WorldWideScience

Sample records for astrocyte glutamine transporter

  1. System N transporters are critical for glutamine release and modulate metabolic fluxes of glucose and acetate in cultured cortical astrocytes: changes induced by ammonia.

    Science.gov (United States)

    Zielińska, Magdalena; Dąbrowska, Katarzyna; Hadera, Mussie Ghezu; Sonnewald, Ursula; Albrecht, Jan

    2016-01-01

    Glutamine (Gln) is synthesized in astrocytes from glutamate (Glu) and ammonia, whereupon it can be released to be transferred to neurons. This study evaluated the as yet not definitely established role of the astrocytic Gln transporters SN1 and SN2 (Slc38a3 and Slc38a5 respectively) in Gln release and metabolic fluxes of glucose and acetate, the canonical precursors of Glu. Cultured neocortical astrocytes were grown in the absence or presence of ammonia (5 mM NH4 Cl, 24 h), which deregulates astrocytic metabolism in hyperammonemic encephalopathies. HPLC analyses of cell extracts of SN1/SN2 siRNA-treated (SN1/SN2-) astrocytes revealed a ~ 3.5-fold increase in Gln content and doubling of glutathione, aspartate, alanine and glutamate contents, as compared to SN1/SN2+ astrocytes. Uptake and efflux of preloaded [(3) H]Gln was likewise significantly decreased in SN1/SN2- astrocytes. The atom percent excess (13) C values (given as M + 1) for alanine, aspartate and glutamate were decreased when the SN1/SN2- cells were incubated with [1-(13) C] glucose, while Gln consumption was not changed. No difference was seen in M + 1 values in SN1/SN2- cells incubated with [2-(13) C] acetate, which were not treated with ammonia. In SN1/SN2- astrocytes, the increase in Gln content and the decrease in radiolabeled Gln release upon exposure to ammonia were found abrogated, and glutamate labeling from [2-(13) C]acetate was decreased as compared to SN1/SN2+ astrocytes. The results underscore a profound role of SN1 and/or SN2 in Gln release from astrocytes under physiological conditions, but less so in ammonia-overexposed astrocytes, and appear to manifest dependence of astrocytic glucose metabolism to Glu/Gln on unimpaired SN1/SN2- mediated Gln release from astrocytes. The astrocytic N system transporters SN1 and SN2 show preponderance to mediate glutamine (Gln) efflux. Under hyperammonemic conditions, accumulation of Gln, a direct product of ammonia detoxification, may deregulate

  2. Astrocytes and glutamate homoeostasis in Alzheimer's disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Alexei Verkhratsky

    2013-10-01

    Full Text Available Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system. Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer's disease. AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex. Here, we analyzed the expression of GS (glutamine synthetase and GLT-1 (glutamate transporter-1 in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD. GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3 of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals in parallel with a reduced expression of GS (determined by Western blots, which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.

  3. Astrocyte glutamine synthetase: pivotal in health and disease.

    Science.gov (United States)

    Rose, Christopher F; Verkhratsky, Alexei; Parpura, Vladimir

    2013-12-01

    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.

  4. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    Y. He; T.B.M. Hakvoort; J.L.M. Vermeulen; W.T. Labruyere; D.R. de Waart; W.S. van der Hel; J.M. Ruijter; H.B.M. Uylings; W.H. Lamers

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in astrocyte

  5. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder

    Directory of Open Access Journals (Sweden)

    Hans-Gert eBernstein

    2015-08-01

    Full Text Available There is increasing evidence for disturbances within the glutamate system in patients with affective disorders, which involve disruptions of the glutamate-glutamine- cycle. The mainly astroglia-located enzyme glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a central role in glutamate and glutamine homoeostasis. However, glutamine synthetase is also expressed in numerous oligodendrocytes, another class of glial cells implicated in mood disorder pathology. To learn more about the role of glia-associated glutamine synthetase in mental illnesses, we decided to find out if numerical densities of glial cells immunostained for the enzyme protein differ between subjects with major depressive disorder, bipolar disorder and psychically healthy control cases. Counting of glutamine synthetase expressing astrocytes and oligodendrocytes in eight cortical and two subcortical brain regions of subjects with mood disorder (N=14, bipolar disorder (N=15 and controls (N=16 revealed that in major depression the densities of astrocytes were significantly reduced in some cortical but not subcortical gray matter areas, whereas no changes were found for oligodendrocytes. In bipolar disorder no alterations of glutamine synthetase-immunoreactive glia were found. From our findings we conclude that (1 glutamine synthetase expressing astrocytes are prominently involved in glutamate-related disturbances in major depression, but not in bipolar disorder and (2 glutamine synthetase expressing oligodendrocytes, though being present in significant numbers in prefrontal cortical areas, play a minor (if any role in mood disorder pathology. The latter assumption is supported by findings of others showing that - at least in the mouse brain cortex - glutamine synthetase immunoreactive oligodendroglial cells are unable to contribute to the glutamate-glutamine cycle due to the complete lack of amino acid transporters

  6. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Leke, Renata; Escobar, Thayssa D.C.; Rama Rao, Kakulavarapu V.;

    2015-01-01

    Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological...... conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been...... described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA–glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim...

  7. Glutamine synthetase plays a role in D-galactose-induced astrocyte aging in vitro and in vivo.

    Science.gov (United States)

    Shen, Yao; Gao, Hongchang; Shi, Xiaojie; Wang, Na; Ai, Dongdong; Li, Juan; Ouyang, Li; Yang, Jianbo; Tian, Yueyang; Lu, Jianxin

    2014-10-01

    Astrocytes play multiple roles in physiological and pathological conditions in brain. However, little is known about the alterations of astrocytes in age-related changes, and few aging models of the astrocytes in vitro have been established. Therefore, in the present study, we used d-galactose (D-Gal) to establish astrocyte aging model to explore the alterations of astrocytes in brain aging. We also used (1)H nuclear magnetic resonance ((1)H NMR) spectra to verify the metabolic changes in the cerebral cortex of mice injected with D-gal. The results showed that D-gal (55mM) treatment for 1 week induced senescence characteristics in cultured cortical astrocytes. Real-time PCR and western blot analysis showed that the levels of glutamine synthetase (GS) mRNA and protein were strikingly decreased in the cultured senescent astrocytes, and the senescent astrocytes showed less resistance to the glutamate-induced gliotoxicity. The impairments of glutamate-glutamine cycle and astrocytes were also found in the cerebral cortex of mice treatment with D-gal (100mg/kg) for 6 weeks, and the level of GS mRNA was also found to be reduced markedly, being consistent with the result obtained from the senescent astrocytes in vitro. These results indicate that astrocyte may be the predominant contributor to the pathogenic mechanisms of D-gal-induced brain aging in mice, and GS might be one of the potential therapeutic targets of the aged brain induced by D-gal.

  8. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder.

    Science.gov (United States)

    Bernstein, Hans-Gert; Meyer-Lotz, Gabriela; Dobrowolny, Henrik; Bannier, Jana; Steiner, Johann; Walter, Martin; Bogerts, Bernhard

    2015-01-01

    There is increasing evidence for disturbances within the glutamate system in patients with affective disorders, which involve disruptions of the glutamate-glutamine-cycle. The mainly astroglia-located enzyme glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a central role in glutamate and glutamine homoeostasis. However, GS is also expressed in numerous oligodendrocytes (OLs), another class of glial cells implicated in mood disorder pathology. To learn more about the role of glia-associated GS in mental illnesses, we decided to find out if numerical densities of glial cells immunostained for the enzyme protein differ between subjects with major depressive disorder, bipolar disorder (BD), and psychically healthy control cases. Counting of GS expressing astrocytes (ACs) and OLs in eight cortical and two subcortical brain regions of subjects with mood disorder (N = 14), BD (N = 15), and controls (N = 16) revealed that in major depression the densities of ACs were significantly reduced in some cortical but not subcortical gray matter areas, whereas no changes were found for OLs. In BD no alterations of GS-immunoreactive glia were found. From our findings we conclude that (1) GS expressing ACs are prominently involved in glutamate-related disturbances in major depression, but not in BD and (2) GS expressing OLs, though being present in significant numbers in prefrontal cortical areas, play a minor (if any) role in mood disorder pathology. The latter assumption is supported by findings of others showing that - at least in the mouse brain cortex - GS immunoreactive oligodendroglial cells are unable to contribute to the glutamate-glutamine-cycle due to the complete lack of amino acid transporters (Takasaki et al., 2010).

  9. Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Edith Debroas

    2015-05-01

    Full Text Available Astrocytes are claimed to protect neurons against excitotoxicity by clearing glutamate from the extracellular space and rapidly converting it into glutamine. Glutamine, is then released into the extracellular medium, taken up by neurons and transformed back into glutamate which is then stored into synaptic vesicles. Glutamine synthetase (GS, the key enzyme that governs this glutamate/glutamine cycle, is known to be upregulated by glucocorticoids. In the present work we have thus studied in parallel the effects of dexamethasone on glutamine synthetase activity and NMDA-induced neuronal death in cultures derived from the brain cortex of murine embryos. We showed that dexamethasone was able to markedly enhance GS activity in cultures of astrocytes but not in near pure neuronal cultures. The pharmacological characteristics of the dexamethasone action strongly suggest that it corresponds to a typical receptor-mediated effect. We also observed that long lasting incubation (72 h of mixed astrocyte-neuron cultures in the presence of 100 nM dexamethasone significantly reduced the toxicity of NMDA treatment. Furthermore we demonstrated that methionine sulfoximine, a selective inhibitor of GS, abolished the dexamethasone-induced increase in GS activity and also markedly potentiated NMDA toxicity. Altogether these results suggest that dexamethasone may promote neuroprotection through a stimulation of astrocyte glutamine synthetase.

  10. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine

    DEFF Research Database (Denmark)

    Walls, Anne Byriel; Eyjolfsson, Elvar M.; Smeland, Olav B.;

    2011-01-01

    γ-Aminobutyric acid (GABA) synthesis from glutamate is catalyzed by glutamate decarboxylase (GAD) of which two isoforms, GAD65 and GAD67, have been identified. The GAD65 has repeatedly been shown to be important during intensified synaptic activity. To specifically elucidate the significance of GAD...... and hippocampus. The GABA content in both brain regions was reduced by ∼20%. Moreover, it was revealed that GAD65 is crucial for maintenance of biosynthesis of synaptic GABA particularly by direct synthesis from astrocytic glutamine via glutamate. The GAD67 was found to be important for synthesis of GABA from...

  11. Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sarup, A; Bak, L K;

    2004-01-01

    The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic...... neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways at...

  12. Glutamine synthetase stability and subcellular distribution in astrocytes are regulated by γ-aminobutyric type B receptors.

    Science.gov (United States)

    Huyghe, Deborah; Nakamura, Yasuko; Terunuma, Miho; Faideau, Mathilde; Haydon, Philip; Pangalos, Menelas N; Moss, Stephen J

    2014-10-17

    Emerging evidence suggests that functional γ-aminobutyric acid B receptors (GABABRs) are expressed by astrocytes within the mammalian brain. GABABRs are heterodimeric G-protein-coupled receptors that are composed of R1/R2 subunits. To date, they have been characterized in neurons as the principal mediators of sustained inhibitory signaling; however their roles in astrocytic physiology have been ill defined. Here we reveal that the cytoplasmic tail of the GABABR2 subunit binds directly to the astrocytic protein glutamine synthetase (GS) and that this interaction determines the subcellular localization of GS. We further demonstrate that the binding of GS to GABABR2 increases the steady state expression levels of GS in heterologous cells and in mouse primary astrocyte culture. Mechanistically this increased stability of GS in the presence of GABABR2 occurs via reduced proteasomal degradation. Collectively, our results suggest a novel role for GABABRs as regulators of GS stability. Given the critical role that GS plays in the glutamine-glutamate cycle, astrocytic GABABRs may play a critical role in supporting both inhibitory and excitatory neurotransmission.

  13. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne;

    2004-01-01

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia...

  14. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    Science.gov (United States)

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  15. Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons

    DEFF Research Database (Denmark)

    Dadsetan, Sherry; Bak, Lasse Kristoffer; Sørensen, Michael;

    2011-01-01

    study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5h with [U-(13)C]glucose to monitor de novo......It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present...... synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH(4)Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis...

  16. The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes

    DEFF Research Database (Denmark)

    Lau, Cl; O'Shea, Rd; Bischof, L;

    2011-01-01

    BACKGROUND AND PURPOSE Glutamate transporters play a major role in maintaining brain homeostasis and the astrocytic transporters, EAAT1 and EAAT2, are functionally dominant. Astrocytic excitatory amino acid transporters (EAATs) play important roles in various neuropathologies wherein astrocytes...... undergo cytoskeletal changes. Astrocytic plasticity is well documented, but the interface between EAAT function, actin and the astrocytic cytoskeleton is poorly understood. Because Rho kinase (ROCK) is a key determinant of actin polymerization, we investigated the effects of ROCK inhibitors on EAAT...... activity and astrocytic morphology. EXPERIMENTAL APPROACH The functional activity of glutamate transport was determined in murine cultured astrocytes after exposure to the ROCK inhibitors Fasudil (HA-1077) and Y27632 using biochemical, molecular and morphological approaches. Cytochemical analyses assessed...

  17. Substrate-dependent regulation of ascorbate transport in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na+-dependent L-ascorbate transporter in the plasma membrane. The present study examined the effects of ascorbate deprivation and supplementation on the activity of the transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 minute at 37C. They observed that the maximal uptake rate, Vmax, rapidly (m) of the transport system for ascorbate. Vmax returned to normal following addition of L-ascorbate, but not D-isoascorbate, to the medium. The authors conclude that astrocytes adapt ascorbate transport rates to changes in substrate availability. Furthermore, the data suggest that the transport system located in the astroglial plasma membrane regulates intracellular ascorbate concentration, because changes in transport rate may compensate for regional differences and temporal fluctuations in extracellular ascorbate levels

  18. Extracellular Microvesicles from Astrocytes Contain Functional Glutamate Transporters: Regulation by Protein Kinase C and Cell Activation

    Directory of Open Access Journals (Sweden)

    Romain-Daniel eGosselin

    2013-12-01

    Full Text Available Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes and because the Protein Kinase C (PKC family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release.

  19. Hypoosmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocyte cultures

    OpenAIRE

    Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.

    2011-01-01

    In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium ...

  20. Astrocytes.

    Science.gov (United States)

    Kimelberg, Harold K.; Norenberg, Michael D.

    1989-01-01

    Describes the astrocytes' function as equal partners with neurons in both the normal and the abnormal brain. Discusses the developmental scaffolds, inert scar tissue, Huntington's disease, psychiatric disorders, and the identification of these brain cells. (RT)

  1. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of [3H] D- and L-3-hydroxybutyrate and 3-hydroxy-[3-14C] butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells

  2. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism....... Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means...

  3. Glutamine transporters in mammalian cells and their functions in physiology and cancer.

    Science.gov (United States)

    Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-10-01

    The SLC (solute carrier)-type transporters (~400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26724577

  4. Substrate regulation of ascorbate transport activity in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-[14C]ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-[14C]ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels

  5. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1

    OpenAIRE

    Vollbrecht, Peter J.; Simmler, Linda D.; Blakely, Randy D.; Deutch, Ariel Y.

    2014-01-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for >90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) is unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate ...

  6. Astrocyte-neuron lactate transport is required for long-term memory formation

    OpenAIRE

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M

    2011-01-01

    We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter...

  7. Effect of exercise on glutamine synthesis and transport in skeletal muscle from rats.

    Science.gov (United States)

    dos Santos, Ronaldo V T; Caperuto, Erico C; de Mello, Marco T; Batista, Miguel L; Rosa, Luis F B P C

    2009-08-01

    1. Reductions in plasma glutamine are observed after prolonged exercise. Three hypotheses can explain such a decrease: (i) high demand by the liver and kidney; (ii) impaired release from muscles; and (iii) decreased synthesis in skeletal muscle. The present study investigated the effects of exercise on glutamine synthesis and transport in rat skeletal muscle. 2. Rats were divided into three groups: (i) sedentary (SED; n = 12); (ii) rats killed 1 h after the last exercise bout (EX-1; n = 15); and (iii) rats killed 24 h after the last exercise bout (EX-24; n = 15). Rats in the trained groups swam 1 h/day, 5 days/week for 6 weeks with a load equivalent to 5.5% of their bodyweight. 3. Plasma glutamine and insulin were lower and corticosterone was higher in EX-1 compared with SED rats (P exercise (EX-24), plasma glutamine was restored to levels seen in SED rats, whereas insulin levels were higher (P glutamine, glutamate and ammonia levels were lower in EX-24 than in SED and EX-1 rats (P glutamine synthetase (GS) activity was increased in EX-1 and was decreased in EX-24 compared with SED rats (both P glutamine concentration in EX-1 is not mediated by GS or glutamine transport in skeletal muscle. However, 24 h after exercise, lower GS may contribute to the decrease in glutamine concentration in muscle. PMID:19207717

  8. Kinetic Properties of a Phosphate-Bond-Driven Glutamate-Glutamine Transport System in Streptococcus lactis and Streptococcus cremoris

    NARCIS (Netherlands)

    POOLMAN, B; SMID, EJ; KONINGS, WN

    1987-01-01

    In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 ± 0.3 μM, i

  9. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  10. Proton-dependent glutamine uptake by aphid bacteriocyte amino acid transporter ApGLNT1.

    Science.gov (United States)

    Price, Daniel R G; Wilson, Alex C C; Luetje, Charles W

    2015-10-01

    Aphids house large populations of the gammaproteobacterial symbiont Buchnera aphidicola in specialized bacteriocyte cells. The combined biosynthetic capability of the holobiont (Acyrthosiphon pisum and Buchnera) is sufficient for biosynthesis of all twenty protein coding amino acids, including amino acids that animals alone cannot synthesize; and that are present at low concentrations in A. pisum's plant phloem sap diet. Collaborative holobiont amino acid biosynthesis depends on glutamine import into bacteriocytes, which serves as a nitrogen-rich amino donor for biosynthesis of other amino acids. Recently, we characterized A. pisum glutamine transporter 1 (ApGLNT1), a member of the amino acid/auxin permease family, as the dominant bacteriocyte plasma membrane glutamine transporter. Here we show ApGLNT1 to be structurally and functionally related to mammalian proton-dependent amino acid transporters (PATs 1-4). Using functional expression in Xenopus laevis oocytes, combined with two-electrode voltage clamp electrophysiology we demonstrate that ApGLNT1 is electrogenic and that glutamine induces large inward currents. ApGLNT1 glutamine induced currents are dependent on external glutamine concentration, proton (H+) gradient across the membrane, and membrane potential. Based on these transport properties, ApGLNT1-mediated glutamine uptake into A. pisum bacteriocytes can be regulated by changes in either proton gradients across the plasma membrane or membrane potential. PMID:26028424

  11. SAT1, a glutamine transporter, is preferentially expressed in GABAergic neurons

    Directory of Open Access Journals (Sweden)

    Tom Tallak Solbu

    2010-02-01

    Full Text Available Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1 features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAergic neurons. By generating specific antibodies against SAT1 we show that this glutamine carrier is particularly enriched in GABAergic neurons. Cellular SAT1 distribution resembles that of GAD67, an essential GABA synthesis enzyme, suggesting that SAT1 can be involved in translocating glutamine into GABAergic neurons to facilitate inhibitory neurotransmitter generation.

  12. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts.

    Science.gov (United States)

    Price, Daniel R G; Feng, Honglin; Baker, James D; Bavan, Selvan; Luetje, Charles W; Wilson, Alex C C

    2014-01-01

    Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.

  13. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    J. Zhao; R.W.H. Verwer; D.J. van Wamelen; X.R. Qi; S.F. Gao; P.J. Lucassen; D.F. Swaab

    2016-01-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the neu

  14. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus

    DEFF Research Database (Denmark)

    Lauritzen, Fredrik; Heuser, Kjell; de Lanerolle, Nihal C;

    2012-01-01

    astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in...... several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic...... perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE...

  15. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1.

    Science.gov (United States)

    Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2012-09-01

    Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy. PMID:22773663

  16. Mathematical modelling of the citric acid cycle for the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1(-13)C]glucose.

    Science.gov (United States)

    Merle, M; Martin, M; Villégier, A; Canioni, P

    1996-08-01

    A mathematical model of the citric acid cycle devoted to the analysis of 13C-NMR data was developed for determining the relative flux of molecules through the anaplerotic versus oxidative pathways and the relative pyruvate carboxylase versus pyruvate dehydrogenase activities. Different variants of the model were considered depending on the reversibility of the conversion of fumarate into malate and oxaloacetate. The model also included the possibility of orientation-conserved transfer of the four-carbon citric acid cycle intermediates, leading to conversion of succinyl-CoA C1 into either malate C1 or C4. It was used to analyse NMR data from glutamine isotopomers produced by cerebellar astrocytes incubated with [1-13C]glucose. Partial cycling (39%) between oxaloacetate and fumarate was evident from the analysis. Application of the model to glutamate isotopomers from granule cells incubated with [1-13C]glucose [Martin, M.. Portais, J.C.. Labouesse. J., Canioni. P, & Merle, M. (1993) Eur. J. Biochem. 217, 617-625] indicated that total cycling of oxaloacetate into fumarate was, in this case, required to get the best fit. The results emphasized some important differences in carbon metabolism between cerebellar astrocytes and granule cells concerning the sources of carbon fuelling the citric acid cycle and the carbon fluxes on different pathways.

  17. Response to Dietary Supplementation of Glutamine in Broiler Chickens Subjected to Transportation Stress

    Directory of Open Access Journals (Sweden)

    Majid SHAKERI

    2016-07-01

    Full Text Available The main purpose of this study was to determine effects of glutamine supplementation on performance and blood parameters including Hsp70 and acute phase protein when chicken were subjected to transportation stress. A total of four hundred day-old-male cobb-500 chicks were obtained directly from a local hatchery. The chicks were allotted to two groups as: immediate placement (1 hour after hatching with access to feed and water and placement after 24h transportation without access to feed and water. The experiment consisted of a factorial arrangement of 2 different diets and 2 different time of placement. Chicks from each placement group were fed either basal diet or basal diet + 1% glutamine from 1 to 21 days of age. The results indicated that dietary glutamine improved the body weight gain and feed conversion ratio significantly when chicks were subjected to delayed or immediate placement. In conclusion, supplementing chicken with glutamine in diet can reduce negative effects of delayed access to feed and water during transportation. Moreover, APP concentration and HSP70 level were positively affected when chicks supplemented with glutamine in the diet.

  18. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health.

    Science.gov (United States)

    Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare

    2014-08-01

    Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.

  19. Effects of Ganoderma lucidum spore powder on astrocyte expression and glutamine synthetase activity in the hippocampal region of epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Shiling Zhang; Shuqiu Wang

    2008-01-01

    BACKGROUND: Recent studies have demonstrated that astrocyte dysfunction plays a central role in inhibiting epileptic seizures and that regulation of astrocyte function may be a new target for treatment of epilepsy.OBJECTIVE: To observe the effects of Ganoderma lucidum spore powder (GLSP) on astrocyte morphology and ghitamine synthetase (GS) activity in the hippocampal region of epileptic rats.DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Function Laboratory, College of Basic Medicine, Jiamusi University between October and December 2006.MATERIALS: A total of 30 Sprague Dawley (SD) rats were randomized to three groups (n = 10): control,model, and GLSP. GLSP was sourced from Jiamusi Wild Ganoderma Lucidum Planting Base and prepared to 30 g/L with physiological saline before use. Pentylenetetrazol (PTZ) (10 g/L) was provided by Sigma Company, USA.METHODS: The control group received intraperitoneal (i.p.) and intragastric (i.g.) physiological saline.Following epilepsy induction by i.p. administration of PTZ (35 mg/kg), rats from the model and GLSP groups were ig injected with physiological saline and GLSP (300 mg/kg), respectively. Each compound was administered once per day, for a total of 28 successive days. Epileptic seizure convulsions were graded 0-5. A higher grade indicated more severe epilepsy. Only those rats showing stage 2 or higher convulsions at least 5 times successively were included in further experiments.MAIN OUTCOME MEASURES: Immediately after injection, seizure activity was monitored for 30 minutes to determine the latent period and seizure duration; simultaneously, astrocyte numbers and GS activity in the hippocampal region of rats with epilepsy were detected by immunohistochemistry.RESULTS: All 30 rats were included in the final analysis. On day 28, following PTZ administration epileptic seizures were not found in the control group. In the GLSP group, rats exhibited rhythmic head nodding or facial spasms

  20. Regulation of the Glutamate-Glutamine Transport System by Intracellular pH in Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; HELLINGWERF, KJ; KONINGS, WN

    1987-01-01

    Various methods of manipulation of the intracellular pH in Streptococcus lactis result in a unique relationship between the rate of glutamate and glutamine transport and the cytoplasmic pH. The initial rate of glutamate uptake by S. lactis cells increases more than 30-fold when the intracellular pH

  1. N-acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction

    Directory of Open Access Journals (Sweden)

    Costa Nicola

    2007-12-01

    Full Text Available Abstract Background HIV envelope gp 120 glycoprotein is released during active HIV infection of brain macrophages thereby generating inflammation and oxidative stress which contribute to the development of the AIDS-Dementia Complex (ADC. Gp120 has also been found capable to generate excitotoxic effect on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial damage, though the mechanism is still to be better understood. Here we investigated on the effect of N-acetylcysteine (NAC, on gp120-induced damage in human cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS in the imbalanced activity of glutamine synthase (GS, the enzyme that metabolizes glutamate into glutamine within astroglial cells playing a neuroprotective role in brain disorders. Results Incubation of Lipari human cultured astroglial cells with gp 120 (0.1–10 nM produced a significant reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric analysis (FACS. This effect was accompanied by lipid peroxidation as detected by means of malondialdehyde assay (MDA. In addition, gp 120 reduced both glutamine concentration in astroglial cell supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-treatment of cells with NAC (0.5–5 mM, dose-dependently antagonised astroglial apoptotic cell death induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore, both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related dysfunction of GS in astroglial cells. Conclusion In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells, an effect accompanied by lipid peroxidation and by altered

  2. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline.

    Science.gov (United States)

    Sharma, Arpita; Patro, Nisha; Patro, Ishan K

    2016-05-01

    Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline. PMID:26188416

  3. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes

    OpenAIRE

    Xiang, Jianming; Hu, Yongjun; Smith, David E.; Keep, Richard F

    2006-01-01

    5-Aminolevulinic acid (ALA) and carnosine have important physiological and pathophysiological roles in the CNS. Both are substrates for the proton-coupled oligopeptide transporter PEPT2. The purpose of the current study was to determine the importance of PEPT2 in the uptake of ALA and carnosine in rat and mouse (PEPT2+/+ and PEPT2−/−) cultured neonatal astrocytes. Although neonatal astrocytes are known to express PEPT2, its quantitative importance in the transport of these compounds is not kn...

  4. Advances in the research of intestinal glutamine transporters%肠道谷氨酰胺转运载体研究进展

    Institute of Scientific and Technical Information of China (English)

    吴炜; 彭曦

    2014-01-01

    Glutamine,the most abundant amino acid in bloodstream,is the preferred fuel source for enterocytes.Glutamine exerts its functions through the activity of its transporters,which are located in cytomembrane,to transport it into or out of intestinal epithelial cells.Intestine is the primary center for glutamine metabolism in the body.As ASCT2 and B0AT1 are the most important glutamine transporters in the intestine,it wound be helpful to gain the knowledge of the structure,function,and pathologic changes and control strategy of the two transporters in order to have a better understanding of the metabolism and function of glutamine.

  5. Functional deficits in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    Susan L Campbell

    2014-12-01

    Full Text Available Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21-28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in

  6. The Glutamine-Glutamate/GABA Cycle

    DEFF Research Database (Denmark)

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse Kristoffer;

    2015-01-01

    synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase......The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein...... information about glutamine transfer. The present review will give information about glutamine trafficking and the tools used to map it as exemplified by discussions of published work employing brain cell cultures as well as intact animals. It will be documented that considerably more glutamine is transferred...

  7. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  8. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  9. Luminal leptin inhibits L-glutamine transport in rat small intestine: involvement of ASCT2 and B0AT1

    OpenAIRE

    Ducroc, R. (Robert); Sakar, Y. (Yassine); Fanjul, C. (Carmen); Barber, A. (Ana); Bado, A.; Lostao, M.P. (María Pilar)

    2010-01-01

    International audience l-glutamine is the primary metabolic fuel for enterocytes. Glutamine from the diet is transported into the absorptive cells by two sodium-dependent neutral amino acid transporters present at the apical membrane: ASCT2/SLC1A5 and B(0)AT1/SLC6A19. We have demonstrated that leptin is secreted into the stomach lumen after a meal and modulates the transport of sugars after binding to its receptors located at the brush border of the enterocytes. The present study was desig...

  10. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain.

    Science.gov (United States)

    Fluteau, Adeline; Ince, Paul G; Minett, Thais; Matthews, Fiona E; Brayne, Carol; Garwood, Claire J; Ratcliffe, Laura E; Morgan, Sarah; Heath, Paul R; Shaw, Pamela J; Wharton, Stephen B; Simpson, Julie E

    2015-11-16

    The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council's Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment.

  11. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia;

    2011-01-01

    The ¿-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve...... terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-¿/PKC-d and ERK....../MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope...

  12. Impairment of glutamine/glutamate-γ-aminobutyric acid cycle in manganese toxicity in the central nervous system.

    Science.gov (United States)

    Sidoryk-Wegrzynowicz, M

    2014-01-01

    Manganese (Mn) is an essential trace element that is required for maintaining the proper function and regulation of many biochemical and cellular reactions. Despite its essentiality, at excessive levels Mn is toxic to the central nervous system. The overdose accumulation of Mn in specific brain areas, such as the substantia nigra, the globus pallidus and the striatum, triggers neurotoxicity resulting in a neurological brain disorder, referred to as manganism. Manganese toxicity is associated with the disruption of glutamine (Gln)/glutamate (Glu) GABA cycle (GGC). The GGC represents a complex process, since Gln efflux from astrocytes must be met by its influx in neurons. Mn toxicity is associated with the disruption of both of these critical points in the cycle. In cultured astrocytes, pre-treatment with Mn inhibits the initial net uptake of Gln in a concentration-dependent manner. Manganese added directly to astrocytes induces deregulation in the expression of SNAT3, SNAT2, ASCT2 and LAT2 transporters and significantly decreases in Gln uptake mediated by the transporting Systems N and ASC, and a decrease in Gln efflux mediated by Systems N, ASC and L. Further, Mn disrupts Glu transporting systems leading to both a reduction in Glu uptake and elevation in extracellular Glu levels. Interestingly, there appear to be common signaling targets of Mn in GGC cycling in glial cells. Namely, the PKC signaling is affected by Mn in Gln and Glu transporters expression and function. Additionally, Mn was identified to deregulate glutamine synthetase (GS) expression and activity. Those evidences could triggers depletion of Gln synthesis/metabolism in glia cells and consequently diminish astrocytic-derived glutamine, while disruption of Glu removal/transport can mediate dyshomeostasis in neurotransmission of functioning neurons. Overdose and excessive Mn accumulations in astrocytes not only culminate in pathology, but also affect astrocytic protective properties and defect or

  13. Impairment of glutamine/glutamate-γ-aminobutyric acid cycle in manganese toxicity in the central nervous system.

    Science.gov (United States)

    Sidoryk-Wegrzynowicz, M

    2014-01-01

    Manganese (Mn) is an essential trace element that is required for maintaining the proper function and regulation of many biochemical and cellular reactions. Despite its essentiality, at excessive levels Mn is toxic to the central nervous system. The overdose accumulation of Mn in specific brain areas, such as the substantia nigra, the globus pallidus and the striatum, triggers neurotoxicity resulting in a neurological brain disorder, referred to as manganism. Manganese toxicity is associated with the disruption of glutamine (Gln)/glutamate (Glu) GABA cycle (GGC). The GGC represents a complex process, since Gln efflux from astrocytes must be met by its influx in neurons. Mn toxicity is associated with the disruption of both of these critical points in the cycle. In cultured astrocytes, pre-treatment with Mn inhibits the initial net uptake of Gln in a concentration-dependent manner. Manganese added directly to astrocytes induces deregulation in the expression of SNAT3, SNAT2, ASCT2 and LAT2 transporters and significantly decreases in Gln uptake mediated by the transporting Systems N and ASC, and a decrease in Gln efflux mediated by Systems N, ASC and L. Further, Mn disrupts Glu transporting systems leading to both a reduction in Glu uptake and elevation in extracellular Glu levels. Interestingly, there appear to be common signaling targets of Mn in GGC cycling in glial cells. Namely, the PKC signaling is affected by Mn in Gln and Glu transporters expression and function. Additionally, Mn was identified to deregulate glutamine synthetase (GS) expression and activity. Those evidences could triggers depletion of Gln synthesis/metabolism in glia cells and consequently diminish astrocytic-derived glutamine, while disruption of Glu removal/transport can mediate dyshomeostasis in neurotransmission of functioning neurons. Overdose and excessive Mn accumulations in astrocytes not only culminate in pathology, but also affect astrocytic protective properties and defect or

  14. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in Vmax for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  15. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  16. Copper Metabolism of Astrocytes

    OpenAIRE

    Ralf Dringen; Scheiber, Ivo F.; Julian FB Mercer

    2013-01-01

    This short review will summarize the current knowledge on the uptake, storage, and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothion...

  17. Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in Streptococcus lactis and Streptococcus cremoris.

    Science.gov (United States)

    Poolman, B; Smid, E J; Konings, W N

    1987-06-01

    In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.

  18. Promotion of both proliferation and neuronal differentiation in pluripotent P19 cells with stable overexpression of the glutamine transporter slc38a1.

    Directory of Open Access Journals (Sweden)

    Masato Ogura

    Full Text Available BACKGROUND: We previously demonstrated the functional expression in newborn rat neocortical astrocytes of glutamine transporter (GlnT = slc38a1 believed to predominate in neurons over astroglia in the brain. In order to evaluate the possible role of this transporter in neurogenesis, we attempted to establish stable transfectants of GlnT in mouse embryonal carcinoma P19 cells endowed to proliferate for self-renewal and differentiate into progeny cells such as neurons and astroglia, in addition to in vitro pharmacological profiling of the green tea ingredient theanine, which is shown to be a potent inhibitor of glutamine transport mediated by GlnT in cultured neurons and astroglia. METHODOLOGY/PRINCIPAL FINDINGS: The full-length coding region of rat GlnT was inserted into a vector for gene transfection along with selection by G418, followed by culture with all-trans retinoic acid under floating conditions and subsequent dispersion for spontaneous differentiation under adherent conditions. Stable overexpression of GlnT led to marked increases in the size of round spheres formed during the culture for 4 days and 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide reduction, with concomitant promotion of subsequent differentiation into cells immunoreactive for a neuronal marker protein. In these stable GlnT transfectants before differentiation, drastic upregulation was seen for mRNA expression of several proneural genes with a basic helix-loop-helix domain such as NeuroD1. Although a drastic increase was seen in NeuroD1 promoter activity in stable GlnT transfectants, theanine doubled NeuroD1 promoter activity in stable transfectants of empty vector (EV, without affecting the promoter activity already elevated in GlnT transfectants. Similarly, theanine promoted cellular proliferation and neuronal differentiation in stable EV transfectants, but failed to further stimulate the acceleration of both proliferation and neuronal differentiation

  19. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiao [School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan (China); Schluesener, Hermann J, E-mail: mornsmile@yahoo.com [Institute of Brain Research, University of Tuebingen, Calwerstrasse 3, D-72076, Tuebingen (Germany)

    2010-03-12

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  20. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    Science.gov (United States)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  1. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    International Nuclear Information System (INIS)

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  2. Glutamine supplementation

    OpenAIRE

    Wernerman, Jan

    2011-01-01

    Intravenous glutamine supplementation is standard care when parenteral nutrition is given for critical illness. There are data of a reduced mortality when glutamine supplementation is given. In addition, standard commercial products for parenteral nutrition do not contain any glutamine due to glutamine instability in aqueous solutions. For the majority of critical ill patients who are fed enterally, the available evidence is insufficient to recommend glutamine supplementation. Standard formul...

  3. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties

    Directory of Open Access Journals (Sweden)

    Sandra J Hewett

    2011-07-01

    Full Text Available Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia–ischaemia injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2. Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase, EAAT-1 (excitatory amino acid transporter-1; also known as GLAST, MCT-1 (monocarboxylate transporter-1 and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP, which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.

  4. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy.

    Science.gov (United States)

    Hubbard, Jacqueline A; Szu, Jenny I; Yonan, Jennifer M; Binder, Devin K

    2016-09-01

    Astrocytes regulate extracellular glutamate and water homeostasis through the astrocyte-specific membrane proteins glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4), respectively. The role of astrocytes and the regulation of GLT1 and AQP4 in epilepsy are not fully understood. In this study, we investigated the expression of GLT1 and AQP4 in the intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used real-time polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis at 1, 4, 7, and 30days after kainic acid-induced status epilepticus (SE) to determine hippocampal glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes), GLT1, and AQP4 expression changes during the development of epilepsy (epileptogenesis). Following IHKA, all mice had SE and progressive increases in GFAP immunoreactivity and GFAP protein expression out to 30days post-SE. A significant initial increase in dorsal hippocampal GLT1 immunoreactivity and protein levels were observed 1day post SE and followed by a marked downregulation at 4 and 7days post SE with a return to near control levels by 30days post SE. AQP4 dorsal hippocampal protein expression was significantly downregulated at 1day post SE and was followed by a gradual return to baseline levels with a significant increase in ipsilateral protein levels by 30days post SE. Transient increases in GFAP and AQP4 mRNA were also observed. Our findings suggest that specific molecular changes in astrocyte glutamate transporters and water channels occur during epileptogenesis in this model, and suggest the novel therapeutic strategy of restoring glutamate and water homeostasis. PMID:27155358

  5. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    Science.gov (United States)

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy.

