WorldWideScience

Sample records for astrocyte stat3 signaling

  1. Midazolam Inhibits the Apoptosis of Astrocytes Induced by Oxygen Glucose Deprivation via Targeting JAK2-STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Li Liu

    2015-01-01

    Full Text Available Background: There is an increasing interest in the role of astrocytes contributing to the intrinsic bioremediation of ischemic brain injury. The purpose of this study was to disclose the effects and mechanism of midazolam (MDZ on the proliferation and apoptosis of astrocytes under oxygen glucose deprivation (OGD condition. Methods: The astrocytes were assigned randomly into four groups: control group, OGD group, OGD+MDZ group, and OGD+MDZ+IL-6 group. The astrocytes were treated with MDZ at dose of 10 μmol/L in OGD+MDZ group. And in OGD+MDZ+IL-6 group, the astrocytes were treated with MDZ at dose of 10μmol/L and IL-6 at dose of 50 ng/mL. MTT assay was used to assess cell proliferation, and cell apoptosis was analyzed by TUNEL apoptosis assay kit and flow cytometry. Furthermore, the expression of JAK2, p-JAK2, STAT3, p-STAT3, Bcl-2, Bax and Caspase-3 proteins were determined by western blotting assay. Results: Astrocytes proliferation was decreased obviously in OGD group, while MDZ could increase astrocytes proliferation under OGD condition. Moreover, OGD could induce apoptosis in astrocytes and MDZ could play an anti-apoptotic role. However, IL-6, a JAK2 activator, could attenuate cell proliferation and anti-apoptotic effects of MDZ in astrocytes. In addition, the expression of Bcl-2 protein in MDZ group increased markedly, while the JAK2/STAT3 signal proteins, Bax and Caspase-3 proteins decreased relative to OGD group. But IL-6 could counteract the anti-apoptotic effects of MDZ. Conclusion: Midazolam has protective effects on the proliferation and apoptosis of astrocytes via JAK2/STAT3 signal pathway in vitro. We firstly disclose the beneficial roles of midazolam in astrocytes under ischemic condition, which may be a rational treatment selection for ischemic cerebral protection.

  2. Eriocalyxin B Inhibits STAT3 Signaling by Covalently Targeting STAT3 and Blocking Phosphorylation and Activation of STAT3.

    Directory of Open Access Journals (Sweden)

    Xiaokui Yu

    Full Text Available Activated STAT3 plays an important role in oncogenesis by stimulating cell proliferation and resisting apoptosis. STAT3 therefore is an attractive target for cancer therapy. We have screened a traditional Chinese herb medicine compound library and found Eriocalyxin B (EB, a diterpenoid from Isodon eriocalyx, as a specific inhibitor of STAT3. EB selectively inhibited constitutive as well as IL-6-induced phosphorylation of STAT3 and induced apoptosis of STAT3-dependent tumor cells. EB did not affect the upstream protein tyrosine kinases or the phosphatase (PTPase of STAT3, but rather interacted directly with STAT3. The effects of EB could be abolished by DTT or GSH, suggesting a thiol-mediated covalent linkage between EB and STAT3. Site mutagenesis of cysteine in and near the SH2 domain of STAT3 identified Cys712 to be the critical amino acid for the EB-induced inactivation of STAT3. Furthermore, LC/MS/MS analyses demonstrated that an α, β-unsaturated carbonyl of EB covalently interacted with the Cys712 of STAT3. Computational modeling analyses also supported a direct interaction between EB and the Cys712 of STAT3. These data strongly suggest that EB directly targets STAT3 through a covalent linkage to inhibit the phosphorylation and activation of STAT3 and induces apoptosis of STAT3-dependent tumor cells.

  3. Hippocalcin Is Required for Astrocytic Differentiation through Activation of Stat3 in Hippocampal Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kang

    2016-10-01

    Full Text Available Hippocalcin (Hpca is a neuronal calcium sensor protein expressed in the mammalian brain. However, its function in neural stem/precursor cells has not yet been studied. Here, we clarify the function of Hpca in astrocytic differentiation in hippocampal neural precursor cells (HNPCs. When we overexpressed Hpca in HNPCs in the presence or absence of bFGF, expression levels of nerve-growth factors such as neurotrophin-3 (NT-3, neurotrophin-4/5 (NT-4/5 and brain-derived neurotrophic factor (BDNF, together with the proneural basic helix loop helix (bHLH transcription factors neuroD and neurogenin 1 (ngn1, increased significantly. In addition, there was an increase in the number of cells expressing glial fibrillary acidic protein (GFAP, an astrocyte marker, and in dendrite outgrowth, indicating astrocytic differentiation of the HNPCs. Downregulation of Hpca by transfection with Hpca siRNA reduced expression of NT-3, NT-4/5, BDNF, neuroD and ngn1 as well as levels of GFAP protein. Furthermore, overexpression of Hpca increased the phosphorylation of STAT3 (Ser727, and this effect was abolished by treatment with a STAT3 inhibitor (S3I-201, suggesting that STAT3 (Ser727 activation is involved in Hpca-mediated astrocytic differentiation. As expected, treatment with Stat3 siRNA or STAT3 inhibitor caused a complete inhibition of astrogliogenesis induced by Hpca overexpression. Taken together, this is the first report to show that Hpca, acting through Stat3, has an important role in the expression of neurotrophins and proneural bHLH transcription factors, and that it is an essential regulator of astrocytic differentiation and dendrite outgrowth in HNPCs.

  4. STAT3 mutations correlated with hyper-IgE syndrome lead to blockage of IL-6/STAT3 signalling pathway

    Indian Academy of Sciences (India)

    Jianxin He; Jie Shi; Ximing Xu; Wenhua Zhang; Yuxin Wang; Xing Chen; Yuping Du; Ning Zhu; Jing Zhang; Qin Wang; Jinbo Yang

    2012-06-01

    Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically identified in autosomal-dominant (AD) HIES patients’ cells, and therefore, the genotype of STAT3 has been associated with the phenotype of HIES. Here, we conducted studies on the functional loss of the seven specific STAT3 mutations correlated with ADHIES. Using STAT3-null human colon carcinoma cell line A4 cells, we generated seven mutants of STAT3 bearing single mutations clinically identified in AD-HIES patients’ cells and studied the functional loss of these mutants in IL-6-Jak/STAT3 signalling pathway. Our results show that five STAT3 mutants bearing mutations in the DNA-binding domain maintain the phosphorylation of Tyr705 and the ability of dimerization while the other two with mutations in SH2 domain are devoid of the phosphorylation of Try705 and abrogate the dimerization in response to IL-6. The phosphorylation of Ser727 in these mutants shows diversity in response to IL-6. These mutations eventually converge on the abnormalities of the IL-6/Gp130/Jak2-mediated STAT3 transactivation on target genes, indicative of the dysregulation of JAK/STAT signalling present in HIES.

  5. IGFBP2 potentiates nuclear EGFR-STAT3 signaling.

    Science.gov (United States)

    Chua, C Y; Liu, Y; Granberg, K J; Hu, L; Haapasalo, H; Annala, M J; Cogdell, D E; Verploegen, M; Moore, L M; Fuller, G N; Nykter, M; Cavenee, W K; Zhang, W

    2016-02-11

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of epidermal growth factor receptor (EGFR), which subsequently activates signal transducer and activator of transcription factor 3 (STAT3) signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from The Cancer Genome Atlas database for human glioma. A high level of all three proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient data set. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by two distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.

  6. IGFBP2 potentiates nuclear EGFR-STAT3 signaling

    Science.gov (United States)

    Chua, Corrine Yingxuan; Liu, Yuexin; Granberg, Kirsi J.; Hu, Limei; Haapasalo, Hannu; Annala, Matti J.; Cogdell, David E.; Verploegen, Maartje; Moore, Lynette M.; Fuller, Gregory N.; Nykter, Matti; Cavenee, Webster K.; Zhang, Wei

    2015-01-01

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from the TCGA database for human glioma. A high level of all 3 proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient dataset. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by 2 distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target. PMID:25893308

  7. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  8. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD. In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia drive central nervous system (CNS inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS activated monocyte-derived macrophages (MDM inhibit human neural progenitor cell (NPC neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α, in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3, a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM induced Janus kinase 1 (Jak1 and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3 decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID mice with HIV-1 encephalitis (HIVE. In HIVE mice, siRNA control (without target sequence, sicon pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  9. STAT3 signaling in pathogenesis of pancreatitis%STAT3信号转导在胰腺炎发病机制中的作用

    Institute of Scientific and Technical Information of China (English)

    宗林飞; 向晓辉; 夏时海

    2016-01-01

    Signal transducer and activator of transcription 3 (STAT3), an acute-phase response protein, is ac-tivated to over-express by cytokines .STAT3 also acts as a transcriptional factor to regulate the expression of cytokines .O-ver-expression of cytokines is accompanied by STAT 3 activation and over-expression in acute pancreatitis .Meanwhile , the proliferation of pancreatic stellate cells in chronic pancreatitis is mediated by STAT 3.In this review, the research progress in STAT3 function is summarized to elaborate its potential role in the pathogenesis of pancreatitis .

  10. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.

    Science.gov (United States)

    Pickert, Geethanjali; Neufert, Clemens; Leppkes, Moritz; Zheng, Yan; Wittkopf, Nadine; Warntjen, Moritz; Lehr, Hans-Anton; Hirth, Sebastian; Weigmann, Benno; Wirtz, Stefan; Ouyang, Wenjun; Neurath, Markus F; Becker, Christoph

    2009-07-06

    Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

  11. STAT3 can be activated through paracrine signaling in breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Sasser A Kate

    2008-10-01

    Full Text Available Abstract Background Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3 protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood. Methods Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3 levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis. Results Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705 in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells. Conclusion These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is

  12. The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Jennifer L.; Thaper, Daksh; Zoubeidi, Amina, E-mail: azoubeidi@prostatecentre.com [The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver British Columbia, V6H 3Z6 (Canada)

    2014-04-09

    The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed.

  13. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner

    Directory of Open Access Journals (Sweden)

    Chih-I Tai

    2014-09-01

    Full Text Available Stat3 is essential for mouse embryonic stem cell (mESC self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary “on/off” manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.

  14. Inhibition of STAT3 Expression and Signaling in Resveratrol-Differentiated Medulloblastoma Cells

    Directory of Open Access Journals (Sweden)

    Li-Jun Yu

    2008-07-01

    Full Text Available In this study, the potential influence of resveratrol (3,5,4′-trihydroxy-trans-stilbene in signal transducer and activator of transcription 3 (STAT3 signaling of medulloblastoma cells was evaluated by checking the status of STAT3 signaling and its downstream gene expression in two medulloblastoma cell lines (UW228-2 and UW228-3 with and without resveratrol treatment. The results revealed that resveratrol induced neuronal differentiation of medulloblastoma cells. Signal transducer and activator of transcription 3 expression and phosphorylation were detected in normally cultured UW228-2 and UW228-3 cells that were apparently attenuated after resveratrol treatment. The expression of STAT3 downstream genes, survivin, cyclin D1, Cox-2, and c-Myc, was suppressed but Bcl-2 was enhanced by resveratrol. Meanwhile, the production and secretion of leukemia inhibitory factor, a STAT3 activator, became active in resveratrol-treated cells. To further ascertain the significance of STAT3 signaling for medulloblastoma cells, AG490, a selective inhibitor of STAT3 phosphorylation, was used to treat UW228-3 cells. Phosphorylation of STAT3 was inhibited by AG490 accompanied with growth suppression, differentiation-like changes, and down-regulation of survivin, cyclin D1, Cox-2, and c-Myc. Our data thus suggest the importance of STAT3 signaling in maintenance and survival of medulloblastoma cells. This signaling may be the major target of resveratrol. Enhanced leukemia inhibitory factor and Bcl-2 expressions in resveratrol-treated cells might reflect a compensatory response to the loss of STAT3 function.

  15. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway.

    Science.gov (United States)

    Yao, Xiangyang; Zhu, Fenfen; Zhao, Zhihui; Liu, Chang; Luo, Lan; Yin, Zhimin

    2011-10-01

    Arctigenin is a dibenzylbutyrolactone lignan isolated from Bardanae fructus, Arctium lappa L, Saussureamedusa, Torreya nucifera, and Ipomea cairica. It has been reported to exhibit anti-inflammatory activities, which is mainly mediated through its inhibitory effect on nuclear transcription factor-kappaB (NF-κB). But the role of arctigenin in JAK-STAT3 signaling pathways is still unclear. In present study, we investigated the effect of arctigenin on signal transducer and activator of transcription 3 (STAT3) pathway and evaluated whether suppression of STAT3 activity by arctigenin could sensitize cancer cells to a chemotherapeutic drug cisplatin. Our results show that arctigenin significantly suppressed both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Inhibition of STAT3 tyrosine phosphorylation was found to be achieved through suppression of Src, JAK1, and JAK2, while suppression of STAT3 serine phosphorylation was mediated by inhibition of ERK activation. Pervanadate reversed the arctigenin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, arctigenin can obviously induce the expression of the PTP SHP-2. Furthermore, the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to cisplatin-induced apoptosis. Arctigenin dramatically promoted cisplatin-induced cell death in cancer cells, indicating that arctigenin enhanced the sensitivity of cancer cells to cisplatin mainly via STAT3 suppression. These observations suggest a novel anticancer function of arctigenin and a potential therapeutic strategy of using arctigenin in combination with chemotherapeutic agents for cancer treatment.

  16. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors

    OpenAIRE

    Wu, Jianqiang; Deanna M. Patmore; Jousma, Edwin; Eaves, David W.; Breving, Kimberly; Patel, Ami V.; Schwartz, Eric B.; Fuchs, James R.; Cripe, Timothy P.; Stemmer-Rachamimov, Anat O.; Ratner, Nancy

    2013-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) develop sporadically or in the context of neurofibromatosis type 1 (NF1). EGFR overexpression has been implicated in MPNST formation, but its precise role and relevant signaling pathways remain unknown. We found that EGFR overexpression promotes mouse neurofibroma transformation to aggressive MPNST (GEM-PNST). Immunohistochemistry demonstrated phosphorylated STAT3 (Tyr705) in both human MPNST and mouse GEM-PNST. A specific JAK2/STAT3 inhibitor...

  17. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain.

    Science.gov (United States)

    Nakano, Yousuke; Furube, Eriko; Morita, Shoko; Wanaka, Akio; Nakashima, Toshihiro; Miyata, Seiji

    2015-01-15

    The sensory circumventricular organs (CVOs) comprise the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP) and lack the blood-brain barrier. The expression of Toll-like receptor 4 (TLR4) was seen at astrocytes throughout the sensory CVOs and at microglia in the AP and solitary nucleus around the central canal. The peripheral and central administration of lipopolysaccharide induced a similar pattern of nuclear translocation of STAT3. A microglia inhibitor minocycline largely suppressed lipopolysaccharide-induced astrocytic nuclear translocation of STAT3 in the OVLT and AP, but its effect was less in the SFO.

  18. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  19. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.

    Science.gov (United States)

    Sobotta, Mirko C; Liou, Willy; Stöcker, Sarah; Talwar, Deepti; Oehler, Michael; Ruppert, Thomas; Scharf, Annette N D; Dick, Tobias P

    2015-01-01

    Hydrogen peroxide (H(2)O(2)) acts as a signaling messenger by oxidatively modifying distinct cysteinyl thiols in distinct target proteins. However, it remains unclear how redox-regulated proteins, which often have low intrinsic reactivity towards H(2)O(2) (k(app) ∼1-10 M(-1) s(-1)), can be specifically and efficiently oxidized by H(2)O(2). Moreover, cellular thiol peroxidases, which are highly abundant and efficient H(2)O(2) scavengers, should effectively eliminate virtually all of the H(2)O(2) produced in the cell. Here, we show that the thiol peroxidase peroxiredoxin-2 (Prx2), one of the most H(2)O(2)-reactive proteins in the cell (k(app) ∼10(7)-10(8) M(-1) s(-1)), acts as a H(2)O(2) signal receptor and transmitter in transcription factor redox regulation. Prx2 forms a redox relay with the transcription factor STAT3 in which oxidative equivalents flow from Prx2 to STAT3. The redox relay generates disulfide-linked STAT3 oligomers with attenuated transcriptional activity. Cytokine-induced STAT3 signaling is accompanied by Prx2 and STAT3 oxidation and is modulated by Prx2 expression levels.

  20. Inhibition of STAT3 reverses alkylator resistance through modulation of the AKT and β-catenin signaling pathways.

    Science.gov (United States)

    Wang, Yongzhi; Chen, Lingchao; Bao, Zhaoshi; Li, Shouwei; You, Gan; Yan, Wei; Shi, Zhendong; Liu, Yanwei; Yang, Pei; Zhang, Wei; Han, Lei; Kang, Chunsheng; Jiang, Tao

    2011-11-01

    Activation of signal transducer and activator of transcription 3 (STAT3) is associated with poor clinical outcome of glioblastoma (GBM). However, the role of STAT3 in resistance to alkylator-based chemotherapy remains unknown. Here, we retrospectively analyzed the phosphorylated STAT3 (p-STAT3) profile of 68 GBM patients receiving alkylator therapy, identifying p-STAT3 as an independent unfavorable prognostic factor for progression-free and overall survival. Additionally, elevated p-STAT3 expression correlated with resistance to alkylator therapy. In vitro analysis revealed that U251 and U87 human glioma cells were refractory to treatment with the common alkylating agent temozolomide (TMZ), with only a modest impact on AKT and β-catenin activation in the context of high p-STAT3. Inhibition of STAT3 in these cells significantly enhanced the effect of TMZ. Inhibition of STAT3 dramatically decreased the IC50 of TMZ, increasing TMZ-induced apoptosis while up-regulating expression of Bcl-2 and down-regulating expression of Bax. Furthermore, inhibition of STAT3 increased TMZ-induced G₀-G₁ arrest and decreased Cyclin D1 expression compared to TMZ alone. Together, these results indicate that inhibition of STAT3 sensitizes glioma cells to TMZ, at least in part, by blocking the p-AKT and β-catenin pathways. These findings strongly support the hypothesis that STAT3 inhibition significantly improves the clinical efficacy of alkylating agents.

  1. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    Energy Technology Data Exchange (ETDEWEB)

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-05-01

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  2. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China); Huang, Jiansheng [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (United States); Liu, Xiangyuan, E-mail: liu-xiangyuan@263.net [Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191 (China)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  3. STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation.

    Science.gov (United States)

    Koganti, Siva; Hui-Yuen, Joyce; McAllister, Shane; Gardner, Benjamin; Grasser, Friedrich; Palendira, Umaimainthan; Tangye, Stuart G; Freeman, Alexandra F; Bhaduri-McIntosh, Sumita

    2014-04-01

    DNA damage response (DDR) is a signaling network that senses DNA damage and activates response pathways to coordinate cell-cycle progression and DNA repair. Thus, DDR is critical for maintenance of genome stability, and presents a powerful defense against tumorigenesis. Therefore, to drive cell-proliferation and transformation, viral and cellular oncogenes need to circumvent DDR-induced cell-cycle checkpoints. Unlike in hereditary cancers, mechanisms that attenuate DDR and disrupt cell-cycle checkpoints in sporadic cancers are not well understood. Using Epstein-Barr virus (EBV) as a source of oncogenes, we have previously shown that EBV-driven cell proliferation requires the cellular transcription factor STAT3. EBV infection is rapidly followed by activation and increased expression of STAT3, which mediates relaxation of the intra-S phase cell-cycle checkpoint; this facilitates viral oncogene-driven cell proliferation. We now show that replication stress-associated DNA damage, which results from EBV infection, is detected by DDR. However, signaling downstream of ATR is impaired by STAT3, leading to relaxation of the intra-S phase checkpoint. We find that STAT3 interrupts ATR-to-Chk1 signaling by promoting loss of Claspin, a protein that assists ATR to phosphorylate Chk1. This loss of Claspin which ultimately facilitates cell proliferation is mediated by caspase 7, a protein that typically promotes cell death. Our findings demonstrate how STAT3, which is constitutively active in many human cancers, suppresses DDR, fundamental to tumorigenesis. This newly recognized role for STAT3 in attenuation of DDR, discovered in the context of EBV infection, is of broad interest as the biology of cell proliferation is central to both health and disease.

  4. Salmonella Protein AvrA Activates the STAT3 Signaling Pathway in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Rong Lu

    2016-05-01

    Full Text Available Salmonella infection in humans can become chronic, which leads to low-grade persistent inflammation. These chronic infections increase the risk of several gastrointestinal diseases, including cancer. Salmonella AvrA is a multifunctional protein that influences eukaryotic cell pathways by regulating ubiquitination and acetylation. In an animal model, we have demonstrated that infection with AvrA-expressing Salmonella induces beta-catenin signals and enhances colonic tumorigenesis. Beta-catenin signaling is a key player in intestinal proliferation and tumorigenesis. The relative contributions of AvrA-induced proliferation and inflammation on tumorigenesis, however, are unknown. STAT3 is activated in chronically inflamed intestines in human inflammatory bowel diseases and in colitis-associated colon cancer. In the current study, mice were colonized with Salmonella AvrA-sufficient or AvrA-deficient bacterial strains. Then, inflammation-associated colon cancer was induced through the use of azoxymethane/dextran sulfate sodium. We determined that AvrA-expressing bacteria activated the STAT3 pathway, which is predicted to enhance proliferation and promote tumorigenesis. Transcriptional activity of STAT3 and its target genes were upregulated by Salmonella expressing AvrA, thus promoting proliferation and intestinal tumorigenesis. Our findings provide new insights regarding a STAT3-dependent mechanism by which the specific bacterial product AvrA enhances the development of infection-associated colon cancer. These insights might suggest future biomarkers to risk assessment and early detection of infection-related cancer.

  5. Loss of STAT3 signaling during elevated activity causes vulnerability in hippocampal neurons

    OpenAIRE

    2012-01-01

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2 and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylatio...

  6. IL-6/STAT3 signaling pathway is activated in plasma cell mastitis.

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Zhou, Yu-Hui; Jiang, Yi-Na; Zhang, Wei; Tang, Xiao-Jiang; Ren, Yu; Han, Shui-Ping; Liu, Pei-Jun; Xu, Jing; He, Jian-Jun

    2015-01-01

    Plasma cell mastitis (PCM), a particular type of mastitis, mainly occurs in females at nonpregnant and nonlactating stages. The infiltration of abundant plasma cells and lymphocytes is the hallmark of the disease. The incidence rate of PCM increased gradually and its pathogenesis remained unclear. In this study, we investigated the expression of IL-6/STAT3 signaling pathway, which is vital not only for the differentiation of plasma cells but also for survival of plasma cells and T lymphocytes, in 30 PCM cases, 10 acute mastitis cases and 10 normal breast tissues by immunohistochemical analysis. IL-6 level was significantly higher in PCM patients than in acute mastitis patients or normal group. The positive rate of IL-6 and p-STAT3 staining in PCM samples was 93.3% (28/30) and 70% (21/30), respectively, and there was a significant positive association between IL-6 and p-STAT3 staining (r=0.408, P=0.025). In PCM group, the rate of nipple retraction was 40% (12/30). Significantly higher IL-6 expression was found in PCM patients with nipple retraction than in other PCM patients. However, no significant difference in IL-6 or p-STAT3 staining was detected between PCM patients experiencing recurrence and other PCM patients. In addition, Bcl-2 level was higher in PCM patients than in acute mastitis patients or normal group, but there was no difference in Bcl-2 immunostaining between PCM patients experiencing recurrence and other PCM patients. These indicate that IL-6/STAT3 signaling is activated in PCM and may play an important role in the pathogenesis of PCM.

  7. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways.

    Science.gov (United States)

    Liu, Mingli; Inoue, Koichi; Leng, Tiandong; Guo, Shanchun; Xiong, Zhi-gang

    2014-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca(2+) and Mg(2+) permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3→ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.

  8. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3

    Science.gov (United States)

    Edmonds, Christine; Hagan, Sarah; Gallagher-Colombo, Shannon M.; Busch, Theresa M.; Cengel, Keith A.

    2012-01-01

    Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy. PMID:22986230

  9. Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors.

    Science.gov (United States)

    Furtek, Steffanie L; Matheson, Christopher J; Backos, Donald S; Reigan, Philip

    2016-11-22

    In many forms of cancer the signal transducer and activator of transcription 3 (STAT3) transcription factor remains constitutively active, driving cancer survival and progression. The critical role of STAT3 in tumorigenesis has prompted a campaign of drug discovery programs to identify small molecules that disrupt the function of STAT3, with more recent efforts focusing on direct STAT3 inhibition. There are two target binding sites for direct STAT3 inhibitors: the SH2 dimerization domain and the DNA-binding domain. An in vitro fluorescence polarization assay, using recombinant STAT3 protein, has successfully identified compounds that target the SH2 domain; however, no assay has been reported to identify inhibitors that bind the DNA-binding domain. The lack of such a quantitative assay has limited the identification and development of STAT3 DNA-binding domain inhibitors. Here, we report a modified DNA-binding ELISA to incorporate recombinant STAT3 protein to evaluate small molecules that prevent STAT3-DNA binding. The concomitant use of the ELISA and fluorescence polarization assay enables the classification of direct STAT3 inhibitors by their site of action. Our data provide further support that niclosamide inhibits STAT3 through interaction with the DNA-binding domain. Furthermore, the ELISA can support medicinal chemistry efforts by identifying DNA-binding domain inhibitors and allowing the determination of an IC50 value, supporting the ranking of inhibitors and development of structure-activity relationships. Therefore, we propose a tandem evaluation approach to identify small molecules that target the SH2 domain or the DNA-binding domain of STAT3, which allows for quantitative evaluation of candidate STAT3 inhibitors.

  10. Heteroarylketones inhibit astroglial interleukin-6 expression via a STAT3/NF-κB signaling pathway

    Directory of Open Access Journals (Sweden)

    Kehlen Astrid

    2011-07-01

    treatment. HAK compounds also suppressed lipopolysaccharide-induced IL-6 expression in primary murine astrocytes as well as in brain and plasma samples from lipopolysaccharide-treated mice. Finally, HAK compounds were demonstrated to specifically suppress the OSM-induced phosphorylation of STAT3 at serine 727 and the physical interaction of pSTAT3S727 with p65. Conclusion Heteroarylketone compounds are potent inhibitors of IL-6 expression in vitro and in vivo and may represent a new class of potent anti-inflammatory and neuroprotective drugs.

  11. IL-6/STAT3/TFF3 signaling regulates human biliary epithelial cell migration and wound healing in vitro.

    Science.gov (United States)

    Jiang, Gui-xing; Zhong, Xiang-yu; Cui, Yun-fu; Liu, Wei; Tai, Sheng; Wang, Zhi-dong; Shi, Yu-guang; Zhao, Shi-yong; Li, Chun-long

    2010-12-01

    Interleukin-6 (IL-6), through activation of the signal transducer and activator of transcription 3 (STAT3) and trefoil factor family 3 (TFF3), has been implicated in the promotion of mouse biliary epithelial cell (BEC) proliferation and migration. However, it is still unclear whether the IL-6/STAT3/TFF3 signaling had similar effects on human BECs. Here, we showed that exposure of human BECs to recombinant IL-6 resulted in STAT3 phosphorylation and increased the expression of TFF3 at both mRNA and protein levels. Moreover, inhibition of STAT3 using RNA interference significantly abrogated IL-6-induced TFF3 expression. In an in-vitro wound healing model, IL-6 facilitated human BEC migration. This promotion of cell migration by IL-6 was blocked when STAT3 was knocked down. Interestingly, the addition of exogenous TFF3 could rescue the cell migration defects caused by STAT3 silencing. In conclusion, our data indicate that STAT3 plays a critical role in IL-6-induced TFF3 expression in human BECs and the IL-6/STAT3/TFF3 signaling is involved in human BEC migration and wound healing.

  12. Signal Transducer and Activator of Transcription 3 (STAT3 and Trophoblast Invasion

    Directory of Open Access Journals (Sweden)

    Fitzgerald JS

    2007-01-01

    Full Text Available Human trophoblast cells have the fascinating property of physiological invasiveness into allogenic tissue. The underlying mechanisms, such as extra- and intracellular signalling, are very similar to those abused by a variety of tumours. The main contrasting feature to cancerous cells is the very fundamental ability of trophoblasts to auto-regulate invasion with respect to time and space. Trophoblast cells start invasion into the decidua very shortly after implantation, which approaches a maximum during the first trimester of gestation period. During this period of time, several cytokines from cells of different maternal origin, including NK cells, dendritic cells, stroma cells and endothelial cells, are present which, analogous to the situation in tumours, have the potential to trigger and enhance invasion, migration and proliferation of trophoblast cells. These mainly include interleukin-6 (IL-6, IL-11, Leukaemia Inhibitory Factor (LIF, Hepatocyte Growth Factor (HGF and Insulin-like Growth Factors (IGF. Cytokines, upon binding to their specific receptors present on the trophoblast cells, trigger several intracellular signalling cascades. One of these signalling pathways is the Janus Kinase (Jak/Signal Transducers and Activators of Transcription (STAT pathway. As recent studies have shown, the tyrosine phosphorylated form of STAT3 is a major inducer of invasiveness which mainly takes place upon binding of LIF to its receptor. For autoregulation of signals, STAT3 induces the transcription of Suppressor of Cytokine Signalling 3 (SOCS3. The balance between STAT3 and SOCS3 may be argued as one of the main tuners of trophoblast invasion for successful implantation. Disturbances in this balance may lead to serious complications like cancer and implantation failure.

  13. QUICK identification and SPR validation of signal transducers and activators of transcription 3 (Stat3) interacting proteins.

    Science.gov (United States)

    Zheng, Peng; Zhong, Qiu; Xiong, Qian; Yang, Mingkun; Zhang, Jia; Li, Chongyang; Bi, Li-Jun; Ge, Feng

    2012-01-04

    Signal transducers and activators of transcription 3 (Stat3) has been reported to be involved in the pathogenesis of various human diseases and is constitutively active in human multiple myeloma (MM) U266 cells. The Stat3-regulated mechanisms involved in these processes, however, are not fully defined. To further understand the regulation of Stat3 activity, we performed a systematic proteomic analysis of Stat3 interacting proteins in U266 cells. This analysis, termed quantitative immunoprecipitation combined with knockdown (QUICK), combines RNAi, stable isotope labeling with amino acids in cell culture (SILAC), immunoprecipitation, and quantitative MS. As a result, quantitative mass spectrometry analysis allowed us to distinguish specific Stat3 interacting proteins from background proteins and led to the identification of a total of 38 proteins. Three Stat3 interacting proteins - 14-3-3ζ, PRKCB and Hsp90 - were further confirmed by reciprocal co-immunoprecipitations and surface plasmon resonance (SPR) analysis. Our results therefore not only uncover a number of Stat3 interacting proteins that possess a variety of cellular functions, but also provide new insight into the mechanisms that regulate Stat3 activity and function in MM cells.

  14. Evaluation of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24- subpopulations of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available BACKGROUND: STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH(+, or cell surface molecule CD44-positive (CD44(+ but CD24-negative (CD24(- breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH(+ and ALDH(+/CD44(+/CD24(- subpopulations of breast cancer cells is unknown. METHODS AND RESULTS: We examined STAT3 activation in ALDH(+ and ALDH(+/CD44(+/CD24(- subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH(+ cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH(- cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH(+ subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH(+ subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH(+ subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH(+ breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH(+ cells were further selected for the stem cell markers CD44(+ and CD24(-. CONCLUSION: These studies demonstrate an important role for STAT3 signaling in ALDH(+ and ALDH(+/CD44(+/CD24(- subpopulations of breast cancer cells which may have cancer stem

  15. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling.

    Science.gov (United States)

    Das, Anindita; Salloum, Fadi N; Filippone, Scott M; Durrant, David E; Rokosh, Gregg; Bolli, Roberto; Kukreja, Rakesh C

    2015-05-01

    Diabetic patients suffer augmented severity of myocardial infarction. Excessive activation of the mammalian target of rapamycin (mTOR) and decreased activation of STAT3 are implicated in diabetic complications. Considering the potent cardioprotective effect of mTOR inhibitor, rapamycin, we hypothesized that reperfusion therapy with rapamycin would reduce infarct size in the diabetic hearts through STAT3 signaling. Hearts from adult male db/db or wild type (WT) C57 mice were isolated and subjected to 30 min of normothermic global ischemia and 60 min of reperfusion in Langendorff mode. Rapamycin (100 nM) was infused at the onset of reperfusion. Myocardial infarct size (IS) was significantly reduced in rapamycin-treated mice (13.3 ± 2.4 %) compared to DMSO vehicle control (35.9 ± 0.9 %) or WT mice (27.7 ± 1.1 %). Rapamycin treatment restored phosphorylation of STAT3 and enhanced AKT phosphorylation (target of mTORC2), but significantly reduced ribosomal protein S6 phosphorylation (target of mTORC1) in the diabetic heart. To determine the cause and effect relationship of STAT3 in cardioprotection, inducible cardiac-specific STAT3-deficient (MCM TG:STAT3(flox/flox)) and WT mice (MCM TG:STAT3(flox/flox)) were made diabetic by feeding high fat diet (HFD). Rapamycin given at reperfusion reduced IS in WT mice but not in STAT3-deficient mice following I/R. Moreover, cardiomyocytes isolated from HFD-fed WT mice showed resistance against necrosis (trypan blue staining) and apoptosis (TUNEL assay) when treated with rapamycin during reoxygenation following simulated ischemia. Such protection was absent in cardiomyocytes from HFD-fed STAT3-deficient mice. STAT3 signaling plays critical role in reducing IS and attenuates cardiomyocyte death following reperfusion therapy with rapamycin in diabetic heart.

  16. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma.

    Science.gov (United States)

    Cao, Hui-Hui; Chu, Jian-Hong; Kwan, Hiu-Yee; Su, Tao; Yu, Hua; Cheng, Chi-Yan; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Tse, Anfernee Kai-Wing; Chou, Gui-Xin; Mo, Huan-Biao; Yu, Zhi-Ling

    2016-02-25

    Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in human melanoma, and promotes melanoma metastasis. The dietary flavonoid apigenin is a bioactive compound that possesses low toxicity and exerts anti-metastatic activity in melanoma. However, the anti-metastasis mechanism of apigenin has not been fully elucidated. In the present study, we showed that apigenin suppressed murine melanoma B16F10 cell lung metastasis in mice, and inhibited cell migration and invasion in human and murine melanoma cells. Further study indicated that apigenin effectively suppressed STAT3 phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. Apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion. More importantly, overexpression of STAT3 or Twist1 partially reversed apigenin-impaired cell migration and invasion. Our data not only reveal a novel anti-metastasis mechanism of apigenin but also support the notion that STAT3 is an attractive and promising target for melanoma treatment.

  17. Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity.

    Directory of Open Access Journals (Sweden)

    James P O'Callaghan

    Full Text Available Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types of central nervous system (CNS injuries. Potential signaling mechanisms driving the conversion of astrocytes into "reactive" phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the blood-brain barrier (BBB. As denervation tools, neurotoxicants have the advantage of selective targeting of brain regions and cell types, often with sparing of the BBB. Previously, we found that neuroinflammation and activation of the JAK2-STAT3 pathway in astrocytes precedes up regulation of GFAP in the MPTP mouse model of dopaminergic neurotoxicity. Here we show that multiple mechanistically distinct mouse models of neurotoxicity (MPTP, AMP, METH, MDA, MDMA, KA, TMT engender the same neuroinflammatory and STAT3 activation responses in specific regions of the brain targeted by each neurotoxicant. The STAT3 effects seen for TMT in the mouse could be generalized to the rat, demonstrating cross-species validity for STAT3 activation. Pharmacological antagonists of the neurotoxic effects blocked neuroinflammatory responses, pSTAT3tyr705 and GFAP induction, indicating that damage to neuronal targets instigated astrogliosis. Selective deletion of STAT3 from astrocytes in STAT3 conditional knockout mice markedly attenuated MPTP-induced astrogliosis. Monitoring STAT3 translocation in GFAP-positive cells indicated that effects of MPTP, METH and KA on pSTAT3tyr705 were localized to astrocytes. These findings strongly implicate the STAT3 pathway in astrocytes as a broadly triggered signaling pathway for astrogliosis. We also observed, however, that the acute neuroinflammatory response to the known inflammogen, LPS, can activate STAT3 in CNS tissue without inducing classical signs of astrogliosis. Thus, acute phase neuroinflammatory responses and neurotoxicity-induced astrogliosis both

  18. New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin.

    Directory of Open Access Journals (Sweden)

    Weixun Duan

    Full Text Available Previous studies have shown that the JAK2/STAT3 signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI. In this study, we explored the role of the JAK2/STAT3 signaling pathway in hydrogen peroxide (H2O2-induced OSI and the protective effect of melatonin against (H2O2-induced injury in human umbilical vein endothelial cells (HUVECs. AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway and JAK2 siRNA were used to manipulate JAK2/STAT3 activity, and the results showed that AG490 and JAK2 siRNA inhibited OSI and the levels of p-JAK2 and p-STAT3. HUVECs were then subjected to H2O2 in the absence or presence of melatonin, the main secretory product of the pineal gland. Melatonin conferred a protective effect against H2O2, which was evidenced by improvements in cell viability, adhesive ability and migratory ability, decreases in the apoptotic index and reactive oxygen species (ROS production and several biochemical parameters in HUVECs. Immunofluorescence and Western blotting showed that H2O2 treatment increased the levels of p-JAK2, p-STAT3, Cytochrome c, Bax and Caspase3 and decreased the levels of Bcl2, whereas melatonin treatment partially reversed these effects. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in a protective effect against endothelial OSI. The protective effects of melatonin against OSI, at least partially, depend upon JAK2/STAT3 inhibition.

  19. Signal Transducer and Activator of Transcription (STAT)-3 Activates Nuclear Factor (NF)-κB in Chronic Lymphocytic Leukemia Cells

    Science.gov (United States)

    Liu, Zhiming; Hazan-Halevy, Inbal; Harris, David M.; Li, Ping; Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J.; Estrov, Zeev

    2014-01-01

    Nuclear factor (NF)-κB plays a major role in the pathogenesis of B-cell neoplasms. A broad array of mostly extracellular stimuli has been reported to activate NF-κB, to various degrees, in chronic lymphocytic leukemia (CLL) cells. Because CLL cells harbor high levels of unphosphorylated (U) signal transducer and activator of transcription (STAT)-3 protein and U-STAT3 was reported to activate NF-κB, we sought to determine whether U-STAT3 activates NF-κB in CLL. Using the electrophoretic mobility shift assay (EMSA) we studied peripheral blood low-density cells from 15 patients with CLL and found that CLL cell nuclear extracts from all the samples bound to an NF-κB DNA probe, suggesting that NF-κB is constitutively activated in CLL. Immunoprecipitation studies showed that STAT3 bound NF-κB p65, and confocal microscopy studies detected U-STAT3/NF-κB complexes in the nuclei of CLL cells, thereby confirming these findings. Furthermore, infection of CLL cells with retroviral STAT3-shRNA attenuated the binding of NF-κB to DNA, as assessed by EMSA, and downregulated mRNA levels of NF-κB-regulated genes, as assessed by quantitative polymerase chain reaction. Taken together, our data suggest that U-STAT3 binds to the NF-κB p50/p65 dimers and that the U-STAT3/NF-κB complexes bind to DNA and activate NF-κB-regulated genes in CLL cells. PMID:21364020

  20. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    James E Krolopp

    2016-12-01

    Full Text Available Myokines are specialized cytokines that are secreted from skeletal muscle (SKM in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15 is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5 were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism.

  1. 小分子IL-6/STAT3信号通路抑制剂%Small Molecule Inhibitors of IL-6/STAT3 Signaling

    Institute of Scientific and Technical Information of China (English)

    叶霁青; 岳晓虹; 孙丽萍

    2016-01-01

    IL-6 is a widespread cytokine which participates in many biological responses.All members of the IL-6 cytokine family are able to activate STAT3,and STAT3 is also recognized as the main mediator of IL-6 functions.IL-6 binding to cell surface receptors results in the activation of the Janus kinases(JAKs) which cause STAT3 phosphorylated.Then activated STAT3 dimerizes translocates to the nucleus and combines with target genes with specific sites,then activats DNA transcriptional activity.Studies show that the abnormally activated STAT3 in cells plays an important role in tumorigenesis and malignant transformation.Meanwhile,STAT3 is a valid target for novel anticancer drug design.So far,many methods,such as structure-based virtual screening,high throughput screening,fragment-based drug design,have been used to screen and design novel STAT3 inhibitors,and thus several classes of small molecule compounds have been identified as STAT3 inhibitors.In this review,we mainly focus on the small molecule IL-6/STAT3 inhibitors especially target STAT3 protein which have been optimized and identified since 2013.%IL-6是细胞内广泛存在的一种细胞因子,参与细胞内大量的生物应答.研究表明所有IL-6家族的细胞因子均能激活STAT3蛋白,同时,STAT3被认为是介导IL-6功能的主要因子.IL-6与其受体结合,激活JAKs,从而使STAT3磷酸化激活,活化的STAT3二聚化,向细胞核内转移并与其靶基因特定位点结合从而调节基因的转录活性.大量的证据表明细胞中异常活化的STAT3在肿瘤生成与恶性转化中具有重要作用.研究显示STAT3蛋白也是抗肿瘤药物设计的有效靶点.到目前为止,多种药物设计方法,如基于结构的虚拟筛选、高通量筛选、基于片段的药物设计等被用于STAT3抑制剂的筛选以及设计;文献也已经报道了许多具有抗肿瘤活性的STAT3抑制剂.本文主要介绍了近年来小分子IL-6/STAT3信号通路抑制剂,尤其是作用于STAT

  2. Multiple routes of endocytic internalization of PDGFRβ contribute to PDGF-induced STAT3 signaling.

    Science.gov (United States)

    Jastrzębski, Kamil; Zdżalik-Bielecka, Daria; Mamińska, Agnieszka; Kalaidzidis, Yannis; Hellberg, Carina; Miaczynska, Marta

    2017-02-01

    Platelet-derived growth factor receptor β (PDGFRβ) is a receptor tyrosine kinase which upon activation by PDGF-BB stimulates cell proliferation, migration and angiogenesis. Ligand binding induces intracellular signaling cascades but also internalization of the receptor, eventually resulting in its lysosomal degradation. However, endocytic trafficking of receptors often modulates their downstream signaling. We previously reported that internalization of PDGFRβ occurs via dynamin-dependent and -independent pathways but their further molecular determinants remained unknown. Here we show that, in human fibroblasts expressing endogenous PDGFRβ and stimulated with 50 ng/ml PDGF-BB, ligand-receptor uptake proceeds via the parallel routes of clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE). CME involves the canonical AP2 complex as a clathrin adaptor, while CIE requires RhoA-ROCK, Cdc42 and galectin-3, the latter indicating lectin-mediated internalization via clathrin-independent carriers (CLICs). Although different uptake routes appear to be partly interdependent, they cannot fully substitute for each other. Strikingly, inhibition of any internalization mechanism impaired activation of STAT3 but not of other downstream effectors of PDGFRβ. Our data indicate that multiple routes of internalization of PDGFRβ contribute to a transcriptional and mitogenic response of cells to PDGF.

  3. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    Science.gov (United States)

    2006-07-01

    0.1% SDS and 0.1 SSC, 0.1% SDS. Radioactivity in the membranes was analyzed with a Molecular Imager FX System (Bio-Rad, Hercules, CA). Electromobility ...Pierce). Electromobility Shift Assay After transfection with either Stat3 siRNA expres- sion vector or negative control plasmid, nuclear ex- tracts...were prepared and electromobility shift assay (EMSA) was performed as described previously [10]. For determination of the Stat3 DNA binding activity

  4. Expression of hepcidin at the choroid plexus in normal aging rats is associated with IL-6/Stat3 signaling pathway.

    Science.gov (United States)

    Liu, Chong-Bin; Wang, Rui; Dong, Miao-Wu; Gao, Xi-Ren; Yu, Feng

    2014-12-25

    Accumulating evidence has revealed that brain iron concentrations increase with aging, and the choroid plexus (CP) may be at the basis of iron-mediated toxicity and the increase in inflammation and oxidative stress that occurs with aging. The mechanism involves not only hepcidin, the key hormone in iron metabolism, but also iron-related proteins and signaling-transduction molecules, such as IL-6 and signal transducer and activator of transcription 3 (Stat3). The aim of the present study was to investigate the correlation between the IL-6/Stat3 signaling pathway and hepcidin at the CP in normal aging. Quantitative real time PCR and Western blot were used to determine the alterations in specific mRNA and corresponding protein changes at the CP at ages of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 and 36 months in Brown-Norway/Fischer (B-N/F) rats. The results demonstrated that hepcidin mRNA level at the CP kept stable in young rats (from 3 to 18 months), and increased with aging (from 21 to 36 months). The alterations of IL-6/p-Stat3 mRNA and protein expressions in normal aging were in accordance with that of hepcidin mRNA. Our data suggest that IL-6 may regulate hepcidin expression at the CP, upon interaction with the cognate cellular receptor, and through the Stat3 signaling transduction pathway.

  5. Euglycemia restoration by central leptin in type 1 diabetes requires STAT3 signaling but not fast-acting neurotransmitter release

    Science.gov (United States)

    Central leptin action is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D); however, the underlying mechanism remains poorly understood. To examine the role of intracellular signal transducer and activator of transcription 3 (STAT3) pathways, we used LepRs/s mice with disrupted...

  6. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway.

    Science.gov (United States)

    Ge, Yuqing; Yang, Bo; Chen, Zhe; Cheng, Rubin

    2015-11-01

    Pancreatic cancer remains a challenging disease worldwide. Cryptotanshinone (CPT) is one of the active constituents of Salvia miltiorrhiza Bunge and exhibits significant antitumor activities in several human cancer cells. However, the efficacy and molecular mechanism of CPT in pancreatic cancer remains to be elucidated. In the present study, the effect of CPT on the proliferation, apoptosis and cell cycle of human pancreatic cancer cell BxPC‑3 cells was evaluated. The results demonstrated that CPT inhibited proliferation of the BxPC‑3 cells in a concentration‑dependent manner, and significantly induced cell apoptosis and cell cycle arrest. The protein levels of cleaved caspase‑3, caspase‑9 and poly ADP ribose polymerase were upregulated, while the levels of c‑myc, survivin and cyclin D1 were downregulated following treatment with CPT. In addition, CPT decreased the activities of signal transducer and activator of transcription 3 (STAT3) and several upstream regulatory signaling pathways after 24 h. However, CPT only inhibited the phosphorylation of STAT3 Tyr705 within 30 min, without marked effects on the phosphorylation of the other proteins. These results suggested that the inhibition of STAT3 activity by CPT was directly and independent of the upstream regulators in human pancreatic cancer. The present study demonstrated that CPT exerts anticancer effects by inducing apoptosis and cell cycle arrest via inhibition of the STAT3 signaling pathway in human BxPC-3 cells.

  7. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling.

    Science.gov (United States)

    Kim, Byung Hak; Min, Yun Sook; Choi, Jung Sook; Baeg, Gyeong Hun; Kim, Young Soo; Shin, Jong Wook; Kim, Tae Yoon; Ye, Sang Kyu

    2011-05-31

    Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.

  8. Loss of signal transducer and activator of transcription 3 (STAT3) signaling during elevated activity causes vulnerability in hippocampal neurons.

    Science.gov (United States)

    Murase, Sachiko; Kim, Eunyoung; Lin, Lin; Hoffman, Dax A; McKay, Ronald D

    2012-10-31

    Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.

  9. Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Rozovski, Uri; Wu, Ji Yuan; Harris, David M; Liu, Zhiming; Li, Ping; Hazan-Halevy, Inbal; Ferrajoli, Alessandra; Burger, Jan A; O'Brien, Susan; Jain, Nitin; Verstovsek, Srdan; Wierda, William G; Keating, Michael J; Estrov, Zeev

    2014-06-12

    In chronic lymphocytic leukemia (CLL), stimulation of the B-cell receptor (BCR) triggers survival signals. Because in various cells activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway provides cells with survival advantage, we wondered whether BCR stimulation activates the JAK/STAT pathway in CLL cells. To stimulate the BCR we incubated CLL cells with anti-IgM antibodies. Anti-IgM antibodies induced transient tyrosine phosphorylation and nuclear localization of phosphorylated (p) STAT3. Immunoprecipitation studies revealed that anti-JAK2 antibodies coimmunoprecipitated pSTAT3 and pJAK2 in IgM-stimulated but not unstimulated CLL cells, suggesting that activation of the BCR induces activation of JAK2, which phosphorylates STAT3. Incubation of CLL cells with the JAK1/2 inhibitor ruxolitinib inhibited IgM-induced STAT3 phosphorylation and induced apoptosis of IgM-stimulated but not unstimulated CLL cells in a dose- and time-dependent manner. Whether ruxolitinib treatment would benefit patients with CLL remains to be determined.

  10. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer.

  11. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer

    Science.gov (United States)

    Wang, Qian; Li, Zexin; Yang, Yiqiong; Chen, Zhiguo; Wang, Jianguo; Zhao, Weixing; Zhang, Huijuan; Chen, Jiwang; Dong, Huali; Shen, Kui; Diamond, Alan M.; Yang, Wancai

    2016-01-01

    PRSS8 is a membrane-anchored serine protease prostasin and has been shown an association with carcinogenesis. Herein we found that PRSS8 expression was significantly reduced in colorectal adenomas and adenocarcinomas. The decreased PRSS8 was well correlated with clinical stages, poor differentiation and shorter survival time of colorectal cancer. Furthermore, increase of PRSS8 led to the inhibition of colorectal cancer cell proliferation, knockdown of PRSS8 accelerated cell proliferation in vitro, and overexpressing PRSS8 retarded cancer cell growth in nude mice. Mechanistic studies revealed that PRSS8 inhibited Sphk1/S1P/Stat3/Akt signaling pathway, in terms of inverse association between PRSS8 and Sphk1 in human colorectal cancers and in Sphk1-/− mice. In conclusion, PRSS8 acts as a tumor suppressor by inhibiting Sphk1/S1P/Stat3/Akt signaling pathway, and could be used as a biomarker to monitor colorectal carcinogenesis and predict outcomes. PMID:27050145

  12. Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal.

