progression. The study focused on the role of Oncostatin-M (OSM, an IL-6 family cytokine in inducing mesenchymal properties in GBM. Analysis of TCGA and REMBRANDT data revealed that expression of OSMR but not IL-6R or LIFR is upregulated in GBM and has negative correlation with survival. Amongst the GBM subtypes, OSMR level was in the order of mesenchymal > classical > neural > proneural. TCGA data and RT-PCR analysis in primary cultures of low and high grade gliomas showed a positive correlation between OSMR and mesenchymal signature genes-YKL40/CHI3L1, fibronectin and vimentin and a negative correlation with proneural signature genes-DLL3, Olig2 and BCAN. OSM enhanced transcript and protein level of fibronectin and YKL-40 and reduced the expression of Olig2 and DLL3 in GBM cells. OSM-regulated mesenchymal phenotype was associated with enhanced MMP-9 activity, increased cell migration and invasion. Importantly, OSM induced mesenchymal markers and reduced proneural genes even in primary cultures of grade-III glioma cells. We conclude that OSM-mediated signaling contributes to aggressive nature associated with mesenchymal features via STAT3 signaling in glioma cells. The data suggest that OSMR can be explored as potential target for therapeutic intervention.

  6. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. PMID:24842412

  7. STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation.

    Science.gov (United States)

    Yan, Dongyao; Wang, Hao-Wei; Bowman, Robert L; Joyce, Johanna A

    2016-09-13

    Tumor-associated macrophages play critical roles during tumor progression by promoting angiogenesis, cancer cell proliferation, invasion, and metastasis. Cysteine cathepsin proteases, produced by macrophages and cancer cells, modulate these processes, but it remains unclear how these typically lysosomal enzymes are regulated and secreted within the tumor microenvironment. Here, we identify a STAT3 and STAT6 synergy that potently upregulates cathepsin secretion by macrophages via engagement of an unfolded protein response (UPR) pathway. Whole-genome expression analyses revealed that the TH2 cytokine interleukin (IL)-4 synergizes with IL-6 or IL-10 to activate UPR via STAT6 and STAT3. Pharmacological inhibition of the UPR sensor IRE1α blocks cathepsin secretion and blunts macrophage-mediated cancer cell invasion. Similarly, genetic deletion of STAT3 and STAT6 signaling components impairs tumor development and invasion in vivo. Together, these findings demonstrate that cytokine-activated STAT3 and STAT6 cooperate in macrophages to promote a secretory phenotype that enhances tumor progression in a cathepsin-dependent manner. PMID:27626662

  8. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer

    Science.gov (United States)

    Wang, Qian; Li, Zexin; Yang, Yiqiong; Chen, Zhiguo; Wang, Jianguo; Zhao, Weixing; Zhang, Huijuan; Chen, Jiwang; Dong, Huali; Shen, Kui; Diamond, Alan M.; Yang, Wancai

    2016-01-01

    PRSS8 is a membrane-anchored serine protease prostasin and has been shown an association with carcinogenesis. Herein we found that PRSS8 expression was significantly reduced in colorectal adenomas and adenocarcinomas. The decreased PRSS8 was well correlated with clinical stages, poor differentiation and shorter survival time of colorectal cancer. Furthermore, increase of PRSS8 led to the inhibition of colorectal cancer cell proliferation, knockdown of PRSS8 accelerated cell proliferation in vitro, and overexpressing PRSS8 retarded cancer cell growth in nude mice. Mechanistic studies revealed that PRSS8 inhibited Sphk1/S1P/Stat3/Akt signaling pathway, in terms of inverse association between PRSS8 and Sphk1 in human colorectal cancers and in Sphk1-/− mice. In conclusion, PRSS8 acts as a tumor suppressor by inhibiting Sphk1/S1P/Stat3/Akt signaling pathway, and could be used as a biomarker to monitor colorectal carcinogenesis and predict outcomes. PMID:27050145

  9. STAT3 signaling controls satellite cell expansion and skeletal muscle repair

    OpenAIRE

    Tierney, Matthew Timothy; Aydogdu, Tufan; Sala, David; Malecova, Barbora; Gatto, Sole; Puri, Pier Lorenzo; Latella, Lucia; Sacco, Alessandra

    2014-01-01

    The progression of disease- and age-dependent skeletal muscle wasting results in part from a decline in the number and function of satellite cells, the direct cellular contributors to muscle repair1–10. However, little is known about the molecular effectors underlying satellite cell impairment and depletion. Elevated levels of inflammatory cytokines, including interleukin-6 (IL-6), are associated with both age-related and muscle-wasting conditions11–13. The levels of STAT3, a downstream effec...

  10. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. ► STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. ► Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. ► STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. ► Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH+/CD133+). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem

  11. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  12. LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway

    Science.gov (United States)

    Xiao, Deshen; Lai, Weiwei; Pan, Yu; Jiang, Yiqun; Chen, Ling; Mao, Chao; Zhou, Jian; Xi, Sichuan; Cao, Ya; Liu, Shuang; Tao, Yongguang

    2016-01-01

    Basal cell carcinomas (BCC) of the skin are the most common of human cancers. The noncanonical NF-κB pathway is dependent on IKKα. However, the role of IKKα in BCC has not been elucidated. We show here that IKKα is expressed in the nucleus in BCC and non-malignant diseases. Nuclear IKKα could directly bind to the promoters of inflammation factors and LGR5, a stem cell marker, in turn, upregulating LGR5 expression through activation of STAT3 signaling pathway during cancer progression. Activation of STAT3 signaling pathway contributes LGR5 expression in dependent of IKKα after the interplay between STAT3 and IKKα. Meanwhile knockdown of IKKα inhibits tumor growth and transition of epithelial stage to mescheme stage. Taken together, we demonstrate that IKKα functions as a bone fide chromatin regulator in BCC, whose promoted expression contributes to oncogenic transformation via promoting expression stemness- and inflammatory- related genes. Our finding reveals a novel viewpoint for how IKKα may involve in BCCs tumor progression in the inflammatory microenvironment. PMID:27049829

  13. Activation of STAT3 signaling in human stomach adenocarcinoma drug-resistant cell line and its relationship with expression of vascular endothelial growth factor

    Institute of Scientific and Technical Information of China (English)

    Li-Fen Yu; Ying Cheng; Min-Min Qiao; Yong-Ping Zhang; Yun-Lin Wu

    2005-01-01

    AIM: To investigate the difference in activation of STAT3signaling between two human stomach adenocarcinoma cell lines: 5-fluorouracil resistant cell line and its parental cell line, and to evaluate its relationship with the expression of vascular endothelial growth factor (VEGF).METHODS: Western blot and electrophoretic mobility shift assay (EMSA) were used to detect the expression of phospho-STAT3 protein and constitutive activation of STAT3in two human stomach adenocarcinoma cell lines, 5-fluorouracil resistant cell line SGC7901/R and its parental cell line SGC7901, respectively. The mRNA expression of VEGF was analysed by semi-quantitative RT-PCR. The expressive intensity of VEGF protein was measured by immunocytochemistry.RESULTS: The expressions of phospho-STAT3 protein and constitutive activation of ST AT3 between two human stomach adenocarcinoma cell lines were different.Compared with the parental cell line SGC7901, the STAT3-DNA binding activity and the expressive intensity of phospho-STAT3 protein were lower in the drug-resistant cell line SGC7901/R. The expression levels of VEGF mRNA and its encoded protein were also decreased in drugresistant cell line.CONCLUSION: Over-expression of VEGF may be correlated with elevated STAT3 activation in parental cell line. Lower VEGF expression may be correlated with decreased STAT3activation in resistant cell line, which may have resulted from negative feedback regulation of STAT signaling.

  14. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    Science.gov (United States)

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  15. TLR4 signaling promotes a COX-2/PGE2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells

    Science.gov (United States)

    Lin, Ang; Wang, Guan; Zhao, Huajun; Zhang, Yuyi; Han, Qiuju; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2016-01-01

    ABSTRACT Toll-like receptors (TLRs) can be expressed by tumor cells, and each TLR exhibits different biological functions. Evidences showed the activation of some certain TLRs could promote tumor progression. One of which TLR4 has been found to promote hepatocellular carcinoma (HCC) cells proliferation, but the detailed mechanism is still unknown. In the present study, we verified that TLR4 was functionally expressed on HCC cells, and TLR4 agonist lipopolysaccharide (LPS) could stimulate the proliferation and clone formation of HCC cells. Most importantly, we found a COX-2/PGE2/STAT3 positive feedback loop exists in HCC cells, which could be provoked by TLR4 activation. Consistently, the expression of TLR4, COX-2 and p-STAT3Y705 was positively correlated with each other in liver tumor tissues from patients with primary HCC. Further investigation demonstrated this loop played a dominant role in TLR4-induced HCC cell proliferation and multidrug resistance (MDR) to chemotherapy. Inhibition of TLR4 or COX-2/PGE2/STAT3 loop would attenuate LPS-induced inflammation and proliferation of HCC cells, and enhance the sensitivity of HCC cells to chemotherapeutics in vitro. By using a primary HCC model, we observed COX-2/PGE2/STAT3 loop was significantly blocked in TLR4−/− mice compared to wild type mice, and there was no obvious tumorgenesis sign in TLR4−/− mice. Therefore, these findings provided the precise molecular mechanism of TLR4 signaling pathway involved in HCC progress, and suggested that TLR4 may be a promising target for HCC treatment. PMID:27057441

  16. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Anita C G Chua

    Full Text Available Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS. Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.

  17. Inlfuence of Compound Shougong Powder on JAK2-STAT3 Signaling Pathway in Mice with Lewis Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    SHEN Di; LI Chong-hui

    2014-01-01

    Objective:To observe the inlfuence of Compound Shougong Powder on JAK2-STAT3 signaling pathway in mice with Lewis lung cancer. Methods: Fifty C57BL/6J mice were inoculated with Lewis lung cancer cell line according to the conventional method, 40 mice bearing cancer successfully were selected 6 d later and randomly divided into 5groups, namely negative control group, cis-platinum group, high-dose Compound Shougong Powder group, middle-dose Compound Shougong Powder group and low-dose Compound Shougong Powder group, 8 mice in each group. Negative control group was drenched with normal saline (NS). Compound Shougong Powder groups were drenched with Compound Shougong Powder, 4 mg/kg for high-dose group, 2 mg/kg for middle-dose group, 1 mg/kg for low-dose group, once per day for 14 d; cis-platinum group was orally administrated 4 mg/kg/w, intraperitoneal injection of 0.1 mL for each, once per week for 2 weeks. Mice's responses to the treatment, activity levels, mental states and so on during the treatment were observed, tumor inhibition rate was calculated, pathomorphological changes of tumor tissues were observed under light microscope after HE staining, and the expression levels of JAK2 and STAT3 proteins were detected by Western Blot. Results: After drug administration, smooth, glossy body hair and good spirit were observed in cisplatin group and high-dose Compound Shougong Powder group; glossier body hair and less activity level in middle- and low- dose Compound Shougong Powder group, and great toxic and side effects, reduced activity level and weary spirit in negative control group. The tumor inhibition rate of cisplatin group, high-, middle- and low-dose Compound Shougong Powder group and negative control group was 57.69%, 53.53%, 48.40%, 38.46% and 38.46%, respectively. The expression levels of JAK2 and STAT3 proteins in drug groups showed decreases to different degrees, and the decreases of JAK2 were more signiifcant. Conclusion: Compound Shougong Powder can

  18. The Influence of Compound Shougong Powder on JAK2-STAT3 Signaling Pathway in Mice with Lewis Lung Cancer

    Directory of Open Access Journals (Sweden)

    SHEN Di

    2014-12-01

    Full Text Available Objective: To observe the influence of Compound Shougong Powder on JAK2-STAT3 signaling pathway in mice with Lewis lung cancer. Methods: Fifty C57BL/6J mice were inoculated with Lewis lung cancer cell line according to the conventional method, 40 mice bearing cancer successfully were selected 6 d later and randomly divided into 5groups, namely negative control group, cis-platinum group, high-dose Compound Shougong Powder group, middle-dose Compound Shougong Powder group and low-dose Compound Shougong Powder group, 8 mice in each group. Negative control group was drenched with normal saline (NS. Compound Shougong Powder groups were drenched with Compound Shougong Powder, 4 mg/kg for high-dose group, 2 mg/kg for middle-dose group, 1 mg/kg for low-dose group, once per day for 14 d; cis-platinum group was orally administrated 4 mg/kg/w, intraperitoneal injection of 0.1 mL for each, once per week for 2 weeks. Mice’s responses to the treatment, activity levels, mental states and so on during the treatment were observed, tumor inhibition rate was calculated, pathomorphological changes of tumor tissues were observed under light microscope after HE staining, and the expression levels of JAK2 and STAT3 proteins were detected by Western Blot. Results: After drug administration, smooth, glossy body hair and good spirit were observed in cisplatin group and high-dose Compound Shougong Powder group; glossier body hair and less activity level in middle- and low- dose Compound Shougong Powder group, and great toxic and side effects, reduced activity level and weary spirit in negative control group. The tumor inhibition rate of cisplatin group, high-, middle- and low-dose Compound Shougong Powder group and negative control group was 57.69%, 53.53%, 48.40%, 38.46% and 38.46%, respectively. The expression levels of JAK2 and STAT3 proteins in drug groups showed decreases to different degrees, and the decreases of JAK2 were more significant. Conclusion: Compound

  19. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Peng, Hsuan-Yu; Cheng, Yun-Ching; Hsu, Yuan-Ming; Wu, Guan-Hsun; Kuo, Ching-Chuan; Liou, Jing-Ping; Chang, Jang-Yang; Jin, Shiow-Lian Catherine; Shiah, Shine-Gwo

    2016-01-01

    Microtubule inhibitors have been shown to inhibit Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signal transduction pathway in various cancer cells. However, little is known of the mechanism by which the microtubule inhibitors inhibit STAT3 activity. In the present study, we examined the effect of a novel small-molecule microtubule inhibitor, MPT0B098, on STAT3 signaling in oral squamous cell carcinoma (OSCC). Treatment of various OSCC cells with MPT0B098 induced growth inhibition, cell cycle arrest and apoptosis, as well as increased the protein level of SOCS3. The accumulation of SOCS3 protein enhanced its binding to JAK2 and TYK2 which facilitated the ubiquitination and degradation of JAK2 and TYK2, resulting in a loss of STAT3 activity. The inhibition of STAT3 activity led to sensitization of OSCC cells to MPT0B098 cytotoxicity, indicating that STAT3 is a key mediator of drug resistance in oral carcinogenesis. Moreover, the combination of MPT0B098 with the clinical drug cisplatin or 5-FU significantly augmented growth inhibition and apoptosis in OSCC cells. Taken together, our results provide a novel mechanism for the action of MPT0B098 in which the JAK2/STAT3 signaling pathway is suppressed through the modulation of SOCS3 protein level. The findings also provide a promising combinational therapy of MPT0B098 for OSCC. PMID:27367272

  20. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Hsuan-Yu Peng

    Full Text Available Microtubule inhibitors have been shown to inhibit Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3 signal transduction pathway in various cancer cells. However, little is known of the mechanism by which the microtubule inhibitors inhibit STAT3 activity. In the present study, we examined the effect of a novel small-molecule microtubule inhibitor, MPT0B098, on STAT3 signaling in oral squamous cell carcinoma (OSCC. Treatment of various OSCC cells with MPT0B098 induced growth inhibition, cell cycle arrest and apoptosis, as well as increased the protein level of SOCS3. The accumulation of SOCS3 protein enhanced its binding to JAK2 and TYK2 which facilitated the ubiquitination and degradation of JAK2 and TYK2, resulting in a loss of STAT3 activity. The inhibition of STAT3 activity led to sensitization of OSCC cells to MPT0B098 cytotoxicity, indicating that STAT3 is a key mediator of drug resistance in oral carcinogenesis. Moreover, the combination of MPT0B098 with the clinical drug cisplatin or 5-FU significantly augmented growth inhibition and apoptosis in OSCC cells. Taken together, our results provide a novel mechanism for the action of MPT0B098 in which the JAK2/STAT3 signaling pathway is suppressed through the modulation of SOCS3 protein level. The findings also provide a promising combinational therapy of MPT0B098 for OSCC.

  1. Oncogenic Ras-Induced Morphologic Change Is through MEK/ERK Signaling Pathway to Downregulate Stat3 at a Posttranslational Level in NIH3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hsuan-Heng Yeh

    2008-01-01

    Full Text Available Ras is a key regulator of the MAP kinase-signaling cascade and may cause morphologic change of Ras-transformed cells. Signal transducer and activator of transcription 3 (Stat3 can be activated by cytokine stimulation. In this study, we unravel that Ha-rasV12 overexpression can downregulate the expression of Stat3 protein at a posttranslational level in NIH3T3 cells. Furthermore, we demonstrate that Stat3 expression downregulated by Ha-rasV12 overexpression is through proteosome degradation and not through a mTOR/p70S6K-related signaling pathway. The suppression of Stat3 accompanied by the morphologic change induced by Ha-rasV12 was through mitogen extracellular kinase (MEK/extracellular-regulated kinase (ERK signaling pathway. Microtubule disruption is involved in Ha-rasV12-induced morphologic change, which could be reversed by overexpression of Stat3. Taken together, we are the first to demonstrate that Stat3 protein plays a critical role in Ha-rasV12-induced morphologic change. Oncogenic Ras-triggered morphologic change is through the activation of MEK/ERK to posttranslationally downregulate Stat3 expression. Our finding may shed light on developing novel therapeutic strategies against Ras-related tumorigenesis.

  2. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenneth C Loh

    Full Text Available Sphingosine-1-phosphate (S1P activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD, were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3, a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.

  3. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells

    Directory of Open Access Journals (Sweden)

    Kruger Mathew M

    2003-09-01

    Full Text Available Abstract Background Astrocytomas are the most common type of primary central nervous system tumors. They are frequently associated with genetic mutations that deregulate cell cycle and render these tumors resistant to apoptosis. STAT3, signal transducer and activator of transcription 3, participates in several human cancers by inducing cell proliferation and inhibiting apoptosis and is frequently activated in astrocytomas. Methods RNA interference was used to knockdown STAT3 expression in human astrocytes and astrocytoma cell lines. The effect of STAT3 knockdown on apoptosis, cell proliferation, and gene expression was then assessed by standard methods. Results We have found that STAT3 is constitutively activated in several human astrocytoma cell lines. Knockdown of STAT3 expression by siRNA induces morphologic and biochemical changes consistent with apoptosis in several astrocytoma cell lines, but not in primary human astrocytes. Moreover, STAT3 is required for the expression of the antiapoptotic genes survivin and Bcl-xL in the A172 glioblastoma cell line. Conclusion These results show that STAT3 is required for the survival of some astrocytomas. These studies suggest STAT3 siRNA could be a useful therapeutic agent for the treatment of astrocytomas.

  4. Mycoplasma pneumoniae modulates STAT3-STAT6/EGFR-FOXA2 signaling to induce overexpression of airway mucins.

    Science.gov (United States)

    Hao, Yonghua; Kuang, Zhizhou; Jing, Jia; Miao, Jinfeng; Mei, Li Yu; Lee, Ryan J; Kim, Susie; Choe, Shawn; Krause, Duncan C; Lau, Gee W

    2014-12-01

    Aberrant mucin secretion and accumulation in the airway lumen are clinical hallmarks associated with various lung diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Mycoplasma pneumoniae, long appreciated as one of the triggers of acute exacerbations of chronic pulmonary diseases, has recently been reported to promote excessive mucus secretion. However, the mechanism of mucin overproduction induced by M. pneumoniae remains unclear. This study aimed to determine the mechanism by which M. pneumoniae induces mucus hypersecretion by using M. pneumoniae infection of mouse lungs, human primary bronchial epithelial (NHBE) cells cultured at the air-liquid interface, and the conventionally cultured airway epithelial NCI-H292 cell line. We demonstrated that M. pneumoniae induced the expression of mucins MUC5AC and MUC5B by activating the STAT6-STAT3 and epidermal growth factor receptor (EGFR) signal pathways, which in turn downregulated FOXA2, a transcriptional repressor of mucin biosynthesis. The upstream stimuli of these pathways, including interleukin-4 (IL-4), IL-6, and IL-13, increased dramatically upon exposure to M. pneumoniae. Inhibition of the STAT6, STAT3, and EGFR signaling pathways significantly restored the expression of FOXA2 and attenuated the expression of airway mucins MUC5AC and MUC5B. Collectively, these studies demonstrated that M. pneumoniae induces airway mucus hypersecretion by modulating the STAT/EGFR-FOXA2 signaling pathways. PMID:25287927

  5. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) -- and vascular endothelial growth factor-mediated cellular invasion and tumor growth.

    Science.gov (United States)

    Rivat, Christine; Christine, Rivat; Rodrigues, Sylvie; Sylvie, Rodrigues; Bruyneel, Erik; Erik, Bruyneel; Piétu, Geneviève; Geneviève, Piétu; Robert, Amélie; Amélie, Robert; Redeuilh, Gérard; Gérard, Redeuilh; Bracke, Marc; Marc, Bracke; Gespach, Christian; Christian, Gespach; Attoub, Samir; Samir, Attoub

    2005-01-01

    Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr(705) phosphorylation of both STAT3alpha and STAT3beta isoforms. Blockade of STAT3 signaling by STAT3beta, depletion of the STAT3alpha/beta isoforms by RNA interference, and pharmacologic inhibition of STAT3alpha/beta phosphorylation by cucurbitacin or STAT3 inhibitory peptide abrogates TFF- and VEGF-induced cellular invasion and reduces the growth of HCT8/S11 tumor xenografts in athymic mice. Differential gene expression analysis using DNA microarrays revealed that overexpression of STAT3beta down-regulates the VEGF receptors Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation. Taken together, our data suggest that TFF3 and the essential tumor angiogenesis regulator VEGF(165) exert potent proinvasive activity through STAT3 signaling in human colorectal cancer cells. We also validate new therapeutic strategies targeting STAT3 signaling by pharmacologic inhibitors and RNA interference for the treatment of colorectal cancer patients.

  6. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  7. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  8. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 Receptor-insulin receptor substrate and STAT3 signaling

    Science.gov (United States)

    Sanchez-Lopez, Elsa; Flashner-Abramson, Efrat; Shalapour, Shabnam; Zhong, Zhenyu; Taniguchi, Koji; Levitzki, Alexander; Karin, Michael

    2015-01-01

    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and Signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer (CRC) development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment. PMID:26364612

  9. Piperlongumine inhibits gastric cancer cells via suppression of the JAK1,2/STAT3 signaling pathway.

    Science.gov (United States)

    Song, Baoji; Zhan, Hongjie; Bian, Quan; Gu, Junping

    2016-05-01

    Piperlongumine (PL), a major active component of long peppers, has been reported to possess anti‑cancer properties; however, its effect on gastric cancer (GC) has remained to be demonstrated. The present study assessed the effects of PL on the MKN45 and AGS GC cell lines and explored the underlying mechanisms. An MTT assay revealed that PL suppressed the proliferation of GC cells, while flow cytometric analysis showed that PL inhibited cell cycle progression. Furthermore, Transwell assays revealed the inhibitory effects of PL on the invasion and migration of GC cells. In addition, PL reduced the phosphorylation of Janus kinase (JAK)1, JAK2 and signal transducer and activator of transcription (STAT)3 in a concentration‑dependent manner, as indicated by western blot analysis, and decreased the expression of STAT3‑dependent tumor‑associated genes in GC cells, as revealed by PCR analysis. In conclusion, the present study was the first, to the best of our knowledge, to reveal the efficacy of PL against GC. The consumption of long peppers is therefore recommended for the prevention and treatment of GC, and PL may be a promising candidate drug for treating GC. PMID:27053336

  10. FoxM1 Drives a Feed-forward STAT3-activation Signaling Loop that Promotes the Self-renewal and Tumorigenicity of Glioblastoma Stem-like Cells

    Science.gov (United States)

    Gong, Ai-hua; Wei, Ping; Zhang, Sicong; Yao, Jun; Yuan, Ying; Zhou, Ai-dong; Lang, Frederick F.; Heimberger, Amy B.; Rao, Ganesh; Huang, Suyun

    2015-01-01

    The growth factor PDGF controls the development of glioblastoma (GBM) but its contribution to the function of GBM stem-like cells (GSC) has been little studied. Here we report that the transcription factor FoxM1 promotes PDGFA-STAT3 signaling to drive GSC self-renewal and tumorigenicity. In GBM we found a positive correlation between expression of FoxM1 and PDGF-A. In GSC and mouse neural stem cells, FoxM1 bound to the PDGF-A promoter to upregulate PDGF-A expression, acting to maintain the stem-like qualities of GSC in part through this mechanism. Analysis of the human cancer genomic database TCGA revealed that GBM express higher levels of STAT3, a PDGF-A effector signaling molecule, as compared with normal brain. FoxM1 regulated STAT3 transcription through interactions with the β-catenin/TCF4 complex. FoxM1 deficiency inhibited PDGF-A and STAT3 expression in neural stem cells and GSC, abolishing their stem-like and tumorigenic properties. Further mechanistic investigations defined a FoxM1-PDGFA-STAT3 feed-forward pathway that was sufficient to confer stem-like properties to glioma cells. Collectively, our findings showed how FoxM1 activates expression of PDGF-A and STAT3 in a pathway required to maintain the self-renewal and tumorigenicity of glioma stem-like cells. PMID:25832656

  11. IFN-γ Mediates Enhancement of HIV Replication in Astrocytes by Inducing an Antagonist of the β-Catenin Pathway (DKK1) in a STAT 3-Dependent Manner

    OpenAIRE

    Li, Wei; Henderson, Lisa J.; Major, Eugene O.; Al-Harthi, Lena

    2011-01-01

    Typically, IFN-γ is an antiviral cytokine that inhibits the replication of many viruses, including HIV. However, in the CNS, IFN-γ induces HIV-productive replication in astrocytes. Although astrocytes in vitro are refractory to HIV replication, recent in vivo evidence demonstrated that astrocytes are infected by HIV, and their degree of infection is correlated with proximity to activated macrophages/microglia. The ability of IFN-γ to induce HIV replication in astrocytes suggests that the envi...

  12. Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: inhibition of constitutive and interleukin 6-induced activation by iron depletion.

    Science.gov (United States)

    Lui, Goldie Y L; Kovacevic, Zaklina; V Menezes, Sharleen; Kalinowski, Danuta S; Merlot, Angelica M; Sahni, Sumit; Richardson, Des R

    2015-01-01

    Pharmacologic manipulation of metal pools in tumor cells is a promising strategy for cancer treatment. Here, we reveal how the iron-binding ligands desferrioxamine (DFO), di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibit constitutive and interleukin 6-induced activation of signal transducer and activator of transcription 3 (STAT3) signaling, which promotes proliferation, survival, and metastasis of cancer cells. We demonstrate that DFO, Dp44mT, and DpC significantly decrease constitutive phosphorylation of the STAT3 transcription factor at Tyr705 in the pancreatic cancer cell lines PANC-1 and MIAPaCa-2 as well as the prostate cancer cell line DU145. These compounds also significantly decrease the dimerized STAT3 levels, the binding of nuclear STAT3 to its target DNA, and the expression of downstream targets of STAT3, including cyclin D1, c-myc, and Bcl-2. Examination of upstream mediators of STAT3 in response to these ligands has revealed that Dp44mT and DpC could significantly decrease activation of the nonreceptor tyrosine kinase Src and activation of cAbl in DU145 and MIAPaCa-2 cells. In contrast to the effects of Dp44mT, DpC, or DFO on inhibiting STAT3 activation, the negative control compound di-2-pyridylketone 2-methyl-3-thiosemicarbazone, or the DFO:Fe complex, which cannot bind cellular iron, had no effect. This demonstrates the role of iron-binding in the activity observed. Immunohistochemical staining of PANC-1 tumor xenografts showed a marked decrease in STAT3 in the tumors of mice treated with Dp44mT or DpC compared with the vehicle. Collectively, these studies demonstrate suppression of STAT3 activity by iron depletion in vitro and in vivo, and reveal insights into regulation of the critical oncogenic STAT3 pathway. PMID:25561562

  13. AG490阻断STAT3信号通路对人胶质瘤细胞增殖和周期的抑制作用%Inhibitory effect of AG490 by blocking STAT3 signal pathway on cell proliferation and cell cycle of glioma cell fines

    Institute of Scientific and Technical Information of China (English)

    张煜; 崔尧元; 吴伟忠; 孙瑞霞

    2008-01-01

    目的 探讨AG490阻断STAT3信号通路对人胶质瘤细胞增殖和细胞周期的影响.方法 用不同浓度的AG490作用于体外培养的人胶质瘤细胞株U87、U251;用免疫荧光细胞化学染色观察肿瘤细胞STAT3和激活态p-STAT3的表达;Western blot验证AG490对STAT3信号通路的阻断情况;Sulforhodamine B染色观察肿瘤细胞增殖的改变;流式细胞技术分析细胞周期的变化. 结果 STAT3蛋白在胶质瘤细胞胞浆中表达,而P-STAT3则在细胞核中表达.AG490作用胶质瘤细胞后可使p-STAT3表达下降,而STAT3表达不受影响.AG490阻断STAT3信号通路后,胶质瘤细胞的增殖受到显著抑制,该抑制作用与剂量及时间存在一定关系.AG490作用后胶质瘤的细胞周期出现阻滞.结论 应用AG490阻断STAT3通路能够导致胶质瘤细胞增殖的抑制和细胞周期的阻滞.针对STAT3信号通路的研究可能为胶质瘤的治疗提供更加有效的方法.%Objective To study the effect of AG490 on cell proliferation and cycle of human glioma cell lines by inhibiting the STAT3 signal pathway. Methods Glioma cell lines U87 and U251 were treated with AG490, a Janus kinase (JAK) inhibitor, at different concentrations and for various durations. STAT3 and phospho-STAT3 (p-STAT3) proteins were detected by immanocytochemical staining. The blocking effect of AG490 on STAT3 signal pathway was verified by means of Western blot which displayed the expressions of STAT3 and p-STAT3 proteins in glioma cells. The cell proliferation of glioma cell lines was checked by sulforhodamine B (SRB) assay. FCM was applied to analyze the change of cell cycle. Results The expression of STAT3 was located in cytoplasm of glioma cells while p-STAT3 in the cell nucleus. The expression of p-STAT3 could be inhibited by AG490 in U251 and U87 cell lines while STAT3 stayed unchanged. And AG490 appeared to significantly inhibit the proliferation of glioma cell lines in a time-and concen ration-dependent manner

  14. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer.

    Science.gov (United States)

    Thakur, Ravi; Trivedi, Rachana; Rastogi, Namrata; Singh, Manisha; Mishra, Durga Prasad

    2015-01-01

    Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard inhibitors revealed that STAT3 inhibition affected CSCs properties more significantly than FAK or Src inhibition. We observed a significant decrease in cell migration upon FAK and Src inhibition and decrease in invasion upon inhibition of STAT3, FAK and Src. Combined inhibition of STAT3 with Src or FAK reduced the mammosphere formation, migration and invasion more significantly than the individual inhibitions. These observations indicated that the anti-breast cancer properties of Shk are due to its potential to inhibit multiple signaling proteins. Shk also reduced the activation and expression of STAT3, FAK and Src in vivo and reduced tumorigenicity, growth and metastasis of 4T1 cells. Collectively, this study underscores the translational relevance of using a single inhibitor (Shk) for compromising multiple tumor-associated signaling pathways to check cancer metastasis and stem cell load. PMID:25973915

  15. Inhibition of the STAT3 signaling pathway is involved in the antitumor activity of cepharanthine in SaOS2 cells

    Institute of Scientific and Technical Information of China (English)

    Zan CHEN; Chen HUANG; Yan-ling YANG; Yi DING; Han-qiang; OU-YANG; You-yi ZHANG; Ming XU

    2012-01-01

    To investigate the molecular mechanisms underlying the antitumor activity of cepharanthine (CEP),an alkaloid extracted from Stephania cepharantha Hayata.Methods:Human osteosarcoma cell line SaOS2 was used.MTT assay,Hoechst 33342 nuclear staining,flow cytometry,Western blotting and nude mouse xenografts of SaOS2 cells were applied to examine the antitumor activity of CEP in vitro and in vivo.The expression levels of STAT3 and its downstream signaling molecules were measured with Western blotting and immunochemistry analysis.The activity of STAT3 was detected based on the phosphorylation level of STAT3,luciferase gene reporter assay and translocation of STAT3 to the nucleus.Results:Treatment of SaOS2 cells with CEP (2.5-20 μmol/L) inhibited the cell growth in a concentration- and time-dependent manner.CEP (10 μmol/L) caused cell cycle arrest at G1 phase and induced apoptosis of SaOS2 cells.CEP (10 and 15 μmol/L) significantly decreased the expression of STAT3 in SaOS2 cells.Furthermore,CEP (5 and 10 μmol/L) significantly inhibited the expression of target genes of STAT3,including the anti-apoptotic gene Bcl-xL and the cell cycle regulators c-Myc and cyclin D1.In nude mouse xenografts of SaOS2 cells,CEP (20 mg·kg-1-d-1,ip for 19 d) significantly reduced the volume and weight of the tumor.Conclusion:Our findings suggest that inhibition of STAT3 signaling pathway is involved in the anti-tumor activity of CEP.

  16. Interleukin-6-induced STAT3 transactivation and Ser(727) phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components

    NARCIS (Netherlands)

    Schuringa, JJ; Jonk, LJC; Dokter, WHA; Vellenga, E; Kruijer, W

    2000-01-01

    In the present study, signal transducer and activator of transcription 3 (STAT3) Ser(727) phosphorylation and transactivation was investigated in relation to activation of mitogen-activated protein (MAP) kinase family members including extracellular-signal-regulated protein kinase (ERK)-1, c-Jun N-t

  17. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells

    International Nuclear Information System (INIS)

    Ergosterol peroxide (EP) derived from edible mushroom has been shown to exert anti-tumor activity in several cancer cells. In the present study, anti-angiogenic activity of EP was investigated with the underlying molecular mechanisms in human multiple myeloma U266 cells. Despite weak cytotoxicity against U266 cells, EP suppressed phosphorylation, DNA binding activity and nuclear translocalization of signal transducer and activator of transcription 3 (STAT3) in U266 cells at nontoxic concentrations. Also, EP inhibited phosphorylation of the upstream kinases Janus kinase 2 (JAK2) and Src in a time-dependent manner. Furthermore, EP increased the expression of protein tyrosine phosphatase SHP-1 at protein and mRNA levels, and conversely silencing of the SHP-1 gene clearly blocked EP-mediated STAT3 inactivation. In addition, EP significantly decreased vascular endothelial growth factor (VEGF), one of STAT3 target genes at cellular and protein levels as well as disrupted in vitro tube formation assay. Moreover, EP significantly suppressed the growth of U266 cells inoculated in female BALB/c athymic nude mice and immunohistochemistry revealed that EP effectively reduced the expression of STAT3 and CD34 in tumor sections compared to untreated control. These findings suggest that EP can exert antitumor activity in multiple myeloma U266 cells partly with antiangiogenic activity targeting JAK2/STAT3 signaling pathway as a potent cancer preventive agent for treatment of multiple myeloma cells

  18. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  19. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis.

    Science.gov (United States)

    Yang, Jie; Qian, Shihui; Cai, Xueting; Lu, Wuguang; Hu, Chunping; Sun, Xiaoyan; Yang, Yang; Yu, Qiang; Gao, S Paul; Cao, Peng

    2016-06-01

    The activation of IL6/STAT3 signaling is associated with the pathogenesis of many cancers. Agents that suppress IL6/STAT3 signaling have cancer-therapeutic potential. In this study, we found that chikusetsusaponin IVa butyl ester (CS-IVa-Be), a triterpenoid saponin extracted from Acanthopanas gracilistylus W.W.Smith, induced cancer cell apoptosis. CS-IVa-Be inhibited constitutive and IL6-induced STAT3 activation, repressed STAT3 DNA-binding activity, STAT3 nuclear translocation, IL6-induced STAT3 luciferase reporter activity, IL6-induced STAT3-regulated antiapoptosis gene expression in MDA-MB-231 cells, and IL6-induced TF-1 cell proliferation. Surprisingly, CS-IVa-Be inhibited IL6 family cytokines rather than other cytokines induced STAT3 activation. Further studies indicated that CS-IVa-Be is an antagonist of IL6 receptor via directly binding to the IL6Rα with a Kd of 663 ± 74 nmol/L and the GP130 (IL6Rβ) with a Kd of 1,660 ± 243 nmol/L, interfering with the binding of IL6 to IL6R (IL6Rα and GP130) in vitro and in cancer cells. The inhibitory effect of CS-IVa-Be on the IL6-IL6Rα-GP130 interaction was relatively specific as CS-IVa-Be showed higher affinity to IL6Rα than to LIFR (Kd: 4,910 ± 1,240 nmol/L) and LeptinR (Kd: 4,990 ± 915 nmol/L). We next demonstrated that CS-IVa-Be not only directly induced cancer cell apoptosis but also sensitized MDA-MB-231 cells to TRAIL-induced apoptosis via upregulating DR5. Our findings suggest that CS-IVa-Be as a novel IL6R antagonist inhibits IL6/STAT3 signaling pathway and sensitizes the MDA-MB-231 cells to TRAIL-induced cell death. Mol Cancer Ther; 15(6); 1190-200. ©2016 AACR.

  20. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  1. Molecular Cross-Talk between the NFκB and STAT3 Signaling Pathways in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cristiane H. Squarize

    2006-09-01

    Full Text Available The development of head and neck squamous cell carcinoma (HNSCC involves the accumulation of genetic and epigenetic alterations in tumor-suppressor proteins, together with the persistent activation of growth-promoting signaling pathways. The activation of epidermal growth factor receptor (EGFR is a frequent event in HNSCC. However, EGFR-independent mechanisms also contribute to the activation of key intracellular signaling routes, including signal transducer and activator of transcription-3 (STAT3, nuclear factor κB (NFκB, and Akt. Indeed, the autocrine activation of the gp130 cytokine receptor in HNSCC cells by tumor-released cytokines, such as IL-6, can result in the EGFR-independent activation of STAT3. In this study, we explored the nature of the molecular mechanism underlying enhanced IL-6 secretion in HNSCC cells. We found that HNSCC cells display an increased activity of the IL-6 promoter, which is dependent on the presence of an intact NFκB site. Furthermore, NFκB inhibition downregulated IL-6 gene and protein expression, and decreased the release of multiple cytokines. Interestingly, interfering with NFκB function also prevented the autocrine/paracrine activation of STAT3 in HNSCC cells. These findings demonstrate a cross-talk between the NFκB and the STAT3 signaling systems, and support the emerging notion that HNSCC results from the aberrant activity of a signaling network.

  2. Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi

    OpenAIRE

    Xiao-Ting Liu; Zhe-Xing Wang; Yu Yang; Lin Wang; Ruo-Feng Sun; Yi-Min Zhao; Neng-Jiang Yu

    2014-01-01

    Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1) with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3) with IC50 value of...

  3. A flow cytometry technique to study intracellular signals NF-κB and STAT3 in peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Chavarin Patricia

    2007-07-01

    Full Text Available Abstract Background Cytokines have essential roles on intercellular communications and are effective in using a variety of intracellular pathways. Among this multitude of signalling pathways, the NF-κB (nuclear factor kappaB and STAT (signal transducer and activator of transcription families are among the most frequently investigated because of their importance. Indeed, they have important role in innate and adaptive immunity. Current techniques to study NF-κB and STAT rely on specific ELISAs, Western Blots and – most recently described – flow cytometry; so far, investigation of such signalling pathways are most commonly performed on homogeneous cells after purification. Results The present investigation aimed at developing a flow cytometry technique to study transcription factors in various cellular types such as mixtures of B-cells, T-lymphocytes and monocytes/macrophages stimulated in steady state conditions (in other words, as peripheral blood mononuclear cells. To achieve this goal, a two step procedure was carried out; the first one consisted of stimulating PBMCs with IL1β, sCD40L and/or IL10 in such a manner that optimal stimulus was found for each cell subset (and subsequent signal transduction, therefore screened by specific ELISA; the second step consisted of assessing confirmation and fine delineation of technical conditions by specific Western-Blotting for either NF-κB or STAT products. We then went on to sensitize the detection technique for mixed cells using 4 color flow cytometry. Conclusion In response to IL1β, or IL10, the levels of phosphorylated NF-κB and STAT3 – respectively – increased significantly for all the studied cell types. In contrast, B-cells and monocytes/macrophages – but, interestingly, not T-lymphocytes (in the context of PBMCs – responded significantly to sCD40L by increasing phosphorylated NF-κB.

  4. Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells

    Directory of Open Access Journals (Sweden)

    Choi Im Seup

    2011-10-01

    Full Text Available Abstract Background Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(p-hydroxyphenyl-2-butenal in lipopolysaccharide (LPS-stimulated astrocytes and microglial BV-2 cells. Methods Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml for 24 h, in the presence (1, 2, 5 μM or absence of 2,4-bis(p-hydroxyphenyl-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB DNA binding activity was determined using gel mobility shift assays. Results We found that 2,4-bis(p-hydroxyphenyl-2-butenal (1, 2, 5 μM suppresses the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as the production of nitric oxide (NO, reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α, and interleukin-1β (IL-1β in LPS (1 μg/ml-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(p-hydroxyphenyl-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(p-hydroxyphenyl-2-butenal inhibited LPS-elevated Aβ42 levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3 siRNA and a pharmacological inhibitor showed that 2

  5. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  6. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  7. HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer.