  6. Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes

    Science.gov (United States)

    Russo, Gianluca Luigi; Peruzzotti-Jametti, Luca; Rossi, Silvia; Sandrone, Stefano; Butti, Erica; De Ceglia, Roberta; Bergamaschi, Andrea; Motta, Caterina; Gallizioli, Mattia; Studer, Valeria; Colombo, Emanuela; Farina, Cinthia; Comi, Giancarlo; Politi, Letterio Salvatore; Muzio, Luca; Villani, Claudia; Invernizzi, Roberto William; Hermann, Dirk Matthias; Centonze, Diego

    2016-01-01

    Ischemic stroke is the leading cause of disability, but effective therapies are currently widely lacking. Recovery from stroke is very much dependent on the possibility to develop treatments able to both halt the neurodegenerative process as well as to foster adaptive tissue plasticity. Here we show that ischemic mice treated with neural precursor cell (NPC) transplantation had on neurophysiological analysis, early after treatment, reduced presynaptic release of glutamate within the ipsilesional corticospinal tract (CST), and an enhanced NMDA-mediated excitatory transmission in the contralesional CST. Concurrently, NPC-treated mice displayed a reduced CST degeneration, increased axonal rewiring, and augmented dendritic arborization, resulting in long-term functional amelioration persisting up to 60 d after ischemia. The enhanced functional and structural plasticity relied on the capacity of transplanted NPCs to localize in the peri-ischemic and ischemic area, to promote the upregulation of the glial glutamate transporter 1 (GLT-1) on astrocytes and to reduce peri-ischemic extracellular glutamate. The upregulation of GLT-1 induced by transplanted NPCs was found to rely on the secretion of VEGF by NPCs. Blocking VEGF during the first week after stroke reduced GLT-1 upregulation as well as long-term behavioral recovery in NPC-treated mice. Our results show that NPC transplantation, by modulating the excitatory–inhibitory balance and stroke microenvironment, is a promising therapy to ameliorate disability, to promote tissue recovery and plasticity processes after stroke. SIGNIFICANCE STATEMENT Tissue damage and loss of function occurring after stroke can be constrained by fostering plasticity processes of the brain. Over the past years, stem cell transplantation for repair of the CNS has received increasing interest, although underlying mechanism remain elusive. We here show that neural stem/precursor cell transplantation after ischemic stroke is able to foster

  7. Copper Metabolism of Astrocytes

    Directory of Open Access Journals (Sweden)

    Ralf eDringen

    2013-03-01

    Full Text Available This short review will summarize the current knowledge on the uptake, storage and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and of glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic inventions that aim to correct disturbances in brain copper homeostasis.

  8. Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes

    International Nuclear Information System (INIS)

    Glutamine synthetase (GS) activity in cultured rat astrocytes was measured in extracts and compared to the intracellular rate of glutamine synthesis by intact control astrocytes or astrocytes exposed to 1 mM 8-bromo-cAMP (8Br-cAMP) + 1 microM dexamethasone (DEX) for 4 days. GS activity in extracts of astrocytes treated with 8Br-cAMP + DEX was 7.5 times greater than the activity in extracts of control astrocytes. In contrast, the intracellular rate of glutamine synthesis by intact cells increased only 2-fold, suggesting that additional intracellular effectors regulate the expression of GS activity inside the intact cell. The rate of glutamine synthesis by astrocytes was 4.3 times greater in MEM than in HEPES buffered Hank's salts. Synthesis of glutamine by intact astrocytes cultured in MEM was independent of the external glutamine or ammonia concentrations but was increased by higher extracellular glutamate concentrations. In studies with intact astrocytes 80% of the original [U-14C]glutamate was recovered in the medium as radioactive glutamine, 2-3% as aspartate, and 7% as glutamate after 2 hours for both control and treated astrocytes. The results suggest: (1) astrocytes are highly efficient in the conversion of glutamate to glutamine; (2) induction of GS activity increases the rate of glutamate conversion to glutamine by astrocytes and the rate of glutamine release into the medium; (3) endogenous intracellular regulators of GS activity control the flux of glutamate through this enzymatic reaction; and (4) the composition of the medium alters the rate of glutamine synthesis from external glutamate

  9. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism

  10. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+) LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+) L amino acid transport system, by activation of its member, a heteromeric y(+) LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+) LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+) L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+) LAT2 protein, or antibody to y(+) LAT2, indicating their strict coupling to y(+) LAT2 activity. Moreover, induction of y(+) LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+) LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+) LAT2 expression nor y(+) L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+) LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+) ) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+) LAT2 in cultured rat cortical astrocytes

  11. Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS.

    Science.gov (United States)

    Hägglund, Maria G A; Hellsten, Sofie V; Bagchi, Sonchita; Philippot, Gaëtan; Löfqvist, Erik; Nilsson, Victor C O; Almkvist, Ingrid; Karlsson, Edvin; Sreedharan, Smitha; Tafreshiha, Atieh; Fredriksson, Robert

    2015-03-27

    Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided them into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present the first functional characterization of SLC38A8, one of the previous orphan transporters from the family, and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 has preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine and L-aspartate using a Na+-dependent transport mechanism and that the functional characteristics of SNAT8 have highest similarity to the known System A transporters. We also provide a comprehensive central nervous system expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay shows highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 has a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate (GABA) cycle in the brain.

  12. Protein kinase C (PKC phosphorylates the system N glutamine transporter SN1 (slc38a3 and regulates its membrane trafficking and degradation

    Directory of Open Access Journals (Sweden)

    Lise Sofie H. Nissen-Meyer

    2013-10-01

    Full Text Available The system N transporter SN1 (also known as SNAT3 is enriched on perisynaptic astroglial cell membranes. SN1 mediates electroneutral and bidirectional glutamine transport, and regulates the intracellular as well as the extracellular concentrations of glutamine. We hypothesize that SN1 participates in the glutamate/GABA-glutamine cycle and regulates the amount of glutamine supplied to the nerve terminals for replenishment of the neurotransmitter pools of glutamate and GABA. We also hypothesize that its activity on the plasma membrane is regulated by PKC-mediated phosphorylation and that SN1 activity has an impact on synaptic plasticity. This review discusses inconcistencies reported in the regulation of SN1 by PKC and presents a consolidated model for regulation and degradation of SN1 and the subsequent functional implications. As SN1 function is likely also regulated by PKC-mediated phosphorylation in peripheral organs, the same mechanisms may, thus, have impact on e.g. pH regulation in the kidney, urea formation in the liver and insulin secretion in the pancreas.

  13. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer;

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...... summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain....

  14. II. Glutamine and glutamate.

    Science.gov (United States)

    Tapiero, H; Mathé, G; Couvreur, P; Tew, K D

    2002-11-01

    Glutamine and glutamate with proline, histidine, arginine and ornithine, comprise 25% of the dietary amino acid intake and constitute the "glutamate family" of amino acids, which are disposed of through conversion to glutamate. Although glutamine has been classified as a nonessential amino acid, in major trauma, major surgery, sepsis, bone marrow transplantation, intense chemotherapy and radiotherapy, when its consumption exceeds its synthesis, it becomes a conditionally essential amino acid. In mammals the physiological levels of glutamine is 650 micromol/l and it is one of the most important substrate for ammoniagenesis in the gut and in the kidney due to its important role in the regulation of acid-base homeostasis. In cells, glutamine is a key link between carbon metabolism of carbohydrates and proteins and plays an important role in the growth of fibroblasts, lymphocytes and enterocytes. It improves nitrogen balance and preserves the concentration of glutamine in skeletal muscle. Deamidation of glutamine via glutaminase produces glutamate a precursor of gamma-amino butyric acid, a neurotransmission inhibitor. L-Glutamic acid is a ubiquitous amino acid present in many foods either in free form or in peptides and proteins. Animal protein may contain from 11 to 22% and plants protein as much as 40% glutamate by weight. The sodium salt of glutamic acid is added to several foods to enhance flavor. L-Glutamate is the most abundant free amino acid in brain and it is the major excitatory neurotransmitter of the vertebrate central nervous system. Most free L-glutamic acid in brain is derived from local synthesis from L-glutamine and Kreb's cycle intermediates. It clearly plays an important role in neuronal differentiation, migration and survival in the developing brain via facilitated Ca++ transport. Glutamate also plays a critical role in synaptic maintenance and plasticity. It contributes to learning and memory through use-dependent changes in synaptic efficacy and

  15. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  16. Glutamate metabolism of astrocytes during hyperbaric oxygen exposure and its effects on central nervous system oxygen toxicity.

    Science.gov (United States)

    Chen, Yu-Liang; Li, Dan; Wang, Zhong-Zhuang; Xu, Wei-Gang; Li, Run-Ping; Zhang, Jun-Dong

    2016-01-20

    Hyperbaric oxygen (HBO) has been used widely in many underwater missions and clinical work. However, exposure to extremely high oxygen pressure may cause central nervous system oxygen toxicity (CNS-OT). The regulation of astrocyte glutamate metabolism is closely related to epilepsy. This study aimed to observe the effects of HBO exposure on glutamate metabolism in astrocytes and confirm the role of glutamate metabolism in CNS-OT. Anesthetized rats were exposed to 5 atmosphere absolute HBO for 80 min and microdialysis samples of brain interstitial fluid were continuously collected. Extracellular glutamate and glutamine concentrations were also detected. Freely moving rats were exposed to HBO of the same pressure for 20 min and glutamine synthetase (GS) activity in brain tissues was measured. Finally, we observed the effects of different doses of drugs related to glutamate metabolism on the latency of CNS-OT. Results showed that HBO exposure significantly increased glutamate content, whereas glutamine content was significantly reduced. Moreover, HBO exposure significantly reduced GS activity. Glutamate transporter-1 (GLT-1) selective antagonist ceftriaxone prolonged CNS-OT latency, whereas GLT-1 selective inhibitor dihydrokainate shortened CNS-OT latency. In summary, HBO exposure improved glutamate concentration and reduced glutamine concentration by inhibition of GS activity. GLT-1 activation also participated in the prevention of HBO-induced CNS-OT. Our research will provide a potential new target to terminate or attenuate CNS-OT. PMID:26619231

  17. The astrocytic transporter SLC7A10 (Asc-1) mediates glycinergic inhibition of spinal cord motor neurons

    Science.gov (United States)

    Ehmsen, Jeffrey T.; Liu, Yong; Wang, Yue; Paladugu, Nikhil; Johnson, Anna E.; Rothstein, Jeffrey D.; du Lac, Sascha; Mattson, Mark P.; Höke, Ahmet

    2016-01-01

    SLC7A10 (Asc-1) is a sodium-independent amino acid transporter known to facilitate transport of a number of amino acids including glycine, L-serine, L-alanine, and L-cysteine, as well as their D-enantiomers. It has been described as a neuronal transporter with a primary role related to modulation of excitatory glutamatergic neurotransmission. We find that SLC7A10 is substantially enriched in a subset of astrocytes of the caudal brain and spinal cord in a distribution corresponding with high densities of glycinergic inhibitory synapses. Accordingly, we find that spinal cord glycine levels are significantly reduced in Slc7a10-null mice and spontaneous glycinergic postsynaptic currents in motor neurons show substantially diminished amplitudes, demonstrating an essential role for SLC7A10 in glycinergic inhibitory function in the central nervous system. These observations establish the etiology of sustained myoclonus (sudden involuntary muscle movements) and early postnatal lethality characteristic of Slc7a10-null mice, and implicate SLC7A10 as a candidate gene and auto-antibody target in human hyperekplexia and stiff person syndrome, respectively. PMID:27759100

  18. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes.

    Science.gov (United States)

    Petr, Geraldine T; Sun, Yan; Frederick, Natalie M; Zhou, Yun; Dhamne, Sameer C; Hameed, Mustafa Q; Miranda, Clive; Bedoya, Edward A; Fischer, Kathryn D; Armsen, Wencke; Wang, Jianlin; Danbolt, Niels C; Rotenberg, Alexander; Aoki, Chiye J; Rosenberg, Paul A

    2015-04-01

    GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake. PMID:25834045

  19. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke.

    Science.gov (United States)

    Jeitner, Thomas M; Battaile, Kevin; Cooper, Arthur J L

    2015-12-01

    The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia-reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

  20. Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Oppedisano, Francesca [Dipartimento di Biologia Cellulare Università della Calabria, via P. Bucci 4 c, 87036 Arcavacata di Rende (CS) (Italy); Catto, Marco [Dipartimento Farmaco-Chimico, Università degli Studi “Aldo Moro,”, via Orabona 4, 70125 Bari (Italy); Koutentis, Panayiotis A. [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Nicolotti, Orazio [Dipartimento Farmaco-Chimico, Università degli Studi “Aldo Moro,”, via Orabona 4, 70125 Bari (Italy); Pochini, Lorena [Dipartimento di Biologia Cellulare Università della Calabria, via P. Bucci 4 c, 87036 Arcavacata di Rende (CS) (Italy); Koyioni, Maria [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Introcaso, Antonellina [Dipartimento Farmaco-Chimico, Università degli Studi “Aldo Moro,”, via Orabona 4, 70125 Bari (Italy); Michaelidou, Sophia S. [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Carotti, Angelo, E-mail: carotti@farmchim.uniba.it [Dipartimento Farmaco-Chimico, Università degli Studi “Aldo Moro,”, via Orabona 4, 70125 Bari (Italy); Indiveri, Cesare, E-mail: indiveri@unical.it [Dipartimento di Biologia Cellulare Università della Calabria, via P. Bucci 4 c, 87036 Arcavacata di Rende (CS) (Italy)

    2012-11-15

    The ASCT2 transport system catalyses a sodium-dependent antiport of glutamine and other neutral amino acids which is involved in amino acid metabolism. A library of 1,2,3-dithiazoles was designed, synthesized and evaluated as inhibitors of the glutamine/amino acid ASCT2 transporter in the model system of proteoliposomes reconstituted with the rat liver transporter. Fifteen of the tested compounds at concentration of 20 μM or below, inhibited more than 50% the glutamine/glutamine antiport catalysed by the reconstituted transporter. These good inhibitors bear a phenyl ring with electron withdrawing substituents. The inhibition was reversed by 1,4-dithioerythritol indicating that the effect was likely owed to the formation of mixed sulfides with the protein's Cys residue(s). A dose–response analysis of the most active compounds gave IC{sub 50} values in the range of 3–30 μM. Kinetic inhibition studies indicated a non-competitive inhibition, presumably because of a potential covalent interaction of the dithiazoles with cysteine thiol groups that are not located at the substrate binding site. Indeed, computational studies using a homology structural model of ASCT2 transporter, suggested as possible binding targets, Cys-207 or Cys-210, that belong to the CXXC motif of the protein. -- Highlights: ► Non‐competitive inhibition of ASCT2 by 1,2,3-dithiazoles was studied in proteoliposomes. ► Different 1,2,3-dithiazoles were synthesized and evaluated as transporter inhibitors. ► Many compounds potently inhibited the glutamine/glutamine antiport catalyzed by ASCT2. ► The inhibition was reversed by DTE indicating reaction with protein Cys. ► The most active compounds gave IC{sub 50} in the range of 3–30 μM.

  1. 谷氨酸和谷氨酰胺转运系统的研究进展%Recent Advances in Transport Systems of Glutamate and Glutamine

    Institute of Scientific and Technical Information of China (English)

    王秋菊; 许丽; 范明哲

    2011-01-01

    谷氨酸作为幼年动物重要的氨基酸,是肠内能量生成的最大贡献者,它不能由机体自身合成,需额外添加或通过谷氨酸前体物谷氨酰胺转化而成.谷氨酸是谷胱甘肽合成的重要底物,对动物肠道抗氧化剂的提供有重要作用,其转运依靠谷氨酸转运载体完成.因此,本文就谷氨酸和谷氨酰胺转运系统的分类及作用机制做一综述.%Glutamate is the largest contributor to intestinal energy generation as an essential amino acid for young animal growth, and it is obtained from diets or transformed from glutamine because it cannot be synthesized in vivo. Glutamate is an important substrate for glutathione synthesis and plays a critical role in supplying intestinal antioxidants, and its transporters are responsible for removing glutamate from the extracellular space. Functions and characteristics of glutamate and glutamine transport systems are reviewed in this article. [Chinese Journal of Animal Nutrition, 2011,23(6) :901-907

  2. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling

    OpenAIRE

    Parpura, Vladimir; VERKHRATSKY, ALEXEI

    2012-01-01

    Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is...

  3. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours

    Directory of Open Access Journals (Sweden)

    Thomas N Seyfried

    2009-05-01

    Full Text Available The mitochondrial lipidome influences ETC (electron transport chain and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma, both syngeneic with the C57BL/6J (B6 mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production.

  4. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla;

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...

  5. Expression of Glutamine Transporter Slc38a3 (SNAT3 During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression

    Directory of Open Access Journals (Sweden)

    Sarojini Balkrishna

    2014-05-01

    Full Text Available Background: Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3 for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods: Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results: Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions: Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene.

  6. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    Science.gov (United States)

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.

  7. Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization.

    Science.gov (United States)

    Bernstein, Hans-Gert; Bannier, Jana; Meyer-Lotz, Gabriela; Steiner, Johann; Keilhoff, Gerburg; Dobrowolny, Henrik; Walter, Martin; Bogerts, Bernhard

    2014-11-01

    Glutamine synthetase catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a pivotal role in glutamate and glutamine homoeostasis. Despite a plethora of studies on this enzyme, knowledge about the regional and cellular distribution of this enzyme in human brain is still fragmentary. Therefore, we mapped fourteen post-mortem brains of psychically healthy individuals for the distribution of the glutamine synthetase immunoreactive protein. It was found that glutamine synthetase immunoreactivity is expressed in multiple gray and white matter astrocytes, but also in oligodendrocytes, ependymal cells and certain neurons. Since a possible extra-astrocytic expression of glutamine synthetase is highly controversial, we paid special attention to its appearance in oligodendrocytes and neurons. By double immunolabeling of mouse brain slices and cultured mouse brain cells for glutamine synthetase and cell-type-specific markers we provide evidence that besides astrocytes subpopulations of oligodendrocytes, microglial cells and neurons express glutamine synthetase. Moreover, we show that glutamine synthetase-immunopositive neurons are not randomly distributed throughout human and mouse brain, but represent a subpopulation of nitrergic (i.e. neuronal nitric oxide synthase expressing) neurons. Possible functional implications of an extra-astrocytic localization of glutamine synthetase are discussed.

  8. Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes

    International Nuclear Information System (INIS)

    The ability of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) to alter cyclic GMP levels and NaKCl cotransport in rat neocortical astrocytes was determined. At concentrations of 10(-9)-10(-6) M, rat ANP99-126 (rANF), rat ANP102-126 (auriculin B), and rat ANP103-126 (atriopeptin III) stimulated 6- to 100-fold increases in cyclic GMP levels. Porcine BNP (pBNP) and rat BNP (rBNP) were 20%-90% as effective as rANF over most of this concentration range, although 10(-6) M pBNP produced a greater effect than rANF. NaKCl cotransport as measured by bumetanide-sensitive 86Rb+ influx was not altered by exposure of astrocytes to 10(-6)M rANF, pBNP, or rBNP. Both pBNP and rBNP, as well as rat ANP103-123 (atriopeptin I) and des[gl18, ser19, gly20, leu21, gly22] ANF4-23-NH2 (C-ANF4-23) strongly competed for specific 125I-rANF binding sites in astrocyte membranes with affinities ranging from 0.03 to 0.4 nM, suggesting that virtually all binding sites measured at subnanomolar concentrations of 125I-rANF were of the ANP-C (ANF-R2) receptor subtype. These receptors are thought to serve a clearance function and may be linked to a guanylate cyclase activity that is chemically and pharmacologically distinct from that coupled to ANP-A (ANF-R1) receptors. ANP receptors on astrocytes may function in limiting the access of ANP and BNP to neurons involved in body fluid and cardiovascular regulation

  9. A tracer bolus method for investigating glutamine kinetics in humans.

    Directory of Open Access Journals (Sweden)

    Maiko Mori

    Full Text Available Glutamine transport between tissues is important for the outcome of critically ill patients. Investigation of glutamine kinetics is, therefore, necessary to understand glutamine metabolism in these patients in order to improve future intervention studies. Endogenous glutamine production can be measured by continuous infusion of a glutamine tracer, which necessitates a minimum measurement time period. In order to reduce this problem, we used and validated a tracer bolus injection method. Furthermore, this method was used to measure the glutamine production in healthy volunteers in the post-absorptive state, with extra alanine and with glutamine supplementation and parenteral nutrition. Healthy volunteers received a bolus injection of [1-13C] glutamine, and blood was collected from the radial artery to measure tracer enrichment over 90 minutes. Endogenous rate of appearance (endoRa of glutamine was calculated from the enrichment decay curve and corrected for the extra glutamine supplementation. The glutamine endoRa of healthy volunteers was 6.1±0.9 µmol/kg/min in the post-absorptive state, 6.9±1.0 µmol/kg/min with extra alanyl-glutamine (p = 0.29 versus control, 6.1±0.4 µmol/kg/min with extra alanine only (p = 0.32 versus control, and 7.5±0.9 µmol/kg/min with extra alanyl-glutamine and parenteral nutrition (p = 0.049 versus control. In conclusion, a tracer bolus injection method to measure glutamine endoRa showed good reproducibility and small variation at baseline as well as during parenteral nutrition. Additionally, we showed that parenteral nutrition including alanyl-glutamine increased glutamine endoRa in healthy volunteers, which was not attributable to the alanine part of the dipeptide.

  10. Intestinal and hepatic metabolism of glutamine and citrulline in humans.

    Science.gov (United States)

    van de Poll, Marcel C G; Ligthart-Melis, Gerdien C; Boelens, Petra G; Deutz, Nicolaas E P; van Leeuwen, Paul A M; Dejong, Cornelis H C

    2007-06-01

    Glutamine plays an important role in nitrogen homeostasis and intestinal substrate supply. It has been suggested that glutamine is a precursor for arginine through an intestinal-renal pathway involving inter-organ transport of citrulline. The importance of intestinal glutamine metabolism for endogenous arginine synthesis in humans, however, has remained unaddressed. The aim of this study was to investigate the intestinal conversion of glutamine to citrulline and the effect of the liver on splanchnic citrulline metabolism in humans. Eight patients undergoing upper gastrointestinal surgery received a primed continuous intravenous infusion of [2-(15)N]glutamine and [ureido-(13)C-(2)H(2)]citrulline. Arterial, portal venous and hepatic venous blood were sampled and portal and hepatic blood flows were measured. Organ specific amino acid uptake (disposal), production and net balance, as well as whole body rates of plasma appearance were calculated according to established methods. The intestines consumed glutamine at a rate that was dependent on glutamine supply. Approximately 13% of glutamine taken up by the intestines was converted to citrulline. Quantitatively glutamine was the only important precursor for intestinal citrulline release. Both glutamine and citrulline were consumed and produced by the liver, but net hepatic flux of both amino acids was not significantly different from zero. Plasma glutamine was the precursor of 80% of plasma citrulline and plasma citrulline in turn was the precursor of 10% of plasma arginine. In conclusion, glutamine is an important precursor for the synthesis of arginine after intestinal conversion to citrulline in humans.

  11. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  12. Trafficking of astrocytic vesicles in hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Potokar, Maja; Kreft, Marko [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia); Lee, So-Young; Takano, Hajime; Haydon, Philip G. [Department of Neuroscience, Room 215, Stemmler Hall, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104 (United States); Zorec, Robert, E-mail: Robert.Zorec@mf.uni-lj.si [Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana (Slovenia); Celica Biomedical Center, Technology Park 24, 1000 Ljubljana (Slovenia)

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  13. Neuroprotection Promoted by Guanosine Depends on Glutamine Synthetase and Glutamate Transporters Activity in Hippocampal Slices Subjected to Oxygen/Glucose Deprivation.

    Science.gov (United States)

    Dal-Cim, Tharine; Martins, Wagner C; Thomaz, Daniel T; Coelho, Victor; Poluceno, Gabriela Godoy; Lanznaster, Débora; Vandresen-Filho, Samuel; Tasca, Carla I

    2016-05-01

    Guanosine (GUO) has been shown to act as a neuroprotective agent against glutamatergic excitotoxicity by increasing glutamate uptake and decreasing its release. In this study, a putative effect of GUO action on glutamate transporters activity modulation was assessed in hippocampal slices subjected to oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia. Slices subjected to OGD showed increased excitatory amino acids release (measured by D-[(3)H]aspartate release) that was prevented in the presence of GUO (100 µM). The glutamate transporter blockers, DL-TBOA (10 µM), DHK (100 µM, selective inhibitor of GLT-1), and sulfasalazine (SAS, 250 µM, Xc(-) system inhibitor) decreased OGD-induced D-aspartate release. Interestingly, DHK or DL-TBOA blocked the decrease in glutamate release induced by GUO, whereas SAS did not modify the GUO effect. GUO protected hippocampal slices from cellular damage by modulation of glutamate transporters, however selective blockade of GLT-1 or Xc- system only did not affect this protective action of GUO. OGD decreased hippocampal glutamine synthetase (GS) activity and GUO recovered GS activity to control levels without altering the kinetic parameters of GS activity, thus suggesting GUO does not directly interact with GS. Additionally, the pharmacological inhibition of GS activity with methionine sulfoximine abolished the effect of GUO in reducing D-aspartate release and cellular damage evoked by OGD. Altogether, results in hippocampal slices subjected to OGD show that GUO counteracts the release of excitatory amino acids, stimulates the activity of GS, and decreases the cellular damage by modulation of glutamate transporters activity.

  14. Dysregulation of the Glutamine Transporter Slc38a3 (SNAT3 and Ammoniagenic Enzymes in Obese, Glucose-Intolerant Mice

    Directory of Open Access Journals (Sweden)

    Stephanie M. Busque

    2014-08-01

    Full Text Available Background/Aims: Uric acid nephrolithiasis is prevalent among patients with type 2 diabetes and metabolic syndrome; it is correlated with an acidic urine and lower urinary ammonium excretion and is likely associated with insulin resistance. Insulin stimulates ammoniagenesis in renal cell lines via increased phosphate-dependent glutaminase (PDG activity and glutamine metabolism. Ammonium excretion into the proximal tubule is mediated at least in part by the Na+/H+-exchanger NHE3 and in the collecting duct involving the Rhesus protein RhCG. Here we tested, whether obesity and insulin resistance in a diet-induced mouse model could contribute to deranged ammonium excretion. Methods: Obesity was induced by diet in mice and the impact on key molecules of proximal tubular ammoniagenesis and urinary acid excretion tested. Results: Diet-induced obesity was confirmed by pathological intraperitoneal glucose tolerance tests (IPGTT. Three groups of mice were compared: control mice; obese, glucose-intolerant with abnormal IPGTT (O-GI; or moderate weight with normal IPGTT (Non-Responders, NR. Basal urinary ammonium excretion did not differ among groups. However, acid loading increased urinary ammonium excretion in all groups, but to a lesser extent in the O-GI group. SNAT3 mRNA expression was enhanced in both obese groups. PDG expression was elevated only in acid-loaded O-GI mice, whereas PEPCK was enhanced in both O-GI and NR groups given NH4CI. NHE activity in the brush border membrane of the proximal tubule was strongly reduced in the O-GI group whereas RhCG expression was similar. Conclusion: In sum, obesity and glucose intolerance impairs renal ammonium excretion in response to NH4CI feeding most likely through reduced NHE activity. The stimulation of SNAT3 and ammoniagenic enzyme expression may be compensatory but futile.

  15. Striatal Astrocytes Act as a Reservoir for L-DOPA

    OpenAIRE

    Masato Asanuma; Ikuko Miyazaki; Shinki Murakami; Diaz-Corrales, Francisco J.; Norio Ogawa

    2014-01-01

    L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, D...

  16. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  17. Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats.

    Science.gov (United States)

    van der Hel, W Saskia; Hessel, Ellen V S; Bos, Ineke W M; Mulder, Sandra D; Verlinde, Suzanne A M W; van Eijsden, Pieter; de Graan, Pierre N E

    2014-12-01

    Mesiotemporal sclerosis (MTS), the most frequent form of drug-resistant temporal lobe epilepsy, often develops after an initial precipitating injury affecting the immature brain. To analyse early processes in epileptogenesis we used the juvenile pilocarpine model to study status epilepticus (SE)-induced changes in expression of key components in the glutamate-glutamine cycle, known to be affected in MTS patients. SE was induced by Li(+) /pilocarpine injection in 21-day-old rats. At 2-19 weeks after SE hippocampal protein expression was analysed by immunohistochemistry and neuron damage by FluoroJade staining. Spontaneous seizures occurred in at least 44% of animals 15-18 weeks after SE. As expected in this model, we did not observe loss of principal hippocampal neurons. Neuron damage was most pronounced in the hilus, where we also detected progressive loss of parvalbumin-positive GABAergic interneurons. Hilar neuron loss (or end-folium sclerosis), a common feature in patients with MTS, was accompanied by a progressively decreased glutamine synthetase (GS)-immunoreactivity from 2 (-15%) to 19 weeks (-33.5%) after SE. Immunoreactivity for excitatory amino-acid transporters, vesicular glutamate transporter 1 and glial fibrillary acidic protein was unaffected. Our data show that SE elicited in 21-day-old rats induces a progressive reduction in hilar GS expression without affecting other key components of the glutamate-glutamine cycle. Reduced expression of glial enzyme GS was first detected 2 weeks after SE, and thus clearly before spontaneous recurrent seizures occurred. These results support the hypothesis that reduced GS expression is an early event in the development of hippocampal sclerosis in MTS patients and emphasize the importance of astrocytes in early epileptogenesis.

  18. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne;

    2014-01-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains...... of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine......, and aspartate and incorporation of (15)NH4(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation...

  19. Up-regulation of glutamine synthesis in microglia activated with endotoxin.

    Science.gov (United States)

    Nakajima, Kazuyuki; Kanamatsu, Tomoyuki; Takezawa, Yosuke; Kohsaka, Shinichi

    2015-03-30

    We previously verified that newborn rat brain-derived microglia have the ability to uptake (14)C-glutamate (Glu) through glutamate transporter-1. A given amount of Glu incorporated into microglia was suspected to be metabolized to glutamine (Gln). However, the ability of microglia to do this had not been demonstrated. Thus, in the present study we examined the possibility that primary rat microglia metabolize Glu into Gln. Immunocytochemical and immunoblotting studies indicated that the microglia express glutamine synthetase (GS) protein. As expected from these results, GS activity was actually detected in microglia, although the specific activity was lower than that of astrocytes. Considering this microglial property, it seemed possible that the taken Glu is metabolized to Gln in the cells. To investigate this possibility, we exposed microglia to [(13)C]Glu-containing medium and analyzed the change of Glu to Gln in a nuclear magnetic resonance examination. The results clarified that non-stimulated microglia hardly changed Glu to Gln, but when stimulated with lipopolysaccharide the microglia significantly metabolized [(13)C]Glu to [(13)C]Gln. Microglia were thus, strongly suggested to metabolize Glu to Gln via GS activity when activated in the inflammatory/pathological state of the nervous system.

  20. Up-regulation of glutamine synthesis in microglia activated with endotoxin.

    Science.gov (United States)

    Nakajima, Kazuyuki; Kanamatsu, Tomoyuki; Takezawa, Yosuke; Kohsaka, Shinichi

    2015-03-30

    We previously verified that newborn rat brain-derived microglia have the ability to uptake (14)C-glutamate (Glu) through glutamate transporter-1. A given amount of Glu incorporated into microglia was suspected to be metabolized to glutamine (Gln). However, the ability of microglia to do this had not been demonstrated. Thus, in the present study we examined the possibility that primary rat microglia metabolize Glu into Gln. Immunocytochemical and immunoblotting studies indicated that the microglia express glutamine synthetase (GS) protein. As expected from these results, GS activity was actually detected in microglia, although the specific activity was lower than that of astrocytes. Considering this microglial property, it seemed possible that the taken Glu is metabolized to Gln in the cells. To investigate this possibility, we exposed microglia to [(13)C]Glu-containing medium and analyzed the change of Glu to Gln in a nuclear magnetic resonance examination. The results clarified that non-stimulated microglia hardly changed Glu to Gln, but when stimulated with lipopolysaccharide the microglia significantly metabolized [(13)C]Glu to [(13)C]Gln. Microglia were thus, strongly suggested to metabolize Glu to Gln via GS activity when activated in the inflammatory/pathological state of the nervous system. PMID:25681623

  1. Glutamine as an immunonutrient.

    Science.gov (United States)

    Kim, Hyeyoung

    2011-11-01

    Dietary supplementation with nutrients enhancing immune function is beneficial in patients with surgical and critical illness. Malnutrition and immune dysfunction are common features in hospitalized patients. Specific nutrients with immunological and pharmacological effects, when consumed in amounts above the daily requirement, are referred to as immune-enhancing nutrients or immunonutrients. Supplementation of immunonutrients is important especially for patients with immunodeficiency, virus or overwhelming infections accompanied by a state of malnutrition. Representative immunonutrients are arginine, omega-3 fatty acids, glutamine, nucleotides, beta-carotene, and/or branched-chain amino acids. Glutamine is the most abundant amino acid and performs multiple roles in human body. However, glutamine is depleted from muscle stores during severe metabolic stress including sepsis and major surgery. Therefore it is considered conditionally essential under these conditions. This review discusses the physiological role of glutamine, mode and dose for glutamine administration, as well as improvement of certain disease state after glutamine supplementation. Even though immunonutrition has not been widely assimilated by clinicians other than nutritionists, immunonutrients including glutamine may exert beneficial influence on diverse patient populations.

  2. In vitro differentiation of cultured human CD34+ cells into astrocytes

    Directory of Open Access Journals (Sweden)

    Katari Venkatesh

    2013-01-01

    Full Text Available Background: Astrocytes are abundantly present as glial cells in the brain and play an important role in the regenerative processes. The possible role of stem cell derived astrocytes in the spinal cord injuries is possible related to their influence at the synaptic junctions. Aim: The present study is focused on in vitro differentiation of cultured human CD34+ cells into astrocytes. Materials and Methods: Granulocyte-colony stimulating factor mobilized human CD34+ cells were isolated from peripheral blood using apheresis method from a donor. These cells were further purified by fluorescence-activated cell sorting and cultured in Dulbecco′s modified eagle′s medium. Thus, cultured cells were induced with astrocyte defined medium (ADM and in the differentiated astrocytes serine/threonine protein kinases (STPK and glutamine synthetase (GLUL activities were estimated. The expression of glial fibrillary acidic protein (GFAP and GLUL were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR. Results: The cultured human CD34+ cells differentiated into astrocytes after 11 h of incubation in ADM. The RT-PCR experiment showed the expression of GLUL (1.5 kb and GFAP (2.9 kb in differentiated astrocytes. The high enzyme activities of GLUL and STPK in differentiated astrocytes compared with cultured human CD34+ cells confirmed astrocyte formation. Conclusion: In the present study, in vitro differentiation of stem cells with retinoic acid induction may result in the formation of astrocytes.

  3. Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    OpenAIRE

    Halnes, Geir; Pettersen, Klas H.; Øyehaug, Leiv; Rognes, Marie E.; Langtangen, Hans Petter; Einevoll, Gaute T.

    2016-01-01

    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate mic...

  4. Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens

    DEFF Research Database (Denmark)

    Lim, Julie; Lorentzen, Karen Axelgaard; Kistler, Joerg;

    2006-01-01

    the molecular identity of GSH transporters in the lens, we have focused on identifying transporters involved in the uptake of the precursor amino acids required for GSH synthesis. Previously, we identified an uptake system for cyst(e)ine mediated by the Xc(-) exchanger and the Excitatory Amino Acid Transporters...... in the centre of the lens raises the possibility that ASCT2 may work with the Xc(-) exchanger to accumulate cysteine where it can potentially act as a low molecular mass antioxidant....

  5. Glutamine Modulates Macrophage Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Li He

    2016-04-01

    Full Text Available Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs, activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.

  6. High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages.

    Science.gov (United States)

    Matthews, J C; Huang, J; Rentfrow, G

    2016-03-01

    Skeletal muscle and adipose tissues play important roles in maintaining whole-body Glu and N homeostasis by the uptake of Glu and release of Gln. To test the hypothesis that expression of high-affinity Glu transporters (GLAST1, EAAT4, EAAC1, GLT-1) and glutamine synthetase (GS) would increase in longissimus dorsi and adipose tissue of newborn Angus steers randomly assigned ( = 6) to develop through suckling (S; 32 d) and/or weanling (W; 184 d), backgrounding (B; 248 d), and finishing (F; 423 d) production stages. Carcass quality was determined at slaughter to verify shifts in adipose and lean deposition with development. Expression of mRNA (RT-PCR/Southern) and relative protein abundance (Western analysis) were determined in tissue homogenates isolated from longissimus dorsi, and kidney and subcutaneous adipose. The effect of production stage or tissue type on carcass and protein abundance was assessed by 1-way ANOVA using the GLM procedure of SAS, and Fisher's protected LSD procedure was used to separate data means. Neither GLAST1 nor EAAT4 mRNA or protein was detected. EAAC1, GLT-1, and GS mRNA were identified in all tissues, but GLT-1 and GS protein were not detected in kidney or subcutaneous adipose, and GS protein was not detected in longissimus dorsi. The EAAC1 content of subcutaneous ( = 0.06) and kidney ( = 0.02) adipose was 2 times greater in B and F than W steers, whereas GS was 5 times greater ( F). For longissimus dorsi, EAAC1 ( W > B = F, S = W > B = F, respectively). Within F steers, EAAC1 and GLT-1 mRNA was expressed by subcutaneous, kidney, omental, mesenchymal, and intramuscular adipose tissues, whereas GS mRNA was expressed by all except for intramuscular. Only EAAC1 protein was detected in any adipose tissue, with EAAC1 content being 104% and 112% greater ( 0.45) from omental or mesenchymal adipose. These data demonstrate (1) longissimus dorsi and adipose tissues of steers developing through typical production stages have different capacities for

  7. High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages.

    Science.gov (United States)

    Matthews, J C; Huang, J; Rentfrow, G

    2016-03-01

    Skeletal muscle and adipose tissues play important roles in maintaining whole-body Glu and N homeostasis by the uptake of Glu and release of Gln. To test the hypothesis that expression of high-affinity Glu transporters (GLAST1, EAAT4, EAAC1, GLT-1) and glutamine synthetase (GS) would increase in longissimus dorsi and adipose tissue of newborn Angus steers randomly assigned ( = 6) to develop through suckling (S; 32 d) and/or weanling (W; 184 d), backgrounding (B; 248 d), and finishing (F; 423 d) production stages. Carcass quality was determined at slaughter to verify shifts in adipose and lean deposition with development. Expression of mRNA (RT-PCR/Southern) and relative protein abundance (Western analysis) were determined in tissue homogenates isolated from longissimus dorsi, and kidney and subcutaneous adipose. The effect of production stage or tissue type on carcass and protein abundance was assessed by 1-way ANOVA using the GLM procedure of SAS, and Fisher's protected LSD procedure was used to separate data means. Neither GLAST1 nor EAAT4 mRNA or protein was detected. EAAC1, GLT-1, and GS mRNA were identified in all tissues, but GLT-1 and GS protein were not detected in kidney or subcutaneous adipose, and GS protein was not detected in longissimus dorsi. The EAAC1 content of subcutaneous ( = 0.06) and kidney ( = 0.02) adipose was 2 times greater in B and F than W steers, whereas GS was 5 times greater ( F). For longissimus dorsi, EAAC1 ( W > B = F, S = W > B = F, respectively). Within F steers, EAAC1 and GLT-1 mRNA was expressed by subcutaneous, kidney, omental, mesenchymal, and intramuscular adipose tissues, whereas GS mRNA was expressed by all except for intramuscular. Only EAAC1 protein was detected in any adipose tissue, with EAAC1 content being 104% and 112% greater ( adipose, respectively, and not differing ( > 0.45) from omental or mesenchymal adipose. These data demonstrate (1) longissimus dorsi and adipose tissues of steers developing through typical

  8. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  9. Astrocytic vesicle mobility in health and disease.