    Science.gov (United States)

    Wang, Cong; Dai, Jihuan; Yang, Mengliu; Deng, Guangjiang; Xu, Shengnan; Jia, Yanjun; Boden, Guenther; Ma, Zhongmin A; Yang, Gangyi; Li, Ling

    2014-05-01

    Insulin resistance is a metabolic disorder associated with type 2 diabetes. Recent reports have shown that fibroblast growth factor-21 (FGF-21) plays an important role in the progression of insulin resistance. However, the biochemical and molecular mechanisms by which changes in FGF-21 activation result in changes in the rates of hepatic gluconeogenesis and glycogenolysis remain to be elucidated. In this study, we developed adenovirus-mediated shRNA against FGF-21 to inhibit FGF-21 expression in ApoE knockout mice. Using this mouse model, we determined the effects of FGF-21 knockdown in vivo on hepatic glucose production, gluconeogenesis and glycogenolysis, and their relationship with the signal transducer and activator of transcription 3 (STAT3)/suppressor of cytokine signaling 3 (SOCS3) signal pathways. We show that liver-specific knockdown of FGF-21 in high-fat diet-fed ApoE knockout mice resulted in a 39% increase in glycogenolysis and a 75% increase in gluconeogenesis, accompanied by increased hepatic expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Furthermore, FGF-21 knockdown decreased phosphorylation of STAT3 and SOCS3 expression in high-fat diet-fed mice. Our data suggest that hepatic FGF-21 knockdown increases gluconeogenesis and glycogenolysis by activation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase via the STAT3/SOCS3 pathway, ultimately leading to exacerbation of hepatic insulin resistance.

  13. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li, E-mail: lin.796@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Fuchs, James; Li, Chenglong [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Olson, Veronica [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States); Bekaii-Saab, Tanios [Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Lin, Jiayuh, E-mail: lin.674@osu.edu [Center for Childhood Cancer, The Research Institute at Nationwide Children' s Hospital, Department of Pediatrics, Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43205 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower

  14. LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway

    Science.gov (United States)

    Xiao, Deshen; Lai, Weiwei; Pan, Yu; Jiang, Yiqun; Chen, Ling; Mao, Chao; Zhou, Jian; Xi, Sichuan; Cao, Ya; Liu, Shuang; Tao, Yongguang

    2016-01-01

    Basal cell carcinomas (BCC) of the skin are the most common of human cancers. The noncanonical NF-κB pathway is dependent on IKKα. However, the role of IKKα in BCC has not been elucidated. We show here that IKKα is expressed in the nucleus in BCC and non-malignant diseases. Nuclear IKKα could directly bind to the promoters of inflammation factors and LGR5, a stem cell marker, in turn, upregulating LGR5 expression through activation of STAT3 signaling pathway during cancer progression. Activation of STAT3 signaling pathway contributes LGR5 expression in dependent of IKKα after the interplay between STAT3 and IKKα. Meanwhile knockdown of IKKα inhibits tumor growth and transition of epithelial stage to mescheme stage. Taken together, we demonstrate that IKKα functions as a bone fide chromatin regulator in BCC, whose promoted expression contributes to oncogenic transformation via promoting expression stemness- and inflammatory- related genes. Our finding reveals a novel viewpoint for how IKKα may involve in BCCs tumor progression in the inflammatory microenvironment. PMID:27049829

  15. Activation of STAT3 signaling in human stomach adenocarcinoma drug-resistant cell line and its relationship with expression of vascular endothelial growth factor

    Institute of Scientific and Technical Information of China (English)

    Li-Fen Yu; Ying Cheng; Min-Min Qiao; Yong-Ping Zhang; Yun-Lin Wu

    2005-01-01

    AIM: To investigate the difference in activation of STAT3signaling between two human stomach adenocarcinoma cell lines: 5-fluorouracil resistant cell line and its parental cell line, and to evaluate its relationship with the expression of vascular endothelial growth factor (VEGF).METHODS: Western blot and electrophoretic mobility shift assay (EMSA) were used to detect the expression of phospho-STAT3 protein and constitutive activation of STAT3in two human stomach adenocarcinoma cell lines, 5-fluorouracil resistant cell line SGC7901/R and its parental cell line SGC7901, respectively. The mRNA expression of VEGF was analysed by semi-quantitative RT-PCR. The expressive intensity of VEGF protein was measured by immunocytochemistry.RESULTS: The expressions of phospho-STAT3 protein and constitutive activation of ST AT3 between two human stomach adenocarcinoma cell lines were different.Compared with the parental cell line SGC7901, the STAT3-DNA binding activity and the expressive intensity of phospho-STAT3 protein were lower in the drug-resistant cell line SGC7901/R. The expression levels of VEGF mRNA and its encoded protein were also decreased in drugresistant cell line.CONCLUSION: Over-expression of VEGF may be correlated with elevated STAT3 activation in parental cell line. Lower VEGF expression may be correlated with decreased STAT3activation in resistant cell line, which may have resulted from negative feedback regulation of STAT signaling.

  16. Signal transducer and activator of transcription 3 (Stat3) regulates host defense and protects mice against herpes simplex virus-1 (HSV-1) infection.

    Science.gov (United States)

    Hsia, Hung-Ching; Stopford, Charles M; Zhang, Zhigang; Damania, Blossom; Baldwin, Albert S

    2016-12-13

    Signal transducer and activator of transcription 3 (STAT3) mediates cellular responses to multiple cytokines, governs gene expression, and regulates the development and activation of immune cells. STAT3 also modulates reactivation of latent herpes simplex virus-1 (HSV-1) in ganglia. However, it is unclear how STAT3 regulates the innate immune response during the early phase of HSV-1 lytic infection. Many cell types critical for the innate immunity are derived from the myeloid lineage. Therefore, in this study, we used myeloid-specific Stat3 knockout mice to investigate the role of STAT3 in the innate immune response against HSV-1. Our results demonstrate that Stat3 knockout bone marrow-derived macrophages (BMMs) expressed decreased levels of interferon-α (IFN-α) and interferon-stimulated genes (ISGs) upon HSV-1 infection. In vivo, knockout mice were more susceptible to HSV-1, as marked by higher viral loads and more significant weight loss. Splenic expression of IFN-α and ISGs was reduced in the absence of STAT3, indicating that STAT3 is required for optimal type I interferon response to HSV-1. Expression of TNF-α and IL-12, cytokines that have been shown to limit HSV-1 replication and pathogenesis, was also significantly lower in knockout mice. Interestingly, Stat3 knockout mice failed to expand the CD8(+) conventional DC (cDC) population upon HSV-1 infection, and this was accompanied by impaired NK and CD8 T cell activation. Collectively, our data demonstrate that myeloid-specific Stat3 deletion causes defects in multiple aspects of the immune system and that STAT3 has a protective role at the early stage of systemic HSV-1 infection.

  17. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer.

    Science.gov (United States)

    Kowshik, J; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention.

  18. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway

    Science.gov (United States)

    Miao, Ziwei; Yu, Fei; Ren, Yahao; Yang, Jun

    2017-01-01

    d,l-Sulforaphane (SFN), a synthetic analogue of broccoli-derived isomer l-SFN, exerts cytotoxic effects on multiple tumor cell types through different mechanisms and is more potent than the l-isomer at inhibiting cancer growth. However, the means by which SFN impairs glioblastoma (GBM) cells remains poorly understood. In this study, we investigated the anti-cancer effect of SFN in GBM cells and determined the underlying molecular mechanisms. Cell viability assays, flow cytometry, immunofluorescence, and Western blot results revealed that SFN could induced apoptosis of GBM cells in a dose- and time-dependent manner, via up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2. Mechanistically, SFN treatment led to increase the intracellular reactive oxygen species (ROS) level in GBM cells. Meanwhile, SFN also suppressed both constitutive and IL-6-induced phosphorylation of STAT3, and the activation of upstream JAK2 and Src tyrosine kinases, dose- and time-dependently. Moreover, blockage of ROS production by using the ROS inhibitor N-acetyl-l-cysteine totally reversed SFN-mediated down-regulation of JAK2/Src-STAT3 signaling activation and the subsequent effects on apoptosis by blocking the induction of apoptosis-related genes in GBM cells. Taken together, our data suggests that SFN induces apoptosis in GBM cells via ROS-dependent inactivation of STAT3 phosphorylation. These findings motivate further evaluation of SFN as a cancer chemopreventive agent in GBM treatment. PMID:28054986

  19. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ziwei Miao

    2017-01-01

    Full Text Available d,l-Sulforaphane (SFN, a synthetic analogue of broccoli-derived isomer l-SFN, exerts cytotoxic effects on multiple tumor cell types through different mechanisms and is more potent than the l-isomer at inhibiting cancer growth. However, the means by which SFN impairs glioblastoma (GBM cells remains poorly understood. In this study, we investigated the anti-cancer effect of SFN in GBM cells and determined the underlying molecular mechanisms. Cell viability assays, flow cytometry, immunofluorescence, and Western blot results revealed that SFN could induced apoptosis of GBM cells in a dose- and time-dependent manner, via up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2. Mechanistically, SFN treatment led to increase the intracellular reactive oxygen species (ROS level in GBM cells. Meanwhile, SFN also suppressed both constitutive and IL-6-induced phosphorylation of STAT3, and the activation of upstream JAK2 and Src tyrosine kinases, dose- and time-dependently. Moreover, blockage of ROS production by using the ROS inhibitor N-acetyl-l-cysteine totally reversed SFN-mediated down-regulation of JAK2/Src-STAT3 signaling activation and the subsequent effects on apoptosis by blocking the induction of apoptosis-related genes in GBM cells. Taken together, our data suggests that SFN induces apoptosis in GBM cells via ROS-dependent inactivation of STAT3 phosphorylation. These findings motivate further evaluation of SFN as a cancer chemopreventive agent in GBM treatment.

  20. TLR4 signaling promotes a COX-2/PGE2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells

    Science.gov (United States)

    Lin, Ang; Wang, Guan; Zhao, Huajun; Zhang, Yuyi; Han, Qiuju; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2016-01-01

    ABSTRACT Toll-like receptors (TLRs) can be expressed by tumor cells, and each TLR exhibits different biological functions. Evidences showed the activation of some certain TLRs could promote tumor progression. One of which TLR4 has been found to promote hepatocellular carcinoma (HCC) cells proliferation, but the detailed mechanism is still unknown. In the present study, we verified that TLR4 was functionally expressed on HCC cells, and TLR4 agonist lipopolysaccharide (LPS) could stimulate the proliferation and clone formation of HCC cells. Most importantly, we found a COX-2/PGE2/STAT3 positive feedback loop exists in HCC cells, which could be provoked by TLR4 activation. Consistently, the expression of TLR4, COX-2 and p-STAT3Y705 was positively correlated with each other in liver tumor tissues from patients with primary HCC. Further investigation demonstrated this loop played a dominant role in TLR4-induced HCC cell proliferation and multidrug resistance (MDR) to chemotherapy. Inhibition of TLR4 or COX-2/PGE2/STAT3 loop would attenuate LPS-induced inflammation and proliferation of HCC cells, and enhance the sensitivity of HCC cells to chemotherapeutics in vitro. By using a primary HCC model, we observed COX-2/PGE2/STAT3 loop was significantly blocked in TLR4−/− mice compared to wild type mice, and there was no obvious tumorgenesis sign in TLR4−/− mice. Therefore, these findings provided the precise molecular mechanism of TLR4 signaling pathway involved in HCC progress, and suggested that TLR4 may be a promising target for HCC treatment. PMID:27057441

  1. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Anita C G Chua

    Full Text Available Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS. Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.

  2. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Hsuan-Yu Peng

    Full Text Available Microtubule inhibitors have been shown to inhibit Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3 signal transduction pathway in various cancer cells. However, little is known of the mechanism by which the microtubule inhibitors inhibit STAT3 activity. In the present study, we examined the effect of a novel small-molecule microtubule inhibitor, MPT0B098, on STAT3 signaling in oral squamous cell carcinoma (OSCC. Treatment of various OSCC cells with MPT0B098 induced growth inhibition, cell cycle arrest and apoptosis, as well as increased the protein level of SOCS3. The accumulation of SOCS3 protein enhanced its binding to JAK2 and TYK2 which facilitated the ubiquitination and degradation of JAK2 and TYK2, resulting in a loss of STAT3 activity. The inhibition of STAT3 activity led to sensitization of OSCC cells to MPT0B098 cytotoxicity, indicating that STAT3 is a key mediator of drug resistance in oral carcinogenesis. Moreover, the combination of MPT0B098 with the clinical drug cisplatin or 5-FU significantly augmented growth inhibition and apoptosis in OSCC cells. Taken together, our results provide a novel mechanism for the action of MPT0B098 in which the JAK2/STAT3 signaling pathway is suppressed through the modulation of SOCS3 protein level. The findings also provide a promising combinational therapy of MPT0B098 for OSCC.

  3. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenneth C Loh

    Full Text Available Sphingosine-1-phosphate (S1P activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD, were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3, a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.

  4. Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Liu, Jing; Fu, Hui; Chang, Fen; Wang, Jinlan; Zhang, Shangli; Caudle, Yi; Zhao, Jing; Yin, Deling

    2016-05-01

    Elevated circulatory free fatty acids (FFAs) especially saturated FFAs, such as palmitate (PA), are detrimental to the heart. However, mechanisms responsible for this phenomenon remain unknown. Here, the role of JAK2/STAT3 in PA-induced cytotoxicity was investigated in cardiomyocytes. We demonstrate that PA suppressed the JAK2/STAT3 pathway by dephosphorylation of JAK2 (Y1007/1008) and STAT3 (Y705), and thus blocked the translocation of STAT3 into the nucleus. Conversely, phosphorylation of S727, another phosphorylated site of STAT3, was increased in response to PA treatment. Pretreatment of JNK inhibitor, but not p38 MAPK inhibitor, inhibited STAT3 (S727) activation induced by PA and rescued the phosphorylation of STAT3 (Y705). The data suggested that JNK may be another upstream factor regulating STAT3, and verified the important function of P-STAT3 (Y705) in PA-induced cardiomyocyte apoptosis. Sodium orthovanadate (SOV), a protein tyrosine phosphatase inhibitor, obviously inhibited PA-induced apoptosis by restoring JAK2/STAT3 pathways. This effect was diminished by STAT3 inhibitor Stattic. Collectively, our data suggested a novel mechanism that the inhibition of JAK2/STAT3 activation was responsible for palmitic lipotoxicity and SOV may act as a potential therapeutic agent by targeting JAK2/STAT3 in lipotoxic cardiomyopathy treatment.

  5. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) -- and vascular endothelial growth factor-mediated cellular invasion and tumor growth.

    Science.gov (United States)

    Rivat, Christine; Christine, Rivat; Rodrigues, Sylvie; Sylvie, Rodrigues; Bruyneel, Erik; Erik, Bruyneel; Piétu, Geneviève; Geneviève, Piétu; Robert, Amélie; Amélie, Robert; Redeuilh, Gérard; Gérard, Redeuilh; Bracke, Marc; Marc, Bracke; Gespach, Christian; Christian, Gespach; Attoub, Samir; Samir, Attoub

    2005-01-01

    Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr(705) phosphorylation of both STAT3alpha and STAT3beta isoforms. Blockade of STAT3 signaling by STAT3beta, depletion of the STAT3alpha/beta isoforms by RNA interference, and pharmacologic inhibition of STAT3alpha/beta phosphorylation by cucurbitacin or STAT3 inhibitory peptide abrogates TFF- and VEGF-induced cellular invasion and reduces the growth of HCT8/S11 tumor xenografts in athymic mice. Differential gene expression analysis using DNA microarrays revealed that overexpression of STAT3beta down-regulates the VEGF receptors Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation. Taken together, our data suggest that TFF3 and the essential tumor angiogenesis regulator VEGF(165) exert potent proinvasive activity through STAT3 signaling in human colorectal cancer cells. We also validate new therapeutic strategies targeting STAT3 signaling by pharmacologic inhibitors and RNA interference for the treatment of colorectal cancer patients.

  6. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells

    Directory of Open Access Journals (Sweden)

    Kruger Mathew M

    2003-09-01

    Full Text Available Abstract Background Astrocytomas are the most common type of primary central nervous system tumors. They are frequently associated with genetic mutations that deregulate cell cycle and render these tumors resistant to apoptosis. STAT3, signal transducer and activator of transcription 3, participates in several human cancers by inducing cell proliferation and inhibiting apoptosis and is frequently activated in astrocytomas. Methods RNA interference was used to knockdown STAT3 expression in human astrocytes and astrocytoma cell lines. The effect of STAT3 knockdown on apoptosis, cell proliferation, and gene expression was then assessed by standard methods. Results We have found that STAT3 is constitutively activated in several human astrocytoma cell lines. Knockdown of STAT3 expression by siRNA induces morphologic and biochemical changes consistent with apoptosis in several astrocytoma cell lines, but not in primary human astrocytes. Moreover, STAT3 is required for the expression of the antiapoptotic genes survivin and Bcl-xL in the A172 glioblastoma cell line. Conclusion These results show that STAT3 is required for the survival of some astrocytomas. These studies suggest STAT3 siRNA could be a useful therapeutic agent for the treatment of astrocytomas.

  7. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway

    Science.gov (United States)

    Wang, Gang; Jing, Yue; Cao, Lingsen; Gong, Changchang; Gong, Zhunan; Cao, Xiangrong

    2017-01-01

    Activation of the transcription factor, signal transducers and activators of transcription 3 (STAT3), has been linked to the proliferation and migration of a variety of human cancer cells. These actions occur via the upregulation or downregulation of cell survival and tumor suppressor genes, respectively. Importantly, agents that can suppress STAT3 activation have the potential for use in the prevention and treatment of various cancers. In this study, an Asiatic acid (AA) derivative, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), is reported to dose dependently suppress constitutive STAT3 activation in gastric cancer cells. This inhibition was mediated by blockade of Janus-activated kinase 2. Additionally, AA-PMe regulated the expression of STAT3-modulated gene products, including cyclin D1, Bax, Bcl-2, c-Myc, and matrix metalloproteinase (MMP)-2 and MMP-9. Finally, transfection with both a STAT3 mimic and an inhibitor reversed the AA-PMe-driven modulation of STAT3 downstream gene products. Overall, these results suggest that AA-PMe is a novel blocker of STAT3 activation and has the potential for the prevention and treatment of gastric cancer. PMID:28053540

  8. Selenate Enhances STAT3 Transcriptional Activity in Endothelial Cells: Differential Actions of Selenate and Selenite on LIF Cytokine Signaling and Cell Viability

    OpenAIRE

    Alturkmani, Hani J; Zgheib, Carlos; Zouein, Fouad A.; Alshaaer, Nour Eddin F.; Kurdi, Mazen; Booz, George W.

    2012-01-01

    Sodium selenate may have utility in treating Alzheimer’s disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordin...

  9. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway.

    Science.gov (United States)

    Garner, Jo Meagan; Fan, Meiyun; Yang, Chuan He; Du, Ziyun; Sims, Michelle; Davidoff, Andrew M; Pfeffer, Lawrence M

    2013-09-06

    Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.

  10. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice.

    Science.gov (United States)

    Pan, Ting; Liu, Yufeng; Zhong, Li Mei; Shi, Mao Hua; Duan, Xiao Bing; Wu, Kang; Yang, Qiong; Liu, Chao; Wei, Jian Yang; Ma, Xing Ru; Shi, Kun; Zhang, Hui; Zhou, Jie

    2016-09-01

    Maternal immune system tolerance to the semiallogeneic fetus is essential for a successful pregnancy; however, the mechanisms underlying this immunotolerance have not been fully elucidated. Here, we demonstrate that myeloid-derived suppressor cells play an important role in maintaining feto-maternal tolerance. A significant expansion of granulocytic myeloid-derived suppressor cells was observed in multiple immune organs and decidual tissues from pregnant mice. Pregnancy-derived granulocytic myeloid-derived suppressor cells suppressed T cell responses in a reactive oxygen species-dependent manner and required direct cell-cell contact. Mechanistic studies showed that progesterone facilitated differentiation and activation of granulocytic myeloid-derived suppressor cells, mediated through STAT3 signaling. The STAT3 inhibitor JSI-124 and a specific short hairpin RNA completely abrogated the effects of progesterone on granulocytic myeloid-derived suppressor cells. More importantly, granulocytic myeloid-derived suppressor cell depletion dramatically enhanced the abortion rate in normal pregnant mice, whereas adoptive transfer of granulocytic myeloid-derived suppressor cells clearly reduced the abortion rate in the CBA/J X DBA/2J mouse model of spontaneous abortion. These observations collectively demonstrate that granulocytic myeloid-derived suppressor cells play an essential role in the maintenance of fetal immunotolerance in mice. Furthermore, our study supports the notion that in addition to their well-recognized roles under pathologic conditions, myeloid-derived suppressor cells perform important functions under certain physiologic circumstances.

  11. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 Receptor-insulin receptor substrate and STAT3 signaling

    Science.gov (United States)

    Sanchez-Lopez, Elsa; Flashner-Abramson, Efrat; Shalapour, Shabnam; Zhong, Zhenyu; Taniguchi, Koji; Levitzki, Alexander; Karin, Michael

    2015-01-01

    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and Signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer (CRC) development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment. PMID:26364612

  12. FoxM1 Drives a Feed-forward STAT3-activation Signaling Loop that Promotes the Self-renewal and Tumorigenicity of Glioblastoma Stem-like Cells

    Science.gov (United States)

    Gong, Ai-hua; Wei, Ping; Zhang, Sicong; Yao, Jun; Yuan, Ying; Zhou, Ai-dong; Lang, Frederick F.; Heimberger, Amy B.; Rao, Ganesh; Huang, Suyun

    2015-01-01

    The growth factor PDGF controls the development of glioblastoma (GBM) but its contribution to the function of GBM stem-like cells (GSC) has been little studied. Here we report that the transcription factor FoxM1 promotes PDGFA-STAT3 signaling to drive GSC self-renewal and tumorigenicity. In GBM we found a positive correlation between expression of FoxM1 and PDGF-A. In GSC and mouse neural stem cells, FoxM1 bound to the PDGF-A promoter to upregulate PDGF-A expression, acting to maintain the stem-like qualities of GSC in part through this mechanism. Analysis of the human cancer genomic database TCGA revealed that GBM express higher levels of STAT3, a PDGF-A effector signaling molecule, as compared with normal brain. FoxM1 regulated STAT3 transcription through interactions with the β-catenin/TCF4 complex. FoxM1 deficiency inhibited PDGF-A and STAT3 expression in neural stem cells and GSC, abolishing their stem-like and tumorigenic properties. Further mechanistic investigations defined a FoxM1-PDGFA-STAT3 feed-forward pathway that was sufficient to confer stem-like properties to glioma cells. Collectively, our findings showed how FoxM1 activates expression of PDGF-A and STAT3 in a pathway required to maintain the self-renewal and tumorigenicity of glioma stem-like cells. PMID:25832656

  13. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  14. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  15. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nianzhen [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca2+ elevations in response to neurotransmitters. A Ca2+ elevation can propagate to adjacent astrocytes as a Ca2+ wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca2+-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca2+ signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca2+-dependent NO production. To test the roles of NO in astrocytic Ca2+ signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca2+, possibly through store-operated Ca2+ channels. The NO-induced Ca2+ signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca2+ change. The consequence of this NO-induced Ca2+ influx was assessed by simultaneously monitoring of cytosolic and internal store Ca2+ using fluorescent Ca2+ indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca2+ release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca2+ elevation in the stimulated astrocyte and a subsequent Ca2+ wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by

  16. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang G

    2016-12-01

    Full Text Available Gang Wang,1 Yue Jing,2 Lingsen Cao,3 Changchang Gong,1 Zhunan Gong,1,3 Xiangrong Cao3 1Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, 2Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China Abstract: Activation of the transcription factor, signal transducers and activators of transcription 3 (STAT3, has been linked to the proliferation and migration of a variety of human cancer cells. These actions occur via the upregulation or downregulation of cell survival and tumor suppressor genes, respectively. Importantly, agents that can suppress STAT3 activation have the potential for use in the prevention and treatment of various cancers. In this study, an Asiatic acid (AA derivative, N-(2α,3β,23-acetoxyurs-12-en-28-oyl-L-proline methyl ester (AA-PMe, is reported to dose dependently suppress constitutive STAT3 activation in gastric cancer cells. This inhibition was mediated by blockade of Janus-activated kinase 2. Additionally, AA-PMe regulated the expression of STAT3-modulated gene products, including cyclin D1, Bax, Bcl-2, c-Myc, and matrix metalloproteinase (MMP-2 and MMP-9. Finally, transfection with both a STAT3 mimic and an inhibitor reversed the AA-PMe-driven modulation of STAT3 downstream gene products. Overall, these results suggest that AA-PMe is a novel blocker of STAT3 activation and has the potential for the prevention and treatment of gastric cancer. Keywords: gastric cancer, signal transducer and activator of transcription 3, Asiatic acid derivative, cell cycle, apoptosis, invasion

  17. Interleukin-6-induced STAT3 transactivation and Ser(727) phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components

    NARCIS (Netherlands)

    Schuringa, JJ; Jonk, LJC; Dokter, WHA; Vellenga, E; Kruijer, W

    2000-01-01

    In the present study, signal transducer and activator of transcription 3 (STAT3) Ser(727) phosphorylation and transactivation was investigated in relation to activation of mitogen-activated protein (MAP) kinase family members including extracellular-signal-regulated protein kinase (ERK)-1, c-Jun N-t

  18. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis.

    Science.gov (United States)

    Yang, Jie; Qian, Shihui; Cai, Xueting; Lu, Wuguang; Hu, Chunping; Sun, Xiaoyan; Yang, Yang; Yu, Qiang; Gao, S Paul; Cao, Peng

    2016-06-01

    The activation of IL6/STAT3 signaling is associated with the pathogenesis of many cancers. Agents that suppress IL6/STAT3 signaling have cancer-therapeutic potential. In this study, we found that chikusetsusaponin IVa butyl ester (CS-IVa-Be), a triterpenoid saponin extracted from Acanthopanas gracilistylus W.W.Smith, induced cancer cell apoptosis. CS-IVa-Be inhibited constitutive and IL6-induced STAT3 activation, repressed STAT3 DNA-binding activity, STAT3 nuclear translocation, IL6-induced STAT3 luciferase reporter activity, IL6-induced STAT3-regulated antiapoptosis gene expression in MDA-MB-231 cells, and IL6-induced TF-1 cell proliferation. Surprisingly, CS-IVa-Be inhibited IL6 family cytokines rather than other cytokines induced STAT3 activation. Further studies indicated that CS-IVa-Be is an antagonist of IL6 receptor via directly binding to the IL6Rα with a Kd of 663 ± 74 nmol/L and the GP130 (IL6Rβ) with a Kd of 1,660 ± 243 nmol/L, interfering with the binding of IL6 to IL6R (IL6Rα and GP130) in vitro and in cancer cells. The inhibitory effect of CS-IVa-Be on the IL6-IL6Rα-GP130 interaction was relatively specific as CS-IVa-Be showed higher affinity to IL6Rα than to LIFR (Kd: 4,910 ± 1,240 nmol/L) and LeptinR (Kd: 4,990 ± 915 nmol/L). We next demonstrated that CS-IVa-Be not only directly induced cancer cell apoptosis but also sensitized MDA-MB-231 cells to TRAIL-induced apoptosis via upregulating DR5. Our findings suggest that CS-IVa-Be as a novel IL6R antagonist inhibits IL6/STAT3 signaling pathway and sensitizes the MDA-MB-231 cells to TRAIL-induced cell death. Mol Cancer Ther; 15(6); 1190-200. ©2016 AACR.

  19. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  20. Diindolylmethane suppresses ovarian cancer growth and potentiates the effect of cisplatin in tumor mouse model by targeting signal transducer and activator of transcription 3 (STAT3

    Directory of Open Access Journals (Sweden)

    Kandala Prabodh K

    2012-01-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is activated in majority of ovarian tumors and confers resistance to cisplatin treatment in patients with ovarian cancer. We have reported previously that diindolylmethane (DIM inhibits the growth of ovarian cancer cells. However, to date the exact mechanism by which DIM induces growth suppressive effects has not been clear. In this report the mode of action of DIM is investigated. Methods Six human ovarian cancer cell lines and an ovarian tumor xenograft animal model were used to study the effect of diindolylmethane alone or in combination with cisplatin. Results Diindolylmethane treatment induced apoptosis in all six ovarian cancer cell lines. Phosphorylation of STAT3 at Tyr-705 and Ser-727 was reduced by DIM in a concentration-dependent manner. In addition, diindolylmethane treatment inhibited nuclear translocation, DNA binding, and transcriptional activity of STAT3. Interleukin (IL-6-induced phosphorylation of STAT3 at Tyr-705 was significantly blocked by DIM. Overexpression of STAT3 by gene transfection blocked DIM-induced apoptosis. In addition, DIM treatment reduced the levels of IL-6 in ovarian cancer cells and in the tumors. DIM treatment also inhibited cell invasion and angiogenesis by suppressing hypoxia-inducible factor 1α (HIF-1α and vascular epithelial growth factor (VEGF. Importantly, diindolylmethane treatment potentiated the effects of cisplatin in SKOV-3 cells by targeting STAT3. Oral administration of 3 mg diindolylmethane per day and subsequent administration of cisplatin substantially inhibited in vivo tumor growth. Western blotting analysis of tumor lysates indicated increased apoptosis and reduced STAT3 activation. Conclusions These findings provide a rationale for further clinical investigation of DIM alone or in combination for chemoprevention and/or chemotherapy of ovarian cancer.

  1. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  2. Selenate enhances STAT3 transcriptional activity in endothelial cells: differential actions of selenate and selenite on LIF cytokine signaling and cell viability.

    Science.gov (United States)

    Alturkmani, Hani J; Zgheib, Carlos; Zouein, Fouad A; Alshaaer, Nour Eddin F; Kurdi, Mazen; Booz, George W

    2012-04-01

    Sodium selenate may have utility in treating Alzheimer's disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer's and diabetes may be offset by a proinflammatory action on endothelial cells.

  3. Molecular Cross-Talk between the NFκB and STAT3 Signaling Pathways in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cristiane H. Squarize

    2006-09-01

    Full Text Available The development of head and neck squamous cell carcinoma (HNSCC involves the accumulation of genetic and epigenetic alterations in tumor-suppressor proteins, together with the persistent activation of growth-promoting signaling pathways. The activation of epidermal growth factor receptor (EGFR is a frequent event in HNSCC. However, EGFR-independent mechanisms also contribute to the activation of key intracellular signaling routes, including signal transducer and activator of transcription-3 (STAT3, nuclear factor κB (NFκB, and Akt. Indeed, the autocrine activation of the gp130 cytokine receptor in HNSCC cells by tumor-released cytokines, such as IL-6, can result in the EGFR-independent activation of STAT3. In this study, we explored the nature of the molecular mechanism underlying enhanced IL-6 secretion in HNSCC cells. We found that HNSCC cells display an increased activity of the IL-6 promoter, which is dependent on the presence of an intact NFκB site. Furthermore, NFκB inhibition downregulated IL-6 gene and protein expression, and decreased the release of multiple cytokines. Interestingly, interfering with NFκB function also prevented the autocrine/paracrine activation of STAT3 in HNSCC cells. These findings demonstrate a cross-talk between the NFκB and the STAT3 signaling systems, and support the emerging notion that HNSCC results from the aberrant activity of a signaling network.

  4. A flow cytometry technique to study intracellular signals NF-κB and STAT3 in peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Chavarin Patricia

    2007-07-01

    Full Text Available Abstract Background Cytokines have essential roles on intercellular communications and are effective in using a variety of intracellular pathways. Among this multitude of signalling pathways, the NF-κB (nuclear factor kappaB and STAT (signal transducer and activator of transcription families are among the most frequently investigated because of their importance. Indeed, they have important role in innate and adaptive immunity. Current techniques to study NF-κB and STAT rely on specific ELISAs, Western Blots and – most recently described – flow cytometry; so far, investigation of such signalling pathways are most commonly performed on homogeneous cells after purification. Results The present investigation aimed at developing a flow cytometry technique to study transcription factors in various cellular types such as mixtures of B-cells, T-lymphocytes and monocytes/macrophages stimulated in steady state conditions (in other words, as peripheral blood mononuclear cells. To achieve this goal, a two step procedure was carried out; the first one consisted of stimulating PBMCs with IL1β, sCD40L and/or IL10 in such a manner that optimal stimulus was found for each cell subset (and subsequent signal transduction, therefore screened by specific ELISA; the second step consisted of assessing confirmation and fine delineation of technical conditions by specific Western-Blotting for either NF-κB or STAT products. We then went on to sensitize the detection technique for mixed cells using 4 color flow cytometry. Conclusion In response to IL1β, or IL10, the levels of phosphorylated NF-κB and STAT3 – respectively – increased significantly for all the studied cell types. In contrast, B-cells and monocytes/macrophages – but, interestingly, not T-lymphocytes (in the context of PBMCs – responded significantly to sCD40L by increasing phosphorylated NF-κB.

  5. Role of the STAT3/survivin signaling pathway in the EML4-ALK-positive lung adenocarcinoma cell line H2228 before and after crizotinib-induced resistance

    Institute of Scientific and Technical Information of China (English)

    Haiyan Peng; Wenhua Zhao Co-first author; Cuiyun Su; Xiangqun Song; Aiping Zeng; Huilin Wang; Ruiling Ning; Shaozhang Zhou 

    2015-01-01

    Objective This study investigated the role of the STAT3/survivin signaling pathway in the EML4-ALK–positive lung adenocarcinoma cel line H2228 before and after crizotinib-induced resistance. The mecha-nism of resistance was studied. Methods Cel viability was determined using the MTT assay. Crizotinib-induced apoptosis in H2228 and H2228 crizotinib-resistant cel s treated with the indicated doses of crizotinib was measured at dif erent times (24 h, 48 h, 72 h) using flow cytometry. The levels of p-ALK, ALK, p-STAT3, STAT3, and survivin after treatment of cel s with 0, 0.3, and 1μM crizotinib for 72 h were determined using Western blot analysis. DNA sequencing was used to identify mutations in H2228 crizotinib-resistant cel s. Results The crizotinib IC50 values in H2228 and H2228 crizotinib-resistant cel s at 72 h were 334.5 nM and 3418 nM, respectively. The resistance index of H2228 crizotinib-resistant cel s was 10.20. Crizotinib induced apoptosis in H2228 cel s and reduced the levels of p-ALK, p-STAT3, and survivin. In contrast, no changes in the levels of p-ALK, p-STAT3, and survivin were observed in H2228 crizotinib-resistant cel s. The mutations 2067G→A and 2182G→C in EML4-ALK were present in the H2228 crizotinib-resistant cel s. Conclusion Crizotinib decreased the viability of H2228 cel s in a dose- and time-dependent manner. In the STAT3/survivin pathway, downregulation of p-ALK, p-STAT3, and survivin might contribute to crizo-tinib-induced apoptosis in H2228 cel s. However, the STAT3/survivin pathway in H2228 crizotinib-resistant cel s was unaf ected by crizotinib treatment. Acquired resistance in H2228 cel s might be related to ALK mutations.

  6. Chemical composition of total flavonoids from Polygonum amplexicaule and their pro-apoptotic effect on hepatocellular carcinoma cells: Potential roles of suppressing STAT3 signaling.

    Science.gov (United States)

    Xiang, Meixian; Su, Hanwen; Hong, Zongguo; Yang, Tianming; Shu, Guangwen

    2015-06-01

    Polygonum amplexicaule D. Don var. sinense Forb (P. amplexicaule) is a medical plant traditionally used in the treatment of malignant diseases including hepatocellular carcinoma (HCC), but the scientific basis underlying its anti-HCC activity remains poorly understood. Here, we explored the chemical profile of total flavonoids from P. amplexicaule (TFPA). Nine compounds that constituted the major components of TFPA were separated and identified. Further investigations revealed that TFPA dose-dependently induced HepG2, Huh-7 and H22 HCC cell apoptosis. In HCC cells, TFPA dramatically inhibited the transcriptional activity of signal transducer and activator of transcription 3 (STAT3). In addition, TFPA increased the expression of SHP-1, a protein tyrosine phosphatase catalyzing STAT3 dephosphorylation, in HCC cells. Animal studies showed that TFPA considerably provoked transplanted H22 cell apoptosis with undetectable toxicological effects on tumor-bearing mice. Consistently, TFPA dose-dependently inhibited transcriptional activity of STAT3 in transplanted tumor tissues. This study collectively demonstrated that TFPA has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with low toxic effects on normal hepatocytes and vital organs of tumor-bearing mice. Suppressing STAT3 signaling is implicated in TFPA-mediated HCC cell apoptosis.

  7. Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling.

    Science.gov (United States)

    Habbas, Samia; Santello, Mirko; Becker, Denise; Stubbe, Hiltrud; Zappia, Giovanna; Liaudet, Nicolas; Klaus, Federica R; Kollias, George; Fontana, Adriano; Pryce, Christopher R; Suter, Tobias; Volterra, Andrea

    2015-12-17

    The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.

  8. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.

  9. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  10. Mouse Skeletal Muscle Fiber-Type-Specific Macroautophagy and Muscle Wasting Are Regulated by a Fyn/STAT3/Vps34 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Eijiro Yamada

    2012-05-01

    Full Text Available Skeletal muscle atrophy induced by aging (sarcopenia, inactivity, and prolonged fasting states (starvation is predominantly restricted to glycolytic type II muscle fibers and typical spares oxidative type I fibers. However, the mechanisms accounting for muscle fiber-type specificity of atrophy have remained enigmatic. In the current study, although the Fyn tyrosine kinase activated the mTORC1 signaling complex, it also induced marked atrophy of glycolytic fibers with relatively less effect on oxidative muscle fibers. This was due to inhibition of macroautophagy via an mTORC1-independent but STAT3-dependent reduction in Vps34 protein levels and decreased Vps34/p150/Beclin1/Atg14 complex 1. Physiologically, in the fed state endogenous Fyn kinase activity was increased in glycolytic but not oxidative skeletal muscle. In parallel, Y705-STAT3 phosphorylation increased with decreased Vps34 protein levels. Moreover, fed/starved regulation of Y705-STAT3 phosphorylation and Vps34 protein levels was prevented in skeletal muscle of Fyn null mice. These data demonstrate a Fyn/STAT3/Vps34 pathway that is responsible for fiber-type-specific regulation of macroautophagy and skeletal muscle atrophy.

  11. Active Components with Inhibitory Activities on IFN-γ/STAT1 and IL-6/STAT3 Signaling Pathways from Caulis Trachelospermi

    Directory of Open Access Journals (Sweden)

    Xiao-Ting Liu

    2014-08-01

    Full Text Available Initial investigation for new active herbal extract with inhibiting activity on JAK/STAT signaling pathway revealed that the extract of Caulis Trachelospermi, which was separated by 80% alcohol extraction and subsequent HP-20 macroporous resin column chromatography, was founded to strongly inhibit IFN-γ-induced STAT1-responsive luciferase activity (IFN-γ/STAT1 with IC50 value of 2.43 μg/mL as well as inhibiting IL-6-induced STAT3-responsive luciferase activity (IL-6/STAT3 with IC50 value of 1.38 μg/mL. Subsequent study on its active components led to the isolation and identification of two new dibenzylbutyrolactone lignans named 4-demethyltraxillaside (1 and nortrachelogenin 4-O-β-d-glucopyranoside (2, together with six known compounds. The lignan compounds 1–4 together with other lignan compounds isolated in previous study were tested the activities on IFN-γ/STAT1 and IL-6/STAT3 pathways. The following result showed that the main components trachelogenin and arctigenin had corresponding activities on IFN-γ/STAT1 pathway with IC50 values of 3.14 μM and 9.46 μM as well as trachelogenin, arctigenin and matairesinol strongly inhibiting IL-6/STAT3 pathway with IC50 values of 3.63 μM, 6.47 μM and 2.92 μM, respectively.

  12. Photodynamic therapy activated signaling from epidermal growth factor receptor and STAT3: Targeting survival pathways to increase PDT efficacy in ovarian and lung cancer.

    Science.gov (United States)

    Edmonds, Christine; Hagan, Sarah; Gallagher-Colombo, Shannon M; Busch, Theresa M; Cengel, Keith A

    2012-12-01

    Patients with serosal (pleural or peritoneal) spread of malignancy have few definitive treatment options and consequently have a very poor prognosis. We have previously shown that photodynamic therapy (PDT) can be an effective treatment for these patients, but that the therapeutic index is relatively narrow. Here, we test the hypothesis that EGFR and STAT3 activation increase survival following PDT, and that inhibiting these pathways leads to increased PDT-mediated direct cellular cytotoxicity by examining BPD-PDT in OvCa and NSCLC cells. We found that BPD-mediated PDT stimulated EGFR tyrosine phosphorylation and nuclear translocation, and that EGFR inhibition by erlotinib resulted in reduction of PDT-mediated EGFR activation and nuclear translocation. Nuclear translocation and PDT-mediated activation of EGFR were also observed in response to BPD-mediated PDT in multiple cell lines, including OvCa, NSCLC and head and neck cancer cells, and was observed to occur in response to porfimer sodium-mediated PDT. In addition, we found that PDT stimulates nuclear translocation of STAT3 and STAT3/EGFR association and that inhibiting STAT3 signaling prior to PDT leads to increased PDT cytotoxicity. Finally, we found that inhibition of EGFR signaling leads to increased PDT cytotoxicity through a mechanism that involves increased apoptotic cell death. Taken together, these results demonstrate that PDT stimulates the nuclear accumulation of both EGFR and STAT3 and that targeting these survival pathways is a potentially promising strategy that could be adapted for clinical trials of PDT for patients with serosal spread of malignancy.

  13. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response.

    Directory of Open Access Journals (Sweden)

    Thomas Harwardt

    2016-07-01

    Full Text Available The human cytomegalovirus (hCMV major immediate-early 1 protein (IE1 is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445 in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420 deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.

  14. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    Directory of Open Access Journals (Sweden)

    Rajalaxmi Natarajan

    Full Text Available Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3 plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs. In vitro hNSCs primed with fibroblast growth factor 2 (FGF2 exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF, which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases.

  15. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT-3 by thyroid oncogenic kinase RET/PTC

    Directory of Open Access Journals (Sweden)

    Kim Dong Wook

    2008-05-01

    Full Text Available Abstract Background RET/PTC (rearranged in transformation/papillary thyroid carcinomas gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. Methods Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6. The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. Results In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET

  16. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling

    Science.gov (United States)

    Zhao, Sida; Guo, Juan; Zhao, Youshan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2016-01-01

    Many studies have indicated that histone deacetylase (HDAC) activity is always increased in a lot of human tumors, and inhibition of HDAC activity is a promising new strategy in the treatment of cancers. Chidamide, a novel HDAC inhibitor of the benzamide class, is currently under clinical trials. In this study, we aimed to investigate the antitumor activity of Chidamide on myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) cell lines and explore the possible mechanism. Chidamide exhibited efficient anti-proliferative activity on MDS and AML cells in a time- and dose-dependent manner, accompanied by cell cycle arrest at G0/G1 phase and cell apoptosis. Importantly, Chidamide possessed potent HDAC inhibition property, as evaluated by HDAC activity analysis and acetylation of histone H3 and H4. Moreover, Chidamide significantly increased the expression of Suppressors of cytokine signaling 3 (SOCS3), reduced the expression of Janus activated kinases 2 (JAK2) and Signal transducer and activator of transcription 3 (STAT3), and inhibited STAT3 downstream genes, including c-Myc, Bcl-xL, and Mcl-1, which are involved in cell cycle progression and anti-apoptosis. Therefore, we demonstrate that Chidamide exhibits potent inhibitory effect on cell viability of MDS and AML cells, and the possible mechanism may lie in the downregulation of JAK2/STAT3 signaling through SOCS3 upregulation. Our data provide rationale for clinical investigations of Chidamide in MDS and AML. PMID:27508038

  17. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways.

    Science.gov (United States)

    Wen, Zhengde; Huang, Chaohao; Xu, Yaya; Xiao, Yuwu; Tang, Lili; Dai, Juji; Sun, Hongwei; Chen, Bicheng; Zhou, Mengtao

    2016-01-15

    In tumors, vascular endothelial growth factor (VEGF) contributes to angiogenesis, vascular permeability, and tumorigenesis. In our previous study, we found that α-solanine, which is widespread in solanaceae, has a strong anti-cancer effect under normoxia. However, it is unknown whether α-solanine has a similar effect under hypoxia. We used cobalt chloride (CoCl2) to mimic hypoxia in vitro. HIF-1α, which is almost undetectable under normoxia, was significantly increased. Simultaneously, another regulator of VEGF, STAT3, was also significantly activated by CoCl2. We utilized α-solanine in co-culture with CoCl2. α-solanine decreased the expression of VEGF and loss of E-cadherin. α-solanine also suppressed the activation of phospho-ERK1/2 (p-ERK1/2), HIF-1α, and STAT3 signaling. The results provide new evidence that α-solanine has a strong anti-cancer effect via the ERK1/2-HIF-1α and STAT3 signaling pathways and suggest that it may be a potential new drug.

  18. Elevated STAT3 Signaling-Mediated Upregulation of MMP-2/9 Confers Enhanced Invasion Ability in Multidrug-Resistant Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2015-10-01

    Full Text Available The development of multidrug resistance greatly impedes effective cancer therapy. Recent advances in cancer research have demonstrated that acquisition of multidrug resistance by cancer cells is usually accompanied by enhanced cell invasiveness. Several lines of evidence indicated that cross activation of other signaling pathways during development of drug resistance may increase invasive potential of multidrug-resistant (MDR cancer cells. However, the accurate mechanism of this process is largely undefined. In this study, to better understand the associated molecular pathways responsible for cancer progression induced by drug resistance, a MDR human breast cancer cell line SK-BR-3/EPR with P-glycoprotein overexpression was established using stepwise long-term exposure to increasing concentration of epirubicin. The SK-BR-3/EPR cell line exhibited decreased cell proliferative activity, but enhanced cell invasive capacity. We showed that the expression of metastasis-related matrix metalloproteinase (MMP-2/9 was elevated in SK-BR-3/EPR cells. Moreover, SK-BR-3/EPR cells showed elevated activation of STAT3. Activation of STAT3 signaling is responsible for enhanced invasiveness of SK-BR-3/EPR cells through upregulation of MMP-2/9. STAT3 is a well-known oncogene and is frequently implicated in tumorigenesis and chemotherapeutic resistance. Our findings augment insight into the mechanism underlying the functional association between MDR and cancer invasiveness.

  19. Elevated STAT3 Signaling-Mediated Upregulation of MMP-2/9 Confers Enhanced Invasion Ability in Multidrug-Resistant Breast Cancer Cells.

    Science.gov (United States)

    Zhang, Fei; Wang, Zhiyong; Fan, Yanling; Xu, Qiao; Ji, Wei; Tian, Ran; Niu, Ruifang

    2015-10-16

    The development of multidrug resistance greatly impedes effective cancer therapy. Recent advances in cancer research have demonstrated that acquisition of multidrug resistance by cancer cells is usually accompanied by enhanced cell invasiveness. Several lines of evidence indicated that cross activation of other signaling pathways during development of drug resistance may increase invasive potential of multidrug-resistant (MDR) cancer cells. However, the accurate mechanism of this process is largely undefined. In this study, to better understand the associated molecular pathways responsible for cancer progression induced by drug resistance, a MDR human breast cancer cell line SK-BR-3/EPR with P-glycoprotein overexpression was established using stepwise long-term exposure to increasing concentration of epirubicin. The SK-BR-3/EPR cell line exhibited decreased cell proliferative activity, but enhanced cell invasive capacity. We showed that the expression of metastasis-related matrix metalloproteinase (MMP)-2/9 was elevated in SK-BR-3/EPR cells. Moreover, SK-BR-3/EPR cells showed elevated activation of STAT3. Activation of STAT3 signaling is responsible for enhanced invasiveness of SK-BR-3/EPR cells through upregulation of MMP-2/9. STAT3 is a well-known oncogene and is frequently implicated in tumorigenesis and chemotherapeutic resistance. Our findings augment insight into the mechanism underlying the functional association between MDR and cancer invasiveness.

  20. Primary study on change of STAT3-TLR2 signaling axis in Chlamydia trachomatis persistent infection%沙眼衣原体持续感染状态下STAT3-TLR2信号轴的变化初探

    Institute of Scientific and Technical Information of China (English)

    陈纯静; 陈恩; 林琳; 罗奇志; 李伟; 余平

    2015-01-01

    目的:探索在沙眼衣原体( Chlamydia trachomatis,Ct)持续感染状态下,STAT3-TLR2信号轴的变化,以及相关炎性细胞因子的异常分泌情况。方法:以HeLa细胞为研究对象,建立Ct的急性感染和IFN-γ诱导的持续性感染模型,采用qRT-PCR、Western blot、ELISA等方法比较不同感染状态下,HeLa细胞STAT3-TLR2信号轴相关分子如TLR2、STAT3及IL-1α等的变化。结果:在Ct持续性感染状态下,上皮细胞分泌的IL-1α以及STAT3和TLR2的表达均明显增加,且IL-1α的分泌、TLR2的表达与STAT3的蛋白表达和活化呈一致性的升高。结论:在IFN-γ诱导的Ct持续感染状态下,STAT3-TLR2信号轴相关分子存在明显活化。%Objective:To explore in state of Chlamydia trachomatis persistent infection,the STAT3-TLR2 axis may be activated and mediating abnormal secretion of inflammatory cytokines.Methods: We established acute infection and IFN-γinduced persistent infection model of Ct in HeLa cell.Gene transcription, cytokine secretion and protein expression were detected by using qRT-PCR, ELISA and Western blot respectively in STAT3-TLR2 signaling axis in each Ct infection model.Results: Persistent Ct infections upregulated the transcription of TLR2,significantly increased both the secretion of inflammatory cytokine IL-1αand the expression of STAT3 and TLR2,moreover,enhanced the activation of STAT3 simultaneously.Conclusion: In the Ct persistent infection induced by IFN-γ,the STAT3-TLR2 signaling axis activated significantly in HeLa cell.