    Science.gov (United States)

    Hu, Bin; Zhang, Kundong; Li, Shaobo; Li, Hao; Yan, Zhaowen; Huang, Li; Wu, Jianghong; Han, Xiao; Jiang, Weiliang; Mulatibieke, Tunike; Zheng, Lin; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-07-01

    Hypermethylated in cancer 1 (HIC1) is a tumour suppressor gene that is frequently deleted or epigenetically silenced in many human cancers. However, the molecular function of HIC1 in pancreatic cancer has not been fully elucidated, especially in cancer invasion and metastasis. We aimed to clarify the clinical relevance of HIC1 and human pancreatic cancer and the mechanism of its effect on invasion and metastasis .HIC1 was downregulated in pancreatic cancer patient cancer tissue and pancreatic cancer cell lines. A tissue microarray analysis demonstrated that negative HIC1 expression predicted advanced pathological stages and worse patient survival. In addition, HIC1 inhibited the invasion and metastasis of pancreatic cancer cells both in vitro and in vivo. Finally, HIC1 repressed the expression of STAT3 target genes, including c-Myc, VEGF, CyclinD1, MMP2 and MMP9, by binding and interacting with STAT3 to impede its DNA-binding ability but without affecting the protein levels of STAT3 and p-STAT3. Therefore, HIC1 appears to function as a STAT3 inhibitor and may be a promising target for cancer research and for the development of an optimal treatment approach for pancreatic cancer. PMID:27085461

  8. Role of the STAT3/survivin signaling pathway in the EML4-ALK-positive lung adenocarcinoma cell line H2228 before and after crizotinib-induced resistance

    Institute of Scientific and Technical Information of China (English)

    Haiyan Peng; Wenhua Zhao Co-first author; Cuiyun Su; Xiangqun Song; Aiping Zeng; Huilin Wang; Ruiling Ning; Shaozhang Zhou 

    2015-01-01

    Objective This study investigated the role of the STAT3/survivin signaling pathway in the EML4-ALK–positive lung adenocarcinoma cel line H2228 before and after crizotinib-induced resistance. The mecha-nism of resistance was studied. Methods Cel viability was determined using the MTT assay. Crizotinib-induced apoptosis in H2228 and H2228 crizotinib-resistant cel s treated with the indicated doses of crizotinib was measured at dif erent times (24 h, 48 h, 72 h) using flow cytometry. The levels of p-ALK, ALK, p-STAT3, STAT3, and survivin after treatment of cel s with 0, 0.3, and 1μM crizotinib for 72 h were determined using Western blot analysis. DNA sequencing was used to identify mutations in H2228 crizotinib-resistant cel s. Results The crizotinib IC50 values in H2228 and H2228 crizotinib-resistant cel s at 72 h were 334.5 nM and 3418 nM, respectively. The resistance index of H2228 crizotinib-resistant cel s was 10.20. Crizotinib induced apoptosis in H2228 cel s and reduced the levels of p-ALK, p-STAT3, and survivin. In contrast, no changes in the levels of p-ALK, p-STAT3, and survivin were observed in H2228 crizotinib-resistant cel s. The mutations 2067G→A and 2182G→C in EML4-ALK were present in the H2228 crizotinib-resistant cel s. Conclusion Crizotinib decreased the viability of H2228 cel s in a dose- and time-dependent manner. In the STAT3/survivin pathway, downregulation of p-ALK, p-STAT3, and survivin might contribute to crizo-tinib-induced apoptosis in H2228 cel s. However, the STAT3/survivin pathway in H2228 crizotinib-resistant cel s was unaf ected by crizotinib treatment. Acquired resistance in H2228 cel s might be related to ALK mutations.

  9. Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jun Peng

    2012-05-01

    Full Text Available Signal Transducer and Activator of Transcription 3 (STAT3, a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC. However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer.

  10. Interleukin-32α inactivates JAK2/STAT3 signaling and reverses interleukin-6-induced epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jingfeng; Wang, Silu; Su, Jiadong; Chu, Guanyu; You, Heyi; Chen, Zongjing; Sun, Hongwei; Chen, Bicheng; Zhou, Mengtao

    2016-01-01

    Interleukin (IL)-32 is a newly discovered cytokine that has multifaceted roles in inflammatory bowel disease, cancer, and autoimmune diseases and participates in cell apoptosis, cancer cell growth inhibition, accentuation of inflammation, and angiogenesis. Here, we investigated the potential effects of IL-32α on epithelial-mesenchymal transition, metastasis, and invasion, and the JAK2/STAT3 signaling pathway in pancreatic cancer cells. The human pancreatic cancer cell lines PANC-1 and SW1990 were used. Epithelial-mesenchymal transition-related markers, including E-cadherin, N-cadherin, Vimentin, Snail, and Zeb1, as well as extracellular matrix metalloproteinases (MMPs), including MMP2, MMP7, and MMP9, were detected by immunofluorescence, Western blotting, and real-time polymerase chain reaction. The activation of JAK2/STAT3 signaling proteins was detected by Western blotting. Wound healing assays, real-time polymerase chain reaction, and Western blotting were performed to assess cell migration and invasion. The effects of IL-32α on the IL-6-induced activation of JAK2/STAT3 were also evaluated. In vitro, we found that IL-32α inhibits the expressions of the related markers N-cadherin, Vimentin, Snail, and Zeb1, as well as JAK2/STAT3 proteins, in a dose-dependent manner in pancreatic cancer cell lines. Furthermore, E-cadherin expression was increased significantly after IL-32α treatment. IL-32α downregulated the expression of MMPs, including MMP2, MMP7, and MMP9, and decreased wound healing in pancreatic cancer cells. These consistent changes were also found in IL-6-induced pancreatic cancer cells following IL-32α treatment. This study showed that reversion of epithelial-mesenchymal transition, inhibition of invasiveness and metastasis, and activation of the JAK2/STAT3 signaling pathway could be achieved through the application of exogenous IL-32α. PMID:27471397

  11. Active components with inhibitory activities on IFN-γ/STAT1 and IL-6/STAT3 signaling pathways from Caulis Trachelospermi.

    Science.gov (United States)

    Liu, Xiao-Ting; Wang, Zhe-Xing; Yang, Yu; Wang, Lin; Sun, Ruo-Feng; Zhao, Yi-Min; Yu, Neng-Jiang

    2014-01-01

    Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1) with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3) with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1) and nortrachelogenin 4-O-β-D-glucopyranoside (2), together with six known compounds. The lignan compounds 1-4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively. PMID:25100250

  12. Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Liu

    2014-08-01

    Full Text Available Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1 with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3 with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1 and nortrachelogenin 4-O-β-d-glucopyranoside (2, together with six known compounds. The lignan compounds 1–4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively.

  13. Mouse Skeletal Muscle Fiber-Type-Specific Macroautophagy and Muscle Wasting Are Regulated by a Fyn/STAT3/Vps34 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    2012-05-01

    Full Text Available Skeletal muscle atrophy induced by aging (sarcopenia, inactivity, and prolonged fasting states (starvation is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.

  14. In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFκB signaling in pancreatic cancer cells.

    Science.gov (United States)

    Duan, JingJing; Yue, Wen; E, JianYu; Malhotra, Jyoti; Lu, Shou-En; Gu, Jun; Xu, Feng; Tan, Xiang-Lin

    2016-01-01

    Resveratrol (RES) has been studied extensively as an anticancer agent. However, the anticancer effects of triacetylresveratrol (TRES, an acetylated analog of RES) which has higher bioavailability have not been well established. We comparatively evaluated their effects on cell proliferation, apoptosis and the molecular changes in STAT3, NFκB and apoptotic signaling pathways in pancreatic cancer cells. Apoptosis was determined by flow cytometry. The nuclear translocation and interaction of STAT3 and NFκB were detected by Western blotting and immunoprecipitation, respectively. Both TRES and RES inhibited cell viability, and induced apoptosis of pancreatic cancer cells in a concentration and incubation time-dependent manner. TRES, similarly to RES, inhibited the phosphorylation of STAT3 and NFκB, down-regulated Mcl-1, and up-regulated Bim and Puma in pancreatic cancer cells. Remarkably, we, for the first time, observed that both TRES and RES suppressed the nuclear translocation, and interrupted the interaction of STAT3 and NFκB in PANC-1 cells. Comparative anticancer effects of TRES and RES on pancreatic cancer suggested that TRES with higher bioavailability may be a potential agent for pancreatic cancer prevention and treatment. Further in vivo experiments and functional studies are warranted to investigate whether TRES exhibits better beneficial effects than RES in mice and humans. PMID:27539371

  15. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  16. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    Directory of Open Access Journals (Sweden)

    Rajalaxmi Natarajan

    Full Text Available Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3 plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs. In vitro hNSCs primed with fibroblast growth factor 2 (FGF2 exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF, which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases.

  17. Icariin regulates systemic iron metabolism by increasing hepatic hepcidin expression through Stat3 and Smad1/5/8 signaling.

    Science.gov (United States)

    Zhang, Miao; Liu, Jing; Guo, Wenli; Liu, Xin; Liu, Sijin; Yin, Huijun

    2016-05-01

    Systemic iron homeostasis is strictly controlled under normal conditions to ensure a balance between the absorption, utilization, storage and recycling of iron. The hepcidin-ferroportin (FPN) axis is of critical importance in the maintenance of iron homeostasis. Hepcidin deficiency gives rise to enhanced dietary iron absorption, as well as to increased iron release from macrophages, and this in turn results in iron accumulation in the plasma and organs, and is associated with a range of tissue pathologies. Low hepcidin levels have been demonstrated in most forms of hereditary hemochromatosis (HH), as well as in β-thalassemia. Therapies that increase hepcidin concentrations may potentially play a role in the treatment of these iron overload-related diseases. To date, natural compounds have not been extensively investigated for this purpose, to the best of our knowledge. Thus, in the present study, we screened natural compounds that have the potential to regulate hepcidin expression. By performing hepcidin promoter-luciferase assay, RT-qPCR and animal experiments, we demonstrated that icariin and berberine were potent stimulators of hepcidin transcription. Mechanistic experiments indicated that icariin and berberine increased hepcidin expression by activating the signal transducer and activator of transcription 3 (Stat3) and Smad1/5/8 signaling pathways. The induction of hepcidin was confirmed in mice following icariin administration, coupled with associated changes in serum and tissue iron concentrations. In support of these findings, the icariin analogues, epimedin A, B and C, also increased hepatic hepcidin expression. However, these changes were not observed in hepcidin-deficient [Hamp1-/- or Hamp1‑knockout (KO)] mice following icariin administration, thereby verifying hepatic hepcidin as the target of icariin. Although berberine exhibited a robust capacity to promote hepcidin expression in vitro, it failed to alter hepcidin expression in mice. Taken together

  18. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT-3 by thyroid oncogenic kinase RET/PTC

    Directory of Open Access Journals (Sweden)

    Kim Dong Wook

    2008-05-01

    Full Text Available Abstract Background RET/PTC (rearranged in transformation/papillary thyroid carcinomas gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. Methods Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6. The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. Results In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET

  19. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer

    OpenAIRE

    Thakur, Ravi; Trivedi, Rachana; Rastogi, Namrata; Singh, Manisha; Mishra, Durga Prasad

    2015-01-01

    Cancer stem cells (CSCs) are responsible for aggressive tumor growth, metastasis and therapy resistance. In this study, we evaluated the effects of Shikonin (Shk) on breast cancer and found its anti-CSC potential. Shk treatment decreased the expression of various epithelial to mesenchymal transition (EMT) and CSC associated markers. Kinase profiling array and western blot analysis indicated that Shk inhibits STAT3, FAK and Src activation. Inhibition of these signaling proteins using standard ...

  20. Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway

    OpenAIRE

    Jun Peng; Wei Xu; Aling Shen; Zhenfeng Hong; Jianwei Zeng; Youzhi Zhan; Ling Zhang; Lili Wang; Lihui Wei; Jiumao Lin; Qiaoyan Cai

    2012-01-01

    Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mous...

  1. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    OpenAIRE

    Youn Kyung Choi; Sung-Gook Cho; Sang-Mi Woo; Yee Jin Yun; Sunju Park; Yong Cheol Shin; Seong-Gyu Ko

    2014-01-01

    Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic ...

  2. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling

    Science.gov (United States)

    Zhao, Sida; Guo, Juan; Zhao, Youshan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2016-01-01

    Many studies have indicated that histone deacetylase (HDAC) activity is always increased in a lot of human tumors, and inhibition of HDAC activity is a promising new strategy in the treatment of cancers. Chidamide, a novel HDAC inhibitor of the benzamide class, is currently under clinical trials. In this study, we aimed to investigate the antitumor activity of Chidamide on myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) cell lines and explore the possible mechanism. Chidamide exhibited efficient anti-proliferative activity on MDS and AML cells in a time- and dose-dependent manner, accompanied by cell cycle arrest at G0/G1 phase and cell apoptosis. Importantly, Chidamide possessed potent HDAC inhibition property, as evaluated by HDAC activity analysis and acetylation of histone H3 and H4. Moreover, Chidamide significantly increased the expression of Suppressors of cytokine signaling 3 (SOCS3), reduced the expression of Janus activated kinases 2 (JAK2) and Signal transducer and activator of transcription 3 (STAT3), and inhibited STAT3 downstream genes, including c-Myc, Bcl-xL, and Mcl-1, which are involved in cell cycle progression and anti-apoptosis. Therefore, we demonstrate that Chidamide exhibits potent inhibitory effect on cell viability of MDS and AML cells, and the possible mechanism may lie in the downregulation of JAK2/STAT3 signaling through SOCS3 upregulation. Our data provide rationale for clinical investigations of Chidamide in MDS and AML. PMID:27508038

  3. Stat3 and G-CSF-induced myeloid differentiation.

    Science.gov (United States)

    Chakraborty, A; Tweardy, D J

    1998-08-01

    Granulocyte colony-stimulating factor (G-CSF) is the cytokine critical for directing neutrophilic granulocyte differentiation. Early G-CSF signaling events in myeloid cells involves activation of STATs, proteins that serve the dual function of signal transduction and activation of transcription, especially the activation of Stat3. A dominant-negative mutant construct of Stat3 inhibited G-CSF-mediated neutrophilic differentiation indicating that Stat3 is a essential component for driving the G-CSF-mediated differentiation program in myeloid cells. Three isoforms of Stat3 have been identified, alpha(p92), beta(p83) and gamma(p72) each derived from a single gene. Stat3alpha is the predominant isoform expressed in most cells. Stat3beta is derived from Stat3alpha by alternative RNA splicing. Stat3gamma is derived from Stat3alpha by limited proteolysis. Mapping of Stat3alpha and Stat3beta activation in M1 murine myeloid leukemia cells revealed that their optimal activation required G-CSFR constructs containing both Y704 and Y744. These amino acid residues has previously been demonstrated to be essential for G-CSF-induced differentiation in this cells. Phosphopeptide affinity and phosphopeptide inhibition studies indicate that Stat3alpha and Stat3beta are recruited to the G-CSF receptor complex through their interaction with the receptor at phosphotyrosines Y704 and Y744. Y744 is followed at the +3 position by Cys (C). This sequence YXXC, represents a novel motif implicated in the recruitment and activation of Stat3alpha, Stat3beta and Stat3gamma by the hG-CSFR. Structurally, Stat3alpha, Stat3beta and Stat3gamma differ from each other in their C-terminal transactivation domain. In the beta isoform, the Stat3alpha transactivation domain is replaced by 7 amino acid residues which enable Stat3beta to interact with c-Jun. In the gamma isoform, the Stat3alpha transactivation domain is removed by limited proteolysis creating a dominant negative isoform. In immature human

  4. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways.

    Science.gov (United States)

    Wen, Zhengde; Huang, Chaohao; Xu, Yaya; Xiao, Yuwu; Tang, Lili; Dai, Juji; Sun, Hongwei; Chen, Bicheng; Zhou, Mengtao

    2016-01-15

    In tumors, vascular endothelial growth factor (VEGF) contributes to angiogenesis, vascular permeability, and tumorigenesis. In our previous study, we found that α-solanine, which is widespread in solanaceae, has a strong anti-cancer effect under normoxia. However, it is unknown whether α-solanine has a similar effect under hypoxia. We used cobalt chloride (CoCl2) to mimic hypoxia in vitro. HIF-1α, which is almost undetectable under normoxia, was significantly increased. Simultaneously, another regulator of VEGF, STAT3, was also significantly activated by CoCl2. We utilized α-solanine in co-culture with CoCl2. α-solanine decreased the expression of VEGF and loss of E-cadherin. α-solanine also suppressed the activation of phospho-ERK1/2 (p-ERK1/2), HIF-1α, and STAT3 signaling. The results provide new evidence that α-solanine has a strong anti-cancer effect via the ERK1/2-HIF-1α and STAT3 signaling pathways and suggest that it may be a potential new drug.

  5. Elevated STAT3 Signaling-Mediated Upregulation of MMP-2/9 Confers Enhanced Invasion Ability in Multidrug-Resistant Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2015-10-01

    Full Text Available The development of multidrug resistance greatly impedes effective cancer therapy. Recent advances in cancer research have demonstrated that acquisition of multidrug resistance by cancer cells is usually accompanied by enhanced cell invasiveness. Several lines of evidence indicated that cross activation of other signaling pathways during development of drug resistance may increase invasive potential of multidrug-resistant (MDR cancer cells. However, the accurate mechanism of this process is largely undefined. In this study, to better understand the associated molecular pathways responsible for cancer progression induced by drug resistance, a MDR human breast cancer cell line SK-BR-3/EPR with P-glycoprotein overexpression was established using stepwise long-term exposure to increasing concentration of epirubicin. The SK-BR-3/EPR cell line exhibited decreased cell proliferative activity, but enhanced cell invasive capacity. We showed that the expression of metastasis-related matrix metalloproteinase (MMP-2/9 was elevated in SK-BR-3/EPR cells. Moreover, SK-BR-3/EPR cells showed elevated activation of STAT3. Activation of STAT3 signaling is responsible for enhanced invasiveness of SK-BR-3/EPR cells through upregulation of MMP-2/9. STAT3 is a well-known oncogene and is frequently implicated in tumorigenesis and chemotherapeutic resistance. Our findings augment insight into the mechanism underlying the functional association between MDR and cancer invasiveness.

  6. A Complex of Nuclear Factor I-X3 and STAT3 Regulates Astrocyte and Glioma Migration through the Secreted Glycoprotein YKL-40*

    OpenAIRE

    Singh, Sandeep K.; Bhardwaj, Reetika; Wilczynska, Katarzyna M.; Dumur, Catherine I.; Kordula, Tomasz

    2011-01-01

    Nuclear factor I-X3 (NFI-X3) is a newly identified splice variant of NFI-X that regulates expression of several astrocyte-specific markers, such as glial fibrillary acidic protein. Here, we identified a set of genes regulated by NFI-X3 that includes a gene encoding a secreted glycoprotein YKL-40. Although YKL-40 expression is up-regulated in glioblastoma multiforme, its regulation and functions in nontransformed cells of the central nervous system are widely unexplored. We find that expressio...

  7. The role of STAT3 in autophagy.

    Science.gov (United States)

    You, Liangkun; Wang, Zhanggui; Li, Hongsen; Shou, Jiawei; Jing, Zhao; Xie, Jiansheng; Sui, Xinbing; Pan, Hongming; Han, Weidong

    2015-01-01

    Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.

  8. Schizandrin A Inhibits Microglia-Mediated Neuroninflammation through Inhibiting TRAF6-NF-κB and Jak2-Stat3 Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Fangjiao Song

    Full Text Available Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A, a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO, tumor necrosis factor (TNF-α and interleukin (IL-6 induced by lipopolysaccharide (LPS both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS and cyclooxygenase 2 (COX-2 expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways.

  9. Schizandrin A Inhibits Microglia-Mediated Neuroninflammation through Inhibiting TRAF6-NF-κB and Jak2-Stat3 Signaling Pathways

    Science.gov (United States)

    Song, Fangjiao; Zeng, Kewu; Liao, Lixi; Yu, Qian; Tu, Pengfei; Wang, Xuemei

    2016-01-01

    Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6 induced by lipopolysaccharide (LPS) both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways. PMID:26919063

  10. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  11. Suppressive Effects of Plumbagin on Invasion and Migration of Breast Cancer Cells via the Inhibition of STAT3 Signaling and Down-regulation of Inflammatory Cytokine Expressions

    Institute of Scientific and Technical Information of China (English)

    Wei Yan; Bing Tu; Yun-yun Liu; Ting-yu Wang; Han Qiao; Zan-jing Zhai; Hao-wei Li; Ting-ting Tang

    2013-01-01

    Objective:The aim of this study was to investigate the effects of plumbagin (PL), a naphthoquinone derived from the medicinal plant plumbago zeylanica, on the invasion and migration of human breast cancer cells. Methods:Human breast cancer MDA-MB-231SArfp cells were treated with different concentrations of plum-bagin for 24 h. The effects of plumbagin on the migration and invasion were observed by a transwell method. The expressions of IL-1α, IL-1β, IL-6, IL-8, TGF-β, TNFα, MMP-2 and MMP-9 mRNA in M DA-MB-231SArfp cells were detected using Real-Time PCR. MDA-MB-231SArfp cells were treated with plumbagin at different concentrations for 45 minutes. The activation of STAT3 was detected by western blot. Following this analysis, STAT3 in MDA-MB-231SArfp cells was knocked out using specific siRNA. mRNA levels of IL-1α, TGF-β, MMP-2 and MMP-9 were then detected. Consequently, MDA-MB-231SArfp cells were injected intracardially into BALB/c nude mice to construct a breast cancer bone metastatic model. The mice were injected intra-peritoneally with plumbagin. Non-invasive in vivo monitoring, X-ray imaging and histological staining were performed to investigate the effects of plumbagin on the invasion and migration of breast cancer cells in vivo. Results: The in vitro results showed that plumbagin could suppress the migration and invasion of breast cancer cells and down-regulate mRNA expressions of IL-1α, TGF-β, MMP-2 and MMP-9. Western blotting demonstrated that plumbagin inhibited the activation of STAT3 signaling in MDA-MB-231SArfp cells. The inactivation of STAT3 was found to have an inhibitory effect on the expressions of IL-1α, TGF-β, MMP-2 and MMP-9. In vivo studies showed that plumbagin inhibited the metastasis of breast cancer cells and decreased osteolytic bone metastases, as well as the secretion of MMP-2 and MMP-9 by tumor cells at metastatic lesions. Conclusions:Plumbagin can suppress the invasion and migration of breast cancer cells via the inhibition

  12. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jihong Shi

    Full Text Available BACKGROUND: The hypertrophic scar (HS is a serious fibrotic skin condition and a major clinical problem. Interleukin-10 (IL-10 has been identified as a prospective scar-improving compound based on preclinical trials. Our previous work showed that IL-10 has anti-fibrotic effects in transforming growth factor (TGF-β1-stimulated fibroblasts, as well as potential therapeutic benefits for the prevention and reduction of scar formation. However, relatively little is known about the mechanisms underlying IL-10-mediated anti-fibrotic and scar-improvement actions. OBJECTIVE: To explore the expression of the IL-10 receptor in human HS tissue and primary HS fibroblasts (HSFs, and the molecular mechanisms contributing to the anti-fibrotic and scar-improvement capabilities of IL-10. METHODS: Expression of the IL-10 receptor was assessed in HS tissue and HSFs by immunohistochemistry, immunofluorescence microscopy, and polymerase chain reaction analysis. Primary HSFs were treated with IL-10, a specific phosphatidylinositol 3 kinase (PI3K inhibitor (LY294002 or a function-blocking antibody against the IL-10 receptor (IL-10RB. Next, Western blot analysis was used to evaluate changes in the phosphorylation status of AKT and signal transducers and activators of transcription (STAT 3, as well as the expression levels of fibrosis-related proteins. RESULTS: HS tissue and primary HSFs were characterized by expression of the IL-10 receptor and by high expression of fibrotic markers relative to normal controls. Primary HSFs expressed the IL-10 receptor, while IL-10 induced AKT and STAT3 phosphorylation in these cells. In addition, LY294002 blocked AKT and STAT phosphorylation, and also up-regulated expression levels of type I and type III collagen (Col 1 and Col 3 and alpha-smooth muscle actin (α-SMA in IL-10-treated cells. Similarly, IL-10RB reduced STAT3/AKT phosphorylation and blocked the IL-10-mediated mitigation of fibrosis in HSFs. CONCLUSION: IL-10 apparently

  13. Cross talk Initiated by Endothelial Cells Enhances Migration and Inhibits Anoikis of Squamous Cell Carcinoma Cells through STAT3/Akt/ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kathleen G. Neiva

    2009-06-01

    Full Text Available It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3, Akt, and extracellular signal-regulated kinase (ERK in a panel of head and neck squamous cell carcinoma (HNSCC cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A. Gene expression analysis demonstrated that interleukin-6 (IL- 6, interleukin-8 (CXCL8, and epidermal growth factor (EGF are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.

  14. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs.

    Science.gov (United States)

    Campo Verde Arboccó, Fiorella; Sasso, Corina V; Actis, Esteban A; Carón, Rubén W; Hapon, María Belén; Jahn, Graciela A

    2016-01-01

    Thyroid diseases have deleterious effects on lactation, litter growth and survival, and hinder the suckling-induced hormone release, leading in the case of hyperthyroidism, to premature mammary involution. To determine the effects of hypothyroidism (HypoT) on late lactation, we analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT on mammary histology and the expression of members of the JAK/STAT/SOCS signaling pathway, milk proteins, prolactin (PRLR), estrogen (ER), progesterone (PR) and thyroid hormone (TR) receptors, markers of involution (such as stat3, lif, bcl2, BAX and PARP) on lactation (L) day 21. HypoT mothers showed increased histological markers of involution compared with control rats, such as adipose/epithelial ratio, inactive alveoli, picnotic nuclei and numerous detached apoptotic cells within the alveolar lumina. We also found decreased PRLR, β-casein and α-lactoalbumin mRNAs, but increased SOCS1, SOCS3, STAT3 and LIF mRNAs, suggesting a decrease in PRL signaling and induction of involution markers. Furthermore, Caspase-3 and 8 and PARP labeled cells and the expression of structural proteins such as β-Actin, α-Tubulin and Lamin B were increased, indicating the activation of apoptotic pathways and tissue remodelation. HypoT also increased PRA (mRNA and protein) and erβ and decreased erα mRNAs, and increased strongly TRα1, TRβ1, PRA and ERα protein levels. These results show that lactating HypoT rats have premature mammary involution, most probably induced by the inhibition of prolactin signaling along with the activation of the LIF-STAT3 pathway.

  15. Knockdown of NogoA prevents MPP+‑induced neurotoxicity in PC12 cells via the mTOR/STAT3 signaling pathway.

    Science.gov (United States)

    Zhong, Jianbin; Li, Xie; Wan, Limei; Chen, Zhibang; Zhong, Simin; Xiao, Songhua; Yan, Zhengwen

    2016-02-01

    NogoA is a myelin‑associated protein, which is important in the inhibition of axonal fiber growth and in regeneration following injury of the mammalian central nervous system. A previous study suggested that NogoA may be key in the process of Parkinson's disease (PD), which is the second most common chronic neurodegenerative disorder worldwide. The regulatory mechanism underlying the effect of NogoA on the process of PD remains to be fully elucidated. The present study aimed to investigate the effect and underlying mechanism of NogoA on cellular viability, apoptosis and autophagy induced by 1-methyl-4-phenylpyridinium (MPP+) in PC12 cells, a commonly used in vitro PD model. PC12 cells were treated with 1 mM MPP+ for 24 h and the cells were harvested for western blotting. The results demonstrated that the protien expression levels of NogoA were increased in the PC12 cells treated with MPP+. Subsequently, NogoA small interfering RNA was synthesized and transfected into PC12 cells to silence the expression of NogoA. NogoA knockdown significantly reduced the MPP+‑induced decrease in cell viability and apoptosis, detected using a cell counting kit‑8 and flow cytometric analysis, respectively. Interference in the expression of NogoA increased the MPP+‑induced decrease in mitochondrial membrane potential, determined quantitatively by flow cytometry using JC-1 dye, and the protein levels of Beclin‑1. In addition, MPP+ treatment activated the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Knockdown of NogoA significantly inhibited the expression levels of mTOR and STAT3. Furthermore, overexpression of NogoA had similar neurotoxic effects on the PC12 cells as MPP+ treatment. Treatment with rapamycin, an inhibitor of the mTOR/STAT3 signaling pathway had a similar effect to that of NogoA knockdown in the MPP+‑treated PC12 cells. Taken together, the results from the present study demonstrated that

  16. STAT3 interacts directly with Hsp90.

    Science.gov (United States)

    Prinsloo, Earl; Kramer, Adam H; Edkins, Adrienne L; Blatch, Gregory L

    2012-03-01

    Heat shock protein 90 (Hsp90) functionally modulates signal transduction. The signal transducer and activator of transcription 3 (STAT3) mediates interleukin-6 family cytokine signaling. Aberrant activation and mutation of STAT3 is associated with oncogenesis and immune disorders, respectively. Hsp90 and STAT3 have previously been shown to colocalize and coimmunoprecipitate in common complexes. Surface plasmon resonance spectroscopy revealed a direct, high affinity specific interaction between recombinant Hsp90β and STAT3β in the presence and absence of adenosine triphosphate (ATP) in molar excess. Furthermore, comparative analysis using a phosphomimetic mutation at tyrosine 705 showed that the direct interaction appeared to favor neither unactivated nor activated STAT3. Destabilizing mutation of STAT3 at arginine residues 414/417 to alanine in the DNA-binding domain, previously shown to disrupt nuclear translocation in vivo, reduced interaction with a STAT3 DNA binding site oligonucleotide and Hsp90β in vitro, indicating that STAT3 requires a functional DNA-binding domain for full direct interaction with Hsp90. Site-directed mutagenesis of a mammalian STAT3-EGFP-N1 fusion construct at RR414/417 and subsequent transfection into human MCF7 epithelial breast cancer cells showed no impaired nuclear translocation when observed by confocal laser scanning microscopy. However, costaining for Hsp90α/β isoforms and colocalization analysis revealed a defined decrease in pixel-on-pixel colocalization compared with the wild-type confirming the requirement of the DNA-binding domain for high-affinity interaction. PMID:22271514

  17. Non-CSCs nourish CSCs through interleukin-17E-mediated activation of NF-κB and JAK/STAT3 signaling in human hepatocellular carcinoma.

    Science.gov (United States)

    Luo, Yongli; Yang, Zhi; Su, Li; Shan, Juanjuan; Xu, Huailong; Xu, Yanmin; Liu, Limei; Zhu, Wei; Chen, Xuejiao; Liu, Chungang; Chen, Jun; Yao, Chao; Cheng, Feifei; Zhang, Chengcheng; Ma, Qinghua; Shen, Junjie; Qian, Cheng

    2016-06-01

    Within the cancer stem cell (CSC) niche, non-CSCs play an indispensable role in facilitating a microenvironment capable of maintaining CSC properties. Non-CSCs contribute to not only the structure and topology of the tumor microenvironment but also the maintenance of the dynamic state of CSCs. Interleukin-17E (IL-17E/IL-25) is important in allergic inflammation and protection against parasitic infection. Moreover, it has also been demonstrated that IL-17E takes part in different cancers recently. Here, for the first time we demonstrate that discrepant expression of IL-17E and the IL-17 receptor B (IL-17RB) exists in Nanog positive (Nanog(Pos)) CSCs and Nanog negative (Nanog(Neg)) non-CSCs in hepatocellular carcinoma (HCC). Moreover, we further demonstrate that IL-17E binding to IL-17RB activates NF-κB and JAK/Stat3 pathways to promote proliferation and sustain self-renewal of CSCs in HCC. Meanwhile, the beneficial effect of IL-17E on Nanog(Pos) CSCs could be blocked by specific inhibitors of JAK and NF-κB signaling. All the findings indicated that non-CSC-derived secreted IL-17E binds IL-17RB on CSCs to signal via JAK/Stat3 and NF-κB pathways to mediate crosstalk between CSCs and non-CSCs. Therefore, IL-17E/IL-17RB signaling represents a potential therapeutic target for treatment of HCC. PMID:27000993

  18. Targeting STAT3 in Ovarian Cancers: Reciprocal Activation of NF-kB by STAT3 Inhibition

    OpenAIRE

    Zhang, Yixi

    2016-01-01

    The transcription factor STAT3 normally modulates cell proliferation with a rapid and transient downstream effect. However, in tumor cells, inappropriately activated STAT3 alters the gene expression profile and renders tumor cells unresponsive to cell death signals. In this study, we examine the biological and biochemical effects of some STAT3 inhibitors on ovarian and cervical cancer cells. Furthermore, we study the reciprocal relationship between STAT3 and NF-kB—another prosurvival transcr...

  19. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling.

    Science.gov (United States)

    Saha, Achinto; Blando, Jorge; Silver, Eric; Beltran, Linda; Sessler, Jonathan; DiGiovanni, John

    2014-06-01

    Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Prostate cancer is the most common nonskin neoplasm and second leading cause of death in men. 6-Shogaol (6-SHO), a potent bioactive compound in ginger (Zingiber officinale Roscoe), has been shown to possess anti-inflammatory and anticancer activity. In the present study, the effect of 6-SHO on the growth of prostate cancer cells was investigated. 6-SHO effectively reduced survival and induced apoptosis of cultured human (LNCaP, DU145, and PC3) and mouse (HMVP2) prostate cancer cells. Mechanistic studies revealed that 6-SHO reduced constitutive and interleukin (IL)-6-induced STAT3 activation and inhibited both constitutive and TNF-α-induced NF-κB activity in these cells. In addition, 6-SHO decreased the level of several STAT3 and NF-κB-regulated target genes at the protein level, including cyclin D1, survivin, and cMyc and modulated mRNA levels of chemokine, cytokine, cell cycle, and apoptosis regulatory genes (IL-7, CCL5, BAX, BCL2, p21, and p27). 6-SHO was more effective than two other compounds found in ginger, 6-gingerol, and 6-paradol at reducing survival of prostate cancer cells and reducing STAT3 and NF-κB signaling. 6-SHO also showed significant tumor growth inhibitory activity in an allograft model using HMVP2 cells. Overall, the current results suggest that 6-SHO may have potential as a chemopreventive and/or therapeutic agent for prostate cancer and that further study of this compound is warranted. PMID:24691500

  20. The expression and significance of IL -6/STAT3 signaling pathway on the hypothalamus -pituitary-adrenal axis in the early stage of sepsis rats%IL -6/STAT3信号通路在脓毒症早期大鼠下丘脑-垂体-肾上腺轴中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    王晓丹; 聂文龙; 张玉想

    2015-01-01

    Objective To explore the inner link between interleukin -6 ( IL -6 )/signal transducer and activator of transcription 3 ( STAT3 ) signaling pathway and hypothalamus -pituitary -adrenal axis ( HPAA) excessive activation in the early stage of sepsis rats .Methods Twenty -four adult male Wistar rats were randomly divided into Control group ( n=8 ) , sham-operated group ( n=8) and CLP group (n=8).The septic rat models were challenged by CLP , executed after 6 hours, the hypothalamus, pituitary and adrenal gland was isolated .Expression levels of CRH, IL-6, STAT3 and SOCS3 mRNA in hypothalamus , POMC, IL-6, STAT3 and SOCS3 mRNA in pituitary and IL -6, STAT3 and SOCS3 mRNA in adrenal gland were quantified by real -time quantitative PCR ( RT -PCR).Results Compared to Control group and Sham group: CRH, IL -6, STAT3 and SOCS3 mRNA expression levels were up -regulated significantly (P<0.01) in the hypothalamus tissues of CLP group;POMC, IL-6, STAT3 and SOCS3 mRNA expression levels were up -regulated significantly (P<0.01) in the pituitary tissues of CLP group; IL-6, STAT3 and SOCS3 mRNA expression levels were up-regulated significantly (P<0.01) in adrenal gland tissues of CLP group .Expression levels of all purpose gene were not different in Control group and Sham group .Conclusion IL -6/STAT3 signaling pathway has a close relationship with HPAA excessive activation in the early stage of sepsis rats.IL-6/STAT3 signaling pathway may be regarded as a novel therapeutic target for HPAA excessive activation of the sepsis .%目的:探讨大鼠脓毒症早期出现的HPA轴过度激活与IL-6/STAT3信号通路的内在联系。方法24只健康雄性Wistar大鼠,随机分为正常对照组( Control组)、假手术组( Sham组)、模型组(CLP组)三组。采用盲肠结扎穿孔(CLP)法建立脓毒症模型,术后6 h处死,分离出下丘脑、垂体、肾上腺组织。 RT-PCR检测下丘脑组织CRH、IL-6、STAT3、SOCS3 mRNA水平,垂体

  1. Glioma Cell Migration on Three-dimensional Nanofiber Scaffolds Is Regulated by Substrate Topography and Abolished by Inhibition of STAT3 Signaling

    Directory of Open Access Journals (Sweden)

    Paula A. Agudelo-Garcia

    2011-09-01

    Full Text Available A hallmark of malignant gliomas is their ability to disperse through neural tissue, leading to long-term failure of all known therapies. Identifying new antimigratory targets could reduce glioma recurrence and improve therapeutic efficacy, but screens based on conventional migration assays are hampered by the limited ability of these assays to reproduce native cell motility. Here, we have analyzed the motility, gene expression, and sensitivity to migration inhibitors of glioma cells cultured on scaffolds formed by submicron-sized fibers (nanofibers mimicking the neural topography. Glioma cells cultured on aligned nanofiber scaffolds reproduced the elongated morphology of cells migrating in white matter tissue and were highly sensitive to myosin II inhibition but only moderately affected by stress fiber disruption. In contrast, the same cells displayed a flat morphology and opposite sensitivity to myosin II and actin inhibition when cultured on conventional tissue culture polystyrene. Gene expression analysis indicated a correlation between migration on aligned nanofibers and increased STAT3 signaling, a known driver of glioma progression. Accordingly, cell migration out of glioblastoma-derived neurospheres and tumor explants was reduced by STAT3 inhibitors at subtoxic concentrations. Remarkably, these inhibitors were ineffective when tested at the same concentrations in a conventional two-dimensional migration assay. We conclude that migration of glioma cells is regulated by topographical cues that affect cell adhesion and gene expression. Cell migration analysis using nanofiber scaffolds could be used to reproduce native mechanisms of migration and to identify antimigratory strategies not disclosed by other in vitro models.

  2. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  3. Stat3 mediates expression of autotaxin in breast cancer.

    Directory of Open Access Journals (Sweden)

    Janeen Azare

    Full Text Available We determined that signal transducer and activator of transcription 3 (Stat3 is tyrosine phosphorylated in 37% of primary breast tumors and 63% of paired metastatic axillary lymph nodes. Examination of the distribution of tyrosine phosphorylated (pStat3 in primary tumors revealed heterogenous expression within the tumor with the highest levels found in cells on the edge of tumors with relatively lower levels in the central portion of tumors. In order to determine Stat3 target genes that may be involved in migration and metastasis, we identified those genes that were differentially expressed in primary breast cancer samples as a function of pStat3 levels. In addition to known Stat3 transcriptional targets (Twist, Snail, Tenascin-C and IL-8, we identified ENPP2 as a novel Stat3 regulated gene, which encodes autotaxin (ATX, a secreted lysophospholipase which mediates mammary tumorigenesis and cancer cell migration. A positive correlation between nuclear pStat3 and ATX was determined by immunohistochemical analysis of primary breast cancer samples and matched axillary lymph nodes and in several breast cancer derived cell lines. Inhibition of pStat3 or reducing Stat3 expression led to a decrease in ATX levels and cell migration. An association between Stat3 and the ATX promoter, which contains a number of putative Stat3 binding sites, was determined by chromatin immunoprecipitation. These observations suggest that activated Stat3 may regulate the migration of breast cancer cells through the regulation of ATX.

  4. The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals.

    Science.gov (United States)

    Michelucci, Alessandro; Bithell, Angela; Burney, Matthew J; Johnston, Caroline E; Wong, Kee-Yew; Teng, Siaw-Wei; Desai, Jyaysi; Gumbleton, Nigel; Anderson, Gregory; Stanton, Lawrence W; Williams, Brenda P; Buckley, Noel J

    2016-08-01

    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes. PMID:26138449

  5. Prognostic significance of STAT3 and phosphorylated STAT3 in human soft tissue tumors - a clinicopathological analysis

    Directory of Open Access Journals (Sweden)

    Nair Asha S

    2011-05-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is a key signaling molecule and a central cytoplasmic transcription factor, implicated in the regulation of growth. Its aberrant activation has been demonstrated to correlate with many types of human malignancy. However, whether constitutive STAT3 signaling plays a key role in the survival and growth of soft-tissue tumors is still unclear and hence needs to be elucidated further. In our study we examined the expression levels of STAT3 and pSTAT3 in different grades of soft tissue tumors and correlated with its clinicopathological characteristics. Methods Expression levels of STAT3 and pSTAT3 in soft tissue tumors were studied using Immunohistochemistry, Western blotting and Reverse transcriptase- PCR and correlated with its clinicopathological characteristics using Chi squared or Fisher's exact test and by logistic regression analysis. Statistical analysis was done using Intercooled Stata software (Intercooled Stata 8.2 version. Results Of the 82 soft tissue tumor samples, fifty four (65.8% showed immunoreactivity for STAT3 and twenty eight (34.1% for pSTAT3. Expression of STAT3 and pSTAT3 was significantly associated with tumor grade (P Conclusion These findings suggest that constitutive activation of STAT3 is an important factor related to carcinogenesis of human soft tissue tumors and is significantly associated with its clinicopathological parameters which may possibly have potential diagnostic implications.