    Science.gov (United States)

    Potokar, Maja; Vardjan, Nina; Stenovec, Matjaž; Gabrijel, Mateja; Trkov, Saša; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert

    2013-01-01

    Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  10. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    . Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were...

  11. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    of 18S ribosomal RNA and the Rab13, Pkp4, Ankrd25, and Inpp1 mRNAs in astrocyte protrusions. The Boyden chamber isolated RNA from both primary astrocytes and C8S cells was analyzed by next generation sequencing (NGS), which revealed that >250 polyadenylated (polyA) RNA species accumulated in the cell...

  12. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    OpenAIRE

    Chen, Lei-lei; Wu, Jun-Chao; Wang, Lin-Hui; Wang, Jin; Qin, Zheng-hong; Difiglia, Marian; Lin, Fang

    2012-01-01

    Aim: To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552). Methods: Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups. An astrocytes model of Huntington's disease was established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin. The protein levels of glutamate transporters GLT-1 and GLAST, the autoph...

  13. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes.

    Directory of Open Access Journals (Sweden)

    Sara Marinelli

    Full Text Available In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25, the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A, could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw's nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC. We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients' quality of life.

  14. The Analgesic Effect on Neuropathic Pain of Retrogradely Transported botulinum Neurotoxin A Involves Schwann Cells and Astrocytes

    Science.gov (United States)

    Ricordy, Ruggero; Uggenti, Carolina; Tata, Ada Maria; Luvisetto, Siro; Pavone, Flaminia

    2012-01-01

    In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25), the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A), could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw’s nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC). We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients’ quality of life. PMID:23110146

  15. Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (P-Glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis.

    Science.gov (United States)

    Qosa, Hisham; Lichter, Jessica; Sarlo, Mark; Markandaiah, Shashirekha S; McAvoy, Kevin; Richard, Jean-Philippe; Jablonski, Michael R; Maragakis, Nicholas J; Pasinelli, Piera; Trotti, Davide

    2016-08-01

    The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313. PMID:27158936

  16. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures.

    Directory of Open Access Journals (Sweden)

    Alan C Foster

    Full Text Available N-methyl-D-aspartate (NMDA receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1 and SLC1A5 (ASCT2 mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1 may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.

  17. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[3H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5+, LB1+ stellate cells exhibiting neuron-like [3H]GABA uptake formed cell colonies of increasing size and were GFAP-. After about one week of culturing, the A2B5+, LB1+, GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5+ cells at 3 and 4 days in vitro prevented the appearance of the A2B5+, LB1+, GABA-uptake positive cell colonies, and also of the GalCer+ cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5+, LB1+, GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5+ cells, only A2B5-, LB1-, GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer+) in serum-free medium or into astrocytes (GFAP+) in the presence of serum, while the epithelioid A2B5-, LB1-, GABA-uptake negative astrocytes originate from a different precursor not yet identified

  18. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. PMID:26210720

  19. Clinical use of glutamine supplementation.

    Science.gov (United States)

    Wernerman, Jan

    2008-10-01

    Endogenous production of glutamine may become insufficient during critical illness. The shortage of glutamine is reflected as a decrease in plasma concentration, which is a prognostic factor for poor outcome in sepsis. Because glutamine is a precursor for nucleotide synthesis, rapidly dividing cells are most likely to suffer from a shortage. Therefore, exogenous glutamine supplementation is necessary. In particular, when i.v. nutrition is given, extra glutamine supplementation becomes critical, because most present formulations for i.v. use do not contain any glutamine for technical reasons. The major part of endogenously produced glutamine comes from skeletal muscle. For patients staying a long time in the intensive care unit (ICU), the muscle mass decreases rapidly, which leaves a tissue of diminishing size to maintain the export of glutamine. The metabolic and nutritional adaptation in long-staying ICU patients is poorly studied and is one of the fields that needs more scientific evidence for clinical recommendations. To date, there is evidence to support the clinical use of glutamine supplementation in critically ill patients, in hematology patients, and in oncology patients. Strong evidence is presently available for i.v. glutamine supplementation to critically ill patients on parenteral nutrition. This must be regarded as the standard of care. For patients on enteral nutrition, more evidence is needed. To guide administration of glutamine, there are good arguments to use measurement of plasma glutamine concentration for guidance. This will give an indication for treatment as well as proper dosing. Most patients will have a normalized plasma glutamine concentration by adding 20-25 g/24 h. Furthermore, there are no reported adverse or negative effects attributable to glutamine supplementation.

  20. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  1. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks.

    Science.gov (United States)

    Simão, Daniel; Terrasso, Ana P; Teixeira, Ana P; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M

    2016-01-01

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889

  2. Astrocytes Grown in Alvetex(®) Three Dimensional Scaffolds Retain a Non-reactive Phenotype.

    Science.gov (United States)

    Ugbode, Christopher I; Hirst, Warren D; Rattray, Marcus

    2016-08-01

    Protocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embryonic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype. PMID:27099962

  3. Interrelationships between glutamine and citrulline metabolism

    Science.gov (United States)

    This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter ran...

  4. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.

    Science.gov (United States)

    Tardito, Saverio; Oudin, Anaïs; Ahmed, Shafiq U; Fack, Fred; Keunen, Olivier; Zheng, Liang; Miletic, Hrvoje; Sakariassen, Per Øystein; Weinstock, Adam; Wagner, Allon; Lindsay, Susan L; Hock, Andreas K; Barnett, Susan C; Ruppin, Eytan; Mørkve, Svein Harald; Lund-Johansen, Morten; Chalmers, Anthony J; Bjerkvig, Rolf; Niclou, Simone P; Gottlieb, Eyal

    2015-12-01

    L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, (13)C-glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes.

  5. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  6. Targeting astrocytes in major depression

    OpenAIRE

    Verkhratsky, Alexej; Peng, Liang; Gu, Li; Li, Baoman

    2015-01-01

    Astrocytes represent a highly heterogeneous population of neural cells primarily responsible for the homeostasis of the central nervous system. Astrocytes express multiple receptors for neurotransmitters, including the serotonin 5-HT2B receptors and interact with neurones at the synapse. Astroglia contribute to neurological diseases through homeostatic response, neuroprotection and reactivity. In major depression, astrocytes show signs of degeneration and are decreased in numbe...

  7. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death.

    Science.gov (United States)

    Wang, Xin-shang; Tian, Zhen; Zhang, Nan; Han, Jing; Guo, Hong-liang; Zhao, Ming-gao; Liu, Shui-bing

    2016-03-01

    Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS. PMID:26643508

  8. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  9. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    Science.gov (United States)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  10. Expression and cellular function of vSNARE proteins in brain astrocytes.

    Science.gov (United States)

    Ropert, N; Jalil, A; Li, D

    2016-05-26

    Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo. PMID:26518463

  11. Astroglial glutamate-glutamine cycle is involved in the modulation of inflammatory nociception in rats

    Institute of Scientific and Technical Information of China (English)

    Tiancheng Wang; Jing Wang; Bin Geng; Hongyu Guo; Haili Shen; Yayi Xia

    2011-01-01

    Our previous behavioral studies have indicated that the astroglial glutamate-glutamine cycle is involved in the process of formalin-induced spinal cord central sensitization, but there was little morphological evidence. In this study, double-labeling immunofluorescence techniques showed that after rats were intrathecally injected with PBS and plantarly injected with formalin, glial fibrillary acidic protein (GFAP) and glutamine synthesase (GS) expression were increased and GFAP/GS coexpression was changed to include layers III and IV. After intrathecal injection of methionine sulfoximine, a GS specific inhibitor, the formalin-induced change in expression and coexpression of GFAP and GS in spinal cord dorsal horns was inhibited. The morphology, distribution and quantity of astrocytes recovered to normal levels. An intrathecal glutamine injection reversed the inhibitory effect of methionine sulfoximine. Astrocytes showed significant activation and distribution extended to layers V and VI. The present study provides morphological evidence that the astroglial glutamate-glutamine cycle is involved in the process of formalin-induced spinal cord central sensitization.

  12. Metabolic pathways for glucose in astrocytes.

    Science.gov (United States)

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  13. Breathless cancer cells get fat on glutamine

    Institute of Scientific and Technical Information of China (English)

    Dimitrios Anastasiou; Lewis C Cantley

    2012-01-01

    Many cancer cells depend on glutamine as a fuel for proliferation,yet the mechanisms by which glutamine supports cancer metabolism are not fully understood.Two recent studies highlight an important role for glutamine in the synthesis of lipids and provide novel insights into how glutamine metabolism could be targeted for cancer therapy.

  14. Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress.

    Directory of Open Access Journals (Sweden)

    Jianmin Chen

    Full Text Available Glutamine is the most abundant free amino acid in the human blood stream and is 'conditionally essential' to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS. Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H(2O(2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD.

  15. De Novo Glutamine Synthesis

    Directory of Open Access Journals (Sweden)

    Qiao He MD

    2016-04-01

    Full Text Available Purpose: The aim of this study was to investigate the role of de novo glutamine (Gln synthesis in the proliferation of C6 glioma cells and its detection with 13N-ammonia. Methods: Chronic Gln-deprived C6 glioma (0.06C6 cells were established. The proliferation rates of C6 and 0.06C6 cells were measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS inhibitor. 13N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro–positron emission tomography (PET scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting and immunohistochemistry, respectively. Results: The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression. Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells, and 13N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the proliferation of C6 cells as well as the uptake of 13N-ammoina. Additionally, microPET/computed tomography exhibited that subcutaneous 0.06C6 xenografts had higher 13N-ammonia uptake and GS expression in contrast to C6 xenografts. Conclusion: De novo Gln synthesis through ammonia–glutamate reaction plays an important role in the proliferation of C6 cells. 13N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors.

  16. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells.

    Science.gov (United States)

    Kleiderman, Susanne; Sá, João V; Teixeira, Ana P; Brito, Catarina; Gutbier, Simon; Evje, Lars G; Hadera, Mussie G; Glaab, Enrico; Henry, Margit; Sachinidis, Agapios; Alves, Paula M; Sonnewald, Ursula; Leist, Marcel

    2016-05-01

    Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. PMID:26689134

  17. Probing astrocytes with carbon nanotubes and assessing their effects on astrocytic structural and functional properties

    Science.gov (United States)

    Gottipati, Manoj K.

    Single-walled carbon nanotubes, chemically-functionalized with polyethylene glycol (SWCNT-PEG) have been shown to modulate the morphology and proliferation characteristics of astrocytes in culture, when applied to the cells as colloidal solutes or as films upon which the cells can attach and grow. These changes were associated with a change in the immunoreactivity of the astrocyte-specific protein, glial fibrillary acidic protein (GFAP); the solutes and films caused an increase and a decrease in GFAP levels, respectively. To assess if these morpho-functional changes induced by the SWCNT-PEG modalities are dependent on GFAP or if the changes in GFAP levels are independent events, I used astrocytes isolated from GFAP knockout mice and found that selected changes induced by the SWCNT-PEG modalities are mediated by GFAP, namely the changes in perimeter, shape and cell death for colloidal solutes and the rate of proliferation for films. Since the loss GFAP has been shown to hamper the trafficking of glutamate transporters to the surface of astrocytes, which plays a vital role in the uptake of extracellular glutamate and maintaining homeostasis in the brain and spinal cord, in a subsequent study, I assessed if the SWCNT-PEG solute causes any change in the glutamate uptake characteristics of astrocytes. Using a radioactive glutamate uptake assay and immunolabeling, I found that SWCNT-PEG solute causes an increase in the uptake of glutamate from the extracellular space along with an increase in the immunoreactivity of the glutamate transporter, L-glutamate L-aspartate transporter (GLAST), on their cell surface, a likely consequence of the increase in GFAP levels induced by the SWCNT-PEG solute. These results imply that SWCNT-PEG could potentially be used as a viable candidate in neural prosthesis applications to prevent glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries, and alleviate the death toll of neurons surrounding the injury

  18. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission?

    Directory of Open Access Journals (Sweden)

    Verkhratsky Alexei

    2011-07-01

    Full Text Available Abstract Astrocytes are fundamental for brain homeostasis and the progression and outcome of many neuropathologies including Alzheimer's disease (AD. In the triple transgenic mouse model of AD (3xTg-AD generalised hippocampal astroglia atrophy precedes a restricted and specific β-amyloid (Aβ plaque-related astrogliosis. Astrocytes are critical for CNS glutamatergic transmission being the principal elements of glutamate homeostasis through maintaining its synthesis, uptake and turnover via glutamate-glutamine shuttle. Glutamine synthetase (GS, which is specifically expressed in astrocytes, forms glutamine by an ATP-dependent amination of glutamate. Here, we report changes in GS astrocytic expression in two major cognitive areas of the hippocampus (the dentate gyrus, DG and the CA1 in 3xTg-AD animals aged between 9 and 18 months. We found a significant reduction in Nv (number of cell/mm3 of GS immunoreactive (GS-IR astrocytes starting from 12 months (28.59% of age in the DG, and sustained at 18 months (31.65%. CA1 decrease of GS-positive astrocytes Nv (33.26% occurs at 18 months. This Nv reduction of GS-IR astrocytes is paralleled by a decrease in overall GS expression (determined by its optical density that becomes significant at 18 months (21.61% and 19.68% in DG and CA1, respectively. GS-IR Nv changes are directly associated with the presence of Aβ deposits showing a decrease of 47.92% as opposed to 23.47% in areas free of Aβ. These changes in GS containing astrocytes and GS-immunoreactivity indicate AD-related impairments of glutamate homeostatic system, at the advanced and late stages of the disease, which may affect the efficacy of glutamatergic transmission in the diseased brain that may contribute to the cognitive deficiency.

  19. Gene transfer engineering for astrocyte-specific silencing in the CNS.

    Science.gov (United States)

    Merienne, N; Delzor, A; Viret, A; Dufour, N; Rey, M; Hantraye, P; Déglon, N

    2015-10-01

    Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications. PMID:26109254

  20. Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs.

    Science.gov (United States)

    Bhutia, Yangzom D; Babu, Ellappan; Ramachandran, Sabarish; Ganapathy, Vadivel

    2015-05-01

    Tumor cells have an increased demand for amino acids because of their rapid proliferation rate. In addition to their need in protein synthesis, several amino acids have other roles in supporting cancer growth. There are approximately two-dozen amino acid transporters in humans, and tumor cells must upregulate one or more of these transporters to satisfy their demand for amino acids. If the transporters that specifically serve this purpose in tumor cells are identified, they can be targeted for the development of a brand new class of anticancer drugs; the logical basis of such a strategy would be to starve the tumor cells of an important class of nutrients. To date, four amino acid transporters have been found to be expressed at high levels in cancer: SLC1A5, SLC7A5, SLC7A11, and SLC6A14. Their induction occurs in a cancer type-specific manner with a direct or indirect involvement of the oncogene c-Myc. Further, these transporters are functionally coupled, thus maximizing their ability to promote cancer growth and chemoresistance. Progress has been made in preclinical studies, exploiting these transporters as drug targets in cancer therapy. These transporters also show promise in development of new tumor-imaging probes and in tumor-specific delivery of appropriately designed chemotherapeutic agents. PMID:25855379

  1. Spatiotemporal characteristics of calcium dynamics in astrocytes

    Science.gov (United States)

    Kang, Minchul; Othmer, Hans G.

    2009-09-01

    Although Cai2+ waves in networks of astrocytes in vivo are well documented, propagation in vivo is much more complex than in culture, and there is no consensus concerning the dominant roles of intercellular and extracellular messengers [inositol 1,4,5-trisphosphate (IP3) and adenosine-5'-triphosphate (ATP)] that mediate Cai2+ waves. Moreover, to date only simplified models that take very little account of the geometrical struture of the networks have been studied. Our aim in this paper is to develop a mathematical model based on realistic cellular morphology and network connectivity, and a computational framework for simulating the model, in order to address these issues. In the model, Cai2+ wave propagation through a network of astrocytes is driven by IP3 diffusion between cells and ATP transport in the extracellular space. Numerical simulations of the model show that different kinetic and geometric assumptions give rise to differences in Cai2+ wave propagation patterns, as characterized by the velocity, propagation distance, time delay in propagation from one cell to another, and the evolution of Ca2+ response patterns. The temporal Cai2+ response patterns in cells are different from one cell to another, and the Cai2+ response patterns evolve from one type to another as a Cai2+ wave propagates. In addition, the spatial patterns of Cai2+ wave propagation depend on whether IP3, ATP, or both are mediating messengers. Finally, two different geometries that reflect the in vivo and in vitro configuration of astrocytic networks also yield distinct intracellular and extracellular kinetic patterns. The simulation results as well as the linear stability analysis of the model lead to the conclusion that Cai2+ waves in astrocyte networks are probably mediated by both intercellular IP3 transport and nonregenerative (only the glutamate-stimulated cell releases ATP) or partially regenerative extracellular ATP signaling.

  2. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    Full Text Available The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+-concentration to increase by several millimolars. The clearance of this excess K(+ depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i increases the local astrocytic uptake of K(+, (ii suppresses extracellular transport of K(+, (iii increases axial transport of K(+ within astrocytes, and (iv facilitates astrocytic relase of K(+ in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+.

  3. 鱼藤酮对大鼠纹状体谷氨酸转运体及谷氨酰胺合成酶的影响%Toxic effects of Rotenone on glutamate transporter and glutamine synthetase in rat brain

    Institute of Scientific and Technical Information of China (English)

    刘辉; 李云鹏; 董兆君

    2007-01-01

    目的 研究鱼藤酮染毒大鼠纹状体谷氨酸转运体表达及谷氨酰胺合成酶活性的变化.方法 应用HPLC荧光法检测鱼藤酮染毒大鼠纹状体谷氨酸(glutamate, Glu)浓度,RT-PCR与Western blot技术观察谷氨酸转运体基因及蛋白表达的变化,采用谷氨酰胺合成酶检测试剂盒观察其活性.结果 1.2 mg/kg鱼藤酮染毒大鼠纹状体Glu浓度明显升高,谷氨酸/天冬氨酸转运体(glutamate/aspartate transporter, GLAST)基因和蛋白表达均显著降低,而谷氨酸转运体-1(glutamate transporter-1, GLT-1)蛋白表达升高,谷氨酰胺合成酶(glutamine synthetase, GS)活性明显增强.结论 GLAST表达下调可能是鱼藤酮诱导脑内谷氨酸含量增加的主要原因之一,而GLT-1上调及GS活性增强可能为神经细胞自我保护机制,以限制谷氨酸的神经毒作用.

  4. Characterization of Glutamine-Requiring Mutants of Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, Dick B.; Joosten, Han M.L.J.; Herst, Patricia M.; Drift, Chris van der

    1982-01-01

    Revertants were isolated from a glutamine-requiring mutant of Pseudomonas aeruginosa PAO. One strain showed thermosensitive glutamine requirement and formed thermolabile glutamine synthetase, suggesting the presence of a mutation in the structural gene for glutamine synthetase. The mutation conferri

  5. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  6. The effect of glutamine supplementation and physical exercise on neutrophil function.

    Science.gov (United States)

    Lagranha, C J; Levada-Pires, A C; Sellitti, D F; Procopio, J; Curi, R; Pithon-Curi, T C

    2008-04-01

    Glutamine is the most abundant free amino acid in the body. Its primary source is skeletal muscle, from where it is released into the bloodstream and transported to a variety of tissues. Several studies have shown that glutamine is important for rat and human neutrophil function and that these cells utilize glutamine at high rates. Physical exercise has also been shown to induce considerable changes in neutrophil metabolism and function. As neutrophils represent 50-60% of the total circulating leukocyte pool and play a key role in inflammation, both physical exercise and glutamine might be expected to regulate the inflammatory process. In this review, the changes in neutrophil function induced by physical exercise and glutamine supplementation are compared. PMID:17928941

  7. Astrocytes: Key Regulators of Neuroinflammation.

    Science.gov (United States)

    Colombo, Emanuela; Farina, Cinthia

    2016-09-01

    Astrocytes are crucial regulators of innate and adaptive immune responses in the injured central nervous system. Depending on timing and context, astrocyte activity may exacerbate inflammatory reactions and tissue damage, or promote immunosuppression and tissue repair. Recent literature has unveiled key factors and intracellular signaling pathways that govern astrocyte behavior during neuroinflammation. Here we have re-visited in vivo studies on astrocyte signaling in neuroinflammatory models focusing on evidences obtained from the analysis of transgenic mice where distinct genes involved in ligand binding, transcriptional regulation and cell communication have been manipulated in astrocytes. The integration of in vivo observations with in vitro data clarifies precise signaling steps, highlights the crosstalk among pathways and identifies shared effector mechanisms in neuroinflammation.

  8. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity

    Institute of Scientific and Technical Information of China (English)

    Mechteld AR Vermeulen; Jeffrey de Jong; Mathijs J Vaessen; Paul AM van Leeuwen; Alexander PJ Houdijk

    2011-01-01

    AIM: To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity. METHODS: The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied. Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate (PDB) apically, after which the effects of glutamine and glutamate on horseradish peroxidase (HRP) diffusion were studied. An inhibitor of glutamate transport (L-trans-pyrrolidine-2,4-dicarboxylic acid: trans-PDC) and an irreversible blocker (acivicin) of the extracellular glutamine to glutamate converting enzyme, γ-glutamyltransferase, were used. RESULTS: Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n = 30, P < 0.001). Glutamine application reduced hyperpermeability by 19% and 39% in the respective cell lines. Glutamate application reduced hyperpermeability by 30% and 20%, respectively. Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels. Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels. CONCLUSION: Apical glutamate -similar to glutaminecan decrease induced paracellular hyperpermeability. Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine.

  9. Effects of aspartame metabolites on astrocytes and neurons.

    Science.gov (United States)

    Rycerz, Karol; Jaworska-Adamu, Jadwiga Elżbieta

    2013-01-01

    Aspartame, a widespread sweetener used in many food products, is considered as a highly hazardous compound. Aspartame was discovered in 1965 and raises a lot of controversy up to date. Astrocytes are glial cells, the presence and functions of which are closely connected with the central nervous system (CNS). The aim of this article is to demonstrate the direct and indirect role of astrocytes participating in the harmful effects of aspartame metabolites on neurons. The artificial sweetener is broken down into phenylalanine (50%), aspartic acid (40%) and methanol (10%) during metabolism in the body. The excess of phenylalanine blocks the transport of important amino acids to the brain contributing to reduced levels of dopamine and serotonin. Astrocytes directly affect the transport of this amino acid and also indirectly by modulation of carriers in the endothelium. Aspartic acid at high concentrations is a toxin that causes hyperexcitability of neurons and is also a precursor of other excitatory amino acid - glutamates. Their excess in quantity and lack of astrocytic uptake induces excitotoxicity and leads to the degeneration of astrocytes and neurons. The methanol metabolites cause CNS depression, vision disorders and other symptoms leading ultimately to metabolic acidosis and coma. Astrocytes do not play a significant role in methanol poisoning due to a permanent consumption of large amounts of aspartame. Despite intense speculations about the carcinogenicity of aspartame, the latest studies show that its metabolite - diketopiperazine - is cancirogenic in the CNS. It contributes to the formation of tumors in the CNS such as gliomas, medulloblastomas and meningiomas. Glial cells are the main source of tumors, which can be caused inter alia by the sweetener in the brain. On the one hand the action of astrocytes during aspartame poisoning may be advantageous for neuro-protection while on the other it may intensify the destruction of neurons. The role of the glia in

  10. Astrocytes in multiple sclerosis.

    Science.gov (United States)

    Ludwin, Samuel K; Rao, Vijayaraghava Ts; Moore, Craig S; Antel, Jack P

    2016-08-01

    Recent experimental and clinical studies on astrocytes are unraveling the capabilities of these multi-functional cells in normal homeostasis, and in central nervous system (CNS) disease. This review focuses on understanding their behavior in all aspects of the initiation, evolution, and resolution of the multiple sclerosis (MS) lesion. Astrocytes display remarkable flexibility and variability of their physical structure and biochemical output, each aspect finely tuned to the specific stage and location of the disease, participating in both pathogenic and beneficial changes seen in acute and progressive forms. As examples, chemo-attractive or repulsive molecules may facilitate the entry of destructive immune cells but may also aid in the recruitment of oligodendrocyte precursors, essential for repair. Pro-inflammatory cytokines may attack pathogenic cells and also destroy normal oligodendrocytes, myelin, and axons. Protective trophic factors may also open the blood-brain barrier and modulate the extracellular matrix to favor recruitment and persistence of CNS-specific immune cells. A chronic glial scar may confer structural support following tissue loss and inhibit ingress of further noxious insults and also inhibit migration of reparative cells and molecules into the damaged tissue. Continual study into these processes offers the therapeutic opportunities to enhance the beneficial capabilities of these cells while limiting their destructive effects. PMID:27207458

  11. Plasma glutamine levels and falciparum malaria.

    Science.gov (United States)

    Cowan, G; Planche, T; Agbenyega, T; Bedu-Addo, G; Owusu-Ofori, A; Adebe-Appiah, J; Agranoff, D; Woodrow, C; Castell, L; Elford, B; Krishna, S

    1999-01-01

    Glutamine deficiency is associated with increased rates of sepsis and mortality, which can be prevented by glutamine supplementation. Changes in glutamine concentration were examined in Ghanaian children with acute falciparum malaria and control cases. The mean (SD) plasma glutamine concentration was lower in patients with acute malaria (401 (82) mumol/L, n = 50) than in control patients (623 (67) mumol/L, n = 7; P sepsis and dyserythropoeisis.

  12. Astrocyte morphology, heterogeneity and density in the developing African Giant Rat (Cricetomys gambianus

    Directory of Open Access Journals (Sweden)

    James Olukayode Olopade

    2015-05-01

    Full Text Available Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR (Cricetomys gambianus, Waterhouse across three age groups (5 neonates, 5 juveniles and 5 adults using Silver impregnation method and immunohistochemistry against glia fibrillary acidic protein (GFAP. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32±4.8 µm in diameter against 91±5.4µm and 75± 1.9µm in juveniles and adults respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG; radial glia were found along the olfactory bulb (OB and subventricular zone (SVZ; velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p≤0.01 using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream (RMS, DG and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss

  13. Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes

    Institute of Scientific and Technical Information of China (English)

    Lei-lei CHEN; Jun-chao WU; Lin-hui WANG; Jin WANG; Zhen-hong QIN; Marian DIFIGLIA; Fang LIN

    2012-01-01

    To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552).Methods:Primary astrocyte cultures were prepared from the cortex of postnatal rat pups.An astrocytes model of Huntington's diseasewas established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin.The protein levels of glutamate transporters GLT-1 and GLAST,the autophagic marker microtubule-associated protein 1A/1B-light chain 3(LC3) and the autophagy substrate p62 in the astrocytes were examined using Western blotting.The mRNA expression levels of GLT-1and GLAST in the astrocytes were determined using Real-time PCR.[3H]glutamate uptake by the astrocytes was measured with liquid scintillation counting.Results:The expression of mutant Htt-552 in the astrocytes significantly decreased both the mRNA and protein levels of GLT-1 but not those of GLAST.Furthermore,Htt-552 significantly reduced [3H]glutamate uptake by the astrocytes.Treatment with the autophagy inhibitor 3-MA (10 mmol/L) significantly increased the accumulation of mutant Htt-552,and reduced the expression of GLT-1 and [3H]glutamate uptake in the astrocytes.Treatment with the autophagy stimulator rapamycin (0.2 mg/mL) significantly reduced the accumulation of mutant Htt-552,and reversed the changes in GLT-1 expression and [3H]glutamate uptake in the astrocytes.Conclusion:Rapamcin,an autophagy stimulator,can prevent the suppression of GLT-1 expression and glutamate uptake by mutant Htt-552 in cultured astrocytes.

  14. [Novel function of astrocytes revealed by optogenetics].

    Science.gov (United States)

    Beppu, Kaoru; Matsui, Ko

    2014-12-01

    Astrocytes respond to neuronal activity. However, whether astrocytic activity has any significance in brain function is unknown. Signaling pathway leading from astrocytes to neurons would be required for astrocytes to participate in neuronal functions and, here, we investigated the presence of such pathway. Optogenetics was used to manipulate astrocytic activity. A light-sensitive protein, channelrhodopsin-2 (ChR2), was selectively expressed in astrocytes. Photostimulation of these astrocytes induced glutamate release which modulated neuronal activity and animal behavior. Such glutamate release was triggered by intracellular acidification produced by ChR2 photoactivation. Astrocytic acidification occurs upon brain ischemia, and we found that another optogenetic tool, archaerhodopsin (ArchT), could counter the acidification and suppress astrocytic glutamate release. Controlling of astrocytic pH may become a therapeutic strategy upon ischemia.

  15. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes

    OpenAIRE

    Christian Schnell; Yohannes Hagos; Swen Hülsmann

    2012-01-01

    Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrol...

  16. Heterogeneity of Astrocytic Form and Function

    OpenAIRE

    Oberheim, Nancy Ann; Goldman, Steven A.; NEDERGAARD, Maiken

    2012-01-01

    Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structu...

  17. L-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats.

    Science.gov (United States)

    Petry, Éder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2015-04-01

    Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway. PMID:25202991

  18. Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease

    OpenAIRE

    Lange, Sofie C.; Bak, Lasse K.; Helle S. Waagepetersen; Schousboe, Arne; Norenberg, Michael D.

    2012-01-01

    During the past decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium s...

  19. Glutamine and glutamate supplementation raise milk glutamine concentrations in lactating gilts

    Directory of Open Access Journals (Sweden)

    Manso Helena

    2012-02-01

    Full Text Available Abstract Glutamine is the most abundant amino acid in milk, and lactation is associated with increased glutamine utilization both for milk synthesis and as a fuel for the enlarged small intestine. A number of recent studies have indicated that lactation is accompanied by a mild catabolic state in which skeletal muscle proteins are degraded to provide amino acids that are used to synthesize additional glutamine. In this study we tested the hypothesis that supplemental L-glutamine or the commercially available glutamine supplement Aminogut (2.5% by weight mixed into daily feed provided to gilts from 30 days prior to parturition until 21 days post-parturition would prevent a decrease in skeletal muscle glutamine while increasing the glutamine content of the milk. Muscle glutamine content decreased (P P P = 0.053. Milk glutamate remained constant between day 7 and 21 of lactation in the control and L-glutamine supplemented groups, but by day 21 of lactation the free glutamine, glutamate, and glutamine plus glutamate concentrations in milk from Aminogut-treated gilts were higher than those of control gilts. Thus dietary glutamine supplementation can alleviate the fall in intramuscular glutamine content during lactation in gilts, and may alleviate some of the catabolic effects of lactation. Furthermore, the increased milk glutamine content in the supplemented gilts may provide optimum nutrition for piglet development.

  20. Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain.

    Science.gov (United States)

    Norden, Diana M; Trojanowski, Paige J; Walker, Frederick R; Godbout, Jonathan P

    2016-08-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial interleukin (IL)-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher glial fibrillary acidic protein, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 receptor-1 (IL-10R1). After in vivo lipopolysaccharide immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and transforming growth factor β and resolve microglial activation. In addition, adult astrocytes reduced microglial activation when co-cultured ex vivo, whereas aged astrocytes did not. Consistent with the aging studies, IL-10R(KO) astrocytes did not augment transforming growth factor β after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  1. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  2. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons

    KAUST Repository

    Mächler, Philipp

    2015-11-19

    Investigating lactate dynamics in brain tissue is challenging, partly because in vivo data at cellular resolution are not available. We monitored lactate in cortical astrocytes and neurons of mice using the genetically encoded FRET sensor Laconic in combination with two-photon microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across tissue. The signal increase was significantly smaller in astrocytes, pointing to higher basal lactate levels in these cells, confirmed by a one-point calibration protocol. Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, these data provide in vivo evidence for a lactate gradient from astrocytes to neurons. This gradient is a prerequisite for a carrier-mediated lactate flux from astrocytes to neurons and thus supports the astrocyte-neuron lactate shuttle model, in which astrocyte-derived lactate acts as an energy substrate for neurons. © 2016 Elsevier Inc.

  3. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle.

    Science.gov (United States)

    Tsai, Sheng-Feng; Chen, Pei-Chun; Calkins, Marcus J; Wu, Shih-Ying; Kuo, Yu-Min

    2016-01-01

    Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas. PMID:27047373

  4. The high-mobility group box 1 cytokine induces transporter-mediated release of glutamate from glial subcellular particles (gliosomes) prepared from in situ-matured astrocytes.

    Science.gov (United States)

    Bonanno, Giambattista; Raiteri, Luca; Milanese, Marco; Zappettini, Simona; Melloni, Edon; Pedrazzi, Marco; Passalacqua, Mario; Tacchetti, Carlo; Usai, Cesare; Sparatore, Bianca

    2007-01-01

    The multifunctional protein high-mobility group box 1 (HMGB1) is expressed in restricted areas of adult brain where it can act as a proinflammatory cytokine. We report here that HMGB1 affects CNS transmission by inducing glutamatergic release from glial (gliosomes) but not neuronal (synaptosomes) resealed subcellular particles isolated from mouse cerebellum and hippocampus. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins such as GFAP and S-100, but not with neuronal proteins such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several approximately 30-nm nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin or ATP, by mechanisms involving extracellular Ca(2+) and Ca(2+) release from intracellular stores. HMGB1-induced release of the stable glutamate analogue [(3)H]d-aspartate and endogenous glutamate form gliosomes, whereas nerve terminals were insensitive to the protein. The HMGB1-evoked release of glutamate was independent on modifications of cytosolic Ca(2+) concentration, but it was blocked by dl-threo-beta-benzyloxyaspartate, suggesting the involvement of transporter-mediated release mechanisms. Moreover, dihydrokainic acid, a selective inhibitor of glutamate transporter 1 does not block the HMGB1 effect, indicating a role for the glial glutamate-aspartate transporter (GLAST) subtype in this response. HMGB1 bind to gliosomes but not to synaptosomes and can physically interact with GLAST and receptor for advanced glycation end products (RAGE). Taken together, these results suggest that the HMGB1 cytokine

  5. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA

    DEFF Research Database (Denmark)

    Schousboe, Arne; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2013-01-01

    Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis....... Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA...... related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA - glutamine cycle the operation of which...

  6. Effect of Hypoxia on The Glutamate Transporter and Glutamine Synthetase in Mouse Retinal Müller Cells%缺氧对鼠视网膜Müller细胞GLAST和GS表达及功能的影响

    Institute of Scientific and Technical Information of China (English)

    戴敏; 夏晓波

    2011-01-01

    研究了缺氧对鼠视网膜Müller细胞谷氨酸转运体(L-glutamate/L-aspartate transporter,GLAST)和谷氨酰胺合成酶(glutamine synthetase,GS)表达的影响,及对谷氨酸摄取的作用.采用出生3~7天的小鼠视网膜组织进行Müller细胞培养,采用125 μmol/L的氯化钴(CoCl2)溶液分别进行缺氧干预6、12、24、48和72 h,不加CoCl2溶液培养的Müller细胞为正常对照.采用RT-PCR法、Western blot法和免疫细胞化学染色法检测GLAST和GS的表达,并检测谷氨酸摄取及细胞凋亡情况.结果显示,缺氧早期GLAST表达较正常对照组增强(P<0.001),CoCl2溶液干预12 h后达到最强(P<0.05),之后逐渐降低.COCl2溶液干预72 h后GLAST表达与正常对照组相比无明显差异(P>0.05).而缺氧也使GS的表达较正常对照组增加(P<0.001),CoCl2溶液干预48 h后GS表达最强(P<0.001),之后开始下降.缺氧促进Müller细胞对谷氨酸的摄取CoCl2溶液干预48 h后L-[3,4-3H]-谷氨酸的摄取量最大(P<0.005),之后开始下降.CoCl2溶液干预后,Müller细胞死亡数较正常对照组无明显差异(P>0.05).结果表明,在一定时间范围内缺氧能够增强Müller细胞GLAST及GS的表达,增加谷氨酸的摄取.但持续缺氧最终会引起Müller细胞功能失代偿,从而导致谷氨酸的代谢能力降低.%The effect of hypoxia on expression and function of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase(GS) was investigated in mouse retinal Müller cells(RMCs). Mouse RMCs were cultured by enzymatic digestion method. RMCs cultures were treated with CoC12 (125 μmol/L) for 6 h, 12 h, 24 h, 48 h or 72 h respectively in vitro. RMCs cultures were maintained without CoCl2 in normal control group. The expression of GLAST and GS was determined by RT-PCR, Western blotting and immunocytochemical staining. L-[3,4-3H]glutamic acid uptake was used to quantify glutamate uptake function of RMCs. The apoptosis of RMCs was confirmed by

  7. Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

    OpenAIRE

    Hsiu-Ni Kung; Marks, Jeffrey R.; Jen-Tsan Chi

    2011-01-01

    Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In th...

  8. Neuronal plasticity and astrocytic reaction in Down syndrome and Alzheimer disease

    DEFF Research Database (Denmark)

    Jørgensen, Ole Steen; Brooksbank, B W; Balázs, R

    1990-01-01

    Proteins relatively enriched in neurons (neural cell adhesion molecule (NCAM) and D3-protein) or in glia (glutamine synthetase, glial fibrillary acidic protein (GFAP) and S100) were measured by quantitative immunochemical methods in autopsy samples of the cerebral cortex of subjects with Alzheimer...... disease (AD) and adults with Down syndrome (DS), the latter also presenting manifest signs of Alzheimer type of neuropathology. The trend of changes was similar in AD and DS, but more marked in the latter. The biochemical make-up of astrocytes was differentially affected: in both the frontal and DS...

  9. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster

    2014-09-01

    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  10. Functional Oxygen Sensitivity of Astrocytes.

    Science.gov (United States)

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  11. Astrocyte, the star avatar: redefined

    Indian Academy of Sciences (India)

    Pankaj Seth; Nitin Koul

    2008-09-01

    Until recently, the neuroscience community held the belief that glial cells such as astrocytes and oligodendrocytes functioned solely as “support” cells of the brain. In this role, glial cells simply provide physical support and housekeeping functions for the more important cells of the brain, the neurons. However, this view has changed radically in recent years with the discovery of previously unrecognized and surprising functions for this underappreciated cell type. In the past decade or so, emerging evidence has provided new insights into novel glial cell activities such as control of synapse formation and function, communication, cerebrovascular tone regulation, immune regulation and adult neurogenesis. Such advances in knowledge have effectively elevated the role of the astrocyte to one that is more important than previously realized. This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis on astrocytes.

  12. Astrocytes Underlie Neuroinflammatory Memory Impairment

    OpenAIRE

    Osso, LA; Chan, JR

    2015-01-01

    © 2015 Elsevier Inc. All rights reserved. Neuroinflammation is being increasingly recognized as a potential mediator of cognitive impairments in various neurological conditions. Habbas et al. demonstrate that the pro-inflammatory cytokine tumor necrosis factor alpha signals through astrocytes to alter synaptic transmission and impair cognition in a mouse model of multiple sclerosis.

