WorldWideScience

Sample records for astrobiology explorer abe

  1. The AstroBiology Explorer (ABE) Mission

    Science.gov (United States)

    Sandford, S. A.

    2003-01-01

    Introduction: Infrared spectroscopy in the 2.5- 16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Furthermore, the presence of D-enriched organics in meteorites suggests that a portion of these materials survives incorporation into protosolar nebulae. Unfortunately, neither the distribution of these materials in space nor their genetic and evolutionary relationships with each other or their environments are currently well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to use infrared spectroscopy to address outstanding problems in Astrochemistry which are particularly relevant to Astrobiology and are amenable to astronomical observation. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation and the Jet Propulsion Laboratory. ABE was selected for Phase A study during the last MIDEX AO round, but has yet to be selected for flight.

  2. AstroBiology Explorer Mission Concepts (ABE/ASPIRE)

    Science.gov (United States)

    Sandford, Scott; Ennico, Kimberly A.

    2006-01-01

    The AstroBiology Explorer (ABE) and the Astrobiology Space InfraRed Explorer (ASPIRE) Mission Concepts are two missions designed to address the questions (1) Where do we come from? and (2) Are we alone? as outlined in NASA s Origins Program using infrared spectroscopy to explore the identity, abundance, and distribution of molecules of astrobiological importance throughout the Universe. The ABE mission s observational program is focused on six tasks to: (1) Investigate the evolution of ice and organics in dense clouds and star formation regions, and the young stellar/planetary systems that form in them; (2) Measure the evolution of complex organic molecules in stellar outflows; (3) Study the organic composition of a wide variety of solar system objects including asteroids, comets, and the planets and their satellites; (4) Identify organic compounds in the diffuse interstellar medium and determine their distribution , abundance, and change with environment; (5) Detect and identify organic compounds in other galaxies and determine their dependence on galactic type; and (6) Measure deuterium enrichments in interstellar organics and use them as tracers of chemical processes. The ASPIRE mission s observational program expands upon ABE's core mission and adds tasks that (7) Address the role of silicates in interstellar organic chemistry; and (8) Use different resolution spectra to assess the relative roles and abundances of gas- and solid-state materials. ABE (ASPIRE) achieves these goals using a highly sensitive, cryogenically-cooled telescope in an Earth drift-away heliocentric orbit, armed with a suite of infrared spectrometers that cover the 2.5-20(40) micron spectral region at moderate spectral resolution (R>2000). ASPIRE's spectrometer complement also includes a high-resolution (R>25,000) module over the 4-8 micron spectral region. Both missions target lists are chosen to observe a statistically significant sample of a large number of objects of varied types in

  3. The AstroBiology Explorer (ABE) Mission Concept

    Science.gov (United States)

    Sandford, Scott A.

    2004-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study by a team of partners: NASA's Ames Research Center, Ball Aerospace and Technologies Corporation, and the Jet Propulsion Laboratory. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) The evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) The chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to HII regions and dense clouds, (3) The distribution of organics in the diffuse ISM, (4) The nature of organics in the Solar System (in comets, asteroids, satellites), and (5) The nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be presented.

  4. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    Science.gov (United States)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  5. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    Science.gov (United States)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  6. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    Science.gov (United States)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  7. Astrobiology

    Science.gov (United States)

    DesMarais, David

    2002-01-01

    Astrobiology is the study of the origins, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research, linking such endeavors as the search for habitable planets beyond our solar system, exploration missions to Mars and Europa, and efforts to understand the origin and early evolution of life. Astrobiology addresses three fundamental questions: How does life begin and develop? Does life exist elsewhere in the universe What is the future of life on Earth and beyond? This talk will address our concepts about the definition of life, how life might have begun, and how our blaspheme and planet have co-evolved for billions of years. The talk will explore how the perspectives gained from interdisciplinary research in the biological, geological and space sciences will prepare us to search for habitable environments and blasphemes elsewhere in the Universe.

  8. Future Exploration of Titan -Astrobiological Aspects

    Science.gov (United States)

    Lorenz, Ralph

    The only known chemical systems sophisticated enough to execute the functions of life are those made from carbon-based compounds. Saturn's moon Titan presents us with an extensive and rich inventory of complex organics, and is therefore of great astrobiological interest. Astrobiology at Titan has two principal facets. First is the prospect of an internal water ocean (like other icy satellites, albeit perhaps with a higher concentration of ammonia and organics) and related aqueous chemistry that may occur in transient surface exposures of water in impact melt sheets or cryovolcanic flows. The other is chemistry that may occur in the nonpolar solvents ethane and methane that form Titan's polar lakes and seas. The astrobiological potential of the latter systems is essentially unknown, although the environments are more accessible to affordable exploration. Recent studies have identified many mission possibilities within the framework of a Flagship-class mission, including orbiters, landers on (organic) dunefields, landers in lakes, and aerial platforms such as Montgolfiere balloons acting in a coordinated, synergistic manner. However, such a mission is not likely to take place until circa 2030. More modest missions, that might consider one of these elements on a standalone basis, could be considered under PI-led mission categories such as New Frontiers or Discovery. A lake lander, for example, could carry a mass spectrometer to analyze the detailed composition of a lake. Even the earliest of these possibilities, the Titan Mare Explorer (TiME) Discovery proposal presently being considered, would not arrive until 2022-2023. In the meantime, the recent approval by NASA of the Cassini Solstice Mission (until 2017) will enable many new findings at Titan, in particular with regard to Titan's interior, and seasonal changes in its organic lakes.

  9. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  10. Astrobiology

    Science.gov (United States)

    Soffen, G. A.

    1999-01-01

    If we believe life to be a cosmic imperative, the understanding of life processes becomes a universal aspect of cosmology. How does life fit into our understanding of the universe. As a compliment to NASA's `Origins' Program we are developing a new venture to embark on one of the great scientific questions of our time, our origins, evolution and our destiny. NASA already deals with a number of related biological questions. We are introducing a new unifying approach to biology within the NASA... Astrobiology. Astrobiology is the study of the chemistry, physics and adaptations that influence the origin, evolution and destiny of life. We intent to raise the conscious level relating relevant biological questions to the formation and development of the universe through space missions and research programs. By linking certain aspects of exobiology, ecology, gravitational biology, and adding efforts in molecular biology, evolutionary biology, and planetary biology and joining this to Astronomy and planetology, we seek a deeper understanding of where the living process fits in to our cosmological theories. We do this through laboratory experiments, space observations, computer modeling, missions and discovery of what appear to be extreme conditions for us, but conditions in which life thrives. NASA has formed an international `virtual' Astrobiology Institute as a nucleus to initiate this consolidating idea. NASA's technology will play a major role in this endeavor.

  11. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    Science.gov (United States)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  12. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    Science.gov (United States)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  13. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    Science.gov (United States)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  14. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    Science.gov (United States)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  15. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  16. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    Science.gov (United States)

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows. PMID:26836592

  17. The NASA astrobiology program

    Science.gov (United States)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  18. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    Science.gov (United States)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  19. Summer Research Experiences for Science and Art Teachers to Explore Astrobiology

    Science.gov (United States)

    Cola, J.; Gaucher, E.; Snell, T.; Greenwood, J.; Angra, A.; Zimmerman, C.; Williams, L. D.

    2012-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational program titled, "Life on the Edge: Astrobiology." The purpose of the program was to provide high school educators with the exposure, materials, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with undergraduate students interested in becoming a teacher through the NSF Pre-Teaching REU program. The GIFT and Pre-Teaching fellows investigated extremophiles, which became the focus of a week-long, "Life on the Edge: Astrobiology " summer program developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty high school students were introduced to hands-on activities, such as astrobiology inspired art and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact of the Astrobiology program on the GIFT researchers, Pre-Teaching REU students, high school students, and faculty are discussed.

  20. Astrobiology research with cubesats; Cubesats: powerful science platforms for space explorations

    OpenAIRE

    Ehrenfreund, P.; Elsaesser, A; Ricco, A.J.

    2013-01-01

    The improvements in the miniaturization of spacecraft and spacecraft subsystems have resulted in a wide variety of small satellites and nanosatellites. This has opened the door to inexpensive, lightweight, small and !exible satellites and missions with various scienti"c applications. One such application could be the use of CubeSats for astrobiological research.

  1. A geoethical approach to the geological and astrobiological exploration and research of the Moon and Mars

    Science.gov (United States)

    Martinez-Frias, Jesus; Horneck, Gerda; de La Torre Noetzel, Rosa; Rull, Fernando

    Lunar and Mars exploration and research require not only scientific and technological inter-disciplinary cooperation, but also the consideration of budding ethical and scientific integrity issues. COSPAR's planetary protection policy (in coordination with the United Nations Com-mittee on the Peaceful Uses of Outer Space as well as various other bilateral and multilateral organizations) serves as the consensus standard for biological contamination prevention under the 1967 Outer Space Treaty1 . Space agencies Planetary Protection Policies are mostly consis-tent with the COSPAR policy. Geoethics was formerly promoted in 1991 as a new discipline, involving scientific and societal aspects2 , and its institutionalization was officially established in 2004 with the backing of the Association of Geoscientists for International Development, AGID3 (IUGS/ICSU). Recently, it has been proposed that the integration of geoethical issues in studies on planetary geology and astrobiology would enrich their methodological and con-ceptual character4-6 . The incorporation through geoethics of new questions and approaches associated to the "abiotic world" would involve: 1) extrapolating to space the recently defined and approved IUCN/UNESCO guidelines and recommendations on geodiversity7 as "planetary geodiversity", and 2) widening the classical concept of Planetary Protection, giving an addi-tional "abiotic" dimension to the exploration and research of the Moon and Mars. Given the geological characteristics and planetary evolution of the Moon and Mars, it is obvious that they require tailored geoethical approaches. Some fundamental aspects include, among others: the interrelation with bioethics and organics vs. inorganic contamination in Planetary Protection, the appropriate regulations of some necessary natural disturbances (e.g. on the Moon) dur-ing robotic and manned planetary missions, wilderness/planetary parks8,9 , the correct use of mineralogical and geochemical analytical

  2. Protecting and Expanding the Richness and Diversity of Life, An Ethic for Astrobiology Research and Space Exploration

    Science.gov (United States)

    Randolph, Richard O.; McKay, Chris P.

    2011-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  3. Protecting and expanding the richness and diversity of life, an ethic for astrobiology research and space exploration

    Science.gov (United States)

    Randolph, Richard O.; McKay, Christopher P.

    2014-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  4. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  5. Astrobiology can help space science, education and the economy

    Science.gov (United States)

    Sephton, M. A.

    2014-08-01

    Astrobiology is a subject dedicated to understanding the origin, evolution and distribution of life. Astrobiology is a multidisciplinary discipline within which useful information comes from a variety of environments and from a myriad of techniques. The challenges of the Global Exploration Roadmap contain intrinsic astrobiology questions and opportunities. The potential astrobiology returns include scientific, educational and economic benefits.

  6. Astrobiology and Society: Building an Interdisciplinary Research Community

    OpenAIRE

    Race, Margaret; Denning, Kathryn; Bertka, Constance M.; Dick, Steven J.; Harrison, Albert A.; Impey, Christopher; Mancinelli, Rocco

    2012-01-01

    This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and var...

  7. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    Science.gov (United States)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  8. Astrobiology Workshop: Leadership in Astrobiology

    Science.gov (United States)

    DeVincenzi, D. (Editor); Briggs, G.; Cohen, M.; Cuzzi, J.; DesMarais, D.; Harper, L.; Morrison, D.; Pohorille, A.

    1996-01-01

    Astrobiology is defined in the 1996 NASA Strategic Plan as 'The study of the living universe.' At NASA's Ames Research Center, this endeavor encompasses the use of space to understand life's origin, evolution, and destiny in the universe. Life's origin refers to understanding the origin of life in the context of the origin and diversity of planetary systems. Life's evolution refers to understanding how living systems have adapted to Earth's changing environment, to the all-pervasive force of gravity, and how they may adapt to environments beyond Earth. Life's destiny refers to making long-term human presence in space a reality, and laying the foundation for understanding and managing changes in Earth's environment. The first Astrobiology Workshop brought together a diverse group of researchers to discuss the following general questions: Where and how are other habitable worlds formed? How does life originate? How have the Earth and its biosphere influenced each other over time? Can terrestrial life be sustained beyond our planet? How can we expand the human presence to Mars? The objectives of the Workshop included: discussing the scope of astrobiology, strengthening existing efforts for the study of life in the universe, identifying new cross-disciplinary programs with the greatest potential for scientific return, and suggesting steps needed to bring this program to reality. Ames has been assigned the lead role for astrobiology by NASA in recognition of its strong history of leadership in multidisciplinary research in the space, Earth, and life sciences and its pioneering work in studies of the living universe. This initial science workshop was established to lay the foundation for what is to become a national effort in astrobiology, with anticipated participation by the university community, other NASA centers, and other agencies. This workshop (the first meeting of its kind ever held) involved life, Earth, and space scientists in a truly interdisciplinary sharing

  9. OASES: Lessons learned from Oceanographic Exploration relevant to future Astrobiology expeditions

    Science.gov (United States)

    Bowen, A.; German, C. R.; Whitcomb, L. L.; Yoerger, D. R.; Jakuba, M.; Kinsey, J. C.; Oases Science Team

    2010-12-01

    A series of developments in ocean science and technology resulting from a unique confluence of opportunity have resulted in important advances leading to improved operational capabilities, impacting exploration and discovery of new environments within the Earth’s Oceans. The ASTEP funded Oases project to the Mid Cayman Rise, when teamed with other complimentary developments and field programs, represents an important example of how oceanographic robotic systems and the scientific techniques they utilize can make important impacts not only improving state of the art for ocean exploration and discovery but also revealing how such advanced systems and techniques may impact exploration of other planets. The recent NSF-funded Nereus vehicle development, resulting in a novel system able to explore the deepest reaches of the ocean to 11,000 meters depth, has been utilized within the OASES project to help advance exploration capabilities through the use of new concepts in how robots interact with their human operators when confronted with the reality of a restricted communications environment -typical in the deep oceans of this planet. Likewise, other field programs funded outside NASA utilizing the autonomous vehicle Sentry complement these experiences. Indeed, the extreme nature of Nereus’ mission of exploring the deepest regions of the ocean leads to new opportunities to perform new scientific missions within oceans subject to ice cover. During the OASES cruise, Nereus demonstrated several of the technological aspects required to work in an ice-covered ocean while also illuminating many of the challenges associated with real-time control and decision making needed to achieve a fully capable system able to explore and sample new environments undersea.

  10. Synthetic Astrobiology

    Science.gov (United States)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  11. Synthetic Astrobiology

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  12. Astrobiology: An Astronomer's Perspective

    OpenAIRE

    Bergin, Edwin A.

    2013-01-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track th...

  13. Robots for Astrobiology!

    Science.gov (United States)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  14. Exploration for Standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology?

    Science.gov (United States)

    Head, J. W.

    2001-12-01

    Mars Global Surveyor altimetry data (MOLA) have shown that the major topographic features of Mars formed early and have changed little over geologic time. Thus, analysis of topography, slopes and roughness data can test previous hypotheses for standing bodies of water, provide important new information, and explore astrobiological implications of these results. 1) Noachian lakes and oceans: Valley networks, enhanced degradation rates, smooth planer topography, candidate buried channels in the northern lowlands, higher heat flux and thinner cryosphere, all provide evidence for local to regional standing bodies of water; key to their nature and fate is the degree to which Mars was `warm and wet' in the Noachian. 2) South circumpolar deposit meltback: The meltback of an extensive circumpolar ice sheet-like unit in the Hesperian, the Dorsa Argentea Formation, formed drainage channels and extensive lakes in adjacent craters and depressions; water ultimately drained into the Argyre and Hellas basins. 3) Outflow channels and the northern lowlands: Evidence exists for large ocean-scale standing bodies of water formed by outflow channel effluent that likely underwent geologically rapid freezing and sublimation; the sublimation residue is preserved as the Vastitas Borealis Formation. 4) Cryospheric seal penetration and outflow: By the Amazonian Period, a global cryosphere apparently existed and communication with subsurface groundwater occurred only locally (e.g., Utopia, Elysium and Amazonis Planitiae) through melting of this global aquitard by magmatic events, such as dikes and sills; outflow events in Amazonis Planitia are interpreted to have occurred as recently as the last several percent of the history of Mars. These geological settings for water suggest liquid water environments changed from surface to dominantly subsurface by the Early Hesperian, and that the following astrobiological environments were potentially important: 1) fluvial, 2) lacustrine, 3) ice (polar

  15. The NASA Astrobiology Roadmap

    Science.gov (United States)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; Liskowsky, David R.; Meadows, Victoria S.; Meyer, Michael A.; Pilcher, Carl B.; Nealson, Kenneth H.; Spormann, Alfred M.; Trent, Jonathan D.; Turner, William W.; Woolf, Neville J.; Yorke, Harold W.

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  16. Assessment of the NASA Astrobiology Institute

    Science.gov (United States)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  17. Biomolecules in Astrobiology

    OpenAIRE

    Meringer, Markus

    2013-01-01

    Astrobiology is the study of the origin, distribution and future of life in the universe, biomolecules are molecules produced by living organisms. This talk reviews known facts and open questions about biomolecules in the context of Astrobiology and introduces a research project on "Creating a Reference Set of Amino Acids Structures for Use in Multiple Astrobiology Investigations" that tries to find answers using computational methods.

  18. Multispectral Microimager for Astrobiology

    Science.gov (United States)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  19. Make Astrobiology Yours

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    In this talk, I will give the AbGradCon attendees an overview of astrobiology activities ongoing at NASA as well as a brief description of the various funding programs and careers that they can pursue. After this, I will present to them the case that the future of the field is theirs to determine, and give input on how to effectively make astrobiology and NASA responsive to the needs of the community. This presentation will leverage my experiences leading various efforts in the early career astrobiology community, where I have served as a conference organizer, primer lead editor, community blogger, and unofficial liaison to NASA headquarters.

  20. An Evolving Astrobiology Glossary

    Science.gov (United States)

    Meech, K. J.; Dolci, W. W.

    2009-12-01

    One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be universally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astrobiology Institute so that it can continue to grow as an evolving resource for the astrobiology community.

  1. OUTSOURCED KP-ABE WITH CHOSENCIPHERTEXT SECURITY

    Directory of Open Access Journals (Sweden)

    Chao Li

    2014-12-01

    Full Text Available Key-Policy Attribute Based Encryption (KP-ABE has always been criticized for its inefficiency drawbacks. Based on the cloud computing technology, computation outsourcing is one of the effective solution to this problem. Some papers have proposed their schemes; however, adversaries in their attack models were divided into two categories and they are assumed not to communicate with each other, which is obviously unrealistic. In this paper, we first proved there exist severe security vulnerabilities in these schemes for such an assumption, and then proposed a security enhanced Chosen Ciphertext Attack (SE-CCA model, which eliminates the improper limitations. By utilizing Proxy Re-Encryption (PRE and one-time signature technology, we also constructed a concrete KP-ABE outsourcing scheme (O-KP-ABE and proved its security under SE-CCA model. Comparisons with existing schemes show that our constructions have obvious comprehensive advantages in security and efficiency

  2. Encyclopedia of astrobiology

    CERN Document Server

    Quintanilla, José Cernicharo; Cleaves, Henderson James (Jim); Irvine, William M; Pinti, Daniele L; Viso, Michel; Gargaud, Muriel

    2011-01-01

    The interdisciplinary field of Astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its increasingly likely chances for its emergence. Biologists, astrophysicists, biochemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. The members of the different disciplines are used to their own terminology and technical language. In the interdisciplinary environment many terms either have redundant meanings or are completely unfamiliar to members of other disciplines. The Encyclopedia of Astrobiology serves as the key to a common understanding. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work and the expert field editors inten...

  3. Encyclopedia of astrobiology

    CERN Document Server

    Irvine, William; Amils, Ricardo; Cleaves, Henderson; Pinti, Daniele; Quintanilla, José; Rouan, Daniel; Spohn, Tilman; Tirard, Stéphane; Viso, Michel

    2015-01-01

    The interdisciplinary field of Astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its increasingly likely chances for its emergence. Biologists, astrophysicists, biochemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. The members of the different disciplines are used to their own terminology and technical language. In the interdisciplinary environment many terms either have redundant meanings or are completely unfamiliar to members of other disciplines. The Encyclopedia of Astrobiology serves as the key to a common understanding. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work and the expert field editors inten...

  4. Complete course in astrobiology

    CERN Document Server

    Horneck, Gerda

    2008-01-01

    This up-to-date resource is based on lectures developed by experts in the relevant fields and carefully edited by the leading astrobiologists within the European community. Aimed at graduate students in physics, astronomy and biology and their lecturers, the text begins with a general introduction to astrobiology, followed by sections on basic prebiotic chemistry, extremophiles, and habitability in our solar system and beyond. A discussion of astrodynamics leads to a look at experimental facilities and instrumentation for space experiments and, ultimately, astrobiology missions, backed in each

  5. Astrobiology in the Classroom

    Science.gov (United States)

    Brennan, Tim

    2004-01-01

    Astrobiology is a relatively new field of study in science, one that has found a home in the curriculum of many major universities. It is a multidisciplinary field that draws participants from a range of scientific specialties: geology, physics, chemistry, engineering, computer science, and of course biology and astronomy. At the middle level, it…

  6. Sustainability and the Astrobiological Perspective: Framing Human Futures in a Planetary Context

    OpenAIRE

    Frank, Adam; Sullivan, Woodruff

    2013-01-01

    We explore how questions related to developing a sustainable human civilization can be cast in terms of astrobiology. In particular we show how ongoing astrobiological studies of the coupled relationship between life, planets and their co-evolution can inform new perspectives and direct new studies in sustainability science. Using the Drake Equation as a vehicle to explore the gamut of astrobiology, we focus on its most import factor for sustainability: the mean lifetime of an ensemble of Sp...

  7. The Cyborg Astrobiologist: Porting from a wearable computer to the Astrobiology Phone-cam

    OpenAIRE

    Bartolo, Alexandra; McGuire, Patrick C.; Camilleri, Kenneth P; Spiteri, Christopher; Borg, Jonathan C.; Farrugia, Philip J.; Ormo, Jens; Gomez-Elvira, Javier; Rodriguez-Manfredi, Jose Antonio; Diaz-Martinez, Enrique; Ritter, Helge; Haschke, Robert; Oesker, Markus; Ontrup, Joerg

    2007-01-01

    We have used a simple camera phone to significantly improve an `exploration system' for astrobiology and geology. This camera phone will make it much easier to develop and test computer-vision algorithms for future planetary exploration. We envision that the `Astrobiology Phone-cam' exploration system can be fruitfully used in other problem domains as well.

  8. The Cyborg Astrobiologist: porting from a wearable computer to the Astrobiology Phone-cam

    Science.gov (United States)

    Bartolo, Alexandra; McGuire, Patrick C.; Camilleri, Kenneth P.; Spiteri, Christopher; Borg, Jonathan C.; Farrugia, Philip J.; Ormö, Jens; Gómez-Elvira, Javier; Rodriguez-Manfredi, José Antonio; Díaz-Martínez, Enrique; Ritter, Helge; Haschke, Robert; Oesker, Markus; Ontrup, Jörg

    2007-08-01

    We have used a simple camera phone to significantly improve an `exploration system' for astrobiology and geology. This camera phone will make it much easier to develop and test computer-vision algorithms for future planetary exploration. We envision that the `Astrobiology Phone-cam' exploration system can be fruitfully used in other problem domains as well.

  9. Abe's Womenomics needs to include men too

    OpenAIRE

    Macnaughtan, Helen

    2015-01-01

    Japanese Prime Minister Shinzo Abe has pledged to enable more women to participate in the Japanese workforce. But his policy has largely amounted to rhetoric and there has been no discussion of the impact of these policies for male employment. In this article I argue that in order to realistically increase opportunities for women, the current system of male-focused employment needs to be reconfigured.

  10. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  11. Astrobiology: Future Perspectives

    CERN Document Server

    Ehrenfreund, Pascale; Owen, Toby; Becker, Luann; Blank, Jen; Brucato, John; Colangeli, Luigi; Derenne, Sylvie; Dutrey, Anne; Despois, Didier; Lazcano, Antonio; Robert, Francois

    2005-01-01

    Astrobiology, a new exciting interdisciplinary research field, seeks to unravel the origin and evolution of life wherever it might exist in the Universe. The current view of the origin of life on Earth is that it is strongly connected to the origin and evolution of our planet and, indeed, of the Universe as a whole. We are fortunate to be living in an era where centuries of speculation about the two ancient and fundamental problems: the origin of life and its prevalence in the Universe are being replaced by experimental science. The subject of Astrobiology can be approached from many different perspectives. This book is focused on abiogenic organic matter from the viewpoint of astronomy and planetary science and considers its potential relevance to the origins of life on Earth and elsewhere. Guided by the review papers in this book, the concluding chapter aims to identify key questions to motivate future research and stimulate astrobiological applications of current and future research facilities and space mi...

  12. Educational Outreach for Astrobiology

    Science.gov (United States)

    Kadooka, M.; Meech, K.

    2009-12-01

    Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.

  13. Research in Computational Astrobiology

    Science.gov (United States)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  14. Astrobiology of Comets

    Science.gov (United States)

    Hoover, Richard B.; Wickramasinghe, Nalin C.; Wallis, Max K.; Sheldon, Robert B.

    2004-01-01

    We review the current state of knowledge concerning microbial extremophiles and comets and the potential significance of comets to Astrobiology. We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy from sunlight into the interior leads to the melting of near surface ices, some under stable porous crust, providing possible habitats for a wide range of microorganisms. We provide data concerning new evidence for indigenous microfossils in CI meteorites, which may be the remains of extinct cometary cores. We discuss the dominant microbial communities of polar sea-ice, Antarctic ice sheet, and cryoconite environments as possible analogs for microbial ecosystems that may grow in sub-crustal pools or in ice/water films in comets.

  15. An Introduction to Astrobiology

    Science.gov (United States)

    Gilmour, Iain; Sephton, Mark A.

    2004-05-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in astrobiology. It begins with an examination of how life may have arisen on Earth and then reviews the evidence for possible life on Mars, Europa and Titan. The potential for life in exoplanetary systems and the search for extraterrestrial intelligence are also discussed. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials. Written in an accessible style that avoids complex mathematics, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a webstite hosting further teaching materials.

  16. Sustainability and the Astrobiological Perspective: Framing Human Futures in a Planetary Context

    CERN Document Server

    Frank, Adam

    2013-01-01

    We explore how questions related to developing a sustainable human civilization can be cast in terms of astrobiology. In particular we show how ongoing astrobiological studies of the coupled relationship between life, planets and their co-evolution can inform new perspectives and direct new studies in sustainability science. Using the Drake Equation as a vehicle to explore the gamut of astrobiology, we focus on its most import factor for sustainability: the mean lifetime of an ensemble of Species with Energy-Intensive Technology (SWEIT). We then cast the problem into the language of dynamical system theory and introduce the concept of a trajectory bundle for SWEIT evolution and discuss how astrobiological results usefully inform the creation of dynamical equations, their constraints and initial conditions. Three specific examples of how astrobiological considerations can be folded into discussions of sustainability are discussed: (1) concepts of planetary habitability, (2) mass extinctions and their possible...

  17. Astrobiology, Sustainability and Ethical Perspectives

    OpenAIRE

    Jacques Arnould

    2009-01-01

    Astrobiology, a new field of research associating the prospects and constraints of prebiotic chemistry, mineralogy, geochemistry, astrophysics, theoretical physics, microbial ecology, etc., is assessed in terms of sustainability through the scientific and social functions it fulfils, and the limits it encounters or strives to overcome. In the same way as sustainable development, astrobiology must also take into account the temporal dimension specific to its field of investigation and examine ...