  6. Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure

    Directory of Open Access Journals (Sweden)

    Hikmet Nural-Guvener

    2015-05-01

    Full Text Available Background: Recent studies have linked histone deacetylases (HDAC to remodeling of the heart and cardiac fibrosis in heart failure. However, the molecular mechanisms linking chromatin remodeling events with observed anti-fibrotic effects are unknown. Here, we investigated the molecular players involved in anti-fibrotic effects of HDAC inhibition in congestive heart failure (CHF myocardium and cardiac fibroblasts in vivo. Methods and Results: MI was created by coronary artery occlusion. Class I HDACs were inhibited in three-week post MI rats by intraperitoneal injection of Mocetinostat (20 mg/kg/day for duration of three weeks. Cardiac function and heart tissue were analyzed at six week post-MI. CD90+ cardiac fibroblasts were isolated from ventricles through enzymatic digestion of heart. In vivo treatment of CHF animals with Mocetinostat reduced CHF-dependent up-regulation of HDAC1 and HDAC2 in CHF myocardium, improved cardiac function and decreased scar size and total collagen amount. Moreover, expression of pro-fibrotic markers, collagen-1, fibronectin and Connective Tissue Growth Factor (CTGF were reduced in the left ventricle (LV of Mocetinostat-treated CHF hearts. Cardiac fibroblasts isolated from Mocetinostat-treated CHF ventricles showed a decrease in expression of collagen I and III, fibronectin and Timp1. In addition, Mocetinostat attenuated CHF-induced elevation of IL-6 levels in CHF myocardium and cardiac fibroblasts. In parallel, levels of pSTAT3 were reduced via Mocetinostat in CHF myocardium. Conclusions: Anti-fibrotic effects of Mocetinostat in CHF are associated with the IL-6/STAT3 signaling pathway. In addition, our study demonstrates in vivo regulation of cardiac fibroblasts via HDAC inhibition.

  7. Role of STAT3 in Cancer Metastasis and Translational Advances

    Directory of Open Access Journals (Sweden)

    Mohammad Zahid Kamran

    2013-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is a latent cytoplasmic transcription factor, originally discovered as a transducer of signal from cell surface receptors to the nucleus. It is activated by tyrosine phosphorylation at position 705 leading to its dimerization, nuclear translocation, DNA binding, and activation of gene transcription. Under normal physiological conditions, STAT3 activation is tightly regulated. However, compelling evidence suggests that STAT3 is constitutively activated in many cancers and plays a pivotal role in tumor growth and metastasis. It regulates cellular proliferation, invasion, migration, and angiogenesis that are critical for cancer metastasis. In this paper, we first describe the mechanism of STAT3 regulation followed by how STAT3 is involved in cancer metastasis, then we summarize the various small molecule inhibitors that inhibit STAT3 signaling.

  8. Role of STAT3 in Cancer Metastasis and Translational Advances

    Science.gov (United States)

    Patil, Prachi; Gude, Rajiv P.

    2013-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription factor, originally discovered as a transducer of signal from cell surface receptors to the nucleus. It is activated by tyrosine phosphorylation at position 705 leading to its dimerization, nuclear translocation, DNA binding, and activation of gene transcription. Under normal physiological conditions, STAT3 activation is tightly regulated. However, compelling evidence suggests that STAT3 is constitutively activated in many cancers and plays a pivotal role in tumor growth and metastasis. It regulates cellular proliferation, invasion, migration, and angiogenesis that are critical for cancer metastasis. In this paper, we first describe the mechanism of STAT3 regulation followed by how STAT3 is involved in cancer metastasis, then we summarize the various small molecule inhibitors that inhibit STAT3 signaling. PMID:24199193

  9. JAK2/STAT3 signaling pathway mediates metabolism and anti-oxidative stress in chondrocytesof osteoarthritis mice%JAK2/STAT3信号通路介导小鼠骨性关节炎中软骨细胞代谢和抗氧化应激的研究

    Institute of Scientific and Technical Information of China (English)

    刘军; 甄平; 李旭升; 李慎松; 田琦; 常彦峰; 高展望; 张航向; 陈慧

    2015-01-01

    目的:在小鼠骨性关节炎(OA)模型中观察Janus酪氨酸蛋白激酶2/信号转导子与转录激活子蛋白3(JAK2/STAT3)信号通路对软骨细胞代谢的影响以及线粒体抗氧化应激能力的改变,探讨JAK2/STAT3信号通路在此过程中的作用。方法将10只C57BL/6小鼠随机分为两组,选择其中一组小鼠建立OA模型,3周后取材,培养软骨细胞作为实验组,其余小鼠正常培养细胞作为对照组。在对照组和实验组中分别加入JAK2/STAT3信号通路激动剂SC-39100,运用蛋白印迹法(Western blotting)检测各组细胞p-JAK2、p-STAT3、B淋巴细胞瘤−2(Bcl-2)蛋白和Bax蛋白的表达,同时检测各组线粒体氧化应激指标琥珀酸脱氢酶(SDH)、细胞色素c氧化酶(COX)、丙二醛(MDA)改变。结果与对照组相比,OA模型组软骨细胞p-JAK2、p-STAT3、Bcl-2蛋白的表达偏低(P<0.05)、Bax蛋白的表达水平偏高(P<0.05),且OA模型组软骨细胞SDH和COX的表达水平均偏低(P<0.05)、MDA的含量偏高(P<0.05);当OA模型组加入SC-39100后,p-JAK2、p-STAT3、Bcl-2表达均较OA模型组升高(P<0.05)、Bax蛋白表达下降(P<0.05),SDH和COX的表达水平均较OA模型组升高(P<0.05),MDA的含量较OA模型组降低(P<0.05);对照组中加入SC-39100后的各指标与加入SC-39100前比较,差异均无统计学意义(P>0.05);OA模型加入SC-39100组后的各指标与对照组加入SC-39100比较,差异均有统计学意义(P<0.05)。结论 JAK2/STAT3信号通路和OA中软骨细胞变化密切相关,JAK2/STAT3信号通路激活后可抑制软骨细胞的凋亡;当激活的JAK2/STAT3信号通路活化时会增加软骨细胞线粒体抗氧化应激能力。%ObjectiveTo determine the effect of Janus activated tyrosine kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway on the metabolism and

  10. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  11. STAT3 activation in monocytes accelerates liver cancer progression

    Directory of Open Access Journals (Sweden)

    Wu Wen-Yong

    2011-12-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Methods Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN, which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Results Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Conclusion Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical

  12. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  13. Expression of hepcidin at the choroid plexus in normal aging rats is associated with IL-6/Stat3 signaling pathway%脉络丛上皮铁调素表达的年龄变化与IL-6/Stat3信号途径

    Institute of Scientific and Technical Information of China (English)

    刘重斌; 王瑞; 董缪武; 高喜仁; 俞峰

    2014-01-01

    Accumulating evidence has revealed that brain iron concentrations increase with aging,and the choroid plexus (CP) may be at the basis of iron-mediated toxicity and the increase in inflammation and oxidative stress that occurs with aging.The mechanism involves not only hepcidin,the key hormone in iron metabolism,but also iron-related proteins and signaling-transduction molecules,such as IL-6 and signal transducer and activator of transcription 3 (Stat3).The aim of the present study was to investigate the correlation between the IL-6/Stat3 signaling pathway and hepcidin at the CP in normal aging.Quantitative real time PCR and Western blot were used to determine the alterations in specific mRNA and corresponding protein changes at the CP at ages of 3,6,9,12,15,18,21,24,27,30,33 and 36 months in Brown-Norway/Fischer (B-N/F) rats.The results demonstrated that hepcidin mRNA level at the CP kept stable in young rats (from 3 to 18 months),and increased with aging (from 21 to 36 months).The alterations of IL-6/ p-Stat3 mRNA and protein expressions in normal aging were in accordance with that of hepcidin mRNA.Our data suggest that IL-6 may regulate hepcidin expression at the CP,upon interaction with the cognate cellular receptor,and through the Stat3 signaling transduction pathway.%老龄化可引起铁元素在脑内的蓄积.随着年龄的增加,脉络丛上皮可能是脑铁毒性、炎症反应和氧化应激损伤的重要结构.本文旨在研究铁代谢调节中的关键激素——铁调素在脉络丛上皮表达的年龄变化,及其与白细胞介素-6 (interleukin-6,IL-6)和信号转导子及转录激活子3(signal transducer and activator of transcription 3,Stat3)的关系.本文以不同年龄段(3、6、9、12、15、18、21、24、27、30、33和36月龄)大鼠为研究对象,用实时定量RT-PCR和Western blot法检测铁调素及IL-6/Stat3信号途径相关蛋白在脉络丛上皮的表达变化.结果显示,3~18月龄年轻大鼠脉络丛上皮

  14. Mutations in the signal transducer and activator of transcription 3 (STAT3) and diagnostic guidelines for the Hyper-IgE Syndrome

    Science.gov (United States)

    Woellner, Cristina; Gertz, E. Michael; Schäffer, Alejandro A.; Lagos, Macarena; Perro, Mario; Glocker, Erik-Oliver; Pietrogrande, Maria C.; Cossu, Fausto; Franco, José L.; Matamoros, Nuria; Pietrucha, Barbara; Heropolitańska-Pliszka, Edyta; Yeganeh, Mehdi; Moin, Mostafa; Español, Teresa; Ehl, Stephan; Gennery, Andrew R.; Abinun, Mario; Bręborowicz, Anna; Niehues, Tim; Kilic, Sara Sebnem; Junker, Anne; Turvey, Stuart E.; Plebani, Alessandro; Sánchez, Berta; Garty, Ben-Zion; Pignata, Claudio; Cancrini, Caterina; Litzman, Jiri; Sanal, Özden; Baumann, Ulrich; Bacchetta, Rosa; Hsu, Amy P.; Davis, Joie N.; Hammarström, Lennart; Davies, E. Graham; Eren, Efrem; Arkwright, Peter D.; Moilanen, Jukka S.; Viemann, Dorothee; Khan, Sujoy; Maródi, László; Cant, Andrew J.; Freeman, Alexandra F.; Puck, Jennifer M.; Holland, Steven M.; Grimbacher, Bodo

    2010-01-01

    Background The hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by infections of the lung and skin, elevated serum IgE, and involvement of the soft and tissues. Recently, HIES has been associated with heterozygous dominant-negative mutations in STAT3 and severe reductions of Th17 cells. Objective To determine whether there is a correlation between the genotype and phenotype of HIES patients and to establish diagnostic criteria to distinguish between STAT3 mutated and STAT3 wild-type patients. Methods We collected clinical data, determined Th17 cell numbers, and sequenced STAT3 100 patients with a strong clinical suspicion of HIES and serum IgE >1000 IU/mL. explored diagnostic criteria by using a machine-learning approach to identify which features best predict a STAT3 mutation. Results In 64 patients we identified 31 different STAT3 mutations, 18 of which are novel. These included mutations at splice sites and outside the previously implicated DNA-binding and SH2 domains. A combination of five clinical features predicted STAT3 mutations with 85% accuracy. Th17 cells were profoundly reduced in patients harboring STAT3 mutations, while 10 out of 13 patients without mutations had low (1000 IU/mL plus a weighted score of clinical features >30 based on recurrent pneumonia, newborn rash, pathologic bone fractures, characteristic face, and high palate. Probable: Above plus lack of Th17 cells or a family history for definitive HIES. Definitive: Above plus a dominant-negative heterozygous mutation in STAT3. PMID:20159255

  15. The role of JAK2/STAT3 signaling pathway in the lung injury rat with severe acute pancreatitis

    OpenAIRE

    Min-li LI; Zhu, Ren-Min; Zhang, Xiao-Hua; Jing-yun GUO; Yang, Miao-Fang; Xiao-wei WU; Mei-xia GUO

    2011-01-01

    Objective To investigate the mechanism of action of JAK/STAT signaling pathways in the lung injury of experimental severe acute pancreatitis(SAP).Methods The rat model of SAP was reproduced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct.Thirty-two male SD rats were randomly assigned into 4 groups(8 each): normal control group(NC),SAP 6h,12h and 18h groups.The level of serum amylase(AMY) was measured dynamically.The pathological changes in pancreas and lung wer...

  16. Epstein-Barr Virus-Induced Gene 3 (EBI3) Blocking Leads to Induce Antitumor Cytotoxic T Lymphocyte Response and Suppress Tumor Growth in Colorectal Cancer by Bidirectional Reciprocal-Regulation STAT3 Signaling Pathway

    Science.gov (United States)

    Liang, Yanfang; Chen, Qianqian; Du, Wenjing; Chen, Can; Li, Feifei; Yang, Jingying; Peng, Jianyu; Kang, Dongping; Lin, Bihua; Chai, Xingxing; Zhou, Keyuan; Zeng, Jincheng

    2016-01-01

    Epstein-Barr virus-induced gene 3 (EBI3) is a member of the interleukin-12 (IL-12) family structural subunit and can form a heterodimer with IL-27p28 and IL-12p35 subunit to build IL-27 and IL-35, respectively. However, IL-27 stimulates whereas IL-35 inhibits antitumor T cell responses. To date, little is known about the role of EBI3 in tumor microenvironment. In this study, firstly we assessed EBI3, IL-27p28, IL-12p35, gp130, and p-STAT3 expression with clinicopathological parameters of colorectal cancer (CRC) tissues; then we evaluated the antitumor T cell responses and tumor growth with a EBI3 blocking peptide. We found that elevated EBI3 may be associated with IL-12p35, gp130, and p-STAT3 to promote CRC progression. EBI3 blocking peptide promoted antitumor cytotoxic T lymphocyte (CTL) response by inducing Granzyme B, IFN-γ production, and p-STAT3 expression and inhibited CRC cell proliferation and tumor growth to associate with suppressing gp130 and p-STAT3 expression. Taken together, these results suggest that EBI3 may mediate a bidirectional reciprocal-regulation STAT3 signaling pathway to assist the tumor escape immune surveillance in CRC. PMID:27247488

  17. Effect of rhGH on JAK2-STAT3 signal pathway after GHR was down-regulated by siRNA in gastric cancer cell%rhGH干预GHR基因差异表达人胃癌细胞增殖及JAK2-STAT3通路机制

    Institute of Scientific and Technical Information of China (English)

    冉刚; 林岩; 曹鹏; 蔡雪婷; 李苏宜

    2013-01-01

    To investigate the effect of recombinant human growth hormone (rhGH) on JAK2-STAT3 pathway and the growth of gastric cancer cell lines at different GHR expression status, the eukaryotic expression vector targeting human GHR (pGPU6/GFP/Neo-shGHR and pGPU6/GFP/Neo-scramble) was constructed and transfected into MGC803 cells by Lipofectamine 2000. Stable expressive cell lines were obtained by G418 screening. The expression of GHR was analyzed by Western blotting. After being stimulated with rhGH, cell growth was detected by MTT assay. Cell cycle and apoptosis were examined by flow cytometry. The components of JAK2/STAT3 signaling pathway were detected by Western blotting. There is no significant difference of GHR expression between MGC803 and pGPU6/GFP/Neo-scramble-transfected cells (named as MGC803-NC) (P > 0.05). Compared with MGC803, the GHR expression in pGPU6/GFP/Neo-shGHR-transfected cells (named as MGC803-shGHR) decreased significantly (protein decreased 50%). The cells were treated with rhGH at 0, 150 and 300 ng·mL-1, the growth rate of MGC803 and MGC803-NC increased significantly, PI and the number of G2/M phase cells all increased significantly, and apoptosis decreased significantly. Western blotting revealed that the expression of pJAK2 and pSTAT3 was up-regulated after being treated with rhGH in MGC803 and MGC803-NC cells. In contrast, similar change was not observed in MGC803-shGHR cells. Knockdown of GHR gene may decrease the sensitivity of gastric cancer cells to rhGH, and down-regulating of components of the expression of JAK2/ STAT3 signaling pathway may be the potential mechanisms.

  18. Stat3 isoforms, alpha and beta, demonstrate distinct intracellular dynamics with prolonged nuclear retention of Stat3beta mapping to its unique C-terminal end.

    Science.gov (United States)

    Huang, Ying; Qiu, Jihui; Dong, Shuo; Redell, Michele S; Poli, Valeria; Mancini, Michael A; Tweardy, David J

    2007-11-30

    Two isoforms of Stat3 (signal transducer and activator of transcription 3) are expressed in cells, alpha (p92) and beta (p83), both derived from a single gene by alternative mRNA splicing. The 55-residue C-terminal transactivation domain of Stat3alpha is deleted in Stat3beta and replaced by seven unique C-terminal residues (CT7) whose function remains uncertain. We subcloned the open reading frames of Stat3alpha and Stat3beta into the C terminus of green fluorescent protein (GFP). Fluorescent microscopic analysis of HEK293T cells transiently transfected with GFP-Stat3alpha or GFP-Stat3beta revealed similar kinetics and cytokine concentration dependence of nuclear accumulation; these findings were confirmed by high throughput microscope analysis of murine embryonic fibroblasts that lacked endogenous Stat3 but stably expressed either GFP-Stat3alpha or GFP-Stat3beta. However, although time to half-maximal cytoplasmic reaccumulation after cytokine withdrawal was 15 min for GFP-Stat3alpha, it was >180 min for GFP-Stat3beta. Furthermore, although the intranuclear mobility of GFP-Stat3alpha was rapid and increased with cytokine stimulation, the intranuclear mobility of GFP-Stat3beta in unstimulated cells was slower than that of GFP-Stat3alpha in unstimulated cells and was slowed further following cytokine stimulation. Deletion of the unique CT7 domain from Stat3beta eliminated prolonged nuclear retention but did not alter its intranuclear mobility. Thus, Stat3alpha and Stat3beta have distinct intracellular dynamics, with Stat3beta exhibiting prolonged nuclear retention and reduced intranuclear mobility especially following ligand stimulation. Prolonged nuclear retention, but not reduced intranuclear mobility, mapped to the CT7 domain of Stat3beta.

  19. Syndecan-1 (CD138 modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling.

    Directory of Open Access Journals (Sweden)

    Sherif A Ibrahim

    Full Text Available Syndecan-1 (CD138, a heparan sulfate proteoglycan, acts as a coreceptor for growth factors and chemokines and is a molecular marker associated with epithelial-mesenchymal transition during development and carcinogenesis. Resistance of Syndecan-1-deficient mice to experimentally-induced tumorigenesis has been linked to altered Wnt-responsive precursor cell pools, suggesting a potential role of Syndecan-1 in breast cancer cell stem function. However, the precise molecular mechanism is still elusive. Here, we decipher the functional impact of Syndecan-1 knockdown using RNA interference on the breast cancer stem cell phenotype of human triple-negative MDA-MB-231 and hormone receptor-positive MCF-7 cells in vitro employing an analytical flow cytometric approach. Successful Syndecan-1 siRNA knockdown was confirmed by flow cytometry. Side population measurement by Hoechst dye exclusion and Aldehyde dehydrogenase-1 activity revealed that Syndecan-1 knockdown in MDA-MB-231 cells significantly reduced putative cancer stem cell pools by 60% and 27%, respectively, compared to controls. In MCF-7 cells, Syndecan-1 depletion reduced the side population by 40% and Aldehyde dehydrogenase-1 by 50%, repectively. In MDA-MB-231 cells, the CD44(+CD24(-/low phenotype decreased significantly by 6% upon siRNA-mediated Syndecan-1 depletion. Intriguingly, IL-6, its receptor sIL-6R, and the chemokine CCL20, implicated in regulating stemness-associated pathways, were downregulated by >40% in Syndecan-1-silenced MDA-MB-231 cells, which showed a dysregulated response to IL-6-induced shifts in E-cadherin and vimentin expression. Furthermore, activation of STAT-3 and NFkB transcription factors and expression of a coreceptor for Wnt signaling, LRP-6, were reduced by >45% in Syndecan-1-depleted cells compared to controls. At the functional level, Syndecan-1 siRNA reduced the formation of spheres and cysts in MCF-7 cells grown in suspension culture. Our study demonstrates the

  20. Sphingosylphosphorylcholine promotes the differentiation of resident Sca-1 positive cardiac stem cells to cardiomyocytes through lipid raft/JNK/STAT3 and β-catenin signaling pathways.

    Science.gov (United States)

    Li, Wenjing; Liu, Honghong; Liu, Pingping; Yin, Deling; Zhang, Shangli; Zhao, Jing

    2016-07-01

    Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1(+) stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1(+) stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1(+) stem cells with low toxicity and high efficiency for uptake.

  1. Integrative proteomics and transcriptomics revealed that activation of the IL-6R/JAK2/STAT3/MMP9 signaling pathway is correlated with invasion of pituitary null cell adenomas.

    Science.gov (United States)

    Feng, Jie; Yu, Sheng-Yuan; Li, Chu-Zhong; Li, Zhen-Ye; Zhang, Ya-Zhuo

    2016-11-15

    Non-functioning pituitary adenomas (NFPAs) are a highly heterogeneous group, but few studies have explored the invasion mechanism of specific subtypes of NFPAs. The objective of this study was to investigate the differential molecular expression patterns and the critical biological signaling pathways involved in the invasion of pituitary null cell adenomas (PNCAs) through integrative proteomics and transcriptomics. A total of 1160 genes and 283 proteins were found to be differentially expressed in invasive and non-invasive PNCAs. The differentially expressed molecules related to invasion were enriched in 15 canonical signaling pathways, 15 clusters of diseases or biological functions and 5 upstream molecules. Among them, the majority of the differentially expressed molecules were found to be involved in transport of molecule, migration of cells and cell movement. Notably, IL-6 was a significantly activated upstream regulator, and the IL6R/JAK2/STAT3 cascade was found to play a critical role in acute phase response signaling, which was the most significant canonical signaling pathway. Furthermore, we validated the overexpression of IL-6R, JAK2, STAT3, p-STAT3 and MMP9 in invasive PNCAs. Our data suggest that overactivation of the IL-6R/JAK2/STAT3/MMP9 pathway is critical for the invasion of PNCAs. PMID:27465831

  2. Inhibition of STAT3 Reduces Astrocytoma Cell Invasion and Constitutive Activation of STAT3 Predicts Poor Prognosis in Human Astrocytoma

    OpenAIRE

    Qinchuan Liang; Chenkai Ma; Yang Zhao; Guodong Gao; Jie Ma

    2013-01-01

    Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3) expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM) cell lines (U251 and U87), and investigated th...

  3. Role of STAT3 in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Ken Sugimoto

    2008-01-01

    Signal transducers and activators of transcription 3(STAT3)play an important role in various autoimmune disorders including inflammatory bowel disease(IBD).Recent studies have revealed that STAT3 activation plays distinctly difierent roles between innate immune responses and acquired immune responses in colitis.STAT3-mediated activation of acquired immune re-sponses plays a pathogenic role in colitis by enhancing the survival of pathogenic T cells.In contrast,STAT3-mediated activation of innate responses contributes to the suppression of colitis.This review will summarize the current understanding of the roles of STAT3 in IBD and the potential of targeting STAT3 for the treatment of BD,emphasizing recent observations.(C)2008 The WJG Press.All rights reserved.

  4. Protective Function of STAT3 in CVB3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2012-01-01

    Full Text Available The transcription factor signal transducer and activator of transcription 3 (STAT3 is an important mediator of the inflammatory process. We investigated the role of STAT3 in viral myocarditis and its possible role in the development to dilated cardiomyopathy. We used STAT3-deficent mice with a cardiomyocyte-restricted knockout and induced a viral myocarditis using Coxsackievirus B3 (CVB3 which induced a severe inflammation during the acute phase of the viral myocarditis. A complete virus clearance and an attenuated inflammation were examined in both groups WT and STAT3 KO mice 4 weeks after infection, but the cardiac function in STAT3 KO mice was significantly decreased in contrast to the infected WT mice. Interestingly, an increased expression of collagen I was detected in STAT3 KO mice compared to WT mice 4 weeks after CVB3 infection. Furthermore, the matrix degradation was reduced in STAT3 KO mice which might be an explanation for the observed matrix deposition. Consequently, we here demonstrate the protective function of STAT3 in CVB3-induced myocarditis. Since the cardiomyocyte-restricted knockout leads to an increased fibrosis, it can be assumed that STAT3 signalling in cardiomyocytes protects the heart against increased fibrosis through paracrine effects.

  5. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  6. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  7. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  8. Crif1 is a novel transcriptional coactivator of STAT3.

    Science.gov (United States)

    Kwon, Min-chul; Koo, Bon-Kyoung; Moon, Jin-Sook; Kim, Yoon-Young; Park, Ki Cheol; Kim, Nam-Shik; Kwon, Mi Yi; Kong, Myung-Phil; Yoon, Ki-Jun; Im, Sun-Kyoung; Ghim, Jaewang; Han, Yong-Mahn; Jang, Sung Key; Shong, Minho; Kong, Young-Yun

    2008-02-20

    Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor that performs a broad spectrum of biological functions in response to various stimuli. However, no specific coactivator that regulates the transcriptional activity of STAT3 has been identified. Here we report that CR6-interacting factor 1 (Crif1) is a specific transcriptional coactivator of STAT3, but not of STAT1 or STAT5a. Crif1 interacts with STAT3 and positively regulates its transcriptional activity. Crif1-/- embryos were lethal around embryonic day 6.5, and manifested developmental arrest accompanied with defective proliferation and massive apoptosis. The expression of STAT3 target genes was markedly reduced in a Crif1-/- blastocyst culture and in Oncostatin M-stimulated Crif1-deficient MEFs. Importantly, the key activities of constitutively active STAT3-C, such as transcription, DNA binding, and cellular transformation, were abolished in the Crif1-null MEFs, suggesting the essential role of Crif1 in the transcriptional activity of STAT3. Our results reveal that Crif1 is a novel and essential transcriptional coactivator of STAT3 that modulates its DNA binding ability, and shed light on the regulation of oncogenic STAT3.

  9. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  10. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models.

    Science.gov (United States)

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-04-20

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis.

  11. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  12. Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer.

    Science.gov (United States)

    Ren, Z; Aerts, J L; Pen, J J; Heirman, C; Breckpot, K; De Grève, J

    2015-03-26

    The signal transducer and activator of transcription 3 (STAT3) can be activated by the tyrosine kinase domain of the chimeric protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK), and has a pivotal role in mediating NPM/ALK-related malignant cell transformation. Although the role of STAT3 and wild-type NPM in oncogenesis has been extensively investigated, the relationship between both molecules in cancer remains poorly understood. In the present study, we first demonstrate that STAT3 phosphorylation at tyrosine 705 is accompanied by a concomitant increase in the expression level of NPM. Nuclear co-translocation of phosphorylated STAT3 with NPM can be triggered by interferon-alpha (IFN-α) stimulation of Jurkat cells and phosphorylated STAT3 co-localizes with NPM in cancer cells showing constitutive STAT3 activation. We further demonstrate that STAT3 phosphorylation can transcriptionally mediate NPM upregulation in IFN-α-stimulated Jurkat cells and is responsible for maintaining its expression in cancer cells showing constitutive STAT3 activation. Inhibition of STAT3 phosphorylation or knockdown of NPM expression abrogates their simultaneous transnuclear movements. Finally, we found evidence for a physical interaction between NPM and STAT3 in conditions of STAT3 activation. In conclusion, NPM is a downstream effector of the STAT3 signaling, and can facilitate the nuclear entry of phosphorylated STAT3. These observations might open novel opportunities for targeting the STAT3 pathway in cancer.

  13. STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jennifer E.; Patel, Mira; Ruzevick, Jacob; Jackson, Christopher M.; Lim, Michael, E-mail: mlim3@jhmi.edu [Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Phipps Building Rm 123, Baltimore, MD 21287 (United States)

    2014-02-10

    Signal transducer and activator of transcription 3 (STAT3) is a potent regulator of gliomagenesis through its induction of angiogenesis, host immunosuppression, and tumor invasion. Gain of function mutations result in constitutive activation of STAT3 in glioma cells, making STAT3 an attractive target for inhibition in cancer therapy. Nevertheless, some studies show that STAT3 also participates in terminal differentiation and apoptosis of various cell lines and in glioma with phosphatase and tensin homolog (PTEN)-deficient genetic backgrounds. In light of these findings, the utility of STAT3 as a prognostic indicator and as a target of drug therapies will be contingent on a more nuanced understanding of its pro- and anti-tumorigenic effects.

  14. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Petrus Rudolf de [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States); Mo, Ji-Hun [Department of Otorhinolaryngology, Dankook University College of Medicine, 16-5 Anseo-dong, Cheonan, Chungcheongnam-do 330-715 (Korea, Republic of); Harris, Alexandra R.; Lee, Jongdae, E-mail: j142lee@ucsd.edu; Raz, Eyal [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States)

    2014-07-03

    Signal Transducer and Activator of Transcription 3 (STAT3) is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT) and thus metastasis in a mouse model of colorectal cancer (CRC), while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC) suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1). Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  15. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Petrus Rudolf de Jong

    2014-07-01

    Full Text Available Signal Transducer and Activator of Transcription 3 (STAT3 is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT and thus metastasis in a mouse model of colorectal cancer (CRC, while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1. Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  16. Genetic Interactions of STAT3 and Anticancer Drug Development

    International Nuclear Information System (INIS)

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors

  17. Genetic Interactions of STAT3 and Anticancer Drug Development

    Directory of Open Access Journals (Sweden)

    Bingliang Fang

    2014-03-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  18. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  19. Astrocytes.

    Science.gov (United States)

    Kimelberg, Harold K.; Norenberg, Michael D.

    1989-01-01

    Describes the astrocytes' function as equal partners with neurons in both the normal and the abnormal brain. Discusses the developmental scaffolds, inert scar tissue, Huntington's disease, psychiatric disorders, and the identification of these brain cells. (RT)

  20. In vivo astrocytic Ca2+ signaling in health and brain disorders

    OpenAIRE

    Ding, Shinghua

    2013-01-01

    Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron–glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellul...

  1. Astrocyte signaling in the presence of spatial inhomogeneities

    Science.gov (United States)

    Stamatakis, Michail; Mantzaris, Nikos V.

    2007-09-01

    Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the

  2. STAT3, p-STAT3 and HIF-1α are associated with vasculogenic mimicry and impact on survival in gastric adenocarcinoma

    OpenAIRE

    Song, Yan-Yan; SUN, LI-DAN; LIU, MIN-LI; LIU, ZHONG-LIANG; Chen, Fei; ZHANG, YING-ZHE; Zheng, Yan; Zhang, Jian-Ping

    2014-01-01

    Vasculogenic mimicry (VM) formation is important for invasion and metastasis of tumor cells in gastric adenocarcinoma (GAC). The present study aimed to investigate the association between signal transducer and activator of transcription-3 (STAT3), phosphor-STAT3 (p-STAT3), hypoxia-inducible factor-1α (HIF-1α) and VM formation in GAC, and discuss their clinical significance and correlation with the prognosis of patients with GAC. The expression levels of STAT3, p-STAT3, HIF-1α and VM were asse...

  3. Signal transducer and activator of transcription-3 (STAT-3) and psoriasis%信号传导与转录激活因子-3与银屑病

    Institute of Scientific and Technical Information of China (English)

    彭友华; 李建军

    2010-01-01

    信号传导与转录激活因子-3是一种重要的核转录因子,能被白介素-6、表皮生长因子等细胞因子和生长因子激活,参与细胞增殖、存活、转化、迁移等过程.在银屑病皮损中,角质形成细胞中的信号传导与转录激活因子-3几乎都呈激活状态,它能通过调节银屑病相关发病基因和细胞因子的表达,参与角质形成细胞的增殖、分化和存活以及皮损中血管发生,是银屑病发病中重要的信号传导与转录激活因子.%As an important nuclear transcription factor, STAT-3 can be activated by numerous cytokines and growth factors such as interleukin (IL)-6, epidermal growth factor (EGF), and so on. STAT-3 participates in cell proliferation, survival, transformation, migration and other biological processes. In psoriatic lesions, almost all STAT-3 is activated in keratinocytes and it takes part in cell proliferation, differentiation and survival of keratinocytes as well as angiogenesis by regulating the expression of psoriasis-related genes and cytokines. STAT-3 is an important signal transduction factor and activator of transcription in the pathogenesis of psoriasis.

  4. IL-22介导的 STAT3信号通路对急性重症胰腺炎小鼠的保护作用%IL-22 protects mice from acute severe pancreatitis via STAT3 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    白金霞; 白金运; 石秀菊; 许洪伟

    2015-01-01

    目的:探讨外源性重组小鼠白细胞介素22(rIL-22)对左旋精氨酸诱导的小鼠急性重症胰腺炎(SAP)的保护作用及其介导的信号通路。方法60只雄性 Balb/c 小鼠随机分为正常对照组(NaCl 组,10只)、SAP 组(30只)、治疗对照组(PBS 组,10只)和治疗组(rIL-22组,10只)。以8%左旋精氨酸(4 g /kg 体质量,腹腔注射2次)诱导小鼠 SAP 模型,NaCl 组注射等量0.9%NaCl。PBS 组和 rIL-22组分别应用 PBS 或 rIL-22(200 ng /次×5次)在相应时间点进行腹腔注射。光镜下观察胰腺组织病理学改变,检测血清淀粉酶活性。Real-time PCR 法检测胰腺组织中 IL-22RA1、胰腺再生源蛋白3β(Reg3β)和 Reg3γ、B 细胞淋巴瘤/白血病-2(Bcl-2)和 Bcl-xL 基因在 mRNA 水平的表达。Western blotting 方法检测胰腺组织总 STAT3和磷酸化 STAT3蛋白的表达。对 PBS 组和 rIL-22组的死亡率进行统计。结果SAP 组72 h 胰腺组织出现典型的 SAP 病理改变;随时间延长,SAP 组 Reg3β和 Reg3γ、Bcl-2和Bcl-xL mRNA 的表达水平呈递减趋势,血清淀粉酶活性和 IL-22RA1 mRNA 表达水平先上升后下降。与PBS 组相比,rIL-22组血清淀粉酶明显降低(P <0.05),胰腺病理损伤减轻,死亡率下降(P <0.05),胰腺组织磷酸化 STAT3表达增加(P <0.05),Reg3β、Reg3γ、Bcl-2、Bcl-xL 和 IL-22RA1 mRNA 的表达上调(P <0.05)。结论外源性重组 IL-22通过激活 STAT3信号通路,活化下游抗菌肽和抗凋亡基因的表达,对左旋精氨酸诱导的 SAP 小鼠起保护作用。%Objective To investigate the effect of interleukin-22 (IL-22)in acute severe pancreatitis (SAP)induced by L-arginine and its signal pathway.Methods Sixty male Balb/c mice were randomly divided into 4 groups,the nor-mal control group(NaCl group,n =10),SAP group(n =30),treatment control group (PBS group,n =10)and treat

  5. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.

    Science.gov (United States)

    Hsu, Fu-Ning; Chen, Mei-Chih; Lin, Kuan-Chia; Peng, Yu-Ting; Li, Pei-Chi; Lin, Eugene; Chiang, Ming-Ching; Hsieh, Jer-Tsong; Lin, Ho

    2013-10-15

    Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

  6. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  7. Study on the correlation between EGFR-STAT3 signal pathwayand laryngeal papilloma%上皮生长因子受体-信号转导与转录激活因子3信号转导通路与喉乳头状瘤的相关性研究

    Institute of Scientific and Technical Information of China (English)

    王新华; 孙敬武

    2009-01-01

    Objective:To explore the relationship between the expression of EGFR and STAT3 in human la-ryngeal papilloma and its biological behavior. Method: Reverse transcription polymerasechain reaction(RT-PCR), immunohistochemical staining and Western blot were used to evaluate the mRNA and protein expression of EGFR and STAT3(p-STAT3) in 42 laryngeal papilloma tissues and 15 samples of normal laryngeal tissue, and the rela-tionship between the protein expression of them and clinicpathological parameters was also analysized. Result: The mRNA expression levels of EGFR and STAT3 in laryngeal papilloma tissue were significantly higher than that in normal laryngeal tissue(P<0.05,P<0.01). Protein positive expression of EGFR and p-STAT3 were also detected in a significantly greater proportion of laryngeal papilloma than normal laryngeal tissue by immunohistochemistry and western blot(P<0.01,P<0.05). There was relationship between EGFR and p-STAT3 overexpression in la-ryngeal papilloma(P<0.05). The expression p-STAT3 was correlated with the recurrence and canceration of la-ryngeal papilloma(P<0.05). Conclusion: The EGFR-STAT3 signal transduction pathway may be involved in the pathogenesis of laryngeal papilloma,, and the persistent activation of STAT3 gene plays an important role in the recurrence and canceration of laryngeal papilloma.%目的:探讨喉乳头状瘤中上皮生长因子受体(EGFR)和信号转导与转录激活因子3(STAT3) 的表达与其生物学行为的关系.方法:采用RT-PCR、免疫组织化学方法和Western blot,检测42例喉乳头状瘤和15例正常喉黏膜组织中EGFR和STAT3、磷酸化-STAT3(p-STAT3)的mRNA和蛋白质表达情况, 同时将蛋白质表达水平与喉乳头状瘤的临床病理参数进行相关性分析.结果:EGFR与STAT3的mRNA在喉乳头状瘤组织表达水平显著高于正常喉组织(P<0.05,P<0.01).免疫组织化学及Western blot方法也证实喉乳头状瘤组织中EGFR与STAT3 (p-STAT3)的蛋白质表达水

  8. Cross-talk between KLF4 and STAT3 regulates axon regeneration

    Science.gov (United States)

    Qin, Song; Zou, Yuhua; Zhang, Chun-Li

    2013-10-01

    Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. The deletion of KLF4 in vivo induces axon regeneration of adult retinal ganglion cells (RGCs) via Janus kinase (JAK)-STAT3 signalling. This regeneration can be greatly enhanced by exogenous cytokine treatment, or removal of an endogenous JAK-STAT3 pathway inhibitor called suppressor of cytokine signalling 3 (SOCS3). These findings reveal an unexpected cross-talk between KLF4 and activated STAT3 in the regulation of axon regeneration that might have therapeutic implications in promoting repair of injured adult CNS.

  9. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  10. Silymarin suppresses the PGE2 -induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways.

    Science.gov (United States)

    Woo, Seon Min; Min, Kyoung-Jin; Chae, In Gyeong; Chun, Kyung-Soo; Kwon, Taeg Kyu

    2015-03-01

    Silymarin has been known as a chemopreventive agent, and possesses multiple anti-cancer activities including induction of apoptosis, inhibition of proliferation and growth, and blockade of migration and invasion. However, whether silymarin could inhibit prostaglandin (PG) E2 -induced renal cell carcinoma (RCC) migration and what are the underlying mechanisms are not well elucidated. Here, we found that silymarin markedly inhibited PGE2 -stimulated migration. PGE2 induced G protein-dependent CREB phosphorylation via protein kinase A (PKA) signaling, and PKA inhibitor (H89) inhibited PGE2 -mediated migration. Silymarin reduced PGE2 -induced CREB phosphorylation and CRE-promoter activity. PGE2 also activated G protien-independent signaling pathways (Src and STAT3) and silymarin reduced PGE2 -induced phosphorylation of Src and STAT3. Inhibitor of Src (Saracatinib) markedly reduced PGE2 -mediated migration. We found that EP2, a PGE2 receptor, is involved in PGE2 -mediated cell migration. Down regulation of EP2 by EP2 siRNA and EP2 antagonist (AH6809) reduced PGE2 -inudced migration. In contrast, EP2 agonist (Butaprost) increased cell migration and silymarin effectively reduced butaprost-mediated cell migration. Moreover, PGE2 increased EP2 expression through activation of positive feedback mechanism, and PGE2 -induced EP2 expression, as well as basal EP2 levels, were reduced in silymarin-treated cells. Taken together, our study demonstrates that silymarin inhibited PGE2 -induced cell migration through inhibition of EP2 signaling pathways (G protein dependent PKA-CREB and G protein-independent Src-STAT3).

  11. Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Lihan Zhou

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (STAT3 plays critical roles in neural development and is increasingly recognized as a major mediator of injury response in the nervous system. Cytokines and growth factors are known to phosphorylate STAT3 at tyrosine(705 with or without the concomitant phosphorylation at serine(727, resulting in the nuclear localization of STAT3 and subsequent transcriptional activation of genes. Recent evidence suggests that STAT3 may control cell function via alternative mechanisms independent of its transcriptional activity. Currently, the involvement of STAT3 mono-phosphorylated at residue serine(727 (P-Ser-STAT3 in neurite outgrowth and the underlying mechanism is largely unknown. PRINCIPAL FINDINGS: In this study, we investigated the role of nerve growth factor (NGF induced P-Ser-STAT3 in mediating neurite outgrowth. NGF induced the phosphorylation of residue serine(727 but not tyrosine(705 of STAT3 in PC12 and primary cortical neuronal cells. In PC12 cells, serine but not tyrosine dominant negative mutant of STAT3 was found to impair NGF induced neurite outgrowth. Unexpectedly, NGF induced P-Ser-STAT3 was localized to the mitochondria but not in the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NGF induced neurite outgrowth and the production of reactive oxygen species (ROS. CONCLUSION: Taken together, the findings herein demonstrated a hitherto unrecognized novel transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 is involved in NGF induced neurite outgrowth.

  12. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China)

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.

  13. STAT3 as a target for inducing apoptosis in solid and hematological tumors

    Institute of Scientific and Technical Information of China (English)

    Khandaker Al Zaid Siddiquee; James Turkson

    2008-01-01

    Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and supporting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.

  14. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. PMID:27383770

  15. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  16. Identification and characterization of cis elements in the STAT3 gene regulating STAT3 alpha and STAT3 beta messenger RNA splicing.

    Science.gov (United States)

    Shao, H; Quintero, A J; Tweardy, D J

    2001-12-15

    Signal transducer and activator of transcription 3 (STAT3) is an oncogene and a critical regulator of multiple cell-fate decisions, including myeloid cell differentiation. Two isoforms of STAT3 have been identified: alpha (p92) and beta (p83). These differ structurally in their C-terminal transactivation domains, resulting in distinct functional activities. The cis genetic elements that regulate the ratio of alpha to beta messenger RNA (mRNA) are unknown. In this study, cloning, sequencing, and splicing analysis of the human and murine STAT3 genes revealed a highly conserved 5' donor site for generation of both alpha and beta mRNA and distinct branch-point sequences, polypyrimidine tracts, and 3' acceptor sites (ASs) for each. The beta 3' AS was found to be located 50 nucleotides downstream of the alpha 3' AS in exon 23. Two additional cryptic 3' ASs (delta and epsilon) were also identified. Thus, we identified for the first time the cis regulatory sequences responsible for generation of STAT3 alpha and STAT3 beta mRNA.