  13. Astrocyte/neuron ratio and its importance on glutamate toxicity: an in vitro voltammetric study.

    Science.gov (United States)

    Hacimuftuoglu, Ahmet; Tatar, Abdulgani; Cetin, Damla; Taspinar, Numan; Saruhan, Fatih; Okkay, Ufuk; Turkez, Hasan; Unal, Deniz; Stephens, Robert Louis; Suleyman, Halis

    2016-08-01

    The purpose of this study was to clarify the relationship between neuron cells and astrocyte cells in regulating glutamate toxicity on the 10th and 20th day in vitro. A mixed primary culture system from newborn rats that contain cerebral cortex neurons cells was employed to investigate the glutamate toxicity. All cultures were incubated with various glutamate concentrations, then viability tests and histological analyses were performed. The activities of glutamate transporters were determined by using in vitro voltammetry technique. Viable cell number was decreased significantly on the 10th day at 10(-7) M and at 10(-6) M glutamate applications, however, viable cell number was not decreased at 20th day. Astrocyte number was increased nearly six times on the 20th day as compared to the 10th day. The peak point of glutamate reuptake capacity was about 2 × 10(-4) M on the 10th day and 10(-3) M on the 20th day. According to our results, we suggested that astrocyte age was important to maintain neuronal survival against glutamate toxicity. Thus, we revealed activation or a trigger point of glutamate transporters on astrocytes due to time since more glutamate was taken up by astrocytes when glutamate transporters on the astrocyte were triggered with high exogenous glutamate concentrations. In conclusion, the present investigation is the first voltammetric study on the reuptake parameters of glutamate in vitro. PMID:26438331

  14. Streptomyces hygroscopicus Has Two Glutamine Synthetase Genes

    NARCIS (Netherlands)

    Kumada, Y.; Takano, E.; Nagaoka, Kozo; Thompson, C.J.

    1990-01-01

    Streptomyces hygroscopicus, which produces the glutamine synthetase inhibitor phosphinothricin, possesses at least two genes (glnA and glnB) encoding distinct glutamine synthetase isoforms (GSI and GSII). The glnB gene was cloned from S. hygroscopicus DNA by complementation in an Escherichia coli gl

  15. Central role of maladapted astrocytic plasticity in ischemic brain edema formation

    Directory of Open Access Journals (Sweden)

    Yu-Feng eWang

    2016-05-01

    Full Text Available Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the ensuing reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas; the two processes are interactive closely under the driving of maladapted astrocytic plasticity. The astrocytic plasticity includes both morphologic and functional plasticity. The former involves a reactive gliosis and the ensuing glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier. The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein and water channel protein aquaporin 4 to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the blood-brain barrier. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the blood-brain barrier, but also lead to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  16. Central Role of Maladapted Astrocytic Plasticity in Ischemic Brain Edema Formation.

    Science.gov (United States)

    Wang, Yu-Feng; Parpura, Vladimir

    2016-01-01

    Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the resulting reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas, associated with maladapted astrocytic plasticity. The astrocytic plasticity includes both morphological and functional plasticity. The former involves a reactive gliosis and the subsequent glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K(+) and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein (GFAP) and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the BBB. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but also leads to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation. PMID:27242440

  17. Disruption of glutamate-glutamine-GABA cycle significantly impacts on suicidal behaviour: survey of the literature and own findings on glutamine synthetase.

    Science.gov (United States)

    Bernstein, Hans-Gert; Tausch, Anne; Wagner, Rebecca; Steiner, Johann; Seeleke, Patrick; Walter, Martin; Dobrowolny, Henrik; Bogerts, Bernhard

    2013-11-01

    The aetiology of suicide is complex and still not completely understood. The present communication, which consists of two parts, aims to shed some light on the role of amino acidergic neurotransmission in suicide. In the first part we provide an overview of the literature showing that with the exception of certain gamma-aminobutyric acid transporters, virtually all components of the glutamate-glutamine- gamma-aminobutyric acid cycle are, in some way or other, abnormal in suicide victims, which indicates a prominent involvement of the glutamatergic and gammaaminobutyric acidergic neurotransmitter systems in suicidal behaviour. In the second part we present own immunohistochemical findings showing that densities of glutamine synthetase expressing glial cells in the mediodorsal thalamus as well as in the dorsolateral prefrontal and orbitofrontal cortex of schizophrenic suicide completers are significantly elevated compared with controls and non-suicide individuals with schizophrenia, thus calling into question the belief that cerebral glutamine synthetase deficit is indicative of suicidal behaviour.

  18. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  19. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Science.gov (United States)

    Korenić, Andrej; Boltze, Johannes; Deten, Alexander; Peters, Myriam; Andjus, Pavle; Radenović, Lidija

    2014-01-01

    Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m)) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m), visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m) during reperfusion, whereas GD caused a robust Δψ(m) negativation. In case no Δψ(m) negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m) hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψ(m) during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury. PMID:24587410

  20. Plasma Glutamine Concentrations in Liver Failure.

    Directory of Open Access Journals (Sweden)

    Gunnel Helling

    Full Text Available Higher than normal plasma glutamine concentration at admission to an intensive care unit is associated with an unfavorable outcome. Very high plasma glutamine levels are sometimes seen in both acute and chronic liver failure. We aimed to systematically explore the relation between different types of liver failure and plasma glutamine concentrations.Four different groups of patients were studies; chronic liver failure (n = 40, acute on chronic liver failure (n = 20, acute fulminant liver failure (n = 20, and post-hepatectomy liver failure (n = 20. Child-Pugh and Model for End-stage Liver Disease (MELD scores were assessed as indices of liver function. All groups except the chronic liver failure group were followed longitudinally during hospitalisation. Outcomes were recorded up to 48 months after study inclusion.All groups had individuals with very high plasma glutamine concentrations. In the total group of patients (n = 100, severity of liver failure correlated significantly with plasma glutamine concentration, but the correlation was not strong.Liver failure, regardless of severity and course of illness, may be associated with a high plasma glutamine concentration. Further studies are needed to understand whether high glutamine levels should be regarded as a biomarker or as a contributor to symptomatology in liver failure.

  1. Glutamate transporter-1 and cerebral ischemia%谷氨酸转运体-1与脑缺血

    Institute of Scientific and Technical Information of China (English)

    周华荣; 徐恩

    2013-01-01

    谷氨酸转运体-1(glutamate transporter-1,GLT-1)是脑组织内的一种重要谷氨酸转运体,可将胞外谷氨酸转运至星形胶质细胞内.在谷氨酰胺合成酶的作用下,谷氨酸转化为可被神经元利用的谷氨酰胺.脑缺血时,细胞外谷氨酸浓度急剧升高,从而对神经元产生兴奋性毒性作用.头孢曲松、亚致死性缺血、低压低氧等预处理均可通过调节GLT-1的表达和改善其功能而起神经保护作用.%Glutamate is an essential excitatory neurotransmitter which regulates brain functions.An increase in extracellular glutamate could excessively activate ionotropic glutamate receptors,initiate calcium overload,and lead to cell death after cerebral ischemia.Glutamate transporter-1 (GLT-1) is one of the major glutamate transporters expressed predominantly in astrocytes.Astrocytes also express the enzyme glutamine synthetase (GS) which converts the glutamate to glutamine; the latter is then 'recycled' into neurons.Pretreatment with ceftriaxone (CEF),ischemia and intermittent hypobaric hypoxia could lead to neuroprotection by increasing the expression of GLT-1 and regulating the activity of glutamate transporter in brain.

  2. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  3. Triptolide protects astrocytes from hypoxia/ reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    Minfang Guo; Hongcui Fan; Jiezhong Yu; Ning Ji; Yongsheng Sun; Liyun Liang; Baoguo Xiao; Cungen Ma

    2011-01-01

    Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.

  4. Astrocytes in the tempest of multiple sclerosis.

    Science.gov (United States)

    Miljković, Djordje; Timotijević, Gordana; Mostarica Stojković, Marija

    2011-12-01

    Astrocytes are the most abundant cell population within the CNS of mammals. Their glial role is perfectly performed in the healthy CNS as they support functions of neurons. The omnipresence of astrocytes throughout the white and grey matter and their intimate relation with blood vessels of the CNS, as well as numerous immunity-related actions that these cells are capable of, imply that astrocytes should have a prominent role in neuroinflammatory disorders, such as multiple sclerosis (MS). The role of astrocytes in MS is rather ambiguous, as they have the capacity to both stimulate and restrain neuroinflammation and tissue destruction. In this paper we present some of the proved and the proposed functions of astrocytes in neuroinflammation and discuss the effect of MS therapeutics on astrocytes. PMID:21443873

  5. Dynamic reactive astrocytes after focal ischemia

    Institute of Scientific and Technical Information of China (English)

    Shinghua Ding

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disor-ders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar for-mation associated with morphological changes and proliferation. This review paper discusses the recent advances in spatial and temporal dynamics of morphology and proliferation of reactive astrocytes after ischemic stroke based on results from experimental animal studies. As reactive astrocytes exhibit stem cell-like properties, knowledge of dynamics of reactive astrocytes and glial scar formation will provide important insights for astrocyte-based cell therapy in stroke.

  6. Targeting astrocytes in bipolar disorder.

    Science.gov (United States)

    Peng, Liang; Li, Baoman; Verkhratsky, Alexei

    2016-06-01

    Astrocytes are homeostatic cells of the central nervous system, which are critical for development and maintenance of synaptic transmission and hence of synaptically connected neuronal ensembles. Astrocytic densities are reduced in bipolar disorder, and therefore deficient astroglial function may contribute to overall disbalance in neurotransmission and to pathological evolution. Classical anti-bipolar drugs (lithium salts, valproic acid and carbamazepine) affect expression of astroglial genes and modify astroglial signalling and homeostatic cascades. Many effects of both antidepressant and anti-bipolar drugs are exerted through regulation of glutamate homeostasis and glutamatergic transmission, through K(+) buffering, through regulation of calcium-dependent phospholipase A2 (that controls metabolism of arachidonic acid) or through Ca(2+) homeostatic and signalling pathways. Sometimes anti-depressant and anti-bipolar drugs exert opposite effects, and some effects on gene expression in drug treated animals are opposite in neurones vs. astrocytes. Changes in the intracellular pH induced by anti-bipolar drugs affect uptake of myo-inositol and thereby signalling via inositoltrisphosphate (InsP3), this being in accord with one of the main theories of mechanism of action for these drugs. PMID:27015045

  7. White matter astrocytes in health and disease

    OpenAIRE

    Lundgaard, Iben; Osório, Maria Joana; Kress, Benjamin; Sanggaard, Simon; NEDERGAARD, Maiken

    2013-01-01

    Myelination by oligodendrocytes is a highly specialized process that relies on intimate interactions between the axon and oligodendrocyte. Astrocytes also have an important part in facilitating myelination in the CNS, however, comparatively less is known about how they affect myelination. This review therefore summarizes the literature and explores lingering questions surrounding differences between white matter and grey matter astrocytes, how astrocytes support myelination, how their dysfunc...

  8. Glutamate Pays Its Own Way in Astrocytes

    OpenAIRE

    MaryC.McKenna

    2013-01-01

    In vitro and in vivo studies have shown that glutamate can be oxidized for energy by brain astrocytes. The ability to harvest the energy from glutamate provides astrocytes with a mechanism to offset the high ATP cost of the uptake of glutamate from the synaptic cleft. This brief review focuses on oxidative metabolism of glutamate by astrocytes, the specific pathways involved in the complete oxidation of glutamate and the energy provided by each reaction.

  9. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    Improving crop nitrogen (N) utilization efficiency (NUE) is of major importance in modern agriculture in order to reduce the amount of N fertilizer used for crop production. There is a high demand for development of crops which are able to produce high yields but with a concomitantly lower N...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...... and wildtype control. However, when grown to maturity the differences between transgenic lines and wildtype were highly dependent on the growth conditions applied. The transgenic lines had a higher N utilization efficiency (NUtE) than wildtype control, but only when exposed to a mild N stress following...

  10. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  11. Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster.

    OpenAIRE

    Suarez Najera, I; Fernandez Ruiz, B; Garcia Segura, L M

    1980-01-01

    Adult hamsters were used for this electron microscopic study of the hypothalamic region. Specialized contacts between astrocytes and astrocytes, and between astrocytes and other cellular elements, are described and illustrated. The specialized inter-astrocytic junctions occur primarily in perivascular and subpial regions, but also in areas of high synaptic density. The junctions between astrocytic processes are of hemidesmosomal type. Astrocytes are connected to oligodendroglial cells by mean...

  12. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival.

    Directory of Open Access Journals (Sweden)

    Erica L Sanchez

    2015-07-01

    Full Text Available Kaposi's Sarcoma-associated Herpesvirus (KSHV is the etiologic agent of Kaposi's Sarcoma (KS. KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings

  13. Glutamine facilitates chemotherapy while reducing toxicity.

    Science.gov (United States)

    Klimberg, V S; Nwokedi, E; Hutchins, L F; Pappas, A A; Lang, N P; Broadwater, J R; Read, R C; Westbrook, K C

    1992-01-01

    Dose intensification of chemotherapy is thought to increase survival. With recent advances in hemopoietic cell modulators such as granulocyte colony stimulating factor, the limiting toxicity of intensifying chemotherapeutic regimens has become the severity of the associated enterocolitis. In animal models, glutamine protects the host from methotrexate-induced enterocolitis. This study evaluates the effects of a glutamine-supplemented diet on the tumoricidal effectiveness of methotrexate. Sarcoma-bearing Fisher 344 rats (n = 30) were pair-fed an isocaloric elemental diet containing 1% glutamine or an isonitrogenous amount of glycine beginning on day 25 of the study. Rats from each group received two intraperitoneal injections of methotrexate (5 mg/kg) or saline on days 26 and 33 of the study. On day 40, rats were killed, tumor volume and weight were recorded, and tumor glutaminase activity and tumor morphometrics were measured. Blood was taken for arterial glutamine content, complete blood count, and blood culture. The gut was processed for glutaminase activity and synthesis phase of the deoxyribonucleic acid. In rats receiving methotrexate, the tumor volume loss was nearly doubled when glutamine was added to the diet. Significant differences in tumor glutaminase activity and morphometrics were not detected. The toxicity to the host was ameliorated. Significantly increased synthesis phase of deoxyribonucleic acid of the whole jejunum, decreased bacteremia, "sepsis," and mortality were demonstrated. Glutamine supplementation enhances the tumoricidal effectiveness of methotrexate while reducing its morbidity and mortality in this sarcoma rat model.

  14. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery.

    Science.gov (United States)

    Ouyang, Li; Tian, Yueyang; Bao, Yun; Xu, Huijuan; Cheng, Jiaoyan; Wang, Bingyu; Shen, Yao; Chen, Zhong; Lyu, Jianxin

    2016-06-01

    Previously, we showed that carnosine upregulated the expression level of glutamate transporter 1 (GLT-1), which has been recognized as an important participant in the astrocyte-neuron lactate shuttle (ANLS), with ischemic model in vitro and in vivo. This study was designed to investigate the protective effect of carnosine on neuron/astrocyte co-cultures exposed to OGD/recovery, and to explore whether the ANLS or any other mechanism contributes to carnosine-induced neuroprotection on neuron/astrocyte. Co-cultures were treated with carnosine and exposed to OGD/recovery. Cell death and the extracellular levels of glutamate and GABA were measured. The mitochondrial respiration and glycolysis were detected by Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results showed that carnosine decreased neuronal cell death, increased extracellular GABA level, and abolished the increase in extracellular glutamate and reversed the mitochondrial energy metabolism disorder induced by OGD/recovery. Carnosine also upregulated the mRNA level of neuronal glutamate transporter EAAC1 at 2h after OGD. Dihydrokainate, a specific inhibitor of GLT-1, decreased glycolysis but it did not affect mitochondrial respiration of the cells, and it could not reverse the increase in mitochondrial OXPHOS induced by carnosine in the co-cultures. The levels of mRNAs for monocarboxylate transporter1, 4 (MCT1, 4), which were expressed in astrocytes, and MCT2, the main neuronal MCT, were significantly increased at the early stage of recovery. Carnosine only partly reversed the increased expression of astrocytic MCT1 and MCT4. These results suggest that regulating astrocytic energy metabolism and extracellular glutamate and GABA levels but not the ANLS are involved in the carnosine-induced neuroprotection. PMID:27040711

  15. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  16. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Beaulé

    Full Text Available BACKGROUND: Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian. METHODOLOGY/PRINCIPAL FINDINGS: We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice. CONCLUSION/SIGNIFICANCE: We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  17. Heterogeneity of astrocytes: from development to injury - single cell gene expression.

    Directory of Open Access Journals (Sweden)

    Vendula Rusnakova

    Full Text Available Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K(+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10-50 days of postnatal development (P10-P50. The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20 was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50. Within 14 days after ischemia (D3, D7, D14, additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3, transcriptionally active early reactive glia (mainly from D7 and permanent reactive glia (solely from D14. Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.

  18. [Studies on regulation of glutamine synthetase activity from Streptomyces lincolnensis].

    Science.gov (United States)

    Jin, Z; Jiao, R; Mao, Y

    2001-08-01

    Glutamine synthetase in crude extracts from Streptomyces lincolnensis growing under different nitrogen sources were studied. The results showed that NH4+ in high concentration repressed the biosynthesis of the enzyme. To determine whether Streptomyces lincolnensis has undergone covalent modification, a comparison of the glutamine synthetase isolated from cells grown on different nitrogen sources was made. No significant difference was observed in specific activity, pH optima, divalent cation response, and ultraviolet absorption spectra. Glutamine synthetase activity was not influenced by ammonia shock or snake venom phosphodiesterase treatment. Under these conditions, the activity of glutamine synthetase from K. aerogenes was markedly changed. There was therefore no evidence for enzymatic adenylylation of glutamine synthetase from Streptomyces lincolnensis. Glutamine synthetase was subject to feedback inhibition by end products of glutamine metabolism. Cumulative feedback inhibition of the Mn(2+)-dependent glutamine synthetase activity was demonstrated. These results suggest that glutamine synthetase from Streptomyces lincolnensis is an allosteric enzyme. PMID:12552916

  19. Astrocytes and Developmental White Matter Disorders

    Science.gov (United States)

    Sen, Ellora; Levison, Steven W.

    2006-01-01

    There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

  20. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    Science.gov (United States)

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  1. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    Science.gov (United States)

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  2. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    Directory of Open Access Journals (Sweden)

    Guadalupe Gómez-Baena

    Full Text Available Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples. Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen in the concentration of carbonyl derivatives in cell extracts, which was also higher (22% upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  3. Deprive to kill: glutamine closes the gate to anticancer monocarboxylic drugs.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-12-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate transporter 1, whose expression is post-transcriptionally increased upon glutamine withdrawal. Overall, our results identified the metabolic condition able to increase the selectivity of 3-bromopyruvate targets in neoplastic tissues, thereby providing a stage for its use in clinical settings for targeting malignancies and represent a proof of principle that modulation of glutamine availability can influence the delivery of monocarboxylic drugs into tumors. PMID:22932475

  4. Nitric Oxide in Astrocyte-Neuron Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nianzhen Li

    2002-06-27

    Astrocytes, a subtype of glial cell, have recently been shown to exhibit Ca{sup 2+} elevations in response to neurotransmitters. A Ca{sup 2+} elevation can propagate to adjacent astrocytes as a Ca{sup 2+} wave, which allows an astrocyte to communicate with its neighbors. Additionally, glutamate can be released from astrocytes via a Ca{sup 2+}-dependent mechanism, thus modulating neuronal activity and synaptic transmission. In this dissertation, the author investigated the roles of another endogenous signal, nitric oxide (NO), in astrocyte-neuron signaling. First the author tested if NO is generated during astrocytic Ca{sup 2+} signaling by imaging NO in purified murine cortical astrocyte cultures. Physiological concentrations of a natural messenger, ATP, caused a Ca{sup 2+}-dependent NO production. To test the roles of NO in astrocytic Ca{sup 2+} signaling, the author applied NO to astrocyte cultures via addition of a NO donor, S-nitrosol-N-acetylpenicillamine (SNAP). NO induced an influx of external Ca{sup 2+}, possibly through store-operated Ca{sup 2+} channels. The NO-induced Ca{sup 2+} signaling is cGMP-independent since 8-Br-cGMP, an agonistic analog of cGMP, did not induce a detectable Ca{sup 2+} change. The consequence of this NO-induced Ca{sup 2+} influx was assessed by simultaneously monitoring of cytosolic and internal store Ca{sup 2+} using fluorescent Ca{sup 2+} indicators x-rhod-1 and mag-fluo-4. Blockage of NO signaling with the NO scavenger PTIO significantly reduced the refilling percentage of internal stores following ATP-induced Ca{sup 2+} release, suggesting that NO modulates internal store refilling. Furthermore, locally photo-release of NO to a single astrocyte led to a Ca{sup 2+} elevation in the stimulated astrocyte and a subsequent Ca{sup 2+} wave to neighbors. Finally, the author tested the role of NO inglutamate-mediated astrocyte-neuron signaling by recording the astrocyte-evoked glutamate-dependent neuronal slow inward current (SIC

  5. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-01

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  6. Micropatterned substrates for studying astrocytes in culture

    Directory of Open Access Journals (Sweden)

    William Lee

    2009-12-01

    Full Text Available Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.

  7. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels.

    Science.gov (United States)

    Palmieri, Erika Mariana; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Iacobazzi, Vito; Castegna, Alessandra

    2014-12-20

    The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued following GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipocytes to differentially respond to LPS during differentiation negatively correlates to GS expression and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism through which mature adipocytes control the inflammatory response.

  8. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission

    Science.gov (United States)

    Shinozaki, Youichi; Nomura, Masatoshi; Iwatsuki, Ken; Moriyama, Yoshinori; Gachet, Christian; Koizumi, Schuichi

    2014-03-01

    Microglia are highly sensitive to even small changes in the brain environment, such as invasion of non-hazardous toxicants or the presymptomatic state of diseases. However, the physiological or pathophysiological consequences of their responses remain unknown. Here, we report that cultured microglia sense low concentrations of the neurotoxicant methylmercury (MeHglow) and provide neuroprotection against MeHg, for which astrocytes are also required. When exposed to MeHglow, microglia exocytosed ATP via p38 MAPK- and vesicular nucleotide transporter (VNUT)-dependent mechanisms. Astrocytes responded to the microglia-derived ATP via P2Y1 receptors and released interleukin-6 (IL-6), thereby protecting neurons against MeHglow. These neuroprotective actions were also observed in organotypic hippocampal slices from wild-type mice, but not in slices prepared from VNUT knockout or P2Y1 receptor knockout mice. These findings suggest that microglia sense and respond to even non-hazardous toxicants such as MeHglow and change their phenotype into a neuroprotective one, for which astrocytic support is required.

  9. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Directory of Open Access Journals (Sweden)

    Lori A Newman

    Full Text Available When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  10. Neuromuscular Dysfunction in Experimental Sepsis and Glutamine

    Science.gov (United States)

    Çankayalı, İlkin; Boyacılar, Özden; Demirağ, Kubilay; Uyar, Mehmet; Moral, Ali Reşat

    2016-01-01

    Background: Electrophysiological studies show that critical illness polyneuromyopathy appears in the early stage of sepsis before the manifestation of clinical findings. The metabolic response observed during sepsis causes glutamine to become a relative essential amino acid. Aims: We aimed to assess the changes in neuromuscular transmission in the early stage of sepsis after glutamine supplementation. Study Design: Animal experimentation. Methods: Twenty male Sprague-Dawley rats were randomized into two groups. Rats in both groups were given normal feeding for one week. In the study group, 1 g/kg/day glutamine was added to normal feeding by feeding tube for one week. Cecal ligation and perforation (CLP) surgery was performed at the end of one week. Before and 24 hours after CLP, compound muscle action potentials were recorded from the gastrocnemius muscle. Results: Latency measurements before and 24 hours after CLP were 0.68±0.05 ms and 0.80±0.09 ms in the control group and 0.69±0.07 ms and 0.73±0.07 ms in the study group (p<0.05). Conclusion: Since enteral glutamine prevented compound muscle action potentials (CMAP) latency prolongation in the early phase of sepsis, it was concluded that enteral glutamine replacement might be promising in the prevention of neuromuscular dysfunction in sepsis; however, further studies are required. PMID:27308070

  11. Glutamine supplementation in bone marrow transplantation.

    Science.gov (United States)

    Ziegler, Thomas R

    2002-01-01

    An increasing number of clinical investigations have focused on supplementation of specialized enteral and parenteral nutrition with the amino acid glutamine. This interest derives from strong evidence in animal models and emerging clinical data on the efficacy of glutamine administration following chemotherapy, trauma, sepsis and other catabolic conditions. Glutamine has protein-anabolic effects in stressed patients and, among many key metabolic functions, is used as a major fuel/substrate by cells of the gastrointestinal epithelium and the immune system. These effects may be particularly advantageous in patients undergoing bone marrow transplantation (BMT), who exhibit post-transplant body protein wasting, gut mucosal injury and immunodeficiency. Studies to date indicate that enteral and parenteral glutamine supplementation is well tolerated and potentially efficacious after high-dose chemotherapy or BMT for cancer treatment. Although not all studies demonstrate benefits, sufficient positive data have been published to suggest that this nutrient should be considered as adjunctive metabolic support of some individuals undergoing marrow transplant. However, BMT is a rapidly evolving clinical procedure with regard to the conditioning and supportive protocols utilized. Thus, additional randomized, double-blind, controlled clinical trials are indicated to define the efficacy of glutamine with current BMT regimens.

  12. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  13. Loose excitation-secretion coupling in astrocytes.

    Science.gov (United States)

    Vardjan, Nina; Parpura, Vladimir; Zorec, Robert

    2016-05-01

    Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing. PMID:26358496

  14. Glutamine: An Obligatory Parenteral Nutrition Substrate in Critical Care Therapy

    Directory of Open Access Journals (Sweden)

    Peter Stehle

    2015-01-01

    Full Text Available Critical illness is characterized by glutamine depletion owing to increased metabolic demand. Glutamine is essential to maintain intestinal integrity and function, sustain immunologic response, and maintain antioxidative balance. Insufficient endogenous availability of glutamine may impair outcome in critically ill patients. Consequently, glutamine has been considered to be a conditionally essential amino acid and a necessary component to complete any parenteral nutrition regimen. Recently, this scientifically sound recommendation has been questioned, primarily based on controversial findings from a large multicentre study published in 2013 that evoked considerable uncertainty among clinicians. The present review was conceived to clarify the most important questions surrounding glutamine supplementation in critical care. This was achieved by addressing the role of glutamine in the pathophysiology of critical illness, summarizing recent clinical studies in patients receiving parenteral nutrition with intravenous glutamine, and describing practical concepts for providing parenteral glutamine in critical care.

  15. Glutamine: An Obligatory Parenteral Nutrition Substrate in Critical Care Therapy

    Science.gov (United States)

    Stehle, Peter; Kuhn, Katharina S.

    2015-01-01

    Critical illness is characterized by glutamine depletion owing to increased metabolic demand. Glutamine is essential to maintain intestinal integrity and function, sustain immunologic response, and maintain antioxidative balance. Insufficient endogenous availability of glutamine may impair outcome in critically ill patients. Consequently, glutamine has been considered to be a conditionally essential amino acid and a necessary component to complete any parenteral nutrition regimen. Recently, this scientifically sound recommendation has been questioned, primarily based on controversial findings from a large multicentre study published in 2013 that evoked considerable uncertainty among clinicians. The present review was conceived to clarify the most important questions surrounding glutamine supplementation in critical care. This was achieved by addressing the role of glutamine in the pathophysiology of critical illness, summarizing recent clinical studies in patients receiving parenteral nutrition with intravenous glutamine, and describing practical concepts for providing parenteral glutamine in critical care. PMID:26495301

  16. Glutamine supplementation in the critically ill: friend or foe?

    Science.gov (United States)

    Oudemans-van Straaten, Heleen M; van Zanten, Arthur R H

    2014-05-19

    In the previous issue of Critical Care, Mori and colleagues demonstrate that glutamine supplementation in mechanically ventilated patients as part of parenteral nutrition increases plasma glutamine concentration and glutamine utilization, but does not mitigate protein degradation and even increases de novo glutamine production. Studies suggest that protein degradation is regulated by the degree of inflammation. Immune cells utilize large amounts of glutamine and derive their glutamine requirements from muscle protein degradation. We hypothesize that the effects of glutamine supplementation depend on the degree of inflammation. Infusing large amounts of exogenous glutamine into patients with inflammatory conditions like sepsis and multiple organ failure may not only enhance immune competence, but may potentially augment the inflammatory response and thereby negatively influence outcome.

  17. Neuronal modulation of calcium channel activity in cultured rat astrocytes.

    OpenAIRE

    Corvalan, V; Cole, R; de Vellis, J.; Hagiwara, S.

    1990-01-01

    The patch-clamp technique was used to study whether cocultivation of neurons and astrocytes modulates the expression of calcium channel activity in astrocytes. Whole-cell patch-clamp recordings from rat brain astrocytes cocultured with rat embryonic neurons revealed two types of voltage-dependent inward currents carried by Ca2+ and blocked by either Cd2+ or Co2+ that otherwise were not detected in purified astrocytes. This expression of calcium channel activity in astrocytes was neuron depend...

  18. Common astrocytic programs during brain development, injury and cancer

    OpenAIRE

    Silver, Daniel J.; Steindler, Dennis A.

    2009-01-01

    In addition to radial glial cells of neurohistogenesis, immature astrocytes with stem-cell-like properties cordon off emerging functional patterns in the developing brain. Astrocytes also can be stem cells during adult neurogenesis, and a proposed potency of injury-associated reactive astrocytes has recently been substantiated. Astrocytic cells might additionally be involved in cancer stem cell-associated gliomagenesis. Thus, there are distinguishing roles for stem-cell-like astrocytes during...

  19. Glutamine: the nonessential amino acid for performance enhancement.

    Science.gov (United States)

    Phillips, George C

    2007-07-01

    Glutamine is a popular dietary supplement consumed for purported ergogenic benefits of increased strength, quicker recovery, decreased frequency of respiratory infections, and prevention of overtraining. From a biochemical standpoint, glutamine does play a physiologic role in each of these areas, but it remains only one of a host of factors involved. This review examines the effects of glutamine on exercise and demonstrates a lack of evidence for definitive positive ergogenic benefits as a result of glutamine supplementation. PMID:17618004

  20. Superantigen presenting capacity of human astrocytes

    DEFF Research Database (Denmark)

    Hassan-Zahraee, M; Ladiwala, U; Lavoie, P M;

    2000-01-01

    We found that human fetal astrocytes (HFA) are able to support superantigen (SAG) staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1)-induced activation of immediately ex vivo allogenic human CD4 T cells. Using radiolabelled toxins, we demonstrate that both SEB and TSST-1...... bind with high affinity to MHC class II antigen expressing astrocytes; binding is displaceable with excess cold toxin. Competition experiments further indicate that TSST-1 and SEB at least partially compete with each other for binding to astrocytes suggesting they bind to the same HLA-DR region...

  1. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    OpenAIRE

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (I...

  2. Association of astrocytes with neurons and astrocytes derived from distinct progenitor domains in the subpallium

    OpenAIRE

    Makio Torigoe; Kenta Yamauchi; Yan Zhu; Hiroaki Kobayashi; Fujio Murakami

    2015-01-01

    Astrocytes play pivotal roles in metabolism and homeostasis as well as in neural development and function in a manner thought to depend on their region-specific diversity. In the mouse spinal cord, astrocytes and neurons, which are derived from a common progenitor domain (PD) and controlled by common PD-specific transcription factors, migrate radially and share their final positions. However, whether astrocytes can only interact with neurons from common PDs in the brain remains unknown. Here,...

  3. Low-frequency vibrational modes of glutamine

    Science.gov (United States)

    Wang, Wei-Ning; Wang, Guo; Zhang, Yan

    2011-12-01

    High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.

  4. Low-frequency vibrational modes of glutamine

    Institute of Scientific and Technical Information of China (English)

    Wang Wei-Ning; Wang Guo; Zhang Yan

    2011-01-01

    High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy.Based on the experimental and the computational results,the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations.Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.

  5. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  6. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice.

    Directory of Open Access Journals (Sweden)

    Miroslava Anderova

    Full Text Available Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4. As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD or 50 mM K(+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+.

  7. Transcriptomic analysis and 3D bioengineering of astrocytes indicate ROCK inhibition produces cytotrophic astrogliosis

    Directory of Open Access Journals (Sweden)

    Ross D O'Shea

    2015-02-01

    Full Text Available Astrocytes provide trophic, structural and metabolic support to neurons, and are considered genuine targets in regenerative neurobiology, as their phenotype arbitrates brain integrity during injury. Inhibitors of Rho kinase (ROCK cause stellation of cultured 2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated expression of BDNF and anti-oxidant genes. Here we further explored the signposts of a cytotrophic, healthy phenotype by data-mining of our astrocytic transcriptome in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular cascades and inflammatory / angiogenic responses were all inhibited, favouring adoption of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can influence the extracellular matrix. We built upon our evidence that astrocytes maintained on 3D poly-Ɛ-caprolactone (PCL electrospun scaffolds adopt a cytotrophic phenotype similar to that produced by Fasudil. Using these procedures, employing mature 3D cultured astrocytes, Fasudil (100 µM or Y27632 (30 µM added for the last 72 h of culture altered arborization, which featured numerous additional minor processes as shown by GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased G-actin labelling, indicative of disassembly of actin stress fibres. ROCK inhibitors provide additional beneficial effects for bioengineered 3D astrocytes, including enlargement of the overall arbour. Potentially, the combined strategy of bio-compatible scaffolds with ROCK inhibition offers unique advantages for the management of glial scarring. Overall these data emphasize that manipulation of the astrocyte phenotype to achieve a healthy biology offers new hope for the management of inflammation in neuropathologies.

  8. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease.

    Science.gov (United States)

    Bahat-Stroomza, Merav; Barhum, Yael; Levy, Yossef S; Karpov, Olga; Bulvik, Shlomo; Melamed, Eldad; Offen, Daniel

    2009-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder with its motor phenomena due mostly to loss of dopamine-producing neurons in the substantia nigra. Pharmacological treatments aimed to increase the deficient dopaminergic neurotransmission are effective in ameliorating the cardinal symptoms, but none of these therapies is curative. It has been suggested that treatment with neurotrophic factors (NTFs) might protect and prevent death of the surviving dopaminergic neurons and induce proliferation of their axonal nerve terminals with reinnervations of the deafferented striatum. However, long-term delivery of such proteins into the CNS is problematic. We therefore aimed to differentiate ex vivo human bone marrow-derived mesenchymal stromal cells into astrocyte-like cells, capable of generating NTFs for future transplantation into basal ganglia of PD patients. Indeed, mesenchymal stromal cells treated with our novel astrocyte differentiation medium, present astrocyte-like morphology and express the astrocyte markers S100beta, glutamine synthetase and glial fibrillary acidic protein. Moreover, these astrocyte-like cells produce and secrete significant amounts of glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor as indicated by messenger RNA, real-time polymerase chain reaction, ELISA, and Western blot analyses. Such NTF-producing cells transplanted into the striatum of 6-hydroxydopamine-lesioned rats, a model of PD, produced a progressive reduction in the apomorphine-induced contralateral rotations as well as behavioral improvement in rotor-rod and the "sunflower seeds" eating motor tests. Histological assessments revealed that the engrafted cells survived and expressed astrocyte and human markers and acted to regenerate the damaged dopaminergic nerve terminal system. Findings indicate that our novel procedure to induce NTF-producing astrocyte-like cells derived from human bone marrow stromal cells

  9. Astrocytes release ATP through lysosomal exocytosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Astrocytes, the most abundant type of glial cells in the brain, have been found to release signaling molecules, including adenosine triphosphate(ATP), the most important energy carrier inside the cell as well as a universal extracellular signaling molecule.

  10. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors.

    Science.gov (United States)

    Hamby, Mary E; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H; Khakh, Baljit S; Sofroniew, Michael V

    2012-10-17

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.

  11. Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in mice

    Directory of Open Access Journals (Sweden)

    Gu Xing-Long

    2010-04-01

    Full Text Available Abstract Background Parkinson's disease (PD is the most common movement disorder. While neuronal deposition of α-synuclein serves as a pathological hallmark of PD and Dementia with Lewy Bodies, α-synuclein-positive protein aggregates are also present in astrocytes. The pathological consequence of astrocytic accumulation of α-synuclein, however, is unclear. Results Here we show that PD-related A53T mutant α-synuclein, when selectively expressed in astrocytes, induced rapidly progressed paralysis in mice. Increasing accumulation of α-synuclein aggregates was found in presymptomatic and symptomatic mouse brains and correlated with the expansion of reactive astrogliosis. The normal function of astrocytes was compromised as evidenced by cerebral microhemorrhage and down-regulation of astrocytic glutamate transporters, which also led to increased inflammatory responses and microglial activation. Interestingly, the activation of microglia was mainly detected in the midbrain, brainstem and spinal cord, where a significant loss of dopaminergic and motor neurons was observed. Consistent with the activation of microglia, the expression level of cyclooxygenase 1 (COX-1 was significantly up-regulated in the brain of symptomatic mice and in cultured microglia treated with conditioned medium derived from astrocytes over-expressing A53T α-synuclein. Consequently, the suppression of COX-1 activities extended the survival of mutant mice, suggesting that excess inflammatory responses elicited by reactive astrocytes may contribute to the degeneration of neurons. Conclusions Our findings demonstrate a critical involvement of astrocytic α-synuclein in initiating the non-cell autonomous killing of neurons, suggesting the viability of reactive astrocytes and microglia as potential therapeutic targets for PD and other neurodegenerative diseases.

  12. Relaxin Protects Astrocytes from Hypoxia In Vitro

    OpenAIRE

    Willcox, Jordan M.; Alastair J S Summerlee

    2014-01-01

    The peptide relaxin has recently been shown to protect brain tissues from the detrimental effects of ischemia. To date, the mechanisms for this remain unclear. In order to investigate the neuroprotective mechanisms by which relaxin may protect the brain, we investigated the possibility that relaxin protects astrocytes from hypoxia or oxygen/glucose deprivation (OGD). Cultured astrocytes were pre-treated with either relaxin-2 or relaxin-3 and exposed to OGD for 24 or 48 hours. Following OGD ex...

  13. Dynamic reactive astrocytes after focal ischemia

    OpenAIRE

    Ding, Shinghua

    2014-01-01

    Astrocytes are specialized and most numerous glial cell type in the central nervous system and play important roles in physiology. Astrocytes are also critically involved in many neural disorders including focal ischemic stroke, a leading cause of brain injury and human death. One of the prominent pathological features of focal ischemic stroke is reactive astrogliosis and glial scar formation associated with morphological changes and proliferation. This review paper discusses the recent advan...