  1. The role of STAT3 in autophagy.

    Science.gov (United States)

    You, Liangkun; Wang, Zhanggui; Li, Hongsen; Shou, Jiawei; Jing, Zhao; Xie, Jiansheng; Sui, Xinbing; Pan, Hongming; Han, Weidong

    2015-01-01

    Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.

  2. Schizandrin A Inhibits Microglia-Mediated Neuroninflammation through Inhibiting TRAF6-NF-κB and Jak2-Stat3 Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Fangjiao Song

    Full Text Available Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A, a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO, tumor necrosis factor (TNF-α and interleukin (IL-6 induced by lipopolysaccharide (LPS both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS and cyclooxygenase 2 (COX-2 expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways.

  3. Schizandrin A Inhibits Microglia-Mediated Neuroninflammation through Inhibiting TRAF6-NF-κB and Jak2-Stat3 Signaling Pathways

    Science.gov (United States)

    Song, Fangjiao; Zeng, Kewu; Liao, Lixi; Yu, Qian; Tu, Pengfei; Wang, Xuemei

    2016-01-01

    Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6 induced by lipopolysaccharide (LPS) both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways. PMID:26919063

  4. IL-6-STAT3 signaling mediates aortic dissections induced by angiotensin II via the Th17 lymphocyte-IL17 axis in C57BL/6 Mice

    Science.gov (United States)

    Ju, Xiaoxi; Ijaz, Talha; Sun, Hong; Ray, Sutapa; Lejeune, Wanda; Lee, Chang; Recinos, Adrian; Guo, Dong-Chuan; Milewicz, Dianna M.; Tilton, Ronald G.; Brasier, Allan R.

    2013-01-01

    Objective Dysregulated angiotensin II (Ang II) signaling induces local vascular interleukin-6 (IL-6) secretion, producing leukocyte infiltration and life-threatening aortic dissections. Precise mechanism(s) by which IL-6 signaling induces leukocyte recruitment remain(s) unknown. T-helper 17lymphocytes (Th17) have been implicated in vascular pathology, but their role in the development of aortic dissections is poorly understood. Here, we tested the relationship of IL-6-STAT3 signaling with Th17-induced inflammation in the formation of Ang II-induced dissections in C57BL/6 mice. Methods and Results Ang II infusion induced aortic dissections and CD4+-interleukin 17A (IL-17A)-expressing, Th17 cell accumulation in C57BL/6 mice. A blunted local Th17 activation, macrophage recruitment, and reduced incidence of aortic dissections were seen in IL-6−/− mice. To determine pathological roles of Th17 lymphocytes, we treated Ang II infused mice with IL-17A neutralizing antibody (IL17A NAb), or infused Ang II in genetically deficientIL-17A mice, and found decreased aortic chemokine MCP-1 production and macrophage recruitment, leading to a reduction in aortic dissections. This effect was independent of blood pressure in IL17ANAb experiment. Application of a cell-permeable STAT3 inhibitor to downregulate the IL-6 pathway decreased aortic dilation and Th17 cell recruitment. We also observed increased aortic Th17 infiltration and IL-17 mRNA expression in patients with thoracic aortic dissections. Lastly, we found that Ang II mediated aortic dissections occurred independent of blood pressure changes. Conclusions Our results indicate that the IL-6-STAT3 signaling pathway converges on Th17 recruitment and IL-17A signaling upstream of macrophage recruitment, mediating aortic dissections. PMID:23685554

  5. Suppressive Effects of Plumbagin on Invasion and Migration of Breast Cancer Cells via the Inhibition of STAT3 Signaling and Down-regulation of Inflammatory Cytokine Expressions

    Institute of Scientific and Technical Information of China (English)

    Wei Yan; Bing Tu; Yun-yun Liu; Ting-yu Wang; Han Qiao; Zan-jing Zhai; Hao-wei Li; Ting-ting Tang

    2013-01-01

    Objective:The aim of this study was to investigate the effects of plumbagin (PL), a naphthoquinone derived from the medicinal plant plumbago zeylanica, on the invasion and migration of human breast cancer cells. Methods:Human breast cancer MDA-MB-231SArfp cells were treated with different concentrations of plum-bagin for 24 h. The effects of plumbagin on the migration and invasion were observed by a transwell method. The expressions of IL-1α, IL-1β, IL-6, IL-8, TGF-β, TNFα, MMP-2 and MMP-9 mRNA in M DA-MB-231SArfp cells were detected using Real-Time PCR. MDA-MB-231SArfp cells were treated with plumbagin at different concentrations for 45 minutes. The activation of STAT3 was detected by western blot. Following this analysis, STAT3 in MDA-MB-231SArfp cells was knocked out using specific siRNA. mRNA levels of IL-1α, TGF-β, MMP-2 and MMP-9 were then detected. Consequently, MDA-MB-231SArfp cells were injected intracardially into BALB/c nude mice to construct a breast cancer bone metastatic model. The mice were injected intra-peritoneally with plumbagin. Non-invasive in vivo monitoring, X-ray imaging and histological staining were performed to investigate the effects of plumbagin on the invasion and migration of breast cancer cells in vivo. Results: The in vitro results showed that plumbagin could suppress the migration and invasion of breast cancer cells and down-regulate mRNA expressions of IL-1α, TGF-β, MMP-2 and MMP-9. Western blotting demonstrated that plumbagin inhibited the activation of STAT3 signaling in MDA-MB-231SArfp cells. The inactivation of STAT3 was found to have an inhibitory effect on the expressions of IL-1α, TGF-β, MMP-2 and MMP-9. In vivo studies showed that plumbagin inhibited the metastasis of breast cancer cells and decreased osteolytic bone metastases, as well as the secretion of MMP-2 and MMP-9 by tumor cells at metastatic lesions. Conclusions:Plumbagin can suppress the invasion and migration of breast cancer cells via the inhibition

  6. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jihong Shi

    Full Text Available BACKGROUND: The hypertrophic scar (HS is a serious fibrotic skin condition and a major clinical problem. Interleukin-10 (IL-10 has been identified as a prospective scar-improving compound based on preclinical trials. Our previous work showed that IL-10 has anti-fibrotic effects in transforming growth factor (TGF-β1-stimulated fibroblasts, as well as potential therapeutic benefits for the prevention and reduction of scar formation. However, relatively little is known about the mechanisms underlying IL-10-mediated anti-fibrotic and scar-improvement actions. OBJECTIVE: To explore the expression of the IL-10 receptor in human HS tissue and primary HS fibroblasts (HSFs, and the molecular mechanisms contributing to the anti-fibrotic and scar-improvement capabilities of IL-10. METHODS: Expression of the IL-10 receptor was assessed in HS tissue and HSFs by immunohistochemistry, immunofluorescence microscopy, and polymerase chain reaction analysis. Primary HSFs were treated with IL-10, a specific phosphatidylinositol 3 kinase (PI3K inhibitor (LY294002 or a function-blocking antibody against the IL-10 receptor (IL-10RB. Next, Western blot analysis was used to evaluate changes in the phosphorylation status of AKT and signal transducers and activators of transcription (STAT 3, as well as the expression levels of fibrosis-related proteins. RESULTS: HS tissue and primary HSFs were characterized by expression of the IL-10 receptor and by high expression of fibrotic markers relative to normal controls. Primary HSFs expressed the IL-10 receptor, while IL-10 induced AKT and STAT3 phosphorylation in these cells. In addition, LY294002 blocked AKT and STAT phosphorylation, and also up-regulated expression levels of type I and type III collagen (Col 1 and Col 3 and alpha-smooth muscle actin (α-SMA in IL-10-treated cells. Similarly, IL-10RB reduced STAT3/AKT phosphorylation and blocked the IL-10-mediated mitigation of fibrosis in HSFs. CONCLUSION: IL-10 apparently

  7. Cross talk Initiated by Endothelial Cells Enhances Migration and Inhibits Anoikis of Squamous Cell Carcinoma Cells through STAT3/Akt/ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kathleen G. Neiva

    2009-06-01

    Full Text Available It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3, Akt, and extracellular signal-regulated kinase (ERK in a panel of head and neck squamous cell carcinoma (HNSCC cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A. Gene expression analysis demonstrated that interleukin-6 (IL- 6, interleukin-8 (CXCL8, and epidermal growth factor (EGF are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.

  8. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs.

    Science.gov (United States)

    Campo Verde Arboccó, Fiorella; Sasso, Corina V; Actis, Esteban A; Carón, Rubén W; Hapon, María Belén; Jahn, Graciela A

    2016-01-01

    Thyroid diseases have deleterious effects on lactation, litter growth and survival, and hinder the suckling-induced hormone release, leading in the case of hyperthyroidism, to premature mammary involution. To determine the effects of hypothyroidism (HypoT) on late lactation, we analyzed the effect of chronic 6-propyl-2-thiouracil (PTU)-induced HypoT on mammary histology and the expression of members of the JAK/STAT/SOCS signaling pathway, milk proteins, prolactin (PRLR), estrogen (ER), progesterone (PR) and thyroid hormone (TR) receptors, markers of involution (such as stat3, lif, bcl2, BAX and PARP) on lactation (L) day 21. HypoT mothers showed increased histological markers of involution compared with control rats, such as adipose/epithelial ratio, inactive alveoli, picnotic nuclei and numerous detached apoptotic cells within the alveolar lumina. We also found decreased PRLR, β-casein and α-lactoalbumin mRNAs, but increased SOCS1, SOCS3, STAT3 and LIF mRNAs, suggesting a decrease in PRL signaling and induction of involution markers. Furthermore, Caspase-3 and 8 and PARP labeled cells and the expression of structural proteins such as β-Actin, α-Tubulin and Lamin B were increased, indicating the activation of apoptotic pathways and tissue remodelation. HypoT also increased PRA (mRNA and protein) and erβ and decreased erα mRNAs, and increased strongly TRα1, TRβ1, PRA and ERα protein levels. These results show that lactating HypoT rats have premature mammary involution, most probably induced by the inhibition of prolactin signaling along with the activation of the LIF-STAT3 pathway.

  9. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  10. Local BMP-SMAD1 Signaling Increases LIF Receptor-Dependent STAT3 Responsiveness and Primed-to-Naive Mouse Pluripotent Stem Cell Conversion Frequency

    Directory of Open Access Journals (Sweden)

    Kento Onishi

    2014-07-01

    Full Text Available Conversion of EpiSCs to naive ESCs is a rare event that is driven by the reestablishment of the naive transcription factor network. In mice, STAT3 activation is sufficient to drive conversion of EpiSCs to the naive pluripotent stem cell (PSC state. However, the lack of responsiveness of EpiSCs to LIF presents a bottleneck in this conversion process. Here, we demonstrate that local accumulation of BMP-SMAD1 signaling, in cooperation with GP130 ligands, enhances the recovery of LIF responsiveness by directly controlling transcription of the LIF receptor (Lif-r. Addition of BMP and LIF to EpiSCs increases both LIF responsiveness and conversion frequencies to naive PSCs. Mechanistically, we show that the transcriptional cofactor P300 plays a critical role by mediating complex formation between STAT3 and SMAD1. This demonstration of how the local microenvironment or stem cell niche reactivates dormant signaling responsiveness and developmental potential may be applicable to other stem cell niche-containing systems.

  11. The expression and significance of IL -6/STAT3 signaling pathway on the hypothalamus -pituitary-adrenal axis in the early stage of sepsis rats%IL -6/STAT3信号通路在脓毒症早期大鼠下丘脑-垂体-肾上腺轴中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    王晓丹; 聂文龙; 张玉想

    2015-01-01

    Objective To explore the inner link between interleukin -6 ( IL -6 )/signal transducer and activator of transcription 3 ( STAT3 ) signaling pathway and hypothalamus -pituitary -adrenal axis ( HPAA) excessive activation in the early stage of sepsis rats .Methods Twenty -four adult male Wistar rats were randomly divided into Control group ( n=8 ) , sham-operated group ( n=8) and CLP group (n=8).The septic rat models were challenged by CLP , executed after 6 hours, the hypothalamus, pituitary and adrenal gland was isolated .Expression levels of CRH, IL-6, STAT3 and SOCS3 mRNA in hypothalamus , POMC, IL-6, STAT3 and SOCS3 mRNA in pituitary and IL -6, STAT3 and SOCS3 mRNA in adrenal gland were quantified by real -time quantitative PCR ( RT -PCR).Results Compared to Control group and Sham group: CRH, IL -6, STAT3 and SOCS3 mRNA expression levels were up -regulated significantly (P<0.01) in the hypothalamus tissues of CLP group;POMC, IL-6, STAT3 and SOCS3 mRNA expression levels were up -regulated significantly (P<0.01) in the pituitary tissues of CLP group; IL-6, STAT3 and SOCS3 mRNA expression levels were up-regulated significantly (P<0.01) in adrenal gland tissues of CLP group .Expression levels of all purpose gene were not different in Control group and Sham group .Conclusion IL -6/STAT3 signaling pathway has a close relationship with HPAA excessive activation in the early stage of sepsis rats.IL-6/STAT3 signaling pathway may be regarded as a novel therapeutic target for HPAA excessive activation of the sepsis .%目的:探讨大鼠脓毒症早期出现的HPA轴过度激活与IL-6/STAT3信号通路的内在联系。方法24只健康雄性Wistar大鼠,随机分为正常对照组( Control组)、假手术组( Sham组)、模型组(CLP组)三组。采用盲肠结扎穿孔(CLP)法建立脓毒症模型,术后6 h处死,分离出下丘脑、垂体、肾上腺组织。 RT-PCR检测下丘脑组织CRH、IL-6、STAT3、SOCS3 mRNA水平,垂体

  12. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  13. Stat3 mediates expression of autotaxin in breast cancer.

    Directory of Open Access Journals (Sweden)

    Janeen Azare

    Full Text Available We determined that signal transducer and activator of transcription 3 (Stat3 is tyrosine phosphorylated in 37% of primary breast tumors and 63% of paired metastatic axillary lymph nodes. Examination of the distribution of tyrosine phosphorylated (pStat3 in primary tumors revealed heterogenous expression within the tumor with the highest levels found in cells on the edge of tumors with relatively lower levels in the central portion of tumors. In order to determine Stat3 target genes that may be involved in migration and metastasis, we identified those genes that were differentially expressed in primary breast cancer samples as a function of pStat3 levels. In addition to known Stat3 transcriptional targets (Twist, Snail, Tenascin-C and IL-8, we identified ENPP2 as a novel Stat3 regulated gene, which encodes autotaxin (ATX, a secreted lysophospholipase which mediates mammary tumorigenesis and cancer cell migration. A positive correlation between nuclear pStat3 and ATX was determined by immunohistochemical analysis of primary breast cancer samples and matched axillary lymph nodes and in several breast cancer derived cell lines. Inhibition of pStat3 or reducing Stat3 expression led to a decrease in ATX levels and cell migration. An association between Stat3 and the ATX promoter, which contains a number of putative Stat3 binding sites, was determined by chromatin immunoprecipitation. These observations suggest that activated Stat3 may regulate the migration of breast cancer cells through the regulation of ATX.

  14. Prognostic significance of STAT3 and phosphorylated STAT3 in human soft tissue tumors - a clinicopathological analysis

    Directory of Open Access Journals (Sweden)

    Nair Asha S

    2011-05-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is a key signaling molecule and a central cytoplasmic transcription factor, implicated in the regulation of growth. Its aberrant activation has been demonstrated to correlate with many types of human malignancy. However, whether constitutive STAT3 signaling plays a key role in the survival and growth of soft-tissue tumors is still unclear and hence needs to be elucidated further. In our study we examined the expression levels of STAT3 and pSTAT3 in different grades of soft tissue tumors and correlated with its clinicopathological characteristics. Methods Expression levels of STAT3 and pSTAT3 in soft tissue tumors were studied using Immunohistochemistry, Western blotting and Reverse transcriptase- PCR and correlated with its clinicopathological characteristics using Chi squared or Fisher's exact test and by logistic regression analysis. Statistical analysis was done using Intercooled Stata software (Intercooled Stata 8.2 version. Results Of the 82 soft tissue tumor samples, fifty four (65.8% showed immunoreactivity for STAT3 and twenty eight (34.1% for pSTAT3. Expression of STAT3 and pSTAT3 was significantly associated with tumor grade (P Conclusion These findings suggest that constitutive activation of STAT3 is an important factor related to carcinogenesis of human soft tissue tumors and is significantly associated with its clinicopathological parameters which may possibly have potential diagnostic implications.

  15. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Ahn, Ji-Hye; Choi, Youn Seok; Choi, Jung-Hye

    2015-10-01

    Despite evidence that leptin may play a role in the pathogenesis of endometriosis, the specific function of leptin in the migration and invasion of endometriotic cells is not well characterized. In this study, we investigated the effect of leptin on the migration, invasion and matrix metalloproteinase (MMP) expression levels of human endometriotic cells. We found that leptin stimulated the migration and invasion of endometriotic cells (11Z, 12Z and 22B) in a dose-dependent manner. Leptin receptor (ObR) siRNA significantly inhibited the migration and invasion induced by leptin in 11Z and 12Z cells. Leptin-induced migration and invasion were significantly attenuated by pretreatment with SB-3CT, a specific gelatinase (MMP-2 and MMP-9) inhibitor. In addition, leptin-induced increases in the mRNA and protein expression and enzyme activity of MMP-2 in 11Z and 12Z cells. Selectively inhibiting MMP-2 using siRNA and an inhibitor (GM6003), impaired the ability of leptin to stimulate the migration and invasion of endometriotic cells, suggesting that MMP-2 plays an essential role in leptin-induced migration and invasion. Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) inhibitor (AG490) significantly inhibited the migration, invasion and MMP-2 expression induced by leptin in endometriotic cells. Furthermore, the Extracellular signal-Regulated Kinase inhibitor PD98059 neutralized the migration and invasion promoting effects of leptin. Taken together, these results suggest that leptin may contribute to the migration and invasion abilities of endometriotic cells via the up-regulation of MMP-2 through an ObR-dependent JAK2/STAT3 signaling pathway.

  16. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    Science.gov (United States)

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.

  17. Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure

    Directory of Open Access Journals (Sweden)

    Hikmet Nural-Guvener

    2015-05-01

    Full Text Available Background: Recent studies have linked histone deacetylases (HDAC to remodeling of the heart and cardiac fibrosis in heart failure. However, the molecular mechanisms linking chromatin remodeling events with observed anti-fibrotic effects are unknown. Here, we investigated the molecular players involved in anti-fibrotic effects of HDAC inhibition in congestive heart failure (CHF myocardium and cardiac fibroblasts in vivo. Methods and Results: MI was created by coronary artery occlusion. Class I HDACs were inhibited in three-week post MI rats by intraperitoneal injection of Mocetinostat (20 mg/kg/day for duration of three weeks. Cardiac function and heart tissue were analyzed at six week post-MI. CD90+ cardiac fibroblasts were isolated from ventricles through enzymatic digestion of heart. In vivo treatment of CHF animals with Mocetinostat reduced CHF-dependent up-regulation of HDAC1 and HDAC2 in CHF myocardium, improved cardiac function and decreased scar size and total collagen amount. Moreover, expression of pro-fibrotic markers, collagen-1, fibronectin and Connective Tissue Growth Factor (CTGF were reduced in the left ventricle (LV of Mocetinostat-treated CHF hearts. Cardiac fibroblasts isolated from Mocetinostat-treated CHF ventricles showed a decrease in expression of collagen I and III, fibronectin and Timp1. In addition, Mocetinostat attenuated CHF-induced elevation of IL-6 levels in CHF myocardium and cardiac fibroblasts. In parallel, levels of pSTAT3 were reduced via Mocetinostat in CHF myocardium. Conclusions: Anti-fibrotic effects of Mocetinostat in CHF are associated with the IL-6/STAT3 signaling pathway. In addition, our study demonstrates in vivo regulation of cardiac fibroblasts via HDAC inhibition.

  18. Role of STAT3 in Cancer Metastasis and Translational Advances

    Directory of Open Access Journals (Sweden)

    Mohammad Zahid Kamran

    2013-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is a latent cytoplasmic transcription factor, originally discovered as a transducer of signal from cell surface receptors to the nucleus. It is activated by tyrosine phosphorylation at position 705 leading to its dimerization, nuclear translocation, DNA binding, and activation of gene transcription. Under normal physiological conditions, STAT3 activation is tightly regulated. However, compelling evidence suggests that STAT3 is constitutively activated in many cancers and plays a pivotal role in tumor growth and metastasis. It regulates cellular proliferation, invasion, migration, and angiogenesis that are critical for cancer metastasis. In this paper, we first describe the mechanism of STAT3 regulation followed by how STAT3 is involved in cancer metastasis, then we summarize the various small molecule inhibitors that inhibit STAT3 signaling.

  19. Role of STAT3 in Cancer Metastasis and Translational Advances

    Science.gov (United States)

    Patil, Prachi; Gude, Rajiv P.

    2013-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription factor, originally discovered as a transducer of signal from cell surface receptors to the nucleus. It is activated by tyrosine phosphorylation at position 705 leading to its dimerization, nuclear translocation, DNA binding, and activation of gene transcription. Under normal physiological conditions, STAT3 activation is tightly regulated. However, compelling evidence suggests that STAT3 is constitutively activated in many cancers and plays a pivotal role in tumor growth and metastasis. It regulates cellular proliferation, invasion, migration, and angiogenesis that are critical for cancer metastasis. In this paper, we first describe the mechanism of STAT3 regulation followed by how STAT3 is involved in cancer metastasis, then we summarize the various small molecule inhibitors that inhibit STAT3 signaling. PMID:24199193

  20. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  1. JAK2/STAT3 signaling pathway mediates metabolism and anti-oxidative stress in chondrocytesof osteoarthritis mice%JAK2/STAT3信号通路介导小鼠骨性关节炎中软骨细胞代谢和抗氧化应激的研究

    Institute of Scientific and Technical Information of China (English)

    刘军; 甄平; 李旭升; 李慎松; 田琦; 常彦峰; 高展望; 张航向; 陈慧

    2015-01-01

    目的:在小鼠骨性关节炎(OA)模型中观察Janus酪氨酸蛋白激酶2/信号转导子与转录激活子蛋白3(JAK2/STAT3)信号通路对软骨细胞代谢的影响以及线粒体抗氧化应激能力的改变,探讨JAK2/STAT3信号通路在此过程中的作用。方法将10只C57BL/6小鼠随机分为两组,选择其中一组小鼠建立OA模型,3周后取材,培养软骨细胞作为实验组,其余小鼠正常培养细胞作为对照组。在对照组和实验组中分别加入JAK2/STAT3信号通路激动剂SC-39100,运用蛋白印迹法(Western blotting)检测各组细胞p-JAK2、p-STAT3、B淋巴细胞瘤−2(Bcl-2)蛋白和Bax蛋白的表达,同时检测各组线粒体氧化应激指标琥珀酸脱氢酶(SDH)、细胞色素c氧化酶(COX)、丙二醛(MDA)改变。结果与对照组相比,OA模型组软骨细胞p-JAK2、p-STAT3、Bcl-2蛋白的表达偏低(P<0.05)、Bax蛋白的表达水平偏高(P<0.05),且OA模型组软骨细胞SDH和COX的表达水平均偏低(P<0.05)、MDA的含量偏高(P<0.05);当OA模型组加入SC-39100后,p-JAK2、p-STAT3、Bcl-2表达均较OA模型组升高(P<0.05)、Bax蛋白表达下降(P<0.05),SDH和COX的表达水平均较OA模型组升高(P<0.05),MDA的含量较OA模型组降低(P<0.05);对照组中加入SC-39100后的各指标与加入SC-39100前比较,差异均无统计学意义(P>0.05);OA模型加入SC-39100组后的各指标与对照组加入SC-39100比较,差异均有统计学意义(P<0.05)。结论 JAK2/STAT3信号通路和OA中软骨细胞变化密切相关,JAK2/STAT3信号通路激活后可抑制软骨细胞的凋亡;当激活的JAK2/STAT3信号通路活化时会增加软骨细胞线粒体抗氧化应激能力。%ObjectiveTo determine the effect of Janus activated tyrosine kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway on the metabolism and

  2. STAT3 as an emerging molecular target in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Sharma NK

    2014-08-01

    Full Text Available Narinder Kumar Sharma,1 Sharmila Shankar,2 Rakesh K Srivastava1 1Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Medical Center, Kansas City, KS, USA; 2Kansas City VA Medical Center, Kansas City, MO, USA Abstract: Pancreatic cancer is the fourth leading cause of cancer related deaths. Although, surgical resection of pancreatic cancer may provide the best chance for cure and long-term survival, due to the late onset of symptoms only 15% to 20% of patients have resectable tumors. Most of the pancreatic tumors have mutations in the K-ras gene, followed by mutations in tumor suppressor genes such as p53 and SMAD4. In addition, there is growing evidence for the potential involvement of signal transducer and activator of transcription 3 (STAT3 in malignant transformation of pancreatic cancer. STAT3 plays critical roles in regulating many physiological functions in normal and malignant tissues, such as inflammation, survival, proliferation, differentiation, and angiogenesis. STAT3 is activated by a wide variety of cytokines, growth factors, and other stimuli. Unlike other members of the STAT family, ablation of STAT3 leads to embryonic lethality and conditional loss of STAT3 protein in adult tissues, leading to a variety of abnormalities, confirming that STAT3 participates in a wide variety of physiological processes. Constitutive activation of STAT3 is implicated in a wide range of human cancers; therefore, STAT3 has been identified as a novel target to treat and prevent cancers. Several STAT3 inhibitors display antitumor effectiveness, and data supporting the use of STAT3 inhibitors are emerging. Different approaches used for the inhibition of activated STAT3 include modulating upstream positive or negative regulators or directly targeting its different domains. These approaches have been used in the inhibition of STAT3 in different cancers, but in this review, we will focus specifically on the inhibition

  3. STAT3 activation in monocytes accelerates liver cancer progression

    Directory of Open Access Journals (Sweden)

    Wu Wen-Yong

    2011-12-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Methods Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN, which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Results Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Conclusion Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical

  4. SLC5A8-Mediated Switching of STAT3 from a Pro-Oncogenic Signal into a Pro-Apoptotic Signal in Breast Cancer

    Science.gov (United States)

    2011-06-01

    and Gibson G.R. (2004). Microbial–gut interactions in health and disease. Prebiotics . Best Pract. Res. Clin. Gastroenterol. 18: 287–298. 28. Gopal...of Georgia, Georgia Health Sciences University, Augusta, GA - 30912 Abstract Slc5a8 and Stat3 expression is induced in early onset of mammary gland...Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Medical College of Georgia, Augusta, GA 30912, USA Breast cancer is

  5. Intracerebroventricular tempol administration in older rats reduces oxidative stress in the hypothalamus but does not change STAT3 signalling or SIRT1/AMPK pathway.

    Science.gov (United States)

    Toklu, Hale Z; Scarpace, Philip J; Sakarya, Yasemin; Kirichenko, Nataliya; Matheny, Michael; Bruce, Erin B; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2017-01-01

    Hypothalamic inflammation and increased oxidative stress are believed to be mechanisms that contribute to obesity. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a free radical scavenger, has been shown to reduce inflammation and oxidative stress. We hypothesized that brain infusion of tempol would reduce oxidative stress, and thus would reduce food intake and body weight and improve body composition in rats with age-related obesity and known elevated oxidative stress. Furthermore, we predicted an associated increase in markers of leptin signalling, including the silent mating type information regulator 2 homolog 1 (SIRT1)/5'AMP-activated protein kinase (AMPK) pathway and the signal transducer and activator of transcription 3 (STAT3) pathway. For this purpose, osmotic minipumps were placed in the intracerebroventricular region of young (3 months) and aged (23 months) male Fischer 344 x Brown Norway rats for the continuous infusion of tempol or vehicle for 2 weeks. Tempol significantly decreased (p oxidative stress but fails to alter feeding behaviour, body weight, or body composition. Moreover, tempol does not modulate the SIRT1/AMPK/p53 pathway and does not change leptin signalling. Thus, a reduction in hypothalamic oxidative stress is not sufficient to reverse age-related obesity.

  6. Epstein-Barr Virus-Induced Gene 3 (EBI3) Blocking Leads to Induce Antitumor Cytotoxic T Lymphocyte Response and Suppress Tumor Growth in Colorectal Cancer by Bidirectional Reciprocal-Regulation STAT3 Signaling Pathway

    Science.gov (United States)

    Liang, Yanfang; Chen, Qianqian; Du, Wenjing; Chen, Can; Li, Feifei; Yang, Jingying; Peng, Jianyu; Kang, Dongping; Lin, Bihua; Chai, Xingxing; Zhou, Keyuan; Zeng, Jincheng

    2016-01-01

    Epstein-Barr virus-induced gene 3 (EBI3) is a member of the interleukin-12 (IL-12) family structural subunit and can form a heterodimer with IL-27p28 and IL-12p35 subunit to build IL-27 and IL-35, respectively. However, IL-27 stimulates whereas IL-35 inhibits antitumor T cell responses. To date, little is known about the role of EBI3 in tumor microenvironment. In this study, firstly we assessed EBI3, IL-27p28, IL-12p35, gp130, and p-STAT3 expression with clinicopathological parameters of colorectal cancer (CRC) tissues; then we evaluated the antitumor T cell responses and tumor growth with a EBI3 blocking peptide. We found that elevated EBI3 may be associated with IL-12p35, gp130, and p-STAT3 to promote CRC progression. EBI3 blocking peptide promoted antitumor cytotoxic T lymphocyte (CTL) response by inducing Granzyme B, IFN-γ production, and p-STAT3 expression and inhibited CRC cell proliferation and tumor growth to associate with suppressing gp130 and p-STAT3 expression. Taken together, these results suggest that EBI3 may mediate a bidirectional reciprocal-regulation STAT3 signaling pathway to assist the tumor escape immune surveillance in CRC. PMID:27247488

  7. Effect of rhGH on JAK2-STAT3 signal pathway after GHR was down-regulated by siRNA in gastric cancer cell%rhGH干预GHR基因差异表达人胃癌细胞增殖及JAK2-STAT3通路机制

    Institute of Scientific and Technical Information of China (English)

    冉刚; 林岩; 曹鹏; 蔡雪婷; 李苏宜

    2013-01-01

    To investigate the effect of recombinant human growth hormone (rhGH) on JAK2-STAT3 pathway and the growth of gastric cancer cell lines at different GHR expression status, the eukaryotic expression vector targeting human GHR (pGPU6/GFP/Neo-shGHR and pGPU6/GFP/Neo-scramble) was constructed and transfected into MGC803 cells by Lipofectamine 2000. Stable expressive cell lines were obtained by G418 screening. The expression of GHR was analyzed by Western blotting. After being stimulated with rhGH, cell growth was detected by MTT assay. Cell cycle and apoptosis were examined by flow cytometry. The components of JAK2/STAT3 signaling pathway were detected by Western blotting. There is no significant difference of GHR expression between MGC803 and pGPU6/GFP/Neo-scramble-transfected cells (named as MGC803-NC) (P > 0.05). Compared with MGC803, the GHR expression in pGPU6/GFP/Neo-shGHR-transfected cells (named as MGC803-shGHR) decreased significantly (protein decreased 50%). The cells were treated with rhGH at 0, 150 and 300 ng·mL-1, the growth rate of MGC803 and MGC803-NC increased significantly, PI and the number of G2/M phase cells all increased significantly, and apoptosis decreased significantly. Western blotting revealed that the expression of pJAK2 and pSTAT3 was up-regulated after being treated with rhGH in MGC803 and MGC803-NC cells. In contrast, similar change was not observed in MGC803-shGHR cells. Knockdown of GHR gene may decrease the sensitivity of gastric cancer cells to rhGH, and down-regulating of components of the expression of JAK2/ STAT3 signaling pathway may be the potential mechanisms.

  8. Syndecan-1 (CD138 modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling.

    Directory of Open Access Journals (Sweden)

    Sherif A Ibrahim

    Full Text Available Syndecan-1 (CD138, a heparan sulfate proteoglycan, acts as a coreceptor for growth factors and chemokines and is a molecular marker associated with epithelial-mesenchymal transition during development and carcinogenesis. Resistance of Syndecan-1-deficient mice to experimentally-induced tumorigenesis has been linked to altered Wnt-responsive precursor cell pools, suggesting a potential role of Syndecan-1 in breast cancer cell stem function. However, the precise molecular mechanism is still elusive. Here, we decipher the functional impact of Syndecan-1 knockdown using RNA interference on the breast cancer stem cell phenotype of human triple-negative MDA-MB-231 and hormone receptor-positive MCF-7 cells in vitro employing an analytical flow cytometric approach. Successful Syndecan-1 siRNA knockdown was confirmed by flow cytometry. Side population measurement by Hoechst dye exclusion and Aldehyde dehydrogenase-1 activity revealed that Syndecan-1 knockdown in MDA-MB-231 cells significantly reduced putative cancer stem cell pools by 60% and 27%, respectively, compared to controls. In MCF-7 cells, Syndecan-1 depletion reduced the side population by 40% and Aldehyde dehydrogenase-1 by 50%, repectively. In MDA-MB-231 cells, the CD44(+CD24(-/low phenotype decreased significantly by 6% upon siRNA-mediated Syndecan-1 depletion. Intriguingly, IL-6, its receptor sIL-6R, and the chemokine CCL20, implicated in regulating stemness-associated pathways, were downregulated by >40% in Syndecan-1-silenced MDA-MB-231 cells, which showed a dysregulated response to IL-6-induced shifts in E-cadherin and vimentin expression. Furthermore, activation of STAT-3 and NFkB transcription factors and expression of a coreceptor for Wnt signaling, LRP-6, were reduced by >45% in Syndecan-1-depleted cells compared to controls. At the functional level, Syndecan-1 siRNA reduced the formation of spheres and cysts in MCF-7 cells grown in suspension culture. Our study demonstrates the

  9. Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling.

    Science.gov (United States)

    Ibrahim, Sherif A; Hassan, Hebatallah; Vilardo, Laura; Kumar, Sampath Katakam; Kumar, Archana Vijaya; Kelsch, Reinhard; Schneider, Cornelia; Kiesel, Ludwig; Eich, Hans Theodor; Zucchi, Ileana; Reinbold, Rolland; Greve, Burkhard; Götte, Martin

    2013-01-01

    Syndecan-1 (CD138), a heparan sulfate proteoglycan, acts as a coreceptor for growth factors and chemokines and is a molecular marker associated with epithelial-mesenchymal transition during development and carcinogenesis. Resistance of Syndecan-1-deficient mice to experimentally-induced tumorigenesis has been linked to altered Wnt-responsive precursor cell pools, suggesting a potential role of Syndecan-1 in breast cancer cell stem function. However, the precise molecular mechanism is still elusive. Here, we decipher the functional impact of Syndecan-1 knockdown using RNA interference on the breast cancer stem cell phenotype of human triple-negative MDA-MB-231 and hormone receptor-positive MCF-7 cells in vitro employing an analytical flow cytometric approach. Successful Syndecan-1 siRNA knockdown was confirmed by flow cytometry. Side population measurement by Hoechst dye exclusion and Aldehyde dehydrogenase-1 activity revealed that Syndecan-1 knockdown in MDA-MB-231 cells significantly reduced putative cancer stem cell pools by 60% and 27%, respectively, compared to controls. In MCF-7 cells, Syndecan-1 depletion reduced the side population by 40% and Aldehyde dehydrogenase-1 by 50%, repectively. In MDA-MB-231 cells, the CD44(+)CD24(-/low) phenotype decreased significantly by 6% upon siRNA-mediated Syndecan-1 depletion. Intriguingly, IL-6, its receptor sIL-6R, and the chemokine CCL20, implicated in regulating stemness-associated pathways, were downregulated by >40% in Syndecan-1-silenced MDA-MB-231 cells, which showed a dysregulated response to IL-6-induced shifts in E-cadherin and vimentin expression. Furthermore, activation of STAT-3 and NFkB transcription factors and expression of a coreceptor for Wnt signaling, LRP-6, were reduced by >45% in Syndecan-1-depleted cells compared to controls. At the functional level, Syndecan-1 siRNA reduced the formation of spheres and cysts in MCF-7 cells grown in suspension culture. Our study demonstrates the viability of flow

  10. Targeting Signal Transducers and Activators of Transcription-3 (Stat3) As a Novel Strategy In Sensitizing Breast Cancer To Egfr-Targeted Therapy

    Science.gov (United States)

    2008-06-01

    overnight. Immuno- precipitated complexes were collected by adding salmon sperm DNA/protein A-agarose (Upstate) for 15 min at 4jC. Immunopre- cipitates...activated STAT3 contain high potentials to undergo metastasis (1–5). Stat3 controls cell movement in Zebrafish gastrulation via increasing Zinc transporter...Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr Biol 2004;14:R719–21. 13. Hajra KM, Chen DY, Fearon ER. The SLUG zinc -finger

  11. Sphingosylphosphorylcholine promotes the differentiation of resident Sca-1 positive cardiac stem cells to cardiomyocytes through lipid raft/JNK/STAT3 and β-catenin signaling pathways.

    Science.gov (United States)

    Li, Wenjing; Liu, Honghong; Liu, Pingping; Yin, Deling; Zhang, Shangli; Zhao, Jing

    2016-07-01

    Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1(+) stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1(+) stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1(+) stem cells with low toxicity and high efficiency for uptake.

  12. Role of STAT3 in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Ken Sugimoto

    2008-01-01

    Signal transducers and activators of transcription 3(STAT3)play an important role in various autoimmune disorders including inflammatory bowel disease(IBD).Recent studies have revealed that STAT3 activation plays distinctly difierent roles between innate immune responses and acquired immune responses in colitis.STAT3-mediated activation of acquired immune re-sponses plays a pathogenic role in colitis by enhancing the survival of pathogenic T cells.In contrast,STAT3-mediated activation of innate responses contributes to the suppression of colitis.This review will summarize the current understanding of the roles of STAT3 in IBD and the potential of targeting STAT3 for the treatment of BD,emphasizing recent observations.(C)2008 The WJG Press.All rights reserved.

  13. Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues.

    Science.gov (United States)

    Koyama, Yutaka

    2014-12-01

    Phenotypic conversion of astrocytes from resting to reactive (i.e., astrocytic activation) occurs in numerous brain disorders. Astrocytic activation in severely damaged brain regions often leads to glial scar formation. Because astrocytic activation and glial scar largely affect the vulnerability and tissue repair of damaged brain, numerous studies have been made to clarify mechanisms regulating the astrocytic phenotype. The phenotypic conversion is accompanied by the increased expression of intermediate filament proteins and the induction of hypertrophy in reactive astrocytes. Severe brain damage results in proliferation and migration of reactive astrocytes, which lead to glial scar formations at the injured areas. Gliogenesis from neural progenitors in the adult brain is also involved in astrocytic activation and glial scar formation. Recent studies have shown that increased expression of connexin 43, aquaporin 4, matrix metalloproteinase 9, and integrins alter the function of astrocytes. The transcription factors: STAT3, OLIG2, SMAD, NF-κB, and Sp1 have been suggested to play regulatory roles in astrocytic activation and glial scar formation. In this review, I discuss the roles of these key molecules regulating the pathophysiological functions of reactive astrocytes.

  14. Protective Function of STAT3 in CVB3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2012-01-01

    Full Text Available The transcription factor signal transducer and activator of transcription 3 (STAT3 is an important mediator of the inflammatory process. We investigated the role of STAT3 in viral myocarditis and its possible role in the development to dilated cardiomyopathy. We used STAT3-deficent mice with a cardiomyocyte-restricted knockout and induced a viral myocarditis using Coxsackievirus B3 (CVB3 which induced a severe inflammation during the acute phase of the viral myocarditis. A complete virus clearance and an attenuated inflammation were examined in both groups WT and STAT3 KO mice 4 weeks after infection, but the cardiac function in STAT3 KO mice was significantly decreased in contrast to the infected WT mice. Interestingly, an increased expression of collagen I was detected in STAT3 KO mice compared to WT mice 4 weeks after CVB3 infection. Furthermore, the matrix degradation was reduced in STAT3 KO mice which might be an explanation for the observed matrix deposition. Consequently, we here demonstrate the protective function of STAT3 in CVB3-induced myocarditis. Since the cardiomyocyte-restricted knockout leads to an increased fibrosis, it can be assumed that STAT3 signalling in cardiomyocytes protects the heart against increased fibrosis through paracrine effects.

  15. Effect of dexmedetomidine on JAK2/STAT3 signaling pathway in mice with endotoxin-induced acute lung injury%右美托咪定对小鼠内毒素性急性肺损伤时JAK2/STAT3信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    黄天丰; 方向志; 张扬; 葛亚丽; 高巨

    2016-01-01

    Objective To evaluate the effect of dexmedetomidine on janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in mice with endotoxin-induced acute lung injury (ALI).Methods Twenty-four male C57BL/6 mice,weighing 20-25 g,were randomly divided into 3 groups (n=8 each) using a random number table:control group (group C),endotoxin-induced ALI group (group ALI),and dexmedetomidine group (group Dex).ALI was induced with lipopolysaccharide (LPS) 5 mg/kg injected intraperitoneally.Dexmedetomidine 40 μg/kg was injected intraperitoneally at 1 h after LPS injection in group Dex,while the equal volume of normal saline was given in C and ALI groups.At 6 h after LPS injection,blood samples were collected from the carotid artery to detect arterial oxygen partial pressure (PaO2).The mice were then sacrificed,and broncho-alveolar lavage fluid (BALF) was collected for determination of the concentrations of total protein,interleukin-1β (IL-1β),IL-6 and tumor necrosis factor-or (TNF-α).The lung tissues were removed for determination of wet to dry lung weight ratio (W/D ratio),and expression of phosphorylated JAK2 (p-JAK2),phosphorylated STAT3 (p-STAT3),IL-1β mRNA,IL-6 mRNA and TNF-α mRNA,and for examination of the pathological changes which were scored.Results Compared with group C,the PaO2 was significantly decreased,and W/D ratio,lung injury score,concentrations of total protein,IL-1β,IL-6 and TNF-α in BALF,and expression of IL-1β,IL-6 and TNF-α mRNA,p-JAK2 and p-STAT3 were increased in ALI and Dex groups (P<0.05).Compared with group ALI,the PaO2 was significantly increased,and W/D ratio,lung injury score,concentrations of total protein,IL-1β,IL-6 and TNF-α in BALF,and expression of IL-1β,IL-6 and TNF-α mRNA,p-JAK2 and p-STAT3 were decreased in group Dex (P<0.05).Conclusion The mechanism by which dexmedetomidine attenuates LPS-induced ALI is probably related to inhibition of activation of JAK2/STAT3 signaling pathway in

  16. Huaier aqueous extract inhibits proliferation and metastasis of tuberous sclerosis complex cell models through downregulation of JAK2/STAT3 and MAPK signaling pathways.

    Science.gov (United States)

    Yang, Ailin; Fan, Haitao; Zhao, Yunfang; Zha, Xiaojun; Zhang, Hongbing; Hu, Zhongdong; Tu, Pengfei

    2016-09-01

    Tuberous sclerosis complex (TSC) is a genetic disorder with formation of benign tumors in many different organs. It has attracted increasing attention from researchers to search for therapeutic drugs for TSC patients. Traditional Chinese medicine (TCM) has become an important source for finding antitumor drugs. Trametes robiniophila Μurr. (Huaier) is a kind of officinal fungi in China and has been applied in TCM for approximately 1,600 years. A large number of clinical applications have revealed that Huaier has good antitumor effect. In this study, we have investigated the effects of Huaier aqueous extract on two TSC cell models, including inhibition of proliferation, induction of apoptosis, cell cycle arrest, and anti-metastasis. We demonstrated that Huaier aqueous extract inhibited JAK2/STAT3 and MAPK signaling pathways in a dose-dependent manner. Therefore, based on the low toxicity and the multi-targets of Huaier treatment, Huaier may be a promising therapeutic drug for TSC.

  17. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  18. JAK2/STAT3信号通路在糖尿病大鼠心肌缺血再灌注诱发脑损伤中的作用%Role of JAK2/STAT3 signaling pathway in brain injury induced by myocardial ischemia-reperfusion in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    赵博; 冷燕; 吴晓静; 侯家保; 吴洋; 夏中元

    2016-01-01

    Objective To evaluate the effects of Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) signaling pathway on the brain injury induced by myocardial ischemia-reperfusion (I/R) in diabetic rats.Methods Pathogen-free male Sprague-Dawley rats,weighing 200-220 g,were used in this study.Diabetes mellitus was induced by intraperitoneal 1% streptozotocin 60 mg/kg and confirmed by blood glucose level ≥ 16.7 mmol/L 3 days later.Twenty-four rats with diabetes mellitus were randomly allocated into 3 groups (n =8 each) using a random number table:sham operation group (group S),I/R group,and myocardial I/R + AG490 (JAK inhibitor) group (group ⅠA).Myocardial I/R was induced by occlusion of the anterior descending branch of the left coronary artery for 30 min,followed by 120 min of reperfusion in the rats anesthetized with pentobarbital sodium.AG490 3 mg/kg was injected intravenously at 20 min before reperfusion in group IA.The rats were sacrificed at 120 min of reperfusion,and the brains were removed for determination of caspase-3 and nuclear factor kappa B (NF-κB) activities (using colorimetric method),cell apoptosis (by TUNEL),and expression of interleukin-1 (IL-1),IL-6,IL-8,Bax,Bcl-2,cytochrome C (Cyt c),phosphorylated JAK2 (p-JAK2),and phosphorylated STAT3 (p-STAT3) (by Western blot).Apoptosis index was calculated.Results Compared with group S,the expression of Bax,Cyt c,IL-1,IL-6,IL-8,p-JAK2 and p-STAT3 was significantly up-regulated,the expression of Bcl-2 was down-regulated,and NF-κB and caspase-3 activities and apoptosis index were increased in I/R and IA groups (P<0.05).Compared with group I/R,the expression of Bax,Cyt c,IL-1,IL-6,IL-8,p-JAK2 and p-STAT3 was significantly down-regulated,the expression of Bcl-2 was up-regulated,and NF-κB and caspase-3 activities and apoptosis index were decreased in group IA (P<0.05).Conclusion Inflammatory responses mediated by JAK2/STAT3 signaling pathway are involved in the brain injury

  19. Crif1 is a novel transcriptional coactivator of STAT3.

    Science.gov (United States)

    Kwon, Min-chul; Koo, Bon-Kyoung; Moon, Jin-Sook; Kim, Yoon-Young; Park, Ki Cheol; Kim, Nam-Shik; Kwon, Mi Yi; Kong, Myung-Phil; Yoon, Ki-Jun; Im, Sun-Kyoung; Ghim, Jaewang; Han, Yong-Mahn; Jang, Sung Key; Shong, Minho; Kong, Young-Yun

    2008-02-20

    Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor that performs a broad spectrum of biological functions in response to various stimuli. However, no specific coactivator that regulates the transcriptional activity of STAT3 has been identified. Here we report that CR6-interacting factor 1 (Crif1) is a specific transcriptional coactivator of STAT3, but not of STAT1 or STAT5a. Crif1 interacts with STAT3 and positively regulates its transcriptional activity. Crif1-/- embryos were lethal around embryonic day 6.5, and manifested developmental arrest accompanied with defective proliferation and massive apoptosis. The expression of STAT3 target genes was markedly reduced in a Crif1-/- blastocyst culture and in Oncostatin M-stimulated Crif1-deficient MEFs. Importantly, the key activities of constitutively active STAT3-C, such as transcription, DNA binding, and cellular transformation, were abolished in the Crif1-null MEFs, suggesting the essential role of Crif1 in the transcriptional activity of STAT3. Our results reveal that Crif1 is a novel and essential transcriptional coactivator of STAT3 that modulates its DNA binding ability, and shed light on the regulation of oncogenic STAT3.

  20. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.

  1. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  2. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models.

    Science.gov (United States)

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-04-20

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis.

  3. Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling.

    Science.gov (United States)

    Peng, Dongjun; Tanikawa, Takashi; Li, Wei; Zhao, Lili; Vatan, Linda; Szeliga, Wojciech; Wan, Shanshan; Wei, Shuang; Wang, Yin; Liu, Yan; Staroslawska, Elzbieta; Szubstarski, Franciszek; Rolinski, Jacek; Grywalska, Ewelina; Stanisławek, Andrzej; Polkowski, Wojciech; Kurylcio, Andrzej; Kleer, Celina; Chang, Alfred E; Wicha, Max; Sabel, Michael; Zou, Weiping; Kryczek, Ilona

    2016-06-01

    Myeloid-derived suppressor cells (MDSC) contribute to immune suppression in cancer, but the mechanisms through which they drive metastatic progression are not fully understood. In this study, we show how MDSC convey stem-like qualities to breast cancer cells that coordinately help enable immune suppression and escape. We found that MDSC promoted tumor formation by enhancing breast cancer cell stem-like properties as well as by suppressing T-cell activation. Mechanistic investigations indicated that these effects relied upon cross-talk between the STAT3 and NOTCH pathways in cancer cells, with MDSC inducing IL6-dependent phosphorylation of STAT3 and activating NOTCH through nitric oxide leading to prolonged STAT3 activation. In clinical specimens of breast cancer, the presence of MDSC correlated with the presence of cancer stem-like cells (CSC) and independently predicted poor survival outcomes. Collectively, our work revealed an immune-associated mechanism that extrinsically confers cancer cell stemness properties and affects patient outcome. We suggest that targeting STAT3-NOTCH cross-talk between MDSC and CSC could offer a unique locus to improve cancer treatment, by coordinately targeting a coupled mechanism that enables cancer stemness and immune escape. Cancer Res; 76(11); 3156-65. ©2016 AACR.