  17. Activation of oligodendroglial Stat3 is required for efficient remyelination

    Science.gov (United States)

    Steelman, Andrew J.; Zhou, Yun; Koit, Hisami; Kim, SunJa; Payne, H. Ross; Lu, Q. Richard; Li, Jianrong

    2016-01-01

    Multiple sclerosis is the most prevalent demyelinating disease of the central nervous system (CNS) and is histologically characterized by perivascular demyelination as well as neurodegeneration. While the degree of axonal damage is correlated with clinical disability, it is believed that remyelination can protect axons from degeneration and slow disease progression. Therefore, understanding the intricacies associated with myelination and remyelination may lead to therapeutics that can enhance the remyelination process and slow axon degeneration and loss of function. Ciliary neurotrophic factor (CNTF) family cytokines such as leukemia inhibitory factor (LIF) and interleukin11(IL-11) are known to promote oligodendrocyte maturation and remyelination in experimental models of demyelination. Because CNTF family member binding to the gp 130 receptor results in activation of the JAK2/Stat3 pathway we investigated the necessity of oligodendroglial Stat3 in transducing the signal required for myelination and remyelination. We found that Stat3 activation in the CNS coincides with myelination during development. Stimulation of oligodendrocyte precursor cells (OPCs) with CNTF or LIF promoted OPC survival and final differentiation, which was completely abolished by pharmacologic blockade of Stat3 activation with JAK2 inhibitor. Similarly, genetic ablation of Stat3 in oligodendrocyte lineage cells prevented CNTF-induced OPC differentiation in culture. In vivo, while oligodendroglial Stat3 signaling appears to be dispensable for developmental CNS myelination, it is required for oligodendrocyte regeneration and efficient remyelination after toxin-induced focal demyelination in the adult brain. Our data suggest a critical function for oligodendroglial Stat3 signaling in myelin repair. PMID:27060559

  18. STAT3 inhibition induces apoptosis in cancer cells independent of STAT1 or STAT2

    Directory of Open Access Journals (Sweden)

    Beverly E Barton

    2013-02-01

    Full Text Available Signal transducers and activators of transcription (STATs were originally discovered as mediators of signal transduction. Persistent aberrant activation of STAT3 is part of the malignant phenotype of hormone-refractory prostate cancer and pancreatic cancer; this is thought to be mediated by homodimers of phosphorylated STAT3, which translocate to the nucleus.  One consequence of persistently-activated STAT3 in malignant cells is that they depend upon it for survival.   STAT3 is observed to heterodimerize with STAT1 and STAT2; however the contributions of STAT3:STAT1  and STAT3:STAT2 heterodimers to the survival of malignant cells have not been investigated in detail. Previously we reported that single-stranded oligonucleotides containing consensus STAT3 binding sequences (13410 and 13411 were more effective for inducing apoptosis in prostate cancer cells than antisense STAT3 oligonucleotides. Control oligonucleotides (scrambled sequences had no effect. STAT3-inhibiting oligonucleotide 13410, but not scrambled-sequence oligonucleotides, induced apoptosis in pancreatic cancer cells as well.  Here we report that 13410 and derivative olignucleotides induced apoptosis in STAT1-null and STAT2-null fibrosarcoma cell lines U3A and U6A, as well as in the parental fibrosarcoma cell line 2fTGH. The cell lines expressed constitutively-activated STAT3 and depended on its activity for survival.  Forty-eight hr after transfection of 13410 or related oligonucleotides, significant apoptosis was observed in 2fTGH, U3A and U6A cells. Scrambled-sequence oligonucleotides had no effect on survival.  These data indicate that neither STAT1 nor STAT2 play significant roles in the maintenance of these cells, and by extension that STAT3:STAT1 and STAT3:STAT2 heterodimers regulate a different set of genes from STAT3:STAT3 homodimers.   

  19. Cinnamaldehyde Derivative (CB-PIC Sensitizes Chemo-Resistant Cancer Cells to Drug-Induced Apoptosis via Suppression of MDR1 and its Upstream STAT3 and AKT Signalling

    Directory of Open Access Journals (Sweden)

    Jianzhong Xi

    2015-03-01

    Full Text Available Background/Aims: Our group reported that cinnamaldehyde derivative, (E-4-((2-(3-oxopop-1-enylphenoxymethylpyridinium malonic acid (CB-PIC induced apoptosis in hypoxic SW620 colorectal cancer cells via activation of AMP-activated protein kinase (AMPK and extracellular signal regulated kinase (ERK. Herein, sensitizing effect of CB-PIC was investigated in resistant cancer cells such as paclitaxel (PT resistant lung cancer cells (H460/PT, and Adriamycin (Adr resistant breast cancer (MCF7/Adr and colon cancer (HCT15/cos cells. Methods: Various drug resistant cell lines were treated with CB-PIC, and the signalling pathway and functional assay were explored by Western blot, Rhodamine assay, FACS, RT-PCR and MTT assay. Results: We found that CB-PIC effectively exerted cytotoxicity, increased sub G1 population and the cleaved form of poly (ADP-ribose polymerase (PARP and caspase 9 in drug resistant cancer cells. Furthermore, CB-PIC sensitized resistant cancer cells to adriamycin via downregulation of survival proteins such as survivin, Bcl-xL and Bcl-2, along with MDR1 suppression leading to accumulation of drug in the intracellular region. Of note, CB-PIC transcriptionally decreased MDR1 expression via suppression of STAT3 and AKT signalling in three resistant cancer cells with highly expressed P-glycoprotein. Nonetheless, CB-PIC did not affect transport activity of P-glycoprotein in a short time efflux assay, while epigallocatechin gallate (EGCG accumulated Rhodamine 123 into intracellular region of cell by direct inhibition of MDR1 transport activity. Conclusions: These data demonstrate that CB-PIC suppresses the P-glycoprotein expression through inhibition of STAT3 and AKT signalling to overcome drug resistance in chemo-resistant cancer cells as a potent chemotherapeutic sensitizer.

  20. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  1. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    Science.gov (United States)

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival. PMID:18824601

  2. Modulation of STAT3 folding and function by TRiC/CCT chaperonin.

    Directory of Open Access Journals (Sweden)

    Moses Kasembeli

    2014-04-01

    Full Text Available Signal transducer and activator of transcription 3 (Stat3 transduces signals of many peptide hormones from the cell surface to the nucleus and functions as an oncoprotein in many types of cancers, yet little is known about how it achieves its native folded state within the cell. Here we show that Stat3 is a novel substrate of the ring-shaped hetero-oligomeric eukaryotic chaperonin, TRiC/CCT, which contributes to its biosynthesis and activity in vitro and in vivo. TRiC binding to Stat3 was mediated, at least in part, by TRiC subunit CCT3. Stat3 binding to TRiC mapped predominantly to the β-strand rich, DNA-binding domain of Stat3. Notably, enhancing Stat3 binding to TRiC by engineering an additional TRiC-binding domain from the von Hippel-Lindau protein (vTBD, at the N-terminus of Stat3, further increased its affinity for TRiC as well as its function, as determined by Stat3's ability to bind to its phosphotyrosyl-peptide ligand, an interaction critical for Stat3 activation. Thus, Stat3 levels and function are regulated by TRiC and can be modulated by manipulating its interaction with TRiC.

  3. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. : ErbB signaling in human astrocytes

    OpenAIRE

    Sharif, Ariane; Duhem-Tonnelle, Véronique; Allet, Cécile; Baroncini, Marc; Loyens, Anne; Kerr-Conte, Julie; Collier, Francis; Blond, Serge; Ojeda, Sergio; Junier, Marie-Pierre; Prévot, Vincent

    2009-01-01

    Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of...

  4. Downregulated Hsa-let-7f contributes to the loss of type II collagen by targeting interleukin-10/STAT3 signaling pathway in degenerative lumbar scoliosis%退变性腰椎侧凸发病中Hsa-let-7f调控白细胞介素10/STAT3信号通路的作用

    Institute of Scientific and Technical Information of China (English)

    王磊; 李天旺; 刘建强; 刘晓宗; 王照国; 田艳; 张永兴; 王伟

    2016-01-01

    物治疗靶点。%BACKGROUND:MicroRNAs (miRNAs) play an important role in a variety of diseases. Investigation of miRNA expression profile in degenerative lumbar scoliosis is beneficial for understanding its pathogenesis, providing a novel therapeutic target. Therefore, we tested the hypothesis that miRNAs promote intervertebral disc degeneration through the interleukin-10/STAT3 signaling pathway, a potential regulator of intervertebral disc degeneration. OBJECTIVE:To compare the differentialy expressed miRNAs in the intervertebral disc tissues from patients with degenerative lumbar scoliosis and normal controls and to identify specific miRNAs in degenerative lumbar scoliosis folowed by functional validation. METHODS: An initial screening of miRNA expression in nucleus pulposus tissues by miRNA Solexa Sequencing was performed in samples from 10 patients with degenerative lumbar scoliosis and 10 controls, respectively. Subsequently, differentialy expressed miRNAs were validated using qRT-PCR. The level of differentialy expressed miRNAs in degenerative nucleus pulposus tissues was investigated. Then, functional analysis of the miRNAs in regulating type II colagen expression was carried out. Western blot and luciferase reporter assay were used to further confirm the target gene. RESULTS AND CONCLUSION: We identified 30 miRNAs that were differentialy expressed (16 upregulated and 14 downregulated) in patients with degenerative lumbar scoliosis compared with controls. Folowing qRT-PCR confirmation, Has-let-7f was significantly down-regulated in degenerative nucleus pulposus tissues as compared with controls. Moreover, its level was correlated with the severity of disc degeneration. Overexpression of Has-let-7f promoted type II colagen expression in nucleus pulposus cels. Knockout of interleukin-10 induced effects on nucleus pulposus cels similar to Has-let-7f. Bioinformatics target prediction identified interleukin-10 as a putative target of Has-let-7f. Furthermore, luciferase reporter assays demonstrated that

  5. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.;

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...

  6. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  7. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    OpenAIRE

    Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.

  8. Cucurbitacin E Induces G2/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells

    Directory of Open Access Journals (Sweden)

    Wen-Wen Huang

    2012-01-01

    Full Text Available Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3, cyclin-dependent kinase 1 (CDK1 and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1 and apoptosis-inducing factor (AIF, and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells.

  9. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ailian; Yang, Zhengduo [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Shen, Yicheng [College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712 (United States); Zhou, Jia [Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Shen, Qiang, E-mail: qshen@mdanderson.org [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-04-16

    Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.

  10. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  11. Role of STAT3 in in vitro transformation triggered by TRK oncogenes.

    Directory of Open Access Journals (Sweden)

    Claudia Miranda

    Full Text Available TRK oncoproteins are chimeric versions of the NTRK1/NGF receptor and display constitutive tyrosine kinase activity leading to transformation of NIH3T3 cells and neuronal differentiation of PC12 cells. Signal Transducer and Activator of Transcription (STAT 3 is activated in response to cytokines and growth factors and it has been recently identified as a novel signal transducer for TrkA, mediating the functions of NGF in nervous system. In this paper we have investigated STAT3 involvement in signalling induced by TRK oncogenes. We showed that TRK oncogenes trigger STAT3 phosphorylation both on Y705 and S727 residues and STAT3 transcriptional activity. MAPK pathway was involved in the induction of STAT3 phosphorylation. Interestingly, we have shown reduced STAT3 protein level in NIH3T3 transformed foci expressing TRK oncogenes. Overall, we have unveiled a dual role for STAT3 in TRK oncogenes-induced NIH3T3 transformation: i decreased STAT3 protein levels, driven by TRK oncoproteins activity, are associated to morphological transformation; ii residual STAT3 transcriptional activity is required for cell growth.

  12. Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727*

    Science.gov (United States)

    Zhang, Qifang; Raje, Vidisha; Yakovlev, Vasily A.; Yacoub, Adly; Szczepanek, Karol; Meier, Jeremy; Derecka, Marta; Chen, Qun; Hu, Ying; Sisler, Jennifer; Hamed, Hossein; Lesnefsky, Edward J.; Valerie, Kristoffer; Dent, Paul; Larner, Andrew C.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat3) is a key mediator in the development of many cancers. For 20 years, it has been assumed that Stat3 mediates its biological activities as a nuclear localized transcription factor activated by many cytokines. However, recent studies from this laboratory and others indicate that Stat3 has an independent function in the mitochondria (mitoStat3) where it controls the activity of the electron transport chain (ETC) and mediates Ras-induced transformation of mouse embryo fibroblasts. The actions of mitoStat3 in controlling respiration and Ras transformation are mediated by the phosphorylation state of serine 727. To address the role of mitoStat3 in the pathogenesis of cells that are transformed, we used 4T1 breast cancer cells, which form tumors that metastasize in immunocompetent mice. Substitution of Ser-727 for an alanine or aspartate in Stat3 that has a mitochondrial localization sequence, MLS-Stat3, has profound effects on tumor growth, complex I activity of the ETC, and accumulation of reactive oxygen species (ROS). Cells expressing MLS-Stat3(S727A) display slower tumor growth, decreased complex I activity of the ETC, and increased ROS accumulation under hypoxia compared with cells expressing MLS-Stat3. In contrast, cells expressing MLS-Stat3(S727D) show enhanced tumor growth and complex I activity and decreased production of ROS. These results highlight the importance of serine 727 of mitoStat3 in breast cancer and suggest a novel role for mitoStat3 in regulation of ROS concentrations through its action on the ETC. PMID:24019511

  13. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Arata, E-mail: anishimo@yamaguchi-u.ac.jp [Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 (Japan); Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko [Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 (Japan); Li, Tao-Sheng [Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Hamano, Kimikazu [Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 (Japan)

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target

  14. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction

    NARCIS (Netherlands)

    Demaria, Marco; Giorgi, Carlotta; Lebiedzinska, Magdalena; Esposito, Giovanna; D'Angeli, Luca; Bartoli, Antonietta; Gough, Daniel J; Turkson, James; Levy, David E; Watson, Christine J; Wieckowski, Mariusz R; Provero, Paolo; Pinton, Paolo; Poli, Valeria

    2010-01-01

    The pro-oncogenic transcription factor STAT3 is constitutively activated in a wide variety of tumours that often become addicted to its activity, but no unifying view of a core function determining this widespread STAT3-dependence has yet emerged. We show here that constitutively active STAT3 acts a

  15. An azaspirane derivative suppresses growth and induces apoptosis of ER-positive and ER-negative breast cancer cells through the modulation of JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Sulaiman, Nurfarhanah Bte Syed; Mohan, Chakrabhavi Dhananjaya; Basappa, Salundi; Pandey, Vijay; Rangappa, Shobith; Bharathkumar, Hanumantharayappa; Kumar, Alan Prem; Lobie, Peter E; Rangappa, Kanchugarakoppal S

    2016-09-01

    Persistent activation of signal transducer and activator of transcription 3 (STAT3) is associated with the progression of a range of tumors. In this report, we present the anticancer activity of 2-(1-(4-(2-cyanophenyl)1-benzyl‑1H-indol-3-yl)-5-(4-methoxy-phenyl)-1-oxa-3-azaspiro(5,5)undecane (CIMO) against breast cancer cells. We observed that CIMO suppresses the proliferation of both estrogen receptor-negative (ER-) (BT-549, MDA-MB‑231) and estrogen receptor-positive (ER+) (MCF-7, and BT-474) breast cancer (BC) cells with IC50 of 3.05, 3.41, 4.12 and 4.19 µM, respectively, and without significantly affecting the viability of normal cells. CIMO was observed to mediate its anti-proliferative effect in ER- BC cells by inhibiting the phosphorylation of JAK2 and STAT3 proteins. Quantitative PCR analysis demonstrated that CIMO decreases the relative mRNA expression of genes that are involved in cell cycle progression (CCND1) and cell survival (BCL2, BCL-xL, BAD, CASP 3/7/9, and TP53). In addition, CIMO was observed to arrest BC cells at G0/G1 phase and of the cell cycle. Furthermore, CIMO suppressed BC cell migration and invasion with concordant regulation of genes involved in epithelial to mesechymal transition (CDH1, CDH2, OCLN and VIM). Thus, we report the utility of a synthetic azaspirane which targets the JAK-STAT pathway in ER- BC. PMID:27500741

  16. STAT3 Regulates Proliferation and Immunogenicity of the Ewing Family of Tumors In Vitro

    Directory of Open Access Journals (Sweden)

    Sam Behjati

    2012-01-01

    Full Text Available The Ewing sarcoma family of tumors (ESFT represents an aggressive spectrum of malignant tumour types with common defining histological and cytogenetic features. To evaluate the functional activation of signal transducer and activator of transcription 3 (STAT3 in ESFT, we evaluated its activation in primary tissue sections and observed the functional consequences of its inhibition in ESFT cell lines. STAT3 was activated (tyrosine 705-phosphorylated in 18 out of 31 primary tumours (58%, either diffusely (35% or focally (23%. STAT3 was constitutively activated in 3 out of 3 ESFT cell lines tested, and its specific chemical inhibition resulted in complete loss of cell viability. STAT3 inhibition in ESFT cell lines was associated with several consistent changes in chemokine profile suggesting a role of STAT3 in ESFT in both cell survival and modification of the cellular immune environment. Together these data support the investigation of STAT3 inhibitors for the Ewing family of tumors.

  17. STAT3-Decoy ODN Inhibits Cytokine Autocrine of Murine Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    Xi Liu; Jiayi Li; Jian Zhang

    2007-01-01

    Tumor cells usually secrete soluble factors to improve their proliferation via autocrine network or to escape from immune surveillance by inhibiting antitumor immunity, among these factors IL-10 and IL-6 play more important roles. Since both cytokines' signal transductions are mediated through the STAT3 pathway, STAT3 becomes an attractive target for tumor therapy. In present study, STAT3 of murine tumor cell lines B16 and MCA-38 was constitutively activated. After treatment with STAT3-decoy ODN, the proliferation of these tumor cells was inhibited and the transcription of IL-10 or IL-6 in tumor cells was down-regulated. These results suggested that STAT3 is a good target candidate, and STAT3-decoy ODN may possibly be used as a strategy for breaking both tumor autocrine network and tumor immunotolerance.

  18. STAT3和胃癌的研究进展

    Institute of Scientific and Technical Information of China (English)

    张荣贵

    2011-01-01

    @@ 人类STAT3基因定位于第17号染色体(q21.31),STAT3蛋白是信号转导子与转录激活子家族(signal transducers and activators of transcription ,STATs)的重要成员.近年来,STAT3与胃癌(gastric cancer,GC)关系引起人们的广泛关注,现就其研究进展作一综述. 一、STAT3概述

  19. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

    Science.gov (United States)

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Dong, Xing-yu; Liu, Ru-en; Xu, Ru-xiang

    2015-01-01

    We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF) on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3) signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated STAT3 (p-STAT3), and several downstream molecules, including HIAP, Bcl-2, cyclin D1, and Survivin, were significantly downregulated upon PF treatment. Overexpression of STAT3 induced resistance to PF, suggesting that STAT3 was a critical target of PF. Interestingly, rapid downregulation of STAT3 was consistent with its accelerated degradation, but not with its dephosphorylation or transcriptional modulation. Using specific inhibitors, we demonstrated that the prodegradation effect of PF on STAT3 was mainly through the ubiquitin–proteasome pathway rather than via lysosomal degradation. These findings indicated that PF-induced growth suppression and apoptosis in human glioma cells through the proteasome-dependent degradation of STAT3. PMID:26508835

  20. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment.

    Science.gov (United States)

    Zheng, Xin; Xu, Meng; Yao, Bowen; Wang, Cong; Jia, Yuli; Liu, Qingguang

    2016-09-01

    Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.

  1. 非小细胞肺癌中p-STAT3与Ki67的表达及意义%The expression and significance of phosphorylated signal transducer and activator of transcription 3 and Ki67 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    刘培杰

    2010-01-01

    Objective To study the expressions of phosphorylated signal transducer and activator of transcription 3(p-STAT3)and Ki67 in non-small cell lung cancer and their significance in tumor development and progression. Methods The expression of p-STAT3 and Ki67 were detected in 67 lung carcinoma tissues and 41 normal lung tissues by immun histochemical method. Results The positive rate of p-STAT3 in non-small cell lung cancer (67.16%,45/67) was significantly higher than that in normal lung tissue(17.07%,7/41). The positive rate of Ki67 in non-small cell lung cancer (76.12%,51/67) was significantly higher than that in normal lung tissue(7.31%,3/41).The expression of p-STAT3 and Ki67 were associated with clinical stages, lymph node transferation and histological grades(P<0.05). The expression of p-STAT3 and Ki67 were not associated with ages, sex, tumor location or size.The expression of p-STAT3 was positively correlated with Ki67 expression. Conclusions Abnormal activation of p-STAT3, can lead to excessive proliferation of tumor cells and Ki67 is a favorable indicator of proliferation of lung tumor cells, and the combined detection of p-STAT3 and Ki67 may be valuable for diagnosis and treatment of non-small cell lung cancer.%目的 研究磷酸化信号转导与转录活化因子3(p-STAT3)和 Ki67在非小细胞肺癌(NSCLC)发生、发展中的作用及相互关系.方法 采用免疫组织化学S-P法检测67例非小细胞肺癌组织和41例正常肺组织中p-STAT3与Ki67的表达.结果 非小细胞肺癌组织中p-STAT3的阳性表达率(67.16%,45/67)显著高于正常肺组织(17.07%,7/41),Ki67在非小细胞肺癌组织中的表达(76.12%,51/67)高于正常肺组织(7.31%,3/41).p-STAT3和 Ki67的表达与临床分期、有无淋巴转移和分化程度相关(P均<0.05),与患者年龄、性别、肿瘤位置及大小无关.p-STAT3的表达与Ki67表达呈正相关.结论 p-STAT3的异常活化可促进恶性肿瘤细胞的过度增殖,Ki67较好的反应了肺癌

  2. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling

    OpenAIRE

    Parpura, Vladimir; VERKHRATSKY, ALEXEI

    2012-01-01

    Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is...

  3. Maternal Protein Restriction in the Rat Inhibits Placental Insulin, mTOR, and STAT3 Signaling and Down-Regulates Placental Amino Acid Transporters

    OpenAIRE

    Rosario, Fredrick J.; Jansson, Nina; Kanai, Yoshikatsu; Prasad, Puttur D; Powell, Theresa L.; Jansson, Thomas

    2011-01-01

    The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid...

  4. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  5. Clinical Implications of Phosphorylated STAT3 Expression in de novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Ok, Chi Y; Chen, Jiayu; Xu-Monette, Ziju;

    2014-01-01

    PURPOSE: Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor growth, invasion, cell proliferation, angiogenesis, immune response, and survival. Data regarding expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and the impact of...

  6. STAT3 and metabolism : how many ways to use a single molecule?

    NARCIS (Netherlands)

    Demaria, Marco; Camporeale, Annalisa; Poli, Valeria

    2014-01-01

    The transcription factor Signal Transducer and Activator of Transcription (STAT)3 has been considered as a potential anticancer target since its first description as an oncogene in 1999, recently leading to STAT3 inhibitors been brought to clinical trial for the treatment of solid tumors. However, t

  7. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  8. Unveiling the Association of STAT3 and HO-1 in Prostate Cancer: Role beyond Heme Degradation

    Directory of Open Access Journals (Sweden)

    Belen Elguero

    2012-11-01

    Full Text Available Activation of the androgen receptor (AR is a key step in the development of prostate cancer (PCa. Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3 signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1 may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation.

  9. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  10. 雌激素活化GPER介导的IL-6/STAT3通路促进乳腺癌细胞SKBR-3增殖作用%Estrogen activates GPER mediated IL-6/STAT3 signaling pathway to enhance proliferation in breast cancer SKBR-3 cells

    Institute of Scientific and Technical Information of China (English)

    王健; 徐杰; 安雪青; 吕健东

    2015-01-01

    目的 探讨雌激素活化膜性雌激素受体(G-protein coupled estrogen receptor,GPER)所介导的IL-6/STAT3炎症信号通路对乳腺癌SKBR-3细胞增殖能力的影响.方法 用17-β雌二醇(E2)、GPER特异性激动剂(G1)、GPER特异性拮抗剂(G15)、IL-6中和抗体(Anti-IL-6)及STAT3特异性抑制剂JSI-124(cucurbitacin I)药物处理SKBR-3细胞后,分别得到对照组、E2处理组、G1处理组、E2+G15处理组、G1+G15处理组、E2+ Anti-IL-6处理组、G1+Anti-IL-6处理组、E2+ JSI-124处理组与G1+JSI-124处理组,用ELISA检测细胞培养液上清中IL-6的分泌量,CCK-8法检测细胞增殖能力的变化,Westernblot检测细胞中p-STAT3STAT3的蛋白表达水平.结果 E2和G1显著促进SKBR-3细胞上清中IL-6的分泌量,G15可显著阻断其分泌(P<0.05).E2及G1药物处理细胞后增殖能力较对照组显著增强,相对细胞数分别为对照组的(1.68±0.13)倍与(1.74±0.21)倍,其促增殖作用被G15及IL-6中和抗体(Anti-IL-6)显著抑制(P<0.05).E2及G1在不同时间点(1、3、6、12 h)均可显著促进细胞中p-STAT3的蛋白表达量,分别于12 h和3h达到表达峰值,其蛋白相对表达量分别为对照组的(2.54±0.23)倍和(3.12±0.24)倍.G15、Anti-IL-6及JSI-124显著阻断以上变化(P<0.05).JSI-124亦可明显抑制E2及G1所引起的促增殖效应(P<0.05).结论 雌激素活化膜性雌激素受体GPER促进乳腺癌SKBR-3细胞自分泌IL-6从而激活细胞中下游STAT3炎症信号通路,同时,GPER/IL-6/STAT3信号通路也介导了雌激素对细胞的增殖作用.

  11. APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival.

    Science.gov (United States)

    Cardoso, Angelo A; Jiang, Yanlin; Luo, Meihua; Reed, April M; Shahda, Safi; He, Ying; Maitra, Anirban; Kelley, Mark R; Fishel, Melissa L

    2012-01-01

    Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.

  12. Sunitinib inhibits proliferation of head and neck cell line PCI-13 by blocking STAT3 signal pathway%舒尼替尼阻断STAT3通路抑制头颈鳞癌细胞PCI-13增殖

    Institute of Scientific and Technical Information of China (English)

    贾志宇; 赵云转; 屈鹏飞; 张英怀; Lim Chweeming; Robert L Ferris

    2014-01-01

    目的 体外研究舒尼替尼对头颈鳞癌细胞系PCI-13增殖和凋亡的影响,并观察STAT1、STAT3在凋亡过程中的变化,探讨STAT3通路在舒尼替尼诱导肿瘤细胞凋亡中的作用.方法 体外培养PCI-13细胞,用不同浓度的舒尼替尼处理24、48、72 h后,应用MTT比色实验,倒置显微镜、Wright-Giemsa染色、流式细胞术检测和观察PCI-13的生长抑制率和凋亡情况.细胞经血清饥饿后,分别用0、1、2、4 μmol/L的舒尼替尼处理2、8、16和24h,采用流式细胞术检测p-STAT1和3的表达,并设阴性和阳性对照组.结果 舒尼替尼可明显抑制PCI-13细胞的增殖,其最高抑制率可达92%,各浓度用药组不同处理时间之间生长抑制率有显著差异(P<0.05),抑制率呈时间-浓度依赖性.同时舒尼替尼可诱导PCI-13细胞凋亡,凋亡率随处理时间延长和药物浓度增加而上升(P<0.05).舒尼替尼不影响p-STAT1的表达(P>0.05),但是可以显著抑制p-STAT3的表达,这种抑制存在浓度依赖性(P<0.05).结论 舒尼替尼不但能够抑制PCI-13细胞增殖,诱导其凋亡,而且能够抑制PCI-13细胞中STAT3的磷酸化水平,减少其激活.提示舒尼替尼诱导PCI-13细胞凋亡可能由STAT/JAK途径介导.

  13. Conditional overexpression of Stat3alpha in differentiating myeloid cells results in neutrophil expansion and induces a distinct, antiapoptotic and pro-oncogenic gene expression pattern.

    Science.gov (United States)

    Redell, Michele S; Tsimelzon, Anna; Hilsenbeck, Susan G; Tweardy, David J

    2007-10-01

    Normal neutrophil development requires G-CSF signaling, which includes activation of Stat3. Studies of G-CSF-mediated Stat3 signaling in cell culture and transgenic mice have yielded conflicting data regarding the role of Stat3 in myelopoiesis. The specific functions of Stat3 remain unclear, in part, because two isoforms, Stat3alpha and Stat3beta, are expressed in myeloid cells. To understand the contribution of each Stat3 isoform to myelopoiesis, we conditionally overexpressed Stat3alpha or Stat3beta in the murine myeloid cell line 32Dcl3 (32D) and examined the consequences of overexpression on cell survival and differentiation. 32D cells induced to overexpress Stat3alpha, but not Stat3beta, generated a markedly higher number of neutrophils in response to G-CSF. This effect was a result of decreased apoptosis but not of increased proliferation. Comparison of gene expression profiles of G-CSF-stimulated, Stat3alpha-overexpressing 32D cells with those of cells with normal Stat3alpha expression revealed novel Stat3 gene targets, which may contribute to neutrophil expansion and improved survival, most notably Slc28a2, a purine nucleoside transporter, which is critical for maintenance of intracellular nucleotide levels and prevention of apoptosis, and Gpr65, an acid-sensing, G protein-coupled receptor with pro-oncogenic and antiapoptotic functions. PMID:17634277

  14. Hedgehog Signaling Modulates the Release of Gliotransmitters from Cultured Cerebellar Astrocytes.

    Science.gov (United States)

    Okuda, Hiroaki; Tatsumi, Kouko; Morita-Takemura, Shoko; Nakahara, Kazuki; Nochioka, Katsunori; Shinjo, Takeaki; Terada, Yuki; Wanaka, Akio

    2016-02-01

    Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family, plays essential roles in the development of the central nervous system. Recent studies suggest that the Hh signaling pathway also functions in mature astrocytes under physiological conditions. We first examined the expression of genes encoding Hh signaling molecules in the adult mouse cerebellum by in situ hybridization histochemistry. mRNA for Patched homolog 1 (Ptch1), a receptor for Hh family members, was expressed in S100β-positive astrocytes and Shh mRNA was expressed in HuC/D-positive neurons, implying that the Hh signaling pathway contributes to neuro-glial interactions. To test this hypothesis, we next examined the effects of recombinant SHH N-terminal protein (rSHH-N) on the functions of cultured cerebellar astrocytes. rSHH-N up-regulated Hh signal target genes such as Ptch1 and Gli-1, a key transcription factor of the Hh signaling pathway. Although activation of Hh signaling by rSHH-N or purmorphamine influenced neither glutamate uptake nor gliotransmitters release, inhibition of the Hh signaling pathway by cyclopamine, neutralizing antibody against SHH or intracellular Ca(2+) chelation decreased glutamate and ATP release from cultured cerebellar astrocytes. On the other hand, cyclopamine, neutralizing antibody against SHH or Ca(2+) chelator hardly affected D-serine secretion. Various kinase inhibitors attenuated glutamate and ATP release, while only U0126 reduced D-serine secretion from the astrocytes. These results suggested that the Hh signaling pathway sustains the release of glutamate and ATP and participates in neuro-glial interactions in the adult mouse brain. We also propose that signaling pathways distinct from the Hh pathway govern D-serine secretion from adult cerebellar astrocytes. PMID:26694649

  15. Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo

    Institute of Scientific and Technical Information of China (English)

    Zuo-Wen Liang; Ling Zhang; Bao-Xue Yang; Bao-Feng Guo; Yang Li; Xiao-Jie Li; Xin Li; Li-Ting Zhao; Ii-Fang Gao; Hao Yu; Xue-Jian Zhao

    2011-01-01

    DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BL/6 mice. CaCl2-modif ied hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Stat3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGF and cyclin Dl were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P<0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stet3-induced apoptosis (up to 42%, P<0.01). The Stat3 downstream genes Bcl-2, VEGFand cyclin Dl were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.

  16. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  17. Down-regulation of STAT3 expression by vector-based small interfering RNA inhibits pancreatic cancer growth

    Institute of Scientific and Technical Information of China (English)

    Chen Huang; Guang Yang; Tao Jiang; Jun Cao; Ke-Jian Huang; Zheng-Jun Qiu

    2011-01-01

    AIM: To evaluate the effect of RNA interference (RNAi) mediated silence of signal transduction and activation of transcription (STAT)3 on the growth of human pancreatic cancer cells both in vitro and in vivo . METHODS: STAT3 specific shRNA was used to silence the expression of STAT3 in pancreatic cancer cell line SW1990. The anti-growth effects of RNAi against STAT3 were studied in vitro and in experimental cancer xenografts in nude mice. The potential pathways involved in STAT3 signaling were detected using reverse transcription polymerase chain reaction and western blotting. RESULTS: The expression of the STAT3 was inhibited using RNAi in SW1990 cells. RNAi against STAT3 inhibited cell proliferation, induced cell apoptosis and significantly reduced the levels of CyclinD1 and Bcl-xL when compared with parental and control vector-transfected cells. In vivo experiments showed that RNAi against STAT3 inhibited the tumorigenicity of SW1990 cells and significantly suppressed tumor growth when it was directly injected into tumors. CONCLUSION: STAT3 signaling pathway plays an important role in the progression of pancreatic cancer, and silence of STAT3 gene using RNAi technique may be a novel therapeutic option for treatment of pancreatic cancer.

  18. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, Uddalak; Kasembeli, Moses M.; Eckols, T. Kris; Kolosov, Mikhail; Lang, Paul [Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 (United States); Christensen, Kurt [Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Edwards, Dean P. [Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 (United States); Tweardy, David J., E-mail: dtweardy@bcm.edu [Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Biochemistry & Molecular Biology, BCM 286, Room N-1319, Baylor College of Medicine, Houston, TX 77030 (United States)

    2014-09-29

    Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p) Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7) and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes.

  19. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uddalak Bharadwaj

    2014-09-01

    Full Text Available Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7 and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes.

  20. Role of unphosphorylated transcription factor STAT3 in late cerebral ischemia after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Samraj, Ajoy K; Müller, Anne H; Grell, Anne-Sofie;

    2014-01-01

    Molecular mechanisms behind increased cerebral vasospasm and local inflammation in late cerebral ischemia after subarachnoid hemorrhage (SAH) are poorly elucidated. Using system biology tools and experimental SAH models, we have identified signal transducer and activator of transcription 3 (STAT3...

  1. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Spitzner, Melanie, E-mail: melanie.spitzner@med.uni-goettingen.de [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Ebner, Reinhard [Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Wolff, Hendrik A. [Department of Radiotherapy and Radiooncology, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Ghadimi, B. Michael [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Wienands, Jürgen [Department of Cellular and Molecular Immunology, University Medicine Göttingen, Humboldtallee 34, Göttingen 37073 (Germany); Grade, Marian, E-mail: melanie.spitzner@med.uni-goettingen.de [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany)

    2014-09-29

    Chemoradiotherapy (CRT) represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3) plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.

  2. The Role of STAT3 in Thyroid Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sosonkina, Nadiya; Starenki, Dmytro; Park, Jong-In, E-mail: jipark@mcw.edu [Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 (United States)

    2014-03-06

    Thyroid cancer is the most common endocrine malignancy and its global incidence rates are rapidly increasing. Although the mortality of thyroid cancer is relatively low, its rate of recurrence or persistence is relatively high, contributing to incurability and morbidity of the disease. Thyroid cancer is mainly treated by surgery and radioiodine remnant ablation, which is effective only for non-metastasized primary tumors. Therefore, better understanding of the molecular targets available in this tumor is necessary. Similarly to many other tumor types, oncogenic molecular alterations in thyroid epithelium include aberrant signal transduction of the mitogen-activated protein kinase, phosphatidylinositol 3-kinase/AKT (also known as protein kinase B), NF-κB, and WNT/β-catenin pathways. However, the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT3) pathway, a well-known mediator of tumorigenesis in different tumor types, is relatively less understood in thyroid cancer. Intriguingly, recent studies have demonstrated that, in thyroid cancer, the JAK/STAT3 pathway may function in the context of tumor suppression rather than promoting tumorigenesis. In this review, we provide an update of STAT3 function in thyroid cancer and discuss some of the evidences that support this hypothesis.

  3. The Role of STAT3 in Thyroid Cancer

    International Nuclear Information System (INIS)

    Thyroid cancer is the most common endocrine malignancy and its global incidence rates are rapidly increasing. Although the mortality of thyroid cancer is relatively low, its rate of recurrence or persistence is relatively high, contributing to incurability and morbidity of the disease. Thyroid cancer is mainly treated by surgery and radioiodine remnant ablation, which is effective only for non-metastasized primary tumors. Therefore, better understanding of the molecular targets available in this tumor is necessary. Similarly to many other tumor types, oncogenic molecular alterations in thyroid epithelium include aberrant signal transduction of the mitogen-activated protein kinase, phosphatidylinositol 3-kinase/AKT (also known as protein kinase B), NF-κB, and WNT/β-catenin pathways. However, the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT3) pathway, a well-known mediator of tumorigenesis in different tumor types, is relatively less understood in thyroid cancer. Intriguingly, recent studies have demonstrated that, in thyroid cancer, the JAK/STAT3 pathway may function in the context of tumor suppression rather than promoting tumorigenesis. In this review, we provide an update of STAT3 function in thyroid cancer and discuss some of the evidences that support this hypothesis

  4. Structure of the mouse Stat 3/5 locus: evolution from Drosophila to zebrafish to mouse.

    Science.gov (United States)

    Miyoshi, K; Cui, Y; Riedlinger, G; Robinson, P; Lehoczky, J; Zon, L; Oka, T; Dewar, K; Hennighausen, L

    2001-01-15

    Signal transducers and activators of transcription (Stat) are transcription factors that can be activated by many cytokines. While Drosophila contains only one Stat (d-Stat), mammals contain seven, with STATs 3, 5a, and 5b being the closest functional relatives. To understand the evolutionary relationship between d-Stat and vertebrate STATs 3 and 5, we isolated, sequenced, and analyzed the zebrafish Stat3 (z-Stat3) gene and a 500-kb region spanning mouse chromosome 11, 60.5 cM containing three Stat genes (m-Stats). Within this region we identified the genes encoding m-Stats 3, 5a, and 5b, Cnp1, Hcrt/Orexin, Ptrf, GCN5, mDj11, and four new genes. The 5' ends of the m-Stat5a and m-Stat5b genes are juxtaposed to each other, and the 3' ends of the m-Stat3 and Stat5a genes face each other. While the m-Stat5a and m-Stat3 genes have one promoter each, which are active in many tissues, the m-Stat5b gene acquired two distinct promoters. The distal promoter is expressed ubiquitously, and transcription from the proximal promoter is restricted to liver, muscle, and mammary tissue. Through a comparison of exon-intron boundaries from the m-Stat3, m-Stat5a, and m-Stat5b, z-Stat3, and d-Stat genes, we deduced their evolutionary relationship. We propose that the Stat3 and Stat5 lineages are derived from the duplication of a common primordial gene and that d-Stat is a part of the Stat5 lineage. PMID:11161808

  5. STAT3RNA干扰对脑胶质瘤U251细胞活性氧含量及DNA损伤的影响%Effects of signal transducer and activator of transcription 3 RNAi on content of reactive oxygen species and DNA damage in glioma cell

    Institute of Scientific and Technical Information of China (English)

    高玲; 李峰生; 董波; 刘丽卉; 刘青杰; 陈肖华; 毛秉智

    2011-01-01

    Objective To investigate the effects of signal transducer and activator of transcription 3 (STAT3) RNAi on the content of reactive oxygen species (ROS) and the DNA damage in glioma cells.Methods Glioma cells of the line U251 cells were cultured and transfected with STAT3 RNAi plasmid (pSilencer2.1-STAT3,STAT3 group) and pSilencer2.1-GFP (GFP control group) respectively.Part of the U251 cells were irradiated with γ-rays of 60Co as positive control group of smear phenomenon.The levels of ROS and malondialdehyde (MDA) in the cells were detected 24,48,and 72 h later by flow cytometry and fluorescence chamoluminescence analyzer,respectively.The DNA damage in the transfected U251 cells was examined by using single cell gel electrophoresis assay,and the cell cycle distribution was examined using FACS PI staining 12,24,and 36 h later.Results At 24 h after the transfection,the ROS level of the siSTAT3-transfected ceils was 8.91 times that of the control group (F = 89.296,P < 0.05),and returned to the normal level 48 h later.There were not significant differences in the MDA level of the cells 24,48,and 72 h later between the siSTAT3 group and siGFP group.Compared with the 8 Gy irradiation positive group with obvious smear phenomenon,smear phenomenon was shown in part of the ceils in the siSTAT3 group 6 h later,became less 12 h later,and disappeared completely 24 h later.Compared with the control group,lag of S stage rate was 17.22% and the lag of G2/M stage rate was 6.4% 12 h later in the siSTAT-transfected group,and the G0/G1 stage lag rate was 18.44% 24 h later,and the lag of S stage rate was 17.99% 36 h later.Conclusions Inhibition of STAT3 results in the change of oxidoreduction status in glioma cells,as well as damage and reparation of DNA.%目的 探讨STAT3 RNA干扰(RNAi)对脑胶质瘤U251细胞活性氧含量及DNA损伤的影响.方法 利用构建好的STAT3 RNAi载体(pSilencer2.1-STAT3,STAT3组)和pSileneer2.1-GFP(RNAi对照组)分别转染U251

  6. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    Science.gov (United States)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  7. EFFECT OF STAT3 SPECIFIC SHRNA EXPRESSION VECTOR ON PROLIFERATION AND APOPTOSIS OF HUMAN PANCREATIC CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To construct signal transduction and activators of transcription 3 (STAT3) short hairpin RNA (shRNA) expression vector and to investigate its inhibitory effects on STAT3 expression, cell proliferation and apoptosis of human pancreatic cancer. Methods Three pairs of hairpin-like oligonucleotide sequences specific for human STAT3 gene were designed and synthesized. The annealed oligonucleotide fragments were subcloned into pRNAT-U6.1/Neo plasmid. The STAT3 shRNA expressing vectors were confirmed by PCR and DNA sequencing. STAT3 mRNA and protein expression were examined by using reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. MTT assay and flow cytometry were performed to detect the state of cell proliferation and cell apoptosis, respectively. Results PCR and DNA sequencing showed that the oligonucleotide fragments were correctly inserted into pRNAT-U6.1/Neo plasmid. STAT3 expression and cell proliferation in the transfected cells was inhibited significantly by three STAT3 shRNA expressing vectors (P<0.05). ConclusionSTAT3 shRNA expression vector can effectively inhibit the expression of STAT3. Silencing of STAT3 with RNAi can significantly inhibit the proliferation and promotes the apoptosis of pancreatic cancer cells and may provide a novel therapeutic target for treating pancreatic cancer.