  14. Stargazing: Monitoring subcellular dynamics of brain astrocytes.

    Science.gov (United States)

    Benjamin Kacerovsky, J; Murai, K K

    2016-05-26

    Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain. PMID:26162237

  15. Astrocyte Aquaporin Dynamics in Health and Disease.

    Science.gov (United States)

    Potokar, Maja; Jorgačevski, Jernej; Zorec, Robert

    2016-01-01

    The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state. PMID:27420057

  16. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  17. The effect of glutamine infusion on the inflammatory response and HSP70 during human experimental endotoxaemia

    DEFF Research Database (Denmark)

    Andreasen, Anne Sofie; Pedersen-Skovsgaard, Theis; Mortensen, Ole Hartvig;

    2009-01-01

    INTRODUCTION: Glutamine supplementation has beneficial effects on morbidity and mortality in critically ill patients, possibly in part through an attenuation of the proinflammatory cytokine response and a stimulation of heat shock protein (HSP)70. We infused either alanine-glutamine or saline...... mononuclear cells (BMNCs) was measured by Western blotting. RESULTS: Plasma glutamine increased during alanine-glutamine infusion. Endotoxin reduced plasma glutamine during both trials, but plasma glutamine levels remained above baseline with alanine-glutamine supplementation. Endotoxin injection...

  18. Inhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy.

    Science.gov (United States)

    Gruenbaum, Shaun E; Wang, Helen; Zaveri, Hitten P; Tang, Amber B; Lee, Tih-Shih W; Eid, Tore; Dhaher, Roni

    2015-10-01

    The prevalence of depression and suicide is increased in patients with mesial temporal lobe epilepsy (MTLE); however, the underlying mechanism remains unknown. Anhedonia, a core symptom of depression that is predictive of suicide, is common in patients with MTLE. Glutamine synthetase, an astrocytic enzyme that metabolizes glutamate and ammonia to glutamine, is reduced in the amygdala in patients with epilepsy and depression and in suicide victims. Here, we sought to develop a novel model of anhedonia in MTLE by testing the hypothesis that deficiency in glutamine synthetase in the central nucleus of the amygdala (CeA) leads to epilepsy and comorbid anhedonia. Nineteen male Sprague-Dawley rats were implanted with an osmotic pump infusing either the glutamine synthetase inhibitor methionine sulfoximine [MSO (n=12)] or phosphate buffered saline [PBS (n=7)] into the right CeA. Seizure activity was monitored by video-intracranial electroencephalogram (EEG) recordings for 21days after the onset of MSO infusion. Sucrose preference, a measure of anhedonia, was assessed after 21days. Methionine sulfoximine-infused rats exhibited recurrent seizures during the monitoring period and showed decreased sucrose preference over days when compared with PBS-infused rats (pglutamine synthetase activity in the CeA is a possible common cause of anhedonia and seizures in TLE. We propose that the MSO CeA model can be used for mechanistic studies that will lead to the development and testing of novel drugs to prevent seizures, depression, and suicide in patients with TLE.

  19. Glutamine: precursor or nitrogen donor for citrulline synthesis?

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia; Lee, Brendan

    2010-07-01

    Although glutamine is considered the main precursor for citrulline synthesis, the current literature does not differentiate between the contribution of glutamine carbon skeleton vs. nonspecific nitrogen (i.e., ammonia) and carbon derived from glutamine oxidation. To elucidate the role of glutamine and nonspecific nitrogen in the synthesis of citrulline, l-[2-(15)N]- and l-[5-(15)N]glutamine and (15)N-ammonium acetate were infused intragastrically in mice. The amino group of glutamine labeled the three nitrogen groups of citrulline almost equally. The amido group and ammonium acetate labeled the ureido and amino groups of citrulline, but not the delta-nitrogen. D(5)-glutamine also infused in this arm of the study, which traces the carbon skeleton of glutamine, was utilized poorly, accounting for only 0.2-0.4% of the circulating citrulline. Dietary glutamine nitrogen (both N groups) incorporation was 25-fold higher than the incorporation of its carbon skeleton into citrulline. To investigate the relative contributions of the carbon skeleton and nonspecific carbon of glutamine, arginine, and proline to citrulline synthesis, U-(13)C(n) tracers of these amino acids were infused intragastrically. Dietary arginine was the main precursor for citrulline synthesis, accounting for approximately 40% of the circulating citrulline. Proline contribution was minor (3.4%), and glutamine was negligible (0.4%). However, the glutamine tracer resulted in a higher enrichment in the ureido group, indicating incorporation of nonspecific carbon from glutamine oxidation into carbamylphosphate used for citrulline synthesis. In conclusion, dietary glutamine is a poor carbon skeleton precursor for the synthesis of citrulline, although it contributes both nonspecific nitrogen and carbon to citrulline synthesis.

  20. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes

    Science.gov (United States)

    Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.

    2016-01-01

    Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509

  1. Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin.

    Directory of Open Access Journals (Sweden)

    Lusine Danielyan

    Full Text Available In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS, an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP. While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component beta-catenin. Inhibition of, glycogen synthase kinase 3beta in cultured keratinocytes and HaCaT cells, however, did not support a direct role of beta-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8-10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia.

  2. Effect of glutamine supplementation on neutrophil function in male judoists.

    Science.gov (United States)

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. PMID:23348981

  3. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    Science.gov (United States)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  4. Glutamine uptake contributes to central sensitization in the medullary dorsal horn

    OpenAIRE

    Chiang, Chen Yu; Li, Zhaohui; Dostrovsky, Jonathan O.; Hu, James W.; Sessle, Barry J.

    2008-01-01

    Mustard oil application to tooth pulp produces central sensitization in rat medullary dorsal horn (MDH) nociceptive neurons, which has been implicated in persistent pain mechanisms. We found that superfusion onto MDH of methylaminoisobutyric acid, a competitive inhibitor of the neuronal system A transporter for presynaptic uptake of glutamine (a glutamate precursor released from astroglia), significantly depressed development of mustard oil-induced central sensitization in rat MDH nociceptive...

  5. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  6. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  7. Sodium signaling and astrocyte energy metabolism.

    Science.gov (United States)

    Chatton, Jean-Yves; Magistretti, Pierre J; Barros, L Felipe

    2016-10-01

    The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676. PMID:27027636

  8. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  9. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    International Nuclear Information System (INIS)

    Highlights: → Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. → Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca2+ permeant SACs. → The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. → Stretch-induced ET-1 production depends on a calcium influx. → SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (2+ threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  10. 1,25-Dihydroxyvitamin D inhibits glutamine metabolism in Harvey-ras transformed MCF10A human breast epithelial cell.

    Science.gov (United States)

    Zhou, Xuanzhu; Zheng, Wei; Nagana Gowda, G A; Raftery, Daniel; Donkin, Shawn S; Bequette, Brian; Teegarden, Dorothy

    2016-10-01

    Breast cancer is the second most common cancer among women in the US. The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), is proposed to inhibit cellular processes and to prevent breast cancer. The current studies investigated the effect of 1,25(OH)2D on glutamine metabolism during cancer progression employing Harvey-ras oncogene transformed MCF10A human breast epithelial cells (MCF10A-ras). Treatment with 1,25(OH)2D significantly reduced intracellular glutamine and glutamate levels measured by nuclear magnetic resonance (NMR) by 23±2% each. Further, 1,25(OH)2D treatment reduced glutamine and glutamate flux, determined by [U-(13)C5] glutamine tracer kinetics, into the TCA cycle by 31±0.2% and 17±0.4%, respectively. The relative levels of mRNA and protein abundance of the major glutamine transporter, solute linked carrier family 1 member A5 (SLC1A5), was significantly decreased by 1,25(OH)2D treatment in both MCF10A-ras cells and MCF10A which overexpress ErbB2 (HER-2/neu). Consistent with these results, glutamine uptake was reduced by 1,25(OH)2D treatment and the impact was eliminated with the SLC1A5 inhibitor L-γ-Glutamyl-p-nitroanilide (GPNA). A consensus sequence to the vitamin D responsive element (VDRE) was identified in silico in the SLC1A5 gene promoter, and site-directed mutagenesis analyses with reporter gene studies demonstrate a functional negative VDRE in the promoter of the SLC1A5 gene. siRNA-SLC1A5 transfection in MCF10A-ras cells significantly reduced SLC1A5 mRNA expression as well as decreased viable cell number similar to 1,25(OH)2D treatment. SLC1A5 knockdown also induced an increase in apoptotic cells in MCF10A-ras cells. These results suggest 1,25(OH)2D alters glutamine metabolism in MCF10A-ras cells by inhibiting glutamine uptake and utilization, in part through down-regulation of SLC1A5 transcript abundance. Thus, 1,25(OH)2D down-regulation of the glutamine transporter, SLC1A5, may facilitate vitamin D prevention of breast

  11. Functions of astrocytes and their potential as therapeutic targets

    OpenAIRE

    Kimelberg, Harold K.; NEDERGAARD, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the s...

  12. Injury and repair of astrocyte after ionizing radiation

    International Nuclear Information System (INIS)

    Astrocyte is the most glial cell in the central nervous system. In the present experiment, radiation injury to the central nervous system (CNS) triggers a large network of cellular changes including neuron, glial cell and endothelial cell in morphology and metabolism and function. Astrocyte changes rapidly after ionizing radiation. There is a relationship between astrocyte and the pathologic process and function recover of damaged brain tissue following CNS injury. This suggests that astrocyte plays an important role in cure of clinical radiation injury

  13. Epigenetic Regulation of HIV-1 Latency in Astrocytes

    OpenAIRE

    Narasipura, Srinivas D.; Kim, Stephanie; Al-Harthi, Lena

    2014-01-01

    HIV infiltrates the brain at early times postinfection and remains latent within astrocytes and macrophages. Because astrocytes are the most abundant cell type in the brain, we evaluated epigenetic regulation of HIV latency in astrocytes. We have shown that class I histone deacetylases (HDACs) and a lysine-specific histone methyltransferase, SU(VAR)3-9, play a significant role in silencing of HIV transcription in astrocytes. Our studies add to a growing body of evidence demonstrating that ast...

  14. Astrocytes contribute to gamma oscillations and recognition memory

    OpenAIRE

    Lee, Hosuk Sean; Ghetti, Andrea; Pinto-Duarte, António; Xin WANG; Dziewczapolski, Gustavo; Galimi, Francesco; Huitron-Resendiz, Salvador; Piña-Crespo, Juan C.; Roberts, Amanda J.; Verma, Inder M.; Sejnowski, Terrence J.; Heinemann, Stephen F.

    2014-01-01

    Astrocytes are well placed to modulate neural activity. However, the functions typically attributed to astrocytes are associated with a temporal dimension significantly slower than the timescale of synaptic transmission of neurons. Consequently, it has been assumed that astrocytes do not play a major role in modulating fast neural network dynamics known to underlie cognitive behavior. By creating a transgenic mouse in which vesicular release from astrocytes can be reversibly blocked, we found...

  15. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  16. Glutamate release from astrocytic gliosomes under physiological and pathological conditions.

    Science.gov (United States)

    Milanese, Marco; Bonifacino, Tiziana; Zappettini, Simona; Usai, Cesare; Tacchetti, Carlo; Nobile, Mario; Bonanno, Giambattista

    2009-01-01

    Glial subcellular particles (gliosomes) have been purified from rat cerebral cortex or mouse spinal cord and investigated for their ability to release glutamate. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins, such as GFAP and S-100 but not neuronal proteins, such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin, high KCl, veratrine, 4-aminopyridine, AMPA, or ATP by mechanisms involving extracellular Ca2+, Ca2+ release from intracellular stores as well as reversal of glutamate transporters. In addition, gliosomes can release glutamate also by a mechanism involving heterologous transporter activation (heterotransporters) located on glutamate-releasing and glutamate transporter-expressing (homotransporters) gliosomes. This glutamate release involves reversal of glutamate transporters and anion channel opening, but not exocytosis. Both the exocytotic and the heterotransporter-mediated glutamate release were more abundant in gliosomes prepared from the spinal cord of transgenic mice, model of amyotrophic lateral sclerosis, than in controls; suggesting the involvement of astrocytic glutamate release in the excitotoxicity proposed as a cause of motor neuron degeneration. The results support the view that gliosomes may represent a viable preparation that allows to study mechanisms of astrocytic transmitter release and its regulation in healthy animals and in animal models of brain diseases. PMID:19607977

  17. From stem cell to astrocyte: Decoding the regulation of GFAP

    NARCIS (Netherlands)

    R. Kanski

    2014-01-01

    The research presented in this thesis focuses on glial fibrillary acidic protein (GFAP), the main intermediate filament (IF) in astrocytes and astrocyte subpopulations such as neural stem cells (NSCs). In neurodegenerative diseases or upon brain damage, astrocytes respond to an injury with an upregu

  18. Rotational Study of Natural Amino Acid Glutamine

    Science.gov (United States)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  19. Astroglial glutamate transporters coordinate excitatory signaling and brain energetics.

    Science.gov (United States)

    Robinson, Michael B; Jackson, Joshua G

    2016-09-01

    In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or

  20. Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization

    International Nuclear Information System (INIS)

    Quantitative high resolution in vitro 1H nuclear magnetic resonance spectroscopy was employed to study the metabolic effects of 3-nitropropionic acid associated with aging from perchloric acid extracts of rat striata. Systemic injection of 3-nitropropionic acid in rats at a dose of 10 mg/kg/day for seven consecutive days significantly impaired energy metabolism in rats one, four and eight months of age, as evidenced by a marked elevation of succinate and lactate levels. However, a significant decrease in N-acetyl-l-aspartate level, a neuronal marker, was observed in four- and eight-month-old rats but not in one-month-old rats. This would indicate that rats at four to eight months are more susceptible to 3-nitropropionic acid than those at one month. A significant decrease in GABA level was observed in four-month-old 3-nitropropionic acid-treated rats, which is consistent with the literature that GABAergic neurons are particularly vulnerable to 3-nitropropionic acid treatment. In addition, glutamine and glutamate levels were markedly decreased at four and eight months in 3-nitropropionic acid-treated rats. Since glutamine is synthesized predominantly in glia, the observation above suggests that 3-nitropropionic acid intoxication may involve perturbation of energy metabolism, glial injury and consequent neuronal damage. Astrocytes which are essential in the metabolism of glutamate and glutamine were used to further assess 3-nitropropionic acid-induced toxicity. Glial proliferation, mitochondrial metabolism and glutamine synthetase activity were all reduced by 3-nitropropionic acid treatment with a concomitant increase, in a dose-dependent manner, of lactate levels, suggesting that 3-nitropropionic acid is also detrimental to astrocytes in vivo and thus may affect metabolic interaction between neurons and glia.These results not only imply that 3-nitropropionic acid blocks energy metabolism prior to exerting neurotoxic damage but also demonstrate that the degree of

  1. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon.

    Science.gov (United States)

    Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J; Yang, Seung-Joo; Jeon, Seung-Je; Harrison, Joseph S; Yim, Jung-Hyuk; Lee, Sang Ghil; Handa, Hiroshi; Kuhlman, Brian; Jeong, Ji-Seon; Reitsma, Justin M; Park, Chul-Seung; Hess, Sonja; Deshaies, Raymond J

    2016-03-17

    Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.

  2. A Novel Preparation Method of C-Terminal Glutamine Dipeptides

    Institute of Scientific and Technical Information of China (English)

    QIAN Shao-Song; LIU Yi; CHEN Ran; LI Jia-You; WU Xiao-Yan; JIAO Qing-Cai

    2006-01-01

    A novel synthesis method of dipeptides containing glutamine is reported. Protected L-amino acids were prepared by using inexpensive phthaloyl as the protecting group. Then the phthaloyl-L-amino acids were condensed with glutamine salts by the mixed anhydride method to afford phthaloyl dipeptides. Subsequently, the phthaloyl was removed from the dipeptides with hydrazine hydrate. As a result, optically pure glutamine-containing dipeptides were obtained in good yields.

  3. When Is It Appropriate to Use Glutamine in Critical Illness?

    Science.gov (United States)

    Mundi, Manpreet S; Shah, Meera; Hurt, Ryan T

    2016-08-01

    Glutamine is a nonessential amino acid, which under trauma or critical illness can become essential. A number of historic small single-center randomized controlled trials (RCTs) have demonstrated positive treatment effects on clinical outcomes with glutamine supplementation. Meta-analyses based on these trials demonstrated a significant reduction in hospital mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS with intravenous (IV) glutamine. Similar results were not noted in 2 large multicenter RCTs (REDOXS and MetaPlus) assessing the efficacy of glutamine supplementation in ventilated ICU patients. The REDOXS trial of 40 ICUs randomized 1223 ventilated ICU patients to glutamine (IV and enteral), antioxidants, both glutamine and antioxidants, or placebo. The main conclusions were a trend toward increased 28-day mortality and significant increased hospital and 6-month mortality in those who received glutamine. The MetaPlus trial of 14 ICUs, which randomized 301 ventilated ICU patients to glutamine-enriched enteral vs an isocaloric diet, noted increased 6-month mortality in the glutamine-supplemented group. Newer RCTs have focused on specific populations and have demonstrated benefits in burn and elective surgery patients with glutamine supplementation. Whether larger studies will confirm these findings is yet to be determined. Recent American Society for Parenteral and Enteral Nutrition guidelines recommend that IV and enteral glutamine should not be used in the critical care setting based on the moderate quality of evidence available. We agree with these recommendations and would encourage larger multicenter studies to evaluate the risks and benefits of glutamine in burn and elective surgery patients. PMID:27246308

  4. GLUTAMINE AND HYPERAMMONEMIC CRISES IN PATIENTS WITH UREA CYCLE DISORDERS

    Science.gov (United States)

    Lee, B.; Diaz, G.A.; Rhead, W.; Lichter-Konecki, U.; Feigenbaum, A.; Berry, S.A.; Le Mons, C.; Bartley, J.; Longo, N.; Nagamani, S.C.; Berquist, W.; Gallagher, R.C.; Harding, C.O.; McCandless, S.E.; Smith, W.; Schulze, A.; Marino, M.; Rowell, R.; Coakley, D.F.; Mokhtarani, M.; Scharschmidt, B.F.

    2016-01-01

    Blood ammonia and glutamine levels are used as biomarkers of control in patients with urea cycle disorders (UCDs). This study was undertaken to evaluate glutamine variability and utility as a predictor of hyperammonemic crises (HACs) in UCD patients. Methods The relationships between glutamine and ammonia levels and the incidence and timing of HACs were evaluated in over 100 adult and pediatric UCD patients who participated in clinical trials of glycerol phenylbutyrate. Results The median (range) intra-subject 24-hour coefficient of variation for glutamine was 15% (8–29%) as compared with 56% (28%–154%) for ammonia, and the correlation coefficient between glutamine and concurrent ammonia levels varied from 0.17 to 0.29. Patients with baseline (fasting) glutamine values >900 µmol/L had higher baseline ammonia levels (mean [SD]: 39.6 [26.2] µmol/L) than patients with baseline glutamine ≤900 µmol/L (26.6 [18.0] µmol/L). Glutamine values >900 µmol/L during the study were associated with an approximately 2-fold higher HAC risk (odds ratio [OR]=1.98; p=0.173). However, glutamine lost predictive significance (OR=1.47; p=0.439) when concomitant ammonia was taken into account, whereas the predictive value of baseline ammonia ≥ 1.0 upper limit of normal (ULN) was highly statistically significant (OR=4.96; p=0.013). There was no significant effect of glutamine >900 µmol/L on time to first HAC crisis (hazard ratio [HR]=1.14; p=0.813), but there was a significant effect of baseline ammonia ≥ 1.0 ULN (HR=4.62; p=0.0011). Conclusions The findings in this UCD population suggest that glutamine is a weaker predictor of HACs than ammonia and that the utility of the predictive value of glutamine will need to take into account concurrent ammonia levels. PMID:26586473

  5. Synthesis and Radiolabelling of DOTA-Linked Glutamine Analogues with 67,68Ga as Markers for Increased Glutamine Metabolism in Tumour Cells

    Directory of Open Access Journals (Sweden)

    Ivan Greguric

    2013-06-01

    Full Text Available DOTA-linked glutamine analogues with a C6- alkyl and polyethyleneglycol (PEG chain between the chelating group and the L-glutamine moiety were synthesised and labelled with 67,68Ga using established methods. High yields were achieved for the radiolabelling of the molecules with both radionuclides (>90%, although conversion of the commercially available 67Ga-citrate to the chloride species was a requirement for consistent high radiochemical yields. The generator produced 68Ga was in the [68Ga(OH4]− form. The 67Ga complexes and the 67Ga complexes were demonstrated to be stable in PBS buffer for a week. Uptake studies were performed with longer lived 67Ga analogues against four tumour cell lines, as well as uptake inhibition studies against L-glutamine, and two known amino acid transporter inhibitors. Marginal uptake was exhibited in the PEG variant radio-complex, and inhibition studies indicate this uptake is via a non-targeted amino acid pathway.

  6. Astrocytic mGluR5 and the tripartite synapse.

    Science.gov (United States)

    Panatier, A; Robitaille, R

    2016-05-26

    In the brain, astrocytes occupy a key position between vessels and synapses. Among their numerous functions, these glial cells are key partners of neurons during synaptic transmission. Astrocytes detect transmitter release through receptors and transporters at the level of their processes, which are in close proximity to the tow neuronal elements of synapses. In response to transmitter-mediated activation, glial cells in turn regulate synaptic transmission and neuronal excitability. This process has been reported to involve several glial receptors. One of the best known of such receptors is the metabotropic glutamatergic receptor subtype 5 (mGluR5). In the present review we will discuss the implication of mGluR5s as detectors of synaptic transmission. In particular, we will discuss how the functional properties and localization of these receptors permit the detection of the synaptic signal in a defined temporal window and a given spatial area around the synapse. Furthermore, we will review the impact of their activation on synaptic transmission. PMID:25847307

  7. Neural control of glutamine synthetase activity in rat skeletal muscles.

    Science.gov (United States)

    Feng, B; Konagaya, M; Konagaya, Y; Thomas, J W; Banner, C; Mill, J; Max, S R

    1990-05-01

    The mechanism of glutamine synthetase induction in rat skeletal muscle after denervation or limb immobilization was investigated. Adult male rats were subjected to midthigh section of the sciatic nerve. At 1, 2, and 5 h and 1, 2, and 7 days after denervation, rats were killed and denervated, and contralateral control soleus and plantaris muscles were excised, weighted, homogenized, and assayed for glutamine synthetase. Glutamine synthetase activity increased approximately twofold 1 h after denervation in both muscles. By 7 days postdenervation enzyme activity had increased to three times the control level in plantaris muscle and to four times the control level in soleus muscle. Increased enzyme activity after nerve section was associated with increased maximum velocity with no change in apparent Michaelis constant. Immunotitration with an antiglutamine synthetase antibody suggested that denervation caused an increase in the number of glutamine synthetase molecules in muscle. However, Northern-blot analysis revealed no increase in the steady-state level of glutamine synthetase mRNA after denervation. A mixing experiment failed to yield evidence for the presence of a soluble factor involved in regulating the activity of glutamine synthetase in denervated muscle. A combination of denervation and dexamethasone injections resulted in additive increases in glutamine synthetase. Thus the mechanism underlying increased glutamine synthetase after denervation appears to be posttranscriptional and is distinct from that of the glucocorticoid-mediated glutamine synthetase induction previously described by us. PMID:1970709

  8. Effect of glutamine supplementation on neutrophil function in male judoists.

    Science.gov (United States)

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period.

  9. Alteration of interaction between astrocytes and neurons in different stages of diabetes: a nuclear magnetic resonance study using [1-(13)C]glucose and [2-(13)C]acetate.

    Science.gov (United States)

    Wang, Na; Zhao, Liang-Cai; Zheng, Yong-Quan; Dong, Min-Jian; Su, Yongchao; Chen, Wei-Jian; Hu, Zi-Long; Yang, Yun-Jun; Gao, Hong-Chang

    2015-01-01

    Increasing evidence has shown that the brain is a site of diabetic end-organ damage. This study investigates cerebral metabolism and the interactions between astrocytes and neurons at different stages of diabetes to identify the potential pathogenesis of diabetic encephalopathy. [1-(13)C]glucose or [2-(13)C]acetate is infused into 1- and 15-week diabetic rats, the brain extracts of which are analyzed by using (1)H and (13)C magnetic resonance spectroscopy. The (13)C-labeling pattern and enrichment of cerebral metabolites are also investigated. The increased (13)C incorporation in the glutamine, glutamate, and γ-aminobutyric acid carbons from [2-(13)C]acetate suggests that the astrocytic mitochondrial metabolism is enhanced in 1-week diabetic rats. By contrast, the decreased labeling from [1-(13)C]glucose reflected that the neuronal mitochondrial metabolism is impaired. As diabetes developed to 15 weeks, glutamine and glutamate concentrations significantly decreased. The increased labeling of glutamine C4 but unchanged labeling of glutamate C4 from [2-(13)C]acetate suggests decreased astrocyte supply to the neurons. In addition, the enhanced pyruvate recycling pathway manifested by the increased lactate C2 enrichment in 1-week diabetic rats is weakened in 15-week diabetic rats. Our study demonstrates the overall metabolism disturbances, changes in specific metabolic pathways, and interaction between astrocytes and neurons during the onset and development of diabetes. These results contribute to the mechanistic understanding of diabetes pathogenesis and evolution. PMID:25048983

  10. Effect of Qishen Yiqi Pills on expression of glutamate-aspartate transporters and glutamine synthetase in diabetic rat's retina%芪参益气滴丸对糖尿病大鼠视网膜谷氨酸转运体及谷氨酰胺合成酶表达的影响

    Institute of Scientific and Technical Information of China (English)

    邓辉; 金明; 苑维; 潘琳

    2011-01-01

    目的 探讨芪参益气滴丸对糖尿病大鼠视网膜谷氨酸转运体(glutamate-aspartate transporters,GLAST)、谷氨酰胺合成酶(glutamine synthetase,GS)表达的影响,及其对视网膜神经细胞保护作用的机制.方法 链脲佐菌素诱导实验性糖尿病大鼠模型.治疗组每日予芪参益气滴丸灌胃给药1次.LSAB法检测GLAST、GS在视网膜的表达,Image Plus Pro6.0图象分析系统计算阳性表达的IOD值.结果 与正常组相比,模型组视网膜GLAST(5.491±0.121)、GS(3.142±0.063)的表达明显降低(P<0.05);与模型组相比,治疗组GLAST(6.820±0.404)、GS(6.532±0.073)的表达增强(P<0.05).结论 芪参益气滴丸能够促进视网膜GLAST及GS的表达.减轻高浓度谷氨酸的兴奋性毒性作用,对视网膜神经细胞起保护作用.

  11. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    Science.gov (United States)

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnès; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function. PMID:27776147

  12. New Tools for Investigating Astrocyte-to-Neuron Communication

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2013-10-01

    Full Text Available Grey matter protoplasmic astrocytes extend very thin processes and establish close contacts with synapses. It has been suggested that the release of neuroactive gliotransmitters at the tripartite synapse contributes to information processing. However, the concept of calcium (Ca2+-dependent gliotransmitter release from astrocytes, and the release mechanisms are being debated.Studying astrocytes in their natural environment is challenging because: i astrocytes are electrically silent; ii astrocytes and neurons express an overlapping repertoire of transmembrane receptors; iii astrocyte processes in contact with synapses are below confocal and two-photon microscope resolution; iv bulk-loading techniques using fluorescent Ca2+ indicators lack cellular specificity.In this review, we will discuss some limitations of conventional methodologies and highlight the interest of novel tools and approaches for studying gliotransmission. Genetically encoded Ca2+ indicators (GECIs, light-gated channels, and exogenous receptors are being developed to selectively read out and stimulate astrocyte activity. Our review discusses emerging perspectives on: i the complexity of astrocyte Ca2+ signalling revealed by GECIs; ii new pharmacogenetic and optogenetic approaches to activate specific Ca2+ signalling pathways in astrocytes; iii classical and new techniques to monitor vesicle fusion in cultured astrocytes; iv possible strategies to express specifically reporter genes in astrocytes.

  13. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  14. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C;

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...

  15. Lrp4 in astrocytes modulates glutamatergic transmission.

    Science.gov (United States)

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity. PMID:27294513

  16. Astrocytes : a central element in neurological diseases

    NARCIS (Netherlands)

    Pekny, Milos; Pekna, Marcela; Messing, Albee; Steinhäuser, Christian; Lee, Jin Moo; Parpura, Vladimir; Hol, Elly M.; Sofroniew, Michael V.; Verkhratsky, Alexei

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  17. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  18. Astrocytes: a central element in neurological diseases

    NARCIS (Netherlands)

    M. Pekny; M. Pekna; A. Messing; C. Steinhäuser; J.M. Lee; V. Parpura; E.M. Hol; M.V. Sofroniew; A. Verkhratsky

    2016-01-01

    The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unr

  19. The glutamate-glutamine(GABA cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2013-05-01

    Full Text Available The gold standard for studies of glutamate-glutamine(GABA cycling and its connections to brain biosynthesis from glucose of glutamate and GABA and their subsequent metabolism are the elegant in vivo studies by 13C magnetic resonance spectroscopy (NMR, showing the large fluxes in the cycle. However, simpler experiments in intact brain tissue (e.g. immunohistochemistry, brain slices, cultured brain cells and mitochondria have also made important contributions to the understanding of details, mechanisms and functional consequences of glutamate/GABA biosynthesis and degradation. The purpose of this review is to attempt to integrate evidence from different sources regarding i the enzyme(s responsible for the initial conversion of -ketoglutarate to glutamate; ii the possibility that especially glutamate oxidation is essentially confined to astrocytes; and iii the ontogenetically very late onset and maturation of glutamine-glutamate(GABA cycle function. Pathway models based on the functional importance of aspartate for glutamate synthesis suggest the possibility of interacting pathways for biosynthesis and degradation of glutamate and GABA and the use of transamination as the default mechanism for initiation of glutamate oxidation. The late development and maturation are related to the late cortical gliogenesis and convert brain cortical function from being purely neuronal to becoming neuronal-astrocytic. This conversion is associated with huge increases in energy demand and production, and the character of potentially incurred gains of function are discussed. These may include alterations in learning mechanisms, in mice indicated by lack of pairing of odor learning with aversive stimuli in newborn animals but the development of such an association 10-12 days later. The possibility is suggested that analogous maturational changes may contribute to differences in the way learning is accomplished in the newborn human brain and during later development.

  20. 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes.

    Science.gov (United States)

    Ehrke, Eric; Arend, Christian; Dringen, Ralf

    2015-07-01

    The pyruvate analogue 3-bromopyruvate (3-BP) is an electrophilic alkylator that is considered a promising anticancer drug because it has been shown to kill cancer cells efficiently while having little toxic effect on nontumor cells. To test for potential adverse effects of 3-BP on brain cells, we exposed cultured primary rat astrocytes to 3-BP and investigated the effects of this compound on cell viability, glucose metabolism, and glutathione (GSH) content. The presence of 3-BP severely compromised cell viability and slowed cellular glucose consumption and lactate production in a time- and concentration-dependent manner, with half-maximal effects observed at about 100 µM 3-BP after 4 hr of incubation. The cellular hexokinase activity was not affected in 3-BP-treated astrocytes, whereas within 30 min after application of 3-BP the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inhibited, and cellular GSH content was depleted in a concentration-dependent manner, with half-maximal effects observed at about 30 µM 3-BP. The depletion of cellular GSH after exposure to 100 µM 3-BP was not prevented by the presence of 10 mM of the monocarboxylates lactate or pyruvate, suggesting that 3-BP is not taken up into astrocytes predominantly by monocarboxylate transporters. The data suggest that inhibition of glycolysis by inactivation of GAPDH and GSH depletion contributes to the toxicity that was observed for 3-BP-treated cultured astrocytes. PMID:25196479

  1. Iron entry in neurons and astrocytes: a link with synaptic activity

    Directory of Open Access Journals (Sweden)

    Franca eCodazzi

    2015-06-01

    Full Text Available Iron plays a fundamental role in the development of the central nervous system (CNS as well as in several neuronal functions including synaptic plasticity. Accordingly, neuronal iron supply is tightly controlled: it depends not only on transferrin-bound iron but also on non-transferrin-bound iron (NTBI, which represents a relevant quote of the iron physiologically present in the cerebrospinal fluid (CSF. Different calcium permeable channels as well as the divalent metal transporter 1 (DMT1 have been proposed to sustain NTBI entry in neurons and astrocytes even though it remains an open issue. In both cases, it emerges that the control of iron entry is tightly linked to synaptic activity. The iron-induced oxidative tone can, in physiological conditions, positively influence the calcium levels and thus the synaptic plasticity. On the other hand, an excess of iron, with the ensuing uncontrolled production of reactive oxygen species (ROS, is detrimental for neuronal survival. A protective mechanism can be played by astrocytes that, more resistant to oxidative stress, can uptake iron, thereby buffering its concentration in the synaptic environment. This competence is potentiated when astrocytes undergo activation during neuroinflammation and neurodegenerative processes. In this minireview we focus on the mechanisms responsible for NTBI entry in neurons and astrocytes and on how they can be modulated during synaptic activity. Finally, we speculate on the relevance they may have in both physiological and pathological conditions.

  2. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity.

    Science.gov (United States)

    Lafourcade, Carlos; Ramírez, Juan Pablo; Luarte, Alejandro; Fernández, Anllely; Wyneken, Ursula

    2016-01-01

    Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system. PMID:27547038

  3. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  4. Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine.

    Science.gov (United States)

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, P J; Boutrel, B

    2016-08-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte-neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine. PMID:26503760

  5. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.

    2008-01-01

    The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (TRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with gl

  6. Comparative aspects of tissue glutamine and proline metabolism.

    Science.gov (United States)

    Bertolo, Robert F; Burrin, Douglas G

    2008-10-01

    The cellular metabolism of glutamine and proline are closely interrelated, because they can be interconverted with glutamate and ornithine via the mitochondrial pathway involving pyrroline-5-carboxylate (P5C). In adults, glutamine and proline are converted via P5C to citrulline in the gut, then citrulline is converted to arginine in the kidney. In neonates, arginine is a semiindispensable amino acid and is synthesized from proline completely in the gut; because of low P5C synthase activity, glutamine is not an important precursor for neonatal arginine synthesis. Thus, splanchnic metabolism of glutamine and proline is important, because both amino acids serve as key precursors for arginine synthesis with some developmental differences. Studies investigating splanchnic extraction demonstrate that about two-thirds of dietary glutamine and almost all dietary glutamate are extracted on first pass and the vast majority is oxidized in the gut. This capacity to extract glutamine and glutamate appears to be very large, so diets high in glutamine or glutamate probably have little impact on circulating concentrations and consequent potential toxicity. In contrast, it appears that very little proline is extracted by the gut and liver, at least in the neonate, which may result in hyperprolinemia and potential toxicity. Therefore, the upper limits of safe dietary intake for glutamine and proline, and other amino acids, appear to be substantially different depending on the extent of first-pass splanchnic extraction and irreversible catabolism.

  7. Haploinsufficiency of glutamine synthetase increases susceptibility to experimental febrile seizures.

    NARCIS (Netherlands)

    Gassen, K.L.I. van; Hel, W.S. van der; Hakvoort, T.B.; Lamers, W.H.; Graan, P.N. de

    2009-01-01

    Glutamine synthetase (GS) is a pivotal glial enzyme in the glutamate-glutamine cycle. GS is important in maintaining low extracellular glutamate concentrations and is downregulated in the hippocampus of temporal lobe epilepsy patients with mesial-temporal sclerosis, an epilepsy syndrome that is freq

  8. Haploinsufficiency of glutamine synthetase increases susceptibility to experimental febrile seizures

    NARCIS (Netherlands)

    K.L.I. van Gassen; W.S. van der Hel; T.B.M. Hakvoort; W.H. Lamers; P.N.E. de Graan

    2009-01-01

    Glutamine synthetase (GS) is a pivotal glial enzyme in the glutamate-glutamine cycle. GS is important in maintaining low extracellular glutamate concentrations and is downregulated in the hippocampus of temporal lobe epilepsy patients with mesial-temporal sclerosis, an epilepsy syndrome that is freq

  9. Exogenous Glutamine in Respiratory Diseases: Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gisele P. Oliveira

    2016-02-01

    Full Text Available Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF, asthma, chronic obstructive pulmonary disease (COPD, acute respiratory distress syndrome (ARDS, and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting.

  10. Glutamine deprivation initiates reversible assembly of mammalian rods and rings.

    Science.gov (United States)

    Calise, S John; Carcamo, Wendy C; Krueger, Claire; Yin, Joyce D; Purich, Daniel L; Chan, Edward K L

    2014-08-01

    Rods and rings (RR) are protein assemblies composed of cytidine triphosphate synthetase type 1 (CTPS1) and inosine monophosphate dehydrogenase type 2 (IMPDH2), key enzymes in CTP and GTP biosynthesis. Small-molecule inhibitors of CTPS1 or IMPDH2 induce RR assembly in various cancer cell lines within 15 min to hours. Since glutamine is an essential amide nitrogen donor in these nucleotide biosynthetic pathways, glutamine deprivation was examined to determine whether it leads to RR formation. HeLa cells cultured in normal conditions did not show RR, but after culturing in media lacking glutamine, short rods (5 μm) formed after 48 h. Upon supplementation with glutamine or guanosine, these RR underwent almost complete disassembly within 15 min. Inhibition of glutamine synthetase with methionine sulfoximine also increased RR assembly in cells deprived of glutamine. Taken together, our data support the hypothesis that CTP/GTP biosynthetic enzymes polymerize to form RR in response to a decreased intracellular level of glutamine. We speculate that rod and ring formation is an adaptive metabolic response linked to disruption of glutamine homeostasis.

  11. Glutamine: A novel approach to chemotherapy-induced toxicity

    Directory of Open Access Journals (Sweden)

    Kumar Gaurav

    2012-01-01

    Full Text Available Treatment of cancer is associated with short- and long-term side-effects. Cancer produces a state of glutamine deficiency, which is further aggravated by toxic effects of chemotherapeutic agents leading to increased tolerance of tumor to chemotherapy as well as reduced tolerance of normal tissues to the side-effects of chemotherapy. This article reviews the possible role of glutamine supplementation in reducing the serious adverse events in patients treated with anticancer drugs. The literature related to the possible role of glutamine in humans with cancer and the supportive evidence from animal studies was reviewed. Searches were made and the literature was retrieved using PUBMED, MEDLINE, COCHRANE LIBRARY, CENAHL and EMBASE, with a greater emphasis on the recent advances and clinical trials. Glutamine supplementation was found to protect against radiation-induced mucositis, anthracycline-induced cardiotoxicity and paclitaxel-related myalgias/arthralgias. Glutamine may prevent neurotoxicity of paclitaxel, cisplatin, oxaplatin bortezomib and lenolidamide, and is beneficial in the reduction of the dose-limiting gastrointestinal toxic effects of irinotecan and 5-FU-induced mucositis and stomatitis. Dietary glutamine reduces the severity of the immunosuppressive effect induced by methotrexate and improves the immune status of rats recovering from chemotherapy. In patients with acute myeloid leukemia requiring parenteral nutrition, glycyl-glutamine supplementation could hasten neutrophil recovery after intensive myelosuppressive chemotherapy. Current data supports the usefulness of glutamine supplementation in reducing complications of chemotherapy; however, paucity of clinical trials weakens the clear interpretation of these findings.