  4. Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer.

    Science.gov (United States)

    Ren, Z; Aerts, J L; Pen, J J; Heirman, C; Breckpot, K; De Grève, J

    2015-03-26

    The signal transducer and activator of transcription 3 (STAT3) can be activated by the tyrosine kinase domain of the chimeric protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK), and has a pivotal role in mediating NPM/ALK-related malignant cell transformation. Although the role of STAT3 and wild-type NPM in oncogenesis has been extensively investigated, the relationship between both molecules in cancer remains poorly understood. In the present study, we first demonstrate that STAT3 phosphorylation at tyrosine 705 is accompanied by a concomitant increase in the expression level of NPM. Nuclear co-translocation of phosphorylated STAT3 with NPM can be triggered by interferon-alpha (IFN-α) stimulation of Jurkat cells and phosphorylated STAT3 co-localizes with NPM in cancer cells showing constitutive STAT3 activation. We further demonstrate that STAT3 phosphorylation can transcriptionally mediate NPM upregulation in IFN-α-stimulated Jurkat cells and is responsible for maintaining its expression in cancer cells showing constitutive STAT3 activation. Inhibition of STAT3 phosphorylation or knockdown of NPM expression abrogates their simultaneous transnuclear movements. Finally, we found evidence for a physical interaction between NPM and STAT3 in conditions of STAT3 activation. In conclusion, NPM is a downstream effector of the STAT3 signaling, and can facilitate the nuclear entry of phosphorylated STAT3. These observations might open novel opportunities for targeting the STAT3 pathway in cancer.

  5. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  6. The Combination of Three Components Derived from Sheng MaiSan Protects Myocardial Ischemic Diseases and Inhibits Oxidative Stress via Modulating MAPKs and JAK2-STAT3 Signaling Pathways Based on Bioinformatics Approach

    Science.gov (United States)

    Li, Fang; Zhang, Yu; Zeng, Donglin; Xia, Yu; Fan, Xiaoxue; Tan, Yisha; Kou, Junping; Yu, Boyang

    2017-01-01

    GRS is a drug combination of three components including ginsenoside Rb1, ruscogenin and schisandrin. It derived from the well-known TCM formula Sheng MaiSan, a widely used traditional Chinese medicine for the treatment of cardiovascular diseases in clinic. The present study illuminates its underlying mechanisms against myocardial ischemic diseases based on the combined methods of bioinformatic prediction and experimental verification. A protein database was established through constructing the drug-protein network. And the target-pathway interaction network clustered the potential signaling pathways and targets of GRS in treatment of myocardial ischemic diseases. Several target proteins, such as NFKB1, STAT3 and MAPK14, were identified as the candidate key proteins, and MAPKs and JAK-STAT signaling pathway were suggested as the most related pathways, which were in accordance with the gene ontology analysis. Then, the predictive results were further validated and we found that GRS treatment alleviated hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury via suppression of MDA levels and ROS generation, and potential mechanisms might related to the suppression of activation of MAPKs and JAK2-STAT3 signaling pathways. Conclusively, our results offer the evidence that GRS attenuates myocardial ischemia injury via regulating oxidative stress and MAPKs and JAK2-STAT3 signaling pathways, which supplied some new insights for its prevention and treatment of myocardial ischemia diseases.

  7. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Petrus Rudolf de [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States); Mo, Ji-Hun [Department of Otorhinolaryngology, Dankook University College of Medicine, 16-5 Anseo-dong, Cheonan, Chungcheongnam-do 330-715 (Korea, Republic of); Harris, Alexandra R.; Lee, Jongdae, E-mail: j142lee@ucsd.edu; Raz, Eyal [Department of Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0663, La Jolla, CA 92093 (United States)

    2014-07-03

    Signal Transducer and Activator of Transcription 3 (STAT3) is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT) and thus metastasis in a mouse model of colorectal cancer (CRC), while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC) suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1). Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  8. STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jennifer E.; Patel, Mira; Ruzevick, Jacob; Jackson, Christopher M.; Lim, Michael, E-mail: mlim3@jhmi.edu [Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Phipps Building Rm 123, Baltimore, MD 21287 (United States)

    2014-02-10

    Signal transducer and activator of transcription 3 (STAT3) is a potent regulator of gliomagenesis through its induction of angiogenesis, host immunosuppression, and tumor invasion. Gain of function mutations result in constitutive activation of STAT3 in glioma cells, making STAT3 an attractive target for inhibition in cancer therapy. Nevertheless, some studies show that STAT3 also participates in terminal differentiation and apoptosis of various cell lines and in glioma with phosphatase and tensin homolog (PTEN)-deficient genetic backgrounds. In light of these findings, the utility of STAT3 as a prognostic indicator and as a target of drug therapies will be contingent on a more nuanced understanding of its pro- and anti-tumorigenic effects.

  9. STAT3: An Anti-Invasive Factor in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Petrus Rudolf de Jong

    2014-07-01

    Full Text Available Signal Transducer and Activator of Transcription 3 (STAT3 is activated in a majority of cancers, and promotes tumorigenesis and even metastasis through transcriptional activation of its target genes. Recently, we discovered that STAT3 suppresses epithelial-to-mesenchymal transition (EMT and thus metastasis in a mouse model of colorectal cancer (CRC, while it did not affect the overall tumor burden. Furthermore, we found that STAT3 in intestinal epithelial cells (IEC suppresses EMT by regulating stability of an EMT inducer, SNAI-1 (Snail-1. Here, STAT3 functions as an adaptor rather than a transcription factor in the post-translational modification of SNAI-1. In this review, we discuss the unexpected and contradictory role of STAT3 in metastasis of CRC and its clinical implications.

  10. Genetic Interactions of STAT3 and Anticancer Drug Development

    Directory of Open Access Journals (Sweden)

    Bingliang Fang

    2014-03-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  11. Genetic Interactions of STAT3 and Anticancer Drug Development

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bingliang [Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-03-06

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.

  12. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  13. Dysfunction of regulatory T cells in patients with psoriasis and related mechanisms of regulation by the STAT3 signaling pathway%银屑病调节性 T 细胞的功能异常及 STAT3通路调控机制研究

    Institute of Scientific and Technical Information of China (English)

    杨璐婷; 李冰; 张倩; 党二乐; 王刚

    2016-01-01

    Objective To evaluate the function of regulatory T (Treg)cells in peripheral blood from patients with psoriasis, and to explore the possible role of the STAT3 signaling pathway in Treg cell dysfunction. Methods Totally, 81 patients with psoriasis vulgaris, who all presented with chronic plaques and had a psoriasis area and severity index (PASI)score of 10 - 30, were enrolled into this study. Forty-six healthy blood donors served as the control group. Venous blood samples were collected from these subjects followed by isolation of Treg cells and responder T (Tresp)cells. Flow cytometry was performed to determine the proportion of Treg cells in peripheral blood as well as that of cells secreting phosphorylated-STAT3(p-STAT3), interferon γ(IFN-γ), tumor necrosis factor α(TNF-α)and interleukin 17(IL-17)in Treg cells, and quantitative real-time PCR (qRT-PCR)to measure the expression levels of IFN-γ, TNF-α and IL-17 mRNAs in Treg cells. Some Treg cells and Tresp cells were cultured in vitro alone or in combination, and flow cytometry was conducted to estimate cellular proliferative activity on day 7 after stimulation with IL-2. Some patient-derived Treg cells were classified into several groups to be cultured alone or in combination with Tresp cells with or without the presence of the STAT3 pathway inhibitor, Stattic V (10 or 50 μg/L), for 7 days. Subsequently, flow cytometry was performed to evaluate the proliferative activity of Tresp cells, and qRT-PCR to measure the expression levels of IFN-γ, TNF-α and IL-17 mRNAs in Treg cells. Results No significant differences were observed in the proportion of Treg cells in peripheral blood between the patient group and control group (6.437% ± 0.186% vs. 6.812% ± 0.241%, t = 1.224, P >0.05). Compared with control-derived Treg cells, the patient-derived Treg cells showed significantly decreased proliferative activity and inhibitory effects on Tresp cells, but increased proportion of cells secreting p-STAT3, IFN-γ, TNF

  14. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-02-18

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  15. Knowledge-based identification of the ERK2/STAT3 signal pathway as a therapeutic target for type 2 diabetes and drug discovery.

    Science.gov (United States)

    Kinoshita, Takayoshi; Doi, Kentaro; Sugiyama, Hajime; Kinoshita, Shuhei; Wada, Mutsuyo; Naruto, Shuji; Tomonaga, Atsushi

    2011-09-01

    Many existing agents for diabetes therapy are unable to restore or maintain normal glucose homeostasis or prevent the eventual emergence of hyperglycemia-related complication. Therefore, agents based on novel mechanisms are sought to complement and extend the current therapeutic approaches. Based on the initial paper research, we focused on active STAT3 as an attractive pharmacological target for type 2 diabetes. The subsequent text mining with a unique query to identify suppressors but not activators of STAT3 revealed the ERK2/STAT3 pathway as a novel diabetes target. The description of ERK2 inhibitors as diabetes target had not been found in our text mining research at present. The mechanism-based peptide inhibitor for ERK2 was identified using the knowledge of the KIM sequence, which has an important role in the recognition of cognate kinases, phosphatases, scaffold proteins, and substrates. The peptide inhibitor was confirmed to exert effects in vitro and in vivo. The peptide inhibitor conferred a significant decrease in HOMA-IR levels on Day 28 compared with that in the vehicle group. Besides lowering the fasting blood glucose level, the peptide inhibitor also attenuated the blood glucose increment in the fed state, as compared with the vehicle group.

  16. Direct Signaling from Astrocytes to Neurons in Cultures of Mammalian Brain Cells

    Science.gov (United States)

    Nedergaard, Maiken

    1994-03-01

    Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.

  17. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.

    Science.gov (United States)

    Hsu, Fu-Ning; Chen, Mei-Chih; Lin, Kuan-Chia; Peng, Yu-Ting; Li, Pei-Chi; Lin, Eugene; Chiang, Ming-Ching; Hsieh, Jer-Tsong; Lin, Ho

    2013-10-15

    Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

  18. Astrocyte signaling in the presence of spatial inhomogeneities

    Science.gov (United States)

    Stamatakis, Michail; Mantzaris, Nikos V.

    2007-09-01

    Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the

  19. CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Shi-Jie; Cui, Hong-Yong; Liu, Yan-Mei; Zhao, Pu; Zhang, Yang; Fu, Zhi-Guang; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-01-01

    Metastasis is considered a dynamic process in tumor development that is related to abnormal migration and invasion. Tumor cells can move as individual cells in two interconvertible modes: mesenchymal-type and amoeboid. Previously, we reported that the interaction between CD147 and Annexin II can inhibit the amoeboid movement in hepatocellular carcinoma (HCC) cells. However, the mechanism of CD147 involved in mesenchymal movement is still unclear. Notably, our results show overexpression of CD147 led to mesenchymal-type movement in HCC cells. Evidence indicated that the mesenchymal-type cell movement induced by CD147 was Src dependent, as observed by confocal microscopy and Rac1 activity assay. The phosphorylation of Src (pY416-Src) can be up-regulated by CD147, and this regulation is mediated by focal adhesion kinase (FAK). Next, we identified DOCK8 as a GEF for Rac1, a key molecule driving mesenchymal-type movement. We also found that Src promotes STAT3 phosphorylation and STAT3 facilitates DOCK8 transcription, thus enhancing DOCK8 expression and Rac1 activation. This study provides a novel mechanism of CD147 regulating mesenchymal-type movement in HCC cells.

  20. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  1. Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K(+) Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization.

    Science.gov (United States)

    Hertz, Leif; Chen, Ye; Song, Dan

    2017-01-01

    Based on differences in gene expression between cultured astrocytes and freshly isolated brain astrocytes it has been claimed that cultured astrocytes poorly reflect the characteristics of their in vivo counterparts. This paper shows that this is not the case with the cultures of mouse astrocytes we have used since 1978. The culture is prepared following guidelines provided by Drs. Monique Sensenbrenner and John Booher, with the difference that dibutyryl cyclic AMP is added to the culture medium from the beginning of the third week. This addition has only minor effects on glucose and glutamate metabolism, but it is crucial for effects by elevated K(+) concentrations and for Ca(2+) homeostasis, important aspects of astrocyte function. Work by Liang Peng and her colleagues has shown identity between not only gene expression but also drug-induced gene upregulations and editings in astrocytes cultured by this method and astrocytes freshly isolated from brains of drug-treated animals. Dr. Norenberg's laboratory has demonstrated identical upregulation of the cotransporter NKCC1 in ammonia-exposed astrocytes and rats with liver failure. Similarity between cultured and freshly isolated astrocytes has also been shown in metabolism, K(+) uptake and several aspects of signaling. However, others have shown that the gene for the glutamate transporter GLT1 is not expressed, and rat cultures show some abnormalities in K(+) effects. Nevertheless, the overall reliability of the cultured cells is important because immunohistochemistry and in situ hybridization poorly demonstrate many astrocytic genes, e.g., those of nucleoside transporters, and even microarray analysis of isolated cells can be misleading.

  2. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China)

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.

  3. Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Lihan Zhou

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (STAT3 plays critical roles in neural development and is increasingly recognized as a major mediator of injury response in the nervous system. Cytokines and growth factors are known to phosphorylate STAT3 at tyrosine(705 with or without the concomitant phosphorylation at serine(727, resulting in the nuclear localization of STAT3 and subsequent transcriptional activation of genes. Recent evidence suggests that STAT3 may control cell function via alternative mechanisms independent of its transcriptional activity. Currently, the involvement of STAT3 mono-phosphorylated at residue serine(727 (P-Ser-STAT3 in neurite outgrowth and the underlying mechanism is largely unknown. PRINCIPAL FINDINGS: In this study, we investigated the role of nerve growth factor (NGF induced P-Ser-STAT3 in mediating neurite outgrowth. NGF induced the phosphorylation of residue serine(727 but not tyrosine(705 of STAT3 in PC12 and primary cortical neuronal cells. In PC12 cells, serine but not tyrosine dominant negative mutant of STAT3 was found to impair NGF induced neurite outgrowth. Unexpectedly, NGF induced P-Ser-STAT3 was localized to the mitochondria but not in the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NGF induced neurite outgrowth and the production of reactive oxygen species (ROS. CONCLUSION: Taken together, the findings herein demonstrated a hitherto unrecognized novel transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 is involved in NGF induced neurite outgrowth.

  4. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations.

    Science.gov (United States)

    Geiger, Jessica L; Grandis, Jennifer R; Bauman, Julie E

    2016-05-01

    Proteins of the signal transducer and activator of transcription (STAT) family mediate cellular responses to cytokines and growth factors. Aberrant regulation of the STAT3 oncogene contributes to tumor formation and progression in many cancers, including head and neck squamous cell carcinoma (HNSCC), where hyperactivation of STAT3 is implicated in both treatment resistance and immune escape. There are no oncogenic gain-of-function mutations in HNSCC. Rather, aberrant STAT3 signaling is primarily driven by upstream growth factor receptors, such as Janus kinase (JAK) and epidermal growth factor receptor (EGFR). Moreover, genomic silencing of select protein tyrosine phosphatase receptors (PTPRs), tumor suppressors that dephosphorylate STAT3, may lead to prolonged phosphorylation and activation of STAT3. This review will summarize current knowledge of the STAT3 pathway and its contribution to HNSCC growth, survival, and resistance to standard therapies, and discuss STAT3-targeting agents in various phases of clinical development.

  5. STAT3 as a target for inducing apoptosis in solid and hematological tumors

    Institute of Scientific and Technical Information of China (English)

    Khandaker Al Zaid Siddiquee; James Turkson

    2008-01-01

    Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and supporting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.

  6. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines

    DEFF Research Database (Denmark)

    Nielsen, M; Kaltoft, K; Nordahl, M

    1997-01-01

    , and tyrosine phosphorylation was not enhanced by growth factor stimulation; (ii) band shift assays and immunoprecipitations of DNA/Stat complexes showed constitutive DNA-binding properties of Stat3(sm); and (iii) Stat3(sm) was constitutively associated with Jak3. The abnormal activation of Stat3(sm) was highly....... Jaks link cytokine receptors to Stats, and abnormal Jak/Stat signaling has been observed in some hemopoietic cancers. In MF tumor cells, a slowly migrating isoform of Stat3, Stat3(sm), was found to be constitutively activated, i.e., (i) Stat3(sm) was constitutively phosphorylated on tyrosine residues......-induced growth of MF tumor cells. In conclusion, we have provided evidence for an abnormal Jak/Stat signaling and growth regulation in tumor cells obtained from affected skin of an MF patient....

  7. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  8. Activation of epithelial STAT3 regulates intestinal homeostasis.

    Science.gov (United States)

    Neufert, Clemens; Pickert, Geethanjali; Zheng, Yan; Wittkopf, Nadine; Warntjen, Moritz; Nikolaev, Alexei; Ouyang, Wenjun; Neurath, Markus F; Becker, Christoph

    2010-02-15

    The intestinal epithelium that lines the mucosal surface along the GI-tract is a key player for the intestinal homeostasis of the healthy individual. In case of a mucosal damage or a barrier defect as seen in patients with inflammatory bowel disease, the balance is disturbed, and translocation of intestinal microbes to the submucosa is facilitated. We recently demonstrated a pivotal role of STAT3 activation in intestinal epithelial cells (IEC) for the restoration of the balance at the mucosal surface of the gut in an experimental colitis model. STAT3 was rapidly induced in intestinal epithelial cells upon challenge of mice in both experimental colitis and intestinal wound healing models. STAT3 activation was found to be dispensable in the steady-state conditions but was important for efficient regeneration of the epithelium in response to injury. Here, we extend our previous findings by showing epithelial STAT3 activation in human patients suffering from IBD and provide additional insights how the activation of epithelial STAT3 by IL-22 regulates intestinal homeostasis and mucosal wound healing. We also demonstrate that antibody-mediated neutralization of IL-22 has little impact on the development of experimental colitis in mice, but significantly delays recovery from colitis. Thus, our data suggest that targeting the STAT3 signaling pathway in IEC is a promising therapeutic approach in situations when the intestinal homeostasis is disturbed, e.g., as seen in Crohn's disease or Ulcerative colitis.

  9. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes.

    Science.gov (United States)

    Malik, Nasir; Wang, Xiantao; Shah, Sonia; Efthymiou, Anastasia G; Yan, Bin; Heman-Ackah, Sabrina; Zhan, Ming; Rao, Mahendra

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease.

  10. The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats.

    Science.gov (United States)

    Zhou, Guang-Yao; Yi, Yong-Xiang; Jin, Ling-Xiang; Lin, Wei; Fang, Pei-Pei; Lin, Xiu-Zheng; Zheng, Yi; Pan, Chen-Wei

    2016-07-01

    High fructose-feeding is an essential causative factor leading to the development and progression of hepatitis associated with high levels of endotoxin (LPS). Juglanin, as a natural compound extracted from the crude Polygonum aviculare, displayed inhibitory activity against inflammation response and cancer growth. However, researches about its role on anti-inflammation and apoptosis are far from available. Here, it is the first time that juglanin was administrated to investigate whether it inhibits fructose-feeding-induced hepatitis in rats and to elucidate the possible mechanism by which juglanin might recover it. Fructose-feeding rats were orally administrated with juglanin of 5, 10 and 20mg/kg for 6 weeks, respectively. Juglanin exerted prevention of fructose-feeding-stimulated increased LPS levels, accelerated alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) and up-regulated inflammatory cytokines expression in serum, mainly including tumor necrosis factor-alpha (TNF-a), Interleukin 1beta (IL-1β), Interleukin 6 (IL-6) and Interleukin 18 (IL-18). Meanwhile, toll-like receptor 4 (TLR4)-modulated mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) and apoptosis-related Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway are involved in the progression of hepatic injury and inflammation. And juglanin was found to suppress fructose-feeding-induced activation of these signaling pathways compared with the model group administrated only with fructose. These results indicate that juglanin represses inflammatory response and apoptosis via TLR4-regulated MAPK/NF-κB and JAK2/STAT3 signaling pathway respectively in rats with hepatitis induced by LPS for fructose-feeding. Treatment of juglanin might be an effective therapeutic strategy for preventing hepatitis.

  11. Cinnamaldehyde Derivative (CB-PIC Sensitizes Chemo-Resistant Cancer Cells to Drug-Induced Apoptosis via Suppression of MDR1 and its Upstream STAT3 and AKT Signalling

    Directory of Open Access Journals (Sweden)

    Jianzhong Xi

    2015-03-01

    Full Text Available Background/Aims: Our group reported that cinnamaldehyde derivative, (E-4-((2-(3-oxopop-1-enylphenoxymethylpyridinium malonic acid (CB-PIC induced apoptosis in hypoxic SW620 colorectal cancer cells via activation of AMP-activated protein kinase (AMPK and extracellular signal regulated kinase (ERK. Herein, sensitizing effect of CB-PIC was investigated in resistant cancer cells such as paclitaxel (PT resistant lung cancer cells (H460/PT, and Adriamycin (Adr resistant breast cancer (MCF7/Adr and colon cancer (HCT15/cos cells. Methods: Various drug resistant cell lines were treated with CB-PIC, and the signalling pathway and functional assay were explored by Western blot, Rhodamine assay, FACS, RT-PCR and MTT assay. Results: We found that CB-PIC effectively exerted cytotoxicity, increased sub G1 population and the cleaved form of poly (ADP-ribose polymerase (PARP and caspase 9 in drug resistant cancer cells. Furthermore, CB-PIC sensitized resistant cancer cells to adriamycin via downregulation of survival proteins such as survivin, Bcl-xL and Bcl-2, along with MDR1 suppression leading to accumulation of drug in the intracellular region. Of note, CB-PIC transcriptionally decreased MDR1 expression via suppression of STAT3 and AKT signalling in three resistant cancer cells with highly expressed P-glycoprotein. Nonetheless, CB-PIC did not affect transport activity of P-glycoprotein in a short time efflux assay, while epigallocatechin gallate (EGCG accumulated Rhodamine 123 into intracellular region of cell by direct inhibition of MDR1 transport activity. Conclusions: These data demonstrate that CB-PIC suppresses the P-glycoprotein expression through inhibition of STAT3 and AKT signalling to overcome drug resistance in chemo-resistant cancer cells as a potent chemotherapeutic sensitizer.

  12. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3.

    Science.gov (United States)

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A

    2008-12-15

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival.

  13. Modulation of STAT3 folding and function by TRiC/CCT chaperonin.

    Directory of Open Access Journals (Sweden)

    Moses Kasembeli

    2014-04-01

    Full Text Available Signal transducer and activator of transcription 3 (Stat3 transduces signals of many peptide hormones from the cell surface to the nucleus and functions as an oncoprotein in many types of cancers, yet little is known about how it achieves its native folded state within the cell. Here we show that Stat3 is a novel substrate of the ring-shaped hetero-oligomeric eukaryotic chaperonin, TRiC/CCT, which contributes to its biosynthesis and activity in vitro and in vivo. TRiC binding to Stat3 was mediated, at least in part, by TRiC subunit CCT3. Stat3 binding to TRiC mapped predominantly to the β-strand rich, DNA-binding domain of Stat3. Notably, enhancing Stat3 binding to TRiC by engineering an additional TRiC-binding domain from the von Hippel-Lindau protein (vTBD, at the N-terminus of Stat3, further increased its affinity for TRiC as well as its function, as determined by Stat3's ability to bind to its phosphotyrosyl-peptide ligand, an interaction critical for Stat3 activation. Thus, Stat3 levels and function are regulated by TRiC and can be modulated by manipulating its interaction with TRiC.

  14. Downregulated Hsa-let-7f contributes to the loss of type II collagen by targeting interleukin-10/STAT3 signaling pathway in degenerative lumbar scoliosis%退变性腰椎侧凸发病中Hsa-let-7f调控白细胞介素10/STAT3信号通路的作用

    Institute of Scientific and Technical Information of China (English)

    王磊; 李天旺; 刘建强; 刘晓宗; 王照国; 田艳; 张永兴; 王伟

    2016-01-01

    物治疗靶点。%BACKGROUND:MicroRNAs (miRNAs) play an important role in a variety of diseases. Investigation of miRNA expression profile in degenerative lumbar scoliosis is beneficial for understanding its pathogenesis, providing a novel therapeutic target. Therefore, we tested the hypothesis that miRNAs promote intervertebral disc degeneration through the interleukin-10/STAT3 signaling pathway, a potential regulator of intervertebral disc degeneration. OBJECTIVE:To compare the differentialy expressed miRNAs in the intervertebral disc tissues from patients with degenerative lumbar scoliosis and normal controls and to identify specific miRNAs in degenerative lumbar scoliosis folowed by functional validation. METHODS: An initial screening of miRNA expression in nucleus pulposus tissues by miRNA Solexa Sequencing was performed in samples from 10 patients with degenerative lumbar scoliosis and 10 controls, respectively. Subsequently, differentialy expressed miRNAs were validated using qRT-PCR. The level of differentialy expressed miRNAs in degenerative nucleus pulposus tissues was investigated. Then, functional analysis of the miRNAs in regulating type II colagen expression was carried out. Western blot and luciferase reporter assay were used to further confirm the target gene. RESULTS AND CONCLUSION: We identified 30 miRNAs that were differentialy expressed (16 upregulated and 14 downregulated) in patients with degenerative lumbar scoliosis compared with controls. Folowing qRT-PCR confirmation, Has-let-7f was significantly down-regulated in degenerative nucleus pulposus tissues as compared with controls. Moreover, its level was correlated with the severity of disc degeneration. Overexpression of Has-let-7f promoted type II colagen expression in nucleus pulposus cels. Knockout of interleukin-10 induced effects on nucleus pulposus cels similar to Has-let-7f. Bioinformatics target prediction identified interleukin-10 as a putative target of Has-let-7f. Furthermore, luciferase reporter assays demonstrated that

  15. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells.

    Science.gov (United States)

    Matsuzaki, Yohei; Besnard, Valérie; Clark, Jean C; Xu, Yan; Wert, Susan E; Ikegami, Machiko; Whitsett, Jeffrey A

    2008-05-01

    ATP-Binding Cassette A3 (ABCA3) is a lamellar body associated lipid transport protein required for normal synthesis and storage of pulmonary surfactant in type II cells in the alveoli. In this study, we demonstrate that STAT3, activated by IL-6, regulates ABCA3 expression in vivo and in vitro. ABCA3 mRNA and immunostaining were decreased in adult mouse lungs in which STAT3 was deleted from the respiratory epithelium (Stat3(Delta/Delta) mice). Consistent with the role of STAT3, intratracheal IL-6 induced ABCA3 expression in vivo. Decreased ABCA3 and abnormalities in the formation of lamellar bodies, the intracellular site of surfactant lipid storage, were observed in Stat3(Delta/Delta) mice. Expression of SREBP1a and 1c, SCAP, ABCA3, and AKT mRNAs was inhibited by deletion of Stat3 in type II cells isolated from Stat3(Delta/Delta) mice. The activities of PI3K and AKT were required for normal Abca3 gene expression in vitro. AKT activation induced SREBP expression and increased the activity of the Abca3 promoter in vitro, consistent with the role of STAT3 signaling, at least in part via SREBP, in the regulation of ABCA3. ABCA3 expression is regulated by IL-6 in a pathway that includes STAT3, PI3K, AKT, SCAP, and SREBP. Activation of STAT3 after exposure to IL-6 enhances ABCA3 expression, which, in turn, influences pulmonary surfactant homeostasis.

  16. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ailian; Yang, Zhengduo [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Shen, Yicheng [College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712 (United States); Zhou, Jia [Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Shen, Qiang, E-mail: qshen@mdanderson.org [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-04-16

    Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.

  17. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie

    2017-01-01

    We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release...... of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca2+ signaling in response to activation of the noradrenergic system, but whether...... astrocytic Ca2+ signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca2+ signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we...

  18. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Arata, E-mail: anishimo@yamaguchi-u.ac.jp [Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 (Japan); Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko [Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 (Japan); Li, Tao-Sheng [Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Hamano, Kimikazu [Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 (Japan)

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target

  19. Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727*

    Science.gov (United States)

    Zhang, Qifang; Raje, Vidisha; Yakovlev, Vasily A.; Yacoub, Adly; Szczepanek, Karol; Meier, Jeremy; Derecka, Marta; Chen, Qun; Hu, Ying; Sisler, Jennifer; Hamed, Hossein; Lesnefsky, Edward J.; Valerie, Kristoffer; Dent, Paul; Larner, Andrew C.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat3) is a key mediator in the development of many cancers. For 20 years, it has been assumed that Stat3 mediates its biological activities as a nuclear localized transcription factor activated by many cytokines. However, recent studies from this laboratory and others indicate that Stat3 has an independent function in the mitochondria (mitoStat3) where it controls the activity of the electron transport chain (ETC) and mediates Ras-induced transformation of mouse embryo fibroblasts. The actions of mitoStat3 in controlling respiration and Ras transformation are mediated by the phosphorylation state of serine 727. To address the role of mitoStat3 in the pathogenesis of cells that are transformed, we used 4T1 breast cancer cells, which form tumors that metastasize in immunocompetent mice. Substitution of Ser-727 for an alanine or aspartate in Stat3 that has a mitochondrial localization sequence, MLS-Stat3, has profound effects on tumor growth, complex I activity of the ETC, and accumulation of reactive oxygen species (ROS). Cells expressing MLS-Stat3(S727A) display slower tumor growth, decreased complex I activity of the ETC, and increased ROS accumulation under hypoxia compared with cells expressing MLS-Stat3. In contrast, cells expressing MLS-Stat3(S727D) show enhanced tumor growth and complex I activity and decreased production of ROS. These results highlight the importance of serine 727 of mitoStat3 in breast cancer and suggest a novel role for mitoStat3 in regulation of ROS concentrations through its action on the ETC. PMID:24019511

  20. Role of STAT3 in in vitro transformation triggered by TRK oncogenes.

    Directory of Open Access Journals (Sweden)

    Claudia Miranda

    Full Text Available TRK oncoproteins are chimeric versions of the NTRK1/NGF receptor and display constitutive tyrosine kinase activity leading to transformation of NIH3T3 cells and neuronal differentiation of PC12 cells. Signal Transducer and Activator of Transcription (STAT 3 is activated in response to cytokines and growth factors and it has been recently identified as a novel signal transducer for TrkA, mediating the functions of NGF in nervous system. In this paper we have investigated STAT3 involvement in signalling induced by TRK oncogenes. We showed that TRK oncogenes trigger STAT3 phosphorylation both on Y705 and S727 residues and STAT3 transcriptional activity. MAPK pathway was involved in the induction of STAT3 phosphorylation. Interestingly, we have shown reduced STAT3 protein level in NIH3T3 transformed foci expressing TRK oncogenes. Overall, we have unveiled a dual role for STAT3 in TRK oncogenes-induced NIH3T3 transformation: i decreased STAT3 protein levels, driven by TRK oncoproteins activity, are associated to morphological transformation; ii residual STAT3 transcriptional activity is required for cell growth.

  1. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction

    NARCIS (Netherlands)

    Demaria, Marco; Giorgi, Carlotta; Lebiedzinska, Magdalena; Esposito, Giovanna; D'Angeli, Luca; Bartoli, Antonietta; Gough, Daniel J; Turkson, James; Levy, David E; Watson, Christine J; Wieckowski, Mariusz R; Provero, Paolo; Pinton, Paolo; Poli, Valeria

    2010-01-01

    The pro-oncogenic transcription factor STAT3 is constitutively activated in a wide variety of tumours that often become addicted to its activity, but no unifying view of a core function determining this widespread STAT3-dependence has yet emerged. We show here that constitutively active STAT3 acts a

  2. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  3. STAT3 Regulates Proliferation and Immunogenicity of the Ewing Family of Tumors In Vitro

    Directory of Open Access Journals (Sweden)

    Sam Behjati

    2012-01-01

    Full Text Available The Ewing sarcoma family of tumors (ESFT represents an aggressive spectrum of malignant tumour types with common defining histological and cytogenetic features. To evaluate the functional activation of signal transducer and activator of transcription 3 (STAT3 in ESFT, we evaluated its activation in primary tissue sections and observed the functional consequences of its inhibition in ESFT cell lines. STAT3 was activated (tyrosine 705-phosphorylated in 18 out of 31 primary tumours (58%, either diffusely (35% or focally (23%. STAT3 was constitutively activated in 3 out of 3 ESFT cell lines tested, and its specific chemical inhibition resulted in complete loss of cell viability. STAT3 inhibition in ESFT cell lines was associated with several consistent changes in chemokine profile suggesting a role of STAT3 in ESFT in both cell survival and modification of the cellular immune environment. Together these data support the investigation of STAT3 inhibitors for the Ewing family of tumors.

  4. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3.

    Science.gov (United States)

    Guryanova, Olga A; Wu, Qiulian; Cheng, Lin; Lathia, Justin D; Huang, Zhi; Yang, Jinbo; MacSwords, Jennifer; Eyler, Christine E; McLendon, Roger E; Heddleston, John M; Shou, Weinian; Hambardzumyan, Dolores; Lee, Jeongwu; Hjelmeland, Anita B; Sloan, Andrew E; Bredel, Markus; Stark, George R; Rich, Jeremy N; Bao, Shideng

    2011-04-12

    Glioblastomas display cellular hierarchies containing tumor-propagating glioblastoma stem cells (GSCs). STAT3 is a critical signaling node in GSC maintenance but molecular mechanisms underlying STAT3 activation in GSCs are poorly defined. Here we demonstrate that the bone marrow X-linked (BMX) nonreceptor tyrosine kinase activates STAT3 signaling to maintain self-renewal and tumorigenic potential of GSCs. BMX is differentially expressed in GSCs relative to nonstem cancer cells and neural progenitors. BMX knockdown potently inhibited STAT3 activation, expression of GSC transcription factors, and growth of GSC-derived intracranial tumors. Constitutively active STAT3 rescued the effects of BMX downregulation, supporting that BMX signals through STAT3 in GSCs. These data demonstrate that BMX represents a GSC therapeutic target and reinforces the importance of STAT3 signaling in stem-like cancer phenotypes.

  5. STAT3和胃癌的研究进展

    Institute of Scientific and Technical Information of China (English)

    张荣贵

    2011-01-01

    @@ 人类STAT3基因定位于第17号染色体(q21.31),STAT3蛋白是信号转导子与转录激活子家族(signal transducers and activators of transcription ,STATs)的重要成员.近年来,STAT3与胃癌(gastric cancer,GC)关系引起人们的广泛关注,现就其研究进展作一综述. 一、STAT3概述

  6. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway.

    Science.gov (United States)

    Haustein, Martin D; Kracun, Sebastian; Lu, Xiao-Hong; Shih, Tiffany; Jackson-Weaver, Olan; Tong, Xiaoping; Xu, Ji; Yang, X William; O'Dell, Thomas J; Marvin, Jonathan S; Ellisman, Mark H; Bushong, Eric A; Looger, Loren L; Khakh, Baljit S

    2014-04-16

    The spatiotemporal activities of astrocyte Ca²⁺ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca²⁺ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localized, spontaneous Ca²⁺ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate. Moreover, evoked astrocyte Ca²⁺ signaling changed linearly with the number of mossy fiber action potentials. Under these settings, astrocyte responses were global, suppressed by neurotransmitter clearance, and mediated by glutamate and GABA. Thus, astrocyte engagement in the fully developed mossy fiber pathway was slow and territorial, contrary to that frequently proposed for astrocytes within microcircuits. We show that astrocyte Ca²⁺ signaling functionally segregates large volumes of neuropil and that these transients are not suited for responding to, or regulating, single synapses in the mossy fiber pathway.

  7. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    Science.gov (United States)

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie; Nedergaard, Maiken

    2017-02-16

    We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca(2+) signaling in response to activation of the noradrenergic system, but whether astrocytic Ca(2+) signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca(2+) signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.

  8. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment.

    Science.gov (United States)

    Zheng, Xin; Xu, Meng; Yao, Bowen; Wang, Cong; Jia, Yuli; Liu, Qingguang

    2016-09-01

    Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.

  9. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  10. 非小细胞肺癌中p-STAT3与Ki67的表达及意义%The expression and significance of phosphorylated signal transducer and activator of transcription 3 and Ki67 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    刘培杰

    2010-01-01

    Objective To study the expressions of phosphorylated signal transducer and activator of transcription 3(p-STAT3)and Ki67 in non-small cell lung cancer and their significance in tumor development and progression. Methods The expression of p-STAT3 and Ki67 were detected in 67 lung carcinoma tissues and 41 normal lung tissues by immun histochemical method. Results The positive rate of p-STAT3 in non-small cell lung cancer (67.16%,45/67) was significantly higher than that in normal lung tissue(17.07%,7/41). The positive rate of Ki67 in non-small cell lung cancer (76.12%,51/67) was significantly higher than that in normal lung tissue(7.31%,3/41).The expression of p-STAT3 and Ki67 were associated with clinical stages, lymph node transferation and histological grades(P<0.05). The expression of p-STAT3 and Ki67 were not associated with ages, sex, tumor location or size.The expression of p-STAT3 was positively correlated with Ki67 expression. Conclusions Abnormal activation of p-STAT3, can lead to excessive proliferation of tumor cells and Ki67 is a favorable indicator of proliferation of lung tumor cells, and the combined detection of p-STAT3 and Ki67 may be valuable for diagnosis and treatment of non-small cell lung cancer.%目的 研究磷酸化信号转导与转录活化因子3(p-STAT3)和 Ki67在非小细胞肺癌(NSCLC)发生、发展中的作用及相互关系.方法 采用免疫组织化学S-P法检测67例非小细胞肺癌组织和41例正常肺组织中p-STAT3与Ki67的表达.结果 非小细胞肺癌组织中p-STAT3的阳性表达率(67.16%,45/67)显著高于正常肺组织(17.07%,7/41),Ki67在非小细胞肺癌组织中的表达(76.12%,51/67)高于正常肺组织(7.31%,3/41).p-STAT3和 Ki67的表达与临床分期、有无淋巴转移和分化程度相关(P均<0.05),与患者年龄、性别、肿瘤位置及大小无关.p-STAT3的表达与Ki67表达呈正相关.结论 p-STAT3的异常活化可促进恶性肿瘤细胞的过度增殖,Ki67较好的反应了肺癌

  11. Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling

    NARCIS (Netherlands)

    Zuurbier, C.J.; Jong, W.M.; Eerbeek, O.; Koeman, A.; Pulskens, W.P.; Butter, L.M.; Leemans, J.C.; Hollmann, M.W.

    2012-01-01

    OBJECTIVE: Recent studies indicate that the innate immune system is not only triggered by exogenous pathogens and pollutants, but also by endogenous danger signals released during ischemia and necrosis. As triggers for the innate immune NLRP3 inflammasome protein complex appear to overlap with those

  12. Clinical Implications of Phosphorylated STAT3 Expression in De Novo Diffuse Large B-cell Lymphoma

    NARCIS (Netherlands)

    Ok, C.Y.; Chen, J.; Xu-Monette, Z.Y.; Tzankov, A.; Manyam, G.C.; Li, L.; Visco, C.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Choi, W.W.; Krieken, J.H.J.M. van; Huh, J.; Zhao, X.; Ponzoni, M.; Ferreri, A.J.; Bertoni, F.; Farnen, J.P.; Moller, M.B.; Piris, M.A.; Winter, J.N.; Medeiros, L.J.; Young, K.H.

    2014-01-01

    PURPOSE: Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor growth, invasion, cell proliferation, angiogenesis, immune response, and survival. Data regarding expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and the impact of ph

  13. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  14. Unveiling the Association of STAT3 and HO-1 in Prostate Cancer: Role beyond Heme Degradation

    Directory of Open Access Journals (Sweden)

    Belen Elguero

    2012-11-01

    Full Text Available Activation of the androgen receptor (AR is a key step in the development of prostate cancer (PCa. Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3 signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1 may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation.

  15. ERp57 modulates STAT3 activity in radioresistant laryngeal cancer cells and serves as a prognostic marker for laryngeal cancer.

    Science.gov (United States)

    Choe, Min Ho; Min, Joong Won; Jeon, Hong Bae; Cho, Dong-Hyung; Oh, Jeong Su; Lee, Hyun Gyu; Hwang, Sang-Gu; An, Sungkwan; Han, Young-Hoon; Kim, Jae-Sung

    2015-02-20

    Although targeting radioresistant tumor cells is essential for enhancing the efficacy of radiotherapy, the signals activated in resistant tumors are still unclear. This study shows that ERp57 contributes to radioresistance of laryngeal cancer by activating STAT3. Increased ERp57 was associated with the radioresistant phenotype of laryngeal cancer cells. Interestingly, increased interaction between ERp57 and STAT3 was observed in radioresistant cells, compared to the control cells. This physical complex is required for the activation of STAT3 in the radioresistant cells. Among STAT3-regulatory genes, Mcl-1 was predominantly regulated by ERp57. Inhibition of STAT3 activity with a chemical inhibitor or siRNA-mediated depletion of Mcl-1 sensitized radioresistant cells to irradiation, suggesting that the ERp57-STAT3-Mcl-1 axis regulates radioresistance of laryngeal cancer cells. Furthermore, we observed a positive correlation between ERp57 and phosphorylated STAT3 or Mcl-1 and in vivo interactions between ERp57 and STAT3 in human laryngeal cancer. Importantly, we also found that increased ERp57-STAT3 complex was associated with poor prognosis in human laryngeal cancer, indicating the prognostic role of ERp57-STAT3 regulation. Overall, our data suggest that ERp57-STAT3 regulation functions in radioresistance of laryngeal cancer, and targeting the ERp57-STAT3 pathway might be important for enhancing the efficacy of radiotherapy in human laryngeal cancer.

  16. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  17. 雌激素活化GPER介导的IL-6/STAT3通路促进乳腺癌细胞SKBR-3增殖作用%Estrogen activates GPER mediated IL-6/STAT3 signaling pathway to enhance proliferation in breast cancer SKBR-3 cells

    Institute of Scientific and Technical Information of China (English)

    王健; 徐杰; 安雪青; 吕健东

    2015-01-01

    目的 探讨雌激素活化膜性雌激素受体(G-protein coupled estrogen receptor,GPER)所介导的IL-6/STAT3炎症信号通路对乳腺癌SKBR-3细胞增殖能力的影响.方法 用17-β雌二醇(E2)、GPER特异性激动剂(G1)、GPER特异性拮抗剂(G15)、IL-6中和抗体(Anti-IL-6)及STAT3特异性抑制剂JSI-124(cucurbitacin I)药物处理SKBR-3细胞后,分别得到对照组、E2处理组、G1处理组、E2+G15处理组、G1+G15处理组、E2+ Anti-IL-6处理组、G1+Anti-IL-6处理组、E2+ JSI-124处理组与G1+JSI-124处理组,用ELISA检测细胞培养液上清中IL-6的分泌量,CCK-8法检测细胞增殖能力的变化,Westernblot检测细胞中p-STAT3STAT3的蛋白表达水平.结果 E2和G1显著促进SKBR-3细胞上清中IL-6的分泌量,G15可显著阻断其分泌(P<0.05).E2及G1药物处理细胞后增殖能力较对照组显著增强,相对细胞数分别为对照组的(1.68±0.13)倍与(1.74±0.21)倍,其促增殖作用被G15及IL-6中和抗体(Anti-IL-6)显著抑制(P<0.05).E2及G1在不同时间点(1、3、6、12 h)均可显著促进细胞中p-STAT3的蛋白表达量,分别于12 h和3h达到表达峰值,其蛋白相对表达量分别为对照组的(2.54±0.23)倍和(3.12±0.24)倍.G15、Anti-IL-6及JSI-124显著阻断以上变化(P<0.05).JSI-124亦可明显抑制E2及G1所引起的促增殖效应(P<0.05).结论 雌激素活化膜性雌激素受体GPER促进乳腺癌SKBR-3细胞自分泌IL-6从而激活细胞中下游STAT3炎症信号通路,同时,GPER/IL-6/STAT3信号通路也介导了雌激素对细胞的增殖作用.

  18. Imaging intracellular Ca²⁺ signals in striatal astrocytes from adult mice using genetically-encoded calcium indicators.

    Science.gov (United States)

    Jiang, Ruotian; Haustein, Martin D; Sofroniew, Michael V; Khakh, Baljit S

    2014-11-19

    Astrocytes display spontaneous intracellular Ca(2+) concentration fluctuations ([Ca(2+)]i) and in several settings respond to neuronal excitation with enhanced [Ca(2+)]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca(2+)]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca(2+)]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca(2+)]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca(2+)]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca(2+)]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca(2+)]i signals in the striatal microcircuitry.

  19. APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival.

    Science.gov (United States)

    Cardoso, Angelo A; Jiang, Yanlin; Luo, Meihua; Reed, April M; Shahda, Safi; He, Ying; Maitra, Anirban; Kelley, Mark R; Fishel, Melissa L

    2012-01-01

    Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.

  20. Neuron-glia signaling: Implications for astrocyte differentiation and synapse formation.

    Science.gov (United States)

    Stipursky, Joice; Romão, Luciana; Tortelli, Vanessa; Neto, Vivaldo Moura; Gomes, Flávia Carvalho Alcantara

    2011-10-10

    Glial cells are currently viewed as active partners of neurons in synapse formation. The close proximity of astrocytes to the synaptic cleft implicates that they strongly influence synapse function as well as suggests that these cells might be potential targets for neuronal-released molecules. In this review, we discuss the signaling pathways of astrocyte generation and the role of astrocyte-derived molecules in synapse formation in the central nervous system. Further, we discuss the role of the excitatory neurotransmitter, glutamate and transforming growth factor beta 1 (TGF-β1) pathway in astrocyte generation and differentiation. We provide evidence that astrocytes surrounding synapses are target of neuronal activity and shed light into the role of astroglial cells into neurological disorders associated with glutamate neurotoxicity.

  1. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death.

    Science.gov (United States)

    Zamo, Alberto; Chiarle, Roberto; Piva, Roberto; Howes, Jennifer; Fan, Yan; Chilosi, Marco; Levy, David E; Inghirami, Giorgio

    2002-02-07

    The anaplastic lymphoma kinase (ALK) gene is characteristically translocated in Anaplastic Large Cell Lymphomas (ALCL) and the juxtaposition of the ALK gene to multiple partners results in its constitutive protein tyrosine kinase activity. We show here that expression of activated ALK induces the constitutive phosphorylation of Stat3 in transfected cells as well as in primary human ALCLs. Furthermore, immunohistochemical studies demonstrate that among distinct human B and T cell lymphomas, activation of Stat3 nuclear translocation is uniquely associated with ALK expression. NPM-ALK also binds and activates Jak3; however, Jak3 is not required for Stat3 activation or for cell transformation in vitro. Moreover, src family kinases are not necessary for NPM-ALK-mediated Stat3 activation or transformation, suggesting that Stat3 may be phosphorylated directly by ALK. To evaluate relevant targets of ALK-activated Stat3, we investigated the regulation of the anti-apoptotic protein Bcl-x(L) and its role in cell survival in NPM-ALK positive cells. NPM-ALK expression caused enhanced Bcl-x(L) transcription, largely mediated by Stat3. Increased expression of Bcl-x(L) provided sufficient anti-apoptotic signals to protect cells from treatment with specific inhibitors of the Jaks/Stat pathway or the Brc-Abl kinase. These studies support a pathogenic mechanism whereby stimulation of anti-apoptotic signals through activation of Stat3 contributes to the successful outgrowth of ALK positive tumor cells.

  2. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  3. Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM.

    Directory of Open Access Journals (Sweden)

    Hikmat Assi

    Full Text Available Cellular microenvironments, particularly those found in tumors, elicit a tolerogenic DC phenotype which can attenuate immune responses. Central to this process is the STAT3-mediated signaling cascade. As a transcription factor and oncogene, STAT3 promotes the expression of genes which allow tumor cells to proliferate, migrate and evade apoptosis. More importantly, activation of STAT3 in tumor infiltrating immune cells has been shown to be responsible, in part, for their immune-suppressed phenotype. The ability of STAT3 to orchestrate a diverse set of immunosuppressive instructions has made it an attractive target for cancer vaccines. Using a conditional hematopoietic knockout mouse model of STAT3, we evaluated the impact of STAT3 gene ablation on the differentiation of dendritic cells from bone marrow precursors. We also assessed the impact of STAT3 deletion on phagocytosis, maturation, cytokine secretion and antigen presentation by GM-CSF derived DCs in vitro. In addition to in vitro studies, we compared the therapeutic efficacy of DC vaccination using STAT3 deficient DCs to wild type counterparts in an intracranial mouse model of GBM. Our results indicated the following pleiotropic functions of STAT3: hematopoietic cells which lacked STAT3 were unresponsive to Flt3L and failed to differentiate as DCs. In contrast, STAT3 was not required for GM-CSF induced DC differentiation as both wild type and STAT3 null bone marrow cells gave rise to similar number of DCs. STAT3 also appeared to regulate the response of GM-CSF derived DCs to CpG. STAT3 null DCs expressed high levels of MHC-II, secreted more IL-12p70, IL-10, and TNFα were better antigen presenters in vitro. Although STAT3 deficient DCs displayed an enhanced activated phenotype in culture, they elicited comparable therapeutic efficacy in vivo compared to their wild type counterparts when utilized in vaccination paradigms in mice bearing intracranial glioma tumors.