  8. Dancing rhinos in stilettos: The amazing saga of the genomic and nongenomic actions of STAT3 in the heart.

    Science.gov (United States)

    Zouein, Fouad A; Kurdi, Mazen; Booz, George W

    2013-07-01

    A substantial body of evidence has shown that signal transducer and activator of transcription 3 (STAT3) has an important role in the heart in protecting the myocardium from ischemia and oxidative stress. These actions are attributed to STAT3 functioning as a transcription factor in upregulating cardioprotective genes. Loss of STAT3 has been implicated as well in the pathogenesis of heart failure and, in that context and in addition to the loss of a cardioprotective gene program, nuclear STAT3 has been identified as a transcriptional repressor important for the normal functioning of the ubiquitin-proteasome system for protein degradation. The later finding establishes a genomic role for STAT3 in controlling cellular homeostasis in cardiac myocytes independent of stress. Surprisingly, although a well-studied area, very few downstream gene targets of STAT3 in the heart have been definitively identified. In addition, STAT3 is now known to induce gene expression by noncanonical means that are not well characterized in the heart. On the other hand, recent evidence has shown that STAT3 has important nongenomic actions in cardiac myocytes that affect microtubule stability, mitochondrial respiration, and autophagy. These extranuclear actions of STAT3 involve protein-protein interactions that are incompletely understood, as is their regulation in both the healthy and injured heart. Moreover, how the diverse genomic and nongenomic actions of STAT3 crosstalk with each other is unchartered territory. Here we present an overview of what is and is not known about both the genomic and nongenomic actions of STAT3 in the heart from a structure-function perspective that focuses on the impact of posttranslational modifications and oxidative stress in regulating the actions and interactions of STAT3. Even though we have learnt a great deal about the role played by STAT3 in the heart, much more awaits to be discovered. PMID:24069556

  9. Pivotal importance of STAT3 in protecting the heart from acute and chronic stress: new advancement and unresolved issues

    Directory of Open Access Journals (Sweden)

    Foaud A. Zouein

    2015-11-01

    Full Text Available The transcription factor Signal Transducer and Activator of Transcription 3 (STAT3 has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species (ROS production, and mitochondrial permeability transition pore (mPTP opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 are poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3 in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via noncanonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the noncanonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.

  10. Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation

    Directory of Open Access Journals (Sweden)

    Jianqiang Wu

    2016-03-01

    Full Text Available To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1 neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs and Schwann cells (SCs prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity. β-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and β-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3β and the SWI/SNF gene Arid1b to increase β-catenin. Knockdown of Arid1b or Gsk3β in Stat3fl/fl;Nf1fl/fl;DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/β-catenin pathway inhibitors in neurofibroma therapeutic trials.

  11. Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation.

    Science.gov (United States)

    Wu, Jianqiang; Keng, Vincent W; Patmore, Deanna M; Kendall, Jed J; Patel, Ami V; Jousma, Edwin; Jessen, Walter J; Choi, Kwangmin; Tschida, Barbara R; Silverstein, Kevin A T; Fan, Danhua; Schwartz, Eric B; Fuchs, James R; Zou, Yuanshu; Kim, Mi-Ok; Dombi, Eva; Levy, David E; Huang, Gang; Cancelas, Jose A; Stemmer-Rachamimov, Anat O; Spinner, Robert J; Largaespada, David A; Ratner, Nancy

    2016-03-01

    To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity. β-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and β-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3β and the SWI/SNF gene Arid1b to increase β-catenin. Knockdown of Arid1b or Gsk3β in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/β-catenin pathway inhibitors in neurofibroma therapeutic trials. PMID:26904939

  12. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3

    Institute of Scientific and Technical Information of China (English)

    Fang-Ming Gu; Quan-Lin Li; Qiang Gao; Jia-Hao Jiang; Xiao-Yong Huang; Jin-Feng Pan; Jia Fan; Jian Zhou

    2011-01-01

    AIM: To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC). METHODS: Human and rat HCC cell lines were treated with sorafenib. Proliferation and STAT3 dephosphorylation were assessed. Potential molecular mechanisms of STAT3 pathway inhibition by sorafenib were evaluated. In vivo antitumor action and STAT3 inhibition were investigated in an immunocompetent orthotopic rat HCC model. RESULTS: Sorafenib decreased STAT3 phosphorylation at the tyrosine and serine residues (Y705 and S727), but did not affect Janus kinase 2 (JAK2) and phospha-tase shatterproof 2 (SHP2), which is associated with growth inhibition in HCC cells. Dephosphorylation of S727 was associated with attenuated extracellular signal-regulated kinase (ERK) phosphorylation, similar to the effects of a mitogen-activated protein kinase (MEK) inhibitor U0126, suggesting that sorafenib induced S727 dephosphorylation by inhibiting MEK/ERK signaling. Meanwhile, sorafenib could also inhibit Akt phosphorylation, and both the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and Akt knockdown resulted in Y705 dephosphorylation, indicating that Y705 dephosphorylation by sorafenib was mediated by inhibiting the PI3K/Akt pathway. Finally, in the rat HCC model, sorafenib significantly inhibited STAT3 activity, reducing tumor growth and metastasis. CONCLUSION: Sorafenib inhibits growth and metastasis of HCC in part by blocking the MEK/ERK/STAT3 and PI3K/Akt/STAT3 signaling pathways, but independent of JAK2 and SHP2 activation.

  13. Novel STAT3 phosphorylation inhibitors exhibit potent growth suppressive activity in pancreatic and breast cancer cells

    Science.gov (United States)

    Lin, Li; Hutzen, Brian; Zuo, Mingxin; Ball, Sarah; Deangelis, Stephanie; Foust, Elizabeth; Pandit, Bulbul; Ihnat, Michael A.; Shenoy, Satyendra S.; Kulp, Samuel; Li, Pui-Kai; Li, Chenglong; Fuchs, James; Lin, Jiayuh

    2010-01-01

    The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug-resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small molecule STAT3 inhibitors known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus Kinase 2 (JAK2) and the STAT3 SH2 domain, which serves crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar, cell invasion, and exhibit synergy with the anti-cancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by Interferon-α (IFNα) and Interleukin-6 (IL-6) in breast cancer cells. We also demonstrate that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling. PMID:20215512

  14. MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxin [Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191 (China); Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Yue, Xupeng [Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Cui, Yuanyuan [Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191 (China); Zhang, Jufeng, E-mail: jfzhang111@163.com [Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Wang, KeWei, E-mail: wangkw@bjmu.edu.cn [Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191 (China); Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191 (China)

    2013-11-29

    Highlights: •miR-124 is down-regulated in hepatocellular carcinoma HepG2 cells. •Over-expression of miR-124 suppresses proliferation and induces apoptosis in HepG2 cells. •miR-124 inhibits xenograft tumor growth in nude mice implanted with HepG2 cells by reducing STAT3 expression. •STATs function as a novel target of miR-124 in HCC HepG2 cells. -- Abstract: The aberrant expression of microRNAs is associated with development and progression of cancers. Down-regulation of miR-124 has been demonstrated in the hepatocellular carcinoma (HCC), but the underlying mechanism by which miR-124 suppresses tumorigenesis in HCC remains elusive. In this study, we found that miR-124 suppresses the tumor growth of HCC through targeting the signal transducers and activators of transcription 3 (STAT3). Overexpression of miR-124 suppressed proliferation and induced apoptosis in HepG-2 cells. Luciferase assay confirmed that miR-124 binding to the 3′-UTR region of STAT3 inhibited the expression of STAT3 and phosphorylated STAT3 proteins in HepG-2 cells. Knockdown of STAT3 by siRNA in HepG-2 cells mimicked the effect induced by miR-124. Overexpression of STAT3 in miR-124-transfected HepG-2 cells effectively rescued the inhibition of cell proliferation caused by miR-124. Furthermore, miR-124 suppressed xenograft tumor growth in nude mice implanted with HepG-2 cells by reducing STAT3 expression. Taken together, our findings show that miR-124 functions as tumor suppressor in HCC by targeting STAT3, and miR-124 may therefore serve as a biomarker for diagnosis and therapeutics in HCC.

  15. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Sayama, Koji, E-mail: sayama@m.ehime-u.ac.jp [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan)

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  16. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models

    OpenAIRE

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; GAO, ZHANCHENG; Wang, Qi

    2015-01-01

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation...

  17. Constitutive Activation of STAT-3 and Neoplasm Invasion and Metastasis%STAT-3持续活化与肿瘤侵袭、转移

    Institute of Scientific and Technical Information of China (English)

    邹黎黎; 韩莉; 柳长柏

    2012-01-01

    The disorder of JAK-STAT(janus tyrosine kinase-signal transducer and activator of transcription) is one of the leading causes for the occurrence of tumors. Recent studies showed that STAT-3, an important transcription factor of JAK-STAT signal transduction pathway, can promote the rapid induction of genes by directly transducing signals from the receptor into the nucleus, and to play a pivotal role in mediating the biological response for this ligands. However, STAT-3 appears to have a dark side as well. STAT-3 can sus-tainablely activate in the tumor cells, and serve as a new target for tumor therapy as a protooncogene. Thus, it is helpful to gain a better understanding of the role of STAT-3 in tumorigenesis with the overview of the relationship between the constitutive activation of STAT-3 and the neoplasm invasion, metastasis, and cancer stem cells.%JAK-STAT(janus tyrosine kinase-signal transducer and activator of transcription)细胞信号转导途径的紊乱,是肿瘤发生最重要的原因之一.近年来的研究发现,STAT-3作为JAK-STAT信号转导途径中一个重要的调节分子,能够通过将信号直接转导入细胞核而快速激活下游基因,从而保证相应配体顺利完成信号转导过程.然而,STAT-3也有其“黑暗”的一面,其往往在恶性肿瘤细胞中表现为持续活化,作为一种原癌基因,成为肿瘤治疗的新靶标.因而,对近年来有关STAT-3的持续活化与恶性肿瘤细胞的侵袭、转移过程及肿瘤干细胞的关系作一概述,有助于深入了解STAT-3在肿瘤发生发展机制中发挥的作用.

  18. Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S;

    1994-01-01

    stimulation through the IL-2R induced tyrosine phosphorylation and subsequent nuclear translocation of stat3, a newly identified member of the signal transducers and activators of transcription (STAT) family of proteins. In contrast, stat1 proteins were not tyrosine phosphorylated after IL-2 ligation, whereas...... an apparent molecular mass of 84 kDa and was not recognized by stat3 or stat1 mAb or antisera. Since IL-2 induced nuclear translocation of the 84 kDa protein and stat3 followed identical kinetics, p84 is a candidate for a new, yet undefined, member of the STAT family. Taken together, we report that...... IL-2 induces tyrosine phosphorylation and subsequent nuclear translocation of stat3 and an as yet undefined 84-kDa protein in antigen-specific human T cell lines....

  19. INHIBITION OF IL-6-INDUCED STAT3 ACTIVATION IN MYELOMA CELLS BY PROTEIN KINASE A

    Institute of Scientific and Technical Information of China (English)

    宋伦; 黎燕; 沈倍奋

    2001-01-01

    To investigate the regulation effect of protein kinase A on IL-6-induced STAT3 activation in myeloma cells. Methods: Two human myeloma cell lines-Sko-007 and U266 were pretreated with Forskolin, a protein kinase A antagonist, and then stimulated by IL-6. The activation state of STAT3 in these two cells were examined by electrophoretic mobility shift assay (EMSA). Results: Although PKA pathway itself doesn't participate in IL-6 signal transduction in Sko-007 and U266 cells, activation of protein kinase A can inhibit IL-6-induced STAT3 activation in these two cell lines. Conclusion: There exists an inhibitory effect of protein kinase A on STAT3 activation in human myeloma cells treated by IL-6.

  20. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC)

    NARCIS (Netherlands)

    Zheng, J.; Veerdonk, F.L. van de; Crossland, K.L.; Smeekens, S.P.; Chan, C.M.; Shehri, T. Al; Abinun, M.; Gennery, A.R.; Mann, J.; Lendrem, D.W.; Netea, M.G.; Rowan, A.D.; Lilic, D.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneo

  1. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer.

    Science.gov (United States)

    Bharadwaj, U; Eckols, T K; Kolosov, M; Kasembeli, M M; Adam, A; Torres, D; Zhang, X; Dobrolecki, L E; Wei, W; Lewis, M T; Dave, B; Chang, J C; Landis, M D; Creighton, C J; Mancini, M A; Tweardy, D J

    2015-03-12

    Signal transducer and activator of transcription (STAT) 3 regulates many cardinal features of cancer including cancer cell growth, apoptosis resistance, DNA damage response, metastasis, immune escape, tumor angiogenesis, the Warburg effect and oncogene addiction and has been validated as a drug target for cancer therapy. Several strategies have been used to identify agents that target Stat3 in breast cancer but none has yet entered into clinical use. We used a high-throughput fluorescence microscopy search strategy to identify compounds in a drug-repositioning library (Prestwick library) that block ligand-induced nuclear translocation of Stat3 and identified piperlongumine (PL), a natural product isolated from the fruit of the pepper Piper longum. PL inhibited Stat3 nuclear translocation, inhibited ligand-induced and constitutive Stat3 phosphorylation, and modulated expression of multiple Stat3-regulated genes. Surface plasmon resonance assay revealed that PL directly inhibited binding of Stat3 to its phosphotyrosyl peptide ligand. Phosphoprotein antibody array analysis revealed that PL does not modulate kinases known to activate Stat3 such as Janus kinases, Src kinase family members or receptor tyrosine kinases. PL inhibited anchorage-independent and anchorage-dependent growth of multiple breast cancer cell lines having increased pStat3 or total Stat3, and induced apoptosis. PL also inhibited mammosphere formation by tumor cells from patient-derived xenografts. PL's antitumorigenic function was causally linked to its Stat3-inhibitory effect. PL was non-toxic in mice up to a dose of 30 mg/kg/day for 14 days and caused regression of breast cancer cell line xenografts in nude mice. Thus, PL represents a promising new agent for rapid entry into the clinic for use in treating breast cancer, as well as other cancers in which Stat3 has a role. PMID:24681959

  2. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC).

    Science.gov (United States)

    Zheng, Jie; van de Veerdonk, Frank L; Crossland, Katherine L; Smeekens, Sanne P; Chan, Chun M; Al Shehri, Tariq; Abinun, Mario; Gennery, Andrew R; Mann, Jelena; Lendrem, Dennis W; Netea, Mihai G; Rowan, Andrew D; Lilic, Desa

    2015-10-01

    Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneous candidiasis (CMC). In patients with autosomal dominant CMC, we and others previously reported defective Th17 responses and underlying gain-of-function (GOF) STAT1 mutations, but how this affects STAT3 function leading to decreased IL-17 is unclear. We also assessed how GOF-STAT1 mutations affect STAT3 activation, DNA binding, gene expression, cytokine production, and epigenetic modifications. We excluded impaired STAT3 phosphorylation, nuclear translocation, and sequestration of STAT3 into STAT1/STAT3 heterodimers and confirm significantly reduced transcription of STAT3-inducible genes (RORC/IL-17/IL-22/IL-10/c-Fos/SOCS3/c-Myc) as likely underlying mechanism. STAT binding to the high affinity sis-inducible element was intact but binding to an endogenous STAT3 DNA target was impaired. Reduced STAT3-dependent gene transcription was reversed by inhibiting STAT1 activation with fludarabine or enhancing histone, but not STAT1 or STAT3 acetylation with histone deacetylase (HDAC) inhibitors trichostatin A or ITF2357. Silencing HDAC1, HDAC2, and HDAC3 indicated a role for HDAC1 and 2. Reduced STAT3-dependent gene transcription underlies low Th-17 responses in GOF-STAT1 CMC, which can be reversed by inhibiting acetylation, offering novel targets for future therapies.

  3. Effect of combination of STAT3 RNAi and 60Co γ-irradiation on U251 cell proliferation

    International Nuclear Information System (INIS)

    Objective: To construct signal transduction and activators of transcription 3 (STAT3) small interference RNA (siRNA) expression vector and to study its effect on STAT3 expression and U251 cell line proliferation. Methods: STAT3 specific 19 bp oligonucleotides were designed and synthesized. These oligonucleotides were annealed to form the double strand DNA fragments and these fragments were cloned into Psilence2.1-U6-H1 vector. The recombinant of STAT3-siRNA expressing construction was confirmed by Hind III and BamH I double digestion and sequencing. The STAT3-siRNA was transfected into U251 cell. The inhibitory effect of STAT3-siRNA construction was tested by Western blot. Cellular proliferation activities were measured by tetrazolium bromide (MTT) colorimetry. Cloning efficiency and MTF were used to confirm the radiation dose. Results: STAT3-siRNA expression vector was successfully constructed, and it could effectively down-regulate the protein levels of STAT3 in transfected U251 cell line; and the radiation dose was confirmed to 2 Gy. U251 cells transfected with STAT3-siRNA expression vector showed lower cellular proliferation compared with non-transfected U251 cells (P60Co γ-irradiation showed lower cellular proliferation compared with non-irradiated U251 cells (P60Co γ irradiation can enhance the inhibitory efficiency. (authors)

  4. Ablation of STAT3 in the B Cell Compartment Restricts Gammaherpesvirus Latency In Vivo

    Science.gov (United States)

    Reddy, Sandeep Steven; Foreman, Hui-Chen Chang; Sioux, Thubten Ozula; Park, Gee Ho; Poli, Valeria; Reich, Nancy C.

    2016-01-01

    ABSTRACT A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. PMID:27486189

  5. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation.

    Directory of Open Access Journals (Sweden)

    Vicky Nicolaidou

    Full Text Available A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB, the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC, it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair.

  6. EXPRESSIONS OF STAT3 AND MMP-2 IN CERVICAL CANCER%宫颈癌组织STAT3和MMP-2表达及意义

    Institute of Scientific and Technical Information of China (English)

    李晓蕾; 王霞; 周军红; 赵爱琳

    2011-01-01

    目的 探讨信号转导和转录激活因子3(STAT3)与基质金属蛋白酶-2(MMP-2)在宫颈癌组织表达及意义.方法 采用免疫组织化学SP法分别检测16例正常组织、50例宫颈上皮内瘤变(CIN)、50例宫颈癌组织中STAT3与MMP-2的表达水平.结果 正常宫颈、CIN及宫颈癌组织中STAT3、MMP-2表达水平逐渐增高,各组间差异均有统计学意义(x2=6.417~27.097,P<0.05).STAT3异常表达与宫颈癌的病理分级和临床分期及淋巴结转移有关(x2=4.778~13.651,P<0.05);MMP-2的异常表达与临床分期及淋巴结转移有关(x2=9.039、5.003,P<0.05),而与病理分级无关;两者与病人年龄、肿瘤大小及肿瘤类型均无相关性.宫颈癌组织STAT3与MMP-2的表达呈正相关(r=0.398,P<0.05).结论 宫颈癌组织STAT3与MMP-2表达密切相关,两者表达水平可能与宫颈癌浸润转移有关,STAT3可能通过调控其下游靶基因MMP-2的表达影响宫颈癌的浸润转移.%Objective To investigate the expressions of signal transduction and activators of transcription-3 (STAT3)and matrix metalloproteinase-2 (MMP-2) in cervical cancer and their significance. Methods Immunohistochemical technique was used to detect expressions of STAT3 and MMP-2 in samples of 16 normal cervical tissue, 50 cervical intraepithelial neoplasia (CIN)and 50 cervical cancer. Results The expressions of STAT3 and MMP-2 gradually increased in the order of normal cervical tissue, CIN, and cervical cancer, the differences between the three groups being statistically significant (x2 = 6.417-27.097, P<0.05). The expression of STAT3 was related to clinical stage and pathological grade and lymph node metastasis (x2 = 4.778-13.651,P<0.05) ; and that of MMP-2 was related to clinical stage and lymph node metastasis (x2 = 9.039,5. 003; P<0.05),while no relation to pathological grade. STAT3 and MMP-2 were positively correlated (r=0.398,P<0.05), but these two items were no correlation with patient's age

  7. The Inactivation of JAK2/STAT3 Signaling and Desensitization of M1 mAChR in Minimal Hepatic Encephalopathy (MHE and the Protection of Naringin Against MHE

    Directory of Open Access Journals (Sweden)

    Saidan Ding

    2014-11-01

    Full Text Available Background: We previously reported that elevation of intracranial dopamine (DA levels from cirrhotic livers is implicated in the pathogenesis of minimal hepatic encephalopathy (MHE. Intracellular events in neurons, which lead to memory loss in MHE by elevated DA, however, remain elusive. Methods: In our present study, an MHE rat model, a DA - intracerebroventricularly (i.c.v. injected rat model and DA-treated primary cortical neurons (PCNs were used to study this issue using behavioral tests, double-labeled fluorescent staining, immunoblotting, and semi-quantitative RT-PCR. Results: Cognitive impairment was observed in MHE rats and DA (10 µg, i.c.v.-treated rats. The levels of DA in the cerebral cortex of both MHE and DA (10 µg-treated rats were increased. DA conversely modulated the p-JAK2/p-STAT3 levels in PCNs. In accordance, DA downregulated an anacetylcholine-producing enzyme, choline acetyltransferase (ChAT, and desensitized the M1-type muscarinic acetylcholine receptor (M1 mAChR. Furthermore, naringin completely restored cognitive function in MHE/DA (10 µg-treated models by activating the JAK2/STAT3 axis, paralleling the upregulation of ChAT and sensitization of M1 mAChR. Conclusions: We propose a hypothesis accounting for memory impairment related to MHE: DA-dependent inactivation of the JAK2/STAT3 axis causes memory loss through cholinergic dysfunction. Our findings provide not only a novel pathological hallmark in MHE but also a novel target in MHE therapy.

  8. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors.

    Science.gov (United States)

    Hamby, Mary E; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H; Khakh, Baljit S; Sofroniew, Michael V

    2012-10-17

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.

  9. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation.

    Science.gov (United States)

    Pedroza, Mesias; Le, Thuy T; Lewis, Katherine; Karmouty-Quintana, Harry; To, Sarah; George, Anuh T; Blackburn, Michael R; Tweardy, David J; Agarwal, Sandeep K

    2016-01-01

    Lung fibrosis is the hallmark of the interstitial lung diseases. Alveolar epithelial cell (AEC) injury is a key step that contributes to a profibrotic microenvironment. Fibroblasts and myofibroblasts subsequently accumulate and deposit excessive extracellular matrix. In addition to TGF-β, the IL-6 family of cytokines, which signal through STAT-3, may also contribute to lung fibrosis. In the current manuscript, the extent to which STAT-3 inhibition decreases lung fibrosis is investigated. Phosphorylated STAT-3 was elevated in lung biopsies from patients with idiopathic pulmonary fibrosis and bleomycin (BLM)-induced fibrotic murine lungs. C-188-9, a small molecule STAT-3 inhibitor, decreased pulmonary fibrosis in the intraperitoneal BLM model as assessed by arterial oxygen saturation (control, 84.4 ± 1.3%; C-188-9, 94.4 ± 0.8%), histology (Ashcroft score: untreated, 5.4 ± 0.25; C-188-9, 3.3 ± 0.14), and attenuated fibrotic markers such as diminished α-smooth muscle actin, reduced collagen deposition. In addition, C-188-9 decreased the expression of epithelial injury markers, including hypoxia-inducible factor-1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1). In vitro studies show that inhibition of STAT-3 decreased IL-6- and TGF-β-induced expression of multiple genes, including HIF-1α and PAI-1, in AECs. Furthermore, C-188-9 decreased fibroblast-to-myofibroblast differentiation. Finally, TGF-β stimulation of lung fibroblasts resulted in SMAD2/SMAD3-dependent phosphorylation of STAT-3. These findings demonstrate that STAT-3 contributes to the development of lung fibrosis and suggest that STAT-3 may be a therapeutic target in pulmonary fibrosis.

  10. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  11. Regulation of Natural Killer Cell Function by STAT3

    Directory of Open Access Journals (Sweden)

    Nicholas eCacalano

    2016-04-01

    Full Text Available Natural killer (NK cells, key members of a distinct hempatopoietic lineage, innate lymphoid cells (ILCs, are critical effectors that mediate cytotoxicity toward tumor and virally-infected cells but also regulate inflammation, antigen presentation and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell-cell contact and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The Signal Transducer and Activator of Transcription (STAT-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of immune surveillance. Even after tumors become established, NK cells are critical components of anti-cancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients and the lack of NK cells in the tumor microenvironment often correlates with poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells which determine the outcome of cancer immunity are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of natural killer cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.

  12. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling

    OpenAIRE

    Hines, D J; Schmitt, L I; Hines, R. M.; Moss, S J; Haydon, P. G.

    2013-01-01

    Major depressive disorder is a debilitating condition with a lifetime risk of ten percent. Most treatments take several weeks to achieve clinical efficacy, limiting the ability to bring instant relief needed in psychiatric emergencies. One intervention that rapidly alleviates depressive symptoms is sleep deprivation; however, its mechanism of action is unknown. Astrocytes regulate responses to sleep deprivation, raising the possibility that glial signaling mediates antidepressive-like actions...

  13. Knockdown of STAT3 by iRNA Inhibiting Migration and Invasion of Epithelial Ovarian Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qin-hua; ZHU Ji-hong; LIU Lei; YUE Ying

    2012-01-01

    Signal transducer and activator of transcription 3(STAT3) is a dual functional transcription factor with the functions of signal transduction and transcription regulation.It is reported that the expression of STAT3 in ovarian cancer is significantly higher and STAT3 can facilitate ovarian cancer growth and metastasis.To clarify the definite effect and molecular mechanism of STAT3 involved in ovarian cancer growth and metastasis,STAT3 expression was significantly downregulated by transfeeting ovarian cancer model SK-OV-3 cells with the plasmid vector which express specific RNAi that targets human STAT3.The downregulated STAT3 not only decreased the invasion and migration but also inhibited the proliferation of SK-OV-3 cells.Western blot assay shows that the expression of vascular endothelial growth factor(VEGF) and that of Survivin were reduced in the cells with the plasma vector expressing specific RNAi that targets human STATY These results demonstrate that STAT3 involved in the invasion and migration of SK-OV-3 regulates the expression of VEGF and Survivin.In addition,VEGF and Survivin could play an important role in ovarian cancer growth and metastasis.

  14. ERK1/2 contributes negative regulation to STAT3 activity in HSS-transfected HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS), a novel growthpromoting substance, phosphorylated the epidermal growth factor (EGF) receptors and activated downstream RasMAP kinase (extracellular signal-regulated kinases, ERK1/2) cascade. However, whether HSS signal is related to STAT3pathway remains unclear. The present study is aiming to explore the regulatory effect of activation of ERK1/2 evoked by HSS on STAT3 phosphorylation and STAT3 signaling. Human hepatoma cell line HepG2 was stably transfected with HSS cDNA and HSS expression was measured by Northern blot. The results showed that the transfection of HSS into HepG2 resulted in remarkable increase in cellular proliferation as compared with the non-transfected cells, and it was further proved that the cellular proliferation in the HSS-transfected cells was related to ERK1/2 activation. Treatment of the cells with 50 μM of PD98059, an ERK1/2 specific upstream inhibitor, resulted in ERK1/2 inactivation completely.Inhibition of ERK1/2 allowed the tyrosine of STAT3 to be phosphorylated in a dose-dependent manner to PD98059.Furthermore, transient transfection of STAT3 mutant (STAT3S727A) into HSS-bearing cells could remarkably reverse the inhibitory effect of ERK1/2 on STAT3 phosphorylation. Based upon these results, it is concluded that ERK1/2negatively modulates STAT3 phosphorylation and this function is dependent on residual serine-727 (S727) of STAT3.

  15. Analysis list: Stat3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Stat3 Blood,Digestive tract,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u.../mm9/target/Stat3.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Stat3.5.tsv http://dbarchive.b...iosciencedbc.jp/kyushu-u/mm9/target/Stat3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Blood.tsv,http://dba...rchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Digestive_tract.tsv,http://dba...rchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Neural.tsv http://dbarchive.biosciencedbc.jp

  16. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    Science.gov (United States)

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng

    2016-08-01

    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p  0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  17. Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior.

    Directory of Open Access Journals (Sweden)

    Jeremy ePetravicz

    2014-11-01

    Full Text Available Calcium-dependent release of gliotransmitters by astrocytes is reported to play a critical role in synaptic transmission and be necessary for long-term potentiation (LTP, long-term depression (LTD and other forms of synaptic modulation that are correlates of learning and memory . Further, physiological processes reported to be dependent on Ca2+ fluxes in astrocytes include functional hyperemia, sleep, and regulation of breathing. The preponderance of findings indicate that most, if not all, receptor dependent Ca2+ fluxes within astrocytes are due to release of Ca2+ through IP3 receptor/channels in the endoplasmic reticulum. Findings from several laboratories indicate that astrocytes only express IP3 receptor type 2 (IP3R2 and that a knockout of IP3R2 obliterates the GPCR-dependent astrocytic Ca2+ responses. Assuming that astrocytic Ca2+ fluxes play a critical role in synaptic physiology, it would be predicted that eliminating of astrocytic Ca2+ fluxes would lead to marked changes in behavioral tests. Here, we tested this hypothesis by conducting a broad series of behavioral tests that recruited multiple brain regions, on an IP3R2 conditional knockout mouse model. We present the novel finding that behavioral processes are unaffected by lack of astrocyte IP3R-mediated Ca2+ signals. IP3R2 cKO animals display no change in anxiety or depressive behaviors, and no alteration to motor and sensory function. Morris water maze testing, a behavioral correlate of learning and memory, was unaffected by lack of astrocyte IP3R2-mediated Ca2+-signaling. Therefore, in contrast to the prevailing literature, we find that neither receptor-driven astrocyte Ca2+ fluxes nor, by extension, gliotransmission is likely to be a major modulating force on the physiological processes underlying behavior.

  18. Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes

    Science.gov (United States)

    Matrosov, V. V.; Kazantsev, V. B.

    2011-06-01

    Bifurcation mechanisms underlying calcium oscillations in the network of astrocytes are investigated. Network model includes the dynamics of intracellular calcium concentration and intercellular diffusion of inositol 1,4,5-trisphosphate through gap junctions. Bifurcation analysis of underlying nonlinear dynamical system is presented. Parameter regions and principle bifurcation boundaries have been delineated and described. We show how variations of the diffusion rate can lead to generation of network calcium oscillations in originally nonoscillating cells. Different scenarios of regular activity and its transitions to chaotic dynamics have been obtained. Then, the bifurcations have been associated with statistical characteristics of calcium signals showing that different bifurcation scenarios yield qualitative changes in experimentally measurable quantities of the astrocyte activity, e.g., statistics of calcium spikes.

  19. STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell.

    Science.gov (United States)

    Bu, Lin-Lin; Zhao, Zhi-Li; Liu, Jian-Feng; Ma, Si-Rui; Huang, Cong-Fa; Liu, Bing; Zhang, Wen-Feng; Sun, Zhi-Jun

    2015-12-01

    Signaling transducer and activator 3 (STAT3) and cancer stem cells (CSCs) have garnered huge attention as a therapeutic focus, based on evidence that they may represent an etiologic root of tumor initiation and radio-chemoresistance. Here, we investigated the high phosphorylation status of STAT3 (p-STAT3) and its correlation with self-renewal markers in head neck squamous cell carcinoma (HNSCC). Over-expression of p-STAT3 was found to have increased in post chemotherapy HNSCC tissue. We showed that blockade of p-STAT3 eliminated both bulk tumor and side population (SP) cells with characteristics of CSCs in vitro. Inhibition of p-STAT3 using small molecule S3I-201 significantly delayed tumorigenesis of spontaneous HNSCC in mice. Combining blockade of p-STAT3 with cytotoxic drugs cisplatin, docetaxel, 5-fluorouracil (TPF) enhanced the antitumor effect in vitro and in vivo with decreased tumor sphere formation and SP cells. Taken together, our results advocate blockade of p-STAT3 in combination with conventional chemotherapeutic drugs enhance efficacy by improving CSCs eradication in HNSCC. PMID:26556875

  20. Activation of the GP130-STAT3 axis and its potential implications in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Min, Hae-Ki; Mirshahi, Faridoddin; Verdianelli, Aurora; Pacana, Tommy; Patel, Vaishali; Park, Chun-Geon; Choi, Aejin; Lee, Jeong-Hoon; Park, Chung-Berm; Ren, Shunlin; Sanyal, Arun J

    2015-05-01

    The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD. IL-6 levels were increased in NASH and correlated with gp130 expression (P < 0.01). Palmitate inhibited gp130-STAT3 expression and signaling. IL-6 and palmitate inhibited hepatic insulin signaling via STAT3-dependent and independent mechanisms, respectively. STAT3 overexpression reversed palmitate-induced lipotoxicity by increasing autophagy (ATG7) and decreasing endoplasmic reticulum stress. These data demonstrate that the STAT3 pathway is activated in NAFLD and can worsen insulin resistance while protecting against other lipotoxic mechanisms of disease pathogenesis. PMID:25747354

  1. The consequences of selective inhibition of signal transducer and activator of transcription 3 (STAT3) tyrosine705 phosphorylation by phosphopeptide mimetic prodrugs targeting the Src homology 2 (SH2) domain.

    Science.gov (United States)

    McMurray, John S; Mandal, Pijus K; Liao, Warren S; Klostergaard, Jim; Robertson, Fredika M

    2012-10-01

    Herein we review our progress on the development of phosphopeptide-based prodrugs targeting the SH2 domain of STAT3 to prevent recruitment to cytokine and growth factor receptors, activation, nuclear translocation and transcription of genes involved in cancer. We developed high affinity phosphopeptides (K I = 46-200 nM). Corresponding prodrugs inhibited constitutive and IL-6 induced Tyr705 phosphorylation at 0.5-1 μM in a variety of human cancer cell lines. They were not cytotoxic at 5 μM in vitro but they inhibited tumor growth in a human xenograft breast cancer model in mice, accompanied by reduced VEGF expression and angiogenesis. PMID:24058783

  2. (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Bao-He Zhu; Hua-Yun Chen; Wen-Hua Zhan; Cheng-You Wang; Shi-Rong Cai; Zhao Wang; Chang-Hua Zhang; Yu-Long He

    2011-01-01

    AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer.METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditioned medium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR).Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay.RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490,VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited

  3. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  4. Vaccinia virus induces rapid necrosis in keratinocytes by a STAT3-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens.To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin.Mice treated topically with a STAT3 inhibitor (Stattic developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3.Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus.

  5. A novel small molecule STAT3 inhibitor, LY5, inhibits cell viability, colony formation, and migration of colon and liver cancer cells

    Science.gov (United States)

    Yu, Wenying; Jou, David; Wang, Yina; Ma, Haiyan; Xiao, Hui; Qin, Hua; Zhang, Cuntai; Lü, Jiagao; Li, Sheng; Li, Chenglong; Lin, Jiayuh; Lin, Li

    2016-01-01

    Signal Transducer and Activator of Transcription 3 (STAT3) is persistently activated in human liver and colon cancer cells and is required for cancer cell viability, survival and migration. Therefore, inhibition of STAT3 signaling may be a viable therapeutic approach for these two cancers. We recently designed a non-peptide small molecule STAT3 inhibitor, LY5, using in silico site-directed Fragment-based drug design (FBDD). The inhibitory effect on STAT3 phosphorylation, cell viability, migration and colony forming ability by LY5 were examined in human liver and colon cancer cells. We demonstrated that LY5 inhibited constitutive Interleukin-6 (IL-6)-induced STAT3 phosphorylation, STAT3 nuclear translocation, decreased STAT3 downstream targeted gene expression and induced apoptosis in liver and colon cancer cells. LY5 had little effect on STAT1 phosphorylation mediated by IFN-γ. Inhibition of persistent STAT3 phosphorylation by LY5 also inhibited colony formation, cell migration, and decreased the viability of liver cancer and colon cancer cells. Furthermore, LY5 inhibited STAT3 phosphorylation and suppressed colon tumor growth in a mouse model in vivo. Our results suggest that LY5 is a potent STAT3 inhibitor and may be a potential drug candidate for liver and colon cancer therapy. PMID:26883202

  6. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan, E-mail: liu-xiangyuan@263.net

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  7. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser727 in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis

  8. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Dorota W. [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland); Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw (Poland); Carré, Thibault; Chouaib, Salem [Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex (France); Kaminska, Bozena, E-mail: bozenakk@nencki.gov.pl [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland)

    2013-02-15

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion.

  9. STAT3 Activity and Function in Cancer: Modulation by STAT5 and miR-146b

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Sarah R.; Xiang, Michael; Frank, David A., E-mail: david_frank@dfci.harvard.edu [Department of Medical Oncology, Dana-Farber Cancer Institute, and Departments of Medicine, Brigham and Women' s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215 (United States)

    2014-04-23

    The transcription factor STAT3 regulates genes that control critical cellular processes such as proliferation, survival, pluripotency, and motility. Thus, under physiological conditions, the transcriptional function of STAT3 is tightly regulated as one part of a complex signaling matrix. When these processes are subverted through mutation or epigenetic events, STAT3 becomes highly active and drives elevated expression of genes underlying these phenotypes, leading to malignant cellular behavior. However, even in the presence of activated STAT3, other cellular modulators can have a major impact on the biological properties of a cancer cell, which is reflected in the clinical behavior of a tumor. Recent evidence has suggested that two such key modulators are the activation status of other STAT family members, particularly STAT5, and the expression of STAT3-regulated genes that are part of negative feedback circuits, including microRNAs such as miR-146b. With attention to these newly emerging areas, we will gain greater insight into the consequence of STAT3 activation in the biology of human cancers. In addition, understanding these subtleties of STAT3 signaling in cancer pathogenesis will allow the development of more rational molecular approaches to cancer therapy.

  10. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  11. STAT3 and SOCS3 expression patterns during murine placenta development

    Directory of Open Access Journals (Sweden)

    S. San Martin

    2013-06-01

    Full Text Available Signal transducers and activators of transcription 3 (Stat3 has been identified as an important signal transducer in the invasive phenotype of the trophoblasts cells in in vitro studies. However, the in situ distribution and patterns of expression of this molecule in trophoblast cells during the development of the placenta are still under-elucidated. Mice uteri of gestational ages between 7 and 14 days of pregnancy (dop were fixed in methacarn and processed with immunoperoxidase techniques for detection of Stat3 and its phosphorylation at serine (p-ser727 residues, as well as the suppressor of cytokine signaling 3 (Socs3 expression. Stat3 was observed at 7 through 9 dop in both the antimesometrial and mesometrial deciduas, while continued immunoreactivity between 10 and 13 dop was seen only in the mesometrial decidua. In the placenta, Stat3 was detected in the cytotrophoblast cells of labyrinth and giant trophoblast cells between 10 and 14 dop. Immunoreactivity for Stat3 was also seen in trophoblast cells surrounding the maternal blood vessels. On days 10 and 11 of pregnancy, p-ser727 was detectable in the mesometrial decidua and in giant trophoblasts, while during 12-14 dop in the spongiotrophoblast region. In addition, Socs3 was immunodetected in maternal and placental tissues, principally in the giant trophoblast cells during the whole period of the study. The present in situ study shows the distribution of Stat3, its serine activation and Socs3 in different maternal and fetal compartments during murine placental development, thus further supporting the idea that they play a role during physiological placentation in mice. 

  12. Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Elena Butturini

    Full Text Available The main purpose of the present study is to envisage the molecular mechanism of inhibitory action of dehydrocostuslactone (DCE and costunolide (CS, two naturally occurring sesquiterpene lactones, towards the activation of signal transducer and activator of transcription 3 (STAT3. We report that, in human THP-1 cell line, they inhibit IL-6-elicited tyrosine phosphorylation of STAT3 and its DNA binding activity with EC(50 of 10 µM with concomitant down-regulation of the phosphorylation of the tyrosine Janus kinases JAK1, JAK2 and Tyk2. Furthermore, these compounds that contain an α-β-unsaturated carbonyl moiety and function as potent Michael reaction acceptor, induce a rapid drop in intracellular glutathione (GSH concentration by direct interaction with it, thereby triggering S-glutathionylation of STAT3. Dehydrocostunolide (HCS, the reduced form of CS lacking only the α-β-unsaturated carbonyl group, fails to exert any inhibitory action. Finally, the glutathione ethylene ester (GEE, the cell permeable GSH form, reverts the inhibitory action of DCE and CS on STAT3 tyrosine phosphorylation. We conclude that these two sesquiterpene lactones are able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein in order to regulate its function.

  13. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    International Nuclear Information System (INIS)

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo

  14. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia.

    Science.gov (United States)

    Hilliard, Kristie L; Allen, Eri; Traber, Katrina E; Kim, Yuri; Wasserman, Gregory A; Jones, Matthew R; Mizgerd, Joseph P; Quinton, Lee J

    2015-10-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (10(6) CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3(-/-)). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3(-/-) mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3(-/-) mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3(-/-) mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility. PMID:26216424

  15. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    Science.gov (United States)

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  16. STAT3、CEA在人肺腺癌细胞A594中的相关性研究%Correlation of STAT3, CEA in lung adenocarcinoma cell A549

    Institute of Scientific and Technical Information of China (English)

    Debin Sun; Xiu Lan; Hongcheng Wang

    2012-01-01

    Objective: The purpose of this study was to analyze the relationship between signal transducer and activator of transcription 3 (STAT3) and carcinoembryonic antigen (CEA) in lung adenocarcinoma cell A549, and to explore the value of STAT3 on early diagnosis of lung adenocarcinoma. Methods: The expression of CEA, STAT3 mRNA and it's protein in human lung adenocarcinoma cell A549 and normal human lung cells MRC-5 were tested by immunohistochemistry staining (PV) and quantitative real time fluorescent PCR. The correlation between STAT3 and CEA in human lung adenocarcinoma cell A549 was analyzed. Results: The protein and mRNA levels of STAT3, CEA in lung adenocarcinoma cell A549 were apparently higher than those in normal human lung cells MRC-5. The levels of STAT3 mRNA and it's protein were positively correlated with CEA in lung adenocarcinoma cell A549. Conclusion: STAT3 have the same value in diagnosis of lung adenocarcinoma.