  12. Cellular concentrations of glutamine synthetase in murine organs

    NARCIS (Netherlands)

    H.W.M. van Straaten; Y.J. He; M.M. van Duist; W.T. Labruyere; J.L.M. Vermeulen; P.J. van Dijk; J.M. Ruijter; W.H. Lamers; T.B.M. Hakvoort

    2006-01-01

    Glutamine synthetase (GS) is the only enzyme that can synthesize glutamine, but it also functions to detoxify glutamate and ammonia. Organs with high cellular concentrations of GS appear to function primarily to remove glutamate or ammonia. whereas those with a low cellular concentration appear to p

  13. Exogenous Glutamine in Respiratory Diseases: Myth or Reality?

    Science.gov (United States)

    Oliveira, Gisele P; de Abreu, Marcelo Gama; Pelosi, Paolo; Rocco, Patricia R M

    2016-02-04

    Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting.

  14. Systematic colocalization errors between acridine orange and EGFP in astrocyte vesicular organelles

    OpenAIRE

    Nadrigny, F.; Li, D.; Kemnitz, K; Ropert, N.; Koulakoff, A; Rudolph, S.; Vitali, M.; Giaume, C.; Kirchhoff, F.; Oheim, M

    2007-01-01

    Dual-color imaging of acridine orange (AO) and EGFP fused to a vesicular glutamate transporter or the vesicle-associated membrane proteins 2 or 3 has been used to visualize a supposedly well-defined subpopulation of glutamatergic astrocytic secretory vesicles undergoing regulated exocytosis. However, AO metachromasy results in the concomitant emission of green and red fluorescence from AO-stained tissue. Therefore, the question arises whether AO and EGFP fluorescence can be distinguished reli...

  15. Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient

    DEFF Research Database (Denmark)

    Schousboe, Arne; Sickmann, Helle M; Walls, Anne B;

    2010-01-01

    . The importance of this as well as the significance of ATP formed in glycolysis versus that formed by the concerted action of the tricarboxylic acid (TCA) cycle processes and oxidative phosphorylation for maintenance of glutamate transport capacity in astrocytes is discussed. It is argued that glycolytically...

  16. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways.

    Directory of Open Access Journals (Sweden)

    I-Ping Lee

    Full Text Available The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1 T. gondii relies on glutamine for optimal infection, replication and viability, and 2 T. gondii-infected bone marrow-derived dendritic cells (DCs display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2 is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1 in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1 blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.

  17. Manganese inhibits the ability of astrocytes to promote neuronal differentiation

    International Nuclear Information System (INIS)

    Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 μM) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrix protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H2O2 and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.

  18. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells

    OpenAIRE

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Abbott, N Joan; Couraud, Pierre-Olivier; Pan, Weihong

    2010-01-01

    Astrocytic leptin receptors (ObR) can be upregulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb overex...

  19. Study on the effects of thrombin on AQP4 mRNA and AQP4 protein expression in rat primary astrocytes

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhou; Xuebing Cao; Shenggang Sun

    2006-01-01

    Objective: To study the biologic effects of various concentrations of thrombin on aquaporin 4 (AQP4) expression in rat primary cultured astrocytes, and to explore the regulation mechanism of transmembrane water transportation in astrocytes after intracerebral hemorrhage (ICH). Methods: Primary cultured astrocytes were incubated in culture mediums containing various concentrations of thrombin for 24 h and harvested. AQP4 mRNA and AQP4 protein expression were determined by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical technique. Cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL) technique. Cell morphology was observed by phase contrast microscope, and cell viability was assayed by MTT. Results: AQP4 mRNA and AQP4 protein showed a low expression in normal astrocytes. The expression of AQP4 mRNA and AQP4 protein significantly increased in the astrocytes treated with 100 U/ml or 200 U/ml thrombin (P < 0.01),and these astrocytes swelled. The number of TUNEL positive cells significantly increased. On the other hand, AQP4 mRNA and AQP4 protein expression were down-regulated in the astrocytes treated with 0.5 U/ml or l U/ml thrombin (P < 0.05),and the cell morphology did not change. Few TUNEL positive cells were observed. Conclusion: AQP4 over-expression induced by high concentrations of thrombin causes an increased permeability of water in astrocytic membrane. On the contrary, the decreased AQP4 expression prevents the astrocytes from swelling and apoptosis.

  20. Non-cell autonomous influence of the astrocyte system xc− on hypoglycaemic neuronal cell death

    Directory of Open Access Journals (Sweden)

    Sandra J Hewett

    2012-02-01

    Full Text Available Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation is initiated by glutamate extruded from astrocytes via system xc− – an amino acid transporter that imports l-cystine and exports l-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents – whereas addition of l-cystine restores – GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc−. Indeed, drugs known to inhibit system xc− ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11 that encodes the substrate-specific light chain of system xc− (xCT. Finally, enhancement of astrocytic system xc− expression and function via IL-1β (interleukin-1β exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc− inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc−, have a direct, non-cell autonomous effect on cortical neuron survival.

  1. Non-cell autonomous influence of the astrocyte system xc- on hypoglycaemic neuronal cell death.

    Science.gov (United States)

    Jackman, Nicole A; Melchior, Shannon E; Hewett, James A; Hewett, Sandra J

    2012-02-08

    Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and exports L-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents--whereas addition of L-cystine restores--GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc-. Indeed, drugs known to inhibit system xc- ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type) mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11) that encodes the substrate-specific light chain of system xc- (xCT). Finally, enhancement of astrocytic system xc- expression and function via IL-1β (interleukin-1β) exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc- inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc-, have a direct, non-cell autonomous effect on cortical neuron survival.

  2. Physiopathologic dynamics of vesicle traffic in astrocytes.

    Science.gov (United States)

    Potokar, Maja; Stenovec, Matjaž; Kreft, Marko; Gabrijel, Mateja; Zorec, Robert

    2011-02-01

    The view of how astrocytes, a type of glial cells, contribute to the functioning of the central nervous system (CNS) has changed greatly in the last decade. Although glial cells outnumber neurons in the mammalian brain, it was considered for over a century that they played a subservient role to neurons. This view changed. Functions thought to be exclusively present in neurons, i.e. excitability mediated release of chemical messengers, has also been demonstrated in astrocytes. In this process, following an increase in cytosolic calcium activity, membrane bound vesicles, storing chemical messengers (gliotransmitters), fuse with the plasma membrane, a process known as exocytosis, permitting the exit of vesicle cargo into the extracellular space. Vesicles are delivered to and are removed from the site of exocytosis by an amazingly complex set of processes that we have only started to learn about recently. In this paper we review vesicle traffic, which is subject to physiological regulation and may be changed under pathological conditions.

  3. Astrocytic role in synapse formation after injury.

    Science.gov (United States)

    Li, Ying; Li, Daqing; Raisman, Geoffrey

    2016-08-15

    In 1969 a paper entitled Neuronal plasticity in the septal nuclei of the adult rat proposed that new synapses are formed in the adult brain after injury (Raisman, 1969). The quantitative electron microscopic study of the timed responses to selective partial denervation of the neuropil of the adult rat septal nuclei after distant transection of the hippocampal efferent axons in the fimbria showed that the new synapses arise by sprouting of surviving adjacent synapses which selectively take over the previously denervated sites and thus restore the number of synapses to normal. This article presents the evidence for the role of perisynaptic astrocytic processes in the removal and formation of synapses and considers its significance as one of the three major divisions of the astrocytic surface in terms of the axonal responses to injury and regeneration. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26746338

  4. Taurine Biosynthesis by Neurons and Astrocytes*

    OpenAIRE

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capab...

  5. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2014-09-01

    Full Text Available Lactate is a versatile metabolite with important roles in modulation of brain glucose utilization rate (CMRglc, diagnosis of brain-injured patients, redox- and receptor-mediated signaling, memory, and alteration of gene transcription. Neurons and astrocytes release and accumulate lactate using equilibrative monocarboxylate transporters that carry out net transmembrane transport of lactate only until intra- and extracellular levels reach equilibrium. Astrocytes have much faster lactate uptake than neurons and shuttle more lactate among gap junction-coupled astrocytes than to nearby neurons. Lactate diffusion within syncytia can provide precursors for oxidative metabolism and glutamate synthesis and facilitate its release from endfeet to perivascular space to stimulate blood flow. Lactate efflux from brain during activation underlies the large underestimation of CMRglc with labeled glucose and fall in CMRO2/CMRglc ratio. Receptor-mediated effects of lactate on locus coeruleus neurons include noradrenaline release in cerebral cortex and c-AMP-mediated stimulation of astrocytic gap junctional coupling, thereby enhancing its dispersal and release from brain. Lactate transport is essential for its multifunctional roles.

  6. Understanding the mechanisms of glutamine action in critically ill patients

    Directory of Open Access Journals (Sweden)

    Gisele P. Oliveira

    2010-06-01

    Full Text Available Glutamine (Gln is an important energy source and has been used as a supplementary energy substrate. Furthermore, Gln is an essential component for numerous metabolic functions, including acid-base homeostasis, gluconeogenesis, nitrogen transport and synthesis of proteins and nucleic acids. Therefore, glutamine plays a significant role in cell homeostasis and organ metabolism. This article aims to review the mechanisms of glutamine action during severe illnesses. In critically ill patients, the increase in mortality was associated with a decreased plasma Gln concentration. During catabolic stress, Gln consumption rate exceeds the supply, and both plasma and skeletal muscle pools of free Gln are severely reduced. The dose and route of Gln administration clearly influence its effectiveness: high-dose parenteral appears to be more beneficial than low-dose enteral administration. Experimental studies reported that Gln may protect cells, tissues, and whole organisms from stress and injury through the following mechanisms: attenuation of NF (nuclear factor-kB activation, a balance between pro- and anti-inflammatory cytokines, reduction in neutrophil accumulation, improvement in intestinal integrity and immune cell function, and enhanced of heat shock protein expression. In conclusion, high-doses of parenteral Gln (>0.50 g/kg/day demonstrate a greater potential to benefit in critically ill patients, although Gln pathophysiological mechanisms requires elucidation.A glutamina (Gln é uma importante fonte de energia e tem sido usada como substrato energético suplementar. Além disso, a Gln é um componente essencial para numerosas funções metabólicas tais como: homeostase ácido-base, gliconeogênese, transporte de nitrogênio e síntese de proteínas e ácidos nucléicos. Portanto, a glutamina desempenha um papel importante na homeostase celular e no metabolismo dos órgãos. Esse artigo objetiva rever os mecanismos de ação da glutamina na doen

  7. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  8. Transcriptomic analyses of primary astrocytes under TNFα treatment

    OpenAIRE

    Birck, Cindy; Koncina, Eric; Heurtaux, Tony; Glaab, Enrico; Michelucci, Alessandro; Heuschling, Paul; Grandbarbe, Luc

    2016-01-01

    Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1], [2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set o...

  9. Astrocytes conspire with neurons during progression of neurological disease

    OpenAIRE

    McGann, James C.; Lioy, Daniel T.; Mandel, Gail

    2012-01-01

    As astrocytes are becoming recognized as important mediators of normal brain function, studies into their roles in neurological disease have gained significance. Across mouse models for neurodevelopmental and neurodegenerative diseases, astrocytes are considered key regulators of disease progression. In Rett syndrome and Parkinson’s disease, astrocytes can even initiate certain disease phenotypes. Numerous potential mechanisms have been offered to explain these results, but research into the ...

  10. The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals.

    Science.gov (United States)

    Michelucci, Alessandro; Bithell, Angela; Burney, Matthew J; Johnston, Caroline E; Wong, Kee-Yew; Teng, Siaw-Wei; Desai, Jyaysi; Gumbleton, Nigel; Anderson, Gregory; Stanton, Lawrence W; Williams, Brenda P; Buckley, Noel J

    2016-08-01

    Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes. PMID:26138449

  11. Immune and inflammatory responses in the CNS : Modulation by astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; aschner, michael; hidalgo, juan

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating the...... experimental evidence on the role of astroglia in the etiology of neurological diseases will be highlighted, along with (5) the role of oxidative stressors generated within astrocytes in this process....

  12. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    Science.gov (United States)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  13. Preparation and characterization of electrospun nanofibers containing glutamine.

    Science.gov (United States)

    Tort, Serdar; Acartürk, Füsun

    2016-11-01

    Oral mucositis is a painful inflammation of mucous membranes commonly after chemotherapy or radiotherapy. The aim of this study was to develop mucoadhesive nanofibers containing glutamine via electrospinning and to characterize them for the treatment of oral mucositis. Different mucoadhesive polymers were tried for preparing nanofibers and sodium alginate nanofibers were chosen after the characterization studies. Glutamine-loaded nanofibers were produced and characterized. Glutamine loaded onto nanofibers was confirmed by differantial scanning calorimetry and fourier transform infrared spectroscopy analyses. As a result, scanning electron microscopy observations showed that the glutamine loaded nanofibers had average diameter of 160nm. Glutamine amount was found to be 0.452mg/cm(2). Work of mucoadhesion, tensile strength and elongation at break values of the glutamine loaded nanofibers were found to be 0.165mJ/cm(2), 2.61mPa and 6.62% respectively. In vitro dissolution tests showed that more than 85% of the drug was diffused from the nanofibers at the end of 4h. Stability studies showed that there was no significant changes at 4 and 25°C/65% relative humidity storage conditions. Therefore, these results demonstrate that glutamine loaded nanofibers could have potential as an oromucosal drug delivery system for the treatment oral mucositis. PMID:27516332

  14. A Digital Realization of Astrocyte and Neural Glial Interactions.

    Science.gov (United States)

    Hayati, Mohsen; Nouri, Moslem; Haghiri, Saeed; Abbott, Derek

    2016-04-01

    The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms. PMID:26390499

  15. Development of a Novel Method for the Purification and Culture of Rodent Astrocytes

    OpenAIRE

    Foo, Lynette C.; Allen, Nicola J.; Bushong, Eric A.; Ventura, P. Britten; Chung, Won-Suk; Zhou, Lu; Cahoy, John D.; Daneman, Richard; Zong, Hui; Ellisman, Mark H.; Barres, Ben A.

    2011-01-01

    The inability to purify and culture astrocytes has long hindered studies of their function. Whereas astrocyte progenitor cells can be cultured from neonatal brain, culture of mature astrocytes from postnatal brain has not been possible. Here we report a new method to prospectively purify astrocytes by immunopanning. These astrocytes undergo apoptosis in culture, but vascular cells and HBEGF promote their survival in serum-free culture. We found that some developing astrocytes normally undergo...

  16. Insulin Attenuates Beta-Amyloid-Associated Insulin/Akt/EAAT Signaling Perturbations in Human Astrocytes.

    Science.gov (United States)

    Han, Xiaojuan; Yang, Liling; Du, Heng; Sun, Qinjian; Wang, Xiang; Cong, Lin; Liu, Xiaohui; Yin, Ling; Li, Shan; Du, Yifeng

    2016-08-01

    The excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), mostly located on astrocytes, are the main mediators for glutamate clearance in humans. Malfunctions of these transporters may lead to excessive glutamate accumulation and subsequent excitotoxicity to neurons, which has been implicated in many kinds of neurodegenerative disorders including Alzheimer's disease (AD). Yet, the specific mechanism of the glutamate system dysregulation remains vague. To explore whether the insulin/protein kinase B (Akt)/EAAT signaling in human astrocytes could be disturbed by beta-amyloid protein (Aβ) and be protected by insulin, we incubated HA-1800 cells with varying concentrations of Aβ1-42 oligomers and insulin. Then the alterations of several key substrates in this signal transduction pathway were determined. Our results showed that expressions of insulin receptor, phospho-insulin receptor, phospho-protein kinase B, phospho-mammalian target of rapamycin, and EAAT1 and EAAT2 were decreased by the Aβ1-42 oligomers in a dose-dependent manner (p  0.05), and the mRNA levels of EAAT1 and EAAT2 were also unchanged (p > 0.05). Taken together, this study indicates that Aβ1-42 oligomers could cause disturbances in insulin/Akt/EAAT signaling in astrocytes, which might be responsible for AD onset and progression. Additionally, insulin can exert protective functions to the brain by modulating protein modifications or expressions. PMID:26358886

  17. Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases?

    Science.gov (United States)

    Vardjan, Nina; Verkhratsky, Alexei; Zorec, Robert

    2015-01-01

    Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.

  18. Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis

    OpenAIRE

    Brenda Carla Luquetti; Miguel Frederico Fernandez Alarcon; Raquel Lunedo; Daniel Mendes Borges Campos; Renato Luís Furlan; Marcos Macari

    2016-01-01

    ABSTRACT This study aimed to assess the effects of glutamine as feed additive on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. A total of 400 day-old male chicks were randomly assigned to four treatments (NVNG – no vaccination, no glutamine supplementation; NVG – no vaccination, glutamine supplementation (10 g kg−1); VNG – vaccination, no glutamine supplementation; VG – vaccination, glutamine supplementation) replicated four times with 25 bi...

  19. The glutamine synthetase gene family in Populus

    Directory of Open Access Journals (Sweden)

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  20. Selenoprotein S expression in reactive astrocytes following brain injury.

    Science.gov (United States)

    Fradejas, Noelia; Serrano-Pérez, Maria Del Carmen; Tranque, Pedro; Calvo, Soledad

    2011-06-01

    Selenoprotein S (SelS) is an endoplasmic reticulum (ER)-resident protein involved in the unfolded protein response. Besides reducing ER-stress, SelS attenuates inflammation by decreasing pro-inflammatory cytokines. We have recently shown that SelS is responsive to ischemia in cultured astrocytes. To check the possible association of SelS with astrocyte activation, here we investigate the expression of SelS in two models of brain injury: kainic acid (KA) induced excitotoxicity and cortical mechanical lesion. The regulation of SelS and its functional consequences for neuroinflammation, ER-stress, and cell survival were further analyzed using cultured astrocytes from mouse and human. According to our immunofluorescence analysis, SelS expression is prominent in neurons and hardly detectable in astrocytes from control mice. However, brain injury intensely upregulates SelS, specifically in reactive astrocytes. SelS induction by KA was evident at 12 h and faded out after reaching maximum levels at 3-4 days. Analysis of mRNA and protein expression in cultured astrocytes showed SelS upregulation by inflammatory stimuli as well as ER-stress inducers. In turn, siRNA-mediated SelS silencing combined with adenoviral overexpression assays demonstrated that SelS reduces ER-stress markers CHOP and spliced XBP-1, as well as inflammatory cytokines IL-1β and IL-6 in stimulated astrocytes. SelS overexpression increased astrocyte resistance to ER-stress and inflammatory stimuli. Conversely, SelS suppression compromised astrocyte viability. In summary, our results reveal the upregulation of SelS expression in reactive astrocytes, as well as a new protective role for SelS against inflammation and ER-stress that can be relevant to astrocyte function in the context of inflammatory neuropathologies. PMID:21456042

  1. Supplementation with L-Glutamine and L-Alanyl-L-Glutamine Changes Biochemical Parameters and Jejunum Morphophysiology in Type 1 Diabetic Wistar Rats

    OpenAIRE

    da Rosa, Carlos Vinicius D.; Azevedo, Silvia C. S. F.; Bazotte, Roberto B.; Peralta, Rosane M.; Buttow, Nilza C.; Maria Montserrat D Pedrosa; Vilma A F de Godoi; Maria Raquel M Natali

    2015-01-01

    We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an...

  2. Oral Glutamine Supplementation Benefits Jejunum but Not Ileum

    Directory of Open Access Journals (Sweden)

    Paul E Hardy

    1994-01-01

    Full Text Available Glutamine is the primary metabolic fuel of the small intestine. The ability of enteral glutamine to support jejunal architecture and metabolism is well established, but its effect on intestinal absorptive function, especially in the terminal ileum, remains undetermined. The purpose of this study was to develop a functional ileal fluid absorption surgical injury model and to determine if oral glutamine supplementation would be beneficial in accelerating healing and restoring function. The effects of either 1 cm resection and ileal end-to-end anastomosis or sham laparotomy on rat in vivo fluid absorption at study start (day 0, one and two days was investigated. In sham-operated rats, fluid absorption was not altered. In contrast, ileal fluid absorption was significantly reduced at days 0 (17.2±4.8 μL/cm/h and 1 (31.4±13.6 μL/cm/h, but returned to normal by day 2 (71.0±6.2 μL/cm/h in anastomosed rats. To examine the effects of glutamine in this model, rats were fed either glutamine (2.4 g/kg/day or an isonitrogenous glycine-supplemented elemental oral diet for five days before their randomization to sham or anastomotic groups. This dose of glutamine reached the ileum and was completely absorbed along the small intestine. Glutamine-fed rats demonstrated no difference in recovery of in vivo ileal fluid absorption, ileal villus morphometric measurements, mg DNA:mg protein ratio, degree of inflammation or glutaminase activity. In contrast, jejunal, but not ileal, villus morphometry, mg DNA:mg protein ratio and glutaminase activity were increased in glutamine-fed ‘not operated’ rats (P<0.01, indicating that the jejunum, but not the ileum, responded to the glutamine-supplemented diet. These studies demonstrate that ileal resection and anastomosis causes transient impairments in in vivo fluid absorption, and oral glutamine supplementation offers a beneficial effect to jejunal, but not ileal, intestinal mucosa. These results suggest

  3. Comparative evaluation of transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]methionine in human glioma cell lines.

    Science.gov (United States)

    Ono, Masahiro; Oka, Shuntaro; Okudaira, Hiroyuki; Schuster, David M; Goodman, Mark M; Kawai, Keiichi; Shirakami, Yoshifumi

    2013-10-16

    Positron emission tomography (PET) with amino acid tracers is useful for the visualization and assessment of therapeutic effects on gliomas. Our purpose is to elucidate the transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid (anti-[¹⁸F]FACBC) and L-[methyl-¹¹C]methionine ([¹¹C]Met) in normal human astrocytes (NHA), low-grade (Hs683, SW1088), and high-grade (U87MG, T98G) human glioma cell lines. Because the short half-lives of fluorine-18 and carbon-11 are inconvenient for in vitro experiments, trans-1-amino-3-fluoro[1-¹⁴C]cyclobutanecarboxylic acid (anti-[¹⁴C]FACBC) and L-[methyl-¹⁴C]methionine ([¹⁴C]Met) were used instead of the PET tracers. Time-course uptake experiments showed that uptake of anti-[¹⁴C]FACBC was 1.4-2.6 times higher than that of [¹⁴C]Met in NHA and low-grade glioma cells, and was almost equal to that of [¹⁴C]Met in high-grade glioma cells. To identify the amino acid transporters (AATs) involved in the transport of anti-[¹⁴C]FACBC and [¹⁴C]Met, we carried out competitive inhibition experiments using synthetic/naturally-occurring amino acids as inhibitors. We found that anti-[¹⁴C]FACBC uptake in the presence of Na⁺ was strongly inhibited by L-glutamine and L-serine (the substrates for ASC system AATs), whereas L-phenylalanine and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH, the substrates for L system AATs) robustly inhibited Na⁺-independent anti-[¹⁴C]FACBC uptake. Regardless of Na⁺, [¹⁴C]Met uptake was inhibited strongly by L-phenylalanine and BCH. Moreover, the exchange transport activity of L-glutamine for anti-[¹⁴C]FACBC was stronger than that of BCH in the presence of Na⁺, whereas that for [¹⁴C]Met was almost equal to BCH. These results demonstrate that ASC and L are important transport systems for anti-[¹⁸F]FACBC uptake, while system L is predominantly involved in [¹¹C]Met transport in human astrocytes and glioma cells.

  4. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes.

    Science.gov (United States)

    Stork, Tobias; Sheehan, Amy; Tasdemir-Yilmaz, Ozge E; Freeman, Marc R

    2014-07-16

    Astrocytes are critically important for neuronal circuit assembly and function. Mammalian protoplasmic astrocytes develop a dense ramified meshwork of cellular processes to form intimate contacts with neuronal cell bodies, neurites, and synapses. This close neuron-glia morphological relationship is essential for astrocyte function, but it remains unclear how astrocytes establish their intricate morphology, organize spatial domains, and associate with neurons and synapses in vivo. Here we characterize a Drosophila glial subtype that shows striking morphological and functional similarities to mammalian astrocytes. We demonstrate that the Fibroblast growth factor (FGF) receptor Heartless autonomously controls astrocyte membrane growth, and the FGFs Pyramus and Thisbe direct astrocyte processes to ramify specifically in CNS synaptic regions. We further show that the shape and size of individual astrocytes are dynamically sculpted through inhibitory or competitive astrocyte-astrocyte interactions and Heartless FGF signaling. Our data identify FGF signaling through Heartless as a key regulator of astrocyte morphological elaboration in vivo.

  5. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    Science.gov (United States)

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-06-13

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes.

  6. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    Energy Technology Data Exchange (ETDEWEB)

    Ostrow, Lyle W., E-mail: lostrow1@jhmi.edu [Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 (United States); Suchyna, Thomas M.; Sachs, Frederick [Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  7. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    Science.gov (United States)

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  8. Neuroimmunological Implications of AQP4 in Astrocytes

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  9. Neuroimmunological Implications of AQP4 in Astrocytes.

    Science.gov (United States)

    Ikeshima-Kataoka, Hiroko

    2016-01-01

    The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4's role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed. PMID:27517922

  10. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury.

    Science.gov (United States)

    Li, Ke; Javed, Elham; Scura, Daniel; Hala, Tamara J; Seetharam, Suneil; Falnikar, Aditi; Richard, Jean-Philippe; Chorath, Ashley; Maragakis, Nicholas J; Wright, Megan C; Lepore, Angelo C

    2015-09-01

    Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor

  11. Investigation on the suitable pressure for the preservation of astrocyte

    International Nuclear Information System (INIS)

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 40C, in an effort to establish the best conditions for the preservation. Survival rate at 40C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 40C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 40C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  12. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  13. Optical modulation of astrocyte network using ultrashort pulsed laser

    Science.gov (United States)

    Yoon, Jonghee; Ku, Taeyun; Chong, Kyuha; Ryu, Seung-Wook; Choi, Chulhee

    2012-03-01

    Astrocyte, the most abundant cell type in the central nervous system, has been one of major topics in neuroscience. Even though many tools have been developed for the analysis of astrocyte function, there has been no adequate tool that can modulates astrocyte network without pharmaceutical or genetic interventions. Here we found that ultrashort pulsed laser stimulation can induce label-free activation of astrocytes as well as apoptotic-like cell death in a dose-dependent manner. Upon irradiation with high intensity pulsed lasers, the irradiated cells with short exposure time showed very rapid mitochondria fragmentation, membrane blebbing and cytoskeletal retraction. We applied this technique to investigate in vivo function of astrocyte network in the CNS: in the aspect of neurovascular coupling and blood-brain barrier. We propose that this noninvasive technique can be widely applied for in vivo study of complex cellular network.

  14. Effects of carboxylic acids on the uptake of non-transferrin-bound iron by astrocytes.

    Science.gov (United States)

    Keenan, Belinda M; Robinson, Stephen R; Bishop, Glenda M

    2010-01-01

    The concentrations of non-transferrin-bound iron are elevated in the brain during pathological conditions such as stroke and Alzheimer's disease. Astrocytes are specialised for sequestering this iron, however little is known about the mechanisms involved. Carboxylates, such as citrate, have been reported to facilitate iron uptake by intestinal cells. Citrate binds iron and limits its redox activity. The presence of high citrate concentrations in the interstitial fluid of the brain suggests that citrate may be an important ligand for iron transport by astrocytes. This study investigates whether iron accumulation by cultured rat astrocytes is facilitated by citrate or other carboxylates. Contrary to expectations, citrate, tartrate and malate were found to block iron accumulation in a concentration-dependent manner; alpha-ketoglutarate had limited effects, while fumarate, succinate and glutarate had no effect. This blockade was not due to an inhibition of ferric reductase activity. Instead, it appeared to be related to the capacity of these carboxylates to bind iron, since phosphate, which also binds iron, diminished the capacity of citrate, tartrate and malate to block the cellular accumulation of iron. These findings raise the possibility that citrate may have therapeutic potential in the management of neurodegenerative conditions that involve cellular iron overload.

  15. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes

    OpenAIRE

    Wang, Yanxin; Watford, Malcolm

    2006-01-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. C...

  16. Study of red wine neuroprotection on astrocytes.

    Science.gov (United States)

    Gómez-Serranillos, M Pilar; Martín, Sara; Ortega, Teresa; Palomino, Olga M; Prodanov, Marín; Vacas, Visitación; Hernández, Teresa; Estrella, Isabel; Carretero, M Emilia

    2009-12-01

    Phenolic composition of wine depends not only on the grape variety from which it is made, but on some external factors such as winemaking technology. Red wine possesses the most antioxidant effect because of its high polyphenolic content. The aim of this work is to study for the first time, the neuroprotective activity of four monovarietal Spanish red wines (Merlot (ME), Tempranillo (T), Garnacha (G) and Cabernet-Sauvignon (CS)) through its antioxidant ability, and to relate this neuroprotection to its polyphenolic composition, if possible. The wine effect on neuroprotection was studied through its effect as free radical scavenger against FeSO4, H2O2 and FeSO4 + H2O2. Effect on cell survival was determined by 3(4,5-dimethyltiazol-2-il)-2,5-diphenyltetrazolium reduction assay (MTT) and lactate dehydrogenase (LDH) release assay on astrocytes cultures. Results showed that most of the studied wine varieties induced neuroprotection through their antioxidant ability in astrocytes, Merlot being the most active; this variety is especially rich in phenolic compounds, mainly catechins and oligomeric proanthocyanidins. Our results show that red wine exerts a protection against oxidative stress generated by different toxic agents and that the observed neuroprotective activity is related to their polyphenolic content.

  17. Phosphoinositide metabolism and adrenergic receptors in astrocytes

    International Nuclear Information System (INIS)

    Agonist-induced phosphoinositide (PI) breakdown functions as a signal generating system. Diacylglycerol, one breakdown product of phosphotidylinositol-4,5-diphosphate hydrolysis, can stimulate protein kinase C, whereas inositol triphosphate, the other product, has been proposed to be a second messenger for Ca++ mobilization. Using purified astrocyte cultures from neonatal rat brain, the effects of adrenergic agonists and antagonists at 10-5 M were measured on PI breakdown. Astrocytes grown in culture were prelabeled with (3H)inositol, and basal (3H) inositol phosphate (IP1) accumulation was measured in the presence of Li+. Epinephrine > norepinephrine (NE) were the most active stimulants of IP1 production. The α1 adrenoreceptor blockers, phentolamine and phenoxybenzamine, added alone had no effect on IP1 production was reduced below basal levels. Propranolol partially blocked the effects of NE. Clonidine and isoproterenol, separately added, reduced IP1 below basal levels and when added together diminished IP1 accumulation even further. The role of adrenergic stimulation in the production of c-AMP

  18. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2010-08-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1–40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50–70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5–14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10–2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  19. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    Science.gov (United States)

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism.

  20. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    Science.gov (United States)

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism. PMID:25894677

  1. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise.

    Science.gov (United States)

    Cruzat, Vinicius Fernandes; Rogero, Marcelo Macedo; Tirapegui, Julio

    2010-01-01

    In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p glutamine and glutamate in soleus (p glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. PMID:19885855

  2. Glutamine versus ammonia utilization in the NAD synthetase family.

    Directory of Open Access Journals (Sweden)

    Jessica De Ingeniis

    Full Text Available NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS. Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS

  3. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia.

    Science.gov (United States)

    Churchill, Melissa J; Wesselingh, Steven L; Cowley, Daniel; Pardo, Carlos A; McArthur, Justin C; Brew, Bruce J; Gorry, Paul R

    2009-08-01

    Astrocyte infection with human immunodeficiency virus (HIV) is considered rare, so astrocytes are thought to play a secondary role in HIV neuropathogenesis. By combining double immunohistochemistry, laser capture microdissection, and highly sensitive multiplexed polymerase chain reaction to detect HIV DNA in single astrocytes in vivo, we showed that astrocyte infection is extensive in subjects with HIV-associated dementia, occurring in up to 19% of GFAP+ cells. In addition, astrocyte infection frequency correlated with the severity of neuropathological changes and proximity to perivascular macrophages. Our data indicate that astrocytes can be extensively infected with HIV, and suggest an important role for HIV-infected astrocytes in HIV neuropathogenesis.

  4. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Directory of Open Access Journals (Sweden)

    Mechteld A. R. Vermeulen

    2016-01-01

    Full Text Available Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%. Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  5. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis.

    Science.gov (United States)

    Vermeulen, Mechteld A R; Brinkmann, Saskia J H; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M; Houdijk, Alexander P J; van Goudoever, Johannes B; van Leeuwen, Paul A M

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  6. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Science.gov (United States)

    Vermeulen, Mechteld A. R.; Brinkmann, Saskia J. H.; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M.; Houdijk, Alexander P. J.; van Goudoever, Johannes B.; van Leeuwen, Paul A. M.

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285. PMID:27200186

  7. Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function.

    Science.gov (United States)

    Pleiss, Melanie M; Sompol, Pradoldej; Kraner, Susan D; Abdul, Hafiz Mohmmad; Furman, Jennifer L; Guttmann, Rodney P; Wilcock, Donna M; Nelson, Peter T; Norris, Christopher M

    2016-09-01

    Mounting evidence suggests that astrocyte activation, found in most forms of neural injury and disease, is linked to the hyperactivation of the protein phosphatase calcineurin. In many tissues and cell types, calcineurin hyperactivity is the direct result of limited proteolysis. However, little is known about the proteolytic status of calcineurin in activated astrocytes. Here, we developed a polyclonal antibody to a high activity calcineurin proteolytic fragment in the 45-48kDa range (ΔCN) for use in immunohistochemical applications. When applied to postmortem human brain sections, the ΔCN antibody intensely labeled cell clusters in close juxtaposition to amyloid deposits and microinfarcts. Many of these cells exhibited clear activated astrocyte morphology. The expression of ΔCN in astrocytes near areas of pathology was further confirmed using confocal microscopy. Multiple NeuN-positive cells, particularly those within microinfarct core regions, also labeled positively for ΔCN. This observation suggests that calcineurin proteolysis can also occur within damaged or dying neurons, as reported in other studies. When a similar ΔCN fragment was selectively expressed in hippocampal astrocytes of intact rats (using adeno-associated virus), we observed a significant reduction in the strength of CA3-CA1 excitatory synapses, indicating that the hyperactivation of astrocytic calcineurin is sufficient for disrupting synaptic function. Together, these results suggest that proteolytic activation of calcineurin in activated astrocytes may be a central mechanism for driving and/or exacerbating neural dysfunction during neurodegenerative disease and injury. PMID:27212416

  8. Simultaneous neuron- and astrocyte-specific fluorescent marking

    International Nuclear Information System (INIS)

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein

  9. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  10. Simultaneous neuron- and astrocyte-specific fluorescent marking

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Wiebke [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hayata-Takano, Atsuko [Molecular Research Center for Children' s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamo, Toshihiko [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakazawa, Takanobu, E-mail: takanobunakazawa-tky@umin.ac.jp [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nagayasu, Kazuki [iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kasai, Atsushi; Seiriki, Kaoru [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shintani, Norihito [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ago, Yukio [Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Farfan, Camille [Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); and others

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains. - Highlights: • We develop a method for the specific fluorescent labeling of neurons and astrocytes. • Neuron-specific labeling is achieved using Scg10 and synapsin promoters. • Astrocyte-specific labeling is generated using the minimal GFAP promoter. • Nuclear localization of fluorescent proteins is achieved with histone 2B protein.

  11. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  12. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  13. Expression, purification and preliminary crystallographic analysis of recombinant human small glutamine-rich tetratricopeptide-repeat protein

    International Nuclear Information System (INIS)

    The production and crystallization of the tetratricopeptide-repeat domain of human small glutamine-rich tetratricopeptide-repeat protein are reported. A 2.4 Å native diffraction data set has been obtained. Human small glutamine-rich tetratricopeptide-repeat protein (hSGT) is a 35 kDa protein implicated in a number of biological processes that include apoptosis, cell division and intracellular cell transport. The tetratricopeptide-repeat (TPR) domain of hSGT has been cloned and expressed in Escherichia coli and purified. Here, the crystallization and preliminary diffraction analysis of the TPR domain of hSGT is reported. X-ray diffraction data were processed to a resolution of 2.4 Å. Crystals belong to space group P21212, with unit-cell parameters a = 67.82, b = 81.93, c = 55.92 Å, α = β = γ = 90°

  14. Effect of parenteral glutamine supplementation in premature infants

    Institute of Scientific and Technical Information of China (English)

    LI Zheng-hong; WANG Dan-hua; DONG Mei

    2007-01-01

    Background Glutamine, proposed to be conditionally essential for critically ill patients, is not added routinely to parenteral amino acid formulations for premature infants and is provided in only small quantities by the enteral route when enteral feeding is Iow. Parenteral feeding is the basic way of nutrition in the first days of life of premature infants. In this study, we evaluated the effects of glutamine supplemented parenteral nutrition for premature infants on growth and development, feeding toleration, and infective episodes.Methods From December 2002 to July 2006, 53 premature infants were given either standard or glutamine supplemented parenteral nutrition for more than 2 weeks. Twenty-eight infants were in glutamine supplemented group, whose gestational age (31.4±2.0) weeks, birth weight range (1386±251) g; twenty-five infants were in control group, gestational age (31.1 ± 1.7) weeks, with birth weight range (1346± 199) g. There were no differences between the two groups. Various growth and biochemical indices were monitored throughout the duration of hospital stay. Data between groups were analyzed with Student's t test. Nonparametric data were analyzed using a Chi-square test. A two-tailed P value < 0.05 was considered statistically significant.Results The level of serum albumin was lower in the glutamine groups on the second week (3.0 vs 3.2 g/dl, P=0.028), and blood urea nitrogen was higher in glutamine groups on the fourth week (8.1 vs 4.9 mg/dl, P=0.014), but normal. Glutamine group infants took fewer days to regain birth weight (8.1 vs 10.4 days, P=0.017), required fewer days on parenteral nutrition (24.8 vs 30.8 days, P=0.035), with shorter stays in hospital (32.1 vs 38.6 days, P=0.047). Episodes of hospital acquired infection in glutamine supplemented infants were lower than that in control group (0.96 vs 1.84 times, P=0.000).Conclusion Parenteral glutamine supplementation in premature infants can shorten days on parenteral nutrition and

  15. Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery

    OpenAIRE

    Wu, Le-yu; Yu, Xue-li; Feng, Lin-yin

    2015-01-01

    Aim: Connexin 43 (Cx43) is a member of connexin family mainly expressed in astrocytes, which forms gap junctions and hemichannels and maintains the normal shape and function of astrocytes. In this study we investigated the role of Cx43 in astrocytes in facilitating neuronal recovery during ischemic stroke. Methods: Primary culture of astrocytes or a mixed culture of astrocytes and cortical neurons was subjected to oxygen glucose deprivation and reperfusion (OGD/R). The expression of Cx43 and ...