  4. Death-associated protein kinase controls STAT3 activity in intestinal epithelial cells.

    Science.gov (United States)

    Chakilam, Saritha; Gandesiri, Muktheshwar; Rau, Tilman T; Agaimy, Abbas; Vijayalakshmi, Mahadevan; Ivanovska, Jelena; Wirtz, Ralph M; Schulze-Luehrmann, Jan; Benderska, Natalya; Wittkopf, Nadine; Chellappan, Ajithavalli; Ruemmele, Petra; Vieth, Michael; Rave-Fränk, Margret; Christiansen, Hans; Hartmann, Arndt; Neufert, Clemens; Atreya, Raja; Becker, Christoph; Steinberg, Pablo; Schneider-Stock, Regine

    2013-03-01

    The TNF-IL-6-STAT3 pathway plays a crucial role in promoting ulcerative colitis-associated carcinoma (UCC). To date, the negative regulation of STAT3 is poorly understood. Interestingly, intestinal epithelial cells of UCC in comparison to ulcerative colitis show high expression levels of anti-inflammatory death-associated protein kinase (DAPK) and low levels of pSTAT3. Accordingly, epithelial DAPK expression was enhanced in STAT3(IEC-KO) mice. To unravel a possible regulatory mechanism, we used an in vitro TNF-treated intestinal epithelial cell model. We identified a new function of DAPK in suppressing TNF-induced STAT3 activation as DAPK siRNA knockdown and treatment with a DAPK inhibitor potentiated STAT3 activation, IL-6 mRNA expression, and secretion. DAPK attenuated STAT3 activity directly by physical interaction shown in three-dimensional structural modeling. This model suggests that DAPK-induced conformational changes in the STAT3 dimer masked its nuclear localization signal. Alternatively, pharmacological inactivation of STAT3 led to an increase in DAPK mRNA and protein levels. Chromatin immunoprecipitation showed that STAT3 restricted DAPK expression by promoter binding, thereby reinforcing its own activation by inducing IL-6. This novel negative regulation principle might balance TNF-induced inflammation and seems to play an important role in the inflammation-associated transformation process as confirmed in an AOM+DSS colon carcinogenesis mouse model. DAPK as a negative regulator of STAT3 emerges as therapeutic option in the treatment of ulcerative colitis and UCC.

  5. Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo

    Institute of Scientific and Technical Information of China (English)

    Zuo-Wen Liang; Ling Zhang; Bao-Xue Yang; Bao-Feng Guo; Yang Li; Xiao-Jie Li; Xin Li; Li-Ting Zhao; Ii-Fang Gao; Hao Yu; Xue-Jian Zhao

    2011-01-01

    DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BL/6 mice. CaCl2-modif ied hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Stat3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGF and cyclin Dl were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P<0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stet3-induced apoptosis (up to 42%, P<0.01). The Stat3 downstream genes Bcl-2, VEGFand cyclin Dl were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.

  6. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro;

    2011-01-01

    In mammals, the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) is regulated by the deacetylase SIRT1. However, whether the newly described nongenomic actions of STAT3 toward mitochondrial oxidative phosphorylation are dependent on SIRT1 is unclear....... In this study, Sirt1 gene knock-out murine embryonic fibroblast (MEF) cells were used to delineate the role of SIRT1 in the regulation of STAT3 mitochondrial function. Here, we show that STAT3 mRNA and protein levels and the accumulation of serine-phosphorylated STAT3 in mitochondria were increased...... significantly in Sirt1-KO cells as compared with wild-type MEFs. Various mitochondrial bioenergetic parameters, such as the oxygen consumption rate in cell cultures, enzyme activities of the electron transport chain complexes in isolated mitochondria, and production of ATP and lactate, indicated that Sirt1-KO...

  7. Astrocyte sodium signaling and neuro-metabolic coupling in the brain.

    Science.gov (United States)

    Rose, C R; Chatton, J-Y

    2016-05-26

    At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain.

  8. Down-regulation of STAT3 expression by vector-based small interfering RNA inhibits pancreatic cancer growth

    Institute of Scientific and Technical Information of China (English)

    Chen Huang; Guang Yang; Tao Jiang; Jun Cao; Ke-Jian Huang; Zheng-Jun Qiu

    2011-01-01

    AIM: To evaluate the effect of RNA interference (RNAi) mediated silence of signal transduction and activation of transcription (STAT)3 on the growth of human pancreatic cancer cells both in vitro and in vivo . METHODS: STAT3 specific shRNA was used to silence the expression of STAT3 in pancreatic cancer cell line SW1990. The anti-growth effects of RNAi against STAT3 were studied in vitro and in experimental cancer xenografts in nude mice. The potential pathways involved in STAT3 signaling were detected using reverse transcription polymerase chain reaction and western blotting. RESULTS: The expression of the STAT3 was inhibited using RNAi in SW1990 cells. RNAi against STAT3 inhibited cell proliferation, induced cell apoptosis and significantly reduced the levels of CyclinD1 and Bcl-xL when compared with parental and control vector-transfected cells. In vivo experiments showed that RNAi against STAT3 inhibited the tumorigenicity of SW1990 cells and significantly suppressed tumor growth when it was directly injected into tumors. CONCLUSION: STAT3 signaling pathway plays an important role in the progression of pancreatic cancer, and silence of STAT3 gene using RNAi technique may be a novel therapeutic option for treatment of pancreatic cancer.

  9. Mitochondrial STAT3 contributes to transformation of Barrett's epithelial cells that express oncogenic Ras in a p53-independent fashion.

    Science.gov (United States)

    Yu, Chunhua; Huo, Xiaofang; Agoston, Agoston T; Zhang, Xi; Theiss, Arianne L; Cheng, Edaire; Zhang, Qiuyang; Zaika, Alexander; Pham, Thai H; Wang, David H; Lobie, Peter E; Odze, Robert D; Spechler, Stuart J; Souza, Rhonda F

    2015-08-01

    Metaplastic epithelial cells of Barrett's esophagus transformed by the combination of p53-knockdown and oncogenic Ras expression are known to activate signal transducer and activator of transcription 3 (STAT3). When phosphorylated at tyrosine 705 (Tyr705), STAT3 functions as a nuclear transcription factor that can contribute to oncogenesis. STAT3 phosphorylated at serine 727 (Ser727) localizes in mitochondria, but little is known about mitochondrial STAT3's contribution to carcinogenesis in Barrett's esophagus, which is the focus of this study. We introduced a constitutively active variant of human STAT3 (STAT3CA) into the following: 1) non-neoplastic Barrett's (BAR-T) cells; 2) BAR-T cells with p53 knockdown; and 3) BAR-T cells that express oncogenic H-Ras(G12V). STAT3CA transformed only the H-Ras(G12V)-expressing BAR-T cells (evidenced by loss of contact inhibition, formation of colonies in soft agar, and generation of tumors in immunodeficient mice), and did so in a p53-independent fashion. The transformed cells had elevated levels of both mitochondrial (Ser727) and nuclear (Tyr705) phospho-STAT3. Introduction of a STAT3CA construct with a mutated tyrosine phosphorylation site into H-Ras(G12V)-expressing Barrett's cells resulted in high levels of mitochondrial phospho-STAT3 (Ser727) with little or no nuclear phospho-STAT3 (Tyr705), and the cells still formed tumors in immunodeficient mice. Thus tyrosine phosphorylation of STAT3 is not required for tumor formation in Ras-expressing Barrett's cells. We conclude that mitochondrial STAT3 (Ser727) can contribute to oncogenesis in Barrett's cells that express oncogenic Ras. These findings suggest that agents targeting STAT3 might be useful for chemoprevention in patients with Barrett's esophagus.

  10. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uddalak Bharadwaj

    2014-09-01

    Full Text Available Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7 and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes.

  11. Monoclonal Antibodies Specific for STAT3β Reveal Its Contribution to Constitutive STAT3 Phosphorylation in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, Uddalak; Kasembeli, Moses M.; Eckols, T. Kris; Kolosov, Mikhail; Lang, Paul [Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 (United States); Christensen, Kurt [Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Edwards, Dean P. [Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 (United States); Tweardy, David J., E-mail: dtweardy@bcm.edu [Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Department of Biochemistry & Molecular Biology, BCM 286, Room N-1319, Baylor College of Medicine, Houston, TX 77030 (United States)

    2014-09-29

    Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3β, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p) Stat3β homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3β acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3β proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3β (CT7) and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3β protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3β may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3β from proteolytic Stat3β and Stat3α will provide new insights into the contribution of Stat3β vs. Stat3α to oncogenesis, as well as other biological and pathological processes.

  12. Role of unphosphorylated transcription factor STAT3 in late cerebral ischemia after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Samraj, Ajoy K; Müller, Anne H; Grell, Anne-Sofie;

    2014-01-01

    Molecular mechanisms behind increased cerebral vasospasm and local inflammation in late cerebral ischemia after subarachnoid hemorrhage (SAH) are poorly elucidated. Using system biology tools and experimental SAH models, we have identified signal transducer and activator of transcription 3 (STAT3...

  13. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Spitzner, Melanie, E-mail: melanie.spitzner@med.uni-goettingen.de [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Ebner, Reinhard [Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Wolff, Hendrik A. [Department of Radiotherapy and Radiooncology, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Ghadimi, B. Michael [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany); Wienands, Jürgen [Department of Cellular and Molecular Immunology, University Medicine Göttingen, Humboldtallee 34, Göttingen 37073 (Germany); Grade, Marian, E-mail: melanie.spitzner@med.uni-goettingen.de [Department of General, Visceral and Pediatric Surgery, University Medicine Göttingen, Robert-Koch-Str. 40, Göttingen 37075 (Germany)

    2014-09-29

    Chemoradiotherapy (CRT) represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3) plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.

  14. STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy

    Directory of Open Access Journals (Sweden)

    Melanie Spitzner

    2014-09-01

    Full Text Available Chemoradiotherapy (CRT represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3 plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.

  15. The Role of STAT3 in Thyroid Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sosonkina, Nadiya; Starenki, Dmytro; Park, Jong-In, E-mail: jipark@mcw.edu [Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 (United States)

    2014-03-06

    Thyroid cancer is the most common endocrine malignancy and its global incidence rates are rapidly increasing. Although the mortality of thyroid cancer is relatively low, its rate of recurrence or persistence is relatively high, contributing to incurability and morbidity of the disease. Thyroid cancer is mainly treated by surgery and radioiodine remnant ablation, which is effective only for non-metastasized primary tumors. Therefore, better understanding of the molecular targets available in this tumor is necessary. Similarly to many other tumor types, oncogenic molecular alterations in thyroid epithelium include aberrant signal transduction of the mitogen-activated protein kinase, phosphatidylinositol 3-kinase/AKT (also known as protein kinase B), NF-κB, and WNT/β-catenin pathways. However, the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT3) pathway, a well-known mediator of tumorigenesis in different tumor types, is relatively less understood in thyroid cancer. Intriguingly, recent studies have demonstrated that, in thyroid cancer, the JAK/STAT3 pathway may function in the context of tumor suppression rather than promoting tumorigenesis. In this review, we provide an update of STAT3 function in thyroid cancer and discuss some of the evidences that support this hypothesis.

  16. STAT3 noncell-autonomously controls planar cell polarity during zebrafish convergence and extension.

    Science.gov (United States)

    Miyagi, Chiemi; Yamashita, Susumu; Ohba, Yusuke; Yoshizaki, Hisayoshi; Matsuda, Michiyuki; Hirano, Toshio

    2004-09-27

    Zebrafish signal transducer and activator of transcription 3 (STAT3) controls the cell movements during gastrulation. Here, we show that noncell-autonomous activity of STAT3 signaling in gastrula organizer cells controls the polarity of neighboring cells through Dishevelled-RhoA signaling in the Wnt-planar cell polarity (Wnt-PCP) pathway. In STAT3-depleted embryos, although all the known molecules in the Wnt-PCP pathway were expressed normally, the RhoA activity in lateral mesendodermal cells was down-regulated, resulting in severe cell polarization defects in convergence and extension movements identical to Strabismus-depleted embryos. Cell-autonomous activation of Wnt-PCP signaling by DeltaN-dishevelled rescued the defect in cell elongation, but not the orientation of lateral mesendodermal cells in STAT3-depleted embryos. The defect in the orientation could be rescued by transplantation of shield cells having noncell-autonomous activity of STAT3 signaling. These results suggest that the cells undergoing convergence and extension movement may sense the gradient of signaling molecules, which are expressed in gastrula organizer by STAT3 and noncell-autonomously activate PCP signaling in neighboring cells during zebrafish gastrulation.

  17. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Arulanandam, Rozanne; Geletu, Mulu [Departments of Microbiology and Immunology and Pathology and Molecular Medicine, and Queen' s University Cancer Institute, Queen' s University, Botterell Hall, Rm. 713, Kingston, Ontario, Canada K7L 3N6 (Canada); Feracci, Helene [Universite Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac (France); Raptis, Leda, E-mail: raptisl@queensu.ca [Departments of Microbiology and Immunology and Pathology and Molecular Medicine, and Queen' s University Cancer Institute, Queen' s University, Botterell Hall, Rm. 713, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  18. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells.

    Science.gov (United States)

    Xiao, Hui; Bid, Hemant Kumar; Jou, David; Wu, Xiaojuan; Yu, Wenying; Li, Chenglong; Houghton, Peter J; Lin, Jiayuh

    2015-02-06

    Signal transducers and activators of transcription 3 (STAT3) signaling is persistently activated and could contribute to tumorigenesis of medulloblastoma. Numerous studies have demonstrated that inhibition of the persistent STAT3 signaling pathway results in decreased proliferation and increased apoptosis in human cancer cells, indicating that STAT3 is a viable molecular target for cancer therapy. In this study, we investigated a novel non-peptide, cell-permeable small molecule, named LY5, to target STAT3 in medulloblastoma cells. LY5 inhibited persistent STAT3 phosphorylation and induced apoptosis in human medulloblastoma cell lines expressing constitutive STAT3 phosphorylation. The inhibition of STAT3 signaling by LY5 was confirmed by down-regulating the expression of the downstream targets of STAT3, including cyclin D1, bcl-XL, survivin, and micro-RNA-21. LY5 also inhibited the induction of STAT3 phosphorylation by interleukin-6 (IL-6), insulin-like growth factor (IGF)-1, IGF-2, and leukemia inhibitory factor in medulloblastoma cells, but did not inhibit STAT1 and STAT5 phosphorylation stimulated by interferon-γ (IFN-γ) and EGF, respectively. In addition, LY5 blocked the STAT3 nuclear localization induced by IL-6, but did not block STAT1 and STAT5 nuclear translocation mediated by IFN-γ and EGF, respectively. A combination of LY5 with cisplatin or x-ray radiation also showed more potent effects than single treatment alone in the inhibition of cell viability in human medulloblastoma cells. Furthermore, LY5 demonstrated a potent inhibitory activity on cell migration and angiogenesis. Taken together, these findings indicate LY5 inhibits persistent and inducible STAT3 phosphorylation and suggest that LY5 is a promising therapeutic drug candidate for medulloblastoma by inhibiting persistent STAT3 signaling.

  19. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  20. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes.

    Science.gov (United States)

    Gupta, Sunita; Knight, Alecia G; Gupta, Shruti; Keller, Jeffrey N; Bruce-Keller, Annadora J

    2012-03-01

    This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.

  1. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Kreft, Marko; Zorec, Robert

    2014-04-01

    The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease.

  2. Pivotal importance of STAT3 in protecting the heart from acute and chronic stress: new advancement and unresolved issues

    Directory of Open Access Journals (Sweden)

    Foaud A. Zouein

    2015-11-01

    Full Text Available The transcription factor Signal Transducer and Activator of Transcription 3 (STAT3 has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species (ROS production, and mitochondrial permeability transition pore (mPTP opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 are poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3 in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via noncanonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the noncanonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.

  3. Involvement of STAT3 in Bladder Smooth Muscle Hypertrophy Following Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ogawa,Norio

    2006-12-01

    Full Text Available We examined the involvement of the signal transducer and activator of transcription 3 (STAT3 in bladder outlet obstruction (BOO-induced bladder smooth muscle hypertrophy using a rat in vivo and in vitro study. BOO induced increases in bladder weight and bladder smooth muscle thickness 1 week after the operation. By using antibody microarrays, 64 of 389 proteins blotted on the array met our selection criteria of an INR value between > or = 2.0 and < or = 0.5. This result revealed up-regulation of transcription factors, cell cycle regulatory proteins, apoptosis-associated proteins and so on. On the other hand, down-regulation (INR value < or = 0.5 of proteins was not found. In a profiling study, we found an increase in the expression of STAT3. A significant increase in nuclear phosphorylated STAT3 expression was confirmed in bladder smooth muscle tissue by immunohistochemistry and Western blot analysis. Cyclical stretch-relaxation (1 Hz at 120% elongation significantly increased the expression of STAT3 and of alpha-smooth muscle actin in primary cultured bladder smooth muscle cells. Furthermore, the blockade of STAT3 expression by the transfection of STAT3 small interfering RNA (siRNA significantly prevented the stretch-induced increase in alpha-smooth muscle actin expression. These results suggest that STAT3 has an important role in the induction of bladder smooth muscle hypertrophy.

  4. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes

    Science.gov (United States)

    Oschmann, Franziska; Mergenthaler, Konstantin; Obermayer, Klaus

    2017-01-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal. PMID:28192424

  5. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3

    Institute of Scientific and Technical Information of China (English)

    Fang-Ming Gu; Quan-Lin Li; Qiang Gao; Jia-Hao Jiang; Xiao-Yong Huang; Jin-Feng Pan; Jia Fan; Jian Zhou

    2011-01-01

    AIM: To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC). METHODS: Human and rat HCC cell lines were treated with sorafenib. Proliferation and STAT3 dephosphorylation were assessed. Potential molecular mechanisms of STAT3 pathway inhibition by sorafenib were evaluated. In vivo antitumor action and STAT3 inhibition were investigated in an immunocompetent orthotopic rat HCC model. RESULTS: Sorafenib decreased STAT3 phosphorylation at the tyrosine and serine residues (Y705 and S727), but did not affect Janus kinase 2 (JAK2) and phospha-tase shatterproof 2 (SHP2), which is associated with growth inhibition in HCC cells. Dephosphorylation of S727 was associated with attenuated extracellular signal-regulated kinase (ERK) phosphorylation, similar to the effects of a mitogen-activated protein kinase (MEK) inhibitor U0126, suggesting that sorafenib induced S727 dephosphorylation by inhibiting MEK/ERK signaling. Meanwhile, sorafenib could also inhibit Akt phosphorylation, and both the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and Akt knockdown resulted in Y705 dephosphorylation, indicating that Y705 dephosphorylation by sorafenib was mediated by inhibiting the PI3K/Akt pathway. Finally, in the rat HCC model, sorafenib significantly inhibited STAT3 activity, reducing tumor growth and metastasis. CONCLUSION: Sorafenib inhibits growth and metastasis of HCC in part by blocking the MEK/ERK/STAT3 and PI3K/Akt/STAT3 signaling pathways, but independent of JAK2 and SHP2 activation.

  6. MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxin [Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191 (China); Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Yue, Xupeng [Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Cui, Yuanyuan [Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191 (China); Zhang, Jufeng, E-mail: jfzhang111@163.com [Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Wang, KeWei, E-mail: wangkw@bjmu.edu.cn [Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191 (China); Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036 (China); Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191 (China)

    2013-11-29

    Highlights: •miR-124 is down-regulated in hepatocellular carcinoma HepG2 cells. •Over-expression of miR-124 suppresses proliferation and induces apoptosis in HepG2 cells. •miR-124 inhibits xenograft tumor growth in nude mice implanted with HepG2 cells by reducing STAT3 expression. •STATs function as a novel target of miR-124 in HCC HepG2 cells. -- Abstract: The aberrant expression of microRNAs is associated with development and progression of cancers. Down-regulation of miR-124 has been demonstrated in the hepatocellular carcinoma (HCC), but the underlying mechanism by which miR-124 suppresses tumorigenesis in HCC remains elusive. In this study, we found that miR-124 suppresses the tumor growth of HCC through targeting the signal transducers and activators of transcription 3 (STAT3). Overexpression of miR-124 suppressed proliferation and induced apoptosis in HepG-2 cells. Luciferase assay confirmed that miR-124 binding to the 3′-UTR region of STAT3 inhibited the expression of STAT3 and phosphorylated STAT3 proteins in HepG-2 cells. Knockdown of STAT3 by siRNA in HepG-2 cells mimicked the effect induced by miR-124. Overexpression of STAT3 in miR-124-transfected HepG-2 cells effectively rescued the inhibition of cell proliferation caused by miR-124. Furthermore, miR-124 suppressed xenograft tumor growth in nude mice implanted with HepG-2 cells by reducing STAT3 expression. Taken together, our findings show that miR-124 functions as tumor suppressor in HCC by targeting STAT3, and miR-124 may therefore serve as a biomarker for diagnosis and therapeutics in HCC.

  7. Constitutive Activation of STAT-3 and Neoplasm Invasion and Metastasis%STAT-3持续活化与肿瘤侵袭、转移

    Institute of Scientific and Technical Information of China (English)

    邹黎黎; 韩莉; 柳长柏

    2012-01-01

    The disorder of JAK-STAT(janus tyrosine kinase-signal transducer and activator of transcription) is one of the leading causes for the occurrence of tumors. Recent studies showed that STAT-3, an important transcription factor of JAK-STAT signal transduction pathway, can promote the rapid induction of genes by directly transducing signals from the receptor into the nucleus, and to play a pivotal role in mediating the biological response for this ligands. However, STAT-3 appears to have a dark side as well. STAT-3 can sus-tainablely activate in the tumor cells, and serve as a new target for tumor therapy as a protooncogene. Thus, it is helpful to gain a better understanding of the role of STAT-3 in tumorigenesis with the overview of the relationship between the constitutive activation of STAT-3 and the neoplasm invasion, metastasis, and cancer stem cells.%JAK-STAT(janus tyrosine kinase-signal transducer and activator of transcription)细胞信号转导途径的紊乱,是肿瘤发生最重要的原因之一.近年来的研究发现,STAT-3作为JAK-STAT信号转导途径中一个重要的调节分子,能够通过将信号直接转导入细胞核而快速激活下游基因,从而保证相应配体顺利完成信号转导过程.然而,STAT-3也有其“黑暗”的一面,其往往在恶性肿瘤细胞中表现为持续活化,作为一种原癌基因,成为肿瘤治疗的新靶标.因而,对近年来有关STAT-3的持续活化与恶性肿瘤细胞的侵袭、转移过程及肿瘤干细胞的关系作一概述,有助于深入了解STAT-3在肿瘤发生发展机制中发挥的作用.

  8. Treatment of IL-21R-Fc control autoimmune arthritis via suppression of STAT3 signal pathway mediated regulation of the Th17/Treg balance and plasma B cells.

    Science.gov (United States)

    Ryu, Jun-Geol; Lee, Jennifer; Kim, Eun-Kyung; Seo, Hyeon-Beom; Park, Jin-Sil; Lee, Seon-Yeong; Moon, Young-Mee; Yoo, Seok-Ho; Park, Young-woo; Park, Sung-Hwan; Cho, Mi-La; Kim, Ho-Youn

    2015-02-01

    Interleukin-21 (IL-21) is a T cell-derived cytokine modulating T cell, B cell, and natural killer cell responses. To determine whether IL-21 contributes to pathologic processes, recombinant IL-21 receptor (R) fusion protein (rhIL-21R-Fc) was examined in mice models of autoimmune arthritis (collagen-induced arthritis). DBA/1J mice were immunized with chicken type II collagen and then treated intraperitoneally with rhIL-21R-Fc, which was initiated after the onset of arthritis symptoms in 20% of the cohort. The mice were assessed 3 times per week for signs of arthritis and histologic features as well as serum immunoglobulin. Cytokine messenger RNA levels in the spleen were also examined. STAT3 phosphorylation is dose dependently activated by IL-21 and inhibited by rhIL-21R-Fc in vitro using T cells. Treatment of DBA/1J mice with rhIL-21R-Fc reduced the clinical and histologic signs of CIA. The IL-17 and STAT3-expressing CD4(+) splenocytes dramatically decreased in the rhIL-21R-Fc treated mice. IL-21R-Fc treated mice also decreased the production of IgG, STAT3 phosphorylation, and plasma cell transcription factor (Blimp1). These findings demonstrate a pathogenic role of IL-21 in animal models of RA, suggesting IL-21 as a promising therapeutic target among human RA.

  9. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2010-08-01

    Full Text Available Abstract Background Targeting Signal Transducer and Activator of Transcription 3 (STAT3 signaling is an attractive therapeutic approach for most types of human cancers with constitutively activated STAT3. A novel small molecular STAT3 inhibitor, FLLL32 was specifically designed from dietary agent, curcumin to inhibit constitutive STAT3 signaling in multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells. Results FLLL32 was found to be a potent inhibitor of STAT3 phosphorylation, STAT3 DNA binding activity, and the expression of STAT3 downstream target genes in vitro, leading to the inhibition of cell proliferation as well as the induction of Caspase-3 and PARP cleavages in human multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cell lines. However, FLLL32 exhibited little inhibition on some tyrosine kinases containing SH2 or both SH2 and SH3 domains, and other protein and lipid kinases using a kinase profile assay. FLLL32 was also more potent than four previously reported JAK2 and STAT3 inhibitors as well as curcumin to inhibit cell viability in these cancer cells. Furthermore, FLLL32 selectively inhibited the induction of STAT3 phosphorylation by Interleukin-6 but not STAT1 phosphorylation by IFN-γ. Conclusion Our findings indicate that FLLL32 exhibits potent inhibitory activity to STAT3 and has potential for targeting multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells expressing constitutive STAT3 signaling.

  10. Striatal adenosine signaling regulates EAAT2 and astrocytic AQP4 expression and alcohol drinking in mice.

    Science.gov (United States)

    Lee, Moonnoh R; Ruby, Christina L; Hinton, David J; Choi, Sun; Adams, Chelsea A; Young Kang, Na; Choi, Doo-Sup

    2013-02-01

    Adenosine signaling is implicated in several neuropsychiatric disorders, including alcoholism. Among its diverse functions in the brain, adenosine regulates glutamate release and has an essential role in ethanol sensitivity and preference. However, the molecular mechanisms underlying adenosine-mediated glutamate signaling in neuroglial interaction remain elusive. We have previously shown that mice lacking the ethanol-sensitive adenosine transporter, type 1 equilibrative nucleoside transporter (ENT1), drink more ethanol compared with wild-type mice and have elevated striatal glutamate levels. In addition, ENT1 inhibition or knockdown reduces glutamate transporter expression in cultured astrocytes. Here, we examined how adenosine signaling in astrocytes contributes to ethanol drinking. Inhibition or deletion of ENT1 reduced the expression of type 2 excitatory amino-acid transporter (EAAT2) and the astrocyte-specific water channel, aquaporin 4 (AQP4). EAAT2 and AQP4 colocalization was also reduced in the striatum of ENT1 null mice. Ceftriaxone, an antibiotic compound known to increase EAAT2 expression and function, elevated not only EAAT2 but also AQP4 expression in the striatum. Furthermore, ceftriaxone reduced ethanol drinking, suggesting that ENT1-mediated downregulation of EAAT2 and AQP4 expression contributes to excessive ethanol consumption in our mouse model. Overall, our findings indicate that adenosine signaling regulates EAAT2 and astrocytic AQP4 expressions, which control ethanol drinking in mice.

  11. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC)

    NARCIS (Netherlands)

    Zheng, J.; Veerdonk, F.L. van de; Crossland, K.L.; Smeekens, S.P.; Chan, C.M.; Shehri, T. Al; Abinun, M.; Gennery, A.R.; Mann, J.; Lendrem, D.W.; Netea, M.G.; Rowan, A.D.; Lilic, D.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneo

  12. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC).

    Science.gov (United States)

    Zheng, Jie; van de Veerdonk, Frank L; Crossland, Katherine L; Smeekens, Sanne P; Chan, Chun M; Al Shehri, Tariq; Abinun, Mario; Gennery, Andrew R; Mann, Jelena; Lendrem, Dennis W; Netea, Mihai G; Rowan, Andrew D; Lilic, Desa

    2015-10-01

    Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneous candidiasis (CMC). In patients with autosomal dominant CMC, we and others previously reported defective Th17 responses and underlying gain-of-function (GOF) STAT1 mutations, but how this affects STAT3 function leading to decreased IL-17 is unclear. We also assessed how GOF-STAT1 mutations affect STAT3 activation, DNA binding, gene expression, cytokine production, and epigenetic modifications. We excluded impaired STAT3 phosphorylation, nuclear translocation, and sequestration of STAT3 into STAT1/STAT3 heterodimers and confirm significantly reduced transcription of STAT3-inducible genes (RORC/IL-17/IL-22/IL-10/c-Fos/SOCS3/c-Myc) as likely underlying mechanism. STAT binding to the high affinity sis-inducible element was intact but binding to an endogenous STAT3 DNA target was impaired. Reduced STAT3-dependent gene transcription was reversed by inhibiting STAT1 activation with fludarabine or enhancing histone, but not STAT1 or STAT3 acetylation with histone deacetylase (HDAC) inhibitors trichostatin A or ITF2357. Silencing HDAC1, HDAC2, and HDAC3 indicated a role for HDAC1 and 2. Reduced STAT3-dependent gene transcription underlies low Th-17 responses in GOF-STAT1 CMC, which can be reversed by inhibiting acetylation, offering novel targets for future therapies.

  13. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells

    Directory of Open Access Journals (Sweden)

    Whitsett Jeffrey A

    2007-12-01

    Full Text Available Abstract Background The signal transducer and activator of transcription 3 (STAT3 mediates gene expression in response to numerous growth factors and cytokines, playing an important role in many cellular processes. To better understand the molecular mechanisms by which Stat3 influences gene expression in the lung, the effect of pulmonary epithelial cell specific deletion of Stat3 on genome wide mRNA expression profiling was assessed. Differentially expressed genes were identified from Affymetrix Murine GeneChips analysis and subjected to gene ontology classification, promoter analysis, pathway mapping and literature mining. Results Total of 791 mRNAs were significantly increased and 314 mRNAs were decreased in response to the deletion of Stat3Δ/Δ in the lung. STAT is the most enriched cis-elements in the promoter regions of those differentially expressed genes. Deletion of Stat3 induced genes influencing protein metabolism, transport, chemotaxis and apoptosis and decreased the expression of genes mediating lipid synthesis and metabolism. Expression of Srebf1 and 2, genes encoding key regulators of fatty acid and steroid biosynthesis, was decreased in type II cells from the Stat3Δ/Δ mice, consistent with the observation that lung surfactant phospholipids content was decreased. Stat3 influenced both pro- and anti-apoptotic pathways that determine cell death or survival. Akt, a potential transcriptional target of Stat3, was identified as an important participant in Stat3 mediated pathways including Jak-Stat signaling, apoptosis, Mapk signaling, cholesterol and fatty acid biosynthesis. Conclusion Deletion of Stat3 from type II epithelial cells altered the expression of genes regulating diverse cellular processes, including cell growth, apoptosis and lipid metabolism. Pathway analysis indicates that STAT3 regulates cellular homeostasis through a complex regulatory network that likely enhances alveolar epithelial cell survival and surfactant

  14. Ablation of STAT3 in the B Cell Compartment Restricts Gammaherpesvirus Latency In Vivo

    Science.gov (United States)

    Reddy, Sandeep Steven; Foreman, Hui-Chen Chang; Sioux, Thubten Ozula; Park, Gee Ho; Poli, Valeria; Reich, Nancy C.

    2016-01-01

    ABSTRACT A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. PMID:27486189

  15. Intercellular Signaling Pathway among Endothelia, Astrocytes and Neurons in Excitatory Neuronal Damage

    Directory of Open Access Journals (Sweden)

    Kanato Yamagata

    2013-04-01

    Full Text Available Neurons interact closely with astrocytes via glutamate; this neuron-glia circuit may play a pivotal role in synaptic transmission. On the other hand, astrocytes contact vascular endothelial cells with their end-feet. It is becoming obvious that non-neuronal cells play a critical role in regulating the neuronal activity in the brain. We find that kainic acid (KA administration induces the expression of microsomal prostaglandin E synthase-1 (mPGES-1 in venous endothelial cells and the prostaglandin E2 (PGE2 receptor prostaglandin E receptor (EP-3 on astrocytes. Endothelial mPGES-1 exacerbates KA-induced neuronal damage in in vivo experiments. In in vitro experiments, mPGES-1 produces PGE2, which enhances astrocytic Ca2+ levels via the EP3 receptor and increases Ca2+-dependent glutamate release, thus aggravating neuronal injury. This novel endothelium-astrocyte-neuron signaling pathway may be crucial for driving neuronal damage after repetitive seizures and could be a new therapeutic target for epilepsy and other brain disorders.

  16. EXPRESSIONS OF STAT3 AND MMP-2 IN CERVICAL CANCER%宫颈癌组织STAT3和MMP-2表达及意义

    Institute of Scientific and Technical Information of China (English)

    李晓蕾; 王霞; 周军红; 赵爱琳

    2011-01-01

    目的 探讨信号转导和转录激活因子3(STAT3)与基质金属蛋白酶-2(MMP-2)在宫颈癌组织表达及意义.方法 采用免疫组织化学SP法分别检测16例正常组织、50例宫颈上皮内瘤变(CIN)、50例宫颈癌组织中STAT3与MMP-2的表达水平.结果 正常宫颈、CIN及宫颈癌组织中STAT3、MMP-2表达水平逐渐增高,各组间差异均有统计学意义(x2=6.417~27.097,P<0.05).STAT3异常表达与宫颈癌的病理分级和临床分期及淋巴结转移有关(x2=4.778~13.651,P<0.05);MMP-2的异常表达与临床分期及淋巴结转移有关(x2=9.039、5.003,P<0.05),而与病理分级无关;两者与病人年龄、肿瘤大小及肿瘤类型均无相关性.宫颈癌组织STAT3与MMP-2的表达呈正相关(r=0.398,P<0.05).结论 宫颈癌组织STAT3与MMP-2表达密切相关,两者表达水平可能与宫颈癌浸润转移有关,STAT3可能通过调控其下游靶基因MMP-2的表达影响宫颈癌的浸润转移.%Objective To investigate the expressions of signal transduction and activators of transcription-3 (STAT3)and matrix metalloproteinase-2 (MMP-2) in cervical cancer and their significance. Methods Immunohistochemical technique was used to detect expressions of STAT3 and MMP-2 in samples of 16 normal cervical tissue, 50 cervical intraepithelial neoplasia (CIN)and 50 cervical cancer. Results The expressions of STAT3 and MMP-2 gradually increased in the order of normal cervical tissue, CIN, and cervical cancer, the differences between the three groups being statistically significant (x2 = 6.417-27.097, P<0.05). The expression of STAT3 was related to clinical stage and pathological grade and lymph node metastasis (x2 = 4.778-13.651,P<0.05) ; and that of MMP-2 was related to clinical stage and lymph node metastasis (x2 = 9.039,5. 003; P<0.05),while no relation to pathological grade. STAT3 and MMP-2 were positively correlated (r=0.398,P<0.05), but these two items were no correlation with patient's age

  17. Role of JAK2/STAT3 signaling pathway in hydrogen sulfide postconditioning on isolated ischemia/reperfusion rat hearts%Janus激酶-信号转导子与转录激活子信号通路在硫化氢后处理离体缺血再灌注大鼠心肌中的作用

    Institute of Scientific and Technical Information of China (English)

    栾恒飞; 李振; 赵其宏; 王乐; 季永; 曾因明

    2011-01-01

    目的 探讨Janus激酶-信号转导子与转录激活子(JAK2/STAT3)信号通路在硫化氢后处理(H2S)减轻离体大鼠心脏缺血/再灌注(I/R)损伤的作用.方法 应用Langendorff离体心脏灌流装置、通过停灌30 min/复灌60 min的方法建立SD大鼠I/R模型.按照处理及再灌注成分分为持续灌注对照组,I/R组,NaHS 10 μmol·L-1组,NaHS +AG490 10 μmol·L-1组,AG490组和DMSO组.持续测定心率(HR)、左心室发展压(LVDP)、左心室舒张末压(LVEDP)、左室内压上升最大速率(+dp/dtmax)、左室内压下降最大速率(-dp/dtmax);再灌注末取心肌TTC法测心肌梗死面积,TUNEL法测心肌细胞凋亡率,Western blotting半定量测p-STAT3和总的STAT3表达水平.结果 平衡灌注末各组间心功能指标无统计学差异.再灌注后,与I/R组比较,NaHS组明显改善再灌注损伤心功能的各项指标(P<0.05),减少心肌梗死面积[(23±4)% vs(41±5)%](P<0.05);并降低凋亡指数[(22±4)% vs(43±5)%](P<0.05),p-STAT3表达水平明显升高[(0.0450±0.0034) vs (0.0238±0.0021)](P<0.05).AG490逆转了硫化氢后处理产生的心肌保护效应及p-STAT3表达水平的增加(P<0.05).结论 JAK2/STAT3信号通路参与了H2S减轻离体大鼠心脏I/R损伤过程.%OBJECTIVE To investigate whether JAK2/STAT3 signaling pathway participated in hydrogen sulfide postconditioning protecting isolated rat hearts against ischemia/reperfusion (I/R)injury. METHODS Isolated perfused rat hearts were exposed to ischemia 30 min followed by reperfusion for 60 min to establish a rat I/R model using Langendorff apparatus. According to the different experimental protocols, SD rats were randomly assigned to the following groups: control,I/R, NaHS 10 μmol·L-1, NaHS + AG490 10 μmol·L-1, AG490 and DMSO groups. Left ventricular hemodynamics including the heart rate ( HR), left ventricular developed pressure ( LVDP), left ventricular end-diastolic pressure (LVEDP) , the maximum rate of increase or decrease of

  18. Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia.

    Science.gov (United States)

    Yang, Jinshan; Luo, Xiang; Huang, Xiaojiang; Ning, Qin; Xie, Minjie; Wang, Wei

    2014-11-01

    Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin-A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up-regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin-A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus-dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4-mediated ephrin-A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions. Astrocytic ephrin-A3 reverse signaling mediated by EphA4 receptor is necessary for controlling the abundance of glial glutamate transporters under physiological conditions. However, the role of ephrin-A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. We found EphA4-mediated ephrin-A3 reverse signaling to be a crucial mechanism for astrocytes to control glial glutamate transporters and protect hippocampal neurons from glutamate excitotoxicity under ischemic conditions, this cascade representing a potential therapeutic target for stroke.

  19. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    Directory of Open Access Journals (Sweden)

    Rachel Haviland

    Full Text Available Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down

  20. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation.

    Science.gov (United States)

    Pedroza, Mesias; Le, Thuy T; Lewis, Katherine; Karmouty-Quintana, Harry; To, Sarah; George, Anuh T; Blackburn, Michael R; Tweardy, David J; Agarwal, Sandeep K

    2016-01-01

    Lung fibrosis is the hallmark of the interstitial lung diseases. Alveolar epithelial cell (AEC) injury is a key step that contributes to a profibrotic microenvironment. Fibroblasts and myofibroblasts subsequently accumulate and deposit excessive extracellular matrix. In addition to TGF-β, the IL-6 family of cytokines, which signal through STAT-3, may also contribute to lung fibrosis. In the current manuscript, the extent to which STAT-3 inhibition decreases lung fibrosis is investigated. Phosphorylated STAT-3 was elevated in lung biopsies from patients with idiopathic pulmonary fibrosis and bleomycin (BLM)-induced fibrotic murine lungs. C-188-9, a small molecule STAT-3 inhibitor, decreased pulmonary fibrosis in the intraperitoneal BLM model as assessed by arterial oxygen saturation (control, 84.4 ± 1.3%; C-188-9, 94.4 ± 0.8%), histology (Ashcroft score: untreated, 5.4 ± 0.25; C-188-9, 3.3 ± 0.14), and attenuated fibrotic markers such as diminished α-smooth muscle actin, reduced collagen deposition. In addition, C-188-9 decreased the expression of epithelial injury markers, including hypoxia-inducible factor-1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1). In vitro studies show that inhibition of STAT-3 decreased IL-6- and TGF-β-induced expression of multiple genes, including HIF-1α and PAI-1, in AECs. Furthermore, C-188-9 decreased fibroblast-to-myofibroblast differentiation. Finally, TGF-β stimulation of lung fibroblasts resulted in SMAD2/SMAD3-dependent phosphorylation of STAT-3. These findings demonstrate that STAT-3 contributes to the development of lung fibrosis and suggest that STAT-3 may be a therapeutic target in pulmonary fibrosis.

  1. A negative feedback loop mediated by STAT3 limits human Th17 responses.

    Science.gov (United States)

    Purvis, Harriet A; Anderson, Amy E; Young, David A; Isaacs, John D; Hilkens, Catharien M U

    2014-08-01

    The transcription factor STAT3 is critically required for the differentiation of Th17 cells, a T cell subset involved in various chronic inflammatory diseases. In this article, we report that STAT3 also drives a negative-feedback loop that limits the formation of IL-17-producing T cells within a memory population. By activating human memory CD4(+)CD45RO(+) T cells at a high density (HiD) or a low density (LoD) in the presence of the pro-Th17 cytokines IL-1β, IL-23, and TGF-β, we observed that the numbers of Th17 cells were significantly higher under LoD conditions. Assessment of STAT3 phosphorylation revealed a more rapid and stronger STAT3 activation in HiD cells than in LoD cells. Transient inhibition of active STAT3 in HiD cultures significantly enhanced Th17 cell numbers. Expression of the STAT3-regulated ectonucleotidase CD39, which catalyzes ATP hydrolysis, was higher in HiD, than in LoD, cell cultures. Interestingly, inhibition of CD39 ectonucleotidase activity enhanced Th17 responses under HiD conditions. Conversely, blocking the ATP receptor P2X7 reduced Th17 responses in LoD cultures. These data suggest that STAT3 negatively regulates Th17 cells by limiting the availability of ATP. This negative-feedback loop may provide a safety mechanism to limit tissue damage by Th17 cells during chronic inflammation. Furthermore, our results have relevance for the design of novel immunotherapeutics that target the STAT3-signaling pathway, because inhibition of this pathway may enhance, rather than suppress, memory Th17 responses.

  2. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  3. Regulation of Natural Killer Cell Function by STAT3

    Directory of Open Access Journals (Sweden)

    Nicholas eCacalano

    2016-04-01

    Full Text Available Natural killer (NK cells, key members of a distinct hempatopoietic lineage, innate lymphoid cells (ILCs, are critical effectors that mediate cytotoxicity toward tumor and virally-infected cells but also regulate inflammation, antigen presentation and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell-cell contact and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The Signal Transducer and Activator of Transcription (STAT-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of immune surveillance. Even after tumors become established, NK cells are critical components of anti-cancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients and the lack of NK cells in the tumor microenvironment often correlates with poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells which determine the outcome of cancer immunity are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of natural killer cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.

  4. Berberine and Curcumin Target Survivin and STAT3 in Gastric Cancer Cells and Synergize Actions of Standard Chemotherapeutic 5-Fluorouracil.

    Science.gov (United States)

    Pandey, Arvind; Vishnoi, Kanchan; Mahata, Sutapa; Tripathi, Satyendra Chandra; Misra, Sri Prakash; Misra, Vatsala; Mehrotra, Ravi; Dwivedi, Manisha; Bharti, Alok C

    2015-01-01

    Aberrantly expressed survivin and STAT3 signaling have emerged as major determinants of chemoresistance in gastric cancer. We evaluated effects of potent herbal derivatives curcumin, berberine, and quercetin on STAT3 signaling, survivin expression, and response to 5-fluorouracil (5-FU) treatment in gastric cancer cells (AGS). Cytotoxic and inhibitory effects of berberine, curcumin, and quercetin alone or in combination with 5-FU were examined by MTT assay, and their effect on survivin, STAT3, and the phosphorylated active STAT3 (pSTAT3) expression was examined by western blotting. Effect of these herbal derivatives on STAT3 DNA binding activity was measured by electrophoretic mobility shift assay. Curcumin, berberine, and quercetin effectively downregulated pSTAT3 levels, survivin expression, and gastric cancer cells viability in a dose-dependent manner (with corresponding IC50 values of 40.3μM, 29.2μM and 37.5μM, respectively). Berberine was more effective in inhibiting survivin expression as compared to other herbal agents. 5-FU in combination with berberine or curcumin showed a synergistic inhibition of survivin and STAT3 level resulting in enhanced cell death in gastric cancer cells. Overall, our data suggest use of berberine and curcumin as adjunct therapeutics to overcome chemoresistance during treatment of gastric malignancies.

  5. Knockdown of STAT3 by iRNA Inhibiting Migration and Invasion of Epithelial Ovarian Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qin-hua; ZHU Ji-hong; LIU Lei; YUE Ying

    2012-01-01

    Signal transducer and activator of transcription 3(STAT3) is a dual functional transcription factor with the functions of signal transduction and transcription regulation.It is reported that the expression of STAT3 in ovarian cancer is significantly higher and STAT3 can facilitate ovarian cancer growth and metastasis.To clarify the definite effect and molecular mechanism of STAT3 involved in ovarian cancer growth and metastasis,STAT3 expression was significantly downregulated by transfeeting ovarian cancer model SK-OV-3 cells with the plasmid vector which express specific RNAi that targets human STAT3.The downregulated STAT3 not only decreased the invasion and migration but also inhibited the proliferation of SK-OV-3 cells.Western blot assay shows that the expression of vascular endothelial growth factor(VEGF) and that of Survivin were reduced in the cells with the plasma vector expressing specific RNAi that targets human STATY These results demonstrate that STAT3 involved in the invasion and migration of SK-OV-3 regulates the expression of VEGF and Survivin.In addition,VEGF and Survivin could play an important role in ovarian cancer growth and metastasis.

  6. ERK1/2 contributes negative regulation to STAT3 activity in HSS-transfected HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS), a novel growthpromoting substance, phosphorylated the epidermal growth factor (EGF) receptors and activated downstream RasMAP kinase (extracellular signal-regulated kinases, ERK1/2) cascade. However, whether HSS signal is related to STAT3pathway remains unclear. The present study is aiming to explore the regulatory effect of activation of ERK1/2 evoked by HSS on STAT3 phosphorylation and STAT3 signaling. Human hepatoma cell line HepG2 was stably transfected with HSS cDNA and HSS expression was measured by Northern blot. The results showed that the transfection of HSS into HepG2 resulted in remarkable increase in cellular proliferation as compared with the non-transfected cells, and it was further proved that the cellular proliferation in the HSS-transfected cells was related to ERK1/2 activation. Treatment of the cells with 50 μM of PD98059, an ERK1/2 specific upstream inhibitor, resulted in ERK1/2 inactivation completely.Inhibition of ERK1/2 allowed the tyrosine of STAT3 to be phosphorylated in a dose-dependent manner to PD98059.Furthermore, transient transfection of STAT3 mutant (STAT3S727A) into HSS-bearing cells could remarkably reverse the inhibitory effect of ERK1/2 on STAT3 phosphorylation. Based upon these results, it is concluded that ERK1/2negatively modulates STAT3 phosphorylation and this function is dependent on residual serine-727 (S727) of STAT3.

  7. Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer's disease.

    Science.gov (United States)

    Lim, Dmitry; Rodríguez-Arellano, J J; Parpura, Vladimir; Zorec, Robert; Zeidán-Chuliá, Fares; Genazzani, Armando A; Verkhratsky, Alexei

    2016-01-01

    Pathological remodelling of astroglia represents an important component of the pathogenesis of Alzheimer's disease (AD). In AD astrocytes undergo both atrophy and reactivity; which may be specific for different stages of the disease evolution. Astroglial reactivity represents the generic defensive mechanism, and inhibition of astrogliotic response exacerbates b-amyloid pathology associated with AD. In animal models of AD astroglial reactivity is different in different brain regions, and the deficits of reactive response observed in entorhinal and prefrontal cortices may be linked to their vulnerability to AD progression. Reactive astrogliosis is linked to astroglial Ca(2+) signalling, this latter being widely regarded as a mechanism of astroglial excitability. The AD pathology evolving in animal models as well as acute or chronic exposure to β-amyloid induce pathological remodelling of Ca(2+) signalling toolkit in astrocytes. This remodelling modifies astroglial Ca(2+) signalling and may be linked to cellular mechanisms of AD pathogenesis.

  8. STAT3与P-STAT3在转基因AD小鼠脑组织中的表达及意义%Expression of STAT3 and P-STAT3 in the brain of a transgenic mouse model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    田密; 侯德仁; 邓炎尧; 李维; 奉夏露

    2013-01-01

    目的:通过检测STAT3及P-STAT3在APPswe/PS△E9双转基因阿尔茨海默病(AD)小鼠脑组织中的表达,探讨其在AD发病过程中的可能作用。方法采用免疫组化法检测APPswe/PS△E9双转基因AD小鼠及对照小鼠脑组织中STAT3和P-STAT3的表达。结果STAT3和P-STAT3表达于脑组织的不同部位。STAT3在转基因AD小鼠和对照小鼠的大脑皮层、基底前脑、海马及小脑中的阳性表达率分别为93.75%、87.50%,87.50%、43.75%,81.25%、37.50%,62.50%、0.00%,其中差异有统计学意义的是基底前脑、海马及小脑中的表达(P<0.05);P-STAT3在转基因AD小鼠和对照小鼠的大脑皮层、基底前脑、海马及小脑中的阳性表达率分别为0.00%、0.00%,68.75%、0.00%,62.50%、12.50%,43.75%、0.00%,其中差异有统计学意义的是基底前脑、海马及小脑中的表达(P<0.05);且STAT3和P-STAT3呈正相关(P<0.05)。结论STAT3和P-STAT3在转基因AD小鼠的基底前脑、海马及小脑中存在高表达,其可能参与了AD发病的病理过程。%Objective To detect the expression of signal transducer and activator of transcription 3 (STAT3) and P-STAT3 in the brain of the APPswe/PS△E9 double transgenic mouse model of Alzhaimer's disease (AD) and invesitgate their possible role in AD. Methods APPswe/PS △E9 double transgenic mice and control mice were examined for cerebral STAT3 and P-STAT3 expressions using immunothistochemistry. Results STAT3 and P-STAT3 were expressed in the different regions of mouse brain. In the transgenic mice and the control mice, the positivity rates of STAT3 were 93.75%and 87.50%in the cerebral cortex, 87.50% and 43.75% in the basal forebrain, 81.25% and 37.50% in the hippocampus, and 62.50% and 0.00% in the cerebellum, respectively, showing significant differences between the mice in the STAT3 expressions in the basal forebrain, hippocampus and cerebellum (P<0.05). The positivity rates of P-STAT3 in the

  9. The Antiproliferative and Colony-suppressive Activities of STAT3 Inhibitors in Human Cancer Cells Is Compromised Under Hypoxic Conditions.