  17. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  18. Expression analysis of Stat3 in human lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; HAN Yi-ping

    2002-01-01

    Objective: To analyze the relationship of Stat3 expression with clinical stages, tissue types, p53and proliferation cell nuclear antigen (PCNA) in human lung carcinoma, and to evaluate the role of Stat3 in the pathogenesis of lung carcinoma. Methods: Immunohistochemical method were used to detected Stat3,p53 and PCNA in different tissues of patients (n= 42) with lung carcinoma who accepted neither radiotherapy nor chemotherapy. Results: The positive rate of Stat3 was 81.0% in lung carcinoma and its expression level was related to the tissue type but not to T, N or the clinical stage. The expression level of Stat3 in non-small cell lung carcinoma (NSCLC) was higher than that in small cell lung carcinoma (SCLC). A positive correlation of the expression of Stat3 with that of p53 and PCNA was identified. Conclusion: The expression level of Stat3 is abnormal in lung carcinoma. Stat3 may be involved in the regulation of p53 gene in lung carcinoma cell, it may accelerate the proliferation of lung carcinoma cells and play an important role in the pathogenesis of lung carcinoma.

  19. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Delekate, Andrea; Füchtemeier, Martina; Schumacher, Toni; Ulbrich, Cordula; Foddis, Marco; Petzold, Gabor C

    2014-11-19

    Astrocytic network alterations have been reported in Alzheimer's disease (AD), but the underlying pathways have remained undefined. Here we measure astrocytic calcium, cerebral blood flow and amyloid-β plaques in vivo in a mouse model of AD using multiphoton microscopy. We find that astrocytic hyperactivity, consisting of single-cell transients and calcium waves, is most pronounced in reactive astrogliosis around plaques and is sometimes associated with local blood flow changes. We show that astroglial hyperactivity is reduced after P2 purinoreceptor blockade or nucleotide release through connexin hemichannels, but is augmented by increasing cortical ADP concentration. P2X receptor blockade has no effect, but inhibition of P2Y1 receptors, which are strongly expressed by reactive astrocytes surrounding plaques, completely normalizes astrocytic hyperactivity. Our data suggest that astroglial network dysfunction is mediated by purinergic signalling in reactive astrocytes, and that intervention aimed at P2Y1 receptors or hemichannel-mediated nucleotide release may help ameliorate network dysfunction in AD.

  20. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells.

    Science.gov (United States)

    Lin, Li; Hutzen, Brian; Zuo, Mingxin; Ball, Sarah; Deangelis, Stephanie; Foust, Elizabeth; Pandit, Bulbul; Ihnat, Michael A; Shenoy, Satyendra S; Kulp, Samuel; Li, Pui-Kai; Li, Chenglong; Fuchs, James; Lin, Jiayuh

    2010-03-15

    The constitutive activation of signal transducer and activator of transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small-molecule STAT3 inhibitors, known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus kinase 2 and the STAT3 Src homology-2 domain, which serve crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA-binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar and cell invasion and exhibit synergy with the anticancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by IFNalpha and interleukin-6 in breast cancer cells. We also show that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling. PMID:20215512

  1. DRUG-REPOSITIONING SCREENING IDENTIFIED PIPERLONGUMINE AS A DIRECT STAT3 INHIBITOR WITH POTENT ACTIVITY AGAINST BREAST CANCER

    OpenAIRE

    Bharadwaj, Uddalak; Eckols, T. Kris; Kolosov, Mikhail; Kasembeli, Moses M.; Adam, Abel; Torres, David; Zhang, Xiaomei; Lacey E Dobrolecki; Wei, Wei; Lewis, Michael T; Dave, Bhuvanesh; Chang, Jenny C.; Landis, Melissa D.; Creighton, Chad J.; Mancini, Michael A.

    2014-01-01

    Signal transducer and activator of transcription (STAT) 3 regulates many cardinal features of cancer including cancer cell growth, apoptosis resistance, DNA damage response, metastasis, immune escape, tumor angiogenesis, the Warburg effect, and oncogene addiction and has been validated as a drug target for cancer therapy. Several strategies have been employed to identify agents that target Stat3 in breast cancer but none has yet entered into clinical use. We used a high-throughput fluorescenc...

  2. STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells

    OpenAIRE

    Lin, H-Y; Chiang, C-H; Hung, W-C

    2013-01-01

    Background: Signal transducer and activator of transcription 3 (STAT3) activation is frequently found in human lung cancer and is associated with increased metastasis and reduced survival. How STAT3 enhances invasiveness is unclear. Methods: The expression of microRNAs and target genes was measured by real-time RT–PCR. Protein level was studied by western blotting. Luciferase reporter assay was used to confirm the direct targeting of microRNAs. Gelatin zymography was used to study matrix meta...

  3. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    International Nuclear Information System (INIS)

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs

  4. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  5. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Directory of Open Access Journals (Sweden)

    Yokota Takashi

    2008-05-01

    Full Text Available Abstract Background The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. Results Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B was shown to be restricted to the inner cell mass (ICM of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. Conclusion Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent

  6. Jak2-Independent Activation of Stat3 by Intracellular Angiotensin II in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Rekha Singh

    2011-01-01

    Full Text Available Ang II is shown to mediate the stimulatory effect of high glucose on TGF-b1 and extracellular matrix proteins in glomerular mesangial cells. Also inhibition of Ang II formation in cell media (extracellular and lysates (intracellular blocks high-glucose effects on TGF-b1 and matrix more effectively compared to inhibition of extracellular Ang II alone. To investigate whether intracellular Ang II can stimulate TGF-b1 and matrix independent of extracellular Ang II, cultured human mesangial cells were transfected with Ang II to increase intracellular Ang II levels and its effects on TGF-b1 and matrix proteins were determined. Prior to transfection, cells were treated with candesartan to block extracellular Ang II-induced responses via cell membrane AT1 receptors. Transfection of cells with Ang II resulted in increased levels of intracellular Ang II which was accompanied by increased production of TGF-b1, collagen IV, fibronectin, and cell proliferation as well. On further examination, intracellular Ang II was found to activate Stat3 transcription factor including increased Stat3 protein expression, tyrosine 705 phosphorylation, and DNA-binding activity. Treatment with AG-490, an inhibitor of Jak2, did not block intracellular Ang II-induced Stat3 phosphorylation at tyrosine 705 residue indicating a Jak2-independent mechanism used by intracellular Ang II for Stat3 phosphorylation. In contrast, extracellular Ang II-induced tyrosine 705 phosphorylation of Stat3 was inhibited by AG-490 confirming the presence of a Jak2-dependent pathway. These findings suggest that intracellular Ang II increases TGF-b1 and matrix in human mesangial cells and also activates Stat3 transcription factor without involvement of the extracellular Ang II signaling pathway.

  7. mTOR Promotes Survival and Astrocytic Characteristics Induced by Pten/Akt Signaling in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Xiaoyi Hu

    2005-04-01

    Full Text Available Combined activation of Ras and Akt leads to the formation of astrocytic glioblastoma multiforme (GBM in mice. In human GBMs, AKT is not mutated but is activated in approximately 70% of these tumors, in association with loss of PTEN and/or activation of receptor tyrosine kinases. Mechanistic justification for the therapeutic blockade of targets downstream of AKT, such as mTOR, in these cancers requires demonstration that the oncogenic effect of PTEN loss is through elevated AKT activity. We demonstrate here that loss of Pten is similar to Akt activation in the context of glioma formation in mice. We further delineate the role of mTOR activity downstream of Akt in the maintenance of Akt+KRas-induced GBMs. Blockade of mTOR results in regional apoptosis in these tumors and conversion in the character of surviving tumor cells from astrocytoma to oligodendroglioma. These data suggest that mTOR activity is required for the survival of some cells within these GBMs, and mTOR appears required for the maintenance of astrocytic character in the surviving cells. Furthermore, our study provides the first example of conversion between two distinct tumor types usually thought of as belonging to specific lineages, and provides evidence for signal transduction-mediated transdifferentiation between glioma subtypes.

  8. JAK Kinase Inhibition Abrogates STAT3 Activation and Head and Neck Squamous Cell Carcinoma Tumor Growth

    Directory of Open Access Journals (Sweden)

    Malabika Sen

    2015-03-01

    Full Text Available Aberrant activation of the Janus kinase (JAK/signal transducer and activator of transcription (STAT 3 has been implicated in cell proliferation and survival of many cancers including head and neck squamous cell carcinoma (HNSCC. AZD1480, an orally active pharmacologic inhibitor of JAK1/JAK2, has been tested in several cancer models. In the present study, the in vitro and in vivo effects of AZD1480 were evaluated in HNSCC preclinical models to test the potential use of JAK kinase inhibition for HNSCC therapy. AZD1480 treatment decreased HNSCC proliferation in HNSCC cell lines with half maximal effective concentration (EC50 values ranging from 0.9 to 4 μM in conjunction with reduction of pSTAT3Tyr705 expression. In vivo antitumor efficacy of AZD1480 was demonstrated in patient-derived xenograft (PDX models derived from two independent HNSCC tumors. Oral administration of AZD1480 reduced tumor growth in conjunction with decreased pSTAT3Tyr705 expression that was observed in both PDX models. These findings suggest that the JAK1/2 inhibitors abrogate STAT3 signaling and may be effective in HNSCC treatment approaches.

  9. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p cells in NSCLC.

  10. APPL1-mediated activation of STAT3 contributes to inhibitory effect of adiponectin on hepatic gluconeogenesis.

    Science.gov (United States)

    Ding, Youming; Zhang, Deling; Wang, Bin; Zhang, Yemin; Wang, Lei; Chen, Xiaoyan; Li, Mingxin; Tang, Zhao; Wang, Changhua

    2016-09-15

    Adiponectin has been shown to suppress hepatic gluconeogenesis. However, the signaling pathways underlying its action remain ill-defined. The purpose of this study was to examine the potential role of APPL1 in mediating anti-gluconeogenic ability of adiponectin. Primary hepatocytes were isolated from male C57BL/6 mice. Western blot and RT-PCR were performed to detect protein expression and mRNA level, respectively. The protein-protein association was determined by immunoprecipitation and GST pull-down assay. We found that APPL1 protein levels were negatively associated with expressions of proteins and mRNAs of gluconeogenesis enzymes under stimulation with adiponectin. In addition, adiponectin-stimulated STAT3 phosphorylation and acetylation were positively regulated by APPL1 and negative regulated by SirT1. Pharmacological and genetic inhibition of STAT3 mitigated impact of adiponectin on hepatic gluconeogenesis. Furthermore, adiponectin administration facilitated the binding of APPL1 to SirT1 and suppressed the association of SirT1 with STAT3. Taken together, our study showed that APPL1-SirT1-STAT3 pathway mediated adiponectin signaling in primary hepatocytes. This new finding provides a novel mechanism by which adiponectin suppresses hepatic gluconeogenesis. PMID:27246173

  11. Dietary cocoa inhibits colitis associated cancer: a crucial involvement of the IL-6/STAT3 pathway.

    Science.gov (United States)

    Saadatdoust, Zeinab; Pandurangan, Ashok Kumar; Ananda Sadagopan, Suresh Kumar; Mohd Esa, Norhaizan; Ismail, Amin; Mustafa, Mohd Rais

    2015-12-01

    Patients with inflammatory bowel disease (IBD) are at increased risk for developing ulcerative colitis-associated colorectal cancer (CRC). The interleukin-6 (IL-6)/signal transducer and activator of transcription (STAT)-3 signaling regulates survival and proliferation of intestinal epithelial cells and play an important role in the pathogenesis of IBD and CRC. Cocoa is enriched with polyphenols that known to possess antioxidant, anti-inflammatory and antitumor activities. Here, we explored the antitumor effects and mechanisms of cocoa diet on colitis-associated cancer (CAC) using the azoxymethane/dextran sulfate sodium model, with a particular focus on whether cocoa exerts its anticancer effect through the IL-6/STAT3 pathway. We found that cocoa significantly decreased the tumor incidence and size in CAC-induced mice. In addition to inhibiting proliferation of tumor epithelial cells, cocoa suppressed colonic IL-6 expression and subsequently activation of STAT3. Thus, our findings demonstrated that cocoa diet suppresses CAC tumorigenesis, and its antitumor effect is partly mediated by limiting IL-6/STAT3 activation. In addition, cocoa induces apoptosis by increased the expressions of Bax and caspase 3 and decreased Bcl-xl. Thus, we conclude that cocoa may be a potential agent in the prevention and treatment of CAC. PMID:26355019

  12. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling.

    Science.gov (United States)

    Farmer, W Todd; Abrahamsson, Therése; Chierzi, Sabrina; Lui, Christopher; Zaelzer, Cristian; Jones, Emma V; Bally, Blandine Ponroy; Chen, Gary G; Théroux, Jean-Francois; Peng, Jimmy; Bourque, Charles W; Charron, Frédéric; Ernst, Carl; Sjöström, P Jesper; Murai, Keith K

    2016-02-19

    Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties. PMID:26912893

  13. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    Science.gov (United States)

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.

  14. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  15. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    Science.gov (United States)

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  16. Malignant T cells exhibit CD45 resistant Stat3 activation and proliferation in cutaneous

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Helvad, Rikke; Ralfkiaer, Elisabeth;

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......-mediated inhibition of proliferation. In conclusion, our data suggest that CD45 dysregulation might play a role in the aberrant proliferation and Jak3/Stat3 activation in CTCL....

  17. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia

    OpenAIRE

    Hilliard, Kristie L.; Allen, Eri; Traber, Katrina E.; Kim, Yuri; Wasserman, Gregory A.; Jones, Matthew R.; Mizgerd, Joseph P.; Quinton, Lee J.

    2015-01-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis a...

  18. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes. PMID:25489416

  19. The prognostic significance of STAT3 in invasive breast cancer: analysis of protein and mRNA expressions in large cohorts.

    Science.gov (United States)

    Aleskandarany, Mohammed A; Agarwal, Devika; Negm, Ola H; Ball, Graham; Elmouna, Ahmed; Ashankyty, Ibraheem; Nuglozeh, Edem; Fazaludeen, Mohammad F; Diez-Rodriguez, Maria; Nolan, Christopher C; Tighe, Patrick J; Green, Andrew R; Ellis, Ian O; Rakha, Emad A

    2016-02-01

    Signal transducer and activator of transcription (STAT) transcription factors family are involved in diverse cellular biological functions. Reports regarding the prognostic impact of STAT3 expression in breast cancer (BC) are variable whether being a factor of poor or good prognosis. Immunohistochemical expression of phospho-STAT3 (pSTAT3) was studied in large series of invasive BC (n = 1270). pSTAT3 and STAT3 were quantified using reverse phase protein array (RPPA) on proteins extracted from macro-dissected FFPE tissues (n = 49 cases). STAT3 gene expression in the METABRIC cohort was also investigated. STAT3 gene expression prognostic impact was externally validated using the online BC gene expression data (n = 26 datasets, 4.177 patients). pSTAT3 was expressed in the nuclei and cytoplasm of invasive BC cells. Nuclear pSTAT3 overexpression was positively associated with smaller tumour size, lower grade, good NPI, negative lymphovascular invasion (LVI), ER+, PgR+, p53-, HER2-, and low Ki67LI and an improved breast cancer-specific survival (BCSS), independently of other factors. On RPPA, the mean pSTAT3 and STAT3 expressions were higher in ER+, PgR+, and smaller size tumours. Higher STAT3 transcripts in the METABRIC cohort were observed in cases with favourable prognostic criteria and as well as improved BCSS within the whole cohort, ER+ cohort with and without hormonal therapy, and ER- cohort including those who did not receive adjuvant chemotherapy. Pooled STAT3 gene expression data in the external validation cohort showed an association with improved patients' outcome (P < 0.001, HR = 0.84, 95 % CI 0.79-0.90). Results of this study suggest nuclear localisation of pSTAT3 as favourable prognostic marker in invasive BC, results re-enforced by analysis of STAT3 gene expression data. This good prognostic advantage was maintained in patients who received and who did not receive adjuvant therapy. Therefore, STAT3 could have context-dependent molecular roles of in BC

  20. Study on the effect of STAT3 in promotion of proliferation of breast cancer cells with bisphenol A%STAT3在双酚A促乳腺癌细胞增殖中的作用研究

    Institute of Scientific and Technical Information of China (English)

    张巍; 谭岩; 方艳秋

    2013-01-01

    目的:探讨STAT3在双酚A促乳腺癌MCF-7细胞增殖中的作用,为研究双酚A诱导乳腺癌的确切机制提供依据.方法:采用Western blot检测双酚A处理乳腺癌MCF-7细胞24h和48 h后STAT3的表达情况,采用MTT法检测RNA干扰技术抑制STAT3后双酚A对乳腺癌细胞增殖的影响.结果:Western blot结果表明,STAT3在1μM双酚A作用48 h后其诱导表达最明显(P<0.05);通过对照研究筛选出有效的干扰片段,能显著抑制STAT3基因的表达,当干扰片段抑制了STAT3基因表达后,双酚A未能抑制STAT3的MCF-7细胞发生增殖效应(P>0.05).结论:在双酚A诱导乳腺癌细胞的增殖作用中,STAT3的活化和活化后的信号传导是非常重要的一个环节.%Objective:To explore the effect of STAT3 in promotion of proliferation of breast cancer cells with bisphenol A,and research the exact machanism of breast cancer induced by bisphenol A.Methods:Western blot was used to detect the expressions of STAT3 at 24 and 48 hours after treating breast cancer MCF-7 cells with bisphenol A,MTT method was used to detect the effect of bisphenol A on proliferation of breast cells after suppressing STAT3 with RNA interfering technique.Results:The results of Western blot showed that the inducing effect of STAT3 after treated with 1 μM bisphenol A for 48 hours was the most obvious (P < 0.05) ; a case-control study was performed to screen out effective interfering fragments,which suppressed the expression of STAT3 gene significantly,when interfering fragments suppressed expression of STAT3 gene,bisphenol A didnt suppress the proliferative effect of STAT3 on breast cancer MCF-7 cells (P >0.05).Conclusion:The activation of STAT3 and signal transduction after activation is a very important link in proliferative effect of breast cancer cells induced by bisphenol A.

  1. Ratios of Four STAT3 Splice Variants in Human Eosinophils and Diffuse Large B Cell Lymphoma Cells.

    Directory of Open Access Journals (Sweden)

    Keren B Turton

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is a key mediator of leukocyte differentiation and proliferation. The 3' end of STAT3 transcripts is subject to two alternative splicing events. One results in either full-length STAT3α or in STAT3β, which lacks part of the C-terminal transactivation domain. The other is at a tandem donor (5' splice site and results in the codon for Ser-701 being included (S or excluded (ΔS. Despite the proximity of Ser-701 to the site of activating phosphorylation at Tyr-705, ΔS/S splicing has barely been studied. Sequencing of cDNA from purified eosinophils revealed the presence of four transcripts (S-α, ΔS-α, S-β, and ΔS-β rather than the three reported in publically available databases from which ΔS-β is missing. To gain insight into regulation of the two alternative splicing events, we developed a quantitative(q PCR protocol to compare transcript ratios in eosinophils in which STAT3 is upregulated by cytokines, activated B cell diffuse large B cell Lymphoma (DLBCL cells in which STAT3 is dysregulated, and in germinal center B cell-like DLBCL cells in which it is not. With the exception of one line of activated B cell DLCBL cells, the four variants were found in roughly the same ratios despite differences in total levels of STAT3 transcripts. S-α was the most abundant, followed by S-β. ΔS-α and ΔS-β together comprised 15.6 ± 4.0 % (mean ± SD, n = 21 of the total. The percentage of STAT3β variants that were ΔS was 1.5-fold greater than of STAT3α variants that were ΔS. Inspection of Illumina's "BodyMap" RNA-Seq database revealed that the ΔS variant accounts for 10-26 % of STAT3 transcripts across 16 human tissues, with less variation than three other genes with the identical tandem donor splice site sequence. Thus, it seems likely that all cells contain the S-α, ΔS-α, S-β, and ΔS-β variants of STAT3.

  2. Ratios of Four STAT3 Splice Variants in Human Eosinophils and Diffuse Large B Cell Lymphoma Cells.

    Science.gov (United States)

    Turton, Keren B; Annis, Douglas S; Rui, Lixin; Esnault, Stephane; Mosher, Deane F

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a key mediator of leukocyte differentiation and proliferation. The 3' end of STAT3 transcripts is subject to two alternative splicing events. One results in either full-length STAT3α or in STAT3β, which lacks part of the C-terminal transactivation domain. The other is at a tandem donor (5') splice site and results in the codon for Ser-701 being included (S) or excluded (ΔS). Despite the proximity of Ser-701 to the site of activating phosphorylation at Tyr-705, ΔS/S splicing has barely been studied. Sequencing of cDNA from purified eosinophils revealed the presence of four transcripts (S-α, ΔS-α, S-β, and ΔS-β) rather than the three reported in publically available databases from which ΔS-β is missing. To gain insight into regulation of the two alternative splicing events, we developed a quantitative(q) PCR protocol to compare transcript ratios in eosinophils in which STAT3 is upregulated by cytokines, activated B cell diffuse large B cell Lymphoma (DLBCL) cells in which STAT3 is dysregulated, and in germinal center B cell-like DLBCL cells in which it is not. With the exception of one line of activated B cell DLCBL cells, the four variants were found in roughly the same ratios despite differences in total levels of STAT3 transcripts. S-α was the most abundant, followed by S-β. ΔS-α and ΔS-β together comprised 15.6 ± 4.0 % (mean ± SD, n = 21) of the total. The percentage of STAT3β variants that were ΔS was 1.5-fold greater than of STAT3α variants that were ΔS. Inspection of Illumina's "BodyMap" RNA-Seq database revealed that the ΔS variant accounts for 10-26 % of STAT3 transcripts across 16 human tissues, with less variation than three other genes with the identical tandem donor splice site sequence. Thus, it seems likely that all cells contain the S-α, ΔS-α, S-β, and ΔS-β variants of STAT3.

  3. Leptin suppresses adenosine triphosphate-induced impairment of spinal cord astrocytes.

    Science.gov (United States)

    Li, Baoman; Qi, Shuang; Sun, Guangfeng; Yang, Li; Han, Jidong; Zhu, Yue; Xia, Maosheng

    2016-10-01

    Spinal cord injury (SCI) causes long-term disability and has no clinically effective treatment. After SCI, adenosine triphosphate (ATP) may be released from neuronal cells and astrocytes in large amounts. Our previous studies have shown that the extracellular release of ATP increases the phosphorylation of cytosolic phospholipase A2 (cPLA2 ) and triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2) via the stimulation of epidermal growth factor receptor (EGFR) and the downstream phosphorylation of extracellular-regulated protein kinases 1 and 2. Leptin, a glycoprotein, induces the activation of the Janus kinase (JAK2)/signal transducers and activators of transcription-3 (Stat3) pathway via the leptin receptor. In this study, we found that 1) prolonged leptin treatment suppressed the ATP-stimulated release of AA and PGE2 from cultured spinal cord astrocytes; 2) leptin elevated the expression of caveolin-1 (Cav-1) via the JAK2/Stat3 signaling pathway; 3) Cav-1 blocked the interaction between Src and EGFR, thereby inhibiting the phosphorylation of EGFR and cPLA2 and attenuating the release of AA or PGE2; 4) pretreatment with leptin decreased ;he level of apoptosis and the release of interleukin-6 from cocultured neurons and astrocytes; and 5) leptin improved the recovery of locomotion in mice after SCI. Our results highlight leptin as a promising therapeutic agent for SCI. © 2016 Wiley Periodicals, Inc. PMID:27316329

  4. Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes

    OpenAIRE

    Alloisio, Susanna; Cugnoli, Carlo; Ferroni, Stefano; Nobile, Mario

    2004-01-01

    Despite the accumulating evidence that under various pathological conditions the extracellular elevation of adenine-based nucleotides and nucleosides plays a key role in the control of astroglial reactivity, how these signalling molecules interact in the regulation of astrocyte function is still largely elusive.The action of the nucleoside adenosine in the modulation of the intracellular calcium signalling ([Ca2+]i) elicited by adenosine 5′-triphosphate (ATP)-induced activation of P2 purinoce...

  5. Novel CD47: SIRPα dependent mechanism for the activation of STAT3 in antigen-presenting cell.

    Directory of Open Access Journals (Sweden)

    Natan Toledano

    Full Text Available Cell surface CD47 interacts with its receptor, signal-regulatory-protein α (SIRPα that is expressed predominantly on macrophages, to inhibit phagocytosis of normal, healthy cells. This "don't eat me" signal is mediated through tyrosine phosphorylation of SIRPα at the cytoplasmic ITIM motifs and the recruitment of the phosphatase, SHP-1. We previously revealed a novel mechanism for the activation of the STAT3 pathway and the regulation of human APC maturation and function that is based on cell:cell interaction. In this study, we present evidence supporting the notion that CD47:SIRPα serves as a cell surface receptor: ligand pair involved in this contact-dependent STAT3 activation and regulation of APC maturation. We show that upon co-culturing APC with various primary and tumor cell lines STAT3 phosphorylation and IL-10 expression are induced, and such regulation could be suppressed by specific CD47 siRNAs and shRNAs. Significantly, >50% reduction in CD47 expression abolished the contact-dependent inhibition of T cell activation. Furthermore, co-immunoprecipitation experiments revealed a physical association between SIRPα and STAT3. Thus, we suggest that in addition to signaling through the ITIM-SHP-1 complex that transmit an anti-phagocytotic, CD47:SIRPα also triggers STAT3 signaling that is linked to an immature APC phenotype and peripheral tolerance under steady state and pathological conditions.

  6. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  7. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  8. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  9. Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease

    DEFF Research Database (Denmark)

    Lovato, Paola; Brender, Christine; Agnholt, Jørgen;

    2003-01-01

    Via cytoplasmic signal transduction pathways, cytokines induce a variety of biological responses and modulate the outcome of inflammatory diseases and malignancies. Crohn's disease is a chronic inflammatory bowel disease of unknown etiology. Perturbation of the intestinal cytokine homeostasis...... is believed to play a pivotal role, but the pathogenesis of Crohn's disease is not fully understood. Here, we study intestinal T cells from Crohn's disease and healthy volunteers. We show that STAT3 and STAT4 are constitutively activated in Crohn's patients but not in healthy volunteers. The activation...... is specific, because other STAT proteins are not constitutively activated. Furthermore, the STAT3 regulated protein, SOCS3, is also constitutively expressed in Crohn's patients but not in healthy volunteers. Taken together, these data provide evidence of abnormal STAT/SOCS signaling in Crohn's disease...

  10. STAT3 as a chemoprevention target in carcinogen-induced head and neck squamous cell carcinoma.

    OpenAIRE

    Peyser, ND; Wang, L.; Zeng, Y.; Acquafondata, M.; Freilino, ML; Li, H.; M. Sen; Gooding, WE; Satake, M; Wang, Z.; Johnson; Grandis, JR

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal disease due in large part to a high rate of second primary tumor (SPT) formation. The 4-nitroquinoline 1-oxide (4-NQO) mouse model of oral carcinogenesis provides a robust system in which to study chemopreventive agents in the context of chemically-induced HNSCC tumors. Signal transducer and activator of transcription 3 (STAT3) is a potent oncogene that is hyperactivated by tyrosine phosphorylation early in HNSCC carcinogenes...

  11. Dissecting functions of the N-terminal domain and GAS-site recognition in STAT3 nuclear trafficking.

    Science.gov (United States)

    Martincuks, Antons; Fahrenkamp, Dirk; Haan, Serge; Herrmann, Andreas; Küster, Andrea; Müller-Newen, Gerhard

    2016-08-01

    Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression. Cytokine-induced gene transcription greatly depends on tyrosine phosphorylation of STAT3 on a single tyrosine residue with subsequent nuclear accumulation and specific DNA sequence (GAS) recognition. In this study, we analyzed the roles of the conserved STAT3 N-terminal domain (NTD) and GAS-element binding ability of STAT3 in nucleocytoplasmic trafficking. Our results demonstrate the nonessential role of GAS-element recognition for both cytokine-induced and basal nuclear import of STAT3. Substitution of five key amino acids within the DNA-binding domain rendered STAT3 unable to bind to GAS-elements while still maintaining the ability for nuclear localization. In turn, deletion of the NTD markedly decreased nuclear accumulation upon IL-6 treatment resulting in a prolonged accumulation of phosphorylated dimers in the cytoplasm, at the same time preserving specific DNA recognition ability of the truncation mutant. Observed defect in nuclear localization could not be explained by flawed importin-α binding, since both wild-type and NTD deletion mutant of STAT3 could precipitate both full-length and autoinhibitory domain (∆IBB) deletion mutants of importin-α5, as well as ∆IBB-α3 and ∆IBB-α7 isoforms independently of IL-6 stimulation. Despite its inability to translocate to the nucleus upon IL-6 stimulation, the NTD lacking mutant still showed nuclear accumulation in resting cells similar to wild-type upon inhibition of nuclear export by leptomycin B. At the same time, blocking the nuclear export pathway could not rescue cytoplasmic trapping of phosphorylated STAT3 molecules without NTD. Moreover, STAT3 mutant with dysfunctional SH2 domain (R609Q) also localized in the nucleus of unstimulated cells after nuclear export blocking, while upon cytokine treatment the

  12. Immunohistochemical expression of the oncogenic molecules active Stat3 and survivin in benign and malignant salivary gland tumors

    Science.gov (United States)

    Nikitakis, Nikolaos G.; Scheper, Mark A.; Papanicolaou, Vasileios S.; Sklavounou, Alexandra; Sauk, John J.

    2009-01-01

    Objective Signal transducer and activator of transcription 3 (Stat3) and survivin have been shown to exert oncogenic effects in various human neoplasms. The purpose of this study was to evaluate the expression of the tyrosine phosphorylated (active) Stat3 and survivin in various benign and malignant salivary gland tumors (SGTs). Study design Eighty-six SGTs (65 malignant and 21 benign tumors of various histopathologic subtypes) were immunohistochemically stained with anti-survivin or anti-phosphorylated tyrosine-705 (p-tyr) Stat3 antibodies. Immunohistochemical reactivity was graded in a semi-quantitative manner; a combined score of immunohistochemical positivity (0–6) was calculated for each tumor by adding the individual scores for percentage of tumor cells (0–3) and intensity of staining (0–3). Results Survivin was immunohistochemically detected in all studied benign and malignant SGTs; p-tyr Stat3 was also detected in the majority (91%) of SGTs. The average combined scores for survivin and p-tyr Stat3 immunohistochemical expression in the studied malignant SGTs was 4.40 and 3.35, respectively; the corresponding combined scores for survivin and p-tyr Stat3 in the studied benign SGTs were 4.37 and 3.22, respectively. No statistically significant differences (p>0.05) in p-tyr Stat3 or survivin expression were detected between the benign and malignant groups, or among the various examined histopathological subtypes of SGTs. In contrast, normal salivary gland elements in the vicinity of the studied tumors revealed only weak and focal survivin or p-tyr Stat3 immunoreactivity, mainly localized to ductal and mucous cells. Conclusions Our data indicate an almost universal expression of activated Stat3 and survivin in benign and malignant SGTs. Considering the well-established proliferative and anti-apoptotic properties of these molecules and their functional interrelationship, selective targeting techniques against Stat3 and/or survivin may represent promising

  13. BCL3 exerts an oncogenic function by regulating STAT3 in human cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhao H

    2016-10-01

    Full Text Available Hu Zhao,1 Wuliang Wang,1 Qinghe Zhao,1 Guiming Hu,2 Kehong Deng,1 Yuling Liu1 1Department of Gynecology and Obstetrics, 2Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Aberrant expression of oncogenes and/or tumor suppressors play a fundamental effect on the pathogenesis and tumorigenicity of cervical cancer (CC. B-cell CLL/lymphoma 3 (BCL3 was previously found to be a putative proto-oncogene in human cancers and regulated signal transducer and activator of transcription 3 (STAT3, a critical oncogene, in CC cell line. However, its expression status, clinical significance and biological functions in CC remain largely unclear. The expressions of BCL3 and STAT3 in CC specimens were determined by immunohistochemistry. MTT, colony formation assays and flow cytometry analysis were carried out to test proliferation and cell cycle of CC cells. Here, the levels of BCL3 were overexpressed in CC compared to adjacent cervical tissues. Furthermore, high levels of BCL3 protein were confirmed by immunoblotting in CC cells as compared with normal cervical epithelial cells. The positive expression of BCL3 was correlated with adverse prognostic features and reduced survival rate. In addition, BCL3 regulated STAT3 abundance in CC cells. STAT3 was found to be upregulated and positively correlated with BCL3 expression in CC specimens. BCL3 overexpression resulted in prominent increased proliferation and cell cycle progression in Hela cells. By contrast, inhibition of BCL3 in CaSki cells remarkably suppressed proliferative ability and cell cycle progression. In vivo studies showed that knockdown of BCL3 inhibited tumor growth of CC in mice xenograft model. Notably, we confirmed that STAT3 mediated the oncogenic roles of BCL3 in CC. In conclusion, we suggest that BCL3 serves as an oncogene in CC by modulating proliferation and cell cycle progression, and its oncogenic effect is

  14. Binding modes of peptidomimetics designed to inhibit STAT3.

    Directory of Open Access Journals (Sweden)

    Ankur Dhanik

    Full Text Available STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers. Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities. Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions involving the SH2 domain and phosphotyrosine(pTyr-based inhibitors. We also discovered a stable novel binding mode that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing dimerization of cancer target protein STAT3.

  15. STAT3在新型肠道病毒71型(EV71)感染和复制中的作用初步研究%Effects of STAT3 on enterovirus 71 (EV71) infection and replication

    Institute of Scientific and Technical Information of China (English)

    王艳; 卞良; 刘晴晴; 熊鹰; 李泽阳; 龙健儿

    2015-01-01

    目的 研究STAT3 (signal transducer and activator of transcription 3)对新型肠道病毒71型(enterovirus 71,EV71)感染及复制的影响.方法 观察EV71感染横纹肌肉瘤细胞后STAT3的动态表达;利用慢病毒载体下调或过表达STAT3技术,观察细胞在改变STAT3表达后,对EV71感染细胞后病毒VP1表达、形成蚀斑和病毒滴度的影响,研究STAT3对EV71感染和复制的影响.结果 EV71感染可明显下调细胞STAT3-Tyr705磷酸化(p-STAT3)水平.在STAT3表达稳定下调的细胞中,p-STAT3水平也下调,这有利于EV71病毒感染和复制.而过表达STAT3的细胞内,p-STAT3水平也上调,对EV71感染和复制的效应与上述STAT3下调的结果相反.免疫共聚焦和蚀斑分析发现高表达p-STAT3的细胞不易被EV71感染.结论 EV71感染可明显下调p-STAT3水平,并促进病毒的复制.STAT3影响EV71的感染和复制,可能主要通过STAT3的磷酸化水平影响细胞对病毒的易感性.

  16. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  17. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes.

    Science.gov (United States)

    Lanciotti, Angela; Brignone, Maria Stefania; Visentin, Sergio; De Nuccio, Chiara; Catacuzzeno, Luigi; Mallozzi, Cinzia; Petrini, Stefania; Caramia, Martino; Veroni, Caterina; Minnone, Gaetana; Bernardo, Antonietta; Franciolini, Fabio; Pessia, Mauro; Bertini, Enrico; Petrucci, Tamara Corinna; Ambrosini, Elena

    2016-04-15

    Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs. PMID:26908604

  18. Hedyotis diffusa Willd. extract suppresses proliferation and induces apoptosis via IL-6-inducible STAT3 pathway inactivation in human colorectal cancer cells

    OpenAIRE

    LIN, JIUMAO; LI, QIONGYU; Chen, Hongwei; Lin, Hui; LAI, ZIJUN; Peng, Jun

    2015-01-01

    Recent studies have indicated that the inflammatory microenvironment plays a significant role in colorectal cancer (CRC). The interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway mediates the proliferative and anti-apoptotic activities required for oncogenesis under inflammatory conditions; thus, suppressing tumor growth by targeting the IL-6/STAT3 pathway is a promising therapeutic strategy for CRC. Our previous study reported that the ethanol extra...

  19. Reciprocal neuron-astrocyte signaling in epileptic seizure generation and propagation

    OpenAIRE

    Cammarota, Mario

    2013-01-01

    The idea that astrocytes – the main population of glial cells in the brain – are active partners of neurons in many aspects of brain functions represented a Copernican Revolution in neurobiology. Astrocytes, which were for many years considered just like the cement (from Greek glia i.e. glue) that keeps neuronal cells together, have now been moved from the periphery to the centre of the universe of information processing in the brain providing a radically different point of obs...

  20. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3

    OpenAIRE

    Nelson, Erik A.; Walker, Sarah R.; Kepich, Alicia; Gashin, Laurie B.; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C.; Frank, David A.

    2008-01-01

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Ni...

  1. Dynamic Balance of pSTAT1 and pSTAT3 in C57BL/6 Mice Infected with Lethal or Nonlethal Plasmodium yoelii

    Institute of Scientific and Technical Information of China (English)

    Xibao Shi; Li Qin; Guangjie Liu; Siting Zhao; Nanzheng Peng; Xiaoping Chen

    2008-01-01

    Signal transducer and activator of transcription(STAT)proteins play an important role in cytokine signaling pathways and regulation of immune responses.The balance of the phosphorylated(activated)STAT1(pSTAT1) and STAT3 (pSTAT3)has been documented in cancer immunology.In this study,we investigated the dynamic balance of pSTAT1 and pSTAT3 in C57BL/6 mice infected with either a nonlethal(py17XNL)or lethal(ey17XL) strain of Plasmodium yoelii.Both pylNL and ey17XL infections induced a maximum activation of STAT1 and STAT3 On the first day after parasite inoculation.Additionally,the py17XNL infection induced a pSTAT1- dominant response in mice during the early stage of infection,with the resolution of parasitemia.In contrast, Py17XL infection induced a pSTAT3-dominant response during the early phase of infection,with the death of the animals.Our results indicated that maximum activation of STAT1 and STAT3 occurred much earlier than the peak levels of cytokines induced by Plasmodium yoelii infection based on previous reports and that infection with Py17XNL-and py17XL induced different dynamic patterns of pSTAT1 and pSTAT3 balance.

  2. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species†

    Science.gov (United States)

    Yuan, Hengjie; Houck, Katie L.; Tian, Ye; Bharadwaj, Uddalak; Hull, Ken; Zhou, Zhou; Zhou, Mingzhao; Wu, Xiaoping; Tweardy, David J.; Romo, Daniel; Fu, Xiaoyun; Zhang, Yanjun; Zhang, Jianning; Dong, Jing-fei

    2015-01-01

    Background Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known. Objective We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen. Results PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect. Conclusions PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals. PMID:26645674

  3. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species.

    Directory of Open Access Journals (Sweden)

    Hengjie Yuan

    Full Text Available Piperlongumine (PL is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known.We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen.PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect.PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals.

  4. Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation

    OpenAIRE

    Nadiminty, Nagalakshmi; Lou, Wei; Lee, Soo Ok; Lin, Xin; Trump, Donald L.; Gao, Allen C.

    2006-01-01

    Activation of the noncanonical NF-κB signaling pathway involved in the proteolytic processing of NF-κB p100 to p52 is tightly regulated, and overproduction of p52 leads to lymphocyte hyperplasia and transformation. We have demonstrated that active but not latent Stat3, expressed in many types of human cancers involved in cell proliferation and survival, induces p100 processing to p52 by activation of IKKα and subsequent phosphorylation of p100. The Stat3-mediated p100 processing to p52 requir...

  5. Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus.

    Science.gov (United States)

    Kim, Dong Won; Glendining, Kelly A; Grattan, David R; Jasoni, Christine L

    2016-10-01

    Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6. PMID:27326907

  6. IGFBP2 potentiates nuclear EGFR-STAT3 signaling

    OpenAIRE

    Chua, Corrine Yingxuan; Liu, Yuexin; Granberg, Kirsi J.; Hu, Limei; Haapasalo, Hannu; Annala, Matti J.; Cogdell, David E.; Verploegen, Maartje; Moore, Lynette M.; Fuller, Gregory N.; Nykter, Matti; Cavenee, Webster K.; Zhang, Wei

    2015-01-01

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which...

  7. Connective tissue growth factor reacts as an IL-6/STAT3-regulated hepatic negative acute phase protein

    Institute of Scientific and Technical Information of China (English)

    Olav A Gressner; Ieva Peredniene; Axel M Gressner

    2011-01-01

    AIM: To investigate the mechanisms involved in a possible modulator role of interleukin (IL)-6 signalling on CYR61-CTGF-NOV (CCN) 2/connective tissue growth factor (CTGF) expression in hepatocytes (PC) and to look for a relation between serum concentrations of these two parameters in patients with acute inflammation.METHODS: Expression of CCN2/CTGF, p-STAT3, p-Smad 3/1 and p-Smad2 was examined in primary freshly isolated rat or cryo-preserved human PC exposed to various stimuli by Western blotting, electrophoretic mobility shift assay (EMSA), reporter-gene-assays and reversetranscriptase polymerase chain reaction.RESULTS: IL-6 strongly down-regulated CCN2/CTGF protein and mRNA expression in PC, enhanceable by extracellular presence of the soluble IL-6 receptor gp80,and supported by an inverse relation between IL-6 and CCN2/CTGF concentrations in patients' sera. The inhibition of TGFβ1 driven CCN2/CTGF expression by IL-6 did not involve a modulation of Smad2 (and Smad1/3)signalling. However, the STAT3 SH2 domain binding peptide, a selective inhibitor of STAT3 DNA binding activity, counteracted the inhibitory effect of IL-6 on CCN2/CTGF expression much more pronounced than pyrrolidine-dithiocarbamate, an inhibitor primarily of STAT3 phosphorylation. An EMSA confirmed STAT3 binding to the proposed proximal STAT binding site in the CCN2 /CTGF promoter.CONCLUSION: CCN2/CTGF is identified as a hepatocellular negative acute phase protein which is downregulated by IL-6 via the STAT3 pathway through interaction on the DNA binding level.