  16. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter

    OpenAIRE

    Vanzulli, Ilaria; Butt, Arthur M

    2015-01-01

    Astrocytes perform essential neuron-supporting functions in the central nervous system (CNS) and their disruption has devastating effects on neuronal integrity in multiple neuropathologies. Although astrocytes are considered resistant to most pathological insults, ischemia can result in astrocyte injury and astrocytes in postnatal white matter are particularly vulnerable. Metabotropic glutamate receptors (mGluR) are neuroprotective in ischemia and are widely expressed by astrocytes throughout...

  17. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4

    Directory of Open Access Journals (Sweden)

    Glenn Marsboom

    2016-07-01

    Full Text Available The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH, which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4lo cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation.

  18. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    OpenAIRE

    Dienel, Gerald A.; Nancy F Cruz

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net g...

  19. Pyk2 is essential for astrocytes mobility following brain lesion

    OpenAIRE

    Giralt, Albert; Coura, Renata; Girault, Jean-Antoine

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2) is a calcium-dependent, non-receptor protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Pyk2 is enriched in the brain, especially the forebrain. Pyk2 is highly expressed in neurons but is also present in astrocytes, where its role is not known. We used Pyk2 knockout mice (Pyk2−/−) developed in our laboratory to investigate the function of Pyk2 in astrocytes. Morphology and basic properties of astrocytes in vivo and in culture were not alte...

  20. Computational models of neuron-astrocyte interaction in epilepsy

    Directory of Open Access Journals (Sweden)

    Vladislav eVolman

    2012-08-01

    Full Text Available Astrocytes actively shape the dynamics of neurons and neuronal ensembles by affecting several aspects critical to neuronal function, such as regulating synaptic plasticity, modulating neuronal excitability and maintaining extracellular ion balance. These pathways for astrocyte-neuron interaction can also enhance the information-processing capabilities of brains, but in other circumstances may lead the brain on the road to pathological ruin. In this article, we review the existing computational models of astrocytic involvement in epileptogenesis, focusing on their relevance to existing physiological data.

  1. Astrocytic tracer dynamics estimated from [1-11C]-acetate PET measurements

    DEFF Research Database (Denmark)

    Arnold, Andrea; Calvetti, Daniela; Gjedde, Albert;

    2015-01-01

    We address the problem of estimating the unknown parameters of a model of tracer kinetics from sequences of positron emission tomography (PET) scan data using a statistical sequential algorithm for the inference of magnitudes of dynamic parameters. The method, based on Bayesian statistical...... of [1-11C]-acetate-derived tracer accumulation, estimating the transport rates in a three-compartment model of astrocytic uptake and metabolism of the tracer for a cohort of 18 volunteers from 3 groups, corresponding to healthy control individuals, cirrhotic liver and hepatic encephalopathy patients...

  2. Intercellular synchronization of diffusively coupled astrocytes

    CERN Document Server

    Alam, Md Jahoor; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2010-01-01

    We examine the synchrony of the dynamics of localized [Ca^{2+}]_i oscillations in internal pool of astrocytes via diffusing coupling of a network of such cells in a certain topology where cytosolic Ca^{2+} and inositol 1,4,5-triphosphate (IP3) are coupling molecules; and possible long range interaction among the cells. Our numerical results claim that the cells exhibit fairly well coordinated behaviour through this coupling mechanism. It is also seen in the results that as the number of coupling molecular species is increased, the rate of synchrony is also increased correspondingly. Apart from the topology of the cells taken, as the number of coupled cells around any one of the cells in the system is increased, the cell process information faster.

  3. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae.

    OpenAIRE

    Flores-Samaniego, B; Olivera, H; González, A.

    1993-01-01

    The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism.

  4. Glutaminase enzyme biosensor for determination of glutamine in cerebrospinal fluid, human serum and l-glutamine capsule

    International Nuclear Information System (INIS)

    Ammonium-selective glutamine biosensor was prepared by immobilizing glutaminase on poly(vinylchloride) (PVC) ammonium membrane electrode containing palmitic acid prepared by using nonactine. The response of glutamine biosensor was linear over the concentration range of 1.0x10-11.0x10-4M and slope was Nernstian. We determined optimum working conditions of the biosensor such as buffer concentration, buffer pH, lifetime, response time, linear working range and other response characteristics. The optimum buffer concentration and pH of proposed glutamine biosensor were determined as 20mM and pH 7.5, respectively. The interference effects of some ions and amino acids that may be present in body fluids were also investigated. The Km and Vmax values of glutaminase were determined. Additionally, glutamine assay in several biological samples such as healthy human serum, cerebrospinal fluid (CSF) and commercial glutamine capsule were also successfully carried out by using the standard addition method. The results were good agreement with previously reported values. (author)

  5. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells

    Institute of Scientific and Technical Information of China (English)

    Kangni Chen; Jing Zhang; (O)mür Yilmaz Tastan; Zillah Anne Deussen; Mayte Yu-Yin Siswick; Ji-Long Liu

    2011-01-01

    CTP synthase is compartmentalized within a subcellular structure,termed the cytoophidium,in a range of organisms including bacteria,yeast,fruit fly and rat.Here we show that CTP synthase is also compartmentalized into cytoophidia in human cells.Surprisingly,the occurrence of cyloophidia in human cells increases upon treatment with a glutamine analog 6-diazo-5-oxo-L-norleucine (DON),an inhibitor of glutaminedependent enzymes including CTP synthase.Experiments in flies confirmned that DON globally promotes cytoophidium assembly.Clonal analysis via CTP synthase RNA interference in somatic cells indicates that CTP synthase expression level is critical for the formation of cytoophidia.Moreover,DON facilitates cytoophidium assembly even when CTP synthase level is low.A second glutamine analog azaserine also promotes cytoophidum formation.Our data demonstrate that glutamine analogs serve as useful tools in the study of cytoophidia.

  6. Have we enough glutamine and how does it work? A clinician's view.

    Science.gov (United States)

    Soeters, P B; Grecu, I

    2012-01-01

    There is a gap between the scientific basis of the claim that in several disease states glutamine is lacking and the widespread belief that supplementation of glutamine to the nutritional regimen is beneficial in severely ill patients. Glutamine shortage exists when consuming tissues, playing a crucial role in the response to trauma and disease, receive insufficient amounts of glutamine. In these tissues (immune system, wound), glutamine is only partly oxidized but has more specific roles as nontoxic nitrogen carrier, precursor of several crucial metabolites required for cell proliferation and for maintenance of the redox potential, and as osmolyte. In inflammatory states, glutamine concentrations in plasma and tissues are decreased due to many disease-related factors, precluding its use as a reliable indicator of shortage. Isotope studies have yielded equivocal results, precluding their use as a reliable indicator of glutamine shortage or adequacy. The increase in the net release of glutamine from peripheral tissues to central tissues (immune system, liver, spleen, wound) in inflammatory states provides a better basis for the necessity to supplement the organism with extra glutamine in these conditions. Glutamine supplementation was beneficial in a few studies in burn or trauma patients. The clinical benefit of parenteral glutamine supplementation in patients with severe inflammation has been demonstrated more convincingly. The amounts of glutamine supplemented approximate the amounts released by peripheral tissues and utilized by central organs operative in host defense and are therefore in the physiological range.

  7. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula

    Science.gov (United States)

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA c...

  8. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel Bo;

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET of the...... brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes and...... astrocyte metabolism of [(11)C]acetate. No significant differences of the rate constant of oxidation of [(11)C]acetate (k 3) were found among the three groups of subjects. The net metabolic clearance of [(11)C]acetate from blood was lower in the group of patients with cirrhosis and HE than in the group of...

  9. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    Science.gov (United States)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  10. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  11. Saturable Leptin Transport Across the BBB Persists in EAE Mice

    OpenAIRE

    Hsuchou, Hung; Pramod K. Mishra; Kastin, Abba J; Wu, Xiaojun; Wang, Yuping; Ouyang, Suidong; Pan, Weihong

    2013-01-01

    We have shown that mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, have upregulated leptin receptor expression in reactive astrocytes of the hippocampus, a region involved in sickness behavior. Leptin can exacerbate EAE when its serum concentration is high. Although leptin receptors in astrocytes modulate leptin transport across cultured endothelial cell monolayers, it is not known how leptin transport in EAE mice is regulated. Here, we determined bra...

  12. How to understand the results of studies of glutamine supplementation.

    Science.gov (United States)

    Wernerman, Jan

    2015-11-03

    The lack of understanding of the mechanisms behind possible beneficial and possible harmful effects of glutamine supplementation makes the design of interventional studies of glutamine supplementations difficult, perhaps even hazardous. What is the interventional target, and how might it relate to outcomes? Taking one step further and aggregating results from interventional studies into meta-analyses does not diminish the difficulties. Therefore, conducting basic research seems to be a better idea than groping in the dark and exposing patients to potential harm in this darkness.

  13. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes

    OpenAIRE

    Chao Zhang; Wenliang Chen; Xin Zhang; Bin Huang; Aanjing Chen; Ying He; Jian Wang; Xingang Li

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic ...

  14. Group B streptococcal infection and activation of human astrocytes.

    Directory of Open Access Journals (Sweden)

    Terri D Stoner

    Full Text Available Streptococcus agalactiae (Group B Streptococcus, GBS is the leading cause of life-threatening meningitis in human newborns in industrialized countries. Meningitis results from neonatal infection that occurs when GBS leaves the bloodstream (bacteremia, crosses the blood-brain barrier (BBB, and enters the central nervous system (CNS, where the bacteria contact the meninges. Although GBS is known to invade the BBB, subsequent interaction with astrocytes that physically associate with brain endothelium has not been well studied.We hypothesize that human astrocytes play a unique role in GBS infection and contribute to the development of meningitis. To address this, we used a well- characterized human fetal astrocyte cell line, SVG-A, and examined GBS infection in vitro. We observed that all GBS strains of representative clinically dominant serotypes (Ia, Ib, III, and V were able to adhere to and invade astrocytes. Cellular invasion was dependent on host actin cytoskeleton rearrangements, and was specific to GBS as Streptococcus gordonii failed to enter astrocytes. Analysis of isogenic mutant GBS strains deficient in various cell surface organelles showed that anchored LTA, serine-rich repeat protein (Srr1 and fibronectin binding (SfbA proteins all contribute to host cell internalization. Wild-type GBS also displayed an ability to persist and survive within an intracellular compartment for at least 12 h following invasion. Moreover, GBS infection resulted in increased astrocyte transcription of interleukin (IL-1β, IL-6 and VEGF.This study has further characterized the interaction of GBS with human astrocytes, and has identified the importance of specific virulence factors in these interactions. Understanding the role of astrocytes during GBS infection will provide important information regarding BBB disruption and the development of neonatal meningitis.

  15. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    OpenAIRE

    Tommaso eFellin; Jeffrey M Ellenbogen; Maurizio eDe Pittà; Eshel eBen-Jacob; Michael M Halassa

    2012-01-01

    Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges...

  16. Astrocytes Directly Influence Tumor Cell Invasion and Metastasis In Vivo

    OpenAIRE

    Wang, Ling; Cossette, Stephanie M.; Rarick, Kevin R.; Gershan, Jill; Michael B Dwinell; Harder, David R.; Ramchandran, Ramani

    2013-01-01

    Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among wh...

  17. A Common Progenitor for Retinal Astrocytes and Oligodendrocytes

    OpenAIRE

    Rompani, Santiago B.; Cepko, Constance L.

    2010-01-01

    Developing neural tissue undergoes a period of neurogenesis followed by a period of gliogenesis. The lineage relationships among glial cell types have not been defined for most areas of the nervous system. Here we use retroviruses to label clones of glial cells in the chick retina. We found that almost every clone had both astrocytes and oligodendrocytes. In addition, we discovered a novel glial cell type, with features intermediate between those of astrocytes and oligodendrocytes, which we h...

  18. Astrocytes as therapeutic targets of estrogenic compounds following brain injuries

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-03-01

    Full Text Available For decades, astrocytes have been considered to be non-excitable support cells that are relatively resistant to brain injury. This view has changed radically during the past twenty years. Multiple essential functions are performed by astrocytes in normal brain. Astrocytes are dynamically involved in synaptic transmission, metabolic and ionic homeostasis, and inflammatory maintenance of the blood brain barrier. Advances in our understanding of astrocytes include new observations about their structure, organization, and function. Astrocytes play an active and important role in the pathophysiology of brain damage. Brain injury impairs mitochondrial function and this is accompanied by increased oxidative stress, leading to prominent astrogliosis, which involves changes in gene expression and morphology, and therefore glial scar formation. Recent works have demonstrated a protective role of reactive astrocytes after brain injury. Nevertheless, others have pointed to an inhibitory role of astrocytes in axonal regeneration after injury. Reactive astrogliosis is a complex phenomenon that includes a mixture of positive and negative responses for neuronal survival and regeneration. Reactive astroglia maintains the integrity of the blood-brain barrier and the survival of the perilesional tissue, but may prevent axonal and damaged tissue regeneration. Neuroprotective strategies aiming at reducing gliosis and enhance brain plasticity are of potential interest for translational neuroscience research in brain injuries. In this context, neurosteroids have shown to be a promising strategy to protect brain against injury, as their effects may rely on reducing gliosis, brain inflammation and potentially modulating recovery from brain injury by engaging mechanisms of neural plasticity. In conclusion, in this work we will consider particularly the two-edged sword role of reactive astrocytes, which is an experimental paradigm helpful in discriminating destructive

  19. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula.

    Science.gov (United States)

    Yang, Chengbo; Yang, Xiaojian; Lackeyram, Dale; Rideout, Todd C; Wang, Zirong; Stoll, Barbara; Yin, Yulong; Burrin, Douglas G; Fan, Ming Z

    2016-06-01

    Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis. PMID:26984322

  20. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  1. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    International Nuclear Information System (INIS)

    Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 μM. This stimulation was blocked by the low concentration of the α1-adrenergic antagonist prazosin but not by the α2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables

  2. Two-pore Domain Potassium Channels in Astrocytes

    Science.gov (United States)

    Ryoo, Kanghyun

    2016-01-01

    Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes. PMID:27790056

  3. Unveiling astrocytic control of cerebral blood flow with optogenetics.

    Science.gov (United States)

    Masamoto, Kazuto; Unekawa, Miyuki; Watanabe, Tatsushi; Toriumi, Haruki; Takuwa, Hiroyuki; Kawaguchi, Hiroshi; Kanno, Iwao; Matsui, Ko; Tanaka, Kenji F; Tomita, Yutaka; Suzuki, Norihiro

    2015-06-16

    Cortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex. A brief photostimulation induced a fast transient increase in CBF. The average response onset time was 0.7 ± 0.7 sec at the activation foci, and this CBF increase spread widely from the irradiation spot with an apparent propagation speed of 0.8-1.1 mm/sec. The broad increase in the CBF could be due to a propagation of diffusible vasoactive signals derived from the stimulated astrocytes. Pharmacological manipulation showed that topical administration of a K(+) channel inhibitor (BaCl2; 0.1-0.5 mM) significantly reduced the photostimulation-induced CBF responses, which indicates that the ChR2-evoked astrocytic activity involves K(+) signalling to the vascular smooth muscle cells. These findings demonstrate a unique model for exploring the role of the astrocytes in gliovascular coupling using non-invasive, time-controlled, cell-type specific perturbations.

  4. Effects of glutamine on wound healing.

    Science.gov (United States)

    Kesici, Ugur; Kesici, Sevgi; Ulusoy, Hulya; Yucesan, Fulya; Turkmen, Aygen U; Besir, Ahmet; Tuna, Verda

    2015-06-01

    Studies reporting the need for replacing amino acids such as glutamine (Gln), hydroxymethyl butyrate (HMB) and arginine (Arg) to accelerate wound healing are available in the literature. The primary objective of this study was to present the effects of Gln on tissue hydroxyproline (OHP) levels in wound healing. This study was conducted on 30 female Sprague Dawley rats with a mean weight of 230 ± 20 g. Secondary wounds were formed by excising 2 × 1 cm skin subcutaneous tissue on the back of the rats. The rats were divided into three equal groups. Group C (Control): the group received 1 ml/day isotonic solution by gastric gavage after secondary wound was formed. Group A (Abound): the group received 0·3 g/kg/day/ml Gln, 0·052 g/kg/day/ml HMB and 0·3 g/kg/day/ml Arg by gastric gavage after secondary wound was formed. Group R (Resource): the group received 0·3 g/kg/day/ml Gln by gastric gavage after secondary wound was formed. The OHP levels of the tissues obtained from the upper half region on the 8th day and the lower half region on the 21st day from the same rats in the groups were examined. Statistical analysis was performed using the statistics program SPSS version 17.0. No statistically significant differences were reported with regard to the OHP measurements on the 8th and 21st days (8th day: F = 0·068, P = 0·935 > 0·05; 21st day: F = 0·018, P = 0·983 > 0·05). The increase in mean OHP levels on the 8th and 21st days within each group was found to be statistically significant (F = 1146·34, P = 0·000 wound healing negatively and who do not have large tissue loss at critical level, Gln, Arg and HMB support would not be required to accelerate secondary wound healing.

  5. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3

    Directory of Open Access Journals (Sweden)

    Anna Maria Wójtowicz

    2013-11-01

    Full Text Available The extracellular concentration of the two main neurotransmitters glutamate and GABA is low but not negligible which enables a number of tonic actions. The effects of ambient GABA vary in a region-, cell-type and age-dependent manner and can serve as indicators of disease-related alterations. Here we explored the tonic inhibitory actions of GABA in Huntington's disease (HD. HD is a devastating neurodegenerative disorder caused by a mutation in the huntingtin gene. Whole cell patch clamp recordings from striatal output neurons (SONs in slices from adult wild type mice and two mouse models of HD (Z_Q175_KI homozygotes or R6/2 heterozygotes revealed an HD-related reduction of the GABA(A receptor-mediated tonic chloride current (ITonic(GABA along with signs of reduced GABA(B receptor-mediated presynaptic depression of synaptic GABA release. About half of ITonic(GABA depended on tetrodotoxin-sensitive synaptic GABA release, but the remaining current was still lower in HD. Both in WT and HD, ITonic(GABA was more prominent during the first four hours after preparing the slices, when astrocytes but not neurons exhibited a transient depolarization. All further tests were performed within 1 to 4 h in vitro. Experiments with SNAP5114, a blocker of the astrocytic GABA transporter GAT-3, suggest that in WT but not HD GAT-3 operated in the releasing mode. Application of a transportable substrate for glutamate transporters (D-aspartate 0.1 - 1 mM restored the non-synaptic GABA release in slices from HD mice. ITonic(GABA was also rescued by applying the hyperagonist gaboxadol (0.33 µM. The results lead to the hypothesis that lesion-induced astrocyte depolarization facilitates nonsynaptic release of GABA through GAT-3. However, the capacity of depolarized astrocytes to provide GABA for tonic inhibition is strongly reduced in HD.

  6. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes

    OpenAIRE

    Du, Yixing; Ma, Baofeng; Kiyoshi, Conrad M.; Alford, Catherine C.; Wang, Wei; Zhou, Min

    2015-01-01

    Mature astrocytes exhibit a linear current-to-voltage K+ membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K+ spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and ...

  7. Protective effect of glutamine pretreatment on ischemia-reperfusion injury of spinal cord in rabbits

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the effect of glutamine(Gln)on the content of reduced glutathione hormone(GSH)and aminoglutaminic acid(Glu)of spinal cord following ischemia-reperfusion injury.Methods Totally 40 healthy adult male rabbits were randomly divided into five groups:sham-operation group(S group),ischemia-reperfusion injury group(I/R group),low-dose glutamine group(L Gln group),median-dose glutamine group(M Gln group)and high-dose glutamine group(H Gln group).After glutamine preconditioning,the model of s...

  8. Glutamine, arginine, and leucine signaling in the intestine.

    Science.gov (United States)

    Marc Rhoads, J; Wu, Guoyao

    2009-05-01

    Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.

  9. Glutamine: precursor or nitrogen donor for citrulline synthesis?

    Science.gov (United States)

    Glutamine (Gln) is considered the main precursor for citrulline (Cit) synthesis, but no attempts have been made to differentiate the contribution of Gln carbon (Gln-C) skeleton vs. the nonspecific contribution through NH3 and CO2. To study the contribution of dietary Gln-N to the synthesis of Cit, t...

  10. Glutamine attenuates post-traumatic glutathione depletion in human muscle.

    Science.gov (United States)

    Fläring, U B; Rooyackers, O E; Wernerman, J; Hammarqvist, F

    2003-03-01

    Glutathione is quantitatively the most important endogenous scavenger system. Glutathione depletion in skeletal muscle is pronounced following major trauma and sepsis in intensive care unit patients. Also, following elective surgery, glutathione depletion occurs in parallel with a progressive decline in muscle glutamine concentration. The present study was designed to test the hypothesis that glutamine supplementation may counteract glutathione depletion in a human trauma model. A homogeneous group of patients (n = 17) undergoing a standardized surgical procedure were prospectively randomly allocated to receive glutamine (0.56 g x day(-1) x kg(-1)) or placebo as part of isonitrogenous and isocaloric nutrition. Percutaneous muscle biopsies and blood samples were taken pre-operatively and at 24 and 72 h after surgery. The concentrations of muscle glutathione and related amino acids were determined in muscle tissue and plasma. In the control (unsupplemented) subjects, total muscle glutathione had decreased by 47+/-8% and 37+/-11% and reduced glutathione had decreased by 53+/-10% and 45+/-16% respectively at 24 and 72 h after surgery (P glutamine supplementation attenuates glutathione depletion in skeletal muscle in humans following standardized surgical trauma.

  11. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange

    NARCIS (Netherlands)

    M. Timmerman (Michelle); C. Teng; R.B. Wilkening; P.V. Fennessey (Paul); F.C. Battaglia (Frederick); G. Meschia

    2000-01-01

    textabstractIntravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanis

  12. [Progress and application prospects of glutamine synthase in plants].

    Science.gov (United States)

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation. PMID:26955708

  13. Intravenous glutamine enhances COX-2 activity giving cardioprotection.

    LENUS (Irish Health Repository)

    McGuinness, Jonathan

    2009-03-01

    Preconditioning, a highly evolutionary conserved endogenous protective response, provides the most powerful form of anti-infarct protection known. We investigated whether acute intravenous glutamine, through an effect on cyclooxygenase (COX)-2 and heat shock protein (HSP) 72, might induce preconditioning.

  14. Regional tumour glutamine supply affects chromatin and cell identity.

    Science.gov (United States)

    Højfeldt, Jonas W; Helin, Kristian

    2016-09-28

    Limited perfusion of solid tumours produces a nutrient-deprived tumour core microenvironment. Low glutamine levels in the tumour core are now shown to lead to reduced levels of α-ketoglutarate and decreased histone demethylase activity, thereby promoting a less differentiated and more therapy-resistant state of the tumour cells.

  15. Dosing and efficacy of glutamine supplementation in human exercise and sport training.

    Science.gov (United States)

    Gleeson, Michael

    2008-10-01

    Some athletes can have high intakes of l-glutamine because of their high energy and protein intakes and also because they consume protein supplements, protein hydrolysates, and free amino acids. Prolonged exercise and periods of heavy training are associated with a decrease in the plasma glutamine concentration and this has been suggested to be a potential cause of the exercise-induced immune impairment and increased susceptibility to infection in athletes. However, several recent glutamine feeding intervention studies indicate that although the plasma glutamine concentration can be kept constant during and after prolonged strenuous exercise, the glutamine supplementation does not prevent the postexercise changes in several aspects of immune function. Although glutamine is essential for lymphocyte proliferation, the plasma glutamine concentration does not fall sufficiently low after exercise to compromise the rate of proliferation. Acute intakes of glutamine of approximately 20-30 g seem to be without ill effect in healthy adult humans and no harm was reported in 1 study in which athletes consumed 28 g glutamine every day for 14 d. Doses of up to 0.65 g/kg body mass of glutamine (in solution or as a suspension) have been reported to be tolerated by patients and did not result in abnormal plasma ammonia levels. However, the suggested reasons for taking glutamine supplements (support for immune system, increased glycogen synthesis, anticatabolic effect) have received little support from well-controlled scientific studies in healthy, well-nourished humans.

  16. Dosing and efficacy of glutamine supplementation in human exercise and sport training.

    Science.gov (United States)

    Gleeson, Michael

    2008-10-01

    Some athletes can have high intakes of l-glutamine because of their high energy and protein intakes and also because they consume protein supplements, protein hydrolysates, and free amino acids. Prolonged exercise and periods of heavy training are associated with a decrease in the plasma glutamine concentration and this has been suggested to be a potential cause of the exercise-induced immune impairment and increased susceptibility to infection in athletes. However, several recent glutamine feeding intervention studies indicate that although the plasma glutamine concentration can be kept constant during and after prolonged strenuous exercise, the glutamine supplementation does not prevent the postexercise changes in several aspects of immune function. Although glutamine is essential for lymphocyte proliferation, the plasma glutamine concentration does not fall sufficiently low after exercise to compromise the rate of proliferation. Acute intakes of glutamine of approximately 20-30 g seem to be without ill effect in healthy adult humans and no harm was reported in 1 study in which athletes consumed 28 g glutamine every day for 14 d. Doses of up to 0.65 g/kg body mass of glutamine (in solution or as a suspension) have been reported to be tolerated by patients and did not result in abnormal plasma ammonia levels. However, the suggested reasons for taking glutamine supplements (support for immune system, increased glycogen synthesis, anticatabolic effect) have received little support from well-controlled scientific studies in healthy, well-nourished humans. PMID:18806122

  17. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  18. Astrocytes as a source for Extracellular matrix molecules and cytokines

    Directory of Open Access Journals (Sweden)

    Stefan eWiese

    2012-06-01

    Full Text Available Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF and Epidermal growth factor (EGF. The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF, Bone Morphogenetic Proteins (BMPs, and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological

  19. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes

    Directory of Open Access Journals (Sweden)

    Gautam K Gandhi

    2010-03-01

    Full Text Available Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin-treated rats at 20–24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  20. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  1. Voluntary Exercise Induces Astrocytic Structural Plasticity in the Globus Pallidus.

    Science.gov (United States)

    Tatsumi, Kouko; Okuda, Hiroaki; Morita-Takemura, Shoko; Tanaka, Tatsuhide; Isonishi, Ayami; Shinjo, Takeaki; Terada, Yuki; Wanaka, Akio

    2016-01-01

    Changes in astrocyte morphology are primarily attributed to the fine processes where intimate connections with neurons form the tripartite synapse and participate in neurotransmission. Recent evidence has shown that neurotransmission induces dynamic synaptic remodeling, suggesting that astrocytic fine processes may adapt their morphologies to the activity in their environment. To illustrate such a neuron-glia relationship in morphological detail, we employed a double transgenic Olig2(CreER/WT); ROSA26-GAP43-EGFP mice, in which Olig2-lineage cells can be visualized and traced with membrane-targeted GFP. Although Olig2-lineage cells in the adult brain usually become mature oligodendrocytes or oligodendrocyte precursor cells with NG2-proteoglycan expression, we found a population of Olig2-lineage astrocytes with bushy morphology in several brain regions. The globus pallidus (GP) preferentially contains Olig2-lineage astrocytes. Since the GP exerts pivotal motor functions in the indirect pathway of the basal ganglionic circuit, we subjected the double transgenic mice to voluntary wheel running to activate the GP and examined morphological changes of Olig2-lineage astrocytes at both the light and electron microscopic levels. The double transgenic mice were divided into three groups: control group mice were kept in a cage with a locked running wheel for 3 weeks, Runner group were allowed free access to a running wheel for 3 weeks, and the Runner-Rest group took a sedentary 3-week rest after a 3-week running period. GFP immunofluorescence analysis and immunoelectron microscopy revealed that astrocytic fine processes elaborated complex arborization in the Runner mice, and reverted to simple morphology comparable to that of the Control group in the Runner-Rest group. Our results indicated that the fine processes of the Olig2-lineage astrocytes underwent plastic changes that correlated with overall running activities, suggesting that they actively participate in motor

  2. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [14C]acetoacetate formed from the [1-14C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [14C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  3. Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells.

    Science.gov (United States)

    Hsuchou, Hung; Kastin, Abba J; Tu, Hong; Joan Abbott, N; Couraud, Pierre-Olivier; Pan, Weihong

    2010-12-01

    Astrocytic leptin receptors (ObR) can be up-regulated in conditions such as adult-onset obesity. To determine whether the levels and subtypes of astrocytic ObR modulate leptin transport, we co-cultured hCMEC/D3 human brain endothelial cells and C6 astrocytoma cells in the Transwell system, and tested leptin permeation from apical to basolateral chambers. In comparison with hCMEC alone, co-culture of C6 cells reduced the permeability of paracellular markers and leptin. Unexpectedly, ObRb over-expression in C6 cells increased leptin permeation whereas ObRa over-expression showed no effect when compared with the control group of pcDNA-transfected C6 cells. By contrast, the paracellular permeability to the sodium fluorescein control was unchanged by over-expression of ObR subtypes. Leptin remained intact after crossing the monolayer as shown by HPLC and acid precipitation, and this was not affected by C6 cell co-culture or the over-expression of different ObR subtypes. Thus, increased expression of ObRb (and to a lesser extent ObRe) in C6 cells specifically increased the permeation of leptin across the hCMEC monolayer. Consistent with the evidence that the most apparent regulatory changes of ObR during obesity and inflammation occur in astrocytes, the results indicate that astrocytes actively regulate leptin transport across the blood-brain barrier, a mechanism independent of reduction of paracellular permeability. PMID:20977476

  4. The metabolism of malate by cultured rat brain astrocytes

    International Nuclear Information System (INIS)

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-[U-14C]malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain

  5. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. PMID:26839375

  6. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    Science.gov (United States)

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes. PMID:26976322

  7. Astrocytes directly influence tumor cell invasion and metastasis in vivo.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2 and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.

  8. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  9. Investigation on the suitable pressure for the preservation of astrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Sotome, S; Shimizu, A [Department of Environmental Engineering for Symbiosis, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Nakajima, K [Department of Bioinformatics, Soka University, 1-326 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Yoshimura, Y, E-mail: sotome_shinichi@yahoo.co.j [Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 (Japan)

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4{sup 0}C, in an effort to establish the best conditions for the preservation. Survival rate at 4{sup 0}C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4{sup 0}C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4{sup 0}C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  10. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Science.gov (United States)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  11. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  12. Investigation on the suitable pressure for the preservation of astrocyte

    Science.gov (United States)

    Sotome, S.; Nakajima, K.; Yoshimura, Y.; Shimizu, A.

    2010-03-01

    The effects of pressure on the survival rate of astrocytes in growth medium (DMEM) were investigated at room temperature and at 4°C, in an effort to establish the best conditions for the preservation. Survival rate at 4°C was found to be higher than that at room temperature. The survival rate of astrocytes preserved for 4 days at 4°C increased with increasing pressure up to 1.6 MPa, but decreased with increasing pressure above 1.6 MPa. At 10 MPa, all astrocytes died. The survival rate of cultured astrocytes decreased significantly following pressurization for 2 hours and the subsequent preservation for 2 days at atmospheric pressure. Therefore, it is necessary to maintain pressure when preserving astrocytes. These results indicate that the cells can be stored at 4°C under pressurization without freezing and without adding cryoprotective agents. Moreover, it may be possible to use this procedure as a new preservation method when cryopreservation is impractical.

  13. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    International Nuclear Information System (INIS)

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 0C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 0C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  14. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  15. Simultaneous neuron- and astrocyte-specific fluorescent marking.

    Science.gov (United States)

    Schulze, Wiebke; Hayata-Takano, Atsuko; Kamo, Toshihiko; Nakazawa, Takanobu; Nagayasu, Kazuki; Kasai, Atsushi; Seiriki, Kaoru; Shintani, Norihito; Ago, Yukio; Farfan, Camille; Hashimoto, Ryota; Baba, Akemichi; Hashimoto, Hitoshi

    2015-03-27

    Systematic and simultaneous analysis of multiple cell types in the brain is becoming important, but such tools have not yet been adequately developed. Here, we aimed to generate a method for the specific fluorescent labeling of neurons and astrocytes, two major cell types in the brain, and we have developed lentiviral vectors to express the red fluorescent protein tdTomato in neurons and the enhanced green fluorescent protein (EGFP) in astrocytes. Importantly, both fluorescent proteins are fused to histone 2B protein (H2B) to confer nuclear localization to distinguish between single cells. We also constructed several expression constructs, including a tandem alignment of the neuron- and astrocyte-expression cassettes for simultaneous labeling. Introducing these vectors and constructs in vitro and in vivo resulted in cell type-specific and nuclear-localized fluorescence signals enabling easy detection and distinguishability of neurons and astrocytes. This tool is expected to be utilized for the simultaneous analysis of changes in neurons and astrocytes in healthy and diseased brains.

  16. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior

    Science.gov (United States)

    Halassa, Michael M.; Haydon, Philip G.

    2011-01-01

    The past decade has seen an explosion of research on roles of neuron-astrocyte interactions in the control of brain function. We highlight recent studies performed on the tripartite synapse, the structure consisting of pre- and postsynaptic elements of the synapse and an associated astrocytic process. Astrocytes respond to neuronal activity and neuro-transmitters, through the activation of metabotropic receptors, and can release the gliotransmitters ATP, D-serine, and glutamate, which act on neurons. Astrocyte-derived ATP modulates synaptic transmission, either directly or through its metabolic product adenosine. D-serine modulates NMDA receptor function, whereas glia-derived glutamate can play important roles in relapse following withdrawal from drugs of abuse. Cell type–specific molecular genetics has allowed a new level of examination of the function of astrocytes in brain function and has revealed an important role of these glial cells that is mediated by adenosine accumulation in the control of sleep and in cognitive impairments that follow sleep deprivation. PMID:20148679

  17. Heroin-Induces Differential Protein Expression by Normal Human Astrocytes (NHA

    Directory of Open Access Journals (Sweden)

    Jessica L. Reynolds

    2006-01-01

    Full Text Available Heroin use is postulated to act as a cofactor in the neuropathogenesis of human immunodeficiency virus (HIV-1 infection. Astrocytes, integral components of the CNS, are reported to be susceptible to HIV-1 infection. Upon activation, astrocytes release a number of immunoregulatory products or modulate the expression of a number of proteins that foster the immunopathogenesis of HIV-1 infection. However, the role of heroin on HIV-1 infectivity and the expression of the proteome of normal human astrocytes (NHA have not been elucidated. We hypothesize that heroin modulates the expression of a number of proteins by NHA that foster the neuoropathogenesis of HIV-1 infection. We utilized LTR amplification and the p24 antigen assay to quantitate the effect of heroin on HIV-1 infectivity while difference gel electrophoresis (DIGE combined with protein identification through high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS to analyze the effects of heroin on the proteomic profile of NHA. Results demonstrate that heroin potentiates HIV-1 replication in NHA. Furthermore, heroin significantly increased protein expression levels for protein kinase C (PKC, reticulocalbin 1 precursor, reticulocalbin 1, tyrosine 3-monooxgenase/tryptophan 5-monooxgenase activation protein, chloride intracellular channel 1, cathepsin D preproprotein, galectin 1 and myosin light chain alkali. Heroin also significantly decreased protein expression for proliferating cell nuclear antigen, proteasome beta 6 subunit, tropomyosin 3, laminin receptor 1, tubulin alpha 6, vimentin, EF hand domain family member D2, Tumor protein D54 (hD54, ATP synthase, H+ transporting, mitochondrial F1 complex and ribosomal protein S14. Identification of unique, heroin-induced proteins may help to develop novel markers for diagnostic, preventative and therapeutic targeting in heroin using subjects.

  18. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network

    NARCIS (Netherlands)

    Kanski, Regina; Sneeboer, Marjolein A M; van Bodegraven, Emma J; Sluijs, Jacqueline A; Kropff, Wietske; Vermunt, Marit W.; Creyghton, Menno P; De Filippis, Lidia; Vescovi, Angelo; Aronica, Eleonora; van Tijn, P.; van Strien, Miriam E; Hol, Elly M

    2014-01-01

    Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostati

  19. Effects of Hydro Alcoholic Extraction of Valeriana on Astrocyte Raphe Magnus in Adult Rats

    Directory of Open Access Journals (Sweden)

    sajad Hatami joni

    2014-12-01

    Conclusion: Oral administration of hydro alcoholic extract of valerian increases astrocytes number and decreases their size in nucleus of raphe Magna, which indicated the effect of this extraction on proliferation of astrocytes increasing.

  20. Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo.

    Science.gov (United States)

    Unemura, Kazuhiro; Kume, Toshiaki; Kondo, Minami; Maeda, Yuki; Izumi, Yasuhiko; Akaike, Akinori

    2012-01-01

    Glucocorticoids are stress hormones released from the adrenal cortex and their concentration is controlled by the hypothalamic-pituitary-adrenal axis. In this study, we investigated the effect of glucocorticoids on the number of astrocytes and glucocorticoid receptor (GR) expression in vitro and in vivo. Proliferation of cultured astrocytes was reduced following treatment with corticosterone and dexamethasone for 72 h. Corticosterone and dexamethasone also reduced GR expression in astrocytes. RU486, a GR antagonist, inhibited the reduction in both astrocyte proliferation and GR expression. Furthermore, GR knockdown by siRNA inhibited astrocyte proliferation. We also examined the effect of excessive glucocorticoid release on GR expression and the number of astrocytes in vivo by administering adrenocorticotropic hormone to rats for 14 days. GR expression was reduced in the prefrontal cortex and hippocampus and the number of astrocytes was reduced in the frontal cortex. Overall, our results suggest that glucocorticoids decrease the number of astrocytes by reducing GR expression.

  1. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes

    OpenAIRE

    Renner, Nicole A.; Sansing, Hope A.; Inglis, Fiona M; Mehra, Smriti; Kaushal, Deepak; Lackner, Andrew A; Andrew G MacLean

    2013-01-01

    The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukoc...

  2. Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain

    OpenAIRE

    Sosunov, Alexander A.; Wu, Xiaoping; Tsankova, Nadejda M.; Guilfoyle, Eileen; Guy M McKhann; Goldman, James E.

    2014-01-01

    To examine the diversity of astrocytes in the human brain, we immunostained surgical specimens of temporal cortex and hippocampus and autopsy brains for CD44, a plasma membrane protein and extracellular matrix receptor. CD44 antibodies outline the details of astrocyte morphology to a degree not possible with glial fibrillary acidic protein (GFAP) antibodies. CD44+ astrocytes could be subdivided into two groups. First, CD44+ astrocytes with long processes were consistently found in the subpial...

  3. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    OpenAIRE

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-01-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astroc...

  4. Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    OpenAIRE

    Yuan Liu; Li Wang; Zaiyun Long; Lin Zeng; Yamin Wu

    2012-01-01

    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific...

  5. Neuronal cadherin (NCAD) increases sensory neurite formation and outgrowth on astrocytes

    OpenAIRE

    Ferguson, Toby A.; Scherer, Steven S.

    2012-01-01

    We examined the neurite outgrowth of sensory neurons on astrocytes following the genetic deletion of N-cadherin (NCAD). Deletion abolished immunostaining for NCAD and the other classical cadherins, indicating that NCAD is likely the only classical cadherin expressed by astrocytes. Only 38% of neurons grown on NCAD-deficient astrocytes for 24 hours produced neurites, as compared to 74% of neurons grown on NCAD-expressing astrocytes. Of the neurons that produced neurites, those grown on NCAD-de...

  6. Don't fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair

    OpenAIRE

    White, Robin E.; Jakeman, Lyn B.

    2008-01-01

    Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent...

  7. GLUT2 Immunoreactivity in Gomori-positive Astrocytes of the Hypothalamus

    OpenAIRE

    Young, John K.; McKenzie, James C.

    2004-01-01

    A specialized subtype of astrocyte, the Gomori-positive (GP) astrocyte, is unusually abundant and prominent in the arcuate nucleus of the hypothalamus. GP astro-cytes possess cytoplasmic granules derived from degenerating mitochondria. GP granules are highly stained by Gomori's chrome alum hematoxylin stain, by the Perl's reaction for iron, or by toluidine blue. The source of the oxidative stress causing mitochondrial damage in GP astrocytes is uncertain, but such damage could arise from the ...

  8. Form Follows Function: Astrocyte Morphology and Immune Dysfunction in SIV neuroAIDS

    OpenAIRE

    Lee, Kim M.; Chiu, Kevin B.; Renner, Nicole A.; Sansing, Hope A.; Didier, Peter J.; Andrew G MacLean

    2014-01-01

    Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of GFAP-labeled astrocytes per mm2 and the proporti...

  9. Phenotypic Conversions of “Protoplasmic” to “Reactive” Astrocytes in Alexander Disease

    OpenAIRE

    Sosunov, Alexander A.; Guilfoyle, Eileen; Wu, Xiaoping; Guy M McKhann; Goldman, James E.

    2013-01-01

    Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology we have examined hippocam...

  10. In vivo astrocytic Ca2+ signaling in health and brain disorders

    OpenAIRE

    Ding, Shinghua

    2013-01-01

    Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron–glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellul...

  11. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity

    OpenAIRE

    Yoon, Seo-Yeon; Robinson, Caleb R.; Zhang, Haijun; Dougherty, Patrick M.

    2013-01-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific ...

  12. Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    OpenAIRE

    Martin Heni; Hennige, Anita M.; Andreas Peter; Dorothea Siegel-Axel; Anna-Maria Ordelheide; Norbert Krebs; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring; Harald Staiger

    2011-01-01

    INTRODUCTION: In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone. METHODS: Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathwa...

  13. Serum glutamine, set-shifting ability and anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Collier David A

    2010-06-01

    Full Text Available Abstract Background Set-shifting is impaired in people with anorexia nervosa (AN, but the underlying physiological and biochemical processes are unclear. Animal studies have established that glutamatergic pathways in the prefrontal cortex play an important role in set-shifting ability. However, it is not yet understood whether levels of serum glutamatergic amino acids are associated with set-shifting performance in humans. The aim of this study was to determine whether serum concentrations of amino acids related to glutamatergic neurotransmission (glutamine, glutamate, glycine, l-serine, d-serine are associated with set-shifting ability in people with acute AN and those after recovery. Methods Serum concentrations of glutamatergic amino acids were measured in 27 women with current AN (AN group, 18 women recovered from AN (ANRec group and 28 age-matched healthy controls (HC group. Set-shifting was measured using the Wisconsin Card Sorting Test (WCST and the Trail Making Task (TMT. Dimensional measures of psychopathology were used, including the Eating Disorder Examination Questionnaire (EDEQ, the Maudsley Obsessive-Compulsive Inventory (MOCI and the Hospital Anxiety and Depression Scale (HADS. Results Serum glutamine concentrations in the AN group (1,310.2 ± 265.6 μM, mean ± SD were significantly higher (by approximately 20% than those in the HC group (1,102.9 ± 152.7 μM, mean ± SD (F(2, 70 = 6.3, P = 0.003, 95% CI 61.2 to 353.4. Concentrations of serum glutamine were positively associated with markers of the illness severity: a negative correlation was present between serum glutamine concentrations and body mass index (BMI and lowest BMI and a positive correlation was found between duration of illness and EDEQ. The AN group showed significantly impaired set shifting in the WCST, both total errors, and perseverative errors. In the AN group, there were no correlations between serum glutamine concentrations and set shifting. Conclusions Serum

  14. Are astrocytes executive cells within the central nervous system?

    Science.gov (United States)

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. PMID:27556379

  15. File list: Oth.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Astrocytes.bed ...

  16. File list: ALL.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Astrocytes.bed ...

  17. File list: Oth.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Astrocytes.bed ...

  18. File list: ALL.Neu.10.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Astrocytes.bed ...

  19. File list: ALL.Neu.50.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Astrocytes.bed ...

  20. File list: Oth.Neu.20.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Astrocytes.bed ...

  1. File list: Oth.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Astrocytes mm9 TFs and others Neural Astrocytes SRX109474,SRX32621...2 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Astrocytes.bed ...

  2. File list: ALL.Neu.05.AllAg.Astrocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Astrocytes mm9 All antigens Neural Astrocytes SRX109474,SRX326212,...SRX326211 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Astrocytes.bed ...

  3. Comparison of the Gene Expression Profiles of Human Fetal Cortical Astrocytes with Pluripotent Stem Cell Derived Neural Stem Cells Identifies Human Astrocyte Markers and Signaling Pathways and Transcription Factors Active in Human Astrocytes

    OpenAIRE

    Nasir Malik; Xiantao Wang; Sonia Shah; Efthymiou, Anastasia G.; Bin Yan; Sabrina Heman-Ackah; Ming Zhan; Mahendra Rao

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression anal...

  4. Astrocytes in oligodendrocyte lineage development and white matter pathology

    Directory of Open Access Journals (Sweden)

    Jiasi eLi

    2016-05-01

    Full Text Available White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in grey matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica. In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  5. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Nayak Anupma

    2004-04-01

    Full Text Available BACKGROUND: p53 is a tumor suppressor gene implicated in the genesis of a variety of malignancies including brain tumors. Overexpression of the p53 protein is often used as a surrogate indicator of alterations in the p53 gene. AIMS: In this study, data is presented on p53 protein expression in adult cases (>15 years of age of astrocytic (n=152 and oligodendroglial (n=28 tumors of all grades. Of the astrocytic tumors, 86% were supratentorial in location while remaining 14% were located infratentorially - 8 in the the cerebellum and 13 in the brainstem. All the oligodendrogliomas were supratentorial. MATERIALS AND METHODS: p53 protein expression was evaluated on formalin-fixed paraffin-embedded sections using streptavidin biotin immunoperoxidase technique after high temperature antigen retrieval. RESULTS: Overall 52% of supratentorial astrocytic tumors showed p53 immunopositivity with no correlation to the histological grade. Thus, 58.8% of diffuse astrocytomas (WHO Grade II, 53.8% of anaplastic astrocytomas (WHO Grade III and 50% of glioblastomas (WHO Grade IV were p53 protein positive. In contrast, all the infratentorial tumors were p53 negative except for one brainstem glioblastoma. Similarly, pilocytic astrocytomas were uniformly p53 negative irrespective of the location. Among oligodendroglial tumors, the overall frequency of p53 immunopositivity was lower (only 28%, though a trend of positive correlation with the tumor grade was noted - 25% in Grade II and 31.5% in grade III (anaplastic oligodendroglioma. Interestingly, p53 labeling index (p53 LI did not correlate with the histopathological grade in both astrocytic and oligodendroglial tumors. CONCLUSIONS: Thus, this study gives an insight into the genetic and hence biological heterogeneity of gliomas, not only between astrocytic tumors vs. oligodendrogliomas but also within astrocytic tumors with regard to their grade and location. With p53 gene therapy trials in progress, this will

  6. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  7. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A...... reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids....

  8. CCL2 modulates cytokine production in cultured mouse astrocytes

    Directory of Open Access Journals (Sweden)

    Frugier Tony

    2010-10-01

    Full Text Available Abstract Background The chemokine CCL2 (also known as monocyte chemoattractant protein-1, or MCP-1 is upregulated in patients and rodent models of traumatic brain injury (TBI, contributing to post-traumatic neuroinflammation and degeneration by directing the infiltration of blood-derived macrophages into the injured brain. Our laboratory has previously reported that Ccl2-/- mice show reduced macrophage accumulation and tissue damage, corresponding to improved motor recovery, following experimental TBI. Surprisingly, Ccl2-deficient mice also exhibited delayed but exacerbated secretion of key proinflammatory cytokines in the injured cortex. Thus we sought to further characterise CCL2's potential ability to modulate immunoactivation of astrocytes in vitro. Methods Primary astrocytes were isolated from neonatal wild-type and Ccl2-deficient mice. Established astrocyte cultures were stimulated with various concentrations of lipopolysaccharide (LPS and interleukin (IL-1β for up to 24 hours. Separate experiments involved pre-incubation with mouse recombinant (rCCL2 prior to IL-1β stimulation in wild-type cells. Following stimulation, cytokine secretion was measured in culture supernatant by immunoassays, whilst cytokine gene expression was quantified by real-time reverse transcriptase polymerase chain reaction. Results LPS (0.1-100 μg/ml; 8 h induced the significantly greater secretion of five key cytokines and chemokines in Ccl2-/- astrocytes compared to wild-type cells. Consistently, IL-6 mRNA levels were 2-fold higher in Ccl2-deficient cells. IL-1β (10 and 50 ng/ml; 2-24 h also resulted in exacerbated IL-6 production from Ccl2-/- cultures. Despite this, treatment of wild-type cultures with rCCL2 alone (50-500 ng/ml did not induce cytokine/chemokine production by astrocytes. However, pre-incubation of wild-type astrocytes with rCCL2 (250 ng/ml, 12 h prior to stimulation with IL-1β (10 ng/ml, 8 h significantly reduced IL-6 protein and gene

  9. Glutamine synthetase gene evolution: A good molecular clock

    Energy Technology Data Exchange (ETDEWEB)

    Pesole, G.; Lanvave, C.; Saccone, C. (Consiglio Nazionale delle Richerche, Bari (Italy)); Bozzetti, M.P. (Univ. di Bari (Italy)); Preparata, G. (Univ. di Milano (Italy))

    1991-01-15

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.

  10. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    OpenAIRE

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats i...

  11. The glutamine synthetase gene family in Populus

    OpenAIRE

    Cánovas Francisco M; Kirby Edward G; Avila Concepción; Canales Javier; García-Gutiérrez Angel; Castro-Rodríguez Vanessa

    2011-01-01

    Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists ...

  12. Controlling the prion propensity of glutamine/asparagine-rich proteins

    OpenAIRE

    Paul, Kacy R.; Ross, Eric D.

    2015-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discu...

  13. Glutamine Supplementation in Sick Children: Is It Beneficial?

    OpenAIRE

    Elise Mok; Régis Hankard

    2011-01-01

    The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evide...

  14. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro.

    Science.gov (United States)

    Cheli, Veronica T; Santiago González, Diara A; Smith, Jessica; Spreuer, Vilma; Murphy, Geoffrey G; Paez, Pablo M

    2016-08-01

    We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415. PMID:27247164

  15. Glutamine supplementation and immune function during heavy load training.

    Science.gov (United States)

    Song, Qing-Hua; Xu, Rong-Mei; Zhang, Quan-Hai; Shen, Guo-Qing; Ma, Ming; Zhao, Xin-Ping; Guo, Yan-Hua; Wang, Yi

    2015-05-01

    Athletes with heavy training loads are prone to infectious illnesses, suggesting that their training may suppress immune function. This study sought to determine whether supplementation with the amino acid glutamine, which supports immune health, alters immune function in athletes during heavy load training. 24 athletes were randomly assigned to either an experimental group (n = 12) or a control group (n = 12). Athletes exercised using heavy training loads for 6 weeks. Athletes in the experimental group took 10 g glutamine orally once a day beginning 3 weeks after initial testing, while athletes in the control group were given a placebo. Immune function was assessed by measuring the following immunity markers: CD4⁺ and CD8⁺ T cell counts, serum IgA, IgG, and IgM levels, and natural killer (NK) cell activity both before and after the completion of training. The percentages of circulating CD8⁺ T cells were significantly different before (39.13 ± 5.87%) and after (26.63 ± 3.95%) training in the experimental group (p glutamine supplementation may be able to restore immune function and reduce the immunosuppressive effects of heavy-load training. PMID:25740264

  16. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    Science.gov (United States)

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  17. Glutamine supplementation and immune function during heavy load training.

    Science.gov (United States)

    Song, Qing-Hua; Xu, Rong-Mei; Zhang, Quan-Hai; Shen, Guo-Qing; Ma, Ming; Zhao, Xin-Ping; Guo, Yan-Hua; Wang, Yi

    2015-05-01

    Athletes with heavy training loads are prone to infectious illnesses, suggesting that their training may suppress immune function. This study sought to determine whether supplementation with the amino acid glutamine, which supports immune health, alters immune function in athletes during heavy load training. 24 athletes were randomly assigned to either an experimental group (n = 12) or a control group (n = 12). Athletes exercised using heavy training loads for 6 weeks. Athletes in the experimental group took 10 g glutamine orally once a day beginning 3 weeks after initial testing, while athletes in the control group were given a placebo. Immune function was assessed by measuring the following immunity markers: CD4⁺ and CD8⁺ T cell counts, serum IgA, IgG, and IgM levels, and natural killer (NK) cell activity both before and after the completion of training. The percentages of circulating CD8⁺ T cells were significantly different before (39.13 ± 5.87%) and after (26.63 ± 3.95%) training in the experimental group (p glutamine supplementation may be able to restore immune function and reduce the immunosuppressive effects of heavy-load training.

  18. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    Science.gov (United States)

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  19. Astrocytes protect neurons against methylmercury via ATP/P2Y(1 receptor-mediated pathways in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yusuke Noguchi

    Full Text Available Methylmercury (MeHg is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i inhibited by a P2Y1 receptor antagonist, MRS2179, (ii abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii mimicked by exogenously applied ATP. In addition, (iv MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  20. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    Science.gov (United States)

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  1. Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes.

    OpenAIRE

    Lavoinne, A; Baquet, A.; Hue, Louis

    1987-01-01

    Glutamine stimulated glycogen synthesis and lactate production in hepatocytes from overnight-fasted normal and diabetic rats. The effect, which was half-maximal with about 3 mM-glutamine, depended on glucose concentration and was maximal below 10 mM-glucose. beta-2-Aminobicyclo[2.2.1.]heptane-2-carboxylic acid, an analogue of leucine, stimulated glutaminase flux, but inhibited the stimulation of glycogen synthesis by glutamine. Various purine analogues and inhibitors of purine synthesis were ...

  2. No benefit of glutamine supplementation on persistent diarrhea in Ugandan children.

    Science.gov (United States)

    Kamuchaki, Justine M; Kiguli, Sarah; Wobudeya, Eric; Bortolussi, Robert

    2013-05-01

    We evaluated the efficacy of oral glutamine supplementation in children 2 to 60 months of age with persistent diarrhea by 1:1 randomization to standard treatment alone or together with twice daily glutamine. The failure rate was similar in both arms (relative risk: 1.8 [95% confidence interval: 0.8-3.7], P = 0.12). Glutamine supplementation showed no benefit on the outcome of persistent diarrhea.

  3. Effects of xylitol- and/or glutamine-supplemented parenteral nutrition on septic rats.

    Science.gov (United States)

    Ardawi, M S

    1992-04-01

    1. The effects of parenteral nutrition with or without xylitol and/or glutamine supplementation were studied in septic rats after 4 days of treatment. 2. Septic rats treated with xylitol- and/or glutamine-supplemented parenteral nutrition survived sepsis significantly better than other parenteral nutrition-treated septic rats: the cumulative percentage of deaths over 4 days in septic rats treated with xylitol-glutamine-supplemented parenteral nutrition was 9.5% compared with 54.5% in septic rats given parenteral nutrition without xylitol and glutamine, and 52.4% in septic rats treated with parenteral nutrition supplemented with glucose. 3. Xylitol- and/or glutamine-supplemented parenteral nutrition resulted in improved nitrogen balance in septic rats: the cumulative nitrogen balance over the 4 days of treatment was positive in the rats given xylitol-supplemented parenteral nutrition and more positive when rats were treated with xylitol-glutamine-supplemented parenteral nutrition, as compared with other groups of septic rats. 4. The rate of loss of intracellular glutamine in skeletal muscle was markedly decreased (P less than 0.001) in response to xylitol- and/or glutamine-supplemented parenteral nutrition in septic rats. 5. Hepatic protein and RNA contents were increased in septic rats treated with xylitol- and/or glutamine-supplemented parenteral nutrition. Similarly, protein and RNA contents were markedly increased in muscles of septic rats treated with xylitol- and/or glutamine-supplemented parenteral nutrition. 6. The rates of incorporation of leucine/tyrosine into liver/muscle proteins in vitro were increased and the rate of muscular tyrosine release was decreased in response to xylitol- and/or glutamine-supplemented parenteral nutrition in septic rats. 7. It is concluded that the administration of xylitol- and/or glutamine-supplemented parenteral nutrition is beneficial to septic rats and possibly to septic patients.

  4. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling.

    Science.gov (United States)

    Farmer, W Todd; Abrahamsson, Therése; Chierzi, Sabrina; Lui, Christopher; Zaelzer, Cristian; Jones, Emma V; Bally, Blandine Ponroy; Chen, Gary G; Théroux, Jean-Francois; Peng, Jimmy; Bourque, Charles W; Charron, Frédéric; Ernst, Carl; Sjöström, P Jesper; Murai, Keith K

    2016-02-19

    Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties. PMID:26912893

  5. Human Brain Astrocytes Mediate TRAIL-mediated Apoptosis after Treatment with IFN-γ

    OpenAIRE

    Lee, Jeonggi; Shin, Jeon-Soo; Choi, In-Hong

    2006-01-01

    TNF-related apoptosis inducing ligand (TRAIL) expressions were studied in primary human brain astrocytes in response to pro-inflammatory cytokines. When astrocytes were treated with IL-1β, TNF-α or IFN-γ, TRAIL was induced in cultured fetal astrocytes. In particular, IFN-γ induced the highest levels of TRAIL in cultured astrocytes. When astrocytes were prereated with IFN-γ, they induced apoptosis in TRAIL-sensitive Peer cells. Our results suggest that IFN-γ modulates the expression of TRAIL i...

  6. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Liu, Xiuli; Zhou, Wei; Zeng, Shaoqun

    2010-08-01

    Conventional stimulation techniques used in studies of astrocyte-to-neuron signaling are invasive or dependent on additional electrical devices or chemicals. Here, we applied photostimulation with a femtosecond laser to selectively stimulate astrocytes in the hippocampal neural network, and the neuronal responses were examined. The results showed that, after photostimulation, cell-specific astrocyte-to-neuron signaling was triggered; sometimes the neuronal responses were even synchronous. Since photostimulation with a femtosecond laser is noninvasive, agent-free, and highly precise, this method has been proved to be efficient in activating astrocytes for investigations of astrocytic functions in neural networks.

  7. Effect of the association l-glutamine – ethylene glycol In equine semen cryopreservation

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Neira

    2007-12-01

    Full Text Available In order to improve the effectiveness in the cryopreservation of horse sperm, the effect of association L-glutamine with Ethylenglicole and Glycerol in the freezing media spermatozoa was evaluated. 4 Colombian native stallions were used to complete a total of 21 samples which were frozen in two different media: INRA 97 and cryoprotectant. The following study was done: L-glutamine 80mM + Etilenglicol 2.5% (protocol 1, L-glutamine 80 mM + Glycerol 2.5% (protocol 2, Etilenglicol 2.5% (protocol 3 and glycerol 2.5% (protocol 4. The freezing methodology was: 60 minutes to descend the temperature from 38°C to 5°C (0.55°C/min during the transport. The samples were centrifuged at 600G/10min., and the semen was diluted with the four protocols in straws of 0.5 ml. Then, 60 minutes of equilibrium in refrigeration; 20 minutes in liquid nitrogen vapors and then immersed. In the progressive motility evaluation there was not any significant difference between protocols at 0 time (p ≤ 0.6383, at 30 minutes (p ≤ 0.511, and at 60 minutes (p ≤ 0.1659. The motility averages for the 4 protocols at 0 time were (1 29,6 ± 15,1; (2 28,1 ± 13,5; (3 28,4 ± 12,3 and (4 30,8 ± 11,1; at the 30 minutes: (1 25,1 ± 13,6; (2 22,3 ± 13,0; (3 24,9 ± 12,4 and (4 25,5 ± 11,6, and at 60 minutes (1 17,1 ± 10,2; (2 15,4 ± 11,7; (3 19,9 ± 11,5 and (4 17,6 ± 10,4. The spermatic survival was evaluated with eosine-nigrosine coloration, after thawing and there was not any significant difference among the protocols (p≤ 0.6336, the average measures were (1 30,7; (2 28,8; (3 28,7 and (4 31,7. As a conclusion, although significant difference was not demonstrated among the protocols; the tendency to the highest average was presented by the protocol 4 (glycerol 2.5%.

  8. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe;

    2013-01-01

    in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have...

  9. Glutamine availability as a target for the control of Glutamine-Synthetase negative human cancers: the case of oligodendroglioma

    OpenAIRE

    Ottaviani, Laura

    2015-01-01

    The amino acid Glutamine (Gln) is a nutrient of fundamental importance for cell metabolism. It is involved in many metabolic pathways, such as the synthesis of non essential amino acids, nucleotides and hexosamines, the regulation of cell volume, the response to oxidative stress (through the maintenance of intracellular glutathione). Moreover, it refuels the Krebs cycle with carbon moieties (anaplerosis) and activates mTOR, possibly through the energization of leucine influx. It has been k...

  10. The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state.

    Science.gov (United States)

    Jiang, P; Peliska, J A; Ninfa, A J

    1998-09-15

    The regulation of Escherichia coli glutamine synthetase (GS) by reversible adenylylation has provided one of the classical paradigms for signal transduction by cyclic cascades. Yet, many mechanistic features of this regulation remain to be elucidated. We examined the regulation of GS adenylylation state in a reconstituted system containing GS, adenylyltransferase (ATase), the PII signal transduction protein that controls ATase, and the uridylyltransferase/uridylyl-removing enzyme (UTase/UR), which has a role in regulating PII. In this reconstituted bicyclic cascade system, the adenylylation state of GS was regulated reciprocally by the small molecule effectors 2-ketoglutarate and glutamine at physiological effector concentrations. By examination of the individual regulatory monocycles and comparison to the bicyclic system and existing data, we could deduce that the only sensors of 2-ketoglutarate were PII and PII-UMP. At physiological conditions, we observed that the main role of 2-ketoglutarate in bringing about the deadenylylation of GS was to inhibit GS adenylylation, and this was due to the allosteric regulation of PII activity. Glutamine acted as an allosteric regulator of both ATase and UTase/UR. We also compared the regulation of GS adenylylation state to the regulation of phosphorylation state of the transcription factor NRI (NtrC) in a reconstituted bicyclic system containing NRI, the bifunctional kinase/phosphatase NRII (NtrB), PII, and the UTase/UR. This comparison indicated that, at a fixed 2-ketoglutarate concentration, the regulation of GS adenylylation state by glutamine was sharper and occurred at a higher concentration than did the regulation of NRI phosphorylation. The possible biological implications of this regulatory arrangement are discussed. PMID:9737857

  11. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3.

    Science.gov (United States)

    Reid, Michael A; Lowman, Xazmin H; Pan, Min; Tran, Thai Q; Warmoes, Marc O; Ishak Gabra, Mari B; Yang, Ying; Locasale, Jason W; Kong, Mei

    2016-08-15

    Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591

  12. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, P.N.; Hauerberg, J.; Frederiksen, Hans-Jørgen;

    2008-01-01

    AIM: Hyperammonemia causes brain edema and high intracranial pressure (ICP) in acute liver failure (ALF) by accumulation of glutamine in brain. Since a high-level glutamine may compromise mitochondrial function, the aim of this study was to determine if the lactate-pyruvate ratio is associated...... with a rise in the glutamine concentration and ICP. PATIENTS AND METHODS: In 13 patients with ALF (8F/5M; median age 46 (range 18-66) years) the cerebral extracellular concentrations of glutamine, lactate, and pyruvate were measured by in vivo brain microdialysis together with ICP and cerebral perfusion......-pyruvate ratio (r = 0.89, P rise in lactate...

  13. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    Science.gov (United States)

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  14. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. PMID:27383770

  15. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  16. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct.

    Directory of Open Access Journals (Sweden)

    George E Barreto

    Full Text Available Reactive gliosis is a hallmark of brain pathology and the injury response, yet the extent to which astrocytes proliferate, and whether this is central to astrogliosis is still controversial. We determined the fraction of mature astrocytes that proliferate in a mouse stroke model using unbiased stereology as a function of distance from the infarct edge. Cumulatively 11.1±1.2% of Aldh1l1(+ astrocytes within 400 µm in the cortical penumbra incorporate BrdU in the first week following stroke, while the overall number of astrocytes does not change. The number of astrocytes proliferating fell sharply with distance with more than half of all proliferating astrocytes found within 100 µm of the edge of the infarct. Despite extensive cell proliferation primarily of microglia and neutrophils/monocytes in the week following stroke, few mature astrocytes re-enter cell cycle, and these are concentrated close to the infarct boundary.

  17. Building bridges with astrocytes for spinal cord repair

    OpenAIRE

    Miller, Robert H.

    2006-01-01

    Simultaneous suppression of glial scarring and a general enhancement of axonal outgrowth has now been accomplished in an adult rat model of spinal cord transection. Transplantation of a novel astrocyte cell type derived from glial-restricted precursors in vitro raise the eventual possibility of cellular therapy for spinal cord injury.

  18. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  19. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    Directory of Open Access Journals (Sweden)

    Glenn eDallérac

    2013-10-01

    Full Text Available A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

  20. Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Fenghong Zhao; Yingjun Liao; Yaping Jin; Guifan Sun

    2012-01-01

    The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 μM arsenite for 24 hours. Cell viability and morphological observations revealed that 5 μM arsenic exposure could induce cytotoxicity. Cells were then cultured in the presence of 0, 2.5, 5, or 10 μM arsenite for 24 hours and stimulated with 25 μM glutamate for 10 minutes. Results showed that [Ca2+]i in astrocytes exposed to 5 and 10 μM arsenite was significantly increased and levels of D-serine, γ-aminobutyric acid and glycine in cultures exposed to 2.5–10 μM arsenite were also increased. However, glutamate levels in the media were significantly increased only after treatment with 10 μM arsenite. In conclusion, our findings suggest that arsenic exposure may affect glutamate-induced gliotransmitter release from astrocytes and further disturb neuronal function.

  1. Microglia is activated by astrocytes in trimethyltin intoxication

    International Nuclear Information System (INIS)

    Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) how the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 μmol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown

  2. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    Science.gov (United States)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  3. Neurorestorative Role of Stem Cells in Alzheimer's Disease: Astrocyte Involvement.

    Science.gov (United States)

    Choi, Sung S; Lee, Sang-Rae; Lee, Hong J

    2016-01-01

    Neurogenesis is maintained in both neonatal and adult brain, although it is dramatically reduced in aged neurogenic brain region such as the subgranular layer and subventricular zone of the dentate gyrus (DG). Astrocytes play important roles for survival and maintenance of neurons as well as maintenance of neurogenic niche in quiescent state. Aβ can induce astrocyte activation which give rise to produce reactive oxygen species (ROS) and cytotoxic cytokines and chemokines, and subsequently induce neuronal death. Unfortunately, the current therapeutic medicines have been limited to reduce the symptoms and delay the pathogenesis of Alzheimer's disease (AD), but not to cure it. Stem cells enhance neurogenesis and Aβ clearing as well as improved cognitive impairment. Neurotrophins and growth factors which are produced from both stem cells and astrocytes also have neuroprotective effects via neurogenesis. Secreted factors from both astrocytes and neural stem cells also are influenced in neurogenesis and neuron survival in neurodegenerative diseases. Transplanted stem cells overexpressing neurogenic factors may be an effective and therapeutic tool to enhance neurogenesis for AD. PMID:27018261

  4. Bacterial Type I Glutamine Synthetase of the Rifamycin SV Producing Actinomycete, Amycolatopsis mediterranei U32, is the Only Enzyme Responsible for Glutamine Synthesis under Physiological Conditions

    Institute of Scientific and Technical Information of China (English)

    Wen-Tao PENG; Jin WANG; Ting WU; Jian-Qiang HUANG; Jui-Shen CHIAO; Guo-Ping ZHAO

    2006-01-01

    The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.

  5. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  6. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes. PMID:23979920

  7. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara (SSRL); (Maryland)

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  8. Effects of Alpha-Ketoglutarate on Glutamine Metabolism in Piglet Enterocytes in Vivo and in Vitro.

    Science.gov (United States)

    He, Liuqin; Li, Huan; Huang, Niu; Tian, Junquan; Liu, Zhiqiang; Zhou, Xihong; Yao, Kang; Li, Tiejun; Yin, Yulong

    2016-04-01

    Alpha-ketoglutarate (AKG) plays a vital part in the tricarboxylic acid cycle and is a key intermediate in the oxidation of L-glutamine (Gln). The study was to evaluate effects of AKG on Gln metabolism in vivo and in vitro. A total of twenty-one piglets were weaned at 28 days with a mean body weight (BW) of 6.0 ± 0.2 kg, and randomly divided into 3 groups: corn soybean meal based diet (CON group); the basal diet with 1% alpha-ketoglutarate (AKG treatment group); and the basal diet with 1% L-glutamine (GLN treatment group). Intestinal porcine epithelial cells-1 (IPEC-1) were incubated to investigate effects of 0.5, 2, and 3 mM AKG addition on Gln metabolism. Our results showed that there were no differences (P > 0.05) among the 3 treatments in initial BW, final BW, and average daily feed intake. However, average daily gain (P = 0.013) and gain:feed (P = 0.041) of the AKG group were greater than those of the other two groups. In comparison with the CON group, the AKG and GLN groups exhibited an improvement in villus length, mucosal thickness, and crypt depth in the jejunum of piglets. Serum concentrations of Asp, Glu, Val, Ile, Tyr, Phe, Lys, and Arg in the piglets fed the 1% AKG or Gln diet were lower than those in the CON group. Compared with the CON group, the mRNA expression of jejunal and ileal amino acid (AA) transporters in the AKG and GLN groups were significantly increased (P piglet enterocytes and enhance the utilization of AA.

  9. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    International Nuclear Information System (INIS)

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5−/− mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  10. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China); Wang, Guang-Hui [College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 (China); Chen, Zhong, E-mail: chenzhong@zju.edu.cn [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China)

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5{sup −/−} mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the

  11. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    Science.gov (United States)

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  12. Astrocyte signaling in the presence of spatial inhomogeneities

    Science.gov (United States)

    Stamatakis, Michail; Mantzaris, Nikos V.

    2007-09-01

    Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the

  13. Cellular mechanism for spontaneous calcium oscillations in astrocytes

    Institute of Scientific and Technical Information of China (English)

    Tong-fei WANG; Chen ZHOU; Ai-hui TANG; Shi-qiang WANG; Zhen CHAI

    2006-01-01

    Aim: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+ oscillations in hippocampal astrocytes. Methods: The cultured cells were loaded with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ transients were visualized with confocal laser-scanning microscopy. Results: The spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured hippocampal neurons and astrocytes. These oscillations were not affected by tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes. The spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx. Furthermore, the correlation between the spontaneous Ca2+ oscillations and the Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological experiments. The oscillations were: 1) enhanced when cells were exposed to both low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely by 2 μmol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and 2) still robust after the application with either 50 μmol/L ryanodine or 400 μmol/L tetracaine, two specific antagonists of ryanodine receptors, but depressed in a dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker. Conclusion: InsP3R-induced ER Ca2+ release is an important cellular mechanism for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes.

  14. Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics.

    Science.gov (United States)

    Crunelli, Vincenzo; Blethyn, Kate L; Cope, David W; Hughes, Stuart W; Parri, H Rheinallt; Turner, Jonathan P; Tòth, Tibor I; Williams, Stephen R

    2002-12-29

    In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant 'window' component of the low-voltage-activated, T-type Ca(2+) current (I(Twindow)) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity. It is also likely that I(Twindow) underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye-injection experiments support the existence of gap junction-mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling-mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca(2+) ([Ca(2+)](i)) waves propagating among thalamic astrocytes are able to elicit large and long-lasting N-methyl-D-aspartate-mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca(2+)](i) transients and the selective activation of these glutamate receptors point to a role for this astrocyte-to-neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho)physiological functions of glial and neuronal elements in other brain areas.

  15. H1-antihistamines induce vacuolation in astrocytes through macroautophagy.

    Science.gov (United States)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan; Wang, Guang-Hui; Chen, Zhong

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine>pyrilamine>astemizole>triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5⁻/⁻ mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the major

  16. Hypothyroidism affects astrocyte and microglial morphology in type 2 diabetes*

    Institute of Scientific and Technical Information of China (English)

    Sung Min Nam; Yo Na Kim; Dae Young Yoo; Sun Shin Yi; Jung Hoon Choi; In Koo Hwang; Je Kyung Seong; Yeo Sung Yoon

    2013-01-01

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To in-duce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age oral y received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in al groups for blood chemistry and immunohistochemical staining. In the methimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating tri odothyronine (T3) and thyroxine (T4) levels were significantly decreased compared to levels ob-served in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibril ary acidic protein immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibril ary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibril ary acidic protein immunoreactive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the mor-phology of astrocytes and microglia and that hypothyroidism during the onset of diabetes promi-nently reduces the processes of astrocytes and microglia.

  17. New developments in glutamine delivery%谷氨酰胺给药的新进展

    Institute of Scientific and Technical Information of China (English)

    PeterFuerst,MD

    2001-01-01

    Free glutamine-a critical issueNumerous studies demonstrate that free glutamine can be added to commercially available crystalline amino acid based preparations prior to their administration.Instability during heat sterilization and prolonged storage and linited solubility (35 g/L at 20℃) hampers the use of free glutamine in routine clinical setting.Indeed,there are many well controlled and valuable trials with free glutamine,yet its use is restricted to clinical research.How to solve the problem?The obvious linitations of using free glutamine initiated an intensive search for alternative substrates.Indeed,glutamic acid is a poor precursor;its in vivo transformation to glutamine is restricted to yield only 5-6%.Similarly,the transformation of α-ketoglutarate or the salt ornthine-α-ketoglutarate to glutamine is confined since they are primarily precursors for glutamic acid.Parenterally supplied acetyl glutamine is poorly utilized in man;the large urinary excretion (45-50%) being associated with considerable accumulation of acetyl glutamine in body fluids.It can be concluded that N-acetylated glutamine is not suitable as alternative glutamine source in humans due to restricted acylase capacities.Synthetic glutamine dipeptides are stable under heat sterilization and highly soluble;these properties qualify the dipeptides as suitable constituents of nutritional preparations.Industrial production of these dipeptides at a reasonable price is an essential prerequisite for implications of dipeptide-containing solutions in clinical practice.Recent development of novel synthesis procedures allows increased capacity in industrial-scale production.Basic studies with synthetic glutamine-containing short-chain peptides provide convincing evidence that these new substrates are rqpidly cleared from plasma after parenteral administration,without being accumulated in tissues,and with negligible loss of urine.The presence of membrane-bound as well as tissue free extracellular

  18. New developments in glutamine delivery%谷氨酰胺给药的新进展

    Institute of Scientific and Technical Information of China (English)

    PeterFuerst,MD

    2001-01-01

    Free glutamine-a critical issueNumerous studies demonstrate that free glutamine can be added to commercially available crystalline amino acid based preparations prior to their administration.Instability during heat sterilization and prolonged storage and linited solubility (35 g/L at 20℃) hampers the use of free glutamine in routine clinical setting.Indeed,there are many well controlled and valuable trials with free glutamine,yet its use is restricted to clinical research.How to solve the problem?The obvious linitations of using free glutamine initiated an intensive search for alternative substrates.Indeed,glutamic acid is a poor precursor;its in vivo transformation to glutamine is restricted to yield only 5-6%.Similarly,the transformation of α-ketoglutarate or the salt ornthine-α-ketoglutarate to glutamine is confined since they are primarily precursors for glutamic acid.Parenterally supplied acetyl glutamine is poorly utilized in man;the large urinary excretion (45-50%) being associated with considerable accumulation of acetyl glutamine in body fluids.It can be concluded that N-acetylated glutamine is not suitable as alternative glutamine source in humans due to restricted acylase capacities.Synthetic glutamine dipeptides are stable under heat sterilization and highly soluble;these properties qualify the dipeptides as suitable constituents of nutritional preparations.Industrial production of these dipeptides at a reasonable price is an essential prerequisite for implications of dipeptide-containing solutions in clinical practice.Recent development of novel synthesis procedures allows increased capacity in industrial-scale production.Basic studies with synthetic glutamine-containing short-chain peptides provide convincing evidence that these new substrates are rqpidly cleared from plasma after parenteral administration,without being accumulated in tissues,and with negligible loss of urine.The presence of membrane-bound as well as tissue free extracellular

  19. Characterization of the BAC Id3-enhanced green fluorescent protein transgenic mouse line for in vivo imaging of astrocytes

    OpenAIRE

    Lamantia, Cassandra; Tremblay, Marie-Eve; Majewska, Ania

    2014-01-01

    Astrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes. Here, we characterize the bacterial artificial chromosome transgenic Id3-EGFP knock-in mouse to establish its usefulness for in vivo imaging of astrocyte processes....

  20. Endocytosis-Mediated HIV-1 Entry and Its Significance in the Elusive Behavior of the Virus in Astrocytes

    OpenAIRE

    Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder; Handy, Indhira

    2014-01-01

    Astrocytes protect neurons but also evoke a proinflammatory response to injury and viral infections including HIV. We investigated the mechanism of HIV-1 infection in primary astrocytes, which showed minimal but productive viral infection independent of CXCR4. As with ectopic-CD4-expressing astrocytes, lysosomotropic agents led to increased HIV-1 infection in wild-type but not Rab 5, 7, and 11-ablated astrocytes. Instead, HIV-1 infection was decreased in Rab-depleted astrocytes, corroborating...