    Science.gov (United States)

    Tian, Jilai; Xiao, Hui; Wu, Ruohan; Cao, Yang; Li, Chenglong; Xu, Ronald; Pierson, Christopher R; Finlay, Jonathan L; Yang, Fang; Gu, Ning; Lin, Jiayuh

    2017-02-01

    Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been indicated as a novel cancer drug target, since it plays an important role in diverse oncogenic processes including survival, cell proliferation and migration. Emerging STAT3 inhibitors have demonstrated efficacy in cancer cells and animal tumor models. It is well known that most solid tumors are characterized by hypoxia, but it is not clear if hypoxic conditions affect activity of STAT3 inhibitors. To examine this, two STAT3 inhibitors were tested to investigate their inhibitory efficacy in cancer cells grown under hypoxic conditions compared with those without hypoxia. Cell proliferation, colony formation and western blot assays were performed to examine the differences in the cell viability, proliferation and proteins in the STAT3 pathway. Under hypoxic conditions, the half-maximal inhibitory concentration values for both STAT3 inhibitors were increased compared to normoxic conditions in human pancreatic cancer, medulloblastoma and sarcoma cell lines. In addition, the ability of both STAT3 inhibitors to inhibit colony formation in pancreatic cancer, medulloblastoma and sarcoma cell lines was reduced under hypoxic conditions when compared to cells under normoxic conditions. Furthermore, there was an increase in phosphorylated STAT3 levels in cancer cells under hypoxic conditions, suggesting this may be one of the mechanisms of resistance. In summary, the results presented here provide a novel finding of STAT3 inhibitor activity under hypoxic conditions and indicate that under such low oxygen conditions, the anticancer efficacy of STAT3 inhibitors was indeed hampered. These results highlight the need to develop new therapeutic strategies to overcome the resistance of cancer cells to STAT3 inhibitors under hypoxic conditions.

  10. Activation of a pro-survival pathway IL-6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin-induced differentiation of C6 malignant glioma cells.

    Science.gov (United States)

    Shu, Minfeng; Zhou, Yuxi; Zhu, Wenbo; Wu, Sihan; Zheng, Xiaoke; Yan, Guangmei

    2011-06-01

    Differentiation-inducing therapy has been proposed to be a novel potential approach to treat malignant gliomas. Glial fibrillary acidic protein (GFAP) is a well-known specific astrocyte biomarker and acts as a tumor suppressor gene (TSG) in glioma pathogenesis. Previously we reported that a traditional biotoxin cholera toxin could induce malignant glioma cell differentiation characterized by morphologic changes and dramatic GFAP expression. However, the molecular mechanisms underlying GFAP induction are still largely unknown. Here we demonstrate that an oncogenic pathway interleukin-6/janus kinase-2/signal transducer and activator of transcription 3 (IL-6/JAK2/STAT3) cascade mediates the cholera toxin-induced GFAP expression. Cholera toxin dramatically stimulated GFAP expression at the transcriptional level in C6 glioma cells. Meanwhile, phosphorylation of STAT3 and JAK2 was highly induced in a time-dependent manner after cholera toxin incubation, whereas no changes of STAT3 and JAK2 were observed. Furthermore, the IL-6 gene was quickly induced by cholera toxin and subsequent IL-6 protein secretion was stimulated. Importantly, exogenous recombinant rat IL-6 can also induce phosphorylation of STAT3 concomitant with GFAP expression while JAK2 specific inhibitor AG490 could effectively block both cholera toxin- and IL-6-induced GFAP expression. Given that the methylation of the STAT3 binding element can suppress GFAP expression, we detected the methylation status of the critical recognition sequence of STAT3 in the promoter of GFAP gene (-1518 ∼ -1510) and found that it was unmethylated in C6 glioma cells. In addition, neither DNA methyltransferase1 (DNMT1) inhibitor 5-Aza-2'-deoxycytidine (5-AZa-CdR) nor silencing DNMT1 can stimulate GFAP expression, indicating that the loss of GFAP expression in C6 cells is not caused by its promoter hypermethylation. Taken together, our findings suggest that activation of a pro-survival IL-6/JAK2/STAT3 cascade contributes to

  11. The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome.

    Science.gov (United States)

    Langlais, David; Couture, Catherine; Balsalobre, Aurélio; Drouin, Jacques

    2012-07-13

    Transcription factor recruitment to genomic sites of action is primarily due to direct protein:DNA interactions. The subsequent recruitment of coregulatory complexes leads to either transcriptional activation or repression. In contrast to this canonical scheme, some transcription factors, such as the glucocorticoid receptor (GR), behave as transcriptional repressors when recruited to target genes through protein tethering. We have investigated the genome-wide prevalence of tethering between GR and Stat3 and found nonreciprocal interactions, namely that GR tethering to DNA-bound Stat3 results in transcriptional repression, whereas Stat3 tethering to GR results in synergism. Further, other schemes of GR and Stat3 corecruitment to regulatory modules result in transcriptional synergism, including neighboring and composite binding sites. The results indicate extensive transcriptional interactions between Stat3 and GR; further, they provide a genome-wide assessment of transcriptional regulation by tethering and a molecular basis for integration of signals mediated by GR and Stats in health and disease.

  12. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors.

    Science.gov (United States)

    Hamby, Mary E; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H; Khakh, Baljit S; Sofroniew, Michael V

    2012-10-17

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.

  13. A Novel Small Molecule, LLL12, Inhibits STAT3 Phosphorylation and Activities and Exhibits Potent Growth-Suppressive Activity in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Li Lin

    2010-01-01

    Full Text Available Constitutive activation of signal transducer and activator of transcription 3 (STAT3 signaling is frequently detected in cancer, promoting its emergence as a promising target for cancer treatment. Inhibiting constitutive STAT3 signaling represents a potential therapeutic approach. We used structure-based design to develop a nonpeptide, cell-permeable, small molecule, termed as LLL12, which targets STAT3. LLL12 was found to inhibit STAT3 phosphorylation (tyrosine 705 and induce apoptosis as indicated by the increases of cleaved caspase-3 and poly (ADP-ribose polymerase in various breast, pancreatic, and glioblastoma cancer cell lines expressing elevated levels of STAT3 phosphorylation. LLL12 could also inhibit STAT3 phosphorylation induced by interleukin-6 in MDA-MB-453 breast cancer cells. The inhibition of STAT3 by LLL12 was confirmed by the inhibition of STAT3 DNA binding activity and STAT3-dependent transcriptional luciferase activity. Downstream targets of STAT3, cyclin D1, Bcl-2, and survivin were also downregulated by LLL12 at both protein and messenger RNA levels. LLL12 is a potent inhibitor of cell viability, with half-maximal inhibitory concentrations values ranging between 0.16 and 3.09 µM, which are lower than the reported JAK2 inhibitor WP1066 and STAT3 inhibitor S3I-201 in six cancer cell lines expressing elevated levels of STAT3 phosphorylation. In addition, LLL12 inhibits colony formation and cell migration and works synergistically with doxorubicin and gemcitabine. Furthermore, LLL12 demonstrated a potent inhibitory activity on breast and glioblastoma tumor growth in a mouse xenograft model. Our results indicate that LLL12 may be a potential therapeutic agent for human cancer cells expressing constitutive STAT3 signaling.

  14. (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Bao-He Zhu; Hua-Yun Chen; Wen-Hua Zhan; Cheng-You Wang; Shi-Rong Cai; Zhao Wang; Chang-Hua Zhang; Yu-Long He

    2011-01-01

    AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer.METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditioned medium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR).Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay.RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490,VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited

  15. Analysis list: Stat3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Stat3 Blood,Digestive tract,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/St...lood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Digestive_trac...at3.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Stat3.5.tsv http://dbarchive.b...iosciencedbc.jp/kyushu-u/mm9/target/Stat3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.B...t.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat3.Neural.tsv http://dbarchive.biosciencedbc.jp

  16. Mesoderm-specific Stat3 deletion affects expression of Sox9 yielding Sox9-dependent phenotypes

    Science.gov (United States)

    Hall, Michael D.; Murray, Caroline A.; Perantoni, Alan O.

    2017-01-01

    To date, mutations within the coding region and translocations around the SOX9 gene both constitute the majority of genetic lesions underpinning human campomelic dysplasia (CD). While pathological coding-region mutations typically result in a non-functional SOX9 protein, little is known about what mechanism(s) controls normal SOX9 expression, and subsequently, which signaling pathways may be interrupted by alterations occurring around the SOX9 gene. Here, we report the identification of Stat3 as a key modulator of Sox9 expression in nascent cartilage and developing chondrocytes. Stat3 expression is predominant in tissues of mesodermal origin, and its conditional ablation using mesoderm-specific TCre, in vivo, causes dwarfism and skeletal defects characteristic of CD. Specifically, Stat3 loss results in the expansion of growth plate hypertrophic chondrocytes and deregulation of normal endochondral ossification in all bones examined. Conditional deletion of Stat3 with a Sox9Cre driver produces palate and tracheal irregularities similar to those described in Sox9+/- mice. Furthermore, mesodermal deletion of Stat3 causes global embryonic down regulation of Sox9 expression and function in vivo. Mechanistic experiments ex vivo suggest Stat3 can directly activate the expression of Sox9 by binding to its proximal promoter following activation. These findings illuminate a novel role for Stat3 in chondrocytes during skeletal development through modulation of a critical factor, Sox9. Importantly, they further provide the first evidence for the modulation of a gene product other than Sox9 itself which is capable of modeling pathological aspects of CD and underscore a potentially valuable therapeutic target for patients with the disorder. PMID:28166224

  17. Vaccinia virus induces rapid necrosis in keratinocytes by a STAT3-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens.To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin.Mice treated topically with a STAT3 inhibitor (Stattic developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3.Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus.

  18. A novel small molecule STAT3 inhibitor, LY5, inhibits cell viability, colony formation, and migration of colon and liver cancer cells

    Science.gov (United States)

    Yu, Wenying; Jou, David; Wang, Yina; Ma, Haiyan; Xiao, Hui; Qin, Hua; Zhang, Cuntai; Lü, Jiagao; Li, Sheng; Li, Chenglong; Lin, Jiayuh; Lin, Li

    2016-01-01

    Signal Transducer and Activator of Transcription 3 (STAT3) is persistently activated in human liver and colon cancer cells and is required for cancer cell viability, survival and migration. Therefore, inhibition of STAT3 signaling may be a viable therapeutic approach for these two cancers. We recently designed a non-peptide small molecule STAT3 inhibitor, LY5, using in silico site-directed Fragment-based drug design (FBDD). The inhibitory effect on STAT3 phosphorylation, cell viability, migration and colony forming ability by LY5 were examined in human liver and colon cancer cells. We demonstrated that LY5 inhibited constitutive Interleukin-6 (IL-6)-induced STAT3 phosphorylation, STAT3 nuclear translocation, decreased STAT3 downstream targeted gene expression and induced apoptosis in liver and colon cancer cells. LY5 had little effect on STAT1 phosphorylation mediated by IFN-γ. Inhibition of persistent STAT3 phosphorylation by LY5 also inhibited colony formation, cell migration, and decreased the viability of liver cancer and colon cancer cells. Furthermore, LY5 inhibited STAT3 phosphorylation and suppressed colon tumor growth in a mouse model in vivo. Our results suggest that LY5 is a potent STAT3 inhibitor and may be a potential drug candidate for liver and colon cancer therapy. PMID:26883202

  19. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan, E-mail: liu-xiangyuan@263.net

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  20. Astrocyte Ca2+ Signaling Drives Inversion of Neurovascular Coupling after Subarachnoid Hemorrhage.

    Science.gov (United States)

    Pappas, Anthony C; Koide, Masayo; Wellman, George C

    2015-09-30

    Physiologically, neurovascular coupling (NVC) matches focal increases in neuronal activity with local arteriolar dilation. Astrocytes participate in NVC by sensing increased neurotransmission and releasing vasoactive agents (e.g., K(+)) from perivascular endfeet surrounding parenchymal arterioles. Previously, we demonstrated an increase in the amplitude of spontaneous Ca(2+) events in astrocyte endfeet and inversion of NVC from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage (SAH) model rats. However, the role of spontaneous astrocyte Ca(2+) signaling in determining the polarity of the NVC response remains unclear. Here, we used two-photon imaging of Fluo-4-loaded rat brain slices to determine whether altered endfoot Ca(2+) signaling underlies SAH-induced inversion of NVC. We report a time-dependent emergence of endfoot high-amplitude Ca(2+) signals (eHACSs) after SAH that were not observed in endfeet from unoperated animals. Furthermore, the percentage of endfeet with eHACSs varied with time and paralleled the development of inversion of NVC. Endfeet with eHACSs were present only around arterioles exhibiting inversion of NVC. Importantly, depletion of intracellular Ca(2+) stores using cyclopiazonic acid abolished SAH-induced eHACSs and restored arteriolar dilation in SAH brain slices to two mediators of NVC (a rise in endfoot Ca(2+) and elevation of extracellular K(+)). These data indicate a causal link between SAH-induced eHACSs and inversion of NVC. Ultrastructural examination using transmission electron microscopy indicated that a similar proportion of endfeet exhibiting eHACSs also exhibited asymmetrical enlargement. Our results demonstrate that subarachnoid blood causes a delayed increase in the amplitude of spontaneous intracellular Ca(2+) release events leading to inversion of NVC. Significance statement: Aneurysmal subarachnoid hemorrhage (SAH)--strokes involving cerebral aneurysm rupture and release of blood onto the

  1. Keratinocyte-specific stat3 heterozygosity impairs development of skin tumors in human papillomavirus 8 transgenic mice.

    Science.gov (United States)

    De Andrea, Marco; Rittà, Massimo; Landini, Manuela M; Borgogna, Cinzia; Mondini, Michele; Kern, Florian; Ehrenreiter, Karin; Baccarini, Manuela; Marcuzzi, Gian Paolo; Smola, Sigrun; Pfister, Herbert; Landolfo, Santo; Gariglio, Marisa

    2010-10-15

    Human papillomaviruses (HPV) of the genus β are thought to play a role in human skin cancers, but this has been difficult to establish using epidemiologic approaches. To gain insight into the transforming activities of β-HPV, transgenic mouse models have been generated that develop skin tumors. Recent evidence suggests a central role of signal transducer and activator of transcription 3 (Stat3) as a transcriptional node for cancer cell-autonomous initiation of a tumor-promoting gene signature associated with cell proliferation, cell survival, and angiogenesis. Moreover, high levels of phospho-Stat3 have been detected in tumors arising in HPV8-CER transgenic mice. In this study, we investigate the in vivo role of Stat3 in HPV8-induced skin carcinogenesis by combining our established experimental model of HPV8-induced skin cancer with epidermis-restricted Stat3 ablation. Stat3 heterozygous epidermis was less prone to tumorigenesis than wild-type epidermis. Three of the 23 (13%) Stat3(+/-):HPV8 animals developed tumors within 12 weeks of life, whereas 54.3% of Stat3(+/+):HPV8 mice already exhibited tumors in the same observation period (median age for tumor appearance, 10 weeks). The few tumors that arose in the Stat3(+/-):HPV8 mice were benign and never progressed to a more malignant phenotype. Collectively, these results offer direct evidence of a critical role for Stat3 in HPV8-driven epithelial carcinogenesis. Our findings imply that targeting Stat3 activity in keratinocytes may be a viable strategy to prevent and treat HPV-induced skin cancer.

  2. STAT3 Activity and Function in Cancer: Modulation by STAT5 and miR-146b

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Sarah R.; Xiang, Michael; Frank, David A., E-mail: david_frank@dfci.harvard.edu [Department of Medical Oncology, Dana-Farber Cancer Institute, and Departments of Medicine, Brigham and Women' s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215 (United States)

    2014-04-23

    The transcription factor STAT3 regulates genes that control critical cellular processes such as proliferation, survival, pluripotency, and motility. Thus, under physiological conditions, the transcriptional function of STAT3 is tightly regulated as one part of a complex signaling matrix. When these processes are subverted through mutation or epigenetic events, STAT3 becomes highly active and drives elevated expression of genes underlying these phenotypes, leading to malignant cellular behavior. However, even in the presence of activated STAT3, other cellular modulators can have a major impact on the biological properties of a cancer cell, which is reflected in the clinical behavior of a tumor. Recent evidence has suggested that two such key modulators are the activation status of other STAT family members, particularly STAT5, and the expression of STAT3-regulated genes that are part of negative feedback circuits, including microRNAs such as miR-146b. With attention to these newly emerging areas, we will gain greater insight into the consequence of STAT3 activation in the biology of human cancers. In addition, understanding these subtleties of STAT3 signaling in cancer pathogenesis will allow the development of more rational molecular approaches to cancer therapy.

  3. Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway.

    Science.gov (United States)

    Chu, Lan-Feng; Wang, Wei-Ti; Ghanta, Vithal K; Lin, Chi-Hsin; Chiang, Yung-Yen; Hsueh, Chi-Mei

    2008-11-06

    Conditioned medium (CM) collected from cultures of ischemic microglia, astrocytes, and neurons were protective to astrocytes under the in vitro ischemic condition (deprivation of oxygen, glucose and serum). Molecular and signaling pathway(s) responsible for the CMs protective activity were investigated. Results showed that CMs from the ischemic microglia (MCM), astrocytes (ACM) and neurons (NCM) contained glial cell line-derived neurotrophic factor (GDNF), which protects astrocytes against the in vitro ischemia. Expression of extra cellular signal-regulated kinase (ERK1/2) and nuclear factor-kappa B (NF-kB) by GDNF led to the inhibition of apoptosis of the ischemic astrocytes in a caspase 3-independent manner. However, CMs- and GDNF-mediated protection of the ischemic astrocytes was protein kinase B (Akt) independent. These results provided mechanistic data regarding how GDNF- and CMs-mediated protection of the ischemic astrocytes is taking place. These observations provide information for the use of GDNF and GDNF containing CMs in the control of cerebral ischemia.

  4. STAT3 and SOCS3 expression patterns during murine placenta development

    Directory of Open Access Journals (Sweden)

    S. San Martin

    2013-06-01

    Full Text Available Signal transducers and activators of transcription 3 (Stat3 has been identified as an important signal transducer in the invasive phenotype of the trophoblasts cells in in vitro studies. However, the in situ distribution and patterns of expression of this molecule in trophoblast cells during the development of the placenta are still under-elucidated. Mice uteri of gestational ages between 7 and 14 days of pregnancy (dop were fixed in methacarn and processed with immunoperoxidase techniques for detection of Stat3 and its phosphorylation at serine (p-ser727 residues, as well as the suppressor of cytokine signaling 3 (Socs3 expression. Stat3 was observed at 7 through 9 dop in both the antimesometrial and mesometrial deciduas, while continued immunoreactivity between 10 and 13 dop was seen only in the mesometrial decidua. In the placenta, Stat3 was detected in the cytotrophoblast cells of labyrinth and giant trophoblast cells between 10 and 14 dop. Immunoreactivity for Stat3 was also seen in trophoblast cells surrounding the maternal blood vessels. On days 10 and 11 of pregnancy, p-ser727 was detectable in the mesometrial decidua and in giant trophoblasts, while during 12-14 dop in the spongiotrophoblast region. In addition, Socs3 was immunodetected in maternal and placental tissues, principally in the giant trophoblast cells during the whole period of the study. The present in situ study shows the distribution of Stat3, its serine activation and Socs3 in different maternal and fetal compartments during murine placental development, thus further supporting the idea that they play a role during physiological placentation in mice. 

  5. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Radiological Technology, Yuanpei University, Hsinchu, Taiwan (China); Lin, Chen-Si [School of Veterinary Medicine, National Taiwan University Hospital, Taipei, Taiwan (China); Tai, Wei-Tien; Hsieh, Chi-Ying [Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan (China); Shiau, Chung-Wai [Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan (China); Cheng, Ann-Lii [Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan (China); Chen, Kuen-Feng, E-mail: kfchen1970@ntu.edu.tw [Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  6. Sulindac has strong antifibrotic effects by suppressing STAT3-related miR-21.

    Science.gov (United States)

    Zhou, Xue; Li, You-Jie; Gao, Shu-Yan; Wang, Xiao-Zhi; Wang, Ping-Yu; Yan, Yun-Fei; Xie, Shu-Yang; Lv, Chang-Jun

    2015-05-01

    Pulmonary fibrosis (PF) is a disease with an unknown cause and a poor prognosis. In this study, we aimed to explore the pathogenesis of PF and the mechanism of sulindac in attenuating bleomycin (BLM)-induced PF. The rat PF model was induced by BLM and verified through histological studies and hydroxyproline assay. The severity of BLM-induced PF in rats and other effects, such as the extent of the wet lung to bw ratios, thickening of alveolar interval or collagen deposition, was obviously ameliorated in sulindac-treated rat lungs compared with BLM-induced lungs. Sulindac also reversed the epithelial mesenchymal transition (EMT) and inhibited the PF process by restoring the levels of E-cadherin and α-smooth muscle actin (SMA) in A549 cells. Our results further demonstrated that the above effects of sulindac might be related to regulating of interferon gamma (IFN-γ) expression, which further affects signal transducers and activators of transcription 3 (STAT3) and phosphorylated STAT3 (p-STAT3) levels. Moreover, higher miR-21 levels with the decreased E-cadherin and increased α-SMA expressions were found in transforming growth factor-β1-treated A549 cells, which can be reversed by sulindac. Collectively, our results demonstrate that by decreasing IFN-γ-induced STAT3/p-STAT3 expression to down-regulate miR-21, sulindac could significantly reverse EMT in A549 cells and prevent BLM-induced PF.

  7. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses.

    Science.gov (United States)

    Sun, Xiaofei; Bartos, Amanda; Whitsett, Jeffrey A; Dey, Sudhansu K

    2013-09-01

    Leukemia inhibitory factor (LIF), a downstream target of estrogen, is essential for implantation in mice. LIF function is thought to be mediated by its binding to LIF receptor (LIFR) and recruitment of coreceptor GP130 (glycoprotein 130), and this receptor complex then activates signal transducer and activator of transcription (STAT)1/3. However, the importance of LIFR and GP130 acting via STAT3 in implantation remains uncertain, because constitutive inactivation of Lifr, Gp130, or Stat3 shows embryonic lethality in mice. To address this issue, we generated mice with conditional deletion of uterine Gp130 or Stat3 and show that both GP130 and STAT3 are critical for uterine receptivity and implantation. Implantation failure in these deleted mice is associated with higher uterine estrogenic responses prior to the time of implantation. These heightened estrogenic responses are not due to changes in ovarian hormone levels or expression of their nuclear receptors. In the deleted mice, estrogen-responsive gene, Lactoferrin (Ltf), and Mucin 1 protein, were up-regulated in the uterus. In addition, progesterone-responsive genes, Hoxa10 and Indian hedgehog (Ihh), were markedly down-regulated in STAT3-inactivated uteri. These changes in uteri of deleted mice were reflected by the failure of differentiation of the luminal epithelium, which is essential for blastocyst attachment.

  8. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  9. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    Science.gov (United States)

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  10. STAT1 and STAT3 in tumorigenesis: A matter of balance.

    Science.gov (United States)

    Avalle, Lidia; Pensa, Sara; Regis, Gabriella; Novelli, Francesco; Poli, Valeria

    2012-04-01

    The transcription factors STAT1 and STAT3 appear to play opposite roles in tumorigenesis. While STAT3 promotes cell survival/proliferation, motility and immune tolerance and is considered as an oncogene, STAT1 mostly triggers anti-proliferative and pro-apoptotic responses while enhancing anti-tumor immunity. Despite being activated downstream of common cytokine and growth factor receptors, their activation is reciprocally regulated and perturbation in their balanced expression or phosphorylation levels may re-direct cytokine/growth factor signals from proliferative to apoptotic, or from inflammatory to anti-inflammatory. Here we review the functional canonical and non-canonical effects of STAT1 and STAT3 activation in tumorigenesis and their potential cross-regulation mechanisms.

  11. Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation.

    Science.gov (United States)

    Park, In-Hee; Li, Chenglong

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an anti-cancer target protein due to its over-activation in tumor cells. The Tyr705-phosphorylated (pTyr) STAT3 binds to the pTyr-recognition site of its Src Homology 2 (SH2) domain of another STAT3 monomer to form a homo-dimer, which then causes cellular anti-apoptosis, proliferation, and tumor invasion. Recently, many STAT3 SH2 dimerization inhibitors have been discovered via both computational and experimental methods. To systematically assess their binding affinities and specificities, for eight representative inhibitors, we utilized molecular docking, molecular dynamics simulation, and ensuing energetic analysis to compare their binding characteristics. The inhibitors' binding free energies were calculated via MMPB(GB)SA, and the STAT3 SH2 binding "hot spots" were evaluated through binding energy decomposition and hydrogen bond (H-bond) distribution analysis. Several conclusions can be drawn: (1) the overall enthalpy-entropy compensation paradigm is preserved for the STAT3 SH2/ligand binding thermodynamics; (2) at one end of the binding spectrum, two compounds bind to SH2 due to their minimum entropic penalties that result from their relative rigidities and increased dynamics of SH2 upon their binding; at the other end of the binding spectrum, one compound shows a typical weak binder behavior due to its loose binding in the SH2's strongest enthalpy-contributing binding subsite; (3) hydrogen bonding seems a strong indicator to evaluate the SH2/ligand binding potency, which echoes a finding that CH/π non-classical H-bond is responsible for some pTyr peptides binding to their corresponding SH2 domains; (4) STAT3 SH2 domain possesses three binding "hot spots": pTyr705-binding pocket with polar residues and contributing the largest binding enthalpy (two-thirds); Leu706 subsite which is the most dynamic and hardest to target; a hydrophobic side pocket which is unique to STAT3 and very targetable, which

  12. Labda-8(17),12,14-trien-19-oic acid contained in fruits of Cupressus sempervirens suppresses benign prostatic hyperplasia in rat and in vitro human models through inhibition of androgen and STAT-3 signaling.

    Science.gov (United States)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Kumar, Rajeev; Khan, Mohammad F; Singh, Anil K; Sharma, Rolee; Arya, Kamal R; Maikhuri, J P; Dalela, Diwakar; Maurya, Rakesh; Gupta, Gopal

    2014-08-01

    Fruit extract of Cupressus sempervirens (CS), which is used traditionally to treat Benign Prostatic Hyperplasia (BPH)-like urinary symptoms in patients, was scientifically validated for anti-BPH activity. The ethanolic fruit extract of CS inhibited proliferation of human BPH-stromal cells and the activity was localized to its chloroform-soluble, diterpene-rich fraction. Eight major diterpenes isolated from this fraction exhibited moderate to potent activity and the most active diterpene (labda-8(17),12,14-trien-19-oic acid) exhibited an IC50 of 37.5 μM (antiproliferative activity against human BPH-stromal cells). It significantly inhibited activation (phosphorylation) of Stat-3 in BPH-stromal cells and prevented transactivation of androgen sensitive KLK3/PSA and TMPRSS2 genes in LNCaP cells. Labda-8(17),12,14-trien-19-oic acid-rich CS fraction prevented prostatic hyperplasia in rat model and caused TUNEL labeling of stromal cells with lower expressions of IGF-I, TGF-ß and PCNA, and bcl-2/bax ratio. Human BPH tissues exhibited precise lowering of stromal component after incubation in labda-8(17),12,14-trien-19-oic acid, ex vivo. We conclude that labda-8(17),12,14-trien-19-oic acid contained in CS exhibits anti-BPH activity through inhibition of stromal proliferation and suppression of androgen action in the prostate, presenting a unique lead structure for further optimization of anti-BPH activity.

  13. Expression analysis of Stat3 in human lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; HAN Yi-ping

    2002-01-01

    Objective: To analyze the relationship of Stat3 expression with clinical stages, tissue types, p53and proliferation cell nuclear antigen (PCNA) in human lung carcinoma, and to evaluate the role of Stat3 in the pathogenesis of lung carcinoma. Methods: Immunohistochemical method were used to detected Stat3,p53 and PCNA in different tissues of patients (n= 42) with lung carcinoma who accepted neither radiotherapy nor chemotherapy. Results: The positive rate of Stat3 was 81.0% in lung carcinoma and its expression level was related to the tissue type but not to T, N or the clinical stage. The expression level of Stat3 in non-small cell lung carcinoma (NSCLC) was higher than that in small cell lung carcinoma (SCLC). A positive correlation of the expression of Stat3 with that of p53 and PCNA was identified. Conclusion: The expression level of Stat3 is abnormal in lung carcinoma. Stat3 may be involved in the regulation of p53 gene in lung carcinoma cell, it may accelerate the proliferation of lung carcinoma cells and play an important role in the pathogenesis of lung carcinoma.

  14. Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin.

    Science.gov (United States)

    Zhou, Jing; Ong, Choon-Nam; Hur, Gang-Min; Shen, Han-Ming

    2010-05-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer properties. In this study, we sought to examine the effect of Andro on signal transducer and activator of transcription 3 (STAT3) pathway and evaluate whether suppression of STAT3 activity by Andro could sensitize cancer cells to a chemotherapeutic drug doxorubicin. First, we demonstrated that Andro is able to significantly suppress both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Such inhibition is found to be achieved through suppression of Janus-activated kinase (JAK)1/2 and interaction between STAT3 and gp130. For understanding the biological significance of the inhibitory effect of Andro on STAT3, we next investigated the effect of Andro on doxorubicin-induced apoptosis in human cancer cells. In our study the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to doxorubicin-induced apoptosis. Both the short-term MTT assay and the long-term colony formation assay showed that Andro dramatically promoted doxorubicin-induced cell death in cancer cells, indicating that Andro enhances the sensitivity of cancer cells to doxorubicin mainly via STAT3 suppression. These observations thus reveal a novel anticancer function of Andro and suggest a potential therapeutic strategy of using Andro in combination with chemotherapeutic agents for treatment of cancer.

  15. Research progress in multiple regulation pathways of STAT3 in cancer%STAT3的多重调控方式在肿瘤中的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨毅; 袁杰; 牛瑞芳

    2016-01-01

    The activation of the proto-oncogene STAT3 is strongly controlled under physiological conditions. However, obtained evi-dence revealed that STAT3 is persistently activated in cancer cells and contributes to cancer initiation and progression. Studies demon-strated the various functions of activated STAT3 in promoting cancer development and aggravation, including cancer cell proliferation, invasion and metastasis, drug resistance, epithelial-mesenchymal transition, regulation of the tumor microenvironment, and promo-tion of the self-renewal and differentiation of cancer stem cells. Canonically, STAT3 is regulated by signaling pathways mediated by cy-tokines and growth factors. Many studies determined that STAT3 was also regulated by G protein-coupled receptors, cadherin engage-ment, Toll-like receptors, microRNA, and acetylation. We summarized the recent developments in the research on the regulation of STAT3 activation.%生理情况下原癌基因信号传导及转录激活子3(signal transducer and activator of transcription-3,STAT3)的激活受到严格的调控。然而,大量证据表明,STAT3在许多肿瘤细胞中存在持续激活,并在肿瘤的起始与进展中发挥重要作用。目前的研究发现,活化的STAT3能够通过多种方式促进肿瘤的进展,如促进肿瘤细胞的增殖、侵袭转移、耐药、上皮-间质转化、调节肿瘤微环境、促进肿瘤干细胞的更新与分化等。STAT3的激活除了受传统的细胞因子和生长因子信号通路的调控以外,大量的证据显示G-蛋白偶联受体、钙黏素、Toll样受体、miRNA以及乙酰化修饰等也在STAT3活化过程中发挥了重要作用。本文主要针对肿瘤细胞中调控STAT3活化的途径进行综述。

  16. Role of STAT3 pathway in genitourinary tumors

    Science.gov (United States)

    Santoni, Matteo; Conti, Alessandro; Piva, Francesco; Massari, Francesco; Ciccarese, Chiara; Burattini, Luciano; Cheng, Liang; Lopez-Beltran, Antonio; Scarpelli, Marina; Santini, Daniele; Tortora, Giampaolo; Cascinu, Stefano; Montironi, Rodolfo

    2015-01-01

    The STAT3 is often dysregulated in genitourinary tumors. In prostate cancer, STAT3 activation correlates with Gleason score and pathological stage and modulates cancer stem cells and epithelial–mesenchymal transition. In addition, STAT3 promotes the progression from carcinoma in situ to invasive bladder cancer and modulates renal cell carcinoma angiogenesis by increasing the expression of HIF1α and VEGF. STAT3 is also involved in the response to tyrosine kinase inhibitors sunitinib and axitinib, in patients with metastatic renal cell carcinoma, and to second-generation androgen receptor inhibitor enzalutamide in patients with advanced prostate cancer. In this review, we describe the role of STAT3 in genitourinary tumors, thus describing its potential for future therapeutic strategies. PMID:28031890

  17. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  18. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Directory of Open Access Journals (Sweden)

    Yokota Takashi

    2008-05-01

    Full Text Available Abstract Background The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. Results Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B was shown to be restricted to the inner cell mass (ICM of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. Conclusion Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent

  19. Jak2-Independent Activation of Stat3 by Intracellular Angiotensin II in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Rekha Singh

    2011-01-01

    Full Text Available Ang II is shown to mediate the stimulatory effect of high glucose on TGF-b1 and extracellular matrix proteins in glomerular mesangial cells. Also inhibition of Ang II formation in cell media (extracellular and lysates (intracellular blocks high-glucose effects on TGF-b1 and matrix more effectively compared to inhibition of extracellular Ang II alone. To investigate whether intracellular Ang II can stimulate TGF-b1 and matrix independent of extracellular Ang II, cultured human mesangial cells were transfected with Ang II to increase intracellular Ang II levels and its effects on TGF-b1 and matrix proteins were determined. Prior to transfection, cells were treated with candesartan to block extracellular Ang II-induced responses via cell membrane AT1 receptors. Transfection of cells with Ang II resulted in increased levels of intracellular Ang II which was accompanied by increased production of TGF-b1, collagen IV, fibronectin, and cell proliferation as well. On further examination, intracellular Ang II was found to activate Stat3 transcription factor including increased Stat3 protein expression, tyrosine 705 phosphorylation, and DNA-binding activity. Treatment with AG-490, an inhibitor of Jak2, did not block intracellular Ang II-induced Stat3 phosphorylation at tyrosine 705 residue indicating a Jak2-independent mechanism used by intracellular Ang II for Stat3 phosphorylation. In contrast, extracellular Ang II-induced tyrosine 705 phosphorylation of Stat3 was inhibited by AG-490 confirming the presence of a Jak2-dependent pathway. These findings suggest that intracellular Ang II increases TGF-b1 and matrix in human mesangial cells and also activates Stat3 transcription factor without involvement of the extracellular Ang II signaling pathway.

  20. Prevention of hypovolemic circulatory collapse by IL-6 activated Stat3.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Alten

    Full Text Available Half of trauma deaths are attributable to hypovolemic circulatory collapse (HCC. We established a model of HCC in rats involving minor trauma plus severe hemorrhagic shock (HS. HCC in this model was accompanied by a 50% reduction in peak acceleration of aortic blood flow and cardiomyocyte apoptosis. HCC and apoptosis increased with increasing duration of hypotension. Apoptosis required resuscitation, which provided an opportunity to intervene therapeutically. Administration of IL-6 completely reversed HCC, prevented cardiac dysfunction and cardiomyocyte apoptosis, reduced mortality 5-fold and activated intracardiac signal transducer and activator of transcription (STAT 3. Pre-treatment of rats with a selective inhibitor of Stat3, T40214, reduced the IL-6-mediated increase in cardiac Stat3 activity, blocked successful resuscitation by IL-6 and reversed IL-6-mediated protection from cardiac apoptosis. The hearts of mice deficient in the naturally occurring dominant negative isoform of Stat3, Stat3beta, were completely resistant to HS-induced apoptosis. Microarray analysis of hearts focusing on apoptosis related genes revealed that expression of 29% of apoptosis related genes was altered in HS vs. sham rats. IL-6 treatment normalized the expression of these genes, while T40214 pretreatment prevented IL-6-mediated normalization. Thus, cardiac dysfunction, cardiomyocyte apoptosis and induction of apoptosis pathway genes are important components of HCC; IL-6 administration prevented HCC by blocking cardiomyocyte apoptosis and induction of apoptosis pathway genes via Stat3 and warrants further study as a resuscitation adjuvant for prevention of HCC and death in trauma patients.

  1. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    Science.gov (United States)

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.

  2. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  3. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  4. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways

    Science.gov (United States)

    Leve, Fernanda; Peres-Moreira, Rubem J.; Binato, Renata; Abdelhay, Eliana; Morgado-Díaz, José A.

    2015-01-01

    Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell

  5. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia

    Directory of Open Access Journals (Sweden)

    Taku Tsunekawa

    2017-02-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD, remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3 was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT. In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.

  6. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX.

    Science.gov (United States)

    Willey, Christopher D; Palanisamy, Arun P; Johnston, Rebecca K; Mani, Santhosh K; Shiraishi, Hirokazu; Tuxworth, William J; Zile, Michael R; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2008-06-27

    Growth, survival and cytoskeletal rearrangement of cardiomyocytes are critical for cardiac hypertrophy. Signal transducer and activator of transcription-3 (STAT3) activation is an important cardioprotective factor associated with cardiac hypertrophy. Although STAT3 activation has been reported via signaling through Janus Kinase 2 (JAK2) in several cardiac models of hypertrophy, the importance of other nonreceptor tyrosine kinases (NTKs) has not been explored. Utilizing an in vivo feline right ventricular pressure-overload (RVPO) model of hypertrophy, we demonstrate that in 48 h pressure-overload (PO) myocardium, STAT3 becomes phosphorylated and redistributed to detergent-insoluble fractions with no accompanying JAK2 activation. PO also caused increased levels of phosphorylated STAT3 in both cytoplasmic and nuclear fractions. To investigate the role of other NTKs, we used our established in vitro cell culture model of hypertrophy where adult feline cardiomyocytes are embedded three-dimensionally (3D) in type-I collagen and stimulated with an integrin binding peptide containing an Arg-Gly-Asp (RGD) motif that we have previously shown to recapitulate the focal adhesion complex (FAC) formation of 48 h RVPO. RGD stimulation of adult cardiomyocytes in vitro caused both STAT3 redistribution and activation that were accompanied by the activation and redistribution of c-Src and the TEC family kinase, BMX, but not JAK2. However, infection with dominant negative c-Src adenovirus was unable to block RGD-stimulated changes on either STAT3 or BMX. Further analysis in vivo in 48 h PO myocardium showed the presence of both STAT3 and BMX in the detergent-insoluble fraction with their complex formation and phosphorylation. Therefore, these studies indicate a novel mechanism of BMX-mediated STAT3 activation within a PO model of cardiac hypertrophy that might contribute to cardiomyocyte growth and survival.

  7. STAT3 Activation in Pressure-Overloaded Feline Myocardium: Role for Integrins and the Tyrosine Kinase BMX

    Directory of Open Access Journals (Sweden)

    Christopher D. Willey, Arun P. Palanisamy, Rebecca K. Johnston, Santhosh K. Mani, Hirokazu Shiraishi, William J. Tuxworth, Michael R. Zile, Sundaravadivel Balasubramanian, Dhandapani Kuppuswamy

    2008-01-01

    Full Text Available Growth, survival and cytoskeletal rearrangement of cardiomyocytes are critical for cardiac hypertrophy. Signal transducer and activator of transcription-3 (STAT3 activation is an important cardioprotective factor associated with cardiac hypertrophy. Although STAT3 activation has been reported via signaling through Janus Kinase 2 (JAK2 in several cardiac models of hypertrophy, the importance of other nonreceptor tyrosine kinases (NTKs has not been explored. Utilizing an in vivo feline right ventricular pressure-overload (RVPO model of hypertrophy, we demonstrate that in 48 h pressure-overload (PO myocardium, STAT3 becomes phosphorylated and redistributed to detergent-insoluble fractions with no accompanying JAK2 activation. PO also caused increased levels of phosphorylated STAT3 in both cytoplasmic and nuclear fractions. To investigate the role of other NTKs, we used our established in vitro cell culture model of hypertrophy where adult feline cardiomyocytes are embedded three-dimensionally (3D in type-I collagen and stimulated with an integrin binding peptide containing an Arg-Gly-Asp (RGD motif that we have previously shown to recapitulate the focal adhesion complex (FAC formation of 48 h RVPO. RGD stimulation of adult cardiomyocytes in vitro caused both STAT3 redistribution and activation that were accompanied by the activation and redistribution of c-Src and the TEC family kinase, BMX, but not JAK2. However, infection with dominant negative c-Src adenovirus was unable to block RGD-stimulated changes on either STAT3 or BMX. Further analysis in vivo in 48 h PO myocardium showed the presence of both STAT3 and BMX in the detergent-insoluble fraction with their complex formation and phosphorylation. Therefore, these studies indicate a novel mechanism of BMX-mediated STAT3 activation within a PO model of cardiac hypertrophy that might contribute to cardiomyocyte growth and survival.

  8. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Delekate, Andrea; Füchtemeier, Martina; Schumacher, Toni; Ulbrich, Cordula; Foddis, Marco; Petzold, Gabor C

    2014-11-19

    Astrocytic network alterations have been reported in Alzheimer's disease (AD), but the underlying pathways have remained undefined. Here we measure astrocytic calcium, cerebral blood flow and amyloid-β plaques in vivo in a mouse model of AD using multiphoton microscopy. We find that astrocytic hyperactivity, consisting of single-cell transients and calcium waves, is most pronounced in reactive astrogliosis around plaques and is sometimes associated with local blood flow changes. We show that astroglial hyperactivity is reduced after P2 purinoreceptor blockade or nucleotide release through connexin hemichannels, but is augmented by increasing cortical ADP concentration. P2X receptor blockade has no effect, but inhibition of P2Y1 receptors, which are strongly expressed by reactive astrocytes surrounding plaques, completely normalizes astrocytic hyperactivity. Our data suggest that astroglial network dysfunction is mediated by purinergic signalling in reactive astrocytes, and that intervention aimed at P2Y1 receptors or hemichannel-mediated nucleotide release may help ameliorate network dysfunction in AD.

  9. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    Science.gov (United States)

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  10. Malignant T cells exhibit CD45 resistant Stat3 activation and proliferation in cutaneous

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Helvad, Rikke; Ralfkiaer, Elisabeth;

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......-mediated inhibition of proliferation. In conclusion, our data suggest that CD45 dysregulation might play a role in the aberrant proliferation and Jak3/Stat3 activation in CTCL....

  11. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew A Bill

    Full Text Available The Janus kinase-2 (Jak2-signal transducer and activator of transcription-3 (STAT3 pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3, and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma.

  12. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells.

    Science.gov (United States)

    Dokduang, Hasaya; Yongvanit, Puangrat; Namwat, Nisana; Pairojkul, Chawalit; Sangkhamanon, Sakkarn; Yageta, Mika Sakurai; Murakami, Yoshinori; Loilome, Watcharin

    2016-04-01

    STAT3 plays a significant role in the development of cholangiocarcinoma (CCA) associated with the liver fluke (Opisthorchis viverrini; Ov). Xanthohumol (XN), a prenylated flavonoid extracted from hops, has known anticancer activity and could potentially target STAT3. The present study determined the effect of XN on STAT3, as well as ascertained its usefulness against CCA. The CCA cell proliferation at 20 µM and 50 µM of XN was shown to inhibited, while 20 µM partially inhibited IL-6-induced STAT3 activation. At 50 µM, the inhibition was complete. The reduction in STAT3 activity at 20 and 50 µM was associated with a significant reduction of CCA cell growth and apoptosis. We also found that the administration of 50 µM XN orally in drinking water to nude mice inoculated with CCA led to a reduction in tumor growth in comparison with controls. In addition, apoptosis of cancer cells increased although there was no visible toxicity. The present study shows that XN can inhibit STAT3 activation both in vivo and in vitro due to suppression of the Akt-NFκB signaling pathway. XN should be considered as a possible therapeutic agent against CCA.

  13. Overcoming resistance of targeted EGFR monotherapy by inhibition of STAT3 escape pathway in soft tissue sarcoma

    Science.gov (United States)

    Wang, Xiaochun; Goldstein, David; Crowe, Philip J.; Yang, Mark; Garrett, Kerryn; Zeps, Nikolajs; Yang, Jia-Lin

    2016-01-01

    Although epidermal growth factor receptor (EGFR) is often over-expressed in soft tissue sarcoma (STS), a phase II trial using an EGFR inhibitor gefitinib showed a low response rate. This study identified a new secondary resistance mechanism of gefitinib in STS, and developed new strategies to improve the effectiveness of EGFR inhibition particularly by blocking the STAT3 pathway. We demonstrated that seven STS cell lines of diverse histological origin showed resistance to gefitinib despite blockade of phosphorylated EGFR (pEGFR) and downstream signal transducers (pAKT and pERK) in PI3K/AKT and RAS/ERK pathways. Gefitinib exposure was not associated with decrease in the ratio of pSTAT3/pSTAT1. The relative STAT3 abundance and activation may be responsible for the drug resistance. We therefore hypothesized that the addition of a STAT3 inhibitor could overcome the STAT3 escape pathway. We found that the addition of STAT3 inhibitor S3I-201 to gefitinib achieved synergistic anti-proliferative and pro-apoptotic effects in all three STS cell lines examined. This was confirmed in a fibrosarcoma xenografted mouse model, where the tumours from the combination group (418mm3) were significantly smaller than those from untreated (1032mm3) or single drug (912 and 798mm3) groups. Our findings may have clinical implications for optimising EGFR-targeted therapy in STS. PMID:26909593

  14. Ratios of Four STAT3 Splice Variants in Human Eosinophils and Diffuse Large B Cell Lymphoma Cells.

    Science.gov (United States)

    Turton, Keren B; Annis, Douglas S; Rui, Lixin; Esnault, Stephane; Mosher, Deane F

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a key mediator of leukocyte differentiation and proliferation. The 3' end of STAT3 transcripts is subject to two alternative splicing events. One results in either full-length STAT3α or in STAT3β, which lacks part of the C-terminal transactivation domain. The other is at a tandem donor (5') splice site and results in the codon for Ser-701 being included (S) or excluded (ΔS). Despite the proximity of Ser-701 to the site of activating phosphorylation at Tyr-705, ΔS/S splicing has barely been studied. Sequencing of cDNA from purified eosinophils revealed the presence of four transcripts (S-α, ΔS-α, S-β, and ΔS-β) rather than the three reported in publically available databases from which ΔS-β is missing. To gain insight into regulation of the two alternative splicing events, we developed a quantitative(q) PCR protocol to compare transcript ratios in eosinophils in which STAT3 is upregulated by cytokines, activated B cell diffuse large B cell Lymphoma (DLBCL) cells in which STAT3 is dysregulated, and in germinal center B cell-like DLBCL cells in which it is not. With the exception of one line of activated B cell DLCBL cells, the four variants were found in roughly the same ratios despite differences in total levels of STAT3 transcripts. S-α was the most abundant, followed by S-β. ΔS-α and ΔS-β together comprised 15.6 ± 4.0 % (mean ± SD, n = 21) of the total. The percentage of STAT3β variants that were ΔS was 1.5-fold greater than of STAT3α variants that were ΔS. Inspection of Illumina's "BodyMap" RNA-Seq database revealed that the ΔS variant accounts for 10-26 % of STAT3 transcripts across 16 human tissues, with less variation than three other genes with the identical tandem donor splice site sequence. Thus, it seems likely that all cells contain the S-α, ΔS-α, S-β, and ΔS-β variants of STAT3.

  15. Ratios of Four STAT3 Splice Variants in Human Eosinophils and Diffuse Large B Cell Lymphoma Cells.

    Directory of Open Access Journals (Sweden)

    Keren B Turton

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is a key mediator of leukocyte differentiation and proliferation. The 3' end of STAT3 transcripts is subject to two alternative splicing events. One results in either full-length STAT3α or in STAT3β, which lacks part of the C-terminal transactivation domain. The other is at a tandem donor (5' splice site and results in the codon for Ser-701 being included (S or excluded (ΔS. Despite the proximity of Ser-701 to the site of activating phosphorylation at Tyr-705, ΔS/S splicing has barely been studied. Sequencing of cDNA from purified eosinophils revealed the presence of four transcripts (S-α, ΔS-α, S-β, and ΔS-β rather than the three reported in publically available databases from which ΔS-β is missing. To gain insight into regulation of the two alternative splicing events, we developed a quantitative(q PCR protocol to compare transcript ratios in eosinophils in which STAT3 is upregulated by cytokines, activated B cell diffuse large B cell Lymphoma (DLBCL cells in which STAT3 is dysregulated, and in germinal center B cell-like DLBCL cells in which it is not. With the exception of one line of activated B cell DLCBL cells, the four variants were found in roughly the same ratios despite differences in total levels of STAT3 transcripts. S-α was the most abundant, followed by S-β. ΔS-α and ΔS-β together comprised 15.6 ± 4.0 % (mean ± SD, n = 21 of the total. The percentage of STAT3β variants that were ΔS was 1.5-fold greater than of STAT3α variants that were ΔS. Inspection of Illumina's "BodyMap" RNA-Seq database revealed that the ΔS variant accounts for 10-26 % of STAT3 transcripts across 16 human tissues, with less variation than three other genes with the identical tandem donor splice site sequence. Thus, it seems likely that all cells contain the S-α, ΔS-α, S-β, and ΔS-β variants of STAT3.

  16. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  17. Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity.