  8. RKIP phosphorylation and STAT3 activation is inhibited by oxaliplatin and camptothecin and are associated with poor prognosis in stage II colon cancer patients

    International Nuclear Information System (INIS)

    A major obstacle in treating colorectal cancer (CRC) is the acquired resistance to chemotherapeutic agents. An important protein in the regulation of cancer cell death and clinical outcome is Raf kinase inhibitor protein (RKIP). In contrast, activated signal transducer and activator of transcription 3 (STAT3) is a protein that promotes tumor cell survival by inhibiting apoptosis and has an important role in cancer progression in many of cancer types. The aim of this study was to evaluate the regulation of RKIP and STAT3 after treatment with clinically relevant chemotherapeutic agents (camptothecin (CPT) and oxaliplatin (OXP)) and the cytokine interleukin-6 (IL-6) in HCT116 colon cancer cells as well as evaluate the association between RKIP and STAT3 with clinical outcome of Stage II colon cancer patients. HCT-116 colon cancer cells were treated with CPT, OXP, and IL-6 separately or in combination in a time and dose-dependent manner and examined for phosphorylated and non-phosphorylated RKIP and STAT3 via Western blot analysis. STAT3 transcriptional activity was measured via a luciferase reporter assay in HCT116 cells treated with CPT, IL-6 or transfected with JAK 1, 2 separately or in combination. We extended these observations and determined STAT3 and RKIP/ pRKIP in tumor microarrays (TMA) in stage II colon cancer patients. We demonstrate IL-6-mediated activation of STAT3 occurs in conjunction with the phosphorylation of RKIP in vitro in human colon cancer cells. OXP and CPT block IL-6 mediated STAT3 activation and RKIP phosphorylation via the inhibition of the interaction of STAT3 with gp130. We determined that STAT3 and nuclear pRKIP are significantly associated with poor patient prognosis in stage II colon cancer patients. In the analysis of tumor samples from stage II colon cancer patients and the human colon carcinoma cell line HCT116, pRKIP and STAT3, 2 proteins potentially involved in the resistance to conventional treatments were detected. The

  9. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Mamik Manmeet K

    2011-10-01

    Full Text Available Abstract Background Infection with human immunodeficiency virus type-1 (HIV-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD, the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE, a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs and nuclear factor (NF-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126, NF-κB interfering peptide (SN50 or transfected with dominant negative IκBα mutant (IκBαM prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus

  10. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    . Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were...

  11. Extracellular signal regulated kinases 1/2 signal pathway and responses of astrocytes after diffuse brain injury

    Institute of Scientific and Technical Information of China (English)

    Jinxing Li; Haimei Zhao; Yu Li; Chong Wang; Jiashan Zhao; Xianli Zhu

    2007-01-01

    BACKGROUND: The treatment of diffuse brain injury during an acute period is focused on relieving degrees of secondary brain injury. Generation and development of pathological changes of secondary brain injury depend on signal conduction, so down-regulating over response of astrocyte through interfering a key link of signal conduction pathway may bring a new thinking for the treatment of diffuse brain injury. OBJECTIVE: To observe the effect of over activity of extracellular signal regulated kinases 1/2 (ERK1/2) signal pathway on the response of astrocyte during an acute period of diffuse brain injury. DESIGN: Completely randomized grouping and controlled animal study.SETTINGS: Department of Neurosurgery, the Third Affiliated Hospital, Nanchang University; Department of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: A total of 158 healthy male SD rats, of 11 weeks old, weighing 320 - 370 g, were provided by Experimental Animal Faulty, Tongji Medical College, Huazhong University of Science and Technology. Rabbit-anti-phosphorylated ERK1/2 (pERKl/2) polyclonal antibody was provided by R&D Company; rabbit-anti-glial fibrillary acidic protein (GFAP) polyclonal antibody, SP immunohistochemical kit and horseradish peroxidase (HRP)-labeled goat-anti-rabbit IgG by Santa Cruz Company; specific inhibitor U0126 of ERK1/2 signal pathway by Alexis Company. METHODS: The experiment was carried out in the Laboratory of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology from September 2004 to March 2006. ①Detection of pERKl/2 expression: A total of 110 rats were randomly divided into sham operation group (n =5), model group (n =35), high-dosage U0126 group (n =35) and low-dosage U0126 group (n =35). Rats in the sham operation group were only treated with incision of epicranium and fixation of backup plate, but not hit. Rats in the model group

  12. Comparison of the Gene Expression Profiles of Human Fetal Cortical Astrocytes with Pluripotent Stem Cell Derived Neural Stem Cells Identifies Human Astrocyte Markers and Signaling Pathways and Transcription Factors Active in Human Astrocytes

    OpenAIRE

    Nasir Malik; Xiantao Wang; Sonia Shah; Efthymiou, Anastasia G.; Bin Yan; Sabrina Heman-Ackah; Ming Zhan; Mahendra Rao

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression anal...

  13. NOX1 is responsible for cell death through STAT3 activation in hyperoxia and is associated with the pathogenesis of Acute Respiratory Distress Syndrome

    OpenAIRE

    Carnesecchi, Stephanie; Dunand-Sauthier, Isabelle; Zanetti, Filippo; Singovski, Grigory; Deffert, Christine; Donati, Yves; Cagarelli, Thomas; Pache, Jean-Claude; Krause, Karl-Heinz; Reith, Walter; Barazzone-Argiroffo, Constance

    2014-01-01

    Reactive oxygen species (ROS) contribute to alveolar cell death in Acute Respiratory Distress Syndrome (ARDS) and we previously demonstrated that NOX1-derived ROS contributed to hyperoxia-induced alveolar cell death in mice. The study investigates whether NOX1 expression is modulated in epithelial cells concomitantly to cell death and associated to STAT3 signaling in the exudative phase of ARDS. In addition, the role of STAT3 activation in NOX1-dependent epithelial cell death was confirmed by...

  14. Activating STAT3 Alpha for Promoting Healing of Neurons

    Science.gov (United States)

    Conway, Greg

    2008-01-01

    A method of promoting healing of injured or diseased neurons involves pharmacological activation of the STAT3 alpha protein. Usually, injured or diseased neurons heal incompletely or not at all for two reasons: (1) they are susceptible to apoptosis (cell death); and (2) they fail to engage in axogenesis that is, they fail to re-extend their axons to their original targets (e.g., muscles or other neurons) because of insufficiency of compounds, denoted neurotrophic factors, needed to stimulate such extension. The present method (see figure) of treatment takes advantage of prior research findings to the effect that the STAT3 alpha protein has anti-apoptotic and pro-axogenic properties.

  15. Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

    Directory of Open Access Journals (Sweden)

    DiGiovanni John

    2006-04-01

    Full Text Available Abstract Background Squamous cell carcinoma (SCC of the skin is the most aggressive form of non-melanoma skin cancer (NMSC, and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3 in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. Results To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK, to non-tumorigenic transformed skin cells (HaCaT, to highly tumorigenic cells (SRB1-m7 and SRB12-p9 and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN. The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM. This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. Conclusion This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or

  16. Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice.

    Directory of Open Access Journals (Sweden)

    Pablo J Sáez

    Full Text Available Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1⁻/⁻ showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1⁻/⁻ hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1⁻/⁻ astrocytes also showed more intracellular Ca²⁺ signal oscillations mediated by functional connexin 43 hemichannels and P2Y₁ receptors. Therefore, Npc1⁻/⁻ astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.

  17. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  18. The Role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Chu, Qi; Gan, Yong; Ren, Hui; Zhang, Liyan; Wang, Liwei; Li, Xiaoxiu; Wang, Wei

    2016-01-01

    Objective High expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) has been detected in a variety of human tumors. However, the association of positive p-STAT3 expression with clinicopathological parameters and the prognosis of colorectal cancer patients remain controversial. To identify the relationship between p-STAT3 expression and clinicopathological parameters and prognosis in patients with colorectal cancer, a systematic review and meta-analysis were performed. Methods We performed a comprehensive literature search from PubMed, EMBASE, and SinoMed through 27 March, 2016. Hazard ratios (HRs) with 95% confidence intervals (CI) were combined to evaluate the association between p-STAT3 expression and overall survival of colorectal cancer patients. Odds ratios (ORs) with 95% CI were combined to evaluate the association between p-STAT3 expression and clinicopathological parameters in patients with colorectal cancer. Results Seventeen studies including a total of 2,346 colorectal cancer patients were included in this meta-analysis. The combined HR was 1.43 (95% CI: 1.23–1.67, P < 0.001), which suggested a positive relationship between p-STAT3 overexpression and poorer overall survival of colorectal cancer patients. In addition, the results indicated that positive p-STAT3 expression was significantly associated with the presence of lymph node metastasis (OR: 2.43, 95% CI: 1.18–5.01, P = 0.02) but was not associated with TNM stage, tumor differentiation or gender. Conclusion The meta-analysis results suggest that p-STAT3 overexpression is unfavorable for the prognosis of colorectal cancer patients, and p-STAT3 overexpression is associated with the presence of lymph node metastasis among colorectal cancer patients. PMID:27504822

  19. Screening of invasion and metastasis related genes regulated by Stat3 in pancreatic cancer SW1990 cell%STAT3调控胰腺癌侵袭转移相关基因的筛选

    Institute of Scientific and Technical Information of China (English)

    李海东; 裘正军; 黄陈; 江弢; 曹俊

    2012-01-01

    Objective To screen the genes related with signal transducers and activators of transcription 3 (STAT3) regulating pancreatic cancer invasion and metastasis by gene chips. Methods Human pancreatic cancer cell line SW1990 stably expressing low level of Stat3 was established by lentivirus transfection,while cells transfected with mock plasmid and cells without transfection served as control groups.The differences of invasion and metastasis related genes expression among the three groups were screened by gene chips.STAT3 mRNA and protein expression was measured by real-time PCR and Western blot.Three differentially expressed genes (MMP-7,IL-1β and IgTα7) were verified.Results The expression level of STAT3 mRNA was 0.391 ± 0.037 after pancreatic cancer SW1990 cell trarsfected with STAT3 targeted lentivirus,which was significantly lower than those in mock plasmid group (1.002 ± 0.015) and nontransfected group ( 1.206 ± 0.042,P < 0.05 ) ; the expression level of STAT3 protein was 182.38 ± 65.32,which was significantly lower than those in mock plasmid group (223.40 ±58.40) and non-transfected group (212.33 ±53.69).Eight invasion and metastasis related genes of SW1990 lowly expressing Stat3 were upregulated,while 3 genes were down-regulated.By verification,the mRNA level of MMP-7 and IL-1β were lower than in control group transfected with mook plassmid(0.287 ± 0.115 vs 1.010 ± 0.124,t =19.45,P =0.000;0.490 ± 0.10 vs 1.002 ± 0.002,t =13.83,P =0.000),but the mRNA level of IgTα7 was not decreased (1.173 ±0.280 vs 0.998 ±0.003,t =4.236,P =0.094).Meanwhile,the protein level of MMP-7 was significantly down-regulated when Stat3 was knocked down.Conclusions Stat3 causes changes of expressions of many invasion and metastasis-related genes of SW1990,and MMP-7 may be the main target gene regulated by Stat3.%目的 应用基因芯片筛选信号转导与转录激活因子3(STAT3)调控胰腺癌侵袭转移的相关基因.方法 以慢病毒感染获得稳定STAT3

  20. Particulate Matter Facilitates C6 Glioma Cells Activation and the Release of Inflammatory Factors Through MAPK and JAK2/STAT3 Pathways.

    Science.gov (United States)

    Li, Ting; Zhao, Jianya; Ge, Jianbin; Yang, Jianbin; Song, Xinjian; Wang, Cheng; Mao, Jiamin; Zhang, Yan; Zou, Ye; Liu, Yanmei; Chen, Gang

    2016-08-01

    It has been widely accepted that astrocytes, play a role in regulating almost every physiological system. In the present study, we investigated the role of particulate matter (PM) in regulating activation of astrocytes. The glial cell strain C6 was cloned from a rat glioma which was induced by N-nitrosomethylurea. The C6 cells were plated at a density of 5 × 10(6) cells/10 cm diameter dish and incubated with different concentrations (0, 12, 25, 50, 100, 200, and 400 μg/mL) of PM for 24 h and different time (0, 1, 3, 6, 8,12, and 24 h) with 100 μg/mL at 37 °C. The study revealed that PM stimulated the expression of inducible nitric oxide synthase (iNOS) as well as the production of IL-1β in a dose- and time-dependent manner. Furthermore, activation of JAK2/STAT3 and p38/JNK/ERK MAPKs was found in astrocytes following PM treatment. Blockage of JAK and p38/JNK/ERK MAPKs with their specific inhibitors, AG490, SB202190, SP600125 and U0126 significantly reduced PM-induced iNOS expression and IL-1β production. In addition, it was demonstrated that inhibition of p38, JNK and JAK prevented STAT3 tyrosine phosphorylation induced by PM, while blocking ERK did not. MAPKs (p38 and JNK) could regulate tyrosine STAT3 phosphorylation, which suggested that the JAK2/STAT3 pathway might be the downstream of p38/JNK MAPK pathways. PMID:27068033

  1. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    Directory of Open Access Journals (Sweden)

    Andrea Bonetto

    Full Text Available BACKGROUND: Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6, and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26-carcinoma cachexia. METHODOLOGY/PRINCIPAL FINDINGS: Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. CONCLUSIONS/SIGNIFICANCE: These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and

  2. CCR5 Blockade Suppresses Melanoma Development Through Inhibition of IL-6-Stat3 Pathway via Upregulation of SOCS3.

    Science.gov (United States)

    Tang, Qiu; Jiang, Jun; Liu, Jian

    2015-12-01

    In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, we found that chemokine receptor 5 (CCR5) neutralization resulted in reduced melanoma tumor size, decreased percentage of CD11b+ Gr-1(+) myeloid-derived suppressor cells (MDSCs), and increased proportion of cluster of differentiation (CD)3+ T cells in tumor tissues. Suppressive activity of MDSCs on CD4+ T cells and CD8+ T cell proliferation is significantly inhibited by anti-CCR5 antibody. CCR5 blockade also suppresses interleukin (IL)-6 induction, which in turn deactivates signal transducer and activator of transcription 3 (Stat3) in tumors. Furthermore, the suppressed B16 tumor growth induced by CCR5 blockade is abolished with additional administration of recombinant IL-6. CCR5 blockade also induces suppressor of cytokine signaling 3 (SOCS3) upregulations, and anti-CCR5 antibody fails to suppress expression of phospho-Stat3 (p-Stat3), matrix metallopeptidase 9 (MMP9), and IL-6 in cells transfected with SOCS3 short-interfering RNA (SiRNA). All these data suggest that CCR5 blockade suppresses melanoma development through inhibition of IL-6-Stat3 pathway via upregulation of SOCS3.

  3. Study of STAT3 G-quadruplex folding patterns by CD spectroscopy and molecular modeling

    Institute of Scientific and Technical Information of China (English)

    Sen Lin; Ming Xu; Gu Yuan

    2012-01-01

    The G-quadruplexes formed from G-rich strands in the telomere and oncogene-promoter regions are regarded as new promising targets in the cancer therapy.A G-quadruplex in the downstream flanking region of the signal transducer and activator of transcription 3 (STAT3) gene was explored.Its folding patterns were proposed to be 3∶2∶2 and 3∶3∶1 loop isomers by the mutation analysis by CD spectroscopy.The structures were constructed and refined by molecular modeling method.

  4. Inhibition of Jak-STAT3 pathway enhances bufalin-induced apoptosis in colon cancer SW620 cells

    Directory of Open Access Journals (Sweden)

    Zhu Zhitu

    2012-10-01

    Full Text Available Abstract Background The purpose of the research is to investigate the roles of Jak-STAT3 signaling pathway in bufalin-induced apoptosis in colon cancer SW620 cells. Methods The inhibitory effects of bufalin on cell proliferation were determined by MTT (Methyl thiazolyltetrazolium assay. The morphological changes of cells were measured by Wright-Giemsa staining. The cell cycle arrest and apoptosis were tested by flow cytometry analysis. Western Blot was used to determine the protein expression of the apoptosis inhibitors livin and caspase-3, the apoptosis-related proteins Bax and Bcl-2, as well as the key protein kinases in the Jak-stat3 signaling pathway, stat3 and p-stat3. Results (1 Bufalin inhibited the proliferation of SW620 cells. IC50 at 24 h, 48 h and 72 h were 76.72 ± 6.21 nmol/L, 34.05 ± 4.21 nmol/L and 16.7 ± 6.37 nmol/L. (2 Bufalin induced SW620 cell cycle arrest and apoptosis, indicated by the appearance of apoptotic bodies; (3 The results from flow cytometry demonstrated that there was cell cycle G2/M phase arrest in 20 nmol/L bufalin treatment group (36.29 ± 2.11% vs 18.39 ± 1.74%, P Conclusions Bufalin not only inhibited the growth of colon cancer SW620 cells, but also induced apoptosis of SW620 cells. Activation of caspase-3, up-regulation of Bax, down-regulation of livin and Bcl-2, as well as inhibition of Jak-stat3 signaling pathway might be the important mechanisms for the bufalin-induced apoptosis.

  5. Modulation of Intercellular Calcium Signaling by Melatonin, in Avian and Mammalian Astrocytes, is Brain Region Specific

    OpenAIRE

    Peters, Jennifer L.; Earnest, Barbara J.; Tjalkens, Ronald B.; Cassone, Vincent M.; Zoran, Mark J.

    2005-01-01

    Calcium waves among glial cells impact many central nervous system functions, including neural integration and brain metabolism. Here, we have characterized the modulatory effects of melatonin, a pineal neurohormone that mediates circadian and seasonal processes, on glial calcium waves derived from different brain regions and species. Diencephalic and telencephalic astrocytes, from both chick and mouse brains, expressed melatonin receptor proteins. Further, using the calcium-sensitive dye Flu...

  6. Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor.

    Science.gov (United States)

    Floss, Doreen M; Mrotzek, Simone; Klöcker, Tobias; Schröder, Jutta; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2013-07-01

    Signaling of interleukin 23 (IL-23) via the IL-23 receptor (IL-23R) and the shared IL-12 receptor β1 (IL-12Rβ1) controls innate and adaptive immune responses and is involved in the differentiation and expansion of IL-17-producing CD4(+) T helper (TH17) cells. Activation of signal transducer and activator of transcription 3 (STAT3) appears to be the major signaling pathway of IL-23, and STAT binding sites were predicted in the IL-23R but not in the IL-12Rβ1 chain. Using site-directed mutagenesis and deletion variants of the murine and human IL-23R, we showed that the predicted STAT binding sites (pYXXQ; including Tyr-504 and Tyr-626 in murine IL-23R and Tyr-484 and Tyr-611 in human IL-23R) mediated STAT3 activation. Furthermore, we identified two uncommon STAT3 binding/activation sites within the murine IL-23R. First, the murine IL-23R carried the Y(542)PNFQ sequence, which acts as an unusual Src homology 2 (SH2) domain-binding protein activation site of STAT3. Second, we identified a non-canonical, phosphotyrosine-independent STAT3 activation motif within the IL-23R. A third predicted site, Tyr-416 in murine and Tyr-397 in human IL-23R, is involved in the activation of PI3K/Akt and the MAPK pathway leading to STAT3-independent proliferation of Ba/F3 cells upon stimulation with IL-23. In contrast to IL-6-induced short term STAT3 phosphorylation, cellular activation by IL-23 resulted in a slower but long term STAT3 phosphorylation, indicating that the IL-23R might not be a major target of negative feedback inhibition by suppressor of cytokine signaling (SOCS) proteins. In summary, we characterized IL-23-dependent signal transduction with a focus on STAT3 phosphorylation and identified canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the IL-23R.

  7. GRIM-19及其靶基因产物STAT3在人乳腺癌组织中的表达%Expression of GRIM-19 and its target gene product STAT3 in human breast cancer

    Institute of Scientific and Technical Information of China (English)

    任敏; 汪英; 刘骁蕾; 王本忠

    2013-01-01

    Objective To evaluate gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) expression levels and the correlation with its target gene product signal transducers and activator of transcription 3 (STAT3)in human breast cancer tissues and normal gland tissues,and to analyze their roles in the tumorigenesis of breast cancer.Methods The expression of GRIM-19 and STAT3 protein and mRNA in 40 cases of breast cancer tissues and 40 cases of normal gland tissues was detected by immunohistochemistry and Western blot.The correlation of the expression of GRIM-19 and STAT3 to various clinicopathologic characteristics of breast cancer were analyzed statistically.The mRNA expression and gene mutation of GRIM-19 in breast cancer cell line MCF-7 and 25 specimens of breast cancer and normal gland tissue were detected by reverse transcription-polymerase chain reaction(RT-PCR)and sequencing.Results The protein and mRNA expression of GRIM-19 was obviously lower in breast cancer than in normal gland tissues (P < 0.05) while the protein and mRNA expression of STAT3 was obviously higher in breast cancer than in normal gland tissues(P <0.05).The expression of GRIM-19 and STAT3 was negatively correlated with each other(x2 =8.25,P <0.01).Breast cancer samples exhibited low level of GRIM-19 and moderate to high level of STAT3 expression.In contrast,the normal gland tissue was characterized by high level of GRIP-19 and low level of STAT3 expression.The protein expression of GRIM-19 was correlated with the histological grading and clinical stage of breast cancer(P < 0.05).STAT3 was not correlated with clinicopathologic characteristics of breast cancer (P > 0.05).No mutation of GRIM-19 gene was detected in breast cancer tissues,normal gland tissues or MCF-7 breastcancer cells.Conclusions The low expression of GRIM-19 and the high expression of STAT3 co-exist in breast cancer.Downregulation of GRIM-19 was closely correlated with increased histological grade

  8. EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1α with Th17/Treg control.

    Directory of Open Access Journals (Sweden)

    Eun-Ji Yang

    Full Text Available Epigallocatechin-3-gallate (EGCG is a green tea polyphenol exerting potent anti-oxidant and anti-inflammatory effects by inhibiting signaling and gene expression. The objective of the study was to evaluate the effect of EGCG on interleukin (IL-1 receptor antagonist knockout (IL-1RaKO autoimmune arthritis models. IL-1RaKO arthritis models were injected intraperitoneally with EGCG three times per week after the first immunization. EGCG decreased the arthritis index and showed protective effects against joint destruction in the IL-1RaKO arthritis models. The expression of pro-inflammatory cytokines, oxidative stress proteins, and p-STAT3 (Y705 and p-STAT3 (S727, mTOR and HIF-1α were significantly lower in mice treated with EGCG. EGCG reduced osteoclast markers in vivo and in vitro along with anti-osteoclastic activity was observed in EGCG-treated IL-1RaKO mice. The proportion of Foxp3(+ Treg cells increased in the spleens of mice treated with EGCG, whereas the proportion of Th17 cells reduced. In vitro, p-STAT3 (Y705 and p-STAT3 (S727, HIF1α and glycolytic pathway molecules were decreased by EGCG. EGCG suppressed the activation of mTOR and subsequently HIF-1α, which is considered as a metabolic check point of Th17/Treg differentiation supporting the therapeutic potential of EGCG in autoimmune arthritis.

  9. ZIP4 Regulates Pancreatic Cancer Cell Growth by Activating IL-6/STAT3 Pathway via Zinc Finger Transcription Factor CREB

    Science.gov (United States)

    Zhang, Yuqing; Bharadwaj, Uddalak; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi; Li, Min

    2010-01-01

    Purpose Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. Experimental Design The expression of cyclin D1, IL-6, and STAT3 in pancreatic cancer xenografts and cells were examined by real time PCR, Bio-Plex cytokine assay, and Western blot, respectively. The activity of CREB is examined by a promoter activity assay. Results Cyclin D1 was significantly increased in the ZIP4 overexpressing MIA PaCa-2 cells (MIA-ZIP4)-injected orthotopic xenografts and was downregulated in the ZIP4 silenced ASPC-1 (ASPC-shZIP4) group. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), an upstream activator of cyclin D1, was increased in MIA-ZIP4 cells, and decreased in ASPC-shZIP4 cells. IL-6, a known upstream activator for STAT3, was also found to be significantly increased in the MIA-ZIP4 cells and xenografts, and decreased in the ASPC-shZIP4 group. Overexpression of ZIP4 led to a 75% increase of IL-6 promoter activity, and caused increased phosphorylation of cAMP response element binding protein (CREB). Conclusions Our study suggest that ZIP4 overexpression causes increased IL-6 transcription via CREB, which in turn activates STAT3, and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor progression in pancreatic cancer. These results elucidated a novel pathway in ZIP4-mediated pancreatic cancer growth, and suggest new therapeutic targets including ZIP4, IL-6, and STAT3 in pancreatic cancer treatment. PMID:20160059

  10. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Min Jeoung Lee

    Full Text Available BACKGROUND: Intestinal epithelium is essential for maintaining normal intestinal homeostasis; its breakdown leads to chronic inflammatory pathologies, such as inflammatory bowel diseases (IBDs. Although high concentrations of S100A9 protein and interleukin-6 (IL-6 are found in patients with IBD, the expression mechanism of S100A9 in colonic epithelial cells (CECs remains elusive. We investigated the role of IL-6 in S100A9 expression in CECs using a colitis model. METHODS: IL-6 and S100A9 expression, signal transducer and activator of transcription 3 (STAT3 phosphorylation, and infiltration of immune cells were analyzed in mice with dextran sulfate sodium (DSS-induced colitis. The effects of soluble gp130-Fc protein (sgp130Fc and S100A9 small interfering (si RNA (si-S100A9 on DSS-induced colitis were evaluated. The molecular mechanism of S100A9 expression was investigated in an IL-6-treated Caco-2 cell line using chromatin immunoprecipitation assays. RESULTS: IL-6 concentrations increased significantly in the colon tissues of DSS-treated mice. sgp130Fc or si-S100A9 administration to DSS-treated mice reduced granulocyte infiltration in CECs and induced the down-regulation of S100A9 and colitis disease activity. Treatment with STAT3 inhibitors upon IL-6 stimulation in the Caco-2 cell line demonstrated that IL-6 mediated S100A9 expression through STAT3 activation. Moreover, we found that phospho-STAT3 binds directly to the S100A9 promoter. S100A9 may recruit immune cells into inflamed colon tissues. CONCLUSIONS: Elevated S100A9 expression in CECs mediated by an IL-6/STAT3 signaling cascade may play an important role in the development of colitis.

  11. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Gu Fang-Ming

    2011-12-01

    Full Text Available Abstract Background The Th17 subset and IL-17 have been found in increased frequencies within certain tumors. However, their relevance in cancer biology remains controversial. This study aimed to clarify the biological action of IL-17 on hepatocellular carcinoma (HCC. Methods Effects and underlying molecular mechanisms of IL-17 on human HCC were explored in vitro using exogenous IL-17 stimulation and in nude mice by implanting IL-17 overexpressed HCC cells. The clinical significance of IL-17 was investigated in tissue microarrays containing HCC tissues from 323 patients following hepatectomy using immunohistochemistry. Results Although exogenous IL-17 showed no direct effect on the growth rate of HCC cells in vitro, PCR and ELISA showed that IL-17 selectively augmented the secretion of diverse proinvasive factors and transwell showed a direct promotion of invasion of HCC cells by IL-17. Furthermore, transfection of IL-17 into HCC cells significantly promoted neoangiogenesis, neutrophil recruitment and tumor growth in vivo. Using siRNA mediated knockdown of AKT and STAT3, we suggested that the effects of IL-17 were operated through activation of the AKT signaling in HCC, which resulted in IL-6 production. Then, IL-6 in turn activated JAK2/STAT3 signaling and subsequently up-regulated its downstream targets IL-8, MMP2, and VEGF. Supporting these findings, in human HCC tissues, immunostaining indicated that IL-17 expression was significantly and positively associated with STAT3 phosphorylation, neutrophil infiltration and increased tumor vascularity. The clinical significance of IL-17 was authenticated by revealing that the combination of intratumoral IL-17+ cells and phospho-STAT3 served as a better prognosticator for postoperative tumor recurrence than either marker alone. Conclusions IL-17 mediated tumor-promoting role involves a direct effect on HCC cells through IL-6/JAK2/STAT3 induction by activating the AKT pathway.

  12. STAT3 and the Hyper-IgE syndrome

    DEFF Research Database (Denmark)

    Mogensen, Trine H

    2013-01-01

    During recent years a number of primary immunodeficiencies resulting from impaired function of JAK-STAT molecules have been described. One of these is the Hyper-IgE syndrome (HIES) characterized by elevated IgE levels, eczema, recurrent staphylococcal skin and pulmonary infections and pleiotropic...... multiple cytokine and growth factor receptors and thus regulates antimicrobial responses and cell survival, impaired STAT3 function results in immunodeficiency and in some cases tumorigenesis. However, as the immunological and molecular basis of HIES is being unraveled, important biological and...

  13. Dual AAV/IL-10 Plus STAT3 Anti-Inflammatory Gene Delivery Lowers Atherosclerosis in LDLR KO Mice, but without Increased Benefit

    Directory of Open Access Journals (Sweden)

    Maohua Cao

    2012-01-01

    Full Text Available Both IL-10 and STAT3 are in the same signal transduction pathway, with IL-10-bound IL10 receptor (R acting through STAT3 for anti-inflammatory effect. To investigate possible therapeutic synergism, we delivered both full-length wild-type human (h STAT3 and hIL-10 genes by separate adenoassociated virus type 8 (AAV8 tail vein injection into LDLR KO on HCD. Compared to control Neo gene-treated animals, individual hSTAT3 and hIL-10 delivery resulted in significant reduction in atherogenesis, as determined by larger aortic lumen size, thinner aortic wall thickness, and lower blood velocity (all statistically significant. However, dual hSTAT3/hIL-10 delivery offered no improvement in therapeutic effect. Plasma cholesterol levels in dual hSTAT3/hIL-10-treated animals were statistically higher compared to hIL-10 alone. While no advantage was seen in this case, we consider that the dual gene approach has intrinsic merit, but properly chosen partnered genes must be used.

  14. Antiproliferative effect of gold(I compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam-Hoon Kim

    2013-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 andtelomerase are considered attractive targets for anticancertherapy. The in vitro anticancer activity of the gold(I compoundauranofin was investigated using MDA-MB 231 human breastcancer cells, in which STAT3 is constitutively active. In cellculture, auranofin inhibited growth in a dose-dependent manner,and N-acetyl-L-cysteine (NAC, a scavenger of reactive oxygenspecies (ROS, markedly blocked the effect of auranofin.Incorporation of 5-bromo-2’-deoxyuridine into DNA andanchorage-independent cell growth on soft agar were decreasedby auranofin treatment. STAT3 phosphorylation and telomeraseactivity were also attenuated in cells exposed to auranofin, butNAC pretreatment restored STAT3 phosphorylation andtelomerase activity in these cells. These findings indicate thatauranofin exerts in vitro antitumor effects in MDA-MB 231 cellsand its activity involves inhibition of STAT3 and telomerase.Thus, auranofin shows potential as a novel anticancer drug thattargets STAT3 and telomerase. [BMB Reports 2013; 46(1: 59-64

  15. Crispene E, a cis-clerodane diterpene inhibits STAT3 dimerization in breast cancer cells.

    Science.gov (United States)

    Mantaj, Julia; Rahman, S M Abdur; Bokshi, Bishwajit; Hasan, Choudhury M; Jackson, Paul J M; Parsons, Richard B; Rahman, Khondaker M

    2015-04-01

    Crispene E, a new clerodane-type diterpene, inhibited STAT3 dimerization in a cell-free fluorescent polarisation assay and was found to have significant toxicity against STAT3-dependent MDA-MB 231 breast cancer cell line and selectively inhibited the expression of STAT3 and STAT3 target genes cyclin D1, Fascin and bcl-2. Molecular docking studies suggest the molecule inhibits STAT3 by interacting with its SH2 domain. The compound has been isolated from Tinospora crispa and characterized using standard spectroscopic techniques. PMID:25721973

  16. Predominant Activation of JAK/STAT3 Pathway by Interleukin-6 Is Implicated in Hepatocarcinogenesis12

    Science.gov (United States)

    Jung, In Hye; Choi, Jeffrey Hyun-Kyu; Chung, Yong-Yoon; Lim, Ga-Lam; Park, Young-Nyun; Park, Seung Woo

    2015-01-01

    Chronic inflammation is an important process leading to tumorigenesis. Therefore, targeting and controlling inflammation can be a promising cancer therapy. Inflammation is often caused by a variety of inflammatory cytokine such as the interleukin (IL)-6, a pleiotrophic cytokine known to be involved in the tumorigenesis. In this study, an in vivo hepatic tumorigenesis model of zebrafish was generated to demonstrate a direct consequence of the human IL6 expression causing hepatocarcinogenesis. To do this, an elevated expression of the hIL6 gene was established to specifically target the zebrafish hepatocytes by transgenesis. Interestingly, the elevated hIL6 expression caused the chronic inflammation which results in a massive infiltration of inflammatory cells. This eventually resulted in the generation of various dysplastic lesions such as clear cell, small cell, and large cell changes, and also eosinophilic and basophilic foci of hepatocellular alteration. Hepatocellular carcinoma was then developed in the transgenic zebrafish. Molecular characterization revealed upregulation of the downstream components involved in the IL6-mediated signaling pathways, especially PI3K/Akt and JAK/STAT3 pathways. Further investigation indicated that PI3K was the most reactive to the infiltrated inflammatory cells and dysplasia with large cell change, whereas STAT3 was heavily activated in the region with dysplastic foci, suggesting that the JAK/STAT3 pathway was mainly implicated in the hepatic tumorigenesis in the current model. Our present study provides an in vivo evidence of the relationship between chronic inflammation and tumorigenesis and reinforces the pivotal role of IL6 in the inflammation-associated hepatocarcinogenesis. PMID:26297436

  17. NF-κB and STAT3-key players in liver inflammation and cancer

    Institute of Scientific and Technical Information of China (English)

    Guobin He; Michael Karin

    2011-01-01

    Hepatocellular carcinoma(HCC),the major form of primary liver cancer,is one of the most deadly human cancers.The pathogenesis of HCC is frequently linked with continuous hepatocyte death,inflammatory cell infiltration and compensatory liver regeneration.Understanding the molecular signaling pathways driving or mediating these processes during liver tumorigenesis is important for the identification of novel therapeutic targets for this dreadful disease.The classical IKKβ-dependent NF-κB signaling pathway has been shown to promote hepatocyte survival in both developing and adult livers.In addition,it also plays a crucial role in liver inflammatory responses by controlling the expression of an array of growth factors and cytokines.One of these cytokines is IL-6,which is best known for its role in the liver acute phase response.IL-6 exerts many of its functions via activation of STAT3,a transcription factor found to be important for HCC development.This review will focus on recent studies on the roles of NF-κB and STAT3 in liver cancer.Interactions between the two pathways and their potential as therapeutic targets will also be discussed.

  18. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance

    Directory of Open Access Journals (Sweden)

    Eva Maria Putz

    2014-01-01

    Full Text Available The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  19. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Eva Maria [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Hoelzl, Maria Agnes [Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna (MUV), Waehringer Strasse 13A, Vienna 1090 (Austria); Baeck, Julia [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Bago-Horvath, Zsuzsanna [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Clinical Institute of Pathology, Medical University of Vienna (MUV), Waehringer Gürtel 18-20, Vienna 1090 (Austria); Schuster, Christian [Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna (MUV), Waehringer Strasse 13A, Vienna 1090 (Austria); Reichholf, Brian [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Kern, Daniela; Aberger, Fritz [Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg 5020 (Austria); Sexl, Veronika; Hoelbl-Kovacic, Andrea, E-mail: andrea.hoelbl@vetmeduni.ac.at [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria)

    2014-01-27

    The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK) cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  20. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-hong; Li, Hui; Li, Jin-ping; Zhong, Hui; Zhang, Han-chon; Chen, Jia [Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410010 (China); Xiao, Tao, E-mail: xiaotaoxyl@163.com [Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410010 (China)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear. Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.

  1. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2.

    Science.gov (United States)

    Xuan, Xaioyan; Li, Shanshan; Lou, Xi; Zheng, Xianzhao; Li, Yunyun; Wang, Feng; Gao, Yuan; Zhang, Hongyan; He, Hongliu; Zeng, Qingru

    2015-05-01

    Stat3 alters the expression of its downstream genes and is associated with tumor invasion and metastasis in several human cancers. Its role in esophageal squamous cell carcinoma (ESCC) has not been well characterized. We examined the tumor sections of 100 cases of ESCC by immunohistochemistry and observed significant overexpression of Stat3 in the cytoplasm of 89% of ESCC cells and of phosphorylated Stat3 (p-Stat3) in the nuclei of 71% of ESCC when compare with normal esophageal mucosa (72%, p = 0.02; and 31%, p = 0.001). Overexpression of Stat3 and p-Stat3 positively correlated with that of matrix metalloproteinase-2 (MMP2), a known regulator for cell migration, in 65% of ESCC while only 26% shown in benign esophageal mucosa. To further investigate the association of Stat3 with tumor metastasis in vitro, invasion of EC-1 cells (a human ESCC cell line) were investigated with Boyden chambers. The results showed that transfection of Stat3 not only promoted invasion of EC-1 cells but also significantly induced MMP2 expression in a dose-dependent manner. In contrast, suppressing expression of endogenous Stat3 mRNA and protein by Stat3 siRNA significantly reduced EC-1 cell invasion and MMP2 expression. A high-affinity Stat3-binding element was localized to the positions of 648-641 bp (TTCTCGAA) in the MMP2 promoter with electrophoretic mobility shift assay. Our results suggest that Stat3, p-Stat3, and MMP2 were overexpressed in ESCC and associated with invasion of ESCC; and Stat3 up-regulated expression of MMP2 in ESCC through directly binding to the MMP2 promoter.

  2. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes

    Science.gov (United States)

    Wang, Jieting; Deng, Xiaobei; Zhang, Fang; Chen, Deliang; Ding, Wenjun

    2014-03-01

    It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP exposure. ZnO NP exposure was found to reduce cell viability in MTT assays, increase lactate dehydrogenase (LDH) release, stimulate intracellular reactive oxygen species (ROS) generation, and elicit caspase-3 activation in a dose- and time-dependent manner. Apoptosis occurred after ZnO NP exposure as evidenced by nuclear condensation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. A decrease in mitochondrial membrane potential (MMP) with a concomitant increase in the expression of Bax/Bcl-2 ratio suggested that the mitochondria also mediated the pathway involved in ZnO NP-induced apoptosis. In addition, exposure of the cultured cells to ZnO NPs led to phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK). Moreover, JNK inhibitor (SP600125) significantly reduced ZnO NP-induced cleaved PARP and cleaved caspase-3 expression, but not ERK inhibitor (U0126) or p38 MAPK inhibitor (SB203580), indicating that JNK signaling pathway is involved in ZnO NP-induced apoptosis in primary astrocytes.

  3. [Novel function of astrocytes revealed by optogenetics].

    Science.gov (United States)

    Beppu, Kaoru; Matsui, Ko

    2014-12-01

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  4. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Directory of Open Access Journals (Sweden)

    Yu-Yo Sun

    Full Text Available The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α through inhibition of prolyl hydrolase 2 (PHD2 and activation of the phosphatidylinositide-3 kinase (PI3K/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo and vascular endothelial growth factor (VEGF, two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  5. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    OpenAIRE

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    BACKGROUND: Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activati...

  6. CS-04STAT3 INVOLVEMENT IN AN EMT-LIKE PROCESS IN GLIOBLASTOMA BRAIN TUMOR INITIATING CELLS

    OpenAIRE

    Chesnelong, Charles; Luchman, Artee; Gregory Cairncross, J.; Weiss, Samuel

    2014-01-01

    Glioblastoma Multiforme (GBM) is the most aggressive subtype of brain tumour with a median survival of 15 months. Currently, GBM is managed by a combination of maximal safe resection followed by radiation and chemotherapy. However, GBM invariably recurs, highlighting the need to better delineate the basis of recurrent disease and develop novel more effective and targeted therapies. The Signal Transducer and Activator of Transcription 3 (STAT3) is abnormally active in GBM. A growing body of ev...

  7. Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain.

    Science.gov (United States)

    Norden, Diana M; Trojanowski, Paige J; Walker, Frederick R; Godbout, Jonathan P

    2016-08-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial interleukin (IL)-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher glial fibrillary acidic protein, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 receptor-1 (IL-10R1). After in vivo lipopolysaccharide immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and transforming growth factor β and resolve microglial activation. In addition, adult astrocytes reduced microglial activation when co-cultured ex vivo, whereas aged astrocytes did not. Consistent with the aging studies, IL-10R(KO) astrocytes did not augment transforming growth factor β after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  8. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control.

    Science.gov (United States)

    Butcher, Barbara A; Fox, Barbara A; Rommereim, Leah M; Kim, Sung Guk; Maurer, Kirk J; Yarovinsky, Felix; Herbert, De'Broski R; Bzik, David J; Denkers, Eric Y

    2011-09-01

    The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. PMID:21931552

  9. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control.

    Directory of Open Access Journals (Sweden)

    Barbara A Butcher

    2011-09-01

    Full Text Available The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16 parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18. In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.