  18. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission. PMID:20298148

  19. Heterocyclic anions of astrobiological interest

    International Nuclear Information System (INIS)

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  20. Heterocyclic anions of astrobiological interest

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Callie A.; Demarais, Nicholas J.; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309 (United States); Yang, Zhibo [Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019 (United States); Snow, Theodore P., E-mail: Callie.Cole@colorado.edu, E-mail: Nicholas.Demarais@colorado.edu, E-mail: Veronica.Bierbaum@colorado.edu, E-mail: Zhibo.Yang@ou.edu, E-mail: Theodore.Snow@colorado.edu [Department of Astrophysical and Planetary Sciences, 391 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2013-12-20

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N{sub 2}O, O{sub 2}, CO, OCS, CO{sub 2}, and SO{sub 2}) and other reactive species (CS{sub 2}, CH{sub 3}Cl, (CH{sub 3}){sub 3}CCl, and (CH{sub 3}){sub 3}CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  1. Astrobiology in culture: the search for extraterrestrial life as "science".

    Science.gov (United States)

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors. PMID:23078644

  2. From Astrochemistry to Astrobiology

    Science.gov (United States)

    Allamandola, L. J.

    2005-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty five years thanks to significant developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of interstellar dust is reasonably well understood. In molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared spectroscopic studies of interstellar space, combined with laboratory simulations of interstellar ice chemistry, have revealed the widespread presence of interstellar PAHs and the composition of interstellar ices, the building blocks of comets. The remainder of the presentation will focus on the photochemical evolution of these materials and astrobiology. Within a molecular cloud, and especially the presolar nebula, materials frozen into the ices are photoprocessed by ultraviolet light and produce more complex molecules. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to have been important sources of complex materials delivered to the early Earth and their composition may be related to the origin of life.

  3. Molecular Simulations in Astrobiology

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)

    2001-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel

  4. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    Science.gov (United States)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  5. Astrobiology: Life in Extreme Environments

    Science.gov (United States)

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  6. Classifying Life: The Astrobiological Challenge

    Science.gov (United States)

    Tobin, E.

    2013-09-01

    This paper will discuss efforts to define life. I will address how astrobiological research might allows us to conceptualise extreme conditions for life and thus allow us to give a much more nuanced definition of life. I also look at why this has ethical implications for society and humankin.

  7. Astrobiology - The New Synthesis

    Science.gov (United States)

    Sik, A.; Simon, T.

    Background In connection with the complex planetology-education in Hungary [1] we have compiled an Astrobiology coursebook - as a base of its teaching in universities and perhaps in secondary schools as well. We tried to collect and assemble in a logical and thematical order the scientific breakthroughs of the last years, that made possible the fast improvement of astrobiology. The followings are a kind of summary of these. Introduction - The ultimate science Astrobiology is a young science, that search for the possibility, forms and places of extraterrestrial life. But it is not SETI, because do not search for intelligent life, just for living organisms, so SETI is a part of astrobiology. and an extremely important statement: we can search for life-forms that similar to terrestrial life in physiology so we can recognize it as life. Astrobiology is one of the most dynamical-developing sciences of the 21st century. To determine its boundaries is difficult because the complex nature of it: astrobiology melt into itself lot of other sciences, like a kind of ultimate science. The fundamental questions are very simple [2]: When, where and how converted the organic matter into life?; How does life evolve in the Universe?; Has it appeared on other planets?; How does it spread in time and space?; and What is the future of terrestrial life? However, trying to find the answers is quite difficult. So an astrobiologist has to be aware of the basics of astronomy, space research, earth and planetary sciences, and life sciences (mainly ecology, genetics, molecular and evolution biology). But it is not enough - the newest results of these at least as important as the basic knowledge. Part I. - Astro 1. Exoplanets 1995 was a particular year in astronomy: we have found the first planet out of the Solar System. Since that time the discovery of exoplanets progress fast: nowdays more than 80 examples are known and just 6 years passed [3]. The detailed analysis of these distant objects

  8. Recent trends in acetone, butanol, and ethanol (ABE production

    Directory of Open Access Journals (Sweden)

    Keikhosro Karim

    2015-12-01

    Full Text Available Among the renewable fuels considered as a suitable substitute to petroleum-based gasoline, butanol has attracted a great deal of attention due to its unique properties. Acetone, butanol, and ethanol (ABE can be produced biologically from different substrates, including sugars, starch, lignocelluloses, and algae. This process was among the very first biofuel production processes which was commercialized during the First World War. The present review paper discusses the different aspects of the ABE process and the recent progresses made. Moreover, the microorganisms and the biochemistry of the ABE fermentation as well as the feedstocks used are reviewed. Finally, the challenges faced such as low products concentration and products` inhibitory effects on the fermentation are explained and different possible solutions are presented and reviewed.

  9. A Study to Determine Competencies Needed by ABE/APL Teachers.

    Science.gov (United States)

    Mocker, Donald W.; Spear, George E.

    The research was conducted to identify competencies appropriate for adult basic education (ABE) teachers who use the adult performance level (APL) approach, and to determine which are critical for ABE/APL teachers. A jury of APL authorities was impaneled to: (1) validate that all ABE competencies established by Mocker in 1974 were appropriate for…

  10. The Correctional Benefits of Education: A Follow-Up of Canadian Federal Offenders Participating in ABE.

    Science.gov (United States)

    Porporino, Frank J.; Robinson, David

    1992-01-01

    Followup of 1,736 adult basic education (ABE) participants released from prison showed that (1) ABE completers had the lowest recidivism rates; (2) offenders at greater risk of recidivism benefited most from completion; and (3) ABE participation helped in postrelease job search and gave a sense of control. (SK)

  11. AstRoMap European Astrobiology Roadmap

    OpenAIRE

    Horneck, Gerda; Walter, Nicolas; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando

    2016-01-01

    The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research to...

  12. Is Humanity Doomed? Insights from Astrobiology

    OpenAIRE

    Seth D. Baum

    2010-01-01

    Astrobiology, the study of life in the universe, offers profound insights into human sustainability. However, astrobiology is commonly neglected in sustainability research. This paper develops three topics connecting astrobiology to sustainability: constraints on what zones in the universe are habitable, the absence of observations of extraterrestrial civilizations, and the physical fate of the universe. These topics have major implications for our thinking and action on sustainability. While...

  13. Kidney Dialysis Patients Discover New Hope through ABE Program.

    Science.gov (United States)

    Amonette, Linda; And Others

    A program was developed to provide adult basic education (ABE) to kidney patients while they are receiving dialysis treatment. The program, which relies on an individualized learning approach, involved the coordinated efforts of the following parties: West Virginia Dialysis Facilities, Inc.; the Charleston Renal Group; and the Kanawha County Adult…

  14. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel.

    Science.gov (United States)

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu

    2010-12-01

    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties. PMID:20585897

  15. Nonlinear aspects of astrobiological research

    CERN Document Server

    Brandenburg, Axel

    2008-01-01

    Several aspects of mathematical astrobiology are discussed. It is argued that around the time of the origin of life the handedness of biomolecules must have established itself through an instability. Possible pathways of producing a certain handedness include mechanisms involving either autocatalysis or, alternatively, epimerization as governing effects. Concepts for establishing hereditary information are discussed in terms of the theory of hypercycles. Instabilities toward parasites and possible remedies by invoking spatial extent are reviewed. Finally, some effects of early life are discussed that contributed to modifying and regulating atmosphere and climate of the Earth, and that could have contributed to the highly oxidized state of its crust.

  16. Astrobiology: A Roadmap for Charting Life in the Universe

    Science.gov (United States)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  17. Astrobiology Road Mapping (AstRoMap) - A project within FP7 of the European Commission: First results

    Science.gov (United States)

    Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda

    AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions

  18. Is Humanity Doomed? Insights from Astrobiology

    Directory of Open Access Journals (Sweden)

    Seth D. Baum

    2010-02-01

    Full Text Available Astrobiology, the study of life in the universe, offers profound insights into human sustainability. However, astrobiology is commonly neglected in sustainability research. This paper develops three topics connecting astrobiology to sustainability: constraints on what zones in the universe are habitable, the absence of observations of extraterrestrial civilizations, and the physical fate of the universe. These topics have major implications for our thinking and action on sustainability. While we may not be doomed, we must take certain actions to sustain ourselves in this universe. The topics also suggest that our current sustainability efforts may be of literally galactic importance.

  19. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    Science.gov (United States)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2015-09-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  20. Astrobiology: An astronomer's perspective

    International Nuclear Information System (INIS)

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface

  1. Astrobiology: An astronomer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Edwin A. [University of Michigan, Department of Astronomy, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  2. Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends

    International Nuclear Information System (INIS)

    Highlights: • Spray and combustion characteristics of ABE–diesel blends were studied. • Volatility and latent heat show competitive effects on spray performance. • There exists a critical ABE ratio between 20% and 50% spray characteristics. • Soot reduction potential of blends significantly increase with ABE ratio. • Among tested blends, ABE50 can maintain diesel combustion characteristics. - Abstract: Acetone–Butanol–Ethanol (ABE), the intermediate product while producing bio-butanol, has been proposed to be used as an alternative fuel directly to reduce the butanol recovery/separation costs. It is important to understand how the ABE ratio influences the combustion process because of the large differences in physical and chemical properties between the ABE components and diesel. Therefore, a wide range of ratios of ABE (0%, 20%, 50%, and 80% in volume referred to as D100, ABE20, ABE50 and ABE80 respectively) were blended with diesel and combusted in a constant volume chamber under various ambient temperatures (1200 K, 1000 K, and 800 K) and various ambient oxygen concentrations (21%, 16%, and 11%). Mie scattering images of the liquid spray and broadband flame luminosity images were captured by a high speed camera coupled with a copper vapor laser beam as light source. The results show that ABE20 exhibits spray characteristics similar to those of D100 while ABE50 exhibits spray characteristics similar to those of ABE80. However, the sprays of ABE50 and ABE80 are much shorter and narrower compared to those of D100 and ABE20. It is predicted that there exists a critical ratio between 20% and 50% for ABE, beyond which the spray characteristics of the blend will be dominated by ABE. The intermediate ABE blend, ABE50 achieves a shorter ignition delay (slightly longer than that of D100) and combustion duration compared to those of ABE20 and ABE80 because of its improved spray performance and relatively low latent heat and high cetane number. The natural

  3. Astrobiology: The Case for Venus

    Science.gov (United States)

    Landis, Geoffrey A.

    2003-01-01

    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  4. Extremophiles: Link between earth and astrobiology

    OpenAIRE

    Stojanović Dejan B.; Fojkar Oliver; Drobac-Čik Aleksandra V.; Čajko Kristina O.; Dulić Tamara I.; Svirčev Zorica B.

    2008-01-01

    Astrobiology studies the origin, evolution, distribution and future of life in the universe. The most promising worlds in Solar system, beyond Earth, which may harbor life are Mars and Jovian moon Europa. Extremophiles are organisms that thrive on the edge of temperature, hypersalinity, pH extremes, pressure, dryness and so on. In this paper, some extremophile cyanobacteria have been discussed as possible life forms in a scale of astrobiology. Samples were taken from solenetz and solonchak ty...

  5. AstRoMap European Astrobiology Roadmap

    Science.gov (United States)

    Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa

    2016-01-01

    Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862

  6. The Astrobiology Matrix and the "Drake Matrix" in Education

    Science.gov (United States)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  7. Astrobiological Significance of Microbial Extremophiles

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative p

  8. Combining Experimentation and Theory A Hommage to Abe Mamdani

    CERN Document Server

    Bonissone, Piero; Magdalena, Luis; Kacprzyk, Janusz

    2012-01-01

    The unexpected and premature passing away of Professor Ebrahim H. "Abe" Mamdani on January, 22, 2010, was a big shock to the scientific community, to all his friends and colleagues around the world, and to his close relatives. Professor Mamdani was a remarkable figure in the academic world, as he contributed to so many areas of science and technology. Of great relevance are his latest thoughts and ideas on the study of language and its handling by computers. The fuzzy logic community is particularly indebted to Abe Mamdani (1941-2010) who, in 1975, in his famous paper An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller, jointly written with his student Sedrak Assilian, introduced the novel idea of fuzzy control. This was an elegant engineering approach to the modeling and control of complex processes for which mathematical models were unknown or too difficult to build, yet they could effectively and efficiently be controlled by human operators. This ground-breaking idea has found innumerable a...

  9. Walk Through Solar System Times: An Exhibit with an Astrobiology Emphasis

    Science.gov (United States)

    Cheung, C. Y.

    2012-01-01

    In this astrobiology outreach project, we attempt to present the research of the Goddard Center for Astrobiology (GCA) in the context of the history of the Solar System. GCA research emphasizes the origin and formation of complex pre-biotic organic materials in extraterrestrial environments and explores whether the delivery of these primordial materials and water to the early Earth enabled the emergence and evolution of life. The content expounds on areas that are usually not touched upon in a timeline of the Earth's formation. The exhibit addresses the questions: How did our solar system form? How is the formation of our solar systems similar or different from others? How did the organic molecules we observe in space get to the Earth? What conditions are most suitable for life? We will address the issues and challenges of designing the exhibit and of explaining advanced astrobiology research topics to the public.

  10. Astrobiology at Arizona State University: An Overview of Accomplishments

    Science.gov (United States)

    Farmer, Jack

    2005-01-01

    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is.

  11. Lunar and Planetary Science XXXV: Astrobiology

    Science.gov (United States)

    2004-01-01

    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  12. Astrobiology: Discovering New Worlds of Life.

    Science.gov (United States)

    James, Charles C.; Van Dover, Cindy Lee

    2001-01-01

    Emphasizes discoveries at the frontiers of science. Includes an instructional poster illustrating the hydrothermal vent communities on the deep ocean floor. Describes research activities related to the new discipline of astrobiology, a multidisciplinary approach to studying the emergence of life in the universe. Research activities include the…

  13. On the First Anthropic Argument in Astrobiology

    OpenAIRE

    Cirkovic, Milan M.

    2003-01-01

    We consider the little-known anthropic argument of Fontenelle dealing with the nature of cometary orbits, given a year before the publication of Newton's Principia. This is particularly interesting in view of the rapid development of the recently resurgent theories of cometary catastrophism and their role in the modern astrobiological debates, for instance in the "rare Earth" hypothesis of Ward and Brownlee.

  14. AstRoMap European Astrobiology Roadmap.

    Science.gov (United States)

    Horneck, Gerda; Walter, Nicolas; Westall, Frances; Grenfell, John Lee; Martin, William F; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R; Rettberg, Petra; Capria, Maria Teresa

    2016-03-01

    The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. PMID:27003862

  15. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    Science.gov (United States)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This

  16. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Mai, N.; McIntyre, M.; Yost, B.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  17. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-11-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  18. More than a "Basic Skill": Breaking down the Complexities of Summarizing for ABE/ESL Learners

    Science.gov (United States)

    Ouellette-Schramm, Jennifer

    2015-01-01

    This article describes the complex cognitive and linguistic challenges of summarizing expository text at vocabulary, syntactic, and rhetorical levels. It then outlines activities to help ABE/ESL learners develop corresponding skills.

  19. Astrobiological studies with extremely halophilic Archaea

    Science.gov (United States)

    Fendrihan, S.; Lotter, H. Stan

    2007-08-01

    Haloarcula sp. to the space environment. Adv Space Res. 22: 327-334. 3. Ellery A., Wynn-Williams D., Parnell J., Edwards H.G.M., Dickensheets D. (2004) The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars, J. Raman Spectrosc. 35: 441-457.

  20. Astrobiology Undergraduate Education: Students' Knowledge and Perceptions of the Field

    Science.gov (United States)

    Foster, Jamie S.; Drew, Jennifer C.

    2009-04-01

    With the field of astrobiology continually evolving, it has become increasingly important to develop and maintain an educational infrastructure for the next generation of astrobiologists. In addition to developing more courses and programs for students, it is essential to monitor the learning experiences and progress of students taking these astrobiology courses. At the University of Florida, a new pilot course in astrobiology was developed that targeted undergraduate students with a wide range of scientific backgrounds. Pre- and post-course surveys along with knowledge assessments were used to evaluate the students' perceived and actual learning experiences. The class incorporated a hybrid teaching platform that included traditional in-person and distance learning technologies. Results indicate that undergraduate students have little prior knowledge of key astrobiology concepts; however, post-course testing demonstrated significant improvements in the students' comprehension of astrobiology. Improvements were not limited to astrobiology knowledge. Assessments revealed that students developed confidence in science writing as well as reading and understanding astrobiology primary literature. Overall, student knowledge of and attitudes toward astrobiological research dramatically increased during this course, which demonstrates the ongoing need for additional astrobiology education programs as well as periodic evaluations of those programs currently underway. Together, these approaches serve to improve the overall learning experiences and perceptions of future astrobiology researchers.

  1. Extremophiles: Link between earth and astrobiology

    Directory of Open Access Journals (Sweden)

    Stojanović Dejan B.

    2008-01-01

    Full Text Available Astrobiology studies the origin, evolution, distribution and future of life in the universe. The most promising worlds in Solar system, beyond Earth, which may harbor life are Mars and Jovian moon Europa. Extremophiles are organisms that thrive on the edge of temperature, hypersalinity, pH extremes, pressure, dryness and so on. In this paper, some extremophile cyanobacteria have been discussed as possible life forms in a scale of astrobiology. Samples were taken from solenetz and solonchak types of soil from the Vojvodina region. The main idea in this paper lies in the fact that high percentage of salt found in solonchak and solonetz gives the possibility of comparison these types of soil with 'soil' on Mars, which is also rich in salt.

  2. An Astrobiology Microbes Exhibit and Education Module

    Science.gov (United States)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  3. An Online Astrobiology Course for Teachers

    Science.gov (United States)

    Prather, Edward E.; Slater, Timothy F.

    2002-06-01

    A continuing challenge for scientists is to keep K-12 teachers informed about new scientific developments. Over the past few years, this challenge has increased as new research findings have come from the field of astrobiology. In addition to trying to keep abreast of these new discoveries, K-12 teachers must also face the demands of the content and pedagogical goals imposed by state and national science education standards. Furthermore, many teachers lack the scientific content knowledge or training in current teaching methods to create their own activities or to implement appropriately new teaching materials designed to meet the standards. There is a clear need for special courses designed to increase the scientific knowledge of K-12 science teachers. In response to this need, the authors developed a suite of innovative, classroom-ready lessons for grades 5-12 that emphasize an active engagement instructional strategy and focus on the recent discoveries in the field of astrobiology. They further created a graduate-level, Internet-based distance-learning course for teachers to help them become familiar with these astrobiology concepts and to gain firsthand experience with the National Science Education Standards-based instructional strategies.

  4. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    OpenAIRE

    Eva Mateo-Marti

    2014-01-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of p...

  5. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    OpenAIRE

    Fergusson, Jennifer; Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology ou...

  6. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    OpenAIRE

    Foster, Jamie S.; Lemus, Judith D.

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build c...

  7. Lower Secondary Students' Views in Astrobiology

    Science.gov (United States)

    Hansson, Lena; Redfors, Andreas

    2013-01-01

    Astrobiology is, on a profound level, about whether life exists outside of the planet Earth. The question of existence of life elsewhere in the universe has been of interest to many societies throughout history. Recently, the research area of astrobiology has grown at a fast rate, mainly due to the development of observational methods, and the…

  8. An Astrobiology Summer Program for High School Teachers and Students

    Science.gov (United States)

    Cola, J.; Williams, L. D.; Gaucher, E.; Snell, T.

    2010-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational summer program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to expose high school educators to the field of astrobiology and provide them with skills and classroom activities necessary to foster student interest in scientific discovery on Earth and throughout the universe. Astrobiology activities for a week-long summer enrichment program for high school students was developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty-four high school students were introduced to hands-on activities and techniques such as gel electrophoresis, thin layer chromatography, and manual polymerase chain reaction. The impact of the astrobiology summer program on teachers and high school students will be discussed.

  9. Astrobiological Field Campaign to a Volcanosedimentary Mars Analogue Methane Producing Subsurface Protected Ecosystem: Imuruk Lake (Alaska

    Directory of Open Access Journals (Sweden)

    F. Gómez

    2011-01-01

    Full Text Available Viking missions reported adverse conditions for life in Mars surface. High hydrogen signal obtained by Mars orbiters has increased the interest in subsurface prospection as putative protected Mars environment with life potential. Permafrost has attracted considerable interest from an astrobiological point of view due to the recently reported results from the Mars exploration rovers. Considerable studies have been developed on extreme ecosystems and permafrost in particular, to evaluate the possibility of life on Mars and to test specific automated life detection instruments for space missions. The biodiversity of permafrost located on the Bering Land Bridge National Preserve has been studied as an example of subsurface protected niche of astrobiological interest. Different conventional (enrichment and isolation and molecular ecology techniques (cloning, fluorescence “in situ” probe hybridization, FISH have been used for isolation and bacterial identification.

  10. Recruitment Issues and Strategies for Adults Who Are Not Currently Participating in Literacy and Adult Basic Education (ABE) Programs.

    Science.gov (United States)

    Kohring, Aaron

    Adult basic education (ABE) and literacy programs have used many different strategies and tools to recruit new students. A small sampling of Tennessee ABE programs shows the more effective recruitment strategies are word-of-mouth referrals; newspaper advertisements and articles; fliers; brochures; posters, radio messages, and public service…

  11. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    Science.gov (United States)

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. PMID:25474292

  12. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    Science.gov (United States)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  13. Lunar and Planetary Science XXXV: Astrobiology

    Science.gov (United States)

    2004-01-01

    The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan

  14. The Astrobiology Habitable Environments Database (AHED)

    Science.gov (United States)

    Lafuente, B.; Stone, N.; Downs, R. T.; Blake, D. F.; Bristow, T.; Fonda, M.; Pires, A.

    2015-12-01

    The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository for archiving and collaborative sharing of astrobiologically relevant data, including, morphological, textural and contextural images, chemical, biochemical, isotopic, sequencing, and mineralogical information. The aim of AHED is to foster long-term innovative research by supporting integration and analysis of diverse datasets in order to: 1) help understand and interpret planetary geology; 2) identify and characterize habitable environments and pre-biotic/biotic processes; 3) interpret returned data from present and past missions; 4) provide a citable database of NASA-funded published and unpublished data (after an agreed-upon embargo period). AHED uses the online open-source software "The Open Data Repository's Data Publisher" (ODR - http://www.opendatarepository.org) [1], which provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own database according to the characteristics of their data and the need to share data with collaborators or the broader scientific community. This platform can be also used as a laboratory notebook. The database will have the capability to import and export in a variety of standard formats. Advanced graphics will be implemented including 3D graphing, multi-axis graphs, error bars, and similar scientific data functions together with advanced online tools for data analysis (e. g. the statistical package, R). A permissions system will be put in place so that as data are being actively collected and interpreted, they will remain proprietary. A citation system will allow research data to be used and appropriately referenced by other researchers after the data are made public. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, Mars Science Laboratory Investigations. [1] Nate et al. (2015) AGU, submitted.

  15. Lab-on-a-chip astrobiology analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this program (through Phase III) is to develop an astrobiology analyzer to measure chemical signatures of life in extraterrestrial settings. The...

  16. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    Science.gov (United States)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  17. Too Early? On the Apparent Conflict of Astrobiology and Cosmology

    OpenAIRE

    Cirkovic, Milan M.

    2005-01-01

    An interesting consequence of the modern cosmological paradigm is the spatial infinity of the universe. When coupled with naturalistic understanding of the origin of life and intelligence, which follows the basic tenets of astrobiology, and with some fairly incontroversial assumptions in the theory of observation selection effects, this infinity leads, as Ken Olum has recently shown, to a paradoxical conclusion. Olum's paradox is related, to the famous Fermi's paradox in astrobiology and SETI...

  18. Cultural Aspects of Astrobiology: A Preliminary Reconnaissance at

    Science.gov (United States)

    Dick, Steven

    NASA's Astrobiology Roadmap, developed in 1998 by an interdisciplinary team of more than 150 individuals, recognizes ten science goals, 17 more specific science objectives, and four broad principles for the Astrobiology Program. Among the four operating principles, which emphasize multidisciplinarity, planetary stewardship and public outreach, is one that also recognizes broad societal interest for the implications of astrobiology, especially its extraterrestrial life component. Although several meetings ahve been convened in the past decade to discuss the implications of extraterrestrial intelligence, including NASA's own CASETI workshops in 1991-1992, none have surveyed the broader implications of astrobiology as now defined at NASA. In this paper we survey these societal questions raised by astrobiology, and then focus on those related to extraterrestrial life, and in particular how they might differ from SETI concerns already discussed. As we enter the new millennium, the necessity for interdisciplinary studies is increasingly recognized in academia, industry and government. Astrobiology provides an unprecedented opportunity to encourage the unity of knowledge, as recently proposed in E. O. Wilson's book Consilience: The Unity of Knowledge. It is incumbent on scientists to support research on the implications of their work, in particular large government-funded scientific projects. The deep insights such study may yield has been amply demonstrated by the Human Genome Project, among others.

  19. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  20. Microorganisms in extreme environments with a view to astrobiology in the outer solar system

    Science.gov (United States)

    Seckbach, Joseph; Chela-Flores, Julian

    2015-09-01

    We review the various manifestations of the evolution of life in extreme environments. We review those aspects of extremophiles that are most relevant for astrobiology. We are aware that geothermal energy triggering sources of heat in oceanic environments are not unique to our planet, a fact that was exposed by the Voyager mission images of volcanic activity on Io, the Jovian moon. Such activity exceeded by far what was known form terrestrial geology. The science of astrobiology has considered the possible presence of several moon oceans in the vicinity of both giant gas and icy planets. These watery environments include, not only Europa (strongly suggested by data from the Galileo mission), but the Voyager flybys exposed, not only the unusual geothermal activity on Io, but also the possible presence of subsurface oceans and some geothermal activity on the Neptune's moon Triton. More recently, calculations of Hussmann and coworkers with available data do not exclude that even Uranus moons may be candidates for bearing subsurface oceans. These possibilities invite a challenge that we gladly welcome, of preliminary discussions of habitability of extremophiles in so far novel environments for the science of astrobiology. Nevertheless, such exploration is currently believed to be feasible with the new generations of missions suggested for the time window of 2030 - 2040, or even earlier. We are envisaging, not only the current exploration of the moons of Saturn, but in the coming years we expect to go beyond to Uranus and Neptune to include dwarf planets and trans-neptunian worlds. Consequently, it is necessary to begin questioning whether the Europa-like conditions for the evolution of microorganisms are repeatable elsewhere. At present three new missions are in the process of being formulated, including the selection of payloads that will be necessary for the exploration of the various so far unexplored moons.

  1. Abe homotopy classification of topological excitations under the topological influence of vortices

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shingo, E-mail: shingo@cat.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Physics, and Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8511 (Japan); Kobayashi, Michikazu [Department of Basic Science, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Kawaguchi, Yuki [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8511 (Japan); Ueda, Masahito [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); ERATO Macroscopic Quantum Control Project, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-03-11

    Topological excitations are usually classified by the nth homotopy group {pi}{sub n}. However, for topological excitations that coexist with vortices, there are cases in which an element of {pi}{sub n} cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of {pi}{sub n} corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of {pi}{sub 1} on {pi}{sub n}. In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group {kappa}{sub n}. The nth Abe homotopy group {kappa}{sub n} is defined as a semi-direct product of {pi}{sub 1} and {pi}{sub n}. In this framework, the action of {pi}{sub 1} on {pi}{sub n} is understood as originating from noncommutativity between {pi}{sub 1} and {pi}{sub n}. We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is S{sup n}/K, where S{sup n} is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  2. Moral Education in Japan The Coming of a New Dawn, Abe s New Moral Education

    OpenAIRE

    Bolton, Kristoffer Hornburg

    2015-01-01

    This thesis studies the current debate surrounding moral education in Japan, choosing to focus on the criticism of the Abe administration s proposed educational reform. Moral education has received criticism for being overly nationalistic, being too similar to its pre-war iteration, and for supposedly brainwashing children. A majority of this criticism has been centered on the new textbook, Watashitachi no Doutoku. Its predecessor, Kokoro no Nooto, raised similar concerns and critics fear a w...

  3. Abe homotopy classification of topological excitations under the topological influence of vortices

    International Nuclear Information System (INIS)

    Topological excitations are usually classified by the nth homotopy group πn. However, for topological excitations that coexist with vortices, there are cases in which an element of πn cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of πn corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of π1 on πn. In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group κn. The nth Abe homotopy group κn is defined as a semi-direct product of π1 and πn. In this framework, the action of π1 on πn is understood as originating from noncommutativity between π1 and πn. We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is Sn/K, where Sn is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  4. Sistem Akuntansi Piutang Dagang Pada Pedagang Besar Farmasi PT. Trido Abed Utama Medan

    OpenAIRE

    Serly

    2011-01-01

    The purpose of this research is to examine the accounting procedures of credit sales and account receivable collections implemented in PT Trido Abed Utama and to examine wheter the procedures has given adequete internal control. The research method used is Descriptive Method and Comperative Method, while the types of data used Qualititative data which consist of primary data and secondary data. Data collections techniques are inquiries, bibliography, and documentation. The responded of. this ...

  5. Astrobiology in the Environments of Main-Sequence Stars: Effects of Photospheric Radiation

    OpenAIRE

    Cuntz, M.; Gurdemir, L.; Guinan, E. F.; Kurucz, R. L.

    2007-01-01

    We explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of photospheric stellar radiation, such as UV-C. Therefore, we focus on main-sequence stars of spectral types F, G, K, and M. Emphasis is placed on investigating the radiative environment in the stellar habitable zones. Stellar habitable zones are relevant to astrobiology because they constitute circumstellar regions in which a planet of suitable size can mai...

  6. An Astrobiological View on Sustainable Life

    Directory of Open Access Journals (Sweden)

    Takeshi Naganuma

    2009-10-01

    Full Text Available Life on a global biosphere basis is substantiated in the form of organics and organisms, and defined as the intermediate forms (briefly expressed as CH2O hovering between the reduced (CH4, methane and (CO2, carbon dioxide ends, different from the classical definition of life as a complex organization maintaining ordered structure and information. Both definitions consider sustenance of life meant as protection of life against chaos through an input of external energy. The CH2O-life connection is maintained as long as the supply of H and O lasts, which is in turn are provided by the splitting of the water molecule H2O. Water is split by electricity, as well-known from school-level experiments, and by solar radiation and geothermal heat on a global scale. In other words, the Sun’s radiation and the Earth’s heat as well as radioactivity split water to supply H and O for continued existence of life on the Earth. These photochemical, radiochemical and geothermal processes have influences on the evolution and current composition of the Earth’s atmosphere, compared with those of Venus and Mars, and influences on the planetary climatology. This view of life may be applicable to the “search-for-life in space” and to sustainability assessment of astrobiological habitats.

  7. The Living Universe: NASA and the Development of Astrobiology

    Science.gov (United States)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  8. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    Science.gov (United States)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  9. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    Science.gov (United States)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  10. Is it the first use of the word Astrobiology ?

    OpenAIRE

    Briot, Danielle

    2012-01-01

    The research of life in Universe is a ancient quest that has taken different forms over the centuries. It has given rise to a new science, which is normally referred as Astrobiology. It is interesting to research when this word was used for the first time and when this science developed to represent the search for life in Universe as is done today. There are records of the usage of the word "Astrobiology" as early as 1935, in an article published in a French popular science magazine. Moreover...

  11. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    Science.gov (United States)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  12. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  13. Exploration

    Science.gov (United States)

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  14. Life in Ice: Implications to Astrobiology

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  15. The Astrobiology Graduate Conference - A Unique Early Career Opportunity

    Science.gov (United States)

    Knowles, E. J.; Domagal-Goldman, S. D.; Anderson, R.; Som, S. M.

    2011-12-01

    The Astrobiology Graduate Conference (AbGradCon) is an extremely successful annual meeting of early career researchers and educators involved and interested in the field of astrobiology. The conference has been held eight times in various locations, each time organized by a different group of students. The primary objective of AbGradCon is to stimulate the future of astrobiology research by bringing together graduate students and early post-doctoral fellows in order to create and strengthen interdisciplinary and international networks of early-career astrobiologists who will lead such research in the years to come. The conference is unique in that it is a student-led meeting, from the organization to the presentations. AbGradCon strives to remove the "pressures" of typical scientific meetings by providing a relaxed atmosphere in which presentations and round-table discussions are fostered along with numerous social activities. The success of previous AbGradCons can be attributed to the sheer enthusiasm of the participants for astrobiology, and to the spirit and format of the conference, which is outlined in a charter written by past conference organizers and participants. Because it is organized and attended by only graduate students and early career astrobiologists, AbGradCon is an ideal venue for the next generation of early career astrobiologists to form bonds, share ideas, and discuss the issues that will shape the future of the field.

  16. The NASA Astrobiology Institute: early history and organization

    Science.gov (United States)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  17. Astrobiology Courses--A Useful Framework for Teaching Interdisciplinary Science.

    Science.gov (United States)

    Sauterer, Roger

    2000-01-01

    Explains astrobiology and indicates the possibility of life on other planets and the interest of humankind in this possibility. Defines topics open to public misconception and their primary reinforcements by television shows. Expresses the need for students to learn the connections between different science majors. (YDS)

  18. The Aouda.X space suit simulator and its applications to astrobiology.

    Science.gov (United States)

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations. PMID:22300413

  19. Multi-authority ABE for Access Control in Cloud Storage%基于 MA-ABE 的云存储访问控制方法∗

    Institute of Scientific and Technical Information of China (English)

    李谢华; 张蒙蒙; 刘鸿; 王勇军

    2015-01-01

    针对于跨域云数据访问控制中的安全性和有效性问题,提出了一种基于树访问结构的多授权机构属性加密(Attribute-Based Encryption,ABE)的跨域数据访问控制方法。通过建立分散授权模型,将属性私钥的生成与中央认证机构(Central Authority,CA)分离,由数据属主(Data Owner,DO)和授权机构分别生成并分发属性私钥组件。利用基于访问结构树的控制策略,有效预防了用户之间以及用户和授权机构之间的联合攻击。此外,用户密钥计算无需使用全球唯一标识(Global Identity,GID),支持匿名用户跨域数据访问。最后,利用双线性判定Diffie-Hellman(Decision Bilinear Diffie-Hellman,DBDH)假设理论分析了方案的安全性。研究结果表明,本方案在解密操作和加解密平均时间上具有较高的性能,能够有效地应用于多授权机构并存的云存储环境。%In order to improve the security and efficiency of data access control under multi-authority environment,an access-tree based multi-authority ABE (ATB-MAABE)has been proposed in this paper. In ATB-MAABE,CA is only used for public parameters generating and authority verification,which re-duces the security risk introduced by CA.Access control policy is defined by the DO(data owner),and the attribute-based secret key components are generated by DO and different attributes authorities.By using the access tree based control policy,this scheme can prevent the attacks from the user and authority collu-sion.Furthermore,the user's global identifier (GID)is not required in secret key generating,which can support anonymous data control and sharing.Finally,the security proof is given by using the Decisional Bilinear Diffie-Hellman (DBDH )assumption,and the experiment results show the efficiency of this scheme in encryption/decryption operations.

  20. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Science.gov (United States)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  1. Astrobiological aspects of Mars and human presence: pros and cons.

    Science.gov (United States)

    Horneck, G

    2008-08-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  2. Exploration

    International Nuclear Information System (INIS)

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  3. The Astrobiology Primer: An Outline of General Knowledge - Version 1, 2006

    OpenAIRE

    Mix, Lucas J; Armstrong, John C; Mandell, Avi M.; Mosier, Annika C.; Raymond, Jason; Raymond, Sean N.; Stewart, Frank J; von Braun, Kaspar; Zhaxybayeva, Olga; Billings, Linda; Cameron, Vyllinniskii; Claire, Mark; Dick, Greg J; Domagal-Goldman, Shawn D.; Javaux, Emmanuelle

    2006-01-01

    Astrobiology, the study of life as a planetary phenomenon, aims to understand the fundamental nature of life on earth and the possibility of life elsewhere. To achieve this goal, astrobiologists have initiated unprecedented communication between the disciplines of astronomy, biology, chemistry, and geology. The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endea...

  4. Mapping the Chemical Universe of Biomolecules for Astrobiology

    OpenAIRE

    Meringer, Markus

    2015-01-01

    Understanding the origins of life is a central question of Astrobiology. Computer methods offer unique means to approach this challenge. In order to obtain a better understanding of the selection rules which guided chemical and early biochemical evolution, our approach is to computationally generate exhaustive sets of biomolecule analogues, to calculate their physico-chemical properties, and to simulate adaptive processes that might have led to the biochemical foundations of life as we know i...

  5. A brief social history of astrobiology in Ibero-america

    CERN Document Server

    Lemarchand, Guillermo A

    2010-01-01

    The work is divided into three sections: the first one describes the historical evolution of the main arguments presented about the plurality of inhabited worlds, from the presocratics to the birth of modern science. The second section analyzes the race to define the search for life beyond Earth as a scientific activity under a specific name. Finally, the third part presents a brief description of the social history of science that allowed the early development of astrobiology in Iberoamerica.

  6. The Astronomical, Astrobiological and Planetary Science Case for Interstellar Spaceflight

    OpenAIRE

    Crawford, Ian A.

    2010-01-01

    A review is presented of the scientific benefits of rapid (v >= 0.1c) interstellar spaceflight. Significant benefits are identified in the fields of interstellar medium studies, stellar astrophysics, planetary science and astrobiology. In the latter three areas the benefits would be considerably enhanced if the interstellar vehicle is able to decelerate from its interstellar cruise velocity to rest relative to the target system. Although this will greatly complicate the mission architecture, ...

  7. Astrobiologically Interesting Stars within 10 parsecs of the Sun

    OpenAIRE

    de Mello, G. F. Porto; del Peloso, E. F.; Ghezzi, L.

    2005-01-01

    The existence of life based on carbon chemistry and water oceans relies upon planetary properties, chiefly climate stability, and stellar properties, such as mass, age, metallicity and Galactic orbits. The latter can be well constrained with present knowledge. We present a detailed, up-to-date compilation of the atmospheric parameters, chemical composition, multiplicity and degree of chromospheric activity for the astrobiologically interesting solar-type stars within 10 parsecs of the Sun. We...

  8. Astrobiology: The Search for Life in the Universe

    Science.gov (United States)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  9. Case studies approach for an undergraduate astrobiology course

    Science.gov (United States)

    Burko, Lior M.; Enger, Sandra

    2013-04-01

    Case studies is a well known and widely used method in law schools, medical schools, and business schools, but relatively little used in physics or astronomy courses. We developed an astrobiology course based strongly on the case studies approach, and after teaching it first at the University of Alabama in Huntsville, we have adapted it and are now teaching it at Alabama A&M University, a HBCU. The case studies approach uses several well tested and successful teaching methods - including group work, peer instruction, current interest topics, just-in-time teaching, &c. We have found that certain styles of cases are more popular among students than other styles, and will revise our cases to reflect such student preferences. We chose astrobiology -- an inherently multidisciplinary field -- because of the popularity of the subject matter, its frequent appearance in the popular media (news stories about searches for life in the universe, the discovery of Earth-like exoplanets, etc, in addition to SciFi movies and novels), and the rapid current progress in the field. In this talk we review briefly the case studies method, the styles of cases used in our astrobiology course, and student response to the course as found in our assessment analysis.

  10. Lunar Palaeoregolith Deposits as Recorders of the Galactic Environment of the Solar System and Implications for Astrobiology

    OpenAIRE

    Crawford, Ian A.; Fagents, Sarah A.; Joy, Katherine H.; Rumpf, M. Elise

    2010-01-01

    One of the principal scientific reasons for wanting to resume in situ exploration of the lunar surface is to gain access to the record it contains of early Solar System history. Part of this record will pertain to the galactic environment of the Solar System, including variations in the cosmic ray flux, energetic galactic events (e.g, supernovae and/or gamma-ray bursts), and passages of the Solar System through dense interstellar clouds. Much of this record is of astrobiological interest as t...

  11. Moessbauer spectroscopy as a tool in astrobiology

    International Nuclear Information System (INIS)

    Two miniaturized Moessbauer spectrometers are part of the Athena instrument package of the NASA Mars Exploration Rovers, Spirit and Opportunity. The primary objectives of their science investigation are to explore two sites on the surface of Mars where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. Aqueous minerals - jarosite at Meridiani Planum, Opportunity's landing site, and goethite in the Columbia Hills in Gusev Crater, Spirit's landing site - were identified by Moessbauer spectroscopy, thus providing in situ proof of water being present at those sites in the past. The formation of jarosite in particular puts strong constraints on environmental conditions during the time of formation and hence on the evaluation of potential habitability. On Earth Moessbauer spectroscopy was used to investigate microbially induced changes in Fe oxidation states and mineralogy at the Loihi deep sea mount, a hydrothermal vent system, which might serve as an analogue for potential habitats in the Martian subsurface and the sub-ice ocean of Jupiter's icy moon Europa.

  12. A Survey of Educational Activities and Resources Relevant to Mars and Astrobiology

    Science.gov (United States)

    Manning, Heidi L. K.; Bleacher, L.

    2009-09-01

    Sample Analysis at Mars (SAM) is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover, which was recently named Curiosity in a student-naming contest. SAM's three instruments are devoted to studying the chemical composition of the Martian surface and atmosphere and to understanding the planet's past habitability and potential habitability today. Curiosity is scheduled to launch in 2011, however many Education and Public Outreach (EPO) activities supported by the MSL mission are well underway. The SAM EPO plan includes elements of both formal and informal education in addition to outreach, such as incorporating data into the Mars Exploration Student Data Teams program, developing a museum exhibit and associated educational materials about SAM's research, and writing articles about the MSL mission and SAM's findings for ChemMatters magazine. One of the EPO projects currently being carried out by members of the SAM team is training secondary education teachers in Mars geology, astrobiology, and SAM science goals via professional development workshops. Several of the recent Mars missions have had extensive EPO components to them. As a result, numerous educational activities and resources have already been developed relating to understanding Mars and astrobiology. We have conducted a survey of these activities and resources previously created and have compiled those relevant and useful for our SAM teacher training workshops. Resources and activities have been modified as needed. In addition, we have identified areas in which no educational activities exist and are developing new curriculum specifically to address these gaps. This work is funded by the MN Space Grant Consortium and NASA's Science Mission Directorate.

  13. Assessing Researcher Interdisciplinarity: A Case Study of the University of Hawaii NASA Astrobiology Institute

    OpenAIRE

    Gowanlock, Michael G.; Gazan, Rich

    2012-01-01

    In this study, we combine bibliometric techniques with a machine learning algorithm, the sequential Information Bottleneck, to assess the interdisciplinarity of research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In particular, we cluster abstract data to evaluate Thomson Reuters Web of Knowledge subject categories as descriptive labels for astrobiology documents, assess individual researcher interdisciplinarity, and determine where collaboration opportunities m...

  14. Emphasizing Astrobiology: Highlighting Communication in an Elective Course for Science Majors

    Science.gov (United States)

    Offerdahl, Erika G.; Prather, Edward E.; Slater, Timothy F.

    2004-01-01

    The project described here involved the design, implementation, and evaluation of an upper level, undergraduate elective course for science majors. Specific course goals were to help students gain an appreciation of the interdisciplinary nature of astrobiology, understand key ideas in astrobiology, and develop the skills necessary to communicate…

  15. "Enne diskussiooni võta 100 g (40°-80°)!" : Gustav Naani kolm kirja Abe Liebmanile / Gustav Naan ; kommentaarinud Helen Lausma-Saar

    Index Scriptorium Estoniae

    Naan, Gustav, 1919-1994

    2012-01-01

    Kirjad pakuvad lisateavet selle kohta, kuidas kujunes marksistlik-leninlik-stalinlik Eesti ajaloo kontseptsioon. Annavad võimaluse heita pilgu Gustav Naani mõttemaailma ja ridade vahelt saab aimu Abe Liebmani rollist ajalooteaduse ümbermõtestamisel

  16. SWIR Investigation of sites of astrobiological interest

    CERN Document Server

    Brown, Adrian J; Cudahy, Thomas

    2014-01-01

    Rover missions to the rocky bodies of the Solar System and especially to Mars require light- weight, portable instruments that use minimal power, require no sample preparation, and provide suitably diagnostic mineralogical information to an Earth-based exploration team. Short-wave infrared (SWIR) spectroscopic instruments such as the Portable Infrared Mineral Analyser (PIMA, Integrated Spectronics Pty Ltd., Baulkham Hills, NSW, Australia) fulfill all these requirements. We describe an investigation of a possible Mars analogue site using a PIMA instrument. A survey was carried out on the Strelley Pool Chert, an outcrop of stro- matolitic, silicified Archean carbonate and clastic succession in the Pilbara Craton, interpreted as being modified by hydrothermal processes. The results of this study demonstrate the ca- pability of SWIR techniques to add significantly to the geological interpretation of such hy- drothermally altered outcrops. Minerals identified include dolomite, white micas such as il- lite-muscovit...

  17. From Fossils to Astrobiology Records of Life on Earth and Search for Extraterrestrial Biosignatures

    CERN Document Server

    Seckbach, Joseph

    2008-01-01

    From Fossils to Astrobiology reviews developments in paleontology and geobiology that relate to the rapidly-developing field of Astrobiology, the study of life in the Universe. Many traditional areas of scientific study, including astronomy, chemistry and planetary science, contribute to Astrobiology, but the study of the record of life on planet Earth is critical in guiding investigations in the rest of the cosmos. In this varied book, expert scientists from 15 countries present peer-reviewed, stimulating reviews of paleontological and astrobiological studies. The overviews of established and emerging techniques for studying modern and ancient microorganisms on Earth and beyond, will be valuable guides to evaluating biosignatures which could be found in the extraterrestrial surface or subsurface within the Solar System and beyond. This volume also provides discussion on the controversial reports of "nanobacteria" in the Martian meteorite ALH84001. It is a unique volume among Astrobiology monographs in focusi...

  18. Optimización de un medio de cultivo industrial para la fermentación acetobutilica (abe)

    OpenAIRE

    2011-01-01

    The industrial culture media for butanol-ethanol-acetone fermentation (ABE) was optimized by experimental design. A butanol resistant mutant isolated from Clostridium acetobutylicum DSM 1732 was used. This mutant produced 15.5 g/1 of total solvents, 30% more than the wild strain solvent production. Mutant strain resists a concentration of 2,5% v/v meanwhile the type strain resists 1 % v/v butanol concentration. Molasses of sugar cane as carbon source were used. The molasses concentration was ...

  19. The Astronomical, Astrobiological and Planetary Science Case for Interstellar Spaceflight

    CERN Document Server

    Crawford, Ian A

    2010-01-01

    A review is presented of the scientific benefits of rapid (v >= 0.1c) interstellar spaceflight. Significant benefits are identified in the fields of interstellar medium studies, stellar astrophysics, planetary science and astrobiology. In the latter three areas the benefits would be considerably enhanced if the interstellar vehicle is able to decelerate from its interstellar cruise velocity to rest relative to the target system. Although this will greatly complicate the mission architecture, and extend the overall travel time, the scientific benefits are such that this option should be considered seriously in future studies.

  20. Magnesium production from Asian Abe-Gram dolomite in pidgeon-type reactor

    International Nuclear Information System (INIS)

    Ore mineral characterization and various experimental test work were carried out on Asian Abe-Garm dolomite, Qazvin province, Iran. The test work consisted of calcining, chemical characterization, LOI determination, and reduction tests on the calcined dolomite (doloma), using Semnan ferrosilicon. Calcining of dolomite sample was carried out at about 1400degreeC in order to remove the contained CO2, moisture, and other easily volatilised impurities. The doloma was milled, thoroughly mixed with 21percentSemnan ferrosilicon and briquetted in hand press applying 30 MPa pressure. The briquettes were heated at 1125-1150degreeC and 500 Pa in a Pidgeon-type tube reactor for 10-12 hours to extract the magnesium. Ferrosilicon addition, relative to doloma, was determined based on the chemical analysis of the two reactants using Mintek's Pyrosim software package. Magnesium extraction calculated as 77.97percentand Mg purity of 96.35percent. The level of major impurities in the produced magnesium crown is similar to those in the crude metal production.

  1. Astrobiology and the Exploration of Gusev Crater by the Mars Exploration Rover Spirit

    Science.gov (United States)

    DesMarais, I. David

    2005-01-01

    We assess the availability of nutrient elements, energy and liquid water on the plains surrounding Columbia Memorial Station by evaluating data from Spirit in the context of previous Mars missions, Earth-based studies of martian meteorites and studies of microbial communities on Earth that represent potential analogs of martian biota. The compositions of Gusev basalts resemble those of olivine basalts beneath the seabed on Earth that deep drilling has shown to support life. Of particular relevance to biology, phosphate abundances are much greater in Gusev basalts (0.84 +/- 0.07 wt. % P2O5) than in oceanic basalts (typically 0.06 wt. %).

  2. Aliens are us. An innovative course in astrobiology

    Science.gov (United States)

    Oliveira, Carlos F.; Barufaldi, James P.

    2009-01-01

    We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.

  3. Hypervelocity Impact Experiments in the Laboratory Relating to Lunar Astrobiology

    Science.gov (United States)

    Burchell, M. J.; Parnell, J.; Bowden, S. A.; Crawford, I. A.

    2010-12-01

    The results of a set of laboratory impact experiments (speeds in the range 1-5 km s-1) are reviewed. They are discussed in the context of terrestrial impact ejecta impacting the Moon and hence lunar astrobiology through using the Moon to learn about the history of life on Earth. A review of recent results indicates that survival of quite complex organic molecules can be expected in terrestrial meteorites impacting the lunar surface, but they may have undergone selective thermal processing both during ejection from the Earth and during lunar impact. Depending on the conditions of the lunar impact (speed, angle of impact etc.) the shock pressures generated can cause significant but not complete sterilisation of any microbial load on a meteorite (e.g. at a few GPa 1-0.1% of the microbial load can survive, but at 20 GPa this falls to typically 0.01-0.001%). For more sophisticated biological products such as seeds (trapped in rocks) the lunar impact speeds generate shock pressures that disrupt the seeds (experiments show this occurs at approximately 1 GPa or semi-equivalently 1 km s-1). Overall, the delivery of terrestrial material of astrobiological interest to the Moon is supported by these experiments, although its long term survival on the Moon is a separate issue not discussed here.

  4. Assessing Researcher Interdisciplinarity: A Case Study of the University of Hawaii NASA Astrobiology Institute

    CERN Document Server

    Gowanlock, Michael G

    2012-01-01

    In this study, we combine bibliometric techniques with a machine learning algorithm, the sequential Information Bottleneck, to assess the interdisciplinarity of research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In particular, we cluster abstract data to evaluate Thomson Reuters Web of Knowledge subject categories as descriptive labels for astrobiology documents, assess individual researcher interdisciplinarity, and determine where collaboration opportunities might occur. We find that the majority of the UHNAI team is engaged in interdisciplinary research, and suggest that our method could be applied to additional NASA Astrobiology Institute teams in particular, or other interdisciplinary research teams more broadly, to identify and facilitate collaboration opportunities.

  5. Rediscovery and Exploration of Magic Mountain, Explorer Ridge, NE Pacific

    Science.gov (United States)

    Embley, R. W.

    2002-12-01

    A two-part exploration program at Explorer Ridge, the northernmost spreading segment of the NE Pacific spreading centers, was conducted in two phases during June to August of 2002. A robust hydrothermal system (Magic Mountain) was found in this area in the early 1980s by the Canadian PISCES IV submersible, but its dimensions and geologic relationships were not well determined due to limited dives and poor navigation. The first part of the 2002 exploration program utilized an EM300 multibeam sonar on T. G. Thompson, the autonomous vehicle ABE, and a CTD/rosette system to map the seafloor and conduct hydrothermal plume surveys. While ABE conducted detailed surveys in the area where the most intense hydrothermal plume was found on the initial CTD survey, the T. G. Thompson conducted additional multibeam surveys, CTD casts and CTD tow-yos on the other second order segments up to 60 km away. This increased the efficiency of the expedition by at least 30%. After 12 days on site, a multibeam map was completed of the entire segment, the spatial distribution and character of the hydrothermal plumes were mapped out and a section of seafloor measuring 2 x 5.5 km was mapped in detail with ABE. The ABE used two sonar systems, a previously proven Imagenex pencil beam sonar, and, for the first time, a multibeam sonar (SM2000). In addition to the high-resolution bathymetry (1 m grid-cell size resolution for the SM2000), ABE collected temperature, optical backscatter, eH redox potential, and magnetic field data. Using the CTD and ABE data, a major hydrothermal system was easily located on the seafloor during the second part of the exploration program using the ROPOS remotely operated vehicle. The Magic Mountain hydrothermal system is located almost entirely on the eastern constructional shoulder of the ridge eastward of the rim of the eastern boundary fault of the axial valley. This is in contrast to most other hydrothermal systems on intermediate rate spreading ridges, which are

  6. Astrobiologically Interesting Stars within 10 parsecs of the Sun

    CERN Document Server

    De Mello, G F P; Ghezzi, L

    2006-01-01

    The existence of life based on carbon chemistry and water oceans relies upon planetary properties, chiefly climate stability, and stellar properties, such as mass, age, metallicity and Galactic orbits. The latter can be well constrained with present knowledge. We present a detailed, up-to-date compilation of the atmospheric parameters, chemical composition, multiplicity and degree of chromospheric activity for the astrobiologically interesting solar-type stars within 10 parsecs of the Sun. We determine their state of evolution, masses, ages and space velocities, and produce an optimized list of candidates that merit serious scientific consideration by the future space-based interferometry probes aimed at directly detecting Earth-sized extrasolar planets and seeking spectroscopic infrared biomarkers as evidence of photosynthetic life. The initially selected stars number 33 solar-type within the population of 182 stars (excluding late M-dwarfs) closer than 10 pc. A comprehensive and detailed data compilation fo...

  7. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    Science.gov (United States)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  8. Alien life matters: reflections on cosmopolitanism, otherness, and astrobiology

    Directory of Open Access Journals (Sweden)

    Andre Novoa

    2016-03-01

    Full Text Available This is a synaptic paper that invites the reader to take a stroll on the edges of cross-disciplinary knowledge. We will walk the roads of anthropology, history, philosophy, astronomy and biology. It is mainly a theoretical article, where I attempt to provide links between authors and theories that were, at first sight, unrelated. In doing so, this paper is aimed at making one controversial claim: ideologically and politically speaking, cosmopolitanism may never fully transcend itself beyond a debate until and unless humankind encounters alien life forms. The argument is based on a simple equation. Despite all the quarrels and debates around the concept, it seems innocuous to assume that cosmopolitanism is the search for a certain universal identity or, at least, a search for a common culturalia, i.e. the cultural grounds wherein local and global senses of universalism come into being (section 2. In spite of the fact that identities are built in opposition and supported by difference (section 3, cosmopolitanism might only be possible as a political project (cosmopolitics when humankind is faced with life forms that are capable of providing true Otherness. I believe that this may explain why we have been fascinated by the utopias of extra-terrestrials for many centuries now (section 4. These utopias are present in a diverse array of knowledges, ranging from science to art, literature or even religion. They have been around for at least 500 years. Until now, all of them have been trapped in the realm of imagination, but there is one concrete cluster of knowledge that has attempted to transpose these imaginings into reality: the promising discipline of astrobiology. Astrobiology is mainly troubled by the de-naturalisation of Earth in order to create analogues for the study of life elsewhere in the cosmos. Provocatively, I end up this paper stating that this may well be the most cosmopolitical practice available to us (section 5.

  9. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    Science.gov (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii. PMID:25690312

  10. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto

    Czech Academy of Sciences Publication Activity Database

    Gómez, F.; Walter, N.; Amils, R.; Rull, F.; Klingelhöfer, G.; Kvíderová, Jana; Sarrazin, P.; Foing, B.; Behar, A.; Fleischer, I.; Parro, V.; Garcia-Villadangos, M.; Blake, D.; Martin-Ramos, J. D.; Direito, S.; Mahapatra, P.; Stam, C.; Venkateswaran, K.; Voytek, M.

    2011-01-01

    Roč. 10, č. 3 (2011), 291-305. ISSN 1473-5504 Institutional research plan: CEZ:AV0Z60050516 Keywords : astrobiology * extreme environments * Earth analogue Subject RIV: EF - Botanics Impact factor: 1.723, year: 2011

  11. A first principles study of structural stability, electronic structure and mechanical properties of ABeH3 (A = Li, Na)

    International Nuclear Information System (INIS)

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of ABeH3 (A = Li, Na) for three different crystal structures, namely orthorhombic (Pnma), monoclinic (P21/c) and triclinic (P-1) phase. Among the considered structures monoclinic (P21/c) phase is found to be the most stable one for all the three hydrides at ambient condition. The electronic structure reveals that these materials are wide band gap semiconductors. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition

  12. Internalizing Null Extraterrestrial "Signals": An Astrobiological App for a Technological Society

    OpenAIRE

    Chaisson, Eric J.

    2014-01-01

    One of the beneficial outcomes of searching for life in the Universe is that it grants greater awareness of our own problems here on Earth. Lack of contact with alien beings to date might actually comprise a null "signal" pointing humankind toward a viable future. Astrobiology has surprising practical applications to human society; within the larger cosmological context of cosmic evolution, astrobiology clarifies the energetic essence of complex systems throughout the Universe, including tech...

  13. Survey on Astrobiology Research and Teaching Activities Within the United Kingdom

    Science.gov (United States)

    Dartnell, Lewis R.; Burchell, Mark J.

    2009-10-01

    While astrobiology is apparently growing steadily around the world, in terms of the number of researchers drawn into this interdisciplinary area and teaching courses provided for new students, there have been very few studies conducted to chart this expansion quantitatively. To address this deficiency, the Astrobiology Society of Britain (ASB) conducted a questionnaire survey of universities and research institutions nationwide to ascertain the current extent of astrobiology research and teaching in the UK. The aim was to provide compiled statistics and an information resource for those who seek research groups or courses of study, and to facilitate new interdisciplinary collaborations. The report here summarizes details gathered on 33 UK research groups, which involved 286 researchers (from undergraduate project students to faculty members). The survey indicates that around 880 students are taking university-level courses, with significant elements of astrobiology included, every year in the UK. Data are also presented on the composition of astrobiology students by their original academic field, which show a significant dominance of physics and astronomy students. This survey represents the first published systematic national assessment of astrobiological academic activity and indicates that this emerging field has already achieved a strong degree of penetration into the UK academic community.

  14. The astrobiological potential of Titan and Enceladus through the atmosphere-surface connection

    Science.gov (United States)

    Coustenis, Athena; Raulin, Francois; Solomonidou, Anezina; Bampasidis, Georgios

    2012-07-01

    interiors, determining the pre- and proto-biotic chemistry that may be occurring on both objects, and deriving constraints on the satellites' origin and evolution, both individually and in the context of the complex Saturnian system as a whole [13]. In this study we present a comparative case for the astrobiological potential of the Saturnian moons in view of current and future exploration capabilities. References: [1] Coustenis, A. et al. (2012) submitted; [2] Bampasidis, G., et al. (2012), in preparation; [3] McKay, C.P. and Smith, H.D. (2005) Icarus, 178, 274-276; [4] Clark, R.N. et al. (2010) JGR, 115, E10005; [5] Strobel, D.F. (2010) Icarus, 208, 878-886; [6] Solomonidou, A. et al. (2012). In preparation; [7] Hirtzig, M. et al. (2012). In preparation; [8] Dougherty, M.K. et al. (2006) Science, 311, 1406-1409; [9] Waite, J.H. et al. (2006) Science, 311, 1419-1422; [10] Coustenis, A. et al. (2011) COLE book chapter, submitted; [11] Coustenis, A. et al. (2009) The Joint NASA-ESA Titan Saturn System Mission (TSSM) Study. 40th Lunar and Planetary Science Conference, 1060~; [12] Stofan, E. et al. (2010) 41st Lunar and Planetary Science Conference, No. 1533, p.1236; [13] Coustenis, A. et al. (2009) Experimental Astronomy, 23, 893-946.

  15. Continuous Acetone–Butanol–Ethanol (ABE) Fermentation with in Situ Solvent Recovery by Silicalite-1 Filled PDMS/PAN Composite Membrane

    DEFF Research Database (Denmark)

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhuang, Xiaojie; Su, Yi; Wan, Yinhua

    2014-01-01

    The pervaporation (PV) performance of a thin-film silicalite-1 filled PDMS/PAN composite membrane was investigated in the continuous acetone–butanol–ethanol (ABE) production by a fermentation–PV coupled process. Results showed that continuous removal of ABE from the broth at three different......–710 g/m2h. Membrane fouling was negligible for the three different dilution rates. The solution-diffusion model, especially the mass transfer equation, was proved to be applicable to this coupled process....

  16. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    Science.gov (United States)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  17. Physics of Granular Materials: Investigations in Support of Astrobiology

    Science.gov (United States)

    Marshall, John R.

    2002-01-01

    This publication list is submitted as a summary of the work conducted under Cooperative Agreement 1120. The goal of the 1120 research was to study granular materials within a planetary, astrophysical, and astrobiological context. This involved research on the physical, mechanical and electrostatic properties of granular systems, as well as the examination of these materials with atomic force microscopy and x-ray analysis. Instruments for analyzing said materials in planetary environments were developed, including the MECA (Mars Environment Compatibility Assessment) experiment for the MSP '01 lander, the ECHOS/MATADOR experiment for the MSP '03 lander, an ISRU experiment for the '03 lander, and MiniLEAP technology. Flight experiments for microgravity (Space Station and Shuttle) have also been developed for the study of granular materials. As expressed in the publications, work on 1120 encompassed laboratory research, theoretical modeling, field experiments, and flight experiments: a series of successful new models were developed for understanding the behavior of triboelectrostatically charged granular masses, and 4 separate instruments were selected for space flight. No inventions or patents were generated by the research under this Agreement.

  18. Life and the Universe: From Astrochemistry to Astrobiology

    Science.gov (United States)

    Allamandola, Louis J.

    2013-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.

  19. First Light from Extrasolar Planets and Implications for Astrobiology

    Science.gov (United States)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  20. Astrobiology studies of microorganisms in simulated interplanetary and planetary environments

    Science.gov (United States)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplanetary space conditions, testbeds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity that can be applied separately, or in selected combinations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow, or survive in extreme conditions of our biosphere. Examples are airborne microbes, epilithic, endolithic or endoevaporitic microbial communities, or bacterial endospores. Such studies contribute to answer several questions pertinent to astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the probability and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. In addition, studies on the responses of extremophile microbial communities to simulated planetary surface and subsurface conditions are an essential prerequisite in preparation of space missions to Mars, icy moons or asteroids, searching for signature of life.

  1. An Investigation of the Factors That Motivate Adults to Participate in Adult Basic Education (ABE) Classes at a Southeastern Wisconsin Community College

    Science.gov (United States)

    Crump-Phillips, Maureen R.

    2013-01-01

    This study assessed the plausibility of using Ajzen's (1991) theory of planned behavior (TPB) to identify the factors that motivate adults to participate in Adult Basic Education (ABE) classes at a Southeast Wisconsin Community College. The original TPB (Ajzen, 1991) attests that planned behaviors are determined by behavioral intentions which are…

  2. Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation.

    Science.gov (United States)

    Wang, Yin-Rong; Chiang, Yu-Sheng; Chuang, Po-Jen; Chao, Yun-Peng; Li, Si-Yu

    2016-09-01

    In this study, the integrated in situ extraction-gas stripping process was coupled with continuous ABE fermentation using immobilized Clostridium acetobutylicum. At the same time, oleyl alcohol was cocurrently flowed into the packed bed reactor with the fresh medium and then recycled back to the packed bed reactor after removing butanol in the stripper. A high glucose consumption of 52 g/L and a high butanol productivity of 11 g/L/h were achieved, resulting in a high butanol yield of 0.21 g-butanol/g-glucose. This can be attributed to both the high bacterial activity for solvent production as well as a threefold increase in the bacterial density inside the packed bed reactor. Also reported is that 64 % of the butanol produced can be recovered by the integrated in situ extraction-gas stripping process. A high butanol productivity and a high glucose consumption were simultaneously achieved. PMID:27005413

  3. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation.

    Science.gov (United States)

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (-19.50 ± 0.85%) and of ABE yield (-35.14 ± 3.50% acetone, -33.37 ± 0.74% butanol, -22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP(+)-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  4. The Astrobiology Primer: An Outline of General Knowledge - Version 1, 2006

    CERN Document Server

    Mix, L J; Mandell, A M; Mosier, A C; Raymond, J; Raymond, S N; Stewart, F J; Von Braun, K; Zhaxybayeva, O; Billings, L; Cameron, V; Claire, M; Dick, G J; Domagal-Goldman, S D; Javaux, E J; Johnson, O J; Laws, C; Race, M S; Rask, J; Rummel, J D; Schelble, R T; Vance, S

    2006-01-01

    Astrobiology, the study of life as a planetary phenomenon, aims to understand the fundamental nature of life on earth and the possibility of life elsewhere. To achieve this goal, astrobiologists have initiated unprecedented communication between the disciplines of astronomy, biology, chemistry, and geology. The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Because of the great diversity of material, each section was written by a different author with a different expertise. The Primer was constructed collaboratively. Ninety researchers from around the world contributed information with regard to what they expected from other astrobiologists and what they would like to know themselv...

  5. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    Science.gov (United States)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  6. A Perspective on the Importance of Reproductive Mode in Astrobiology

    Science.gov (United States)

    Van Doninck, Karine; Schön, Isa; Martens, Koen

    2003-12-01

    Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.

  7. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    Science.gov (United States)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape

  8. 天体生物学概要%Outline of Astrobiology

    Institute of Scientific and Technical Information of China (English)

    李一良

    2011-01-01

    Are we alone? Is our Earth, the tiny blue planet in this infinite Universe, the only harbor for life? Astrobiology concerns the study of the origin, evolution and destiny of life in the Universe and touches almost all the fundamental questions asked by mankind. The emergence of this science is the natural outcome of the great advances in astronomy, biology, and geology. The development of molecular biology has revealed the unitary origin and DNA-coding of all life on Earth in despite of the great diversity after a long Darwinian evolution. Geologists dated the origin of life back to almost 3.8 billion years ago. Planetary explorations in our solar system have indicated abundant life materials being stored in the planetesimal zone and beyond. Furthermore, the detection of exoplanets has practically extended life exploration into the deep Universe. The astrobiological studies can be classified into cosmic, planetary, ecosystematic scales on a space dimension and stellar and interstellar evolution, chemical evolution of prelife on Earth, and modem ecosystem on a time dimension. Stellar nucleosynthesis and the evolution of galactic chemistry tell us about the formation of life-essential elements, such as H-C-O-N-S-P and Fe-peaked transition metals. The breakthrough in exoplanet detection is a great step in searching a second life and scientists began to develop techniques to examine the atmosphere composition of Earth-like exoplanets. Based on our understanding of life origin on Earth, a body of liquid water, enough carbon and a silicate crust on a planet with a right distance to its sun are sufficient premiss to make a planet habitable. When those conditions are met, life might start in hundred million years or even shorter time period. It is understood now that life deeply changes the surface spheres of Earth and our current atmosphere is pretty much the result of biological respiration. It is also wondered that the great events happened on Earth, such as the

  9. A European Roadmap for Research in Astrobiology - The AstRoMap Roadmap

    Science.gov (United States)

    Gómez, F.; Walter, N.; Horneck, G.; Muller, C.; Rettberg, P.; Capria, M.; Palomba, E.

    2015-10-01

    AstRoMap (Astrobiology Road Mapping activity-www.astromap-eu.org) is a collaborative project which will provide the European Planetary Science Community with a road map in astrobiology. The goals of the project have been: (i) to pose big questions related to astrobiology; and (ii) the identification of experiments, new technology and/or those space missions to be developed in future programs and which could answer those big questions. This collaborative infrastructure includes the organization of expert panels and international workshops in order to discuss about those big questions and the science objectives by the community to be addressed. The main deliverable will be a Roadmap document. The project is steered by a consortium of six European and national research institutes and associations: -­- Centro de Astrobiologica (INTACSIC), Spain -­- European Science Foundation, France -­- Association pour un Réseau Européen d'Exo/Astrobiology (EANA), France -­- B-USOC, Belgium -­- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Germany -­- National Institute for Astrophysics (INAF), ItalyOrigin and evolution of planetary systems -­- Origin of organic compounds in space -­- Rock-water-carbon interactions, organic synthesis, and steps to life -­- Life and habitability on Earth and in Space -­- -­- Biosignatures as facilitating life detection The key topics will focus on a limited number of strategic scientific objectives to be addressed in the next 20 years by European astrobiologists, and suggest research activities for future development.

  10. Industrial culture media optimization for acetrobutilic Fermentation Optimización de un medio de cultivo industrial para la fermentación acetobutilica (abe)

    OpenAIRE

    Ramos J.; Buitrago G.; Silva E. D.; Sierra J; Montoya D.

    1999-01-01

    The industrial culture media for butanol-ethanol-acetone fermentation (ABE) was optimized by experimental design. A butanol resistant mutant isolated from Clostridium acetobutylicum DSM 1732 was used. This mutant produced 15.5 g/1 of total solvents, 30% more than the wild strain solvent production. Mutant strain resists a concentration of 2,5% v/v meanwhile the type strain resists 1 % v/v butanol concentration. Molasses of sugar cane as carbon source were used. The molasses concentration was ...

  11. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    Science.gov (United States)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  12. The Expose-R2 mission: astrobiology and astrochemistry in low Earth orbit

    Science.gov (United States)

    Demets, René

    EXPOSE is an exposure platform developed by ESA which permits scientists to install test samples for 1 to 2 years at the outer surface of the ISS. In that way, the impact of the open space environment on biological and biochemical sample materials can be explored. This environment, featuring full-spectrum solar light, near-vacuum, cosmic radiation, wide temperature variations and near-weightlessness, is impossible to reproduce in its entirety in the lab. As such, EXPOSE offers astrochemists and astrobiologists a chance to acquire novel scientific data. Astrochemists are interested in Low Earth Orbit conditions due to the fact that photochemistry in space is quite different from photochemistry on Earth, where the high-energy UV compounds of the solar spectrum are filtered away by our atmosphere. As for the astro biologists, EXPOSE offers an attractive opportunity to expand earlier results obtained during short-duration LEO flights, which have shown that particular microbes and, amazingly, even some multi-cellular macroscopic organisms were able to cope with a two-week exposure to space. The open space environment, often described as harsh and hostile, can apparently be tolerated by some robust inhabitants of our Earth - unprotected, in the absence of a space suit! The first mission of EXPOSE, as an external payload on the European Columbus module, happened during 2008-2009 with the test samples provided by five separate research teams. Three additional teams were involved in the monitoring of space environment. The results were published collectively in 2012 in a special issue of the monthly journal Astrobiology. Several organisms survived, having spent 1.5 years in space. The second mission was called EXPOSE-R, the R referring to ‘Russian segment’, the location where the EXPOSE instrument was installed this time. The EXPOSE-R mission took place in 2009-2011, ten science teams were involved. The publication of the results, again as a collection, is currently in

  13. Development of a Fully Integrated Lab-on-a-Chip Electrophoresis System for ExoMars and Future Astrobiology Missions

    Science.gov (United States)

    Willis, P. A.; Fisher, A.; Greer, F.; Grunthaner, F. J.; Hoppe, D.; Chiesl, T.; Mathies, R. A.; Rolland, J. P.

    2009-04-01

    expanded sample handling bus, which performs on-chip derivitization of samples with fluorescent tags, serial sample dilutions, and mixing with standard samples for the purpose of data calibration. For laboratory general-purpose use, the wafer stack is mounted on a fluorescent microscope stage in a custom fixture, which interfaces the pneumatic and high voltage lines and has the capability for controlled atmosphere testing. Additionally, simulation work is also underway on a more complex six-channel system with additional functionality. A 3D SolidWorks model of this more highly integrated six-channel autonomous system capable of all expected instrument functionality is modeled using COMSOL FEMLAB multiphysics software to ensure that the integrated system will perform as desired aboard a roving Martian platform. FEMLAB simulations of μCE separations of relevant mixtures of amino acids have been performed using custom code written at JPL, which enables direct comparison of experimental and simulated data, as well as providing crucial engineering data, in particular, the electric field strengths present throughout the instrument during operation. Finally, a discussion of advanced instrument concepts under development at JPL for "next-generation" Urey-like astrobiology instrumentation will also be presented. References: 1. "Monolithic photolithographically patterned Fluorocur PFPE membrane valves and pumps for in situ planetary exploration", P. A. Willis, F. Greer, M. C. Lee, J. A. Smith, V. E. White, F. J. Grunthaner, J. J. Sprague, and J. P. Rolland, Lab Chip 8, 1024 (2008). 2. "Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars" A. M. Skelley, J. R. Scherer, A. D. Aubrey, W. H. Grover, R. H. C. Ivester, P. Ehrenfreund, F. J. Grunthaner, J. L. Bada, R. A. Mathies, PNAS 102, 1041(2005).

  14. Mars Scout: An Astrobiology Micromission to Investigate Martian Environments

    Science.gov (United States)

    Cabrol, N. A.; Ori, G. G.; Grin, E. A.; Marinangeli, L.; McKay, C. P.; Marshall, J.; Thomas, H. J.; Rabette, M.; Sims, M.; Landheim, R.

    2000-01-01

    The Mars Scout Mission Concept explores the possibility of sending a series of small, simple, and cheap stations at the surface of Mars which will provide the critical information about environments that are missing today.

  15. Internalizing Null Extraterrestrial "Signals": An Astrobiological App for a Technological Society

    CERN Document Server

    Chaisson, Eric J

    2014-01-01

    One of the beneficial outcomes of searching for life in the Universe is that it grants greater awareness of our own problems here on Earth. Lack of contact with alien beings to date might actually comprise a null "signal" pointing humankind toward a viable future. Astrobiology has surprising practical applications to human society; within the larger cosmological context of cosmic evolution, astrobiology clarifies the energetic essence of complex systems throughout the Universe, including technological intelligence that is intimately dependent on energy and likely will be for as long as it endures. The "message" contained within the "signal" with which today's society needs to cope is reasonably this: Only solar energy can power our civilization going forward without soiling the environment with increased heat yet robustly driving the economy with increased per capita energy usage. The null "signals" from extraterrestrials also offer a rational solution to the Fermi paradox as a principle of cosmic selection l...

  16. Astrobiology And Extrasolar Planets- A New Lecture Course At Potsdam University

    Science.gov (United States)

    Franck, S. A.; von Bloh, W.; Bounama, Ch.

    2006-08-01

    Astrobiology studies the origin, evolution, distribution, and future of life on Earth and in the Universe. This addresses a very wide range of questions that have been asked by mankind from the beginning. On the other hand, the discovery of the first extrasolar planet orbiting a Sun-like star by Mayor and Queloz in 1995 opened a new area for astrobiological research. Although most of the newly discovered extrasolar planets are giants with no underlying solid surfaces or oceans that could support a biosphere, the distribution of masses lets scientists suppose that there must be a multitude of planets with lower masses, including Earth-mass planets. The lecture course contains the following topics: Survey about Extrasolar Planets, Detection Methods, Simple Earth System Models, Dynamical Earth System Models, Habitable Zones, Dynamical Habitability, Rare Earth Hypothesis, Drake Formula, Panspermia, Origin of Life, Cambrian Explosion, Impacts and Climate, Long-Term Future Scenarios, Future Space Missions.

  17. Data Management in Astrobiology: Challenges and Opportunities for an Interdisciplinary Community

    OpenAIRE

    Aydinoglu, Arsev Umur; Suomela, Todd; Malone, Jim

    2014-01-01

    Data management and sharing are growing concerns for scientists and funding organizations throughout the world. Funding organizations are implementing requirements for data management plans, while scientists are establishing new infrastructures for data sharing. One of the difficulties is sharing data among a diverse set of research disciplines. Astrobiology is a unique community of researchers, containing over 110 different disciplines. The current study reports the results of a survey of da...

  18. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    Science.gov (United States)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  19. Computer modeling and experimental work on the astrobiological implications of the martian subsurface ionising radiation environment

    OpenAIRE

    Dartnell, L. R.

    2008-01-01

    Any microbial life extant in the top meters of the martian subsurface is likely to be held dormant for long periods of time by the current permafrost conditions. In this potential habitable zone, a major environmental hazard is the ionising radiation field generated by the flux of exogenous energetic particles: solar energetic protons and galactic cosmic rays. The research reported here constitutes the first multidisciplinary approach to assessing the astrobiological impact of ...

  20. Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology

    OpenAIRE

    Dartnell, L. R.; L. Desorgher; Ward, J M; A. J. Coates

    2007-01-01

    The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats. Here we model the propagation of solar energetic protons and galactic cosmic ray particles through the Martian atmosphere and three different surface scenarios: dry regolith, water ice, and regolith with layered permafrost. Particle energy spectra and absorbed radiation dose are determined for the surface and at regular depths unde...

  1. The Biomolecule Sequencer Project: Nanopore Sequencing as a Dual-Use Tool for Crew Health and Astrobiology Investigations

    Science.gov (United States)

    John, K. K.; Botkin, D. S.; Burton, A. S.; Castro-Wallace, S. L.; Chaput, J. D.; Dworkin, J. P.; Lehman, N.; Lupisella, M. L.; Mason, C. E.; Smith, D. J.; Stahl, S; Switzer, C.

    2016-01-01

    Human missions to Mars will fundamentally transform how the planet is explored, enabling new scientific discoveries through more sophisticated sample acquisition and processing than can currently be implemented in robotic exploration. The presence of humans also poses new challenges, including ensuring astronaut safety and health and monitoring contamination. Because the capability to transfer materials to Earth will be extremely limited, there is a strong need for in situ diagnostic capabilities. Nucleotide sequencing is a particularly powerful tool because it can be used to: (1) mitigate microbial risks to crew by allowing identification of microbes in water, in air, and on surfaces; (2) identify optimal treatment strategies for infections that arise in crew members; and (3) track how crew members, microbes, and mission-relevant organisms (e.g., farmed plants) respond to conditions on Mars through transcriptomic and genomic changes. Sequencing would also offer benefits for science investigations occurring on the surface of Mars by permitting identification of Earth-derived contamination in samples. If Mars contains indigenous life, and that life is based on nucleic acids or other closely related molecules, sequencing would serve as a critical tool for the characterization of those molecules. Therefore, spaceflight-compatible nucleic acid sequencing would be an important capability for both crew health and astrobiology exploration. Advances in sequencing technology on Earth have been driven largely by needs for higher throughput and read accuracy. Although some reduction in size has been achieved, nearly all commercially available sequencers are not compatible with spaceflight due to size, power, and operational requirements. Exceptions are nanopore-based sequencers that measure changes in current caused by DNA passing through pores; these devices are inherently much smaller and require significantly less power than sequencers using other detection methods

  2. Role of the observer in the scientific process in astrobiology and in defining life

    Science.gov (United States)

    Kolb, Vera M.

    2010-09-01

    The role of the observer in the scientific process has been studied in various contexts, including philosophical. It is notorious that the experiments are theory-loaded, that the observers pick and choose what they consider important based on their scientific and cultural backgrounds, and that the same phenomenon may be studied by different observers from different angles. In this paper we critically review various authors' views of the role of the observer in the scientific process, as they apply to astrobiology. Astrobiology is especially vulnerable to the role of the observer, since it is an interdisciplinary science. Thus, the backgrounds of the observers in the astrobiology field are even more heterogeneous than in the other sciences. The definition of life is also heavily influenced by the observer of life who injects his/her own prejudices in the process of observing and defining life. Such prejudices are often dictated by the state of science, instrumentation, and the science politics at the time, as well as the educational, scientific, cultural and other background of the observer.

  3. Biological stoichiometry: a theoretical framework connecting ecosystem ecology, evolution, and biochemistry for application in astrobiology

    Science.gov (United States)

    Elser, James J.

    2003-07-01

    Astrobiology is an extremely wide-ranging field and thus is in special need of conceptual and theoretical frameworks that can integrate its various arenas of study. In this paper I review recent work associated with a conceptual framework known as "ecological stoichiometry" and even more recent extensions in the development of "biological stoichiometry". Ecological stoichiometry is the study of the balance of energy and multiple chemical elements in ecological interactions and has developed rapidly in the study of nutrient cycling and energy flow in aquatic food webs. It identifies the elemental composition of interacting biota as central in understanding the nature of their interactions and dynamics, including key feedbacks via nutrient recycling. Biological stoichiometry extends this mode of thinking to all types of biological systems. It especially seeks to better understand, at the biochemical and genetic levels, the factors influencing the elemental composition of living things and the evolutionary forces that drive and constrain that elemental composition. By connecting key concepts of ecosystem ecology, evolutionary biology and biochemistry, stoichiometric theory integrates biological information into a more coherent whole that holds considerable promise for application in astrobiology. Several examples of potential astrobiological applications of stoichiometric analysis are offered, including ones related to pre-biotic evolution, the Cambrian explosion, biosignatures and biological feedbacks on planetary carbon cycling.

  4. Research on DCP-ABE Scheme Supporting Attribute Reuse%一种支持属性重用的DCP-ABE方案研究

    Institute of Scientific and Technical Information of China (English)

    连科; 赵泽茂; 王丽君; 贺玉菊

    2015-01-01

    属性基加密(ABE)机制以属性为公钥,将密文和用户私钥与属性关联,能够灵活地表示访问控制策略,从而极大地降低数据共享细粒度访问控制带来的网络带宽和发送节点的处理开销.作为单授权机构ABE机制的推广,多授权机构ABE机制减轻了单一机构的工作负担,降低了风险,同时也更容易满足分布式系统的需求.文章针对目前多授权机构ABE方案中属性不能重用的问题,提出一个分权密文策略属性基加密(DCP-ABE)方案.该方案引入授权机构全局标识符,在加密阶段通过将属性(该属性满足密文的访问结构)相关的密文构件与该属性所属的授权机构的全局标识符进行绑定,使得不同授权机构所管理的属性能够重复使用,扩展了方案的实用性.此外,该方案中任何授权机构都可以动态加入或者离开该加密系统,不再需要中央授权机构对授权机构进行管理.

  5. Tier-Scalable Reconnaissance Missions For The Autonomous Exploration Of Planetary Bodies

    OpenAIRE

    Fink, Wolfgang; Dohm, James M.; Tarbell, Mark A.; Hare, Trent M.; Baker, Victor R.; Schulze-Makuch, Dirk; Furfaro, Roberto; Alberto G. Fairén; Ferré, Ty P.A.; Miyamoto, Hideaki; Komatsu, Goro; Mahaney, William C.

    2007-01-01

    A fundamentally new (scientific) reconnaissance mission concept, termed tier-scalable reconnaissance, for remote planetary (including Earth) atmospheric, surface and subsurface exploration recently has been devised that soon will replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Venus, Mars, Europa, Ganymede, Titan, Enceladus, Triton, and other extr...

  6. The Astrobiology Primer - an Early Career Scientist Education, Outreach and Professional Development Project

    Science.gov (United States)

    Wright, K. E.; Domagal-Goldman, S. D.

    2011-12-01

    We are early-career scientists jointly leading a project to write 'The Astrobiology Primer', a brief but comprehensive introduction to astrobiology, and we are using the process of producing the document as an innovative way of strengthening the international community of early-career astrobiologists. Astrobiology is the study of the origin, evolution, distribution and future of life in our universe. It includes not just study of life on Earth, but also the potential for life to exist beyond Earth, and the development of techniques to search for such life. It therefore incorporates geological and earth sciences, life sciences, chemistry, astronomy and planetary sciences. This requires astrobiologists to integrate these different disciplines in order to address questions such as 'How did Earth and its biosphere originate?', 'How do life and the physical, chemical and geological cycles on Earth interact, and affect each other?' and so 'What does life on Earth tell us about the habitability of environments outside Earth?'. The primer will provide a brief but comprehensive introduction to the field; it will be significantly more comprehensive than a normal review paper but much shorter than a textbook. This project is an initiative run entirely by early-career scientists, for the benefit of other early-career scientists and others. All the writers and editors of the primer are graduate/post-graduate students or post-doctoral fellows, and our primary target group for the primer is other early-career scientists, although we hope and expect that the primer will also be useful far more broadly in education and outreach work. An Astrobiology Primer was first published in 2006(Ref1), written and edited by a small group of early-career astrobiologists to provide an introduction to astrobiology for other early-career scientists new to the field. It has been used not only by the target group for private study, but in formal education and outreach settings at universities and

  7. Waning magmatic activity along the Southern Explorer Ridge revealed through fault restoration of rift topography

    OpenAIRE

    Deschamps, Anne; Tivey, M.A.; Chadwick Jr, W.W.; Embley, R.W.

    2013-01-01

    We combine high-resolution bathymetry acquired using the Autonomous Underwater Vehicle ABE with digital seafloor imagery collected using the remotely operated vehicle ROPOS across the axial valley of the Southern Explorer Ridge (SER) to infer the recent volcanic and tectonic processes. The SER is an intermediate spreading ridge located in the northeast Pacific. It hosts the Magic Mountain hydrothermal vent. We reconstruct the unfaulted seafloor terrain at SER based on calculations of the vert...

  8. Real Science for Real Science Teachers: Providing Astrobiology Science Content and Contemporary Pedagogy for Today's Educators Online

    Science.gov (United States)

    Offerdahl, E. G.; Prather, E. E.; Slater, T. F.

    2003-12-01

    As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.

  9. MUSE and ABE Concept

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; JI Yang

    2004-01-01

    A perspective view for next generation mobile wireless network is given in this paper, named as Mobile Ubiquitous Service Environment (MUSE). The main mechanisms and principles for MUSE and related issues are also given.

  10. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    Science.gov (United States)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  11. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    Science.gov (United States)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial

  12. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    Science.gov (United States)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  13. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    OpenAIRE

    Souza, Valeria; Siefert, Janet L.; Escalante, Ana E.; Elser, James J; Eguiarte, Luis E.

    2012-01-01

    The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambr...

  14. Habitability of Mars, Enceladus, Europa and Titan – Challenges in Astrobiology and Planetary Research.

    OpenAIRE

    de Vera, J.P.

    2014-01-01

    One of the main challenges in astrobiology and planetary research in the near future is to realize space missions to study the habitability of Mars and the icy moons of the Jovian and Saturnian system. Mars is an interesting object to search for fossilized life because of its much more water driven wet history of its past. River beds, sedimentary deposits indicating the presence of lakes [1] as well as a sup-posed but highly debated presence of a former ocean on the north hemisphere [2] are c...

  15. Importance of a martian hematite site for astrobiology

    Science.gov (United States)

    Allen, C. C.; Westall, F.; Schelble, R. T.

    2001-01-01

    Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.

  16. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    Science.gov (United States)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  17. Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium

    Science.gov (United States)

    Yu, K. C.; Grinspoon, D.

    2013-04-01

    Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.

  18. Astrobiological neurosystems rise and fall of intelligent life forms in the universe

    CERN Document Server

    Cranford, Jerry L

    2015-01-01

    This book explains why scientists believe that life may be more common in the Universe than previously considered possible. It presents the tools and strategies astronomers and astrobiologists are using in their formal search for habitable exoplanets as well as more advanced forms of life in other parts of our galaxy. The author then summarizes what is currently known about how and where organic molecules critical to our form of carbon-based life are manufactured. The core of the book explains (and presents educated guesses) how nervous systems evolved on Earth, how they work, and how they might work on other worlds. Combining his knowledge of neuroscience, computers, and astrobiology the author jumps into the discussion whether biological nervous systems are just the first step in the rise of intelligence in the Universe. The book ends with a description from both the psychologist’s and the neuroscientist’s viewpoints, exactly what it is about the fields of astrobiology and astronomy that “boggles...

  19. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, whic

  20. Antarctic Astrobiology

    Science.gov (United States)

    McKay, Christopher P.

    2003-01-01

    Stars may be cold and dry today but there is compelling evidence that earlier in its history Mars did have liquid water. This evidence comes from the images taken from orbital spacecraft. The dry valleys of Antarctica comprise the largest ice-free region on that continent. The valleys are a cold desert environment with mean annual temperatures of -20 C. The lakes in the dry valleys of Antarctica provide an example of the physical processes that can maintain large bodies of liquid water under mean annual temperatures well below freezing. Biologically these lakes are also important analogs because of the plankton and benthic communities of microorganisms that thrive there. Life could have existed in lakes on Mars an ecological similar conditions.

  1. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    Science.gov (United States)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  2. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  3. Astrobiology, history, and society life beyond earth and the impact of discovery

    CERN Document Server

    2013-01-01

    This book addresses important current and historical topics in astrobiology and the search for life beyond Earth, including the search for extraterrestrial intelligence (SETI). The first section covers the plurality of worlds debate from antiquity through the nineteenth century, while section two covers the extraterrestrial life debate from the twentieth century to the present. The final section examines the societal impact of discovering life beyond Earth, including both cultural and religious dimensions. Throughout the book, authors draw links between their own chapters and those of other contributors, emphasizing the interconnections between the various strands of the history and societal impact of the search for extraterrestrial life. The chapters are all written by internationally recognized experts and are carefully edited by Douglas Vakoch, professor of clinical psychology at the California Institute of Integral Studies and Director of Interstellar Message Composition at the SETI Institute. This interd...

  4. The Need Of Laboratory Experiments In Parallel To Astrobiological Space Fligth Experiments

    Science.gov (United States)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplane- tary space conditions, test beds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity, which can be applied separately or in selected com- binations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or isolated biomolecules. The studies contribute to answer several questions of astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the chances and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. As an example, the ground controls that were performed in parallel with 3 BIOPAN flight experiments will be presented.

  5. Supercooled Water Brines Within Permafrost-An Unknown Ecological Niche for Microorganisms: A Model for Astrobiology

    Science.gov (United States)

    Gilichinsky, D.; Rivkina, E.; Shcherbakova, V.; Laurinavichuis, K.; Tiedje, J.

    2003-06-01

    This study describes brine lenses (cryopegs) found in Siberian permafrost derived from ancient marine sediment layers of the Arctic Ocean. The cryopegs were formed and isolated from sediment ~100,000-120,000 years ago. They remain liquid at the in situ temperature of -10°C as a result of their high salt content (170-300 g/L). [14C] Glucose is taken up by the cryopeg biomass at -15°C, indicating microbial metabolism at low temperatures in this habitat. Furthermore, aerobic, anaerobic heterotrophs, sulfate reducers, acetogens, and methanogens were detected by most probable number analysis. Two psychrophilic microbes were isolated from the cryopegs, a Clostridium and a Psychrobacter. The closest relatives of each were previously isolated from Antarctica. The cryopeg econiche might serve as a model for extraterrestrial life, and hence is of particular interest to astrobiology.

  6. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    Directory of Open Access Journals (Sweden)

    Ruth-Sophie Taubner

    2015-12-01

    Full Text Available Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.

  7. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    Science.gov (United States)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  8. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    Science.gov (United States)

    Foing, Bernard H.

    We give an update on the astrobiology results from a series of field research campaigns (ILEWG EuroMoonMars) in the extreme environment of the Utah desert. These are relevant to prepare future lunar landers and polar sample return missions, interpret Moon-Mars data (eg SMART1, LRO, Mars Express, MRO, MER, MSL), study habitability and astrobiology in Moon-Mars environments, or to test human-robotic surface EVA or base operations. In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station near Hanksville Utah, a suite of instruments and techniques [0, 1, 2, 9-11] including sample collection, context imaging from re-mote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geo-chemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Results: Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [0-9] to new measurements from 2010-2013 campaigns relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. We acknowledge team members and supporting institutes: B.H. Foing (1, 2, 6), C. Stoker (3), P. Ehrenfreund (4, 5), I. Rammos (2), L. Rodrigues (2), A. Svendsen (2), D. Oltheten (2), I. Schlacht (2), K. Nebergall (6), M. Battler (6, 7), H

  9. Industrial culture media optimization for acetrobutilic Fermentation Optimización de un medio de cultivo industrial para la fermentación acetobutilica (abe

    Directory of Open Access Journals (Sweden)

    Ramos J.

    1999-12-01

    Full Text Available The industrial culture media for butanol-ethanol-acetone fermentation (ABE was optimized by experimental design. A butanol resistant mutant isolated from Clostridium acetobutylicum DSM 1732 was used. This mutant produced 15.5 g/1 of total solvents, 30% more than the wild strain solvent production. Mutant strain resists a concentration of 2,5% v/v meanwhile the type strain resists 1 % v/v butanol concentration. Molasses of sugar cane as carbon source were used. The molasses concentration was determined based on the necessary glucose concentration for producing 15 g/1 of butanol as limit product in the ABE fermentation. The nutrients were calculated in according lo literature reports and lo highest biomasse production on vegetative medium 3.8g/l. For determining which variables have significant effect on the total solvent production, the PLAKET-BURMAN method was used. The final concentrations of the culture medium were determined by EVOP-Simplex method. A liter of optimized industrial medium is composed by: molasses 130 g, biotin 4.0 mg, PAB A 3.0 mg, KH2PO41.8 g, yeast extract 3.0 g, minerals stock 4 ml and distilled water lo complete 1 liter; pH 6.1 before sterilization. Using this medium the total solvents production was 24,6 g/1. The production increment is equivalent lo 58,7%, compared lo the mutant strain before the medium was optimized. En el presente trabajo se optimizó un medio de cultivo industrial para la fermentación acetobutilica (ABE mediante la aplicación de diseño de experimentos. Se empleó una mutante espontánea resistente al butanol aislada de la cepa de Clostridium acetobutylicum DSM 1732 la cual tolera una concentración de butanol de 2.5% v/v. La mutante produce 15.5 g/1 de solventes totales que representan 30% más que la cepa silvestre. Para diseñar el medio se empleó como fuente de carbono, melazas de caña. Los nutrientes se calcularon de acuerdo con la máxima cantidad de biomasa obtenida en medio vegetativo (3

  10. Índices de calidad ambiental de aguas del Arroyo Caañabe mediante tests microbiológicos y ecotoxicológico

    Directory of Open Access Journals (Sweden)

    Tomás López Arias

    2016-06-01

    Full Text Available El Arroyo Caañabe, es un curso de agua que corre a través de los Departamentos Central y Paraguarí (República del Paraguay. Las descargas de origen agropecuario, urbano e industrial contaminan sus aguas. En este trabajo se evalúa la calidad del arroyo mediante sus características fisicoquímicas, ecotoxicológicas, microbiológicas y se la comparan con la legislación vigente. Se colectaron muestras en los meses de Julio y Setiembre del año 2014. Se estudiaron tres sitios denominados S1, ubicado en aguas arriba de la Ciudad de Carapegua; S2 en la intersección del arroyo con la Ruta 1, y S3, en la zona límite de las ciudades de Carapegua y Nueva Italia. Se realizaron ensayos de toxicidad aguda con Daphnia magna, Lactuca sativa, y alevines de Danio rerio; además de ensayos crónicos en Tetradesmus wisconsinenesis, D. rerio y Allium cepa. Se evaluaron los grupos y especies microbianos siguientes: aerobios mesófilos, enterobacterias, coliformes totales, coliformes fecales, E. coli, Pseudomona aeruginosa, mohos y levaduras; además se determinaron índices de calidad y de contaminación. Los resultados indican que las aguas del arroyo presentaron características de clase II y de clase III según el padrón establecido por la Secretaría del Ambiente del Paraguay. El índice de calidad de agua (ICA arrojó valores comprendidos entre 52 y 62 lo que otorga la clasificación de "regular"; mientras que el índice de contaminación trófica (ICOTRO presentó valores entre 0,12 y 0.26, indicando "eutrofización". Los recuentos de coliformes fueron superiores en el segundo muestreo, aunque dentro lo establecido por la norma. La presencia de P. aeruginosa en los tres puntos constituye un riesgo para la salud. Ensayos ecotoxicológicos agudos mostraron que las aguas presentan escasos efectos letales, no obstante los ensayos crónicos en A. cepa y el test de micronúcleos en D. rerio indican potenciales efectos citotóxicos y genotóxicos de las

  11. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  12. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions. PMID:19105757

  13. Privacy protection scheme in cloud computing using CP-ABE based on data partition%云环境下一种基于数据分割的CP-ABE隐私保护方案

    Institute of Scientific and Technical Information of China (English)

    施荣华; 刘鑫; 董健; 胡炳浩; 李西柯

    2015-01-01

    According to cloud computing privacy protection,this paper proposed a CP-ABE (cipertext policy-attribute based encryption)scheme based on data partition which improved security,it reduced the performance overhead,overcome untrustful three sides.This scheme used the data ideological to divide date into big and small block of data,then divided the big data block into small pieces and encrypting the small data block with CP-ABE algorithms.Manager deals with experimental analy-sis,in a cloud environment,this scheme has advantages on the safety and performance overhead and extension.%针对云计算隐私安全保护,提出了一种基于数据分割的CP-ABE (密文策略的基于属性的加密方案)隐私保护方案,克服了云环境下不可信第三方、安全性和性能开销的三大难题。本方案利用数据分割思想将数据分为大数据块和小数据块,通过分割策略对大数据块再进行分块,并用CP-ABE 算法对小数据块进行加密。经理论分析及实验仿真表明,在云环境下,此方案在安全问题、开销问题及扩展问题上都有很大优势。

  14. Circinaria gyrosa, a new astrobiological model system for studying the effects of heavy ion irradiation

    Science.gov (United States)

    Martín, María Luisa; Moeller, Ralf; De la Torre Noetzel, Rosa; Raguse, M. Marina

    Up to date, most astrobiological experiments performed on space have been carried out on board of Earth-orbiting spacecrafts (e.g., Foton satellites), or on board of human-tended spacecrafts, (space shuttles and space stations). Organisms included in these experiments have been exposed to harsh space conditions: vacuum, doses of UV and ionizing radiation as well as extreme temperature fluctuations. Space radiation that arrived on these organisms is related with different sources: (e.g. solar particle events, galactic cosmic rays and electromagnetic radiation) [1]. More information on biological effects of cosmic radiation is needed to understand the possible risks for biological systems exposed to space conditions and to broaden our knowledge on the limits of terrestrial life. This study is focused on Circinaria gyrosa (from Aspicilia fruticulosa, ren. see Sohrabi, M., 2012), a vagrant lichen species collected at the steppic highlands of Central Spain. C. gyrosa. has been previously used in various space experiments, e.g., LITHOPANSPERMIA experiment, BIOPAN-6, FOTON M3, 2007, and in ground-based laboratory studies [2]. For example, after intensive UV-C exposure (7.2 x 107J/m2), C. gyrosa showed the highest PS-II activity of all lichens species tested [3]. Based on this high resistance to UV radiation C. gyrosa has been included in the next EXPOSE-R2 ISS experiment called “BIOMEX” (Biology and Mars-Experiment), in which different biological systems will be exposed to space and Martian conditions for nearly one and a half year. Here, we will present our first results of C.gyrosa, which have been obtained in frame of the STARLIFE project, an intercomparison project testing the effects of space-relevant ionizing radiation, i.e., heavy ions and X-rays, on different astrobiological model systems. For C. gyrosa we tested the organism metabolism through pulse amplitude modulated (PAM) fluorescence analysis prior and after the each irradiation experiment. This new data

  15. Five Analysis of Abe no nakamaro Monument in Xi'an%解读西安阿倍仲麻吕纪念碑的五条线索

    Institute of Scientific and Technical Information of China (English)

    王军; 张婧

    2014-01-01

    张锦秋大师的早期作品西安阿倍仲麻吕纪念碑是唐代中日往来的重要纪念物,论文从历史语境、基址环境、碑石叙事、创作经历和碑石文化五条线索对其进行解读,揭示阿倍仲麻吕纪念碑建筑形式与空间表象下的深层涵义和文化价值。%Taking as one of significant memorial buildings for Chinese-Japanese culture communication, the paper attempts to review the monument to Abe no nakamaro in Xi’an by analyzing the historic background, situation, architectural narrative, experience of architects, and Chinese stele culture, and to reveal the underlying meaning and cultural value underneath both the architectural form and space of the monument.

  16. The importance of the Maillard-metal complexes and their silicates in astrobiology

    Science.gov (United States)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  17. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    Directory of Open Access Journals (Sweden)

    Pabulo Henrique Rampelotto

    2010-06-01

    Full Text Available In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  18. Research Into Students' Pre-Instructional Beliefs of Astrobiology Related Science Concepts

    Science.gov (United States)

    Offerdahl, E.

    2002-12-01

    The purpose of this study was to identify and document student beliefs and reasoning difficulties concerning astrobiology related topics. This was accomplished by surveying over two thousand middle school, high school, and college (science and non-science majors) students. Students were surveyed utilizing student-supplied response questions focused on the definition of life and its limitations, evolution of Earth (biologically and geologically), and the role of water for life as we know it. Careful, inductive analysis of student responses revealed that the majority of students correctly identify that liquid water is necessary for life and that life forms can exist without sunlight. However, many students incorrectly state that life cannot survive without oxygen. Furthermore, when students are asked to reason about life in extreme environments, they most often cite complex organisms (such as plants, animals and humans) rather than the more ubiquitous microorganisms. Students also have well-established models of the relationship between the geologic and biologic evolution of Earth. Results of this study were used to guide the development of a set of inquiry-based activities, which will be highlighted.

  19. The Mojave Desert: A Martian Analog Site for Future Astrobiology Themed Missions

    Science.gov (United States)

    Salas, E.; Abbey, W.; Bhartia, R.; Beegle, L. W.

    2011-01-01

    Astrobiological interest in Mars is highlighted by evidence that Mars was once warm enough to have liquid water present on its surface long enough to create geologic formations that could only exist in the presense of extended fluvial periods. These periods existed at the same time life on Earth arose. If life began on Mars as well during this period, it is reasonable to assume it may have adapted to the subsurface as environments at the surface changed into the inhospitable state we find today. If the next series of Mars missions (Mars Science Laboratory, the ExoMars Trace Gas Orbiter proposed for launch in 2016, and potential near surface sample return) fail to discover either extinct or extant life on Mars, a subsurface mission would be necessary to attempt to "close the book" on the existence of martian life. Mars is much colder and drier than Earth, with a very low pressure CO2 environment and no obvious habitats. Terrestrial regions with limited precipitation, and hence reduced active biota, are some of the best martian low to mid latitude analogs to be found on Earth, be they the Antarctic dry valleys, the Atacama or Mojave Deserts. The Mojave Desert/Death Valley region is considered a Mars analog site by the Terrestrial Analogs Panel of the NSF-sponsored decadal survey; a field guide was even developed and a workshop was held on its applicability as a Mars analog. This region has received a great deal of attention due to its accessibility and the variety of landforms and processes observed relevant to martian studies.

  20. Lateral Comparative Investigation of Stromatolites: Astrobiological Implications and Assessment of Scales of Control.

    Science.gov (United States)

    Ibarra, Yadira; Corsetti, Frank A

    2016-04-01

    The processes that govern the formation of stromatolites--structures that may represent macroscopic manifestation of microbial processes and a clear target for astrobiological investigation--occur at various scales (local versus regional), yet determining their relative importance remains a challenge, particularly for ancient deposits and/or if similar deposits are discovered elsewhere in the Solar System. We build upon the traditional multiscale level approach of investigation (micro-, meso-, macro-, mega-) by including a lateral comparative investigational component of fine- to large-scale features to determine the relative significance of local and/or nonlocal controls on stromatolite morphology, and in the process, help constrain the dominant influences on microbialite formation. In one example of lateral comparative investigation, lacustrine microbialites from the Miocene Barstow Formation (California) display two main mesofabrics: (1) micritic bands that drastically change in thickness and cannot directly be traced between adjacent decimeter-scale subunits and (2) sparry fibrous layers that are strikingly consistent across subunits, suggesting the formation of sparry fibrous layers was influenced by a process larger than the length scale between the subunits (likely lake chemistry). Microbialites from the uppermost Triassic Cotham Member, United Kingdom, occur as meter-scale mounds and contain a characteristic succession of laminated and dendrolitic mesofabrics. The same succession of laminated/dendrolitic couplets can be traced, not only from mound to mound, but over 100 km, indicating a regional-scale influence on very small structures (microns to centimeters) that would otherwise not be apparent without the lateral comparative approach, and demonstrating that the scale of the feature does not necessarily scale with the scope of the process. Thus, the combination of lateral comparative investigations and multiscale analyses can provide an effective

  1. Rationale and Roadmap for Moon Exploration

    Science.gov (United States)

    Foing, B. H.; ILEWG Team

    We discuss the different rationale for Moon exploration. This starts with areas of scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The rationale includes also the advancement of instrumentation: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. There are technologies in robotic and human exploration that are a drive for the creativity and economical competitivity of our industries: Mecha-electronics-sensors; Tele control, telepresence, virtual reality; Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems, Man-Machine interface and performances. Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. We also report on the IAA Cosmic Study on Next Steps In Exploring Deep Space, and ongoing IAA Cosmic Studies, ILEWG/IMEWG ongoing activities, and we finally discuss possible roadmaps for robotic and human exploration, starting with the Moon-Mars missions for the coming decade, and building effectively on joint technology developments.

  2. Investigating Changes in Students’ Attitudes Towards Science During an Adaptive Online Astrobiology Course

    Science.gov (United States)

    Perera, Viranga; Buxner, Sanlyn R.; Horodyskyj, Lev; Anbar, Ariel; Semken, Steven; Mead, Chris; Lopatto, David

    2015-11-01

    Online education is an emergent sector of formal education and Arizona State University (ASU) is a leader in offering online courses. One that garners very strong positive feedback on student surveys is Habitable Worlds, which is an interdisciplinary online science course offered every semester since Fall 2011. Primary goals of this course are to teach understanding of scientific reasoning and practices by using principles from trans-disciplinary research in astrobiology. To examine course outcomes we administered the Classroom Undergraduate Research Experience (CURE) survey, which has been previously developed to measure student experiences. Here we use the survey for the first time for an online course. The survey was taken before and after completing the course during the Fall 2014 and Spring 2015 semesters (N = 544). Here, we present students’ views of science represented by 22 questions on the survey. For the questions, students responded either "not applicable," "strongly disagree," "disagree," "neutral," "agree," or "strongly agree." In order to interpret the data, we divided the questions into three broader categories for analysis: students’ understanding of the scientific process, students’ scientific self-efficacy and students’ views on science teaching. We study how the sample of students changed their responses to each of the questions as a group by using a paired-samples sign test to gauge the statistical significance of the difference between pre and post responses. We further analyze how individual students changed their responses. For example, we designated a change from “strongly disagree” to “disagree” differently than a change from “agree” to “disagree” since the latter indicated a notable change in the student’s opinion. We found statistically significant changes on 12 of the 22 questions. These early results indicate that there are measurable changes on several identified course objectives. By measuring changes that

  3. Astrobiological Aspects of the Mutagenesis of Cosmic Radiation on Bacterial Spores

    Science.gov (United States)

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L.; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, γ rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/μm. Spore survival and the rate of the induced mutations to rifampicin resistance (RifR) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to RifR compared to low-energy charged particles and X-rays. Twenty-one RifR mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the RifR mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of RifR mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  4. Formation of Molecules on Cosmic Dust Grains:From H2 to Astrobiology Frontiers

    Science.gov (United States)

    Lemaire, Jean Louis

    2014-06-01

    If the role of dust grains in the formation of molecules in the ISM is now well accepted (as suggested almost 50 years ago) numerous questions remain yet unresolved despite serious experimental and theoretical efforts. This is the case for H2 (after ~20 years research) and more recently for larger molecules. For the latter the topical hot problem is to find a link between astrophysics and astrobiology in search of the origin of life in the universe, obviously a key question of paramount interest and general fascination.Both laboratory experiments and theory are necessary to interpret the wealth of increasing observational results and their improvements through new instrumental developments. The aim is to derive from them the physical and chemical conditions (and/or their dynamic evolution) in the remote regions of the ISM. In the laboratory a variety of multi-disciplinary experimental approaches are used to study the large number of parameters involved in the catalytic role of dust grains in the formation process and its different stages.The first step is to manufacture analogs of a dust grain, using several techniques. The most important parameters of a dust surface (and volume) are its nature and morphology. Carbonaceous or siliceous grains are fabricated, either bare or covered by a variety of ices, which have to be well-characterized.The second step covers the study of the formation mechanism(s) of molecules on a dust surface. This will be illustrated with two examples: H2 and prebiotic molecules. The main interest in the case of H2 is to learn about the fate of the energy released 4.5 eV per H2) in the formation process, due to its determinant role in star formation. In the case of prebiotic molecules the main interest is that they can be considered as precursors of the formation of complex organic compounds (like amino acids) which are subsequently at the origin of more complex biological material.The third and particularly important step is to establish a

  5. NASA Virtual Institutes: International Bridges for Space Exploration

    Science.gov (United States)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  6. Biotechnology for Solar System Exploration

    Science.gov (United States)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  7. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    Science.gov (United States)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  8. Protoplanetary Disks in the Orion Nebula An H$\\alpha$ Fabry-Perot study and Astrobiological Aspects

    CERN Document Server

    De la Fuente-Acosta, E; Arias, L; Throop, H B; Ambrocio-Cruz, P; Fuente, Eduardo de la; Rosado, Margarita; Arias, Lorena; Throop, Patricia Ambrocio-Cruz & Henry B.

    2002-01-01

    In this paper, we present a briefly overview of the protoplanetary disks in the Orion Nebula, incluiding some astrobiological aspects and an H$\\alpha$ Fabry-Perot study of 16 of them. We found that Fabry-Perot interferometry constitutes an effective technique for the detection of proplyds. We also report heliocentric systemic velocities for the proplyds 82-336, 158-323, 158-326, 159-350, 161-314, 161-324, 163-317, 166-316, 167-317, 168-326, 170-337, 176-325, 177-341, 180-331, 197-427 and 244-440. The velocities were measured between 22-38 km s$^{-1}$.

  9. Astrobiological significance of minerals on Mars surface environment: UV-shielding properties of Fe (jarosite) vs. Ca (gypsum) sulphates

    CERN Document Server

    Amaral, G A; Vázquez, L; Amaral, Gabriel; Martinez-Frias, Jesus; Vazquez, Luis

    2005-01-01

    The recent discovery of liquid water-related sulphates on Mars is of great astrobiological interest. UV radiation experiments, using natural Ca and Fe sulphates (gypsum, jarosite), coming from two selected areas of SE Spain (Jaroso Hydrothermal System and the Sorbas evaporitic basin), were performed using a Xe Lamp with an integrated output from 220 nm to 500 nm of 1.2 Wm-2. The results obtained demonstrate a large difference in the UV protection capabilities of both minerals and also confirm that the mineralogical composition of the Martian regolith is a crucial shielding factor. Whereas gypsum showed a much higher transmission percentage, jarosite samples, with a thickness of only 500 microns, prevented transmission. This result is extremely important for the search for life on Mars as: a) jarosite typically occurs on Earth as alteration crusts and patinas, and b) a very thin crust of jarosite on the surface of Mars would be sufficient to shield microorganisms from UV radiation.

  10. Analysis on Proactive Contribution to Peace Foreign Tendency of the Abe Regime%安倍政权的"积极和平主义"外交动向分析

    Institute of Scientific and Technical Information of China (English)

    李永强

    2015-01-01

    In September, 2013 Abe proposed to include the Proactive Contribution to Peace into national security strategy. By conducting theoretical analysis and realistic interpretation of the Proactive Contribution to Peace proposed by Abe, we could fully understand the basic trend of Japanese diplomatic policy and its change tendency in the future. Based on the analysis of the theory of Proactive Contribution to Peace, the author would put forward the paradox of the Proactive Contribution to Peace and then would analyze the interaction between the paradox of reality and theory. Along with the further promotion of the Proactive Contribution to Peace, and based on the evolvement and interaction of Japanese foreign policy and security policy in its internal affairs and diplomacy, regional security and neighboring international relations, the dynamical variable of Abe's the Proactive Contribution to Peace would be assessed accordingly.%2013年9月,安倍提出将积极和平主义纳入国家安全保障战略.通过对安倍所提出的积极和平主义进行理论分析与现实解读,有助于更为充分地理解日本外交基本态势与未来变化的趋势.基于积极和平主义的分析,进一步阐释安倍所提出的积极和平主义的悖论,进而分析理论与现实悖论的互动.随着积极和平主义推进,基于日本外交与安保政策在本国内政外交、地区安全、周边国际关系自身逐层次的推演与彼此的互动所逐步展现,对积极和平主义的动力变量进行相应评估.

  11. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  12. Exploration technology

    Energy Technology Data Exchange (ETDEWEB)

    Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)

    1996-12-31

    The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.

  13. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101939 Bi Bingkun (No.1 Geological Surveying Party,Henan Bureau of Geology and Mineral Resources Exploration and Development,Luoyang 471023,China) Application of the Electric Method to Bauxite Exploration,Henan Province

  14. Autonomy Software Architecture for LORAX (Life On ice Robotic Antarctic eXplorer)

    Science.gov (United States)

    Jonsson, Ari; McGann, Conor; Pedersen, Liam; Iatauro, Michael; Rajagopalan, Srikanth

    2005-01-01

    LORAX is a robotic astrobiological study of the ice field surrounding the Carapace Nunatak near the Allan Hills in Antarctica. The study culminates in a l00km traverse, sampling the ice at various depths (from surface to 10cm) at over 100 sites to survey microbial ecology and to record environmental parameters. The autonomy requirements from LORAX are shared by many robotic exploration tasks. Consequently, the LORAX autonomy architecture is a general architecture for on-board planning and execution in environments where science return is to be maximized against resource limitations and other constraints.

  15. Astrobiology and other Mars science: how can humans help (and from where)?

    Science.gov (United States)

    Rummel, John; Conley, Catharine

    2016-07-01

    There are many advocates for the human exploration of Mars who wax poetical when discussing how good it is going to be, but there are only a few who may be willing to write requirements for how much direct human surface exploration on Mars needs to be possible before attempting it is worth the investment, or to compare modes of human exploration to see which one is most cost-efficient for the initial human missions to Mars (assuming that humans working in near-Mars space is a goal in and of itself. For example, the recent MEPAG Scientific Objectives for the Human Exploration of Mars Science Analysis Group (MEPAG HSO-SAG) [1] stated that "A defensible evaluation of surface science operations options and candidate scenarios cannot be done at this time - we recommend deferring this to a future team." Alternatively [e.g., 2], there are considerations of the science that can be done from the martian moon Phobos that do not require surface operations on Mars at all, except by robots controlled through low-latency telepresence. The promise of how to deliver better Mars science for the money (and risk) will be discussed in this paper, and some estimates made on how often a human has to step outside on Mars (and step back in) to accomplish more science than a telepresent rover. We will also look at what the estimates of contamination from on-site human explorers can mean to the search for possible indigenous life on Mars. Some [3] say that Mars is already "contaminated" by Earth organisms brought to Mars from Earth through impact-generated bolide exchanges, but (as noted in [4]) that statement suggests that they do not really hold a solid concept of what contamination is, and what it may mean to both our understanding of the pre-human past on Mars, as well as to the preservation of Mars resources for future human inhabitants. Refs. 1. Beaty et al., Candidate scientific objectives for the human exploration of Mars, and implications for the identification of Martian

  16. The SOLID (Signs Of LIfe Detector) instrument concept: an antibody microarray-based biosensor for life detection in astrobiology

    Science.gov (United States)

    Parro, V.; Rivas, L. A.; Rodríguez-Manfredi, J. A.; Blanco, Y.; de Diego-Castilla, G.; Cruz-Gil, P.; Moreno-Paz, M.; García-Villadangos, M.; Compostizo, C.; Herrero, P. L.

    2009-04-01

    Immunosensors have been extensively used since many years for environmental monitoring. Different technological platforms allow new biosensor designs and implementations. We have reported (Rivas et al., 2008) a shotgun approach for antibody production for biomarker detection in astrobiology and environmental monitoring, the production of 150 new polyclonal antibodies against microbial strains and environmental extracts, and the construction and validation of an antibody microarray (LDCHIP200, for "Life Detector Chip") containing 200 different antibodies. We have successfully used the LDCHIP200 for the detection of biological polymers in extreme environments in different parts of the world (e.g., a deep South African mine, Antarctica's Dry valleys, Yellowstone, Iceland, and Rio Tinto). Clustering analysis associated similar immunopatterns to samples from apparently very different environments, indicating that they indeed share similar universal biomarkers. A redundancy in the number of antibodies against different target biomarkers apart of revealing the presence of certain biomolecules, it renders a sample-specific immuno-profile, an "immnuno-fingerprint", which may constitute by itself an indirect biosignature. We will present a case study of immunoprofiling different iron-sulfur as well as phylosilicates rich samples along the Rio Tinto river banks. Based on protein microarray technology, we designed and built the concept instrument called SOLID (for "Signs Of LIfe Detector"; Parro et al., 2005; 2008a, b; http://cab.inta.es/solid) for automatic in situ analysis of soil samples and molecular biomarkers detection. A field prototype, SOLID2, was successfully tested for the analysis of grinded core samples during the 2005 "MARTE" campaign of a Mars drilling simulation experiment by a sandwich microarray immunoassay (Parro et al., 2008b). We will show the new version of the instrument (SOLID3) which is able to perform both sandwich and competitive immunoassays. SOLID3

  17. A new empirical approach in the Search for Extraterrestrial Intelligence: Astrobiological nonlocality at the cosmological level

    CERN Document Server

    Thaheld, F H

    2006-01-01

    Over a period of several decades a concerted effort has been made to determine whether intelligent life exists outside of our solar system, known as the Search for Extraterrestrial Intelligence or SETI. This has been based primarily upon attempting to intercept possible radio transmissions at different frequencies with arrays of radio telescopes. In addition, astrophysical observations have also been undertaken to see if other worlds or solar systems exist with similar conditions such as ours, which might be conducive to life. And, numerous papers have been written exploring different possibilities for the existence of life or why we have not observed it as of yet, since none of these approaches have been successful. It may now be possible to explore this issue from another standpoint. Recent theoretical and experimental results in the field of biophysics appear to indicate the possibility of quantum entanglement and nonlocality at the biological level, between spatially separated pairs of human subjects and ...

  18. Analysis on the Realistic Diplomacy of the Abe Administration toward ASEAN%日本安倍政府对东盟的现实主义外交刍议

    Institute of Scientific and Technical Information of China (English)

    陈友骏

    2014-01-01

    日本安倍政府“巧妙”利用与东盟建立友好合作关系40周年的重要节点,通过频繁的政治互动与密集的经济合作,深化了日本与东盟在地区政治、经济、安全等各个维度上的政策拟合度。不仅如此,迫于现实与战略层面的利益考虑,安倍政府试图借助政治拉拢与经济控制,把东盟塑造成“遏制中国发展”的潜在战略盟友。但由于存在过分强调主观意志、工具主义与利益至上等严重的局限性,日本安倍政府对东盟的外交战略注定无法达到预期效果,也难以在现实层面拉拢东盟构筑对华包围圈。%The Abe asministration les by the rightists“skillfully”makes use of the 40 th anniversary of the friensly cooperative relations between Japan ans ASEAN to increase the fitting segree of policies between the two in fielss inclusing politics,economics ans security through frequent political interaction ans economic cooperation. Moreo-ver,forces by the interests in realistic ans strategic levels,the Abe asministration attempts to establish ASEAN a potential strategic ally of“containing Chinese sevelopment”by roping it in politically ans controlling it economical-ly. Nonetheless,sue to the restrictions causes by its stressing too much on subjective will,instrumentalist ans in-terests-first principles,it is soomes that Japanese siplomacy towars ASEAN can neither meet its expectations nor sraw ASEAN in builsing an encirclement targetes China on a practical level.

  19. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs.

    Science.gov (United States)

    Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G

    2005-12-01

    Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability. PMID:16379531

  20. Developing the "Lunar Vicinity" Scenario of the Global Exploration Roadmap

    Science.gov (United States)

    Schmidt, G.; Neal, C. R.; Crawford, I. A.; Ehrenfreund, P.

    2014-04-01

    The Global Exploration Roadmap (GER, [1]) has been developed by the International Space Exploration Coordination Group (ISECG - comprised of 14 space agencies) to define various pathways to getting humans beyond low Earth orbit and eventually to Mars. Such pathways include visiting asteroids or the Moon before going on to Mars. This document has been written at a very high level and many details are still to be determined. However, a number of important papers regarding international space exploration can form a basis for this document (e.g. [2,3]). In this presentation, we focus on developing the "Lunar Vicinity" scenario by adding detail via mapping a number of recent reports/documents into the GER. Precedence for this scenario is given by Szajnfarber et al. [4] who stated "We find that when international partners are considered endogenously, the argument for a "flexible path" approach is weakened substantially. This is because international contributions can make "Moon first" economically feasible". The documents highlighted here are in no way meant to be all encompassing and other documents can and should be added, (e.g., the JAXA Space Exploration Roadmap). This exercise is intended to demonstrate that existing documents can be mapped into the GER despite the major differences in granularity, and that this mapping is a way to promote broader national and international buy-in to the Lunar Vicinity scenario. The documents used here are: the Committee on Space Research (COSPAR) Panel on Exploration report on developing a global space exploration program [5], the Strategic Knowledge Gaps (SKGs) report from the Lunar Exploration Analysis Group (LEAG) [6], the Lunar Exploration Roadmap developed by LEAG [7], the National Research Council report Scientific Context for the Exploration of the Moon (SCEM) [8], the scientific rationale for resuming lunar surface exploration [9], the astrobiological benefits of human space exploration [9,10].

  1. Evaluación de la enseñanza de la Astrobiología en Secundaria: análisis de libros de texto y opiniones de profesores en formación

    OpenAIRE

    Oreiro Rey, Raquel; Solbes Matarredona, Jordi

    2015-01-01

    En este trabajo se presenta una evaluación diagnóstica de la enseñanza de la Astrobiología mediante el análisis de libros de texto de las asignaturas de Biología y Geología de 4º de la ESO y Ciencias para el Mundo Contemporáneo de 1º de Bachillerato. El objetivo principal es comprobar si la Astrobiología se ha incorporado adecuadamente en la enseñanza secundaria. Se muestran, además, las opiniones de un grupo de profesores en formación sobre la enseñanza de la Astrobiología.

  2. Mineralogy Considerations for 2003 MER Site Selection and the Importance for Astrobiology

    Science.gov (United States)

    Bishop, J. L.

    2001-01-01

    Much of the discussion of site selection on Mars is based on interesting images of the surface combined with safety issues. I argue that the two rovers should be sent to mineralogically distinct regions. Compositional information is still poorly constrained on Mars; however, the instruments on the 2003 Mars Exploration Rovers (MERs) will provide a unique opportunity for detailed characterization including mineral identification. There is strong motivation for sending one rover to a "typical" region on Mars to be used as a ground truth for the Thermal Emission Spectrometer (TES), while the other rover should be sent to a site where water and chemical alteration are likely to have occurred. Determining the mineralogy of the Martian surface material provides information about the past and present environments on Mars which are an integral aspect of whether or not Mars was suitable for the origin of life. Understanding the mineralogy of terrestrial samples from potentially Mars-like environments is essential to this effort.

  3. TRI Explorer

    Data.gov (United States)

    U.S. Environmental Protection Agency — TRI Explorer provides powerful, flexible, user-friendly access to Toxics Release Inventory (TRI) data to help communities identify facilities and chemical disposal...

  4. PROSPECTING EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152148 Chen Qiang(No.106 Geological Party,Guizhou Bureau of Geology and Mineral Exploration and Development,Zunyi563009,China);Ye Deshu Discussion of Reasonable Exploratory Grid of Sedimentary Bauxite Deposit in Wuzhengdao Area of Guizhou

  5. Comparison of Historic Exploration with Contemporary Space Policy Suggests a Retheorisation of Settings

    Science.gov (United States)

    Cokely, J.; Rankin, W.; Heinrich, P.; McAuliffe, M.

    The 2008 NASA Astrobiology Roadmap provides one way of theorising this developing field, a way which has become the normative model for the discipline: science-and scholarship-driven funding for space. By contrast, a novel re-evaluation of funding policies is undertaken in this article to reframe astrobiology, terraforming and associated space travel and research. Textual visualisation, discourse and numeric analytical methods, and value theory are applied to historical data and contemporary sources to re-investigate significant drivers and constraints on the mechanisms of enabling space exploration. Two data sets are identified and compared: the business objectives and outcomes of major 15th-17th century European joint-stock exploration and trading companies and a case study of a current space industry entrepreneur company. Comparison of these analyses suggests that viable funding policy drivers can exist outside the normative science and scholarship-driven roadmap. The two drivers identified in this study are (1) the intrinsic value of space as a territory to be experienced and enjoyed, not just studied, and (2) the instrumental, commercial value of exploiting these experiences by developing infrastructure and retail revenues. Filtering of these results also offers an investment rationale for companies operating in, or about to enter, the space business marketplace.

  6. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090712 Ge Mingjun(General Institution of Mineral Exploration & Development in Qiqihaer of Heilongjiang Province,Qiqihaer 161006,China) Application of Emulsified Diesel Oil Drilling Fluid in Under-Balanced Drilling(Exploration Engineering(Rock & Soil Drilling and Tunneling),ISSN1672-7428,CN11-5063/TD,34(11),2007,p.43-45,1 illus.,2 tables,4 refs.)

  7. Japan-Africa Trade Relationship and Abe Regime’s Policy towards Africa Economy%日非经贸关系及安倍政权的对非经济政策

    Institute of Scientific and Technical Information of China (English)

    石其宝; 程永明

    2013-01-01

    Japanese government has been developing the economic relationship toward Africa for several decades, but the progress is slow. Japanese academic circles and economic circles often criticized the Japanese government that they didn’t pay enough attention to Africa. After 1990s, Japan made full use of the platform of Tokyo International Conference on African Development (TICAD) to increase the focus on Africa in the full range. Especially, the Abe regime launched a series of economic policies to Africa, aiming at strengthening economic relations with each state in Africa, and seeking more economic interests and international discourse right.%日本对非经济关系虽然已有数十年的历史,但进展缓慢,日本学界及经济界也常常批评日本政府对非洲不够重视。90年代以后日本充分利用非洲发展会议(TICAD)这一平台,全方位地加大了对非洲的关注力度,尤其是目前的安倍政权更是推出了一系列的非洲经济政策,旨在增强同非洲各国的经济关系,谋求更多的经济利益和国际话语权。

  8. The DEPTHX Project: Autonomous Exploration of Subaqueous Environments

    Science.gov (United States)

    Durda, D. D.; Stone, W. C.; DEPTHX Team

    2005-08-01

    NASA's Astrobiology Science and Technology for Exploring Planets (ASTEP) program is a science-driven exploration program that funds investigations to explore extreme environments on this planet to help develop the scientific and technological foundations to search for life on other planets. The DEep Phreatic THermal Explorer project (DEPTHX) is an ASTEP-funded field campaign that is making rapid progress in fulfilling these goals by designing and developing the technologies and techniques for exploring the deep ocean under the icy crust of Jupiter's moon Europa and searching for signs of life there. The sonar mapping sub-unit of the DEPTHX vehicle was deployed in May 2005 in the deep (over 300 meters), water-filled cenote of Zacaton, in Tamaulipas, Mexico. Zacaton offers a diversity of microbial life that varies with depth in a geometrically unknown setting, making the cenote a perfect place to test autonomous life form detection, discrimination, and collection. Seven sonar drop sonde missions were conducted reaching a depth of 280 meters. Highly detailed, 3-dimensional co-registered maps of Zacaton's walls were derived from the sonar echo data, revealing for the first time the interior structure of the cenote and the fact that it continues as an unknown void below -280m. These data are now being used as proof tests for the 3D SLAM (simultaneous localization and mapping) algorithm being developed as the primary navigation sub-system for the vehicle.

  9. Strategic map for exploring the ocean-world Enceladus

    Science.gov (United States)

    Sherwood, Brent

    2016-09-01

    Among the many "ocean worlds" of our solar system, Enceladus appears unique in its combination of astrobiologically relevant and exploration-worthy attributes: extensive liquid-water ocean with active hydrothermal activity, containing salts and organics expressed predictably into space. The Enceladus south polar plume allows direct access to telltale molecules, ions, isotopes, and potential cytofragments in space. Plume mass spectroscopy and sample return, in situ investigation of surface fallback deposits, direct vent exploration, and eventually oceanographic exploration can all be envisioned. However, building consensus to fund such ambitious exploration hinges on acquiring key new data. A roadmap is essential. It could start with cost-capped onramps such as flythrough analysis of the plume, following up on Cassini measurements with modern instruments; and sample return of plume material for analysis on Earth. A methodical mission sequence in which each step depends on emergent results from prior missions would push in situ oceanographic exploration into the second half of this century. Even for this scenario, prioritization by the next planetary Decadal Survey would be pivotal.

  10. The BIOSUN project: an astrobiological approach to study the origin of life

    Science.gov (United States)

    Abrevaya, X. C.; Hanslmeier, A.; Leitzinger, M.; Odert, P.; Horvath, J. E.; Ribas, I.; Galante, D.; Porto de Mello, G. F.

    2014-10-01

    During the early ages of the Earth the magnetic activity of the young Sun was much stronger than that of the present Sun, in particular for radiation emitted below 1700 Å. Such enhanced radiation fluxes could play a role in the evolution of planetary atmospheres, their surface conditions and in the origin and evolution of life. Solar stellar analogs could provide information about the characteristics of the young Sun, and therefore this radiation environment. The objective of this project is to focus on the radiation emission features of the young Sun through solar stellar analogs to 1) Characterize the radiation environment of the early Earth and other planetary bodies of the Solar System that are or could have been suitable for life. 2)Reproduce this radiation environment under laboratory simulated conditions to explore: Whether cells could survive at that level of radiation on the early Earth confronting that with the microbial fossil record. Early Mars and Europa will be also tested; b) The possibility of ``transfer" of microorganisms between Mars-Earth or Venus-Earth at that time. For Mars studies we consider as a model the Nakhla meteorite and halites; c) The formation, inflow and outflow of some prebiotic molecules in the early planetary conditions. Finally, the experimental approach will be carried out exposing microorganisms/molecules to this environments under laboratory simulated conditions, according to the data obtained previously.

  11. Farside explorer

    DEFF Research Database (Denmark)

    Mimoun, David; Wieczorek, Mark A.; Alkalai, Leon;

    2012-01-01

    the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar......Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded...... the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from...

  12. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091853 An Jinzhen(School of Earth and Space Sciences,Peking University,Beijing 100871,China);Zhou Pinggen Experiments on Exploring and Monitoring Landslip-Mass Using Geoelectric Resistivity Observations(Acta Seismologica Sinica,ISSN0253-3782,CN11-2021/P,30(3),2008,p.254-261,6 illus.,1 table,19 refs.)Key words:resistivity methods,landslidesIn the experiments,a high-density resistivity method is used to explore the electric structure of landslip mass,and a resistivity-changing anisotropy method is used to monitor the orientation and speed of main fracture extending of landslip mass.The results are as follows:1)the exploring experiments have verified a part of creep deformation borderline,the depth and thickness of groundwater horizon,and the property of super strata in the landslip mass investigated formerly,which have proved that the landslip belts contain rich groundwater

  13. National Workshop on Astrobiology: the life science involvement of AAS-I Laben.

    Science.gov (United States)

    Adami, Giorgio

    2006-12-01

    The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas: (1) Physiology: Mouse models related to studies on human physiology Human neuroscience research and dosimetry (2) Animal Adaptation and Behaviour: mice behaviour related to stabling stress (3) Developmental Biology: aquatic microorganisms cultivation (4) Cell culture & Biotechnology: Protein crystal growth General purpose Multiwell Next Biotechnology studies and development: Bio reactor, mainly oriented to tissue engineering Microsensor for tissue control (organ replacement) Multiwell for adherent cell culture or for automated biosensor based on cell culture Experiment Container for organic systems Experiment Container for small animals Instrumentation based on fluorescent Biosensors Sensors for Life science experiments for Biopan capsule and Space Vehicle Ray Shielding Materials Random Positioning Machine specialisation (Support ground equipment) The biological features of this heritage is at disposal for the exobiology multi science. The involvement of industries, from the beginning of the exobiology projects, allows a cost effective technologies closed loop development between Research Centres, Principal Investigators and industry. PMID:17171428

  14. National Workshop on Astrobiology: The Life Science Involvement of AAS I Laben

    Science.gov (United States)

    Adami, Giorgio

    2006-12-01

    The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas: (1) Physiology: Mouse models related to studies on human physiology Human neuroscience research and dosimetry (2) Animal Adaptation and Behaviour: mice behaviour related to stabling stress (3) Developmental Biology: aquatic microorganisms cultivation (4) Cell culture & Biotechnology: Protein crystal growth General purpose Multiwell Next Biotechnology studies and development: Bio reactor, mainly oriented to tissue engineering Microsensor for tissue control (organ replacement) Multiwell for adherent cell culture or for automated biosensor based on cell culture Experiment Container for organic systems Experiment Container for small animals Instrumentation based on fluorescent Biosensors Sensors for Life science experiments for Biopan capsule and Space Vehicle Ray Shielding Materials Random Positioning Machine specialisation (Support ground equipment) The biological features of this heritage is at disposal for the exobiology multi science. The involvement of industries, from the beginning of the exobiology projects, allows a cost effective technologies closed loop development between Research Centres, Principal Investigators and industry.

  15. PROSPECTING EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112102 Chen Yiying(Shijiazhuang University of Economics,Shijiazhuang 050031,China);Li Wenbin Automatic Generation of Complicated Fault in Geological Section(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(5),2010,p.7-12,8 illus.,13 refs.)Key words:faults,map compilation The researches of this paper are the basic theories and essential techniques of simulating complicated faults,and a series of approaches are proposed.Based on the practical geological exploration,data types are analyzed and database is normalized.The strata recovering technique is

  16. GEOCHEMICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150448Cen Kuang(State Key Laboratory of Geological Processes and Mineral Resources,School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China);Liu Xiuli The Application of the Aerosol Geochemical Exploration Method to the Jinwozi Gold Deposit(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,38(1),2014,p.18-22,6illus.,12refs.)Key words:gold ores,geogas methods,Xinjiang The application of the aerosol theory and technology to deep prospecting is the basic problem discussed in this paper.The aerosol theory and technology were applied in the

  17. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131973 Luo Zhili(Chengdu University of Technology,Chengdu 610059,China);Sun Wei Reviews of the Exploration History of Stratigraphic Wells in the Sichuan Basin and Analysis of the Obtained Geological Effects(Natural Gas Industry,ISSN1000-0976,CN51-1179/TE,32(4),2012,p.9-12,1illus.,10)

  18. Exploring Television.

    Science.gov (United States)

    Kuhns, William

    "Exploring Television" is an inquiry/discovery textbook designed to help students to understand, analyze, criticize, evaluate, and judge the experiences they have had in front of the television set. The text consists of three main parts. "The Medium" inquires into the radio-movie origins of television and prompts research into the networks and…

  19. PROSPECTING EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090715 Chen Tao(Team 604,Geo-Exploration Bureau of Nonferrous Metals of Jilin Province,Huadian 132400,China);Zhao Tieying Present Utilizing Situation and Protective Planning of Mineral Resources in Huadian County,Jilin Province(Jilin Geology,ISSN1001-2427,CN22-1099/P,27(1),2008,p.96-100,4 refs.)

  20. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152094 Cai Xiaowen(No.145 Brigade,Gansu Bureau of Coal Geology,Zhangye734000,China);Chen Xiqing Performance Evaluation and Field Application of GFT AntiCollapse and Drag Reduction Agent(Exploration Engineering,ISSN1672-7428,CN11-

  1. Effects of UVC254 nm on the photosynthetic activity of photobionts from the astrobiologically relevant lichens Buellia frigida and Circinaria gyrosa

    Science.gov (United States)

    Meeßen, J.; Backhaus, T.; Sadowsky, A.; Mrkalj, M.; Sánchez, F. J.; de la Torre, R.; Ott, S.

    2014-10-01

    In the past decade, various astrobiological studies on different lichen species investigated the impairment of viability and photosynthetic activity by exposure to simulated or real space parameters (as vacuum, polychromatic ultraviolet (UV)-radiation and monochromatic UVC) and consistently found high post-exposure viability as well as low rates of photosynthetic impairment (de Vera et al. 2003, 2004a; 2004b; de la Torre et al. 2010; Onofri et al. 2012; Sánchez et al. 2012, 2014; Brandt et al. 2014). To achieve a better understanding of the basic mechanisms of resistance, the present study subdued isolated and metabolically active photobionts of two astrobiologically relevant lichens to UVC254 nm, examined its effect on photosynthetic activity by chlorophyll a fluorescence and characterized the UVC-induced damages by quantum yield reduction and measurements of non-photochemical quenching. The results indicate a strong impairment of photosynthetic activity, photoprotective mechanisms and overall photobiont vitality when being irradiated in the isolated and metabolically active state. In conclusion, the present study stresses the higher susceptibility of photobionts towards extreme environmental conditions as UVC-exposure, a stressor that does not occur on the Earth. By comparison with previous studies, the present results highlight the importance of protective mechanisms in lichens, such as morphological-anatomical traits (Meeßen et al. 2013), secondary lichen compounds (Meeßen et al. 2014) and the symbiont's pivotal ability to pass into anhydrobiosis when desiccating.

  2. Characterization of halophiles in natural MgSO 4 salts and laboratory enrichment samples: Astrobiological implications for Mars

    Science.gov (United States)

    Foster, Ian S.; King, Penelope L.; Hyde, Brendt C.; Southam, Gordon

    2010-03-01

    The presence of sulfate salts and limited subsurface water (ice) on Mars suggests that any liquid water on Mars today will occur as (magnesium) sulfate-rich brines in regions containing sources of magnesium and sulfur. The Basque Lakes of British Columbia, Canada, represent a hypersaline terrestrial analogue site, which possesses chemical and physical properties similar to those observed on Mars. The Basque Lakes also contain diverse halophilic organisms representing all three Kingdoms of life, growing in surface and near-subsurface environments. Of interest from an astrobiological perspective, crushed magnesium sulfate samples that were analyzed using a modified Lowry protein assay contained biomass in every crystal inspected, with biomass values from 0.078 to 4.21 mg biomass/g salt; average=0.74±0.7 mg biomass/g salt. Bacteria and Archaea cells were easily observed even in low-biomass samples using light microscopy, and bacteria trapped within magnesium sulfate crystals were observed using confocal microscopy. Regions within the salt also contained bacterial pigments, e.g., carotenoids, which were separate from the cells, indicating that cell lysis might have occurred during entrapment within the salt matrix. These biosignatures, cells, and any 'soluble' organic constituents were primarily found trapped within fluid inclusions or fluid-filled void spaces between intergrown crystals. Diffuse reflectance infrared Fourier transform spectroscopy (reflectance IR) analysis of enrichment cultures, containing cyanobacteria, Archaea, or dissimilatory sulfate-reducing bacteria, highlighted molecular biosignature features between 550-1650 and 2400-3000 cm -1. Spectra from natural salts demonstrated that we can detect biomass within salt crystals using the most sensitive biosignatures, which are the 1530-1570 cm -1, C-N, N-H, -COOH absorptions and the 1030-1050 cm -1 C-OH, C-N, PO 43- bond features. The lowest detection limit for a biosignature absorption feature using

  3. Paleomagnetism of the Astrobiology Drilling Project 8 drill core, Pilbara, Western Australia: implications for the early geodynamo and Archean tectonics

    Science.gov (United States)

    Bradley, K.; Weiss, B.; Carporzen, L.; Anbar, A.; Buick, R.

    2008-12-01

    Paleomagnetic measurements from the Archean Pilbara craton have recently been used to argue for the presence of a substantial magnetic field at 3.2 Ga (Tarduno et al., 2007), as well as for extremely fast plate motions or true polar wander (Strik et al., 2003, Suganuma et al., 2006). Paleomagnetic records in the Archean are fundamentally limited by the scarcity of well-preserved, low metamorphic grade Archean rocks. Where such rocks are exposed, paleomagnetic sampling is often difficult or impossible due to pervasive lightning remagnetization and deep weathering of the cratonic surface. More pristine samples can potentially be obtained from shallow drill cores like those obtained by the Astrobiology Drilling Project (ABDP). We present a paleomagnetic analysis of the ~350 m deep ABDP-8 drill core, which was drilled in the East Strelley greenstone belt and which penetrated the Double Bar Formation of the Warrawoona Group, as well as the unconformably overlying Euro Basalt and Strelley Pool Chert units of the Kelly Group. Full sample orientation (declination and inclination) was achieved through the use of a Ballmark orientation system. A strong drilling overprint was removed for most samples by alternating field demagnetization to 20 mT. Subsequent thermal demagnetization revealed single-polarity magnetic directions within the Euro Basalt and Double Bar Formation carried by magnetite. The directions from these two Formations are statistically different to >95% confidence, which constitutes a positive unconformity test and indicates that the Euro Basalt direction is primary. Upon tilt correction, the ~3.34-3.37 Ga Euro Basalt direction is indistinguishable from the tilt-corrected direction found previously in the ~3.46 Ga Duffer Formation of the Warrawoona Group (McElhinny and Senanayake, 1980). The Euro Basalt direction, if taken at face value, implies small relative motion of the Pilbara Craton from ~3.46 Ga to ~3.34 Ga. This is inconsistent with the apparent polar

  4. Exploring quadrangulations

    KAUST Repository

    Peng, Chihan

    2014-01-01

    Here we presented a framework to explore quad mesh topologies. The core of our work is a systematic enumeration algorithm that can generate all possible quadrangular meshes inside a defined boundary with an upper limit of v3-v5 pairs. The algorithm is orders of magnitude more efficient than previous work. The combination of topological enumeration and shape-space exploration demonstrates that mesh topology has a powerful influence on geometry. The Fig. 18. A gallery of different quadrilateral meshes for a Shuriken. The quadrilaterals of the model were colored in a postprocess. Topological variations have distinctive, interesting patterns of mesh lines. © 2014 ACM 0730-0301/2014/01-ART3 15.00.

  5. Virtual exploration

    Energy Technology Data Exchange (ETDEWEB)

    Milwood-Hargrave, M.; Francis, A.M. (Ikon Geoscience, Twickenham, Middlesex (United Kingdom))

    1993-09-01

    With the now commonplace implementation of interactive interpretation workstations, the process of generating a time model for a prospect has been simplified and accelerated. This paper shows that for many structural traps, the critical interpretation steps are in subsequently generating a valid depth model, evaluating the depth structure, and being able to realistically assess confidence limits of the model. The development of a comprehensive velocity model is a key element of any depth conversion. Lateral velocity variations across an area are capable of generating structures where the time interpretation is flat. An example is shown in this paper, and the effect of altering the velocity field and the resulting changes to the structure are described. Forward and inverse modeling are used to show that the structure is more favorable than was first expected from the depth conversion. From this example, the idea of sensitivity testing of a number of simple structures is developed. A fully interactive ray trace modeling system integrated with an interpretation workstation allows different confidence limits to be rapidly tested and evaluated. By extending the model into the third dimension, specific scenarios can be constructed in three-dimension (3-D) and uncertainty limits tested on a complete reservoir. Further than this, the construction of type models in 3-D allows the concept of [open quotes]virtual exploration[close quotes] to be realized, whereby specific exploration concepts can be investigated and tested. The virtual exploration model, and its associated seismic data set, form an ideal educational, planning, and training tool for all levels of geophysicists and geologists.

  6. Space exploration

    CERN Document Server

    90, Sol

    2008-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary

  7. Microbiological Methodology in Astrobiology

    Science.gov (United States)

    Abyzov, S. S.; Gerasimenko, L. M.; Hoover, R. B.; Mitskevich, I. N.; Mulyukin, A. L.; Poglazova, M. N.; Rozanov, A. Y.

    2005-01-01

    Searching for life in astromaterials to be delivered from the future missions to extraterrestrial bodies is undoubtedly related to studies of the properties and signatures of living microbial cells and microfossils on Earth. As model terrestrial analogs of Martian polar subsurface layers are often regarded the Antarctic glacier and Earth permafrost habitats where alive microbial cells preserved viability for millennia years due to entering the anabiotic state. For the future findings of viable microorganisms in samples from extraterrestrial objects, it is important to use a combined methodology that includes classical microbiological methods, plating onto nutrient media, direct epifluorescence and electron microscopy examinations, detection of the elemental composition of cells, radiolabeling techniques, PCR and FISH methods. Of great importance is to ensure authenticity of microorganisms (if any in studied samples) and to standardize the protocols used to minimize a risk of external contamination. Although the convincing evidence of extraterrestrial microbial life will may come from the discovery of living cells in astromaterials, biomorphs and microfossils must also be regarded as a target in search of life evidence bearing in mind a scenario that alive microorganisms had not be preserved and underwent mineralization. Under the laboratory conditions, processes that accompanied fossilization of cyanobacteria were reconstructed, and artificially produced cyanobacterial stromatolites resembles by their morphological properties those found in natural Earth habitats. Regarding the vital importance of distinguishing between biogenic and abiogenic signatures and between living and fossil microorganisms in analyzed samples, it is worthwhile to use some previously developed approaches based on electron microscopy examinations and analysis of elemental composition of biomorphs in situ and comparison with the analogous data obtained for laboratory microbial cultures and fossilized microorganisms. This communication will be focused on the analysis of our experience in working with ancient microorganisms and fossils and discussion of some issues that are crucial for development of the program for future finding of extraterrestrial life and its evidence.

  8. Astrobiology and panspermia

    OpenAIRE

    Wickramasinghe, Chandra

    2011-01-01

    Darwin’s allegorical “warm little pond” was most probably located outside the Earth and Darwinian evolution, including genetic transfers occurred over a vast galactic scale. How did life arise? Not just on the Earth, but anywhere in the Universe? Does life emerge readily on every Earth-like planet by spontaneous processes involving well attested laws of physics and chemistry, or did it involve an extraordinary, even miraculous intervention? Science must necessarily exclude a miraculous option...

  9. Geoelectrical exploration

    Science.gov (United States)

    Barseem, Mostafa Said; El Lateef, Talaat Ali Abd; Ezz El Deen, Hosny Mahomud; Abdel Rahman, Abd Allah Al Abaseiry

    2015-12-01

    Sinai development is a goal of successive governments in Egypt. The present study is a geoelectrical exploration to find appropriate solutions of the problems affecting the land of a Research Station in Southeast Al Qantara. This research station is one of the Desert Research Center stations to facilitate the development of desert land for agriculture by introducing applied research. It suffers from some problems which can be summarized in the shortage of irrigation water and water logging. The appropriate solutions of these problems have been delineated by the results of 1D and 2D geoelectrical measurements. Electrical resistivity (ER) revealed the subsurface sedimentary sequences and extension of subsurface layers in the horizontal and vertical directions, especially, the water bearing layer. Additionally it helped to choose the most suitable places to drill productive wells with a good condition.

  10. EXPLORATION ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111381 Geng Tao(Xi’an Center of Geological Survey of CGS,Xi’an 710054,China);Liu Kuanhou Application of Accurate Inspection of CQG2000 Quasi-Geoid Model to Regional Gravity Survey in Qinghai-Tibetan Plateau(Northwestern Geology,ISSN1009-6248,CN61-1149/P,43(2),2010,p.1-7,1 illus.,2 tables,4 refs.)Key words:gravity exploration,Global Positioning System,Qinghai-Tibetan Plateau During regional gravity survey,accuracy of orthometric height may affect the accuracy of gravity survey directly.The field test in Qinghai-Tibetan Plateau show that the accuracy of CQG2000 quasi-geoid model can satisfy the accuracy of orthometric height during the 1∶200 000 regional gravity survey.Based on the test,the authors summarize the method how the accuracy of height measurement

  11. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella;

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...... to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report. Astrobiology 9, xxx-xxx....

  12. [Exploring Aeronautics

    Science.gov (United States)

    Robinson, Brandi

    2004-01-01

    This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge

  13. Intelligent systems for the autonomous exploration of Titan and Enceladus

    Science.gov (United States)

    Furfaro, Roberto; Lunine, Jonathan I.; Kargel, Jeffrey S.; Fink, Wolfgang

    2008-04-01

    Future planetary exploration of the outer satellites of the Solar System will require higher levels of onboard automation, including autonomous determination of sites where the probability of significant scientific findings is highest. Generally, the level of needed automation is heavily influenced by the distance between Earth and the robotic explorer(s) (e.g. spacecraft(s), rover(s), and balloon(s)). Therefore, planning missions to the outer satellites mandates the analysis, design and integration within the mission architecture of semi- and/or completely autonomous intelligence systems. Such systems should (1) include software packages that enable fully automated and comprehensive identification, characterization, and quantification of feature information within an operational region with subsequent target prioritization and selection for close-up reexamination; and (2) integrate existing information with acquired, "in transit" spatial and temporal sensor data to automatically perform intelligent planetary reconnaissance, which includes identification of sites with the highest potential to yield significant geological and astrobiological information. In this paper we review and compare some of the available Artificial Intelligence (AI) schemes and their adaptation to the problem of designing expert systems for onboard-based, autonomous science to be performed in the course of outer satellites exploration. More specifically, the fuzzy-logic framework proposed is analyzed in some details to show the effectiveness of such a scheme when applied to the problem of designing expert systems capable of identifying and further exploring regions on Titan and/or Enceladus that have the highest potential to yield evidence for past or present life. Based on available information (e.g., Cassini data), the current knowledge and understanding of Titan and Enceladus environments is evaluated to define a path for the design of a fuzzy-based system capable of reasoning over

  14. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  15. ABE Women: Gaining a New Voice.

    Science.gov (United States)

    Griffin, Carrie; And Others

    1993-01-01

    In the Dayton (Ohio) Literacy Project, female welfare recipients in adult basic education meet with college students to increase the women's reading, writing, and speaking skills and help them come to think of themselves as "knowers." (SK)

  16. Downstream process options for the ABE fermentation.

    Science.gov (United States)

    Friedl, Anton

    2016-05-01

    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. PMID:27020411

  17. Back to the Moon: The Scientific Rationale for Resuming Lunar Surface Exploration

    CERN Document Server

    Crawford, I A; Cockell, C S; Falcke, H; Green, D A; Jaumann, R; Wieczorek, M A

    2012-01-01

    The lunar geological record has much to tell us about the earliest history of the Solar System, the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and the near-Earth cosmic environment throughout Solar System history. In addition, the lunar surface offers outstanding opportunities for research in astronomy, astrobiology, fundamental physics, life sciences and human physiology and medicine. This paper provides an interdisciplinary review of outstanding lunar science objectives in all of these different areas. It is concluded that addressing them satisfactorily will require an end to the 40-year hiatus of lunar surface exploration, and the placing of new scientific instruments on, and the return of additional samples from, the surface of the Moon. Some of these objectives can be achieved robotically (e.g. through targeted sample return, the deployment of geophysical networks, and the placing of antennas on the lunar surface to form radio telescopes). However, in the lo...

  18. Searching for Life in the Martian Subsurface: Results from the MARTE Astrobiological Drilling Experiment and Implications for Future Missions

    Science.gov (United States)

    Stoker, C. R.

    2007-07-01

    Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.

  19. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expec

  20. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology.

    Science.gov (United States)

    Pulschen, André A; Rodrigues, Fabio; Duarte, Rubens T D; Araujo, Gabriel G; Santiago, Iara F; Paulino-Lima, Ivan G; Rosa, Carlos A; Kato, Massuo J; Pellizari, Vivian H; Galante, Douglas

    2015-08-01

    The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes. PMID:26147800

  1. Revisiting Reading: Exploring an intensive reading pedagogy in adult literacy

    Directory of Open Access Journals (Sweden)

    Helen De Silva Joyce

    2011-02-01

    Full Text Available Applied linguistic research into genres of written communication hashad a considerable impact in recent decades on the pedagogy of writing inall sectors of education in Australia, from early schooling to post-secondaryand workplace contexts (eg. Christie and Martin 1997. Attending to thesocial purpose of language and modelling and deconstructing texts inpreparation for supported writing has become a common feature of manyprograms, including those in the field of adult English as a SecondLanguage (ESL and adult literacy. However, effective engagement withmodel texts for writing is dependent on students being able to read thosetexts. While reading continues to be explicitly identified as a component ofmost adult literacy programs, there is evidence to suggest that less attentionmay be given to the deliberate supported development of reading skills(Burns and de Silva Joyce 2000, 2005. This paper reports on a projectfunded by the National Centre for Vocational Education Research(NCVER in Australia. The study, Investigating the impact of intensive readingpedagogy in adult literacy, was designed to explore the relevance and thepotential of an intensive, explicit reading pedagogy, Reading-to-Learn, in adultand community education (ACE and TAFE colleges in metropolitanSydney, teaching literacy in ESL and adult basic education (ABE classes.The study was a partnership between practising teachers andresearcher/teacher educators. It identified positive outcomes for students,with advances in reading abilities for many students well beyond thoseanticipated by teachers and students alike. Teachers also reported verypositive outcomes for their own professional development. Importantly, thestudy also identified a number of system-level features that would need to bein place to support a broader adoption of the pedagogy.

  2. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    OpenAIRE

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C S; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G. E.; Kidd, R.D.; van Sluis, C A; Foing, B. H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expected life detection targets. We have characterized the mineralogy, organic chemistry and microbiology of ten selected sample sites from the Utah desert in close vicinity to the Mars Desert Research ...

  3. Exploring Motivational System Theory within the Context of Adult Education

    Science.gov (United States)

    Hutto, Debra Jean

    2013-01-01

    Adult Basic Education (ABE) and the General Equivalency Diploma (GED) programs serve those students who, for whatever reason, have left the educational system without attaining a regular high school diploma. Because of the manner in which they may have left the school system, many have negative emotions and personal agency beliefs hindering their…

  4. Exploring the Universe.

    Science.gov (United States)

    Aviation/Space, 1982

    1982-01-01

    Highlights National Aeronautics and Space Administration's (NASA) space exploration studies, focusing on Voyager at Saturn, advanced Jupiter exploration, infrared observatory, space telescope, Dynamics Explorers (satellites designed to provide understanding of earth/sun energy relationship), and ozone studies. (JN)

  5. TSSM: The in situ exploration of Titan

    Science.gov (United States)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  6. Sample Handling and Instruments for the In-Situ Exploration of Ice-Rich Planets. Chapter 9

    Science.gov (United States)

    Castillo, Julie C.; Bar-Cohen, Yoseph; Vance, Steve; Choukroun, Mathieu; Lee, Hyeong Jae; Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Trainer, Melissa G.; Getty, Stephanie A.

    2016-01-01

    NASA's key science goals for the exploration of the solar system seek a better understanding of the formation and evolutionary processes that have shaped planetary bodies and emphasize the search for habitable environments. Efforts are also made to detect and quantify resources that could be used for the support of human exploration. These themes call for chemistry and physical property observations that may be best approached by in situ measurements. NASA's planetary missions have progressively evolved from remote reconnaissance to in situ exploration with the ultimate goal to return samples. This chapter focuses on the techniques, available or in development, for advanced geophysical and chemical characterization of icy bodies, especially Mars polar areas, Enceladus, Titan, Europa, and Ceres. These astrobiological targets are the objects of recent or ongoing exploration whose findings are driving the formulation of new missions that involve in situ exploration. After reviewing the overall objectives of icy body exploration (Section 9.1) we describe key techniques used for addressing these objectives from surface platforms via geophysical observations (Section 9.2) and chemical measurements (Section 9.3).

  7. New Sensor Technologies for Ocean Exploration and Observation

    Science.gov (United States)

    Manley, J. E.

    2005-12-01

    NOAA's Office of Ocean Exploration (OE) is an active supporter of new ocean technologies. Sensors, in particular, have been a focus of recent investments as have platforms that can support both dedicated voyages of discovery and Integrated Ocean Observing Systems (IOOS). Recent programs sponsored by OE have developed technical solutions that will be of use in sensor networks and in stand-alone ocean research programs. Particular projects include: 1) the Joint Environmental Science Initiative (JESI) a deployment of a highly flexible marine sensing system, in collaboration with NASA, that demonstrated a new paradigm for marine ecosystem monitoring. 2) the development and testing of an in situ marine mass spectrometer, via grant to the Woods Hole Oceanographic Institution (WHOI). This instrument has been designed to function at depths up to 5000 meters. 3) the evolution of glider AUVs for aerial deployment, through a grant to Webb Research Corporation. This program's goal is air certification for gliders, which will allow them to be operationally deployed from NAVOCEANO aircraft. 4) the development of new behaviors for the Autonomous Benthic Explorer (ABE) allowing it to anchor in place and await instructions, through a grant to WHOI. This will support the operational use of AUVs in observing system networks. 5) development of new sensors for AUVs through a National Ocean Partnership Program (NOPP) award to Rutgers Universty. This project will develop a Fluorescence Induction Relaxation (FIRe) System to measure biomass and integrate the instrument into an AUV glider. 6) an SBIR award for the development of anti-fouling technologies for solar panels and in situ sensors. This effort at Nanohmics Inc. is developing natural product antifoulants (NPA) in optical quality hard polymers. The technology and results of each of these projects are one component of OE's overall approach to technology research and development. OE's technology program represents the leading edge of

  8. A Trigonometric Exploration.

    Science.gov (United States)

    DiDomenico, Angelo S.

    1992-01-01

    Gives an example of an open exploration using trigonometric relationships in which the law of cosines can be deduced from the law of sines. Discusses the characteristics and value of the exploration process. (MDH)

  9. Exploration and Mining Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-09-01

    This Exploration and Mining Technology Roadmap represents the third roadmap for the Mining Industry of the Future. It is based upon the results of the Exploration and Mining Roadmap Workshop held May 10 ñ 11, 2001.

  10. Exploration cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Huttrer, J.

    1996-12-31

    This presentation by Jerry Huttrer, President, Geothermal Management Company, discusses the general state of exploration in the geothermal industry today, and mentions some ways to economize and perhaps save costs of geothermal exploration in the future. He suggests an increased use of satellite imagery in the mapping of geothermal resources and the identification of hot spots. Also, coordinating with oil and gas exploration efforts, the efficiency of the exploration task could be optimized.

  11. A Vigorous Explorer Program

    OpenAIRE

    Elvis, Martin; Beasley, Matthew; Brissenden, Roger; Chakrabarti, Supriya; Cherry, Michael; Devlin, Mark; Edelstein, Jerry; Eisenhardt, Peter; Feldman, Paul; Ford, Holland; Gehrels, Neil; Golub, Leon; Marshall, Herman; Martin, Christopher; Mather, John

    2009-01-01

    Explorers have made breakthroughs in many fields of astrophysics. The science from both these missions contributed to three Nobel Prizes - Giacconi (2002), Mather, and Smoot (2006). Explorers have: marked the definitive beginning of precision cosmology, discovered that short gamma-ray bursts are caused by compact star mergers and have measured metalicity to redshifts z>6. NASA Explorers do cutting-edge science that cannot be done by facility-class instruments. The Explorer program provides a ...

  12. The Thermal Environment of the World's Highest Lake: Results from the First Field Season at Licancabur Volcano and Implications for Astrobiology

    Science.gov (United States)

    Hock, A. N.; Cabrol, N. A.; Grin, E. A.; Murbach, M.; Fike, D. A.; Grisby, B.; Paige, D. A.; McKay, C.; Chong, G.; Demergasso, C.; Friedmann, I.; Ocampo-Friedmann, R.; Kiss, K. T.; Grigorsky, I.; Devore, E.

    2002-12-01

    Licancabur makes it a unique terrestrial analog to relict lacustrine environments (e.g. volcanic lakes, impact crater lakes, hot springs, etc.) that may have given refuge to life on Mars. Results from this and future field seasons will be applied to constrain models of martian impact crater lake cooling and to better target future astrobiological missions to Mars.

  13. Exploration Blueprint: Data Book

    Science.gov (United States)

    Drake, Bret G. (Editor)

    2007-01-01

    The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human

  14. International exploration by independent

    International Nuclear Information System (INIS)

    Recent industry trends indicate that the smaller U.S. independents are looking at foreign exploration opportunities as one of the alternatives for growth in the new age of exploration. Foreign finding costs per barrel usually are accepted to be substantially lower than domestic costs because of the large reserve potential of international plays. To get involved in overseas exploration, however, requires the explorationist to adapt to different cultural, financial, legal, operational, and political conditions. Generally, foreign exploration proceeds at a slower pace than domestic exploration because concessions are granted by a country's government, or are explored in partnership with a national oil company. First, the explorationist must prepare a mid- to long-term strategy, tailored to the goals and the financial capabilities of the company; next, is an ongoing evaluation of quality prospects in various sedimentary basins, and careful planning and conduct of the operations. To successfully explore overseas also requires the presence of a minimum number of explorationists and engineers thoroughly familiar with the various exploratory and operational aspects of foreign work. Ideally, these team members will have had a considerable amount of on-site experience in various countries and climates. Independents best suited for foreign expansion are those who have been financially successful in domestic exploration. When properly approached, foreign exploration is well within the reach of smaller U.S. independents, and presents essentially no greater risk than domestic exploration; however, the reward can be much larger and can catapult the company into the 'big leagues.'

  15. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  16. Visual explorer facilitator's guide

    CERN Document Server

    Palus, Charles J

    2010-01-01

    Grounded in research and practice, the Visual Explorer™ Facilitator's Guide provides a method for supporting collaborative, creative conversations about complex issues through the power of images. The guide is available as a component in the Visual Explorer Facilitator's Letter-sized Set, Visual Explorer Facilitator's Post card-sized Set, Visual Explorer Playing Card-sized Set, and is also available as a stand-alone title for purchase to assist multiple tool users in an organization.

  17. The exploration metaphor

    Science.gov (United States)

    Mcgreevy, Michael W.

    1991-01-01

    NASA's experience in planetary exploration has demonstrated that the desktop workstation is inadequate for many visualization situations. The primary mission displays for the unmanned Surveyor missions to the moon during the mid-1960's, for example, were environmental images assembled on the inside surfaces of spherical shells. Future exploration missions will greatly benefit from advances in digital computer and display technology, but there remain unmet user interface needs. Alternative user interfaces and metaphors are needed for planetary exploration and other interactions with complex spatial environments. These interfaces and metaphors would enable the user to directly explore environments and naturally manipulate objects in those environments. Personal simulators, virtual workstations, and telepresence user interfaces are systems capable of providing this integration of user space and task space. The Exploration Metaphor is a useful concept for guiding the design of user interfaces for virtual environments and telepresence. To apply the Exploration Metaphor is to assert that computing is like exploration, and to support objects, operations, and contexts comparable to those encountered in the exploration of natural environments. The Exploration Metaphor, under development for user interfaces in support of NASA's planetary exploration missions and goals, will also benefit other applications where complex spatial information must be visualized. Visualization methods and systems for planetary exploration are becoming increasingly integrated and interactive as computing technology improves. These advances will benefit from virtual environment and telepresence interface technology. A key development has been the processing of multiple images and other sensor data to create detailed digital models of the planets and moons. Data from images of the Earth, Mars, and Miranda, for example, have been converted into 3D models, and dynamic virtual fly-overs have been

  18. Terrestrial atmosphere, water and astrobiology

    OpenAIRE

    Coradini M.; Brack A.

    2010-01-01

    Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bon...

  19. Scouting's Explorer Program

    Science.gov (United States)

    Claerhout, John M.

    1970-01-01

    This article suggests the relationship which the Explorer program could have with colleges, employers, and the students and employees of the future. Exploring as a process of finding out can help young people find their identity, personally and vocationally, and enable college carrer counselors to expand on a sound foundation of vocational…

  20. Uranium exploration in Ecuador

    International Nuclear Information System (INIS)

    The 600-km segment of the Andean Cordillera in Ecuador includes zones that can be correlated, geologically, with uranium districts elsewhere in the Andes. It is believed that these essentially unexplored zones have the potential for economic uranium mineralization. Exploration activity to date has been limited, although it has involved both geochemical and radiometric techniques to evaluate geological concepts. Minor uranium occurrences (with chemical analyses up to 100 ppm) have been encountered, which provide further incentive to commence large-scale systematic exploration. It is recognized that a very large exploration budget and considerable technical expertise will be required to ensure exploration success. Consequently, participation by groups of proven capability from other countries will be sought for Ecuador's national exploration programme. (author)

  1. Recursos didácticos para comunicar aspectos metodológicos y conceptuales tanto de la exploración planetaria como de la astrobiología

    OpenAIRE

    2007-01-01

    En este artículo se exponen algunos de los recursos didácticos que han sido concebidos para facilitar el aprendizaje de distintos aspectos de la Exploración Planetaria y, en concreto, de la Astrobiología como área transdisciplinar de conocimientos. El interés más evidente que presentan estos materiales didácticos, además de tener una vocación interactiva, es que combinan contenidos científicotecnológicos con cuestiones de índole metodológica, lo que proporciona al estudiante una visión más re...

  2. Exploring the Origin, Extent, and Future of Life

    Science.gov (United States)

    Bertka, Constance M.

    2009-09-01

    1. Astrobiology in societal context Constance Bertka; Part I. Origin of Life: 2. Emergence and the experimental pursuit of the origin of life Robert Hazen; 3. From Aristotle to Darwin, to Freeman Dyson: changing definitions of life viewed in historical context James Strick; 4. Philosophical aspects of the origin-of-life problem: the emergence of life and the nature of science Iris Fry; 5. The origin of terrestrial life: a Christian perspective Ernan McMullin; 6. The alpha and the omega: reflections on the origin and future of life from the perspective of Christian theology and ethics Celia Deane-Drummond; Part II. Extent of Life: 7. A biologist's guide to the Solar System Lynn Rothschild; 8. The quest for habitable worlds and life beyond the Solar System Carl Pilcher; 9. A historical perspective on the extent and search for life Steven J. Dick; 10. The search for extraterrestrial life: epistemology, ethics, and worldviews Mark Lupisella; 11. The implications of discovering extraterrestrial life: different searches, different issues Margaret S. Race; 12. God, evolution, and astrobiology Cynthia S. W. Crysdale; Part III. Future of Life: 13. Planetary ecosynthesis on Mars: restoration ecology and environmental ethics Christopher P. McKay; 14. The trouble with intrinsic value: an ethical primer for astrobiology Kelly C. Smith; 15. God's preferential option for life: a Christian perspective on astrobiology Richard O. Randolph; 16. Comparing stories about the origin, extent, and future of life: an Asian religious perspective Francisca Cho; Index.

  3. International exploration by independents

    International Nuclear Information System (INIS)

    Recent industry trends indicate that the smaller US independents are looking at foreign exploration opportunities as one of the alternatives for growth in the new age of exploration. It is usually accepted that foreign finding costs per barrel are substantially lower than domestic because of the large reserve potential of international plays. To get involved overseas requires, however, an adaptation to different cultural, financial, legal, operational, and political conditions. Generally foreign exploration proceeds at a slower pace than domestic because concessions are granted by the government, or are explored in partnership with the national oil company. First, a mid- to long-term strategy, tailored to the goals and the financial capabilities of the company, must be prepared; it must be followed by an ongoing evaluation of quality prospects in various sedimentary basins, and a careful planning and conduct of the operations. To successfully explore overseas also requires the presence on the team of a minimum number of explorationists and engineers thoroughly familiar with the various exploratory and operational aspects of foreign work, having had a considerable amount of onsite experience in various geographical and climatic environments. Independents that are best suited for foreign expansion are those that have been financially successful domestically, and have a good discovery track record. When properly approached foreign exploration is well within the reach of smaller US independents and presents essentially no greater risk than domestic exploration; the reward, however, can be much larger and can catapult the company into the big leagues

  4. A Vigorous Explorer Program

    CERN Document Server

    Elvis, Martin; Brissenden, Roger; Chakrabarti, Supriya; Cherry, Michael; Devlin, Mark; Edelstein, Jerry; Eisenhardt, Peter; Feldman, Paul; Ford, Holland; Gehrels, Neil; Golub, Leon; Marshall, Herman; Martin, Christopher; Mather, John; McCandliss, Stephan; McConnell, Mark; McDowell, Jonathan; Meier, David; Millan, Robyn; Mitchell, John; Moos, Warren; Murray, Steven S; Nousek, John; Oegerle, William; Ramsey, Brian; Green, James; Grindlay, Jonathan; Kaaret, Philip; Kaiser, Mary Elizabeth; Kaltenegger, Lisa; Kasper, Justin; Krolik, Julian; Kruk, Jeffrey W; Latham, David; MacKenty, John; Mainzer, Amanda; Ricker, George; Rinehart, Stephen; Romaine, Suzanne; Scowen, Paul; Silver, Eric; Sonneborn, George; Stern, Daniel; Swain, Mark; Swank, Jean; Traub, Wesley; Weisskopf, Martin; Werner, Michael; Wright, Edward

    2009-01-01

    Explorers have made breakthroughs in many fields of astrophysics. The science from both these missions contributed to three Nobel Prizes - Giacconi (2002), Mather, and Smoot (2006). Explorers have: marked the definitive beginning of precision cosmology, discovered that short gamma-ray bursts are caused by compact star mergers and have measured metalicity to redshifts z>6. NASA Explorers do cutting-edge science that cannot be done by facility-class instruments. The Explorer program provides a rapid response to changing science and technology, to enable cutting-edge science at moderate cost. Explorers also enable innovation, and engage & train scientists, managers and engineers, adding human capital to NASA and the nation. The astrophysics Explorer launch rate now being achieved is 1 per 3 years, and budget projections are in the $150M/year range for the next five years. A newly Vigorous Explorer Program should be created to: 1. Reach the long-stated goal of annual astrophysics launches; 2. Find additional ...

  5. Exploration: A misunderstood business

    International Nuclear Information System (INIS)

    The business of exploration is persistently misunderstand. Why? Misunderstandings persist and even pervade educated, sophisticated, and obviously capable business practitioners and savants of an array of disciplines - finance, economics, and the management sciences. Routine and appropriate assumptions that apply for most businesses invoke nonsense applied to exploration, a unique business. The uniqueness of exploration, unrecognized, sustains the misunderstandings. The authors will not here obliterate these obdurate misunderstandings with some revelation. They show, however, how the misunderstandings naturally arise among those who certainly are not used to being naive

  6. Arts of urban exploration

    DEFF Research Database (Denmark)

    Pinder, David

    2005-01-01

    This paper addresses ways in which artists and cultural practitioners have recently been using forms of urban exploration as a means of engaging with, and intervening in, cities. It takes its cues from recent events on the streets of New York that involved exploring urban spaces through artistic...... that experimental modes of exploration can play a vital role in the development of critical approaches to the cultural geographies of cities. In particular, discussion centres on the political significance of these spatial practices, drawing out what they have to say about two interconnected themes: ‘rights...... to the city’ and ‘writing the city’. Through addressing recent cases of psychogeographical experimentation in terms of these themes, the paper raises broad questions about artistic practices and urban exploration to introduce this theme issue on ‘Arts of urban exploration’ and to lead into the specific...

  7. Uranium exploration in Australia

    International Nuclear Information System (INIS)

    Australia has more low-cost uranium in deposits than any other country, but finding it is not easy. While the price for uranium has been low, little was found but now exploration is starting to increase.

  8. Birth Control Explorer

    Science.gov (United States)

    ... Relationships STIs Media Facebook Twitter Tumblr Shares · 5 Birth Control Explorer Sort by all methods most effective methods ... 100% effective method of birth control. LEARN MORE IUD An IUD is a T-shaped device that ...

  9. Advanced Exploration Systems Program

    Data.gov (United States)

    National Aeronautics and Space Administration — AES consists of more than 35 projects that target high-priority capabilities needed for human exploration such as crew mobility, deep-space habitation, vehicle...

  10. Academics explore humidity's benefits.

    Science.gov (United States)

    Mortimer, Dave

    2008-11-01

    The effects of humidification on hospital superbugs are being explored by some of the UK's top academics, in what Dave Mortimer, national sales manager for Vapac Humidity Control, explains are the UK's first such studies. PMID:19044148

  11. Brazilian uranium exploration program

    International Nuclear Information System (INIS)

    General information on Brazilian Uranium Exploration Program, are presented. The mineralization processes of uranium depoits are described and the economic power of Brazil uranium reserves is evaluated. (M.C.K.)

  12. Exploring Clinical Overview

    DEFF Research Database (Denmark)

    Fleron, Benedicte

    Clinical overview is explored at four emergency departments (EDs) during the introduction of a new IT system to support hereof. Important aspects of clinical overview are described for the clinical practice and for the further development of the IT system.......Clinical overview is explored at four emergency departments (EDs) during the introduction of a new IT system to support hereof. Important aspects of clinical overview are described for the clinical practice and for the further development of the IT system....

  13. Exploring ambiguous realms

    DEFF Research Database (Denmark)

    Clemensen, Nana

    2016-01-01

    In Hang'ombe Village in rural Zambia, the relative lack of physical boundaries between the activities of family members allow children to observe the actions and discussions of adults on close hand, exposing them to the ambiguities of daily life. Children explore these ambiguities in their intera...... interactions, testing social roles and conventions. This article explores the vigilance and creative agency displayed by Hang'ombe children, in an environment spurring their acquisition of distinct social and discursive skills....

  14. Exploring Vietnam's oil potential

    International Nuclear Information System (INIS)

    A brief review is given of the oil production potential in Vietnam. Since Since 1987, the country has been open to foreign investment in offshore exploration but has suffered from a US embargo on trade and economic ties. Nevertheless some exploration has occurred and twenty production sharing contracts with international oil companies has been signed. To date most of the finds have been non-commercial but optimism remains high. (U.K.)

  15. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  16. International exploration by independents

    International Nuclear Information System (INIS)

    Recent industry trends indicate that the smaller U.S. independents are looking at foreign exploration opportunities as one of the alternatives for growth in the new age of exploration. The problems of communications and logistics caused by different cultures and by geographic distances must be carefully evaluated. A mid-term to long-term strategy tailored to the goals and the financial capabilities of the company should be prepared and followed by a careful planning of the operations. This paper addresses some aspects of foreign exploration that should be considered before an independent venture into the foreign field. It also provides some guidelines for conducting successful overseas operations. When properly assessed, foreign exploration is well within the reach of smaller U.S. independents and presents no greater risk than domestic exploration; the rewards, however, can be much larger. Furthermore, the Oil and Gas Journal surveys of the 300 largest U.S. petroleum companies show that companies with a consistent foreign exploration policy have fared better financially during difficult times

  17. Debris Disk Explorer : Exploring Stellar Dust Rings

    Science.gov (United States)

    Roberts, Lewis C.; Bryden, G.; Traub, W. A.; Unwin, S. C.; Trauger, J. T.; Krist, J. E.; Star Halo Team

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? The DDX instrument is a 0.7-m diameter ultra-light weight off-axis telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in multiple broad visible wavelength bands. DDX will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a half-global flight in the Southern Hemisphere. This longer flight is needed to fully explore the set of known debris disks accessible only to DDX. It will achieve a raw contrast of 10^-7, with a processed contrast of 10^-8. No existing telescope can match the DDX contrast and resolution performance. A second objective of DDX is to use the near-space environment to raise the Technology Readiness Level (TRL) internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging, for example the Astrophysics Focused Telescope Asset (AFTA) Design Reference study.

  18. Priorities for Venus Exploration

    Science.gov (United States)

    Glaze, L. S.; Beauchamp, P. M.; Chin, G.; Crisp, D.; Grimm, R. E.; Herrick, R. R.; Johnston, S.; Limaye, S. S.; Smrekar, S. E.; Ocampo, A.; Thompson, T. W.

    2013-12-01

    Venus remains one of the most enigmatic bodies in our Solar System. Important questions remain regarding the origin and evolution of the atmosphere, the history of the surface and interior, and how the surface and atmosphere interact. In a broader context, understanding Venus has implications for understanding the evolution of terrestrial planets in our Solar System as well as for interpreting the growing set of observations of extra-solar planets. The Venus Exploration Analysis Group (VEXAG), established in 2005, is chartered by NASA's Planetary Science Division and reports its findings to the NASA Advisory Council. Open to all interested scientists, VEXAG regularly evaluates Venus exploration goals, scientific objectives, investigations and critical measurement requirements, including especially recommendations in the NRC Decadal Survey and the Solar System Exploration Strategic Roadmap. At the last general meeting in November 2012, VEXAG resolved to update the scientific priorities and strategies for Venus exploration. To achieve this goal, three major tasks were defined for 2013, (1) update the document prioritizing Goals, Objectives and Investigations for Venus Exploration, (2) develop a Roadmap for Venus exploration that is consistent with VEXAG priorities as well as Planetary Decadal Survey priorities, and (3) develop a white paper on technologies for Venus missions. Proposed versions of all three documents were presented at the VEXAG general meeting in November 2013. Here, we present the findings and final versions of all three documents for community comment and feedback. A follow-on Workshop on Venus Exploration Targets is also being planned for the early summer of 2014. The workshop will provide a forum for the Venus science community to discuss approaches for addressing high priority investigations. Participants will be encouraged to present their ideas for specific targets on Venus (interior, surface and atmosphere) as well as to present specific data

  19. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine......The past 20 years have seen extensive marine exploration work by the major industrialized countries. Studies have, in part, been concentrated on Pacific manganese nodule occurrences and on massive sulfides on mid-oceanic ridges. An international jurisdictional framework of the sea-bed mineral...... resources was negotiated by the United Nations Conference on the Law of the Sea (UNCLOS III). A most important outcome of this conference was the establishment of an Exclusive Economic Zone (EEZ) of at least 200 nautical miles for all coastal states and the recognition of a deep-sea regime. Mineral deposits...

  20. Interactive Chemical Reactivity Exploration

    CERN Document Server

    Haag, Moritz P; Bosson, Mael; Redon, Stephane; Reiher, Markus

    2014-01-01

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.

  1. Exploring general gauge mediation

    International Nuclear Information System (INIS)

    We explore various aspects of General Gauge Mediation (GGM). We present a reformulation of the correlation functions used in GGM, and further elucidate their IR and UV properties. Additionally we clarify the issue of UV sensitivity in the calculation of the soft masses in the MSSM, highlighting the role of the supertrace over the messenger spectrum. Finally, we present weakly coupled messenger models which fully cover the parameter space of GGM. These examples demonstrate that the full parameter space of GGM is physical and realizable. Thus it should be considered a valid basis for future phenomenological explorations of gauge mediation.

  2. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  3. Exploring Opponent Formats

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rasmussen, Majken; Grønbæk, Kaj

    2013-01-01

    The recent growth in development and research in computer-supported physical games has sprouted a wide variety of games merging qualities from both computer games and sports. Despite the increasing interest in this type of games, exploration of their specific game mechanics and the understanding ...... football-training platform, as well as games designed to explore the different opponent formats. The games are qualitatively evaluated to illuminate the qualities of and distinctions between different types of opponent formats, proposed by the framework terminology....

  4. Robotics for Human Exploration

    Science.gov (United States)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  5. Geophysics in uranium exploration

    International Nuclear Information System (INIS)

    There are no revolutionary new methods of uranium exploration on the horizon. Continuing improvements in existing methods and types of instrumentation are to be expected, but the main scope of improvement will hinge upon using the best of the available methods more meticulously and systematically, and paying more attention to the analysis of data. (author)

  6. SpaceExplorer

    DEFF Research Database (Denmark)

    Hansen, Thomas Riisgaard

    2007-01-01

    Web pages are designed to be displayed on a single screen, but as more and more screens are being introduced in our surroundings a burning question becomes how to design, interact, and display web pages on multiple devices and displays. In this paper I present the SpaceExplorer prototype, which...

  7. Exploring Racism through Photography

    Science.gov (United States)

    Fey, Cass; Shin, Ryan; Cinquemani, Shana; Marino, Catherine

    2010-01-01

    Photography is a powerful medium with which to explore social issues and concerns through the intersection of artistic form and concept. Through the discussions of images and suggested activities, students will understand various ways photographers have documented and addressed racism and discrimination. This Instructional Resource presents a…

  8. Exploring Opponent Formats

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rasmussen, Majken; Grønbæk, Kaj

    2013-01-01

    The recent growth in development and research in computer-supported physical games has sprouted a wide variety of games merging qualities from both computer games and sports. Despite the increasing interest in this type of games, exploration of their specific game mechanics and the understanding ...

  9. The design explorer project

    DEFF Research Database (Denmark)

    Pejtersen, Annelise Mark; Sonnenwald, Diane H.; Buur, Jacob;

    1997-01-01

    It is widely recognized that the increasingly dynamic and competitive business environment requires the exploration and integration of specialized knowledge from different domains in order to create innovative and competitive artefacts and reduce design and development costs. This paper presents ...... industries, manufacturing, hospitals and libraries....

  10. Exploring the Educational Future

    Science.gov (United States)

    Merritt, Elizabeth E.

    2012-01-01

    Futures studies uses scenarios--stories of the future--to explore how trends and events shaping our world may play out in future decades. This article features a short scenario set in California in 2037, depicting twelve-year-old Moya and her brother mart, whose "fenced community" has opted for a system of self-directed, online learning to educate…

  11. Exploring Careers. Office Occupations.

    Science.gov (United States)

    Bureau of Labor Statistics (DOL), Washington, DC.

    "Exploring Careers" is a career education resource program, published in fifteen separate booklets, for junior high school-age students. It provides information about the world of work and offers its readers a way of learning about themselves and relating that information to career choices. The publications aim to build career awareness by means…

  12. Exploration Medical Capability

    Science.gov (United States)

    Watkins, Sharmila; Baumann, David; Wu, Jimmy; Barsten, Kristina

    2010-01-01

    Exploration Medical Capability (ExMC) is an element of NASA's Human Research Program (HRP). ExMC's goal is to address the risk of the Inability to Adequately Recognize or Treat an Ill or Injured Crewmember. This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions. This poster is being presented to inform the audience of the gaps and tasks being investigated by ExMC and to encourage discussions of shared interests and possible future collaborations.

  13. Trends in exploration expenditures

    International Nuclear Information System (INIS)

    The American Petroleum Institute and the Department of Energy have contributed to the U.S. petroleum industry estimates of expenditures in exploration. The estimates of expenditures were for scattered years until 1959; from that year forward a continuous record is available. The petroleum industry in the United States is now spending about $10 billion per year in the search for new oil and gas fields. In 1986 dollars, this level is about that of the 1960s, a period of reduced exploratory effort. In the 1960s and 1970s the industry spent about 25% of its revenue in exploration. In the 1980s the percentage spent in exploration has decreased; in the period 1985 to 1988 the percent of revenue spent in exploring for new oil and gas fields was at or about 15% - a significantly lower level from past history. Levels of exploratory overhead, previously at the level of 10% of revenue, have been about 20% in the 1985 to 1988 period. Expenditure levels tell much about the reinvestment rate of the industry and the optimism or pessimism of those who approve funds for the search for new oil and gas fields

  14. Antarctica: Discovery & Exploration.

    Science.gov (United States)

    Gascoigne, Toss; Collett, Peter

    An examination of Antarctica, from the first sightings to the heroic explorations of the late 18th and early 19th centuries to modern-day research, is presented in this book. Twelve chapters are as follows: (1) The search begins; (2) Whalers and sealers: bites and nibbles; (3) The new continent: first sight; (4) Wintering: the first party; (5)…

  15. Oil Exploration Mapping

    Science.gov (United States)

    1994-01-01

    After concluding an oil exploration agreement with the Republic of Yemen, Chevron International needed detailed geologic and topographic maps of the area. Chevron's remote sensing team used imagery from Landsat and SPOT, combining images into composite views. The project was successfully concluded and resulted in greatly improved base maps and unique topographic maps.

  16. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  17. Relativistic Astrophysics Explorer

    CERN Document Server

    Kaaret, P E

    2003-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m^2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  18. The Relativistic Astrophysics Explorer

    Science.gov (United States)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  19. The Primordial Inflation Explorer

    Science.gov (United States)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  20. Exploring textual data

    CERN Document Server

    Lebart, Ludovic; Berry, Lisette

    1998-01-01

    Researchers in a number of disciplines deal with large text sets requiring both text management and text analysis. Faced with a large amount of textual data collected in marketing surveys, literary investigations, historical archives and documentary data bases, these researchers require assistance with organizing, describing and comparing texts. Exploring Textual Data demonstrates how exploratory multivariate statistical methods such as correspondence analysis and cluster analysis can be used to help investigate, assimilate and evaluate textual data. The main text does not contain any strictly mathematical demonstrations, making it accessible to a large audience. This book is very user-friendly with proofs abstracted in the appendices. Full definitions of concepts, implementations of procedures and rules for reading and interpreting results are fully explored. A succession of examples is intended to allow the reader to appreciate the variety of actual and potential applications and the complementary processin...

  1. Autonomous single camera exploration

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J.

    2006-01-01

    In this paper we present an active exploration strategy for a mobile robot navigating in 3D. The aim is to control a moving robot that autonomously builds a visual feature map while at the same time optimises its localisation in this map. The technique chooses the most appropriate commands maximising the information gain between prior states and measurements, while performing 6DOF bearing only SLAM at video rate. Maximising the mutual information helps the vehicle avoid ill-conditioned measur...

  2. Exploring volumetrically indexed cups

    Science.gov (United States)

    Jones, Dustin L.

    2011-03-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.

  3. Juno I -- Explorer I

    Science.gov (United States)

    1958-01-01

    Juno I, a slightly modified Jupiter-C launch vehicle, shortly before the January 31, 1958 launch of America's first satellite, Explorer I. The Jupiter-C, developed by Dr. Wernher von Braun and the rocket team at Redstone Arsenal in Huntsville, Alabama, consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory.

  4. Exploring the Visual Landscape

    OpenAIRE

    Nijhuis, S.; Van Lammeren, R.; van Der Hoeven, F

    2011-01-01

    Exploring the Visual Landscape is about the combination of landscape research and planning, visual perception and Geographic Information Science. It showcases possible ways of getting a grip on themes like: landscape openness, cluttering of the rural landscape, high-rise buildings in relation to cityscape, historic landscapes and motorway panoramas. It offers clues for visual landscape assessment of spaces in cities, parks and rural areas. In that respect, it extends the long tradition in the...

  5. Exploring Embodied Wellbeing

    OpenAIRE

    Bunne, Astrid

    2013-01-01

    Phenomenological theory and neuroscience suggest that there is no mind-body separation. Yet current mental healthcare services focus mainly on cognitive aspects of the individual in their interventions of depression and anxiety. In consonance with the recent shift from a pathological dominance to a focus on wellbeing, this study acknowledges neglected areas of body and wellbeing in psychological research and healthcare practices by exploring the concept of ‘embodied wellbeing.’ Using particip...

  6. Interactive Chemical Reactivity Exploration

    OpenAIRE

    Haag, Moritz P.; Vaucher, Alain C.; Bosson, Mael; Redon, Stephane; Reiher, Markus

    2014-01-01

    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. ...

  7. Bayesian Adaptive Exploration

    Science.gov (United States)

    Loredo, Thomas J.

    2004-04-01

    I describe a framework for adaptive scientific exploration based on iterating an Observation-Inference-Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data-measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object-show the approach can significantly improve observational efficiency in settings that have well-defined nonlinear models. I conclude with a list of open issues that must be addressed to make Bayesian adaptive exploration a practical and reliable tool for optimizing scientific exploration.

  8. Exploration EVA System

    Science.gov (United States)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  9. Photonics Explorer Workshop

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie

    2014-07-01

    The Photonics Explorer is an intra-curricular educational kit developed in a European project with a pan-European collaboration of over 35 teachers and science education professors. Unlike conventional educational outreach kits, the Photonics Explorer is specifically designed to integrate seamlessly in school curricula and enhance and complement the teaching and learning of science and optics in the classroom. The kit equips teachers with class sets of experimental components, provided within a supporting didactic framework and is designed for lower and upper secondary students (12-18 years). The kit is provided completely free of charge to teachers in conjunction with teacher training courses. The workshop will provide an overview of the Photonics Explorer intra-curricular kit and give teachers the opportunity to work hands-on with the material and didactic content of two modules, `Light Signals' (lower secondary) and `Diffraction and Interference'(upper secondary). We also aim to receive feedback regarding the content, components and didactic framework from teachers from non- European countries, to understand the relevance of the kit for their teaching and the ability for such a kit to integrate into non-EU curricula.

  10. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    Science.gov (United States)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  11. The ISECG Science White Paper - A Scientific Perspective on the Global Exploration Roadmap

    Science.gov (United States)

    Bussey, David B.; Worms, Jean-Claude; Spiero, Francois; Schlutz, Juergen; Ehrenfreund, Pascale

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As an element of this continued road mapping effort, the ISECG agencies are therefore soliciting input and coordinated discussion with the scientific community to better articulate and promote the scientific opportunities of the proposed mission themes. An improved understanding of the scientific drivers and the requirements to address priority science questions associated with the exploration destinations (Moon, Near Earth Asteroids, Mars and its moons) as well as the preparatory activities in cis-lunar space is beneficial to optimize the partnership of robotic assets and human presence beyond low Earth orbit. The interaction has resulted in the development of a Science White Paper to: • Identify and highlight the scientific opportunities in early exploration missions as the GER reference architecture matures, • Communicate overarching science themes and their relevance in the GER destinations, • Ensure international science communities' perspectives inform the future evolution of mission concepts considered in the GER The paper aims to capture the opportunities offered by the missions in the GER for a broad range of scientific disciplines. These include planetary and space sciences, astrobiology, life sciences, physical sciences, astronomy and Earth science. The paper is structured around grand science themes that draw together and connect research in the various disciplines, and it will focus on

  12. Visible-Near Infrared Point Spectrometry of Drill Core Samples from Río Tinto, Spain: Results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) Drilling Exercise

    Science.gov (United States)

    Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  13. Exploring Monte Carlo methods

    CERN Document Server

    Dunn, William L

    2012-01-01

    Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble

  14. Exploring yawning with neuroimaging.

    Science.gov (United States)

    Nahab, Fatta B

    2010-01-01

    The neural mechanisms responsible for spontaneous yawning as well as contagious yawning are not well characterized. Neuroimaging is an essential tool for helping to identify the seminal neural structures and their inter-related functions to carry out this complex stereotyped motor program. Studies to date have explored the structural neural correlates of yawning through a series of lesion-based case reports and identified participatory structures at various levels of the central nervous system. Functional neuroimaging methods like fMRI have also shed led on the genesis of contagious yawning, though cohesive models explaining the neural mechanisms of contagious motor programs such as yawning remain limited. PMID:20357471

  15. Exploring rationality in schizophrenia

    DEFF Research Database (Denmark)

    Revsbech, Rasmus; Mortensen, Erik Lykke; Owen, Gareth;

    2015-01-01

    Background Empirical studies of rationality (syllogisms) in patients with schizophrenia have obtained different results. One study found that patients reason more logically if the syllogism is presented through an unusual content. Aims To explore syllogism-based rationality in schizophrenia. Method...... Thirty-eight first-admitted patients with schizophrenia and 38 healthy controls solved 29 syllogisms that varied in presentation content (ordinary v. unusual) and validity (valid v. invalid). Statistical tests were made of unadjusted and adjusted group differences in models adjusting for intelligence and...... differences became non-significant. Conclusions When taking intelligence and neuropsychological performance into account, patients with schizophrenia and controls perform similarly on syllogism tests of rationality....

  16. Exploration Medical System Demonstration

    Science.gov (United States)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  17. Exploring C++ 11

    CERN Document Server

    Lischner, Ray

    2014-01-01

    Exploring C++ divides C++ up into bite-sized chunks that will help you learn the language one step at a time. Assuming no familiarity with C++, or any other C-based language, you'll be taught everything you need to know in a logical progression of small lessons that you can work through as quickly or as slowly as you need.C++ can be a complicated language. Writing even the most straight-forward of programs requires you to understand many disparate aspects of the language and how they interact with one another. C++ doesn't lend itself to neat compartmentalization the way other languages do. Rat

  18. Uranium exploration techniques

    International Nuclear Information System (INIS)

    The subject is discussed under the headings: introduction (genetic description of some uranium deposits; typical concentrations