    Science.gov (United States)

    Jorvig, Jessica E; Chakraborty, Arup

    2015-02-01

    Zerumbone, a phytochemical isolated from Zingiber zerumbet has been shown previously to exhibit antineoplastic activity. But, the effect of zerumbone in prostate cancer has not been evaluated. Prostate cancer is frequently associated with elevated levels of interleukin-6 (IL-6), which exerts its oncogenic effects through activation of Janus kinase 2 (JAK2) followed by activation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Here, we investigated whether the anticancer effects of zerumbone are mediated through inhibition of the JAK2/STAT3 signaling pathway and whether zerumbone can increase the paclitaxel (PTX) sensitivity of prostate cancer cells. Zerumbone exerted significant cytotoxicity of DU145 versus PC3 prostate cancer cells through cell cycle arrest at G0/G1 phase followed by apoptosis. Zerumbone selectively inhibited JAK2 in both DU145 and PC3 cells. However, the biological axis of IL-6/JAK2/STAT3 was inhibited only in DU145 cells as no STAT3 phosphorylation was detected in PC3 cells even after IL-6 stimulation. Other signaling pathways in DU145 cells remained unaffected. The expression of prostate cancer-associated genes, including cyclin D1, IL-6, COX2, and ETV1, was blocked. Zerumbone also synergistically increased the sensitivity to PTX. Further preclinical study might reveal the potential use of zerumbone as a chemotherapeutic agent for hormone refractory prostate cancer where IL-6/JAK2/STAT3 signaling is aberrantly active and may be combined with PTX.

  18. Novel CD47: SIRPα dependent mechanism for the activation of STAT3 in antigen-presenting cell.

    Directory of Open Access Journals (Sweden)

    Natan Toledano

    Full Text Available Cell surface CD47 interacts with its receptor, signal-regulatory-protein α (SIRPα that is expressed predominantly on macrophages, to inhibit phagocytosis of normal, healthy cells. This "don't eat me" signal is mediated through tyrosine phosphorylation of SIRPα at the cytoplasmic ITIM motifs and the recruitment of the phosphatase, SHP-1. We previously revealed a novel mechanism for the activation of the STAT3 pathway and the regulation of human APC maturation and function that is based on cell:cell interaction. In this study, we present evidence supporting the notion that CD47:SIRPα serves as a cell surface receptor: ligand pair involved in this contact-dependent STAT3 activation and regulation of APC maturation. We show that upon co-culturing APC with various primary and tumor cell lines STAT3 phosphorylation and IL-10 expression are induced, and such regulation could be suppressed by specific CD47 siRNAs and shRNAs. Significantly, >50% reduction in CD47 expression abolished the contact-dependent inhibition of T cell activation. Furthermore, co-immunoprecipitation experiments revealed a physical association between SIRPα and STAT3. Thus, we suggest that in addition to signaling through the ITIM-SHP-1 complex that transmit an anti-phagocytotic, CD47:SIRPα also triggers STAT3 signaling that is linked to an immature APC phenotype and peripheral tolerance under steady state and pathological conditions.

  19. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  20. Nuclear pore complex remodeling by p75NTR cleavage controls TGF-β signaling and astrocyte functions

    Science.gov (United States)

    Schachtrup, Christian; Ryu, Jae Kyu; Mammadzada, Könül; Khan, Abdullah S.; Carlton, Peter M.; Perez, Alex; Christian, Frank; Le Moan, Natacha; Vagena, Eirini; Baeza-Raja, Bernat; Rafalski, Victoria; Chan, Justin P.; Nitschke, Roland; Houslay, Miles D.; Ellisman, Mark H.; Wyss-Coray, Tony; Palop, Jorge J.; Akassoglou, Katerina

    2016-01-01

    Astrocytes play critical roles in neuronal activity and inhibition of regeneration. Here we show that the cleaved p75 neurotrophin receptor (p75NTR) is a component of the nuclear pore complex (NPC) required for glial scar formation and reduced gamma oscillations in mice via regulation of TGF-β signaling. The cleaved p75NTR interacts with nucleoporins to promote Smad2 nucleocytoplasmic shuttling. Thus, NPC remodeling by regulated intramembrane cleavage of p75NTR controls astrocyte-neuronal communication in response to profibrotic factors. PMID:26120963

  1. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  2. STAT3 and NF-κB are Simultaneously Suppressed in Dendritic Cells in Lung Cancer

    Science.gov (United States)

    Li, Rui; Fang, Fang; Jiang, Ming; Wang, Chenguang; Ma, Jiajia; Kang, Wenyao; Zhang, Qiuyan; Miao, Yuhui; Wang, Dong; Guo, Yugang; Zhang, Linnan; Guo, Yang; Zhao, Hui; Yang, De; Tian, Zhigang; Xiao, Weihua

    2017-01-01

    Tumour-induced dendritic cell (DC) dysfunction plays an important role in cancer immune escape. However, the underlying mechanisms are not yet fully understood, reflecting the lack of appropriate experimental models both in vivo and in vitro. In the present study, an in vitro study model for tumour-induced DC dysfunction was established by culturing DCs with pooled sera from multiple non-small cell lung cancer (NSCLC) patients. The results demonstrated that tumour-induced human monocyte-derived DCs exhibited systematic functional deficiencies. Transcriptomics analysis revealed that the expression of major functional cluster genes, including the MHC class II family, cytokines, chemokines, and co-stimulatory molecules, was significantly altered in tumour-induced DCs compared to that in control cells. Further examination confirmed that both NF-κB and STAT3 signalling pathways were simultaneously repressed by cancer sera, suggesting that the attenuated NF-κB and STAT3 signalling could be the leading cause of DC dysfunction in cancer. Furthermore, reversing the deactivated NF-κB and STAT3 signalling could be a strategy for cancer immunotherapy.

  3. STAT-3 inhibitors: state of the art and new horizons for cancer treatment.

    Science.gov (United States)

    Lavecchia, A; Di Giovanni, C; Novellino, E

    2011-01-01

    The signal transducers and activators of transcription (STATs) include a class of cytoplasmic signaling proteins whose role in the regulation of cell growth and survival is mediated by phosphorylation of a critical tyrosine residue within the STAT protein. This occurs in response to cytokines and growth factors modulating the expression of specific target genes. In particular, phosphorylation induces STAT:STAT dimer formation between two monomers, via reciprocal phosphoTyr (pTyr)-SH2 domain interactions. To date, seven members of the STAT family, all with different roles, have been identified in mammals. After dimerization, phosphorylated STATs enter the nucleus and, working co-ordinately with other transcriptional co-activators and transcription factors, induce increased transcriptional initiation. In healthy human and animal cells, ligand-dependent activation of STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular STAT1, 3 and 5) are persistently tyrosine-phosphorylated or activated; abnormal levels of STAT3 activation have been observed in breast, ovarian, prostate, hematological and head and neck cancer cell lines. Thus, in this review, we examine the most important classes of agents designed to disrupt STAT3 signaling, with particular regard to STAT3 dimerization inhibitors, which could play a significant role in the future of cancer and adjuvant cancer therapies.

  4. Dissecting functions of the N-terminal domain and GAS-site recognition in STAT3 nuclear trafficking.

    Science.gov (United States)

    Martincuks, Antons; Fahrenkamp, Dirk; Haan, Serge; Herrmann, Andreas; Küster, Andrea; Müller-Newen, Gerhard

    2016-08-01

    Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression. Cytokine-induced gene transcription greatly depends on tyrosine phosphorylation of STAT3 on a single tyrosine residue with subsequent nuclear accumulation and specific DNA sequence (GAS) recognition. In this study, we analyzed the roles of the conserved STAT3 N-terminal domain (NTD) and GAS-element binding ability of STAT3 in nucleocytoplasmic trafficking. Our results demonstrate the nonessential role of GAS-element recognition for both cytokine-induced and basal nuclear import of STAT3. Substitution of five key amino acids within the DNA-binding domain rendered STAT3 unable to bind to GAS-elements while still maintaining the ability for nuclear localization. In turn, deletion of the NTD markedly decreased nuclear accumulation upon IL-6 treatment resulting in a prolonged accumulation of phosphorylated dimers in the cytoplasm, at the same time preserving specific DNA recognition ability of the truncation mutant. Observed defect in nuclear localization could not be explained by flawed importin-α binding, since both wild-type and NTD deletion mutant of STAT3 could precipitate both full-length and autoinhibitory domain (∆IBB) deletion mutants of importin-α5, as well as ∆IBB-α3 and ∆IBB-α7 isoforms independently of IL-6 stimulation. Despite its inability to translocate to the nucleus upon IL-6 stimulation, the NTD lacking mutant still showed nuclear accumulation in resting cells similar to wild-type upon inhibition of nuclear export by leptomycin B. At the same time, blocking the nuclear export pathway could not rescue cytoplasmic trapping of phosphorylated STAT3 molecules without NTD. Moreover, STAT3 mutant with dysfunctional SH2 domain (R609Q) also localized in the nucleus of unstimulated cells after nuclear export blocking, while upon cytokine treatment the

  5. Immunohistochemical expression of the oncogenic molecules active Stat3 and survivin in benign and malignant salivary gland tumors

    Science.gov (United States)

    Nikitakis, Nikolaos G.; Scheper, Mark A.; Papanicolaou, Vasileios S.; Sklavounou, Alexandra; Sauk, John J.

    2009-01-01

    Objective Signal transducer and activator of transcription 3 (Stat3) and survivin have been shown to exert oncogenic effects in various human neoplasms. The purpose of this study was to evaluate the expression of the tyrosine phosphorylated (active) Stat3 and survivin in various benign and malignant salivary gland tumors (SGTs). Study design Eighty-six SGTs (65 malignant and 21 benign tumors of various histopathologic subtypes) were immunohistochemically stained with anti-survivin or anti-phosphorylated tyrosine-705 (p-tyr) Stat3 antibodies. Immunohistochemical reactivity was graded in a semi-quantitative manner; a combined score of immunohistochemical positivity (0–6) was calculated for each tumor by adding the individual scores for percentage of tumor cells (0–3) and intensity of staining (0–3). Results Survivin was immunohistochemically detected in all studied benign and malignant SGTs; p-tyr Stat3 was also detected in the majority (91%) of SGTs. The average combined scores for survivin and p-tyr Stat3 immunohistochemical expression in the studied malignant SGTs was 4.40 and 3.35, respectively; the corresponding combined scores for survivin and p-tyr Stat3 in the studied benign SGTs were 4.37 and 3.22, respectively. No statistically significant differences (p>0.05) in p-tyr Stat3 or survivin expression were detected between the benign and malignant groups, or among the various examined histopathological subtypes of SGTs. In contrast, normal salivary gland elements in the vicinity of the studied tumors revealed only weak and focal survivin or p-tyr Stat3 immunoreactivity, mainly localized to ductal and mucous cells. Conclusions Our data indicate an almost universal expression of activated Stat3 and survivin in benign and malignant SGTs. Considering the well-established proliferative and anti-apoptotic properties of these molecules and their functional interrelationship, selective targeting techniques against Stat3 and/or survivin may represent promising

  6. BCL3 exerts an oncogenic function by regulating STAT3 in human cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhao H

    2016-10-01

    Full Text Available Hu Zhao,1 Wuliang Wang,1 Qinghe Zhao,1 Guiming Hu,2 Kehong Deng,1 Yuling Liu1 1Department of Gynecology and Obstetrics, 2Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: Aberrant expression of oncogenes and/or tumor suppressors play a fundamental effect on the pathogenesis and tumorigenicity of cervical cancer (CC. B-cell CLL/lymphoma 3 (BCL3 was previously found to be a putative proto-oncogene in human cancers and regulated signal transducer and activator of transcription 3 (STAT3, a critical oncogene, in CC cell line. However, its expression status, clinical significance and biological functions in CC remain largely unclear. The expressions of BCL3 and STAT3 in CC specimens were determined by immunohistochemistry. MTT, colony formation assays and flow cytometry analysis were carried out to test proliferation and cell cycle of CC cells. Here, the levels of BCL3 were overexpressed in CC compared to adjacent cervical tissues. Furthermore, high levels of BCL3 protein were confirmed by immunoblotting in CC cells as compared with normal cervical epithelial cells. The positive expression of BCL3 was correlated with adverse prognostic features and reduced survival rate. In addition, BCL3 regulated STAT3 abundance in CC cells. STAT3 was found to be upregulated and positively correlated with BCL3 expression in CC specimens. BCL3 overexpression resulted in prominent increased proliferation and cell cycle progression in Hela cells. By contrast, inhibition of BCL3 in CaSki cells remarkably suppressed proliferative ability and cell cycle progression. In vivo studies showed that knockdown of BCL3 inhibited tumor growth of CC in mice xenograft model. Notably, we confirmed that STAT3 mediated the oncogenic roles of BCL3 in CC. In conclusion, we suggest that BCL3 serves as an oncogene in CC by modulating proliferation and cell cycle progression, and its oncogenic effect is

  7. STAT3在新型肠道病毒71型(EV71)感染和复制中的作用初步研究%Effects of STAT3 on enterovirus 71 (EV71) infection and replication

    Institute of Scientific and Technical Information of China (English)

    王艳; 卞良; 刘晴晴; 熊鹰; 李泽阳; 龙健儿

    2015-01-01

    目的 研究STAT3 (signal transducer and activator of transcription 3)对新型肠道病毒71型(enterovirus 71,EV71)感染及复制的影响.方法 观察EV71感染横纹肌肉瘤细胞后STAT3的动态表达;利用慢病毒载体下调或过表达STAT3技术,观察细胞在改变STAT3表达后,对EV71感染细胞后病毒VP1表达、形成蚀斑和病毒滴度的影响,研究STAT3对EV71感染和复制的影响.结果 EV71感染可明显下调细胞STAT3-Tyr705磷酸化(p-STAT3)水平.在STAT3表达稳定下调的细胞中,p-STAT3水平也下调,这有利于EV71病毒感染和复制.而过表达STAT3的细胞内,p-STAT3水平也上调,对EV71感染和复制的效应与上述STAT3下调的结果相反.免疫共聚焦和蚀斑分析发现高表达p-STAT3的细胞不易被EV71感染.结论 EV71感染可明显下调p-STAT3水平,并促进病毒的复制.STAT3影响EV71的感染和复制,可能主要通过STAT3的磷酸化水平影响细胞对病毒的易感性.

  8. Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains.

    Science.gov (United States)

    Mannari, Tetsuya; Morita, Shoko; Furube, Eriko; Tominaga, Makoto; Miyata, Seiji

    2013-06-01

    The circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP) sense a variety of blood-borne molecules because they lack typical blood-brain barrier. Though a few signaling pathways are known, it is not known how endogenous ligands for transient receptor potential vanilloid receptor 1 ion channel (TRPV1) are sensed in the CVOs. In this study, we aimed to examine whether or not astrocytic TRPV1 senses directly blood-borne molecules in the OVLT, SFO, and AP of adult mice. The reverse transcription-polymerase chain reaction and Western analysis revealed the expression of TRPV1 in the CVOs. Confocal microscopic immunohistochemistry further showed that TRPV1 was localized prominently at thick cellular processes of astrocytes rather than fine cellular processes and cell bodies. TRPV1-expressing cellular processes of astrocytes surrounded the vasculature to constitute dense networks. The expression of TRPV1 was also found at neuronal dendrites but not somata in the CVOs. The intravenous administration of a TRPV1 agonist resiniferatoxin (RTX) prominently induced Fos expression at astrocytes in the OVLT, SFO, and AP and neurons in adjacent related nuclei of the median preoptic nuclei (MnPO) and nucleus of the solitary tract (Sol) of wild-type but not TRPV1-knockout mice. The intracerebroventricular infusion of RTX induced Fos expression at both astrocytes and neurons in the CVOs, MnPO, and Sol. Thus, this study demonstrates that blood-borne molecules are sensed directly by astrocytic TRPV1 of the CVOs in adult mammalians.

  9. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis

    Science.gov (United States)

    Chen, Kuang-Yao; Chiu, Cheng-Hsun; Wang, Lian-Chen

    2017-01-01

    Angiostrongylus cantonensis, the rat lungworm, is an important aetiologic agent of eosinophilic meningitis and meningoencephalitis in humans. Co-culturing astrocytes with soluble antigens of A. cantonensis activated the Sonic hedgehog (Shh) signalling pathway and inhibited the apoptosis of astrocytes via the activation of Bcl-2. This study was conducted to determine the roles of the Shh signalling pathway, apoptosis, and oxidative stress in astrocytes after treatment with excretory-secretory products (ESP) from A. cantonensis fifth-stage larvae. Although astrocyte viability was significantly decreased after ESP treatment, the expression of Shh signalling pathway related proteins (Shh, Ptch-1 and Gli-1) was significantly increased. However, apoptosis in astrocytes was significantly decreased after activation of the Shh signalling pathway. Moreover, superoxide and hydrogen superoxide levels in astrocytes were significantly reduced after the activation of Shh pathway signalling due to increasing levels of the antioxidants catalase and superoxide dismutase. These findings indicate that the anti-apoptotic effects of the Shh signalling pathway in the astrocytes of mice infected with A. cantonensis are due to reduced levels of oxidative stress caused by the activation of antioxidants. PMID:28169282

  10. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  11. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3

    OpenAIRE

    2008-01-01

    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Ni...

  12. Dynamic Balance of pSTAT1 and pSTAT3 in C57BL/6 Mice Infected with Lethal or Nonlethal Plasmodium yoelii

    Institute of Scientific and Technical Information of China (English)

    Xibao Shi; Li Qin; Guangjie Liu; Siting Zhao; Nanzheng Peng; Xiaoping Chen

    2008-01-01

    Signal transducer and activator of transcription(STAT)proteins play an important role in cytokine signaling pathways and regulation of immune responses.The balance of the phosphorylated(activated)STAT1(pSTAT1) and STAT3 (pSTAT3)has been documented in cancer immunology.In this study,we investigated the dynamic balance of pSTAT1 and pSTAT3 in C57BL/6 mice infected with either a nonlethal(py17XNL)or lethal(ey17XL) strain of Plasmodium yoelii.Both pylNL and ey17XL infections induced a maximum activation of STAT1 and STAT3 On the first day after parasite inoculation.Additionally,the py17XNL infection induced a pSTAT1- dominant response in mice during the early stage of infection,with the resolution of parasitemia.In contrast, Py17XL infection induced a pSTAT3-dominant response during the early phase of infection,with the death of the animals.Our results indicated that maximum activation of STAT1 and STAT3 occurred much earlier than the peak levels of cytokines induced by Plasmodium yoelii infection based on previous reports and that infection with Py17XNL-and py17XL induced different dynamic patterns of pSTAT1 and pSTAT3 balance.

  13. CCR7 regulates cell migration and invasion through JAK2/STAT3 in metastatic squamous cell carcinoma of the head and neck.

    Science.gov (United States)

    Liu, Fa-Yu; Safdar, Jawad; Li, Zhen-Ning; Fang, Qi-Gen; Zhang, Xu; Xu, Zhong-Fei; Sun, Chang-Fu

    2014-01-01

    Squamous cell carcinoma of the head and neck (SCCHN) frequently involves metastasis at diagnosis. Our previous research has demonstrated that CCR7 plays a key role in regulating SCCHN metastasis, and this process involves several molecules, such as PI3K/cdc42, pyk2, and Src. In this study, the goals are to identify whether JAK2/STAT3 also participates in CCR7's signal network, its relationship with other signal pathways, and its role in SCCHN cell invasion and migration. The results showed that stimulation of CCL19 could induce JAK2/STAT3 phosphorylation, which can be blocked by Src and pyk2 inhibitors. After activation, STAT3 was able to promote low expression of E-cadherin and had no effect on vimentin. This JAk2/STAT3 pathway not only mediated CCR7-induced cell migration but also mediated invasion speed. The immunohistochemistry results also showed that the phosphorylation of STAT3 was correlated with CCR7 expression in SCCHN, and CCR7 and STAT3 phosphorylation were all associated with lymph node metastasis. In conclusion, JAk2/STAT3 plays a key role in CCR7 regulating SCCHN metastasis.

  14. Developmental Profile and Mechanisms of GABA-Induced Calcium Signaling in Hippocampal Astrocytes

    Institute of Scientific and Technical Information of China (English)

    SILKE D. MEIER; KARL W. KAFITZ; CHRISTINE R. ROSE

    2008-01-01

    γ-氨基丁酸(GABA)是具有双重作用的递质,它在产后发育的第1周对神经元具有兴奋作用,但在成年大脑中是主要的抑制性递质.GABA还能通过与离子型(GABAA)和代谢型(GABAB)受体结合来活化星形胶质细胞,导致胶质细胞钙升高及神经递质释放,GABA在神经元-胶质细胞相互作用中起重要的调节作用.本文采用全细胞膜片钳和比率钙成象分析出生后3~34 d的大鼠海马切片,星形胶质细胞GABAA和GABAB受体活化诱导的钙信号的发育特征及细胞机制.GABAA和GABAB受体都可介导胶质细胞的细胞内钙瞬对升高.在整个发育过程中,GABAA受体活化通过激活电压依赖性钙通道的钙流入引起大多数星形胶质细胞快速的钙瞬变.相反的是,GABAB受体活化导致细胞延迟的钙升高,并且这种作用能被细胞内钙库消耗和持久的异源三聚G蛋白活化所阻滞.GABAB受体介导的钙信号呈现明确的发育规律,即<10%的星形胶质细胞在出生后3 d或32~34 d有应答,大约60%的星形胶质细胞在出生后11~15 d有应答.本文提示,GABAB受体通过激活G蛋白,诱导细胞内钙库释放钙,导致细胞的钙瞬变.星形胶质细胞中GABAB受体介导的钙信号在出生后海马网络发育完成时优先出现.%GABA (γ-aminobutyric acid) is a transmitter with dual action. Whereas it excites neurons during the first week of postnatal development, it represents the major inhibitory transmitter in the mature brain. GABA also activates astrocytes by binding to ionotropic (GABAA) and metabotropic (GABAB) receptors. This results in glial calcium transients which can induce the release of gliotransmitters, rendering GABA an important mediator of neuron-glia interaction. Using whole-cell patch-clamp and ratiometric calcium imaging in hippocampal slices from rats at postnatal days 3~34, we have analyzed the developmental profile as well as the cellular mechanisms of calcium signals induced by

  15. Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase

    Directory of Open Access Journals (Sweden)

    Seung Ho Baek

    2017-02-01

    Full Text Available Ginkgolic acid C 17:1 (GAC 17:1 extracted from Ginkgo biloba leaves, has been previously reported to exhibit diverse antitumor effect(s through modulation of several molecular targets in tumor cells, however the detailed mechanism(s of its actions still remains to be elucidated. Signal transducer and activator of transcription 3 (STAT3 is an oncogenic transcription factor that regulates various critical functions involved in progression of diverse hematological malignancies, including multiple myeloma, therefore attenuating STAT3 activation may have a potential in cancer therapy. We determined the anti-tumor mechanism of GAC 17:1 with respect to its effect on STAT3 signaling pathway in multiple myeloma cell lines. We found that GAC 17:1 can inhibit constitutive activation of STAT3 through the abrogation of upstream JAK2, Src but not of JAK1 kinases in U266 cells and also found that GAC can suppress IL-6-induced STAT3 phosphorylation in MM.1S cells. Treatment of protein tyrosine phosphatase (PTP inhibitor blocked suppression of STAT3 phosphorylation by GAC 17:1, thereby indicating a critical role for a PTP. We also demonstrate that GAC 17:1 can induce the substantial expression of PTEN and SHP-1 at both protein and mRNA level. Further, deletion of PTEN and SHP-1 genes by siRNA can repress the induction of PTEN and SHP-1, as well as abolished the inhibitory effect of drug on STAT3 phosphorylation. GAC 17:1 down-regulated the expression of STAT3 regulated gene products and induced apoptosis of tumor cells. Overall, GAC 17:1 was found to abrogate STAT3 signaling pathway and thus exert its anticancer effects against multiple myeloma cells.

  16. Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition.

    Science.gov (United States)

    Wang, Wangsheng; Guo, Chunming; Zhu, Ping; Lu, Jiangwen; Li, Wenjiao; Liu, Chao; Xie, Huiliang; Myatt, Leslie; Chen, Zi-Jiang; Sun, Kang

    2015-10-27

    The induction of cyclooxygenase-2 (COX-2) and subsequent production of prostaglandin E2 (PGE2) by cortisol in the amnion contrast with the effect of cortisol on most other tissues, but this proinflammatory effect of cortisol may be a key event in human parturition (labor). We evaluated the underlying mechanism activated by cortisol in primary human amnion fibroblasts. Exposure of the amnion fibroblasts to cortisol led to the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, which induced the phosphorylation of the kinase SRC and STAT3 (signal transducer and activator of transcription 3). STAT3 interacted with the glucocorticoid receptor (GR) and the transcription factor CREB-1 (cAMP response element-binding protein 1) at the promoter of the gene encoding COX-2, which promoted the production of the secreted prostaglandin PGE2. PGE2 activates the prostaglandin receptors EP2 and EP4, which stimulate cAMP-PKA signaling. Thus, cortisol reinforced the activation of cAMP-PKA signaling through an SRC-STAT3-COX-2-PGE2-mediated feedback loop. Inhibiting STAT3, SRC, or the cAMP-PKA pathway attenuated the cortisol-stimulated induction of COX-2 and PGE2 production in amnion fibroblasts. In human amnion tissue, the amount of phosphorylated STAT3 correlated positively with that of cortisol, COX-2, and PGE2, and all were more abundant in tissue obtained after active labor than in tissue obtained from cesarean surgeries in the absence of labor. These results indicated that the coordinated recruitment of STAT3, CREB-1, and GR to the promoter of the gene encoding COX-2 contributes to the feed-forward induction of COX-2 activity and prostaglandin synthesis in the amnion during parturition.

  17. Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3

    Institute of Scientific and Technical Information of China (English)

    Ji-Hui Yu; Li Long; Zhi-Xiao Luo; Lin-Man Li; Jie-Ru You

    2016-01-01

    Objective: To explore the expression of microRNA (miRNA) let-7c and its function in chronic obstructive pulmonary disease (COPD) and alveolar macrophage cells. Methods: Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice. MiRNA let-7c was overexpressed in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3 (STAT3) as well as phosphorylation level of STAT3 after LPS stimulation. Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3. Results: MiRNA let-7c expression was significantly lower in patients with COPD compared with control group, and the similar result was found in COPD mice and LPS stimulated alveolar macrophages. Overexpression of miRNA let-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha, interleukin-6 and interleukin-1β. Luciferase assay showed STAT3 was a targeting of miRNA let-7c in alveolar macrophages. Conclusions: MiRNA let-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage, which may provide a new target for COPD treatment strategies.

  18. Constitutive Phosphorylation of STAT3 by the CK2-BLNK-CD5 Complex.

    Science.gov (United States)

    Rozovski, Uri; Harris, David M; Li, Ping; Liu, Zhiming; Jain, Preetesh; Veletic, Ivo; Ferrajoli, Alessandra; Burger, Jan; O'Brien, Susan; Bose, Prithviraj; Thompson, Philip; Jain, Nitin; Wierda, William; Keating, Michael J; Estrov, Zeev

    2017-01-27

    In chronic lymphocytic leukemia (CLL), STAT3 is constitutively phosphorylated on serine 727 and plays a role in the pathobiology of CLL. However, what induces constitutive phosphorylation of STAT3 is currently unknown. Mass spectrometry was used to identify casein kinase 2 (CK2), a serine/threonine kinase that co-immunoprecipitated with serine phosphorylated STAT3 (pSTAT3). Furthermore, activated CK2 incubated with recombinant STAT3 induced phosphorylation of STAT3 on serine 727. Although STAT3 and CK2 are present in normal B- and T-cells, STAT3 is not constitutively phosphorylated in these cells. Further study found that CD5 and BLNK co-expressed in CLL, but not in normal B- or T-cells, are required for STAT3 phosphorylation. To elucidate the relationship of CD5 and BLNK to CK2 and STAT3, STAT3 was immunoprecipitated from CLL cells and CK2, CD5, and BLNK were detected in the immunoprecipitate. Conversely, STAT3, CD5, and BLNK were in the immunoprecipitate of CLL cells immunoprecipitated with CK2 antibodies. Furthermore, siRNA knockdown of CD5 or BLNK, or treatment with CD5-neutralizing antibodies significantly reduced the levels of serine pSTAT3 in CLL cells. Finally, confocal microscopy determined that CD5 is cell membrane bound and fractionation studies revealed that the CK2/CD5/BLNK/STAT3 complex remains in the cytoplasm, whereas serine pSTAT3 is shuttled to the nucleus.

  19. Repression of Smad3 by Stat3 and c-Ski/SnoN induces gefitinib resistance in lung adenocarcinoma.

    Science.gov (United States)

    Makino, Yojiro; Yoon, Jeong-Hwan; Bae, Eunjin; Kato, Mitsuyasu; Miyazawa, Keiji; Ohira, Tatsuo; Ikeda, Norihiko; Kuroda, Masahiko; Mamura, Mizuko

    2017-03-04

    Cancer-associated inflammation develops resistance to the epidermal growth-factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancers (NSCLCs) harboring oncogenic EGFR mutations. Stat3-mediated interleukin (IL)-6 signaling and Smad-mediated transforming growth factor-β (TGF-β) signaling pathways play crucial regulatory roles in cancer-associated inflammation. However, mechanisms how these pathways regulate sensitivity and resistance to EGFR-TKI in NSCLCs remain largely undetermined. Here we show that signal transducer and activator of transcription (Stat)3 represses Smad3 in synergy with the potent negative regulators of TGF-β signaling, c-Ski and SnoN, whereby renders gefitinib-sensitive HCC827 cells resistant. We found that IL-6 signaling via phosphorylated Stat3 induced gefitinib resistance as repressing transcription of Smad3, whereas TGF-β enhanced gefitinib sensitivity as activating transcription of Smad3 in HCC827 cells with gefitinib-sensitizing EGFR mutation. Promoter analyses showed that Stat3 synergized with c-Ski/SnoN to repress Smad2/3/4-induced transcription of the Smad3 gene. Smad3 was found to be an apoptosis inducer, which upregulated pro-apoptotic genes such as caspase-3 and downregulated anti-apoptotic genes such as Bcl-2. Our results suggest that derepression of Smad3 can be a therapeutic strategy to prevent gefitinib-resistance in NSCLCs with gefitinib-sensitizing EGFR mutation.

  20. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  1. Cytoplasmic p27 promotes epithelial–mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation

    OpenAIRE

    D. Zhao; Besser, A H; Wander, S A; Sun, J; Zhou, W.; Wang, B.; Ince, T.; Durante, M A; Guo, W.; G. Mills; Theodorescu, D; Slingerland, J.

    2015-01-01

    p27 restrains normal cell growth, but PI3K-dependent C-terminal phosphorylation of p27 at threonine 157 (T157) and T198 promotes cancer cell invasion. Here, we describe an oncogenic feedforward loop in which p27pT157pT198 binds Janus kinase 2 (JAK2) promoting STAT3 (signal transducer and activator of transcription 3) recruitment and activation. STAT3 induces TWIST1 to drive a p27-dependent epithelial–mesenchymal transition (EMT) and further activates AKT contributing to acquisition and mainte...

  2. Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors.

    Science.gov (United States)

    Tell, Robert W; Horvath, Curt M

    2014-09-02

    Signal transducer and activator of transcription 3 (STAT3), a latent transcription factor associated with inflammatory signaling and innate and adaptive immune responses, is known to be aberrantly activated in a wide variety of cancers. In vitro analysis of STAT3 in human cancer cell lines has elucidated a number of specific targets associated with poor prognosis in breast cancer. However, to date, no comparison of cancer subtype and gene expression associated with STAT3 signaling in human patients has been reported. In silico analysis of human breast cancer microarray and reverse-phase protein array data was performed to identify expression patterns associated with STAT3 in basal-like and luminal breast cancers. Results indicate clearly identifiable STAT3-regulated signatures common to basal-like breast cancers but not to luminal A or luminal B cancers. Furthermore, these differentially expressed genes are associated with immune signaling and inflammation, a known phenotype of basal-like cancers. These findings demonstrate a distinct role for STAT3 signaling in basal breast cancers, and underscore the importance of considering subtype-specific molecular pathways that contribute to tissue-specific cancers.

  3. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity

    Directory of Open Access Journals (Sweden)

    Young Gregory S

    2010-06-01

    Full Text Available Abstract Background We characterized the biologic effects of a novel small molecule STAT3 pathway inhibitor that is derived from the natural product curcumin. We hypothesized this lead compound would specifically inhibit the STAT3 signaling pathway to induce apoptosis in melanoma cells. Results FLLL32 specifically reduced STAT3 phosphorylation at Tyr705 (pSTAT3 and induced apoptosis at micromolar amounts in human melanoma cell lines and primary melanoma cultures as determined by annexin V/propidium iodide staining and immunoblot analysis. FLLL32 treatment reduced expression of STAT3-target genes, induced caspase-dependent apoptosis, and reduced mitochondrial membrane potential. FLLL32 displayed specificity for STAT3 over other homologous STAT proteins. In contrast to other STAT3 pathway inhibitors (WP1066, JSI-124, Stattic, FLLL32 did not abrogate IFN-γ-induced pSTAT1 or downstream STAT1-mediated gene expression as determined by Real Time PCR. In addition, FLLL32 did not adversely affect the function or viability of immune cells from normal donors. In peripheral blood mononuclear cells (PBMCs, FLLL32 inhibited IL-6-induced pSTAT3 but did not reduce signaling in response to immunostimulatory cytokines (IFN-γ, IL 2. Treatment of PBMCs or natural killer (NK cells with FLLL32 also did not decrease viability or granzyme b and IFN-γ production when cultured with K562 targets as compared to vehicle (DMSO. Conclusions These data suggest that FLLL32 represents a lead compound that could serve as a platform for further optimization to develop improved STAT3 specific inhibitors for melanoma therapy.

  4. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    Science.gov (United States)

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  5. Connective tissue growth factor reacts as an IL-6/STAT3-regulated hepatic negative acute phase protein

    Institute of Scientific and Technical Information of China (English)

    Olav A Gressner; Ieva Peredniene; Axel M Gressner

    2011-01-01

    AIM: To investigate the mechanisms involved in a possible modulator role of interleukin (IL)-6 signalling on CYR61-CTGF-NOV (CCN) 2/connective tissue growth factor (CTGF) expression in hepatocytes (PC) and to look for a relation between serum concentrations of these two parameters in patients with acute inflammation.METHODS: Expression of CCN2/CTGF, p-STAT3, p-Smad 3/1 and p-Smad2 was examined in primary freshly isolated rat or cryo-preserved human PC exposed to various stimuli by Western blotting, electrophoretic mobility shift assay (EMSA), reporter-gene-assays and reversetranscriptase polymerase chain reaction.RESULTS: IL-6 strongly down-regulated CCN2/CTGF protein and mRNA expression in PC, enhanceable by extracellular presence of the soluble IL-6 receptor gp80,and supported by an inverse relation between IL-6 and CCN2/CTGF concentrations in patients' sera. The inhibition of TGFβ1 driven CCN2/CTGF expression by IL-6 did not involve a modulation of Smad2 (and Smad1/3)signalling. However, the STAT3 SH2 domain binding peptide, a selective inhibitor of STAT3 DNA binding activity, counteracted the inhibitory effect of IL-6 on CCN2/CTGF expression much more pronounced than pyrrolidine-dithiocarbamate, an inhibitor primarily of STAT3 phosphorylation. An EMSA confirmed STAT3 binding to the proposed proximal STAT binding site in the CCN2 /CTGF promoter.CONCLUSION: CCN2/CTGF is identified as a hepatocellular negative acute phase protein which is downregulated by IL-6 via the STAT3 pathway through interaction on the DNA binding level.

  6. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer

    Science.gov (United States)

    Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan

    2017-01-01

    -TK/GCV therapy. Moreover, STAT3/NF-κB signaling targeting could further sensitize tumor cells to cisplatin. This study successfully established a theranositic approach to treat triple-negative breast cancer via STAT3-NF-κB responsive element-driven suicide gene therapy. This platform may also be an alternative strategy to handle with drug-resistant cancer cells. PMID:28255357

  7. Astrocyte Ca2+ Signaling Drives Inversion of Neurovascular Coupling after Subarachnoid Hemorrhage

    OpenAIRE

    2015-01-01

    Physiologically, neurovascular coupling (NVC) matches focal increases in neuronal activity with local arteriolar dilation. Astrocytes participate in NVC by sensing increased neurotransmission and releasing vasoactive agents (e.g., K+) from perivascular endfeet surrounding parenchymal arterioles. Previously, we demonstrated an increase in the amplitude of spontaneous Ca2+ events in astrocyte endfeet and inversion of NVC from vasodilation to vasoconstriction in brain slices obtained from subara...

  8. Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

    Directory of Open Access Journals (Sweden)

    DiGiovanni John

    2006-04-01

    Full Text Available Abstract Background Squamous cell carcinoma (SCC of the skin is the most aggressive form of non-melanoma skin cancer (NMSC, and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3 in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. Results To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK, to non-tumorigenic transformed skin cells (HaCaT, to highly tumorigenic cells (SRB1-m7 and SRB12-p9 and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN. The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM. This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. Conclusion This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or

  9. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    Science.gov (United States)

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  10. The Role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Chu, Qi; Gan, Yong; Ren, Hui; Zhang, Liyan; Wang, Liwei; Li, Xiaoxiu; Wang, Wei

    2016-01-01

    Objective High expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) has been detected in a variety of human tumors. However, the association of positive p-STAT3 expression with clinicopathological parameters and the prognosis of colorectal cancer patients remain controversial. To identify the relationship between p-STAT3 expression and clinicopathological parameters and prognosis in patients with colorectal cancer, a systematic review and meta-analysis were performed. Methods We performed a comprehensive literature search from PubMed, EMBASE, and SinoMed through 27 March, 2016. Hazard ratios (HRs) with 95% confidence intervals (CI) were combined to evaluate the association between p-STAT3 expression and overall survival of colorectal cancer patients. Odds ratios (ORs) with 95% CI were combined to evaluate the association between p-STAT3 expression and clinicopathological parameters in patients with colorectal cancer. Results Seventeen studies including a total of 2,346 colorectal cancer patients were included in this meta-analysis. The combined HR was 1.43 (95% CI: 1.23–1.67, P < 0.001), which suggested a positive relationship between p-STAT3 overexpression and poorer overall survival of colorectal cancer patients. In addition, the results indicated that positive p-STAT3 expression was significantly associated with the presence of lymph node metastasis (OR: 2.43, 95% CI: 1.18–5.01, P = 0.02) but was not associated with TNM stage, tumor differentiation or gender. Conclusion The meta-analysis results suggest that p-STAT3 overexpression is unfavorable for the prognosis of colorectal cancer patients, and p-STAT3 overexpression is associated with the presence of lymph node metastasis among colorectal cancer patients. PMID:27504822

  11. Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window

    Directory of Open Access Journals (Sweden)

    Salamonsen Lois A

    2007-11-01

    Full Text Available Abstract Background Uterine receptivity and embryo implantation are critical in the establishment of pregnancy. The diagnosis of endometrial fertility requires more precise measurements of endometrial receptivity. Interleukin (IL-11 and leukemia inhibitory factor (LIF are essential for murine implantation and signal via intracellular phosphorylation (p of STAT3 in the endometrium. Both cytokines are present in the endometrium of women duiring the receptive window. Endometrial IL-11, IL-11 receptor alpha (IL-11Ralpha, LIF and pSTAT3 in women with primary unexplained infertility was compared to normal fertile women during the implantation window. Methods LH timed endometrial biopsies (LH+6 to LH+10 were collected from women with unexplained infertility and normal fertility. pSTAT3, IL-11, IL-11Ralpha and LIF production was determined by immunohistochemistry. Staining intensity was determoned by two independent observers blind to the fertility status of the patient from whom the biopsy was taken. Staining intensity and heterogeneity in each of the endometrial compartments (epithelium; stroma, including decidualized stromal cells; and vasculature was assessed. The Mann-Whitney U test was used to analyze IL-11, pSTAT3, IL-11Ralpha and LIF immunostaining intensities in the samples. Results IL-11, IL-11Ralpha and LIF were present predominantly in glandular epithelium, whilst luminal epithelium showed patchy staining. pSTAT3 was present in both glandular epithelium and stroma. IL-11 and pSTAT3 immunostaining was significantly lower in glandular epithelium in infertile women compared to controls (P Conclusion This is the first demonstration of reduced endometrial pSTAT3 and IL-11 in some women with unexplained infertility. This suggests IL-11 and pSTAT3 may be involved in the secretory transformation of glandular epithelium during receptivity. Reduced IL-11 production and STAT3 phosphorylation may contribute to unexplained infertility in some women.

  12. Activating STAT3 Alpha for Promoting Healing of Neurons

    Science.gov (United States)

    Conway, Greg

    2008-01-01

    A method of promoting healing of injured or diseased neurons involves pharmacological activation of the STAT3 alpha protein. Usually, injured or diseased neurons heal incompletely or not at all for two reasons: (1) they are susceptible to apoptosis (cell death); and (2) they fail to engage in axogenesis that is, they fail to re-extend their axons to their original targets (e.g., muscles or other neurons) because of insufficiency of compounds, denoted neurotrophic factors, needed to stimulate such extension. The present method (see figure) of treatment takes advantage of prior research findings to the effect that the STAT3 alpha protein has anti-apoptotic and pro-axogenic properties.

  13. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  14. 2-Chloroethanol Induced Upregulation of Matrix Metalloproteinase-2 in Primary Cultured Rat Astrocytes Via MAPK Signal Pathways

    Science.gov (United States)

    Sun, Qi; Liao, Yingjun; Wang, Tong; Tang, Hongge; Wang, Gaoyang; Zhao, Fenghong; Jin, Yaping

    2017-01-01

    This study was to explore the mechanisms underlying 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of matrix metalloproteinase-2 (MMP-2) in rat astrocytes induced by 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE in vivo. Protein and mRNA levels of MMP-2, and the phosphorylated protein levels of p38 MAPK (p-p38), extracellular signal regulated protein kinase (p-ERK1/2) and c-Jun N-terminal kinase (p-JNK1/2) in astrocytes were examined by immunostaining, western blot or real-time RT-PCR analysis. Findings from this study disclosed that protein levels of MMP-2 were upregulated by 2-CE in astrocytes. Meanwhile, protein levels of p-p38, p-ERK1/2 and p-JNK1/2 were also increased apparently in the cells treated with 2-CE. Moreover, pretreatment of astrocytes with SB202190 (inhibitor of p38 MAPK), U0126 (inhibitor of ERK1/2) or SP600125 (inhibitor of JNK1/2) could suppress the upregulated expression of p-p38, p-ERK1/2, and p-JNK1/2. In response to suppressed protein levels of p-p38 and p-JNK1/2, the protein levels of MMP-2 also decreased significantly, indicating that activation of MAPK signal pathways were involved in the mechanisms underlying 2-CE-induced upregulation of MMP-2 expression. PMID:28101000

  15. Orexin-A promotes cell migration in cultured rat astrocytes via Ca2+-dependent PKCα and ERK1/2 signals.

    Directory of Open Access Journals (Sweden)

    Qing Shu

    Full Text Available Orexin-A is an important neuropeptide involved in the regulation of feeding, arousal, energy consuming, and reward seeking in the body. The effects of orexin-A have widely studied in neurons but not in astrocytes. Here, we report that OX1R and OX2R are expressed in cultured rat astrocytes. Orexin-A stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2, and then induced the migration of astrocytes via its receptor OX1R but not OX2R. Orexin-A-induced ERK1/2 phosphorylation and astrocytes migration are Ca2+-dependent, since they could be inhibited by either chelating the extracellular Ca2+ or blocking the pathway of store-operated calcium entry (SOCE. Furthermore, both non-selective protein kinase C (PKC inhibitor and PKCα selective inhibitor, but not PKCδ inhibitor, prevented the increase in ERK1/2 phosphorylation and the migration of astrocytes, indicating that the Ca2+-dependent PKCα acts as the downstream of the OX1R activation and mediates the orexin-A-induced increase in ERK1/2 phosphorylation and cell migration. In conclusion, these results suggest that orexin-A can stimulate ERK1/2 phosphorylation and then facilitate the migration of astrocytes via PLC-PKCα signal pathway, providing new knowledge about the functions of the OX1R in astrocytes.

  16. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Mamik Manmeet K

    2011-10-01

    Full Text Available Abstract Background Infection with human immunodeficiency virus type-1 (HIV-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD, the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE, a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs and nuclear factor (NF-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126, NF-κB interfering peptide (SN50 or transfected with dominant negative IκBα mutant (IκBαM prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus

  17. Extracellular signal regulated kinases 1/2 signal pathway and responses of astrocytes after diffuse brain injury

    Institute of Scientific and Technical Information of China (English)

    Jinxing Li; Haimei Zhao; Yu Li; Chong Wang; Jiashan Zhao; Xianli Zhu

    2007-01-01

    BACKGROUND: The treatment of diffuse brain injury during an acute period is focused on relieving degrees of secondary brain injury. Generation and development of pathological changes of secondary brain injury depend on signal conduction, so down-regulating over response of astrocyte through interfering a key link of signal conduction pathway may bring a new thinking for the treatment of diffuse brain injury. OBJECTIVE: To observe the effect of over activity of extracellular signal regulated kinases 1/2 (ERK1/2) signal pathway on the response of astrocyte during an acute period of diffuse brain injury. DESIGN: Completely randomized grouping and controlled animal study.SETTINGS: Department of Neurosurgery, the Third Affiliated Hospital, Nanchang University; Department of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: A total of 158 healthy male SD rats, of 11 weeks old, weighing 320 - 370 g, were provided by Experimental Animal Faulty, Tongji Medical College, Huazhong University of Science and Technology. Rabbit-anti-phosphorylated ERK1/2 (pERKl/2) polyclonal antibody was provided by R&D Company; rabbit-anti-glial fibrillary acidic protein (GFAP) polyclonal antibody, SP immunohistochemical kit and horseradish peroxidase (HRP)-labeled goat-anti-rabbit IgG by Santa Cruz Company; specific inhibitor U0126 of ERK1/2 signal pathway by Alexis Company. METHODS: The experiment was carried out in the Laboratory of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology from September 2004 to March 2006. ①Detection of pERKl/2 expression: A total of 110 rats were randomly divided into sham operation group (n =5), model group (n =35), high-dosage U0126 group (n =35) and low-dosage U0126 group (n =35). Rats in the sham operation group were only treated with incision of epicranium and fixation of backup plate, but not hit. Rats in the model group

  18. CCR5 Blockade Suppresses Melanoma Development Through Inhibition of IL-6-Stat3 Pathway via Upregulation of SOCS3.

    Science.gov (United States)

    Tang, Qiu; Jiang, Jun; Liu, Jian

    2015-12-01

    In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, we found that chemokine receptor 5 (CCR5) neutralization resulted in reduced melanoma tumor size, decreased percentage of CD11b+ Gr-1(+) myeloid-derived suppressor cells (MDSCs), and increased proportion of cluster of differentiation (CD)3+ T cells in tumor tissues. Suppressive activity of MDSCs on CD4+ T cells and CD8+ T cell proliferation is significantly inhibited by anti-CCR5 antibody. CCR5 blockade also suppresses interleukin (IL)-6 induction, which in turn deactivates signal transducer and activator of transcription 3 (Stat3) in tumors. Furthermore, the suppressed B16 tumor growth induced by CCR5 blockade is abolished with additional administration of recombinant IL-6. CCR5 blockade also induces suppressor of cytokine signaling 3 (SOCS3) upregulations, and anti-CCR5 antibody fails to suppress expression of phospho-Stat3 (p-Stat3), matrix metallopeptidase 9 (MMP9), and IL-6 in cells transfected with SOCS3 short-interfering RNA (SiRNA). All these data suggest that CCR5 blockade suppresses melanoma development through inhibition of IL-6-Stat3 pathway via upregulation of SOCS3.

  19. Sphingosine 1-phosphate signaling in astrocytes: Implications for progressive multiple sclerosis.

    Science.gov (United States)

    Farez, Mauricio F; Correale, Jorge

    2016-02-15

    Multiple sclerosis is an autoimmune disorder characterized by recurrent attacks against the central nervous system. After many years, certain patients enter a progressive disease phase, characterized by steady clinical deterioration. However, in 10-15% of patients, the disease is progressive from the beginning, and thus diagnosed as Primary Progressive Multiple Sclerosis. Unlike relapsing-remitting forms, progressive MS lacks effective therapy. Astrocytes are a major component of glial cells and are now thought to play a role in disease progression. Sphingosine 1-phophate is a molecule with extensive receptor expression on both immune and glial cells and is also a target of fingolimod, a drug used in relapsing remitting patients that sequesters lymphocytes within lymph nodes. However, because sphingosine 1-phosphate receptors are also expressed in astrocytes, and also because modification of this pathway has shown interesting benefits in animal models of Multiple Sclerosis, this astrocyte pathway has become an interesting target for developing potential new therapeutic approaches for Multiple Sclerosis.

  20. Study of STAT3 G-quadruplex folding patterns by CD spectroscopy and molecular modeling

    Institute of Scientific and Technical Information of China (English)

    Sen Lin; Ming Xu; Gu Yuan

    2012-01-01

    The G-quadruplexes formed from G-rich strands in the telomere and oncogene-promoter regions are regarded as new promising targets in the cancer therapy.A G-quadruplex in the downstream flanking region of the signal transducer and activator of transcription 3 (STAT3) gene was explored.Its folding patterns were proposed to be 3∶2∶2 and 3∶3∶1 loop isomers by the mutation analysis by CD spectroscopy.The structures were constructed and refined by molecular modeling method.

  1. Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy.

    Science.gov (United States)

    Tan, Qixing; Wang, Hongli; Hu, Yongliang; Hu, Meiru; Li, Xiaoguang; Aodengqimuge; Ma, Yuanfang; Wei, Changyuan; Song, Lun

    2015-08-01

    Chemotherapeutic resistance in breast cancer, whether acquired or intrinsic, remains a major clinical obstacle. Thus, increasing tumor cell sensitivity to chemotherapeutic agents will be helpful in improving the clinical management of breast cancer. In the present study, we found an induction of HO-1 expression in doxorubicin (DOX)-treated MDA-MB-231 human breast adenocarcinoma cells, which showed insensitivity to DOX treatment. Knockdown HO-1 expression dramatically upregulated the incidence of MDA-MB-231 cell death under DOX treatment, indicating that HO-1 functions as a critical contributor to drug resistance in MDA-MB-231 cells. We further observed that DOX exposure induced a cytoprotective autophagic flux in MDA-MB-231 cells, which was dependent on HO-1 induction. Moreover, upregulation of HO-1 expression required the activation of both signal transducer and activator of transcription (STAT)3 and its upstream regulator, protein kinase Src. Abrogating Src/STAT3 pathway activation attenuated HO-1 and autophagy induction, thus increasing the chemosensitivity of MDA-MB-231 cells. Therefore, we conclude that Src/STAT3-dependent HO-1 induction protects MDA-MB-231 breast cancer cells from DOX-induced death through promoting autophagy. In the following study, we further demonstrated the contribution of Src/STAT3/HO-1/autophagy pathway activation to DOX resistance in another breast cancer cell line, MDA-MB-468, which bears a similar phenotype to MDA-MB-231 cells. Therefore, activation of Src/STAT3/HO-1/autophagy signaling pathway might play a general role in protecting certain subtypes of breast cancer cells from DOX-induced cytotoxicity. Targeting this signaling event may provide a potential approach for overcoming DOX resistance in breast cancer therapeutics.

  2. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells.

    Science.gov (United States)

    Deenick, Elissa K; Avery, Danielle T; Chan, Anna; Berglund, Lucinda J; Ives, Megan L; Moens, Leen; Stoddard, Jennifer L; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Tsumura, Miyuki; Kobayashi, Masao; Arkwright, Peter D; Averbuch, Diana; Engelhard, Dan; Roesler, Joachim; Peake, Jane; Wong, Melanie; Adelstein, Stephen; Choo, Sharon; Smart, Joanne M; French, Martyn A; Fulcher, David A; Cook, Matthew C; Picard, Capucine; Durandy, Anne; Klein, Christoph; Holland, Steven M; Uzel, Gulbu; Casanova, Jean-Laurent; Ma, Cindy S; Tangye, Stuart G

    2013-11-18

    Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell-dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10- and IL-21-mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21-induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.

  3. Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice.

    Directory of Open Access Journals (Sweden)

    Pablo J Sáez

    Full Text Available Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1⁻/⁻ showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1⁻/⁻ hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1⁻/⁻ astrocytes also showed more intracellular Ca²⁺ signal oscillations mediated by functional connexin 43 hemichannels and P2Y₁ receptors. Therefore, Npc1⁻/⁻ astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.

  4. Clinical Implications of Phosphorylated STAT3 Expression in de novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Ok, Chi Y; Chen, Jiayu; Xu-Monette, Ziju

    2014-01-01

    of phosphorylated STAT3 (pSTAT3) on prognosis are limited. EXPERIMENTAL DESIGN: We evaluated expression of pSTAT3 in de novo DLBCL using immunohistochemistry, gene expression profiling (GEP), and gene set enrichment analysis (GSEA). Results were analyzed in correlation with cell-of-origin (COO), critical lymphoma...

  5. IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Wei You

    Full Text Available Interleukin-26 (IL-26 is one of the cytokines secreted by Th17 cells whose role in human tumors remains unknown. Here, we investigated the expression and potential role of IL-26 in human gastric cancer (GC. The expression of IL-26 and related molecules such as IL-20R1, STAT1 and STAT3 was examined by real-time PCR and immunohistochemisty. The effects of IL-26 on cell proliferation and cisplatin-induced apoptosis were analyzed by BrdU cooperation assay and PI-Annexin V co-staining, respectively. Lentiviral mediated siRNA was used to explore its mechanism of action, and IL-26 related signaling was analyzed by western blotting. Human GC tissues showed increased levels of IL-26 and its related molecules and activation of STAT3 signaling, whereas STAT1 activation did not differ significantly between GC and normal gastric tissues. Moreover, IL-26 was primarily produced by Th17 and NK cells. IL-26 promoted the proliferation and survival of MKN45 and SGC-7901 gastric cancer cells in a dose-dependent manner. Furthermore, IL-20R2 and IL-10R1, which are two essential receptors for IL-26 signaling, were expressed in both cell lines. IL-26 activated STAT1 and STAT3 signaling; however, the upregulation of the expression of Bcl-2, Bcl-xl and c-myc indicated that the effect of IL-26 is mediated by STAT3 activation. Knockdown of STAT1 and STAT3 expression suggested that the proliferative and anti-apoptotic effects of IL-26 are mediated by the modulation of STAT1/STAT3 activation. In summary, elevated levels of IL-26 in human GC promote proliferation and survival by modulating STAT1/STAT3 signaling.

  6. GRIM-19及其靶基因产物STAT3在人乳腺癌组织中的表达%Expression of GRIM-19 and its target gene product STAT3 in human breast cancer

    Institute of Scientific and Technical Information of China (English)

    任敏; 汪英; 刘骁蕾; 王本忠

    2013-01-01

    Objective To evaluate gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) expression levels and the correlation with its target gene product signal transducers and activator of transcription 3 (STAT3)in human breast cancer tissues and normal gland tissues,and to analyze their roles in the tumorigenesis of breast cancer.Methods The expression of GRIM-19 and STAT3 protein and mRNA in 40 cases of breast cancer tissues and 40 cases of normal gland tissues was detected by immunohistochemistry and Western blot.The correlation of the expression of GRIM-19 and STAT3 to various clinicopathologic characteristics of breast cancer were analyzed statistically.The mRNA expression and gene mutation of GRIM-19 in breast cancer cell line MCF-7 and 25 specimens of breast cancer and normal gland tissue were detected by reverse transcription-polymerase chain reaction(RT-PCR)and sequencing.Results The protein and mRNA expression of GRIM-19 was obviously lower in breast cancer than in normal gland tissues (P < 0.05) while the protein and mRNA expression of STAT3 was obviously higher in breast cancer than in normal gland tissues(P <0.05).The expression of GRIM-19 and STAT3 was negatively correlated with each other(x2 =8.25,P <0.01).Breast cancer samples exhibited low level of GRIM-19 and moderate to high level of STAT3 expression.In contrast,the normal gland tissue was characterized by high level of GRIP-19 and low level of STAT3 expression.The protein expression of GRIM-19 was correlated with the histological grading and clinical stage of breast cancer(P < 0.05).STAT3 was not correlated with clinicopathologic characteristics of breast cancer (P > 0.05).No mutation of GRIM-19 gene was detected in breast cancer tissues,normal gland tissues or MCF-7 breastcancer cells.Conclusions The low expression of GRIM-19 and the high expression of STAT3 co-exist in breast cancer.Downregulation of GRIM-19 was closely correlated with increased histological grade

  7. EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1α with Th17/Treg control.

    Directory of Open Access Journals (Sweden)

    Eun-Ji Yang

    Full Text Available Epigallocatechin-3-gallate (EGCG is a green tea polyphenol exerting potent anti-oxidant and anti-inflammatory effects by inhibiting signaling and gene expression. The objective of the study was to evaluate the effect of EGCG on interleukin (IL-1 receptor antagonist knockout (IL-1RaKO autoimmune arthritis models. IL-1RaKO arthritis models were injected intraperitoneally with EGCG three times per week after the first immunization. EGCG decreased the arthritis index and showed protective effects against joint destruction in the IL-1RaKO arthritis models. The expression of pro-inflammatory cytokines, oxidative stress proteins, and p-STAT3 (Y705 and p-STAT3 (S727, mTOR and HIF-1α were significantly lower in mice treated with EGCG. EGCG reduced osteoclast markers in vivo and in vitro along with anti-osteoclastic activity was observed in EGCG-treated IL-1RaKO mice. The proportion of Foxp3(+ Treg cells increased in the spleens of mice treated with EGCG, whereas the proportion of Th17 cells reduced. In vitro, p-STAT3 (Y705 and p-STAT3 (S727, HIF1α and glycolytic pathway molecules were decreased by EGCG. EGCG suppressed the activation of mTOR and subsequently HIF-1α, which is considered as a metabolic check point of Th17/Treg differentiation supporting the therapeutic potential of EGCG in autoimmune arthritis.

  8. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Gu Fang-Ming

    2011-12-01

    Full Text Available Abstract Background The Th17 subset and IL-17 have been found in increased frequencies within certain tumors. However, their relevance in cancer biology remains controversial. This study aimed to clarify the biological action of IL-17 on hepatocellular carcinoma (HCC. Methods Effects and underlying molecular mechanisms of IL-17 on human HCC were explored in vitro using exogenous IL-17 stimulation and in nude mice by implanting IL-17 overexpressed HCC cells. The clinical significance of IL-17 was investigated in tissue microarrays containing HCC tissues from 323 patients following hepatectomy using immunohistochemistry. Results Although exogenous IL-17 showed no direct effect on the growth rate of HCC cells in vitro, PCR and ELISA showed that IL-17 selectively augmented the secretion of diverse proinvasive factors and transwell showed a direct promotion of invasion of HCC cells by IL-17. Furthermore, transfection of IL-17 into HCC cells significantly promoted neoangiogenesis, neutrophil recruitment and tumor growth in vivo. Using siRNA mediated knockdown of AKT and STAT3, we suggested that the effects of IL-17 were operated through activation of the AKT signaling in HCC, which resulted in IL-6 production. Then, IL-6 in turn activated JAK2/STAT3 signaling and subsequently up-regulated its downstream targets IL-8, MMP2, and VEGF. Supporting these findings, in human HCC tissues, immunostaining indicated that IL-17 expression was significantly and positively associated with STAT3 phosphorylation, neutrophil infiltration and increased tumor vascularity. The clinical significance of IL-17 was authenticated by revealing that the combination of intratumoral IL-17+ cells and phospho-STAT3 served as a better prognosticator for postoperative tumor recurrence than either marker alone. Conclusions IL-17 mediated tumor-promoting role involves a direct effect on HCC cells through IL-6/JAK2/STAT3 induction by activating the AKT pathway.

  9. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Min Jeoung Lee

    Full Text Available BACKGROUND: Intestinal epithelium is essential for maintaining normal intestinal homeostasis; its breakdown leads to chronic inflammatory pathologies, such as inflammatory bowel diseases (IBDs. Although high concentrations of S100A9 protein and interleukin-6 (IL-6 are found in patients with IBD, the expression mechanism of S100A9 in colonic epithelial cells (CECs remains elusive. We investigated the role of IL-6 in S100A9 expression in CECs using a colitis model. METHODS: IL-6 and S100A9 expression, signal transducer and activator of transcription 3 (STAT3 phosphorylation, and infiltration of immune cells were analyzed in mice with dextran sulfate sodium (DSS-induced colitis. The effects of soluble gp130-Fc protein (sgp130Fc and S100A9 small interfering (si RNA (si-S100A9 on DSS-induced colitis were evaluated. The molecular mechanism of S100A9 expression was investigated in an IL-6-treated Caco-2 cell line using chromatin immunoprecipitation assays. RESULTS: IL-6 concentrations increased significantly in the colon tissues of DSS-treated mice. sgp130Fc or si-S100A9 administration to DSS-treated mice reduced granulocyte infiltration in CECs and induced the down-regulation of S100A9 and colitis disease activity. Treatment with STAT3 inhibitors upon IL-6 stimulation in the Caco-2 cell line demonstrated that IL-6 mediated S100A9 expression through STAT3 activation. Moreover, we found that phospho-STAT3 binds directly to the S100A9 promoter. S100A9 may recruit immune cells into inflamed colon tissues. CONCLUSIONS: Elevated S100A9 expression in CECs mediated by an IL-6/STAT3 signaling cascade may play an important role in the development of colitis.

  10. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes

    OpenAIRE

    Wang, Jieting; Deng, Xiaobei; Zhang, Fang; Chen, Deliang; Ding, Wenjun

    2014-01-01

    It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP ex...

  11. Dual AAV/IL-10 Plus STAT3 Anti-Inflammatory Gene Delivery Lowers Atherosclerosis in LDLR KO Mice, but without Increased Benefit

    Directory of Open Access Journals (Sweden)

    Maohua Cao

    2012-01-01

    Full Text Available Both IL-10 and STAT3 are in the same signal transduction pathway, with IL-10-bound IL10 receptor (R acting through STAT3 for anti-inflammatory effect. To investigate possible therapeutic synergism, we delivered both full-length wild-type human (h STAT3 and hIL-10 genes by separate adenoassociated virus type 8 (AAV8 tail vein injection into LDLR KO on HCD. Compared to control Neo gene-treated animals, individual hSTAT3 and hIL-10 delivery resulted in significant reduction in atherogenesis, as determined by larger aortic lumen size, thinner aortic wall thickness, and lower blood velocity (all statistically significant. However, dual hSTAT3/hIL-10 delivery offered no improvement in therapeutic effect. Plasma cholesterol levels in dual hSTAT3/hIL-10-treated animals were statistically higher compared to hIL-10 alone. While no advantage was seen in this case, we consider that the dual gene approach has intrinsic merit, but properly chosen partnered genes must be used.

  12. The Role of IL-17 Promotes Spinal Cord Neuroinflammation via Activation of the Transcription Factor STAT3 after Spinal Cord Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Shaohui Zong

    2014-01-01

    Full Text Available Study Design. In this study, we investigated the role of IL-17 via activation of STAT3 in the pathophysiology of SCI. Objective. The purpose of the experiments is to study the expression of IL-17 and related cytokines via STAT3 signaling pathways, which is caused by the acute inflammatory response following SCI in different periods via establishing an acute SCI model in rat. Methods. Basso, Beattie, and Bresnahan hind limb locomotor rating scale was used to assess the rat hind limb motor function. Immunohistochemistry was used to determine the expression levels of IL-17 and p-STAT3 in spinal cord tissues. Western blotting analysis was used to determine the protein expression of p-STAT3 in spinal cord tissue. RT-PCR was used to analyze the mRNA expression of IL-17 and IL-23p19 in the spleen tissue. ELISA was used to determine the peripheral blood serum levels of IL-6, IL-21, and IL-23. Results. Compared to the sham-operated group, the expression levels of IL-17, p-STAT3, IL-6, IL-21, and IL-23 were significantly increased and peaked at 24 h after SCI. The increased levels of cytokines were correlated with the SCI disease stages. Conclusion. IL-17 may play an important role in promoting spinal cord neuroinflammation after SCI via activation of STAT3.

  13. Antiproliferative effect of gold(I compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam-Hoon Kim

    2013-01-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 andtelomerase are considered attractive targets for anticancertherapy. The in vitro anticancer activity of the gold(I compoundauranofin was investigated using MDA-MB 231 human breastcancer cells, in which STAT3 is constitutively active. In cellculture, auranofin inhibited growth in a dose-dependent manner,and N-acetyl-L-cysteine (NAC, a scavenger of reactive oxygenspecies (ROS, markedly blocked the effect of auranofin.Incorporation of 5-bromo-2’-deoxyuridine into DNA andanchorage-independent cell growth on soft agar were decreasedby auranofin treatment. STAT3 phosphorylation and telomeraseactivity were also attenuated in cells exposed to auranofin, butNAC pretreatment restored STAT3 phosphorylation andtelomerase activity in these cells. These findings indicate thatauranofin exerts in vitro antitumor effects in MDA-MB 231 cellsand its activity involves inhibition of STAT3 and telomerase.Thus, auranofin shows potential as a novel anticancer drug thattargets STAT3 and telomerase. [BMB Reports 2013; 46(1: 59-64

  14. Salinomycin induces cell death via inactivation of Stat3 and downregulation of Skp2.

    Science.gov (United States)

    Koo, K H; Kim, H; Bae, Y-K; Kim, K; Park, B-K; Lee, C-H; Kim, Y-N

    2013-06-27

    Salinomycin has been shown to control breast cancer stem cells, although the mechanisms underlying its anticancer effects are not clear. Deregulation of cell cycle regulators play critical roles in tumorigenesis, and they have been considered as anticancer targets. In this study, we investigated salinomycin effect on cell cycle progression using OVCAR-8 ovarian cancer cell line and multidrug-resistant NCI/ADR-RES and DXR cell lines that are derived from OVCAR-8. Parental OVCAR-8 cells are sensitive to several anticancer drugs, but NCI/ADR-RES and DXR cells are resistant to several anticancer drugs. However, salinomycin caused cell growth inhibition and apoptosis via cell cycle arrest at G1 in all three cell lines. Salinomycin inhibited signal transducer and activator of transcription 3 (Stat3) activity and thus decreased expression of Stat3-target genes, including cyclin D1, Skp2, and survivin. Salinomycin induced degradation of Skp2 and thus accumulated p27Kip1. Knockdown of Skp2 further increased salinomycin-induced G1 arrest, but knockdown of p27Kip1 attenuated salinomycin effect on G1 arrest. Cdh1, an E3 ligase for Skp2, was shifted to nuclear fractions upon salinomycin treatment. Cdh1 knockdown by siRNA reversed salinomycin-induced Skp2 downregulation and p27Kip1 upregulation, indicating that salinomycin activates the APC(Cdh1)-Skp2-p27Kip1 pathway. Concomitantly, si-Cdh1 inhibited salinomycin-induced G1 arrest. Taken together, our data indicate that salinomycin induces cell cycle arrest and apoptosis via downregulation or inactivation of cell cycle-associated oncogenes, such as Stat3, cyclin D1, and Skp2, regardless of multidrug resistance.

  15. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Eva Maria [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Hoelzl, Maria Agnes [Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna (MUV), Waehringer Strasse 13A, Vienna 1090 (Austria); Baeck, Julia [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Bago-Horvath, Zsuzsanna [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Clinical Institute of Pathology, Medical University of Vienna (MUV), Waehringer Gürtel 18-20, Vienna 1090 (Austria); Schuster, Christian [Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna (MUV), Waehringer Strasse 13A, Vienna 1090 (Austria); Reichholf, Brian [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Kern, Daniela; Aberger, Fritz [Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg 5020 (Austria); Sexl, Veronika; Hoelbl-Kovacic, Andrea, E-mail: andrea.hoelbl@vetmeduni.ac.at [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria)

    2014-01-27

    The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK) cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  16. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance

    Directory of Open Access Journals (Sweden)

    Eva Maria Putz

    2014-01-01

    Full Text Available The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  17. Interleukin 2 and 15 activate Stat3alpha in human T lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, M; Nordahl, M; Svejgaard, A

    1998-01-01

    in response to interleukin (IL)-2 and IL-15. Here, cytokine-induced activation of Stat3 in previously activated CD4(+) human T cells was examined using Stat3 antibodies directed against different regions of Stat3. As determined by tyrosine phosphorylation, nuclear translocation and binding to an h......SIE-oligonucleotide probe, IL-2 and IL-15 activated the slowly migrating isoform, Stat3alpha. In contrast, minimal or no activation of Stat3beta was observed, suggesting that IL-2 and IL-15 predominantly activate Stat3alpha in human CD4(+) T cells. In this way, diversity in the expression and activation of Stat3 proteins...... may provide additional means of regulating cytokine-induced T cell responses....

  18. STAT3-Interacting Proteins as Modulators of Transcription Factor Function: Implications to Targeted Cancer Therapy.

    Science.gov (United States)

    Yeh, Jennifer E; Frank, David A

    2016-04-19

    The oncogenic transcription factor STAT3 is inappropriately activated in multiple hematopoietic and solid malignancies, in which it drives the expression of genes involved in cell proliferation, differentiation, survival, and angiogenesis. Thus far, strategies to inhibit the function of STAT3 have focused on blocking the function of its activating kinases or sequestering its DNA binding ability. A less well-explored aspect of STAT3 function is its interaction with other proteins, which can modulate the oncogenic activity of STAT3 via its subcellular localization, DNA binding ability, and recruitment of transcriptional machinery. Herein we summarize what is currently known about STAT3-interacting proteins and describe the utility of a proteomics-based approach for successfully identifying and characterizing novel STAT3-interacting proteins that affect STAT3 transcriptional activity and oncogenic function.

  19. Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma.

    Science.gov (United States)

    Yu, Guang-Tao; Bu, Lin-Lin; Zhao, Yu-Yue; Liu, Bing; Zhang, Wen-Feng; Zhao, Yi-Fang; Zhang, Lu; Sun, Zhi-Jun

    2014-01-01

    Angiogenesis is a complex biological process, which is involved in tumorigenesis and progression. However, the molecular mechanism of underlying angiogenesis remains largely unknown. In this study, we accessed the expression of proteins related angiogenesis by immunohistochemical staining of human tissue microarray which contains 72 adenoid cystic carcinoma (AdCC), 12 pleomorphic adenoma (PMA) and 18 normal salivary gland (NSG) using digital pathological scanner and scoring system. We found that the expression of p-S6(S235/236) (a downstream molecule of mTOR), p-Stat3(T705), PAI, EGFR, and HIF-1α was significantly increased in AdCC as compared with PMA and (or) NSG (p 0.05). Correlation analysis of these proteins revealed that p-S6(S235/236) up-regulates the expression of EGFR/p-Stat3(T705) (p PAI (p PAI associated with angiogenesis (CD34) and proliferation (Ki-67). In vitro, Rapamycin suppressed the expression of p-S6(S235/236), EGFR, p-Stat3(T705), HIF-1α and PAI. Further more, target inhibition of mTOR by rapamycin effectively reduced tumor growth of SACC-83 cells line nude mice xenograft and decreased the expression of p-S6(S235/236), EGFR/p-Stat3(T705) and HIF-1α/PAI. Taken together, these data revealed that mTOR signaling pathway regulates tumor angiogenesis by EGFR/p-Stat3(T705) and HIF-1α/PAI. Inhibition of mTOR by rapamycin could effectively reduced tumor growth. It is likely that mTOR inhibitors may be a potential candidate for treatment of AdCC.

  20. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-hong; Li, Hui; Li, Jin-ping; Zhong, Hui; Zhang, Han-chon; Chen, Jia [Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410010 (China); Xiao, Tao, E-mail: xiaotaoxyl@163.com [Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410010 (China)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear. Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.

  1. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2.

    Science.gov (United States)

    Xuan, Xaioyan; Li, Shanshan; Lou, Xi; Zheng, Xianzhao; Li, Yunyun; Wang, Feng; Gao, Yuan; Zhang, Hongyan; He, Hongliu; Zeng, Qingru

    2015-05-01

    Stat3 alters the expression of its downstream genes and is associated with tumor invasion and metastasis in several human cancers. Its role in esophageal squamous cell carcinoma (ESCC) has not been well characterized. We examined the tumor sections of 100 cases of ESCC by immunohistochemistry and observed significant overexpression of Stat3 in the cytoplasm of 89% of ESCC cells and of phosphorylated Stat3 (p-Stat3) in the nuclei of 71% of ESCC when compare with normal esophageal mucosa (72%, p = 0.02; and 31%, p = 0.001). Overexpression of Stat3 and p-Stat3 positively correlated with that of matrix metalloproteinase-2 (MMP2), a known regulator for cell migration, in 65% of ESCC while only 26% shown in benign esophageal mucosa. To further investigate the association of Stat3 with tumor metastasis in vitro, invasion of EC-1 cells (a human ESCC cell line) were investigated with Boyden chambers. The results showed that transfection of Stat3 not only promoted invasion of EC-1 cells but also significantly induced MMP2 expression in a dose-dependent manner. In contrast, suppressing expression of endogenous Stat3 mRNA and protein by Stat3 siRNA significantly reduced EC-1 cell invasion and MMP2 expression. A high-affinity Stat3-binding element was localized to the positions of 648-641 bp (TTCTCGAA) in the MMP2 promoter with electrophoretic mobility shift assay. Our results suggest that Stat3, p-Stat3, and MMP2 were overexpressed in ESCC and associated with invasion of ESCC; and Stat3 up-regulated expression of MMP2 in ESCC through directly binding to the MMP2 promoter.

  2. Genetic variants in IL-6/JAK/STAT3 pathway and the risk of CRC.

    Science.gov (United States)

    Wang, Shuwei; Zhang, Weidong

    2016-05-01

    Interleukin (IL)-6 and the downstream Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway have previously been reported to be important in the development of colorectal cancer (CRC), and several studies have shown the relationship between the polymorphisms of related genes in this pathway with the risk of CRC. However, the findings of these related studies are inconsistent. Moreover, there has no systematic review and meta-analysis to evaluate the relationship between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility. Hence, we conducted a meta-analysis to explore the relationship between polymorphisms in IL-6/JAK/STAT3 pathway genes and CRC risk. Eighteen eligible studies with a total of 13,795 CRC cases and 18,043 controls were identified by searching PubMed, Web of Science, Embase, and the Cochrane Library databases for the period up to September 15, 2015. Odds ratios (ORs) and their 95 % confidence intervals (CIs) were used to calculate the strength of the association. Our results indicated that IL-6 genetic variants in allele additive model (OR = 1.05, 95 % CI = 1.00, 1.09) and JAK2 genetic variants (OR = 1.40, 95 % CI = 1.15, 1.65) in genotype recessive model were significantly associated with CRC risk. Moreover, the pooled data revealed that IL-6 rs1800795 polymorphism significantly increased the risk of CRC in allele additive model in Europe (OR = 1.07, 95 % CI = 1.01, 1.14). In conclusion, the present findings indicate that IL-6 and JAK2 genetic variants are associated with the increased risk of CRC while STAT3 genetic variants not. We need more well-designed clinical studies covering more countries and population to definitively establish the association between genetic variants in IL-6/JAK/STAT3 pathway and CRC susceptibility.

  3. Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3γ via gastric STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Kai Syin Lee

    Full Text Available BACKGROUND: Most of what is known about the Helicobacter pylori (H. pylori cytotoxin, CagA, pertains to a much-vaunted role as a determinant of gastric inflammation and cancer. Little attention has been devoted to potential roles of CagA in the majority of H. pylori infected individuals not showing oncogenic progression, particularly in relation to host tolerance. Regenerating islet-derived (REG3γ encodes a secreted C-type lectin that exerts direct bactericidal activity against Gram-positive bacteria in the intestine. Here, we extend this paradigm of lectin-mediated innate immunity, showing that REG3γ expression is triggered by CagA in the H. pylori-infected stomach. METHODOLOGY/PRINCIPAL FINDINGS: In human gastric mucosal tissues, REG3γ expression was significantly increased in CagA-positive, compared to CagA-negative H. pylori infected individuals. Using transfected CagA-inducible gastric MKN28 cells, we recapitulated REG3γ induction in vitro, also showing that tyrosine phosphorylated, not unphosphorylated CagA triggers REG3γ transcription. In concert with induced REG3γ, pro-inflammatory signalling downstream of the gp130 cytokine co-receptor via the signal transducer and activator of transcription (STAT3 and transcription of two cognate ligands, interleukin(IL-11 and IL-6, were significantly increased. Exogenous IL-11, but not IL-6, directly stimulated STAT3 activation and REG3γ transcription. STAT3 siRNA knockdown or IL-11 receptor blockade respectively abrogated or subdued CagA-dependent REG3γ mRNA induction, thus demonstrating a requirement for uncompromised signalling via the IL-11/STAT3 pathway. Inhibition of the gp130-related SHP2-(Ras-ERK pathway did not affect CagA-dependent REG3γ induction, but strengthened STAT3 activation as well as augmenting transcription of mucosal innate immune regulators, IL-6, IL-8 and interferon-response factor (IRF1. CONCLUSIONS/SIGNIFICANCE: Our results support a model of CagA-directed REG3

  4. GITRL modulates the activities of p38 MAPK and STAT3 to promote Th17 cell differentiation in autoimmune arthritis.

    Science.gov (United States)

    Tang, Xinyi; Tian, Jie; Ma, Jie; Wang, Jiemin; Qi, Chen; Rui, Ke; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-02-23

    The glucocorticoid-induced TNFR family-related protein (GITR) and its ligand play a critical role in the pathogenesis of autoimmune arthritis by enhancing the Th17 cell response, but their molecular mechanisms remain largely unclear. This study aims to define the role of p38 mitogen-activated protein kinases (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling in GITRL-induced Th17 cells in autoimmune arthritis. We found that the p38 phosphorylation was enhanced by GITRL in activated CD4+T cells, and the p38 inhibitor restrained the GITRL-induced Th17 cell expansion in a dose-dependent manner. Moreover, there was decreased STAT3 activity on Tyr705 and Ser727 with the p38 inhibitor in vitro. Notably, the p38 inhibitor could prevent GITRL-treated arthritis progression and markedly decrease the Th17 cell percentages. The phosphorylation of the Tyr705 site was significantly lower in the GITRL-treated CIA mice administrated with the p38 inhibitor. A significantly higher phosphorylation of p38 was detected in RA patients and had a positive relationship with the serum level of anti-cyclic citrullinated peptide (anti-CCP) antibody. Our findings have indicated that GITRL could promote Th17 cell differentiation by p38 MAPK and STAT3 signaling in autoimmune arthritis.

  5. Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats.

    Science.gov (United States)

    Wang, X-W; Li, T-T; Zhao, J; Mao-Ying, Q-L; Zhang, H; Hu, S; Li, Q; Mi, W-L; Wu, G-C; Zhang, Y-Q; Wang, Y-Q

    2012-08-16

    Cancer pain, especially cancer-induced bone pain, affects the quality of life of cancer patients, and current treatments for this pain are limited. The present study demonstrates that spinal extracellular signal-regulated kinase (ERK) activation in glial cells plays a crucial role in cancer-induced bone pain. From day 4 to day 21 after the intra-tibia inoculation with Walker 256 mammary gland carcinoma cells, significant mechanical allodynia was observed as indicated by the decrease of mechanical withdrawal thresholds in the von Frey hair test. Intra-tibia inoculation with carcinoma cells induced a vast and persistent (>21 D) activation of ERK in the bilateral L2-L3 and L4-L5 spinal dorsal horn. The increased pERK1/2-immunoreactivity was observed in both Iba-1-expressing microglia and GFAP-expressing astrocytes but not in NeuN-expressing neurons. A single intrathecal injection of the selective MEK (ERK kinase) inhibitors PD98059 (10 μg) on day 12 and U0126 (1.25 and 3 μg) on day 14, attenuated the bilateral mechanical allodynia in the von Frey hair test. Altogether, our results suggest that ERK activation in spinal microglia and astrocytes is correlated with the onset of allodynia and is important for allodynia maintenance in the cancer pain model. This study indicated that inhibition of the ERK pathway may provide a new therapy for cancer-induced bone pain.

  6. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control.

    Directory of Open Access Journals (Sweden)

    Barbara A Butcher

    2011-09-01

    Full Text Available The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16 parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18. In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.

  7. STAT-3 和 MGMT 在人胶质瘤中的表达及意义%Expression and significance of STAT-3 and MGMT in human gllomas

    Institute of Scientific and Technical Information of China (English)

    张龙洲; 王茂德

    2012-01-01

    目的:探讨STAT3和MGMT在人胶质瘤中的表达及其与肿瘤发生和病理分级之间的关系.方法:用免疫组化法检测并比较80例不同病理级别胶质瘤和15例正常脑组织中STAT3和MGMT的表达情况,并对二者表达做相关性分析.结果:STAT3和MGMT在正常脑组织中均未检测到阳性表达,在瘤组织中的表达均随肿瘤病理级别的升高而增高,相关性分析显示二者的表达存在正相关.结论:STAT3在胶质瘤的发生发展中起重要作用,其高表达可能与参与诱导MGMT的高表达有关.%Objective:To explore the expression of STAT —3 and MGMT in human gliomas and its relationship with tumorigenesis and the degrees of malignancy. Methods: Immunohistochemical SP method was employed to study the expression of STAT -3 and MGMT in 80 cases of glioma and 15 cases of normal cerebral tissue used as control group, the relationship of STAT - 3 and MGMT expression was analyzed. Results: Both the expression of STAT - 3 and MGMT increased as the malignant grade increased, at the same time the expression of STAT3 was positively related to that of MGMT. Conclusion: STAT3 may play a vital role in the progression of glioma through induction of MGMT.

  8. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop.

    Science.gov (United States)

    Yang, Zhengyan; Guo, Liang; Liu, Dan; Sun, Limin; Chen, Hongyu; Deng, Que; Liu, Yanjun; Yu, Ming; Ma, Yuanfang; Guo, Ning; Shi, Ming

    2015-03-10

    In the present study, we demonstrate that prolonged treatment by trastuzumab induced resistance of NCI-N87 gastric cancer cells to trastuzumab. The resistant cells possessed typical characteristics of epithelial to mesenchymal transition (EMT)/cancer stem cells and acquired more invasive and metastatic potentials both in vitro and in vivo. Long term treatment with trastuzumab dramatically inhibited the phosphorylation of Akt, but triggered the activation of STAT3. The level of IL-6 was remarkably increased, implicating that the release of IL-6 that drives the STAT3 activation initiates the survival signaling transition. Furthermore, the Notch activities were significantly enhanced in the resistant cells, companied by upregulation of the Notch ligand Jagged-1 and the Notch responsive genes Hey1 and Hey2. Inhibiting the endogenous Notch pathway reduced the IL-6 expression and restored the sensitivities of the resistant cells to trastuzumab. Blocking of the STAT3 signaling abrogated IL-6-induced Jagged-1 expression, effectively inhibited the growth of the trastuzumab resistant cells, and enhanced the anti-tumor activities of trastuzumab in the resistant cells. These findings implicate that the IL-6/STAT3/Jagged-1/Notch axis may be a useful target and that combination of the Notch or STAT3 inhibitors with trastuzumab may prevent or delay clinical resistance and improve the efficacy of trastuzumab in gastric cancer.

  9. The Autophagy Molecule Beclin 1 Maintains Persistent Activity of NF-κB and Stat3 in HTLV-1-transformed T Lymphocytes

    Science.gov (United States)

    Chen, Li; Liu, Dan; Zhang, Yang; Zhang, Huan; Cheng, Hua

    2015-01-01

    The retroviral oncoprotein Tax from human T cell leukemia virus type 1 (HTLV-1) induces persistent activation of IκB kinase (IKK)/NF-κB signaling, an essential step for initiating HTLV-1 oncogenesis. The regulation of the IKK/NF-κB signaling in HTLV-1-transformed T cells remains incompletely understood. In the present study, we showed that the autophagy molecule Beclin1 not only executed a cytoprotective function through induction of autophagy but also played a pivotal role in maintaining Tax-induced activation of two key survival factors, NF-κB and Stat3. Silencing Beclin1 in HTLV-1-transformed T cells resulted in diminished activities of NF-κB and Stat3 as well as impaired growth. In Beclin1-depleted cells, Tax failed to activate NF-κB and Stat3 at its full capacity. In addition, we showed that Beclin1 interacted with the catalytic subunits of IKK. Further, we observed that selective inhibition of IKK repressed the activities of both NF-κB and Stat3 in the context of HTLV-1-transformation of T cells. Our data, therefore, unveiled a key role of Beclin1 in maintaining persistent activities of both NF-κB and Stat3 in the pathogenesis of HTLV-1-mediated oncogenesis. PMID:26319552

  10. Hypoxic regulation of Ca2+ signalling in astrocytes and endothelial cells.

    Science.gov (United States)

    Peers, C; Kang, P; Boyle, J P; Porter, K E; Pearson, H A; Smith, I F; Kemp, P J

    2006-01-01

    Acute hypoxia is well known to modulate plasmalemmal ion channels in specific tissue types, thereby modulating [Ca2+]i. Alternative mechanisms by which acute hypoxia could modulate [Ca2+]i are less well explored, particularly in non-excitable cells. Here, we describe experiments employing microfluorimetric recordings from Fura-2-loaded rat cortical astrocytes and human saphenous vein endothelial cells designed to explore any effects of hypoxia (pO2 20-30 mmHg) on [Ca2+]i. In both cell types, hypoxia evoked small rises of [Ca2+]i in the majority of cells during perfusion with a Ca(2+)-free solution, indicating hypoxia can release Ca2+ from an intracellular pool. Capacitative Ca2+ entry was observed when Ca2+ was subsequently restored to the extracellular solution. These effects were abolished by pre-treatment of cells with thapsigargin or prior application of inositol 1,4,5-trisphosphate (IP3)-generating agonists. Antioxidants fully prevented this effect of hypoxia in both cell types. Mitochondrial uncoupling significantly enhanced the effects of hypoxia in astrocytes, yet markedly suppressed the effects of hypoxia in endothelial cells. Our findings indicate that hypoxia can modulate [Ca2+]i in non-excitable cells; most importantly, it can evoke Ca2+ release from intracellular stores via a mechanism which involves reactive oxygen species. The involvement of mitochondria in this effect appears to be tissue specific.

  11. STAT3 activation and infiltration of eosinophil granulocytes in mycosis fungoides

    DEFF Research Database (Denmark)

    Fredholm, Simon; Gjerdrum, Lise Mette R; Willerslev-Olsen, Andreas

    2014-01-01

    ) in malignant T-cells also stained positively for eosinophils, whereas this was only observed in 28% of pY-STAT3-negative patients (pIL5). STAT3 si......RNA profoundly inhibited IL5 but not HMGB1 expression. In conclusion, these data suggest that malignant T-cells orchestrate accumulation and activation of eosinophils supporting the notion of STAT3 being a putative target for therapy....

  12. [Novel function of astrocytes revealed by optogenetics].

    Science.gov (United States)

    Beppu, Kaoru; Matsui, Ko

    2014-12-01

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  13. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    Science.gov (United States)

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  14. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Directory of Open Access Journals (Sweden)

    Yu-Yo Sun

    Full Text Available The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α through inhibition of prolyl hydrolase 2 (PHD2 and activation of the phosphatidylinositide-3 kinase (PI3K/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo and vascular endothelial growth factor (VEGF, two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  15. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Science.gov (United States)

    Sun, Yu-Yo; Lin, Shang-Hsuan; Lin, Hung-Cheng; Hung, Chia-Chi; Wang, Chen-Yu; Lin, Yen-Chu; Hung, Kuo-Sheng; Lien, Cheng-Chang; Kuan, Chia-Yi; Lee, Yi-Hsuan

    2013-01-01

    The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX) and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α) through inhibition of prolyl hydrolase 2 (PHD2) and activation of the phosphatidylinositide-3 kinase (PI3K)/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo) and vascular endothelial growth factor (VEGF), two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  16. Angiotensin II Type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration-induced leukocyte entry to the central nervous system

    DEFF Research Database (Denmark)

    Füchtbauer, L; Groth-Rasmussen, Maria; Holm, Thomas Hellesøe;

    2011-01-01

    of infiltrating macrophages in the hippocampus 2days post-lesion. Lesion-induced increases in T-cell infiltration and morphologic glial response were unaffected, and the blood-brain barrier remained intact to horseradish peroxidase. These findings show that angiotensin II signaling to astrocytes via AT1 plays...

  17. Progress in the study of relationship between STAT3 and tumor immune escape%STAT3与肿瘤免疫逃逸的研究进展

    Institute of Scientific and Technical Information of China (English)

    祝宝让; 杨武威

    2013-01-01

    Signal transducer and activator of transcription 3 is a dual function of protein in the cytoplasm, which is constitutively activated at a very high frequency in human cancer, on phosphorylation of STAT3 monomers by tyrosine kinases, the monomers dimerized, translocate to the nucleus, and bind to specific promoter sequences, thereby inducing expression of multiple genes associated with cellular proliferation and survival, which is a point of convergence for many oncogenic pathways, play a crucial role in tumor initiation and progression. In recent study, STAT3 has emerged as a critical mediator of tumor immune evasion at multiple levels, provide a target for cancer immunotherapy.%信号转导子与转录激活子3(STAT3)是一种存在于细胞质内的双功能蛋白,可以被多种酪氨酸激酶激活,激活后发生磷酸化,形成二聚体转入细胞核内,调节细胞生长、分化、凋亡相关基因的表达,是多条致癌通路的汇集点,在大多数肿瘤细胞内呈持续性激活,在肿瘤的发生、发展、转移中起了重要作用。近几年的研究表明,STAT3能在很多环节参与调节肿瘤的免疫逃逸,可能是肿瘤免疫治疗的一个重要靶点。

  18. 人胰腺癌细胞STAT3下游耐药相关基因的初步筛选%Preliminary screening of drug resistance-related genes downstream of STAT3 in human pancreatic cancer cell

    Institute of Scientific and Technical Information of China (English)

    杨豪俊; 黄陈; 裘正军; 江弢; 曹俊

    2011-01-01

    目的 利用小分子干扰RNA( siRNA)和基因芯片技术初步筛选人胰腺癌细胞信号转导及转入激活因子3( STAT3)下游耐药相关基因,为探索STAT3调控耐药机制提供依据.方法 利用基因芯片技术比较人胰腺癌细胞SW1990与siRNA沉默STAT3后SW1990细胞中基因表达的差异,初步筛选STAT3下游耐药相关基因.结果 按差异显著性标准从47 000条基因(代表38 500个明晰的基因)中筛选出具有表达差异的基因共有982条(2.55%),其中上调表达2倍的基因有592条,下调表达2倍的基因有390条.与耐药相关基因有:显著上调的拓扑异构酶AⅡα( TOPOⅡα)、肿瘤坏死因子凋亡诱导相关配体(TRAIL);显著下调的富半胱氨酸61( CYR61),Ras肿瘤基因家族成员(RAP1 A),bcl-2相关抗凋亡基因(BAG1),囊性纤维化跨膜转导调节因子(CFTR).结论 胰腺癌耐药是一个多基因、多通路相互作用的结果.应用siRNA技术沉默STAT3基因后,有6条耐药相关基因发生改变.为进一步研究STAT3与胰腺癌耐药的关系提供新的线索,也为胰腺癌的治疗提供新的思路.%Objective To preliminarily screen out the drug resistance-related genes downstream of signal transducer and activator of transcription 3 ( STAT3 ) in human pancreatic cancer cell by small interfering RNA ( siRNA) and gene chip technique, with the purpose of providing a basis for studying the mechanism of STAT3-associated drug resistance. Methods The differentially expressed genes between the human pancreatic SW1990 cells of wild-type STAT3 gene and STAT3 gene silenced by siRNA were compared after using gene chip technique to preliminarily screen out the drug resistance-related genes downstream of STAT3. Results Nine hundred and eighty-two (2. 55% ) differentially expressed genes were screened from the 47000 genes represented on the microarray according to the criterion of significant difference, of which, 592 genes were up-regulated by 2-fold and 390 genes

  19. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis.

    Science.gov (United States)

    Tong, Dali; Liu, Qiuli; Liu, Gaolei; Xu, Jing; Lan, Weihua; Jiang, Yao; Xiao, Hualiang; Zhang, Dianzheng; Jiang, Jun

    2017-03-28

    Castration is the standard therapeutic treatment for advanced prostate cancer but with limited benefit due to the profound relapse and metastasis. Activation of inflammatory signaling pathway and initiation of epithelial-mesenchymal transition (EMT) are closely related to drug resistance, tumor relapseas well as metastasis. In this study, we demonstrated that metformin is capable of inhibiting prostate cancer cell migration and invasion by repressing EMT evidenced by downregulating the mesenchymal markers N-cadherin, Vimentin, and Twist and upregulating the epithelium E-cadherin. These effects have also been observed in our animal model as well as prostate cancer patients. In addition, we showed the effects of metformin on the expression of genes involved in EMT through repressing the levels of COX2, PGE2 and phosphorylated STAT3. Furthermore, inactivating COX2 abolishes metformin's regulatory effects and exogenously administered PGE2 is capable of enhancing STAT3 phosphorylation and expression of EMT biomarker. We propose that metformin represses prostate cancer EMT and metastasis through targeting the COX2/PGE2/STAT3 axis. These findings suggest that metformin by itself or in combination with other anticancer drugs could be used as an anti-metastasis therapy.

  20. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  1. At High Levels, Constitutively Activated STAT3 Induces Apoptosis of Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Rozovski, Uri; Harris, David M; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Grgurevic, Srdana; Faderl, Stefan; Ferrajoli, Alessandra; Wierda, William G; Martinez, Matthew; Verstovsek, Srdan; Keating, Michael J; Estrov, Zeev

    2016-05-15

    In chronic lymphocytic leukemia (CLL), the increment in PBLs is slower than the expected increment calculated from the cells' proliferation rate, suggesting that cellular proliferation and apoptosis are concurrent. Exploring this phenomenon, we found overexpression of caspase-3, higher cleaved poly (ADP-ribose) polymerase levels (p < 0.007), and a higher apoptosis rate in cells from patients with high counts compared with cells from patients with low counts. Although we previously found that STAT3 protects CLL cells from apoptosis, STAT3 levels were significantly higher in cells from patients with high counts than in cells from patients with low counts. Furthermore, overexpression of STAT3 did not protect the cells. Rather, it upregulated caspase-3 and induced apoptosis. Remarkably, putative STAT3 binding sites were identified in the caspase-3 promoter, and a luciferase assay, chromatin immunoprecipitation, and an EMSA revealed that STAT3 activated caspase-3 However, caspase-3 levels increased only when STAT3 levels were sufficiently high. Using chromatin immunoprecipitation and EMSA, we found that STAT3 binds with low affinity to the caspase-3 promoter, suggesting that at high levels, STAT3 activates proapoptotic mechanisms and induces apoptosis in CLL cells.

  2. Expression of Phosphorylated-STAT3 and Osteopontin and Their Correlation in Melanoma

    Institute of Scientific and Technical Information of China (English)

    Yan WU; Ping JIANG; Yun LIN; Siyuan CHEN; Nengxing LIN; Jiawen LI

    2009-01-01

    The expressions of p-STAT3 and osteopontin in 22 cases of normal nevi and 43 cases of malignant melanoma were immunohistochemically detected,and the correlation between p-STAT3 and osteopontin in malignant melanoma and the correlations of p-STAT3 (or osteopontin) with invasion,metastasis and thickness of malignant melanoma were examined.The results showed p-STAT3 was expressed in 2 of 22 cases of normal nevi and 30 of 43 cases of malignant melanoma,while osteopontin was expressed in 3 cases of normal nevi and 29 cases of malignant melanoma.The expressions of p-STAT3 and osteopontin in melanoma were significantly higher than that in benign nevi.There existed significant correlations between the expression of p-STAT3 and that of osteopontin in melanoma.Furthermore,the expression rates of p-STAT3 were significantly higher in invasive or metastatic melanomas than that their non-invasive or non-metastatic counterparts,and the expression rates of osteopontin were significantly higher in invasive melanomas than that in non-invasive ones.It is concluded that p-STAT3 and osteopontin may play important roles in the pathogenesis of malignant melanoma.

  3. A novel human STAT3 mutation presents with autoimmunity involving Th17 hyperactivation

    NARCIS (Netherlands)

    Wienke, Judith; Janssen, Willemijn; Scholman, Rianne; Spits, Hilde; Gijn, Marielle van; Boes, Marianne; van Montfrans, Joris; Moes, Nicolette; de Roock, Sytze

    2015-01-01

    Mutations in STAT3 have recently been shown to cause autoimmune diseases through increased lymphoproliferation. We describe a novel Pro471Arg STAT3 mutation in a patient with multiple autoimmune diseases, causing hyperactivation of the Th17 pathway. We show that IL-17 production by primary T cells w

  4. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor.

    Science.gov (United States)

    Ecker, Andrea; Simma, Olivia; Hoelbl, Andrea; Kenner, Lukas; Beug, Hartmut; Moriggl, Richard; Sexl, Veronika

    2009-01-01

    Stat transcription factors have been implicated in tumorigenesis in mice and men. Stat3 and Stat5 are considered powerful proto-oncogenes, whereas Stat1 has been demonstrated to suppress tumor formation. We demonstrate here for the first time that a constitutive active version of Stat3alpha (Stat3alphaC) may also suppress transformation. Mouse embryonic fibroblasts (MEFs) deficient for p53 can be transformed with either c-myc or with rasV12 alone. Interestingly, transformation by c-myc is efficiently suppressed by co-expression of Stat3alphaC, but Stat3alphaC does not interfere with transformation by the rasV12-oncogene. In contrast, transplantation of bone marrow cells expressing Stat3alphaC induces the formation of a highly aggressive T cell leukemia in mice. The leukemic cells invaded multiple organs including lung, heart, salivary glands, liver and kidney. Interestingly, transplanted mice developed a similar leukemia when the bone marrow cells were transduced with Stat3beta, which is also constitutively active when expressed at significant levels. Our experiments demonstrate that Stat3 has both - tumor suppressing and tumor promoting properties.

  5. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    Science.gov (United States)

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  6. Mutant ubiquitin attenuates interleukin-1β- and tumor necrosis factor-α-induced pro-inflammatory signaling in human astrocytic cells.

    Directory of Open Access Journals (Sweden)

    Kyungsun Choi

    Full Text Available A frameshift mutation of ubiquitin called ubiquitin(+1 (UBB(+1 was found in the aging and Alzheimer's disease brains and thought to be associated with neuronal dysfuction and degeneration. Even though ubiquitylation has been known to regulate vital cellular functions mainly through proteasome-dependent degradation of polyubiquitinated substrates, proteolysis-independent roles of ubiquitylation have emerged as key mechanisms in various signaling cascades. In this study, we have investigated the effect of UBB(+1 on proinflammatory signaling such as interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α in human astrocytes. Treatment with TNF-α and IL-1β induced expression of CCL2 and CXCL8 by human astrocytic cells; while ectopic expression of UBB(+1 significantly abrogated the proinflammatory cytokine-induced expression of chemokines. Ectopic expression of UBB(+1 suppressed TNF-α- and IL-1β-induced activation of NF-κB and JNK signaling pathway. Furthermore, we have demonstrated that polyubiquitylation of TRAFs and subsequent phosphorylation of TAK1 were significantly inhibited by stable expression of UBB(+1. Collectively, these results suggest that UBB(+1 may affect proinflammatory signaling in the central nervous system via inhibitory mechanisms of ubiquitin-dependent signaling in human astrocytes.

  7. Gingko biloba extract (Ginaton) ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in mice via reducing IL-6/STAT3 and IL-23/IL-17.

    Science.gov (United States)

    Sun, Yan; Lin, Lian-Jie; Lin, Yan; Sang, Li-Xuan; Jiang, Min; Zheng, Chang-Qing

    2015-01-01

    This study explored the underlying mechanism of Gingko biloba extract (Ginaton) on dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. 40 male C57BL/6 mice were randomly divided into four groups: normal control group, Ginaton group, Ginaton treatment group, and DSS group. After 7 days administration, mice were sacrificed an