  10. STAT-3 和 MGMT 在人胶质瘤中的表达及意义%Expression and significance of STAT-3 and MGMT in human gllomas

    Institute of Scientific and Technical Information of China (English)

    张龙洲; 王茂德

    2012-01-01

    目的:探讨STAT3和MGMT在人胶质瘤中的表达及其与肿瘤发生和病理分级之间的关系.方法:用免疫组化法检测并比较80例不同病理级别胶质瘤和15例正常脑组织中STAT3和MGMT的表达情况,并对二者表达做相关性分析.结果:STAT3和MGMT在正常脑组织中均未检测到阳性表达,在瘤组织中的表达均随肿瘤病理级别的升高而增高,相关性分析显示二者的表达存在正相关.结论:STAT3在胶质瘤的发生发展中起重要作用,其高表达可能与参与诱导MGMT的高表达有关.%Objective:To explore the expression of STAT —3 and MGMT in human gliomas and its relationship with tumorigenesis and the degrees of malignancy. Methods: Immunohistochemical SP method was employed to study the expression of STAT -3 and MGMT in 80 cases of glioma and 15 cases of normal cerebral tissue used as control group, the relationship of STAT - 3 and MGMT expression was analyzed. Results: Both the expression of STAT - 3 and MGMT increased as the malignant grade increased, at the same time the expression of STAT3 was positively related to that of MGMT. Conclusion: STAT3 may play a vital role in the progression of glioma through induction of MGMT.

  11. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland

    DEFF Research Database (Denmark)

    Andreasen, Simon; Therkildsen, Marianne Hamilton; Grauslund, Morten;

    2015-01-01

    The interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway is of crucial importance in promoting tumorigenesis in several malignant tumors but may also be active in benign tumors, e.g., of pleomorphic adenoma (PA). In this study we characterize...... reverse transcription-polymerase chain reaction (RT-PCR). Using immunohistochemistry, IL-6, JAK1, JAK2 and STAT3 were detected significantly more frequently in PA cells than in cells from normal salivary gland tissue. Using RT-PCR cyclin D1, fibroblast growth factor 2, and p21 were found...... to be overexpressed while matrix metallopeptidase 9 was detected at low levels in PA compared to normal salivary gland. ISH showed significant overexpression of miR-181b in PA, while miR-21 was undetectable in PA and normal tissue. Overexpression of the pathway components and its mRNA and miRNA products provide...

  12. STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion

    OpenAIRE

    Zhou, Cuiqi; Jiao, Yonghui; Wang, Renzhi; Ren, Song-Guang; Wawrowsky, Kolja; Melmed, Shlomo

    2015-01-01

    Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however, regulatory mechanisms that promote GH hypersecretion remain elusive. Here, we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover, STAT3 and GH expression were concordant in a somatotroph adenoma...

  13. STAT3 Regulates ABCA3 Expression and Influences Lamellar Body Formation in Alveolar Type II Cells

    OpenAIRE

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C.; Xu, Yan; Wert, Susan E.; Ikegami, Machiko; Whitsett, Jeffrey A.

    2007-01-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3Δ/Δ mice). Consistent with the role of STAT3, intratracheal IL-6 induce...

  14. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hanhui [Shanghai Medical College of Fudan University, Shanghai 200032 (China); Zhao, Wenrong [Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011 (China); Yang, Dan, E-mail: yangdandr@gmail.com [Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040 (China)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Upregulation of Skp2 by IL-6 or Stat3 activation. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through bound to its promoter region. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through recruitment of P300. Black-Right-Pointing-Pointer Stat3 activation decreases the P27 stability. -- Abstract: Dysregulated Skp2 function promotes cell proliferation, which is consistent with observations of Skp2 over-expression in many types of human cancers, including cervical carcinoma (CC). However, the molecular mechanisms underlying elevated Skp2 expression have not been fully explored. Interleukin-6 (IL-6) induced Stat3 activation is viewed as crucial for multiple tumor growth and metastasis. Here, we demonstrate that Skp2 is a direct transcriptional target of Stat3 in the human cervical carcinoma cells. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HeLa cells activates Skp2 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of Skp2 and promotes its activity through recruiting P300. As a result of the increase of Skp2 expression, endogenous p27 protein levels are markedly decreased. Thus, our results suggest a previously unknown Stat3-Skp2 molecular network controlling cervical carcinoma development.

  15. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    Science.gov (United States)

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  16. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    Science.gov (United States)

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes. PMID:26413835

  17. Progress in the study of relationship between STAT3 and tumor immune escape%STAT3与肿瘤免疫逃逸的研究进展

    Institute of Scientific and Technical Information of China (English)

    祝宝让; 杨武威

    2013-01-01

    Signal transducer and activator of transcription 3 is a dual function of protein in the cytoplasm, which is constitutively activated at a very high frequency in human cancer, on phosphorylation of STAT3 monomers by tyrosine kinases, the monomers dimerized, translocate to the nucleus, and bind to specific promoter sequences, thereby inducing expression of multiple genes associated with cellular proliferation and survival, which is a point of convergence for many oncogenic pathways, play a crucial role in tumor initiation and progression. In recent study, STAT3 has emerged as a critical mediator of tumor immune evasion at multiple levels, provide a target for cancer immunotherapy.%信号转导子与转录激活子3(STAT3)是一种存在于细胞质内的双功能蛋白,可以被多种酪氨酸激酶激活,激活后发生磷酸化,形成二聚体转入细胞核内,调节细胞生长、分化、凋亡相关基因的表达,是多条致癌通路的汇集点,在大多数肿瘤细胞内呈持续性激活,在肿瘤的发生、发展、转移中起了重要作用。近几年的研究表明,STAT3能在很多环节参与调节肿瘤的免疫逃逸,可能是肿瘤免疫治疗的一个重要靶点。

  18. Mutant ubiquitin attenuates interleukin-1β- and tumor necrosis factor-α-induced pro-inflammatory signaling in human astrocytic cells.

    Directory of Open Access Journals (Sweden)

    Kyungsun Choi

    Full Text Available A frameshift mutation of ubiquitin called ubiquitin(+1 (UBB(+1 was found in the aging and Alzheimer's disease brains and thought to be associated with neuronal dysfuction and degeneration. Even though ubiquitylation has been known to regulate vital cellular functions mainly through proteasome-dependent degradation of polyubiquitinated substrates, proteolysis-independent roles of ubiquitylation have emerged as key mechanisms in various signaling cascades. In this study, we have investigated the effect of UBB(+1 on proinflammatory signaling such as interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α in human astrocytes. Treatment with TNF-α and IL-1β induced expression of CCL2 and CXCL8 by human astrocytic cells; while ectopic expression of UBB(+1 significantly abrogated the proinflammatory cytokine-induced expression of chemokines. Ectopic expression of UBB(+1 suppressed TNF-α- and IL-1β-induced activation of NF-κB and JNK signaling pathway. Furthermore, we have demonstrated that polyubiquitylation of TRAFs and subsequent phosphorylation of TAK1 were significantly inhibited by stable expression of UBB(+1. Collectively, these results suggest that UBB(+1 may affect proinflammatory signaling in the central nervous system via inhibitory mechanisms of ubiquitin-dependent signaling in human astrocytes.

  19. 人胰腺癌细胞STAT3下游耐药相关基因的初步筛选%Preliminary screening of drug resistance-related genes downstream of STAT3 in human pancreatic cancer cell

    Institute of Scientific and Technical Information of China (English)

    杨豪俊; 黄陈; 裘正军; 江弢; 曹俊

    2011-01-01

    目的 利用小分子干扰RNA( siRNA)和基因芯片技术初步筛选人胰腺癌细胞信号转导及转入激活因子3( STAT3)下游耐药相关基因,为探索STAT3调控耐药机制提供依据.方法 利用基因芯片技术比较人胰腺癌细胞SW1990与siRNA沉默STAT3后SW1990细胞中基因表达的差异,初步筛选STAT3下游耐药相关基因.结果 按差异显著性标准从47 000条基因(代表38 500个明晰的基因)中筛选出具有表达差异的基因共有982条(2.55%),其中上调表达2倍的基因有592条,下调表达2倍的基因有390条.与耐药相关基因有:显著上调的拓扑异构酶AⅡα( TOPOⅡα)、肿瘤坏死因子凋亡诱导相关配体(TRAIL);显著下调的富半胱氨酸61( CYR61),Ras肿瘤基因家族成员(RAP1 A),bcl-2相关抗凋亡基因(BAG1),囊性纤维化跨膜转导调节因子(CFTR).结论 胰腺癌耐药是一个多基因、多通路相互作用的结果.应用siRNA技术沉默STAT3基因后,有6条耐药相关基因发生改变.为进一步研究STAT3与胰腺癌耐药的关系提供新的线索,也为胰腺癌的治疗提供新的思路.%Objective To preliminarily screen out the drug resistance-related genes downstream of signal transducer and activator of transcription 3 ( STAT3 ) in human pancreatic cancer cell by small interfering RNA ( siRNA) and gene chip technique, with the purpose of providing a basis for studying the mechanism of STAT3-associated drug resistance. Methods The differentially expressed genes between the human pancreatic SW1990 cells of wild-type STAT3 gene and STAT3 gene silenced by siRNA were compared after using gene chip technique to preliminarily screen out the drug resistance-related genes downstream of STAT3. Results Nine hundred and eighty-two (2. 55% ) differentially expressed genes were screened from the 47000 genes represented on the microarray according to the criterion of significant difference, of which, 592 genes were up-regulated by 2-fold and 390 genes

  20. Astrocytes: Key Regulators of Neuroinflammation.

    Science.gov (United States)

    Colombo, Emanuela; Farina, Cinthia

    2016-09-01

    Astrocytes are crucial regulators of innate and adaptive immune responses in the injured central nervous system. Depending on timing and context, astrocyte activity may exacerbate inflammatory reactions and tissue damage, or promote immunosuppression and tissue repair. Recent literature has unveiled key factors and intracellular signaling pathways that govern astrocyte behavior during neuroinflammation. Here we have re-visited in vivo studies on astrocyte signaling in neuroinflammatory models focusing on evidences obtained from the analysis of transgenic mice where distinct genes involved in ligand binding, transcriptional regulation and cell communication have been manipulated in astrocytes. The integration of in vivo observations with in vitro data clarifies precise signaling steps, highlights the crosstalk among pathways and identifies shared effector mechanisms in neuroinflammation.

  1. M-HIFU Inhibits Tumor Growth, Suppresses STAT3 Activity and Enhances Tumor Specific Immunity in a Transplant Tumor Model of Prostate Cancer

    OpenAIRE

    Xiaoyi Huang; Fang Yuan; Meihua Liang; Hui-Wen Lo; Shinohara, Mari L.; Cary Robertson; Pei Zhong

    2012-01-01

    OBJECTIVE: In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. METHODS: RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J m...

  2. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  3. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  4. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, Hong Y; Woetmann, Anders;

    2006-01-01

    programmed cell death. In turn, inhibition of DNMT1 by a small molecule inhibitor, 5-aza-2-deoxy-cytidine, and 2 DNMT1 antisense DNA oligonucleotides inhibits the phosphorylation of STAT3. These data indicate that STAT3 may in part transform cells by fostering epigenetic silencing of tumor-suppressor genes...

  5. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor.

    Science.gov (United States)

    Ecker, Andrea; Simma, Olivia; Hoelbl, Andrea; Kenner, Lukas; Beug, Hartmut; Moriggl, Richard; Sexl, Veronika

    2009-01-01

    Stat transcription factors have been implicated in tumorigenesis in mice and men. Stat3 and Stat5 are considered powerful proto-oncogenes, whereas Stat1 has been demonstrated to suppress tumor formation. We demonstrate here for the first time that a constitutive active version of Stat3alpha (Stat3alphaC) may also suppress transformation. Mouse embryonic fibroblasts (MEFs) deficient for p53 can be transformed with either c-myc or with rasV12 alone. Interestingly, transformation by c-myc is efficiently suppressed by co-expression of Stat3alphaC, but Stat3alphaC does not interfere with transformation by the rasV12-oncogene. In contrast, transplantation of bone marrow cells expressing Stat3alphaC induces the formation of a highly aggressive T cell leukemia in mice. The leukemic cells invaded multiple organs including lung, heart, salivary glands, liver and kidney. Interestingly, transplanted mice developed a similar leukemia when the bone marrow cells were transduced with Stat3beta, which is also constitutively active when expressed at significant levels. Our experiments demonstrate that Stat3 has both - tumor suppressing and tumor promoting properties.

  6. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury

    Institute of Scientific and Technical Information of China (English)

    JI Feng-tao; LIANG Jiang-jun; LIU Ling; CAO Ming-hui; LI Feng

    2013-01-01

    Background Activation of glial cells and the extracellular signal-regulated kinase (ERK) signaling pathway play an important role in the development and maintenance of neuropathic pain.Curcumin can alleviate the symptom of inflammatory pain by inhibiting the production and release of interleukin and tumor necrosis factor.However,whether curcumin affects neuropathic pain induced by nerve injury and the possible mechanism involved are still unknown.This study investigated the effects of tolerable doses of curcumin on the activation of astrocytes and ERK signaling in the spinal dorsal horn in rat model of neuropathic pain.Methods Adult male Sprague-Dawley rats were randomly divided into three groups:a control (sham operated) group,and chronic constriction injury groups (to induce neuropathic pain) that were either untreated or treated with curcumin.Thermal and mechanical hyperalgesia thresholds were measured.The distribution and morphological changes of astrocytes were observed by immunofluorescence.Western blotting was used to detect changes in the expression of glial flbrillary acid protein (GFAP) and phosphorylated ERK.Results Injured rats showed obvious mechanical allodynia and thermal hyperalgesia.The number of GFAP-positive astrocytes,and the fluorescence intensity of GFAP were significantly increased in the spinal dorsal horn of injured compared with control rats.The soma of astrocytes also appeared hypertrophied in injured animals.Expression of GFAP and phosphorylated ERK was also significantly increased in the spinal dorsal hom of injured compared with control rats.Curcumin reduced the injury-induced thermal and mechanical hyperalgesia,the increase in the fluorescence intensity of GFAP and the hypertrophy of astrocytic soma,activation of GFAP and phosphorylation of ERK in the spinal dorsal horn.Conclusions Curcumin can markedly alleviate nerve injury-induced neuropathic pain in rats.The analgesic effect of curcumin may be attributed to its inhibition of

  7. Downregulation of Aquaporin 4 Expression through Extracellular Signal-regulated Kinases1/2 Activation in Cultured Astrocytes Following Scratch-injury

    Institute of Scientific and Technical Information of China (English)

    SHI Zhong Fang; ZHAO Wei Jiang; XU Li Xin; DONG Li Ping; YANG Shao Hua; YUAN Fang

    2015-01-01

    ObjectiveTo investigate the role of extracellular signal-regulated kinase1/2 (ERK1/2) pathway in the regulation of aquaporin 4 (AQP4) expression inculturedastrocytes after scratch-injury. MethodsThe scratch-injury model was produced in cultured astrocytes of rat by a 10-μL plastic pipette tip. The morphological changes of astrocytes and lactate dehydrogenase (LDH) leakages were observed to assess the degree of scratch-injury. AQP4 expressionwas detected by immunofluorescence staining and Western blot, and phosphorylated-ERK1/2 (p-ERK1/2) expression was determined by Western blot. To explore the effect of ERK1/2 pathway on AQP4 expression in scratch-injured astrocytes, 10 µmol/L U0126 (ERK1/2inhibitor) was incubated in the medium at 30 min before the scratch-injury in some groups. ResultsIncreases in LDH leakage were observed at 1, 12, and 24 h after scratch-injury, and AQP4 expression was reduced simultaneously. Decrease in AQP4 expressionwas associated with a significant increase in ERK1/2 activation. Furthermore, pretreatment with U0126 blocked both ERK1/2 activation and decrease in AQP4 expression induced by scratch-injury. ConclusionThese results indicate that ERK1/2 pathway down-regulates AQP4 expression in scratch-injured astrocytes, and ERK1/2 pathway might be a novel therapeutic target in reversing the effects of astrocytes that contribute to traumatic brain edema.

  8. Effects of mTOR-STAT3 on the migra=tion and invasion abilities of hepatoma cell and mTOR-STAT3 expression in liver cancer

    Institute of Scientific and Technical Information of China (English)

    Xia Pu; Qing-Xi Guo; Han-An Long; Cheng-Wan Yang

    2014-01-01

    Objective:To investigate the effects of mTOR-STAT3 pathway on the invasion and migration of hepatoma cell.Methods:mTOR andSTAT3 expresssion in the hepatocellular carcinoma cell lineHepG2 and normal liver cell lineL02 were detected by reverse transcriptionPCR(RT-PCR) and western blotting.The migration and invasion abilities of cells and expression ofSTAT3 were detected by scratch adhesion test and transwell migration assays, after siRNA transfection blocking mTOR expression ofHepG2 cells.Results:TheHepG2 cells expression is higher compared with normal cellsL02 expression.Western blotting assay showed the mTOR expression was blocked, whileSTAT3 expression was also decreased, after the siRNA transfection ofHepG2 cells.The migration(scratch adhesion test) and invasion(transwell assays) abilitiesofHepG2 cells which the mTOR expression was blocked by siRNA interference were significantly decreased (P<0.05).Conclusion: mTORSTAT3 expression in hepatoma cellsHepG2 was significantly higher than that in normal liver cells. mTOR blocking can reduce the expression ofSTAT3, which is also closely related to the invasion and metastasis of liver cancer cells.

  9. Gingko biloba extract (Ginaton) ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in mice via reducing IL-6/STAT3 and IL-23/IL-17.

    Science.gov (United States)

    Sun, Yan; Lin, Lian-Jie; Lin, Yan; Sang, Li-Xuan; Jiang, Min; Zheng, Chang-Qing

    2015-01-01

    This study explored the underlying mechanism of Gingko biloba extract (Ginaton) on dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. 40 male C57BL/6 mice were randomly divided into four groups: normal control group, Ginaton group, Ginaton treatment group, and DSS group. After 7 days administration, mice were sacrificed and colons were collected for H-E staining, immunohistochemistry, real-time PCR and Western blot. By observing clinical disease activity and histological damage, we assessed the effect of Ginaton on DSS-induced acute experimental colitis in mice and observed the effect of Ginaton on normal mice. We also explored the specific mechanism of Ginaton on DSS-induced acute experimental colitis in mice through examining the expression of inflammatory related mediators (gp130, STAT3, p-STAT3, ROR-γt) and cytokines (IL-6, IL-17, IL-23). Ginaton-treated DSS mice showed significant improvement over untreated DSS mice. Specifically, Ginaton improved clinical disease activity (DAI score, weight closs, colon shortening, and bloody stool) and histological damage, and reduced the expression of inflammatory-related mediators (p-STAT3, gp130, ROR-γt) and cytokines (IL-6, IL-17, IL-23). In addition, clinical disease activity, histological damage, the expression of inflammatory related mediators (STAT3, p-STAT3, gp130, ROR-t) and cytokines (IL-6, IL-17, IL-23) in mice of Ginaton group were similar to normal control group. In conclusion, Ginaton ameliorates DSS-induced acute experimental colitis in mice by reducing IL-17 production, which is at least partly involved in inhibiting IL-6/STAT3 signaling pathway and IL-23/IL-17 axis. Moreover, Ginaton itself does not cause inflammatory change in normal mice. These results support that Ginaton can be as a potential clinical treatment for ulcerative colitis (UC).

  10. Role of STAT3 in transformation and drug resistance in CML

    Directory of Open Access Journals (Sweden)

    Rajesh R Nair

    2012-04-01

    Full Text Available Chronic Myeloid Leukemia (CML is initially driven by the bcr-abl fusion oncoprotein. The identification of bcr-abl led to the discovery and rapid translation into the clinic of bcr-abl kinase inhibitors. Although, bcr-abl inhibitors are efficacious, experimental evidence indicates that targeting bcr-abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM. Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr-abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the JAK/STAT3 pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010. In the context of the BM microenvironment, STAT3 is activated in a bcr-abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr-abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK-STAT3 pathway in combination with bcr-abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the bone marrow in CML.

  11. Stat3 Programs Th17-Specific Regulatory T Cells to Control GN

    Science.gov (United States)

    Kluger, Malte A.; Luig, Michael; Wegscheid, Claudia; Goerke, Boeren; Paust, Hans-Joachim; Brix, Silke R.; Yan, Isabell; Mittrücker, Hans-Willi; Hagl, Beate; Renner, Ellen D.; Tiegs, Gisa; Wiech, Thorsten; Stahl, Rolf A.K.; Panzer, Ulf

    2014-01-01

    A pathogenic role for Th17 cells in inflammatory renal disease is well established. The mechanisms underlying their counter-regulation are, however, largely unknown. Recently, Th17 lineage-specific regulatory T cells (Treg17) that depend on activation of the transcription factor Stat3 were identified. We studied the function of Treg17 in the nephrotoxic nephritis (NTN) model of crescentic GN. The absence of Treg17 cells in Foxp3Cre×Stat3fl/fl mice resulted in the aggravation of NTN and skewing of renal and systemic immune responses toward Th17. Detailed analysis of Stat3-deficient Tregs revealed that the survival, activation, proliferation, and suppressive function of these cells remained intact. However, Tregs from Foxp3Cre×Stat3fl/fl mice lacked surface expression of the chemokine receptor CCR6, which resulted in impaired renal trafficking. Furthermore, aggravation of NTN was reversible in the absence of Th17 responses, as shown in CD4Cre×Stat3fl/fl mice lacking both Treg17 and Th17 cells, suggesting that Th17 cells are indeed the major target of Treg17 cells. Notably, immunohistochemistry revealed CCR6-bearing Treg17 cells in kidney biopsy specimens of patients with GN. CCR6 expression on human Treg17 cells also appears dependent on STAT3, as shown by analysis of Tregs from patients with dominant-negative STAT3 mutations. Our data indicate the presence and involvement of Stat3/STAT3-dependent Treg17 cells that specifically target Th17 cells in murine and human crescentic GN, and suggest the kidney-specific action of these Treg17 cells is regulated by CCR6-directed migration into areas of Th17 inflammation. PMID:24511136

  12. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma.

    Science.gov (United States)

    Labala, Suman; Jose, Anup; Venuganti, Venkata Vamsi Krishna

    2016-10-01

    Overexpression of signal transducer and activator of transcription 3 (STAT3) protein prevents apoptosis and enhances proliferation of melanocytes. The aim of this study was to investigate the feasibility of using layer-by-layer assembled gold nanoparticles (LbL-AuNP) as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma. Chitosan coated AuNP (AuNP-CS) were prepared by direct reduction of HAuCl4 in the presence of chitosan. The AuNP-CS were then sequentially layered with siRNA and chitosan to form AuNP-CS/siRNA/CS. STAT3 siRNA replaced with scrambled siRNA or sodium alginate were used as controls. The average particle size and zeta-potential of the prepared LbL-AuNP were 150±10nm (PDI: 0.41±0.06) and 35±6mV, respectively. In vitro studies in B16F10 murine melanoma cells showed that AuNP-CS/siRNA/CS inhibited the cell growth by 49.0±0.6% and 66.0±0.2% at 0.25nM and 0.5nM STAT3 siRNA concentration, respectively. Fluorescence microscopy and flow cytometry studies showed a time dependent cell uptake of the LbL-AuNP up to 120min. Clathrin mediated endocytosis was found to be the predominant cell uptake mechanism for LbL-AuNP. STAT3 siRNA loaded LbL-AuNP reduced the STAT3 protein expression by 47.3% in B16F10 cells. Similarly, apoptosis assay showed 29% and 44% of early and late apoptotic events, respectively after treatment with STAT3 siRNA loaded LbL-AuNP. Confocal microscope and skin cryosections showed that application of 0.47mA/cm(2) of anodal iontophoresis enhanced the skin penetration of LbL-AuNP to reach viable epidermis. In conclusion, layer-by-layer chitosan coated AuNP can be developed as a carrier for iontophoretic delivery of STAT3 siRNA to treat melanoma. PMID:27318964

  13. CRITICAL ROLE OF STAT3 IN IL-6-MEDIATED DRUG RESISTANCE IN HUMAN NEUROBLASTOMA

    OpenAIRE

    Ara, Tasnim; Nakata, Rie; Sheard, Michael A.; Shimada, Hiroyuki; Buettner, Ralf; Groshen, Susan G.; Ji, Lingyun; Yu, Hua; Jove, Richard; Seeger, Robert C.; DeClerck, Yves A

    2013-01-01

    Drug resistance is a major cause of treatment failure in cancer. Here we have evaluated the role of STAT3 in environment-mediated drug resistance (EMDR) in human neuroblastoma. We determined that STAT3 was not constitutively active in most neuroblastoma cell lines but was rapidly activated upon treatment with interleukin-6 (IL-6) alone and in combination with the soluble IL-6 receptor (sIL-6R). Treatment of neuroblastoma cells with IL-6 protected them from drug-induced apoptosis in a STAT3-de...

  14. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells

    DEFF Research Database (Denmark)

    Eriksen, K W; Kaltoft, K; Mikkelsen, G;

    2001-01-01

    Interleukin-2 (IL-2) is a growth factor which upon binding to high-affinity receptors (IL-2Ralphabetagamma) triggers mitogenesis in T cells. IL-2Ralpha expression is restricted to T cells which have recently encountered antigen, and in healthy individuals the majority (>95%) of peripheral T cells...... constitutive STAT3 activation in SS tumor cells. Moreover, our findings suggest that STAT3 activation might play an important role in the constitutive IL-2Ralpha expression, survival, and growth of malignant SS cells....

  15. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Su WP

    2012-08-01

    Full Text Available Wen-Pin Su,1,2 Fong-Yu Cheng,3 Dar-Bin Shieh,3–6 Chen-Sheng Yeh,5–7 Wu-Chou Su1,2,81Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University; 2Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 3Institute of Oral Medicine, College of Medicine, National Cheng Kung University; 4Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 5Advanced Optoelectronic Technology Center; 6Center for Frontier Materials and Micro/Nano Science and Technology, and 7Department of Chemistry, National Cheng Kung University; 8Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.Abstract: Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3 activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid (PLGA nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated.Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX, enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI. The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel

  16. Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade.

    Science.gov (United States)

    Wei, Bo; Sun, Xiaoyan; Geng, Zhijun; Shi, Ming; Chen, Zhida; Chen, Lin; Wang, Yongan; Fu, Xiaobing

    2016-10-01

    Gastric cancer is a heterogeneous disease, and stem cells are thought to be the cell of origin contributed to this malignancy. However, studies with breast and intestinal cancer models show non-stem cancer cells can change their surface phenotype and convert into tumor-initiating cells induced by the signals emanating from surrounding tumor microenvironment. Here, we show that CD44 was expressed at different levels in gastric metastases compared with primary tumors, and also negatively correlated with the expression of miR-373. By using a panel of human gastric cancer cell lines and analysis of archived data from The Cancer Genomics Altas (TCGA) database, we verified the inverse correlation between CD44 and miR-373. Furthermore, the stress-associated hormone, isoproterenol, could increase the expression levels of "stem"-related proteins, such as CD44, Nanog, and Rex-1, and induce chemoresistance in gastric cancer cells. Transfection with miR-373, however, reversed not only the effect of isoproterenol on phenotypic conversion but also its effect on drug sensitivity. Isoproterenol triggered downstream target STAT3 mainly through β2-adrenergic receptors (β2-ARs). Activated STAT3 functioned as a miR-373 suppressor by binding to its promoter, which forms a positive feedback circuit to maintain CD44 activity and direct the phenotypic conversion from CD44(low) to CD44(hi) expression. Our data suggest an important role of β2-AR/STAT3/miR-373 signaling on the transformation of gastric cancer cells. This study also suggests a potential therapeutic or preventive treatment for gastric cancer patients who are especially prone to psychosocial stress. PMID:27512943

  17. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway.

    Science.gov (United States)

    Subramaniam, Kavita S; Omar, Intan Sofia; Kwong, Soke Chee; Mohamed, Zahurin; Woo, Yin Ling; Mat Adenan, Noor Azmi; Chung, Ivy

    2016-01-01

    Cancer-associated fibroblasts (CAFs) secrete various pro-tumorigenic cytokines, yet the role of these cytokines in the progression of endometrial cancer remains unclear. We found that CAFs isolated from human endometrial cancer (EC) tissues secreted high levels of interleukin-6 (IL-6), which promotes EC cell proliferation in vitro. Neutralizing IL-6 in CAF-conditioned media reduced (47% inhibition) while IL-6 recombinant protein increased cell proliferation (~2.4 fold) of both EC cell lines and primary cultures. IL-6 receptors (IL-6R and gp130) were expressed only in EC epithelial cells but not in CAF, indicating a one-way paracrine signaling. In the presence of CAF-conditioned media, Janus kinase/signal transducers and activators of transcription (JAK/STAT3) pathway was activated in EC cells. Treatment with JAK and STAT3 specific inhibitors, AD412 and STATTIC, respectively, significantly abrogated CAF-mediated cell proliferation, indicating the role of IL-6 activation in EC cell proliferation. We further showed that one of STAT-3 target genes, c-Myc, was highly induced in EC cells after exposure to CAF-conditioned medium at both mRNA (>105-fold vs. control) and protein level (>2-fold vs. control). EC cell proliferation was dependent on c-Myc expression, as RNAi-mediated c-Myc down-regulation led to a significant 46% reduction in cell viability when compared with scrambled control. Interestingly, CAF-conditioned media failed to promote proliferation in EC cells with reduced c-Myc expression, suggesting that CAF-mediated cell proliferation was also dependent on c-Myc expression. Subcutaneous tumor xenograft model showed that EC cells grew at least 1.4 times larger when co-injected with CAF, when compared to those injected with EC cells alone. Mice injected with EC cells with down-regulated c-Myc expression, however, showed at least 2.5 times smaller tumor compared to those in control group. Notably, there was no increase of tumor size when co-injected with CAFs

  18. Cutting edge: TCR stimulation by antibody and bacterial superantigen induces Stat3 activation in human T cells

    DEFF Research Database (Denmark)

    Gerwien, J; Nielsen, M; Labuda, T;

    1999-01-01

    -specific human CD4+ T cell lines. In contrast, IL-2 induces a rapid and transient tyrosine and serine phosphorylation of Stat3. Compared with IL-2, CD3 ligation induces a delayed Stat3 binding to oligonucleotide probes from the ICAM-1 and IL-2R alpha promoter. CD3-mediated activation of Stat3 is almost...

  19. Region 752-761 of STAT3 is critical for SRC-1 recruitment and Ser727 phosphorylation.

    Science.gov (United States)

    Zhao, Hong; Nakajima, Ryota; Kunimoto, Hiroyuki; Sasaki, Takanori; Kojima, Hirotada; Nakajima, Koichi

    2004-12-10

    STAT3 regulates many target genes in response to cytokines and growth factors. To study the mechanisms of STAT3-dependent transcription, we established several cell lines in which HepG2-STAT3-knockdown cells were reconstituted with a variety of STAT3 mutants. Using these cell lines, we found that truncated STAT3(1-750), but not STAT3(1-761), could not recruit SRC-1/NcoA-1 and was not phosphorylated on Ser727. Furthermore, mutation of STAT3 L755 and F757 to alanines caused the loss of STAT3-dependent SRC-1 recruitment, leaving Ser727 phosphorylation intact. Consistent with this, the STAT3-L755A/F757A mutant showed no increase in acetylated histone H3 at Lys14 and a decreased level of RNA polymerase II recruited to the target gene promoter, although p300 recruitment and histone H4 acetylation were intact. This mutant also lost responsiveness to co-expressed SRC-1. Thus, the conserved STAT3 region from 752 to 761, called STAT3 CR2, plays critical roles in STAT3-dependent transcription by recruiting SRC-1 and allowing Ser727 phosphorylation. PMID:15530426

  20. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.

    Science.gov (United States)

    Crescenzo, Ramona; Abate, Francesco; Lasorsa, Elena; Tabbo', Fabrizio; Gaudiano, Marcello; Chiesa, Nicoletta; Di Giacomo, Filomena; Spaccarotella, Elisa; Barbarossa, Luigi; Ercole, Elisabetta; Todaro, Maria; Boi, Michela; Acquaviva, Andrea; Ficarra, Elisa; Novero, Domenico; Rinaldi, Andrea; Tousseyn, Thomas; Rosenwald, Andreas; Kenner, Lukas; Cerroni, Lorenzo; Tzankov, Alexander; Ponzoni, Maurilio; Paulli, Marco; Weisenburger, Dennis; Chan, Wing C; Iqbal, Javeed; Piris, Miguel A; Zamo', Alberto; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Shultz, Leonard D; Mevellec, Laurence; Vialard, Jorge E; Piva, Roberto; Bertoni, Francesco; Rabadan, Raul; Inghirami, Giorgio

    2015-04-13

    A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo. PMID:25873174

  1. INVESTIGATION OF LATENT NUCLEAR LOCALIZATION SEQUENCE(NLS) OF STAT3

    Institute of Scientific and Technical Information of China (English)

    杨镇珲; 李惠; 叶中德; 冯健男; 沈倍奋

    2004-01-01

    Objective: To investigate the latent nuclear localization sequence (NLS) OF STAT3. Methods: Clustal X (1.81) was used to alignment the DNA binding domain of the STAT family. According to structure characters, corresponding expression plasmids were constructed via oligonucleotides designed with gene tool software. Through in vitro transfection, images were observed with laser confocal microscopy. Results: homology positions of arginine and lysine were found in DNA binding domain of the stat family. The wild type-STAT3 proteins primarily localized in the cytoplasm and translocated into the nucleus after interleukin-6 stimulation. However, the truncated mutant of DSTAT3-GFP protein was exclusively expressed in the cytoplasm. Conclusion: The potential NLS in the DNA binding domain of STAT3 is exposed to nuclear importing receptor when cells are stinulated by cytokine, which promotes the translocation of STAT3 into nuclear.

  2. The new therapy strategy of glioma--STAT3 RNAi combined with traditional radiotherapy

    International Nuclear Information System (INIS)

    STAT3 is an important inhibitor of apoptosis gene discovered in recent years, with a bifunction of inhibiting apoptosis and getting involved in cell cycle control. A lot of basic and clinical researches have found the relation between STAT3 gene and sensitivity to chemotherapy and radiotherapy. Researches have been focused on knocking down its expression to inhibit the growth of tumor and improve the sensitivity to radiotherapy and chemotherapy, especialy by RNAi approach. (authors)

  3. IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway.

    Science.gov (United States)

    Huang, Guizhen; Yuan, Miao; Zhang, Jie; Li, Jun; Gong, Di; Li, Yanyan; Zhang, Jie; Lin, Ping; Huang, Lugang

    2016-01-01

    Zfp637 is a recently identified zinc finger protein, and its functions remain largely unknown. Here, we innovatively demonstrate the effects of Zfp637 on the differentiation of mouse spermatogonia and on its downstream target gene SOX2 in vitro. Obesity has been recognized as a chronic inflammatory disease that leads to decreased sexual function and sexual development disorders. We observed higher levels of IL-6 in serum and testis homogenates from obese mice compared with control mice. We also demonstrated that high levels of IL-6 inhibited Zfp637 expression, and we elucidated the underlying mechanisms. SOCS3 overexpression and STAT3 phosphorylation inhibitor (AG490) were used to investigate the function of the SOCS3/STAT3 pathway during this process. Our results showed that exposure of mouse spermatogonial cells to high levels of IL-6 inhibited Zfp637 expression by increasing SOCS3 expression and inhibiting the phosphorylation of STAT3, further reducing cellular differentiation. Consistent with the in vitro results, we observed increasing expression levels of SOCS3 and SOX2, but a reduction of Zfp637 expression, in obese mouse testes. In conclusion, Zfp637 plays a crucial role in spermatogenesis by downregulating SOX2 expression, and IL-6 can decrease the expression of Zfp637 through the SOCS3/STAT3 signaling pathway. PMID:27329259

  4. Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression.

    Science.gov (United States)

    Zhu, Hongwu; Chen, Xiong; Chen, Bin; Chen, Bei; Fan, Jianyong; Song, Weibing; Xie, Ziying; Jiang, Dan; Li, Qiuqiong; Zhou, Meihua; Sun, Dayong; Zhao, Yagang

    2014-11-01

    Multidrug resistance (MDR) is a major challenge to the clinical treatment of esophageal cancer. The stress response gene activating transcription factor 4 (ATF4) is involved in homeostasis and cellular protection. However, relatively little is known about the expression and function of ATF4 in esophageal squamous cell carcinoma (ESCC) MDR. In this study, we investigate the potential role and mechanisms of ATF4 in ESCC MDR. We demonstrated that overexpression of ATF4 promotes the MDR phenotype in ESCC cells, while depletion of ATF4 in the MDR ESCC cell line induces drug re-sensitization. We also demonstrated that ATF4 transactivates STAT3 expression by directly binding to the signal transducers and activators of transcription 3 (STAT3) promoter, resulting in MDR in ESCC cells. Significantly, inhibition of STAT3 by small interfering RNA (siRNA) or a selective inhibitor (JSI-124) reintroduces therapeutic sensitivity. In addition, increased Bcl-2, survivin, and MRP1 expression levels were observed in ATF4-overexpressing cells. In conclusion, ATF4 may promote MDR in ESCC cells through the up-regulation of STAT3 expression, and thus is an attractive therapeutic target to combat therapeutic resistance in ESCC.

  5. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    OpenAIRE

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-J...

  6. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  7. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Science.gov (United States)

    Wang, Zhi-Yong; Zhang, Jun-Ai; Wu, Xian-Jin; Liang, Yan-Fang; Lu, Yuan-Bin; Gao, Yu-Chi; Dai, You-Chao; Yu, Shi-Yan; Jia, Yan; Fu, Xiao-Xia; Rao, Xiaoquan; Xu, Jun-Fa

    2016-01-01

    Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP) dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents. PMID:27006530

  8. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wang

    2016-01-01

    Full Text Available Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.

  9. Inhibition of Stat3 by peptide aptamer rS3-PA enhances growth suppressive effects of irinotecan on colorectal cancer cells.

    Science.gov (United States)

    Weber, Axel; Borghouts, Corina; Delis, Natalia; Mack, Laura; Brill, Boris; Bernard, Anne-Charlotte; Coqueret, Olivier; Groner, Bernd

    2012-06-01

    Abstract Cytotoxic agents, alone or in combination, are being used in the treatment of colorectal cancer. Despite progress in the therapeutic regimes, this common malignancy is still the cause of considerable morbidity and mortality, and further improvements are required. Cancer cells often exhibit intrinsic resistance against chemotherapeutic agents or they develop resistance over the time of treatment. Several mechanisms have been made responsible, e.g., drugs may fail to reach tumor cells or drugs may fail to elicit cytotoxicity. The molecular characterization of drug resistance in cancer cells may lead to strategies to overcome it and enhance the sensitivity to chemotherapy. Irinotecan is one of the main treatments of colorectal cancer; it is converted into its active metabolite SN38 and acts as a topoisomerase I inhibitor. Inhibition of this enzyme prevents DNA relegation following uncoiling. Irinotecan has been used as a chemotherapeutic agent either as a single agent or in combination with 5-fluorouracil and targeted therapies directed against the epidermal growth factor receptor, such as cetuximab. The transcription factor signal transducer and activator of transcription 3 (Stat3) is a member of the signal transducer and activator of transcription protein family. Its persistent activation is found in tumor cells and has been associated with drug and radiation resistance. The treatment of colorectal cancer cells with irinotecan leads to senescence or apoptosis following DNA double-strand break induction. This process is impaired by the activation of Stat3. We have derived a Stat3 specific peptide aptamer [recombinant Stat3 inhibitory peptide aptamer (rS3-PA)] that recognizes the dimerization domain of Stat3 and effectively inhibits its function. The delivery of rS3-PA into colon cancer cells and the resulting inhibition of Stat3 strongly enhanced the cytotoxic action of SN38. These data show that the targeted inhibition of Stat3 decreases drug resistance and

  10. Inhibition of STAT3 expression by siRNA suppresses growth and induces apoptosis in laryngeal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Li-fang GAO; De-qi XU; Lian-ji WEN; Xing-yi ZHANG; Yue-ting SHAO; Xue-jian ZHAO

    2005-01-01

    Aim: To determine the inhibitory effect of the synthetic STAT3 siRNA on the expression of STAT3 gene in human laryngeal cancer cell lines Hep2 and to investigate the effect of STAT3 siRNA on growth and apoptosis in Hep2 cells. Methods:A pair of DNA templates coding siRNA against STAT3-mRNA was synthesized to reconstruct plasmid of pSilencerl.0-U6 siRNA-STAT3. Hep2 cells were transfected with RPMI-1640 media (untreated), plasmid (empty), and STAT3 siRNA,respectively. Northern blot and Western blot analysis of STAT3 and pTyr-STAT3 expression in Hep2 cells and Western blot analysis of Bcl-2 expression in the Hep2 cell was performed 72 h after transfection. MTT, flow cytometry, and AO/EB assay were used for determination of cells proliferation and apoptosis in Hep2 cells. Results: pTyr-STAT3 was markedly expressed in untreated Hep2 cells and the vector-treated Hep2 cells, whereas pTyr-STAT3 expression was significantly reduced in STAT3 siRNA-transfected Hep2 cells, indicating that STAT3 siRNA inhibited the activity of STAT3. Transfection of Hep2 cells with STAT3 siRNA significantly inhibited STAT3 expression at both mRNA and protein level in Hep2 cells and the inhibition was characterized by time-dependent transfection. Treatment of Hep2 cells with STAT3 siRNA resulted in dose-dependent growth inhibition of Hep2, this significantly increased apoptotic cell rate, and decreased Bcl-2 expression level in Hep2 cells. STAT3 siRNA had an effect on induction of either early or late stage apoptosis. Conclusion: This study demonstrates that STAT3 siRNA effectively inhibits STAT3 gene expression in Hep2 cells leading to growth suppression and induction of apoptosis in Hep2 cells. The use of siRNA technique may provide a novel therapeutic approach to treat laryngeal cancer and other malignant tumors expressing constitutively activated STAT3.

  11. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways.

    Directory of Open Access Journals (Sweden)

    Valerie B Sampson

    Full Text Available Histone deacetylase inhibitors (HDACi have been evaluated in patients with Ewing sarcoma (EWS but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor plus the alkylating agent temozolomide (ST. Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.

  12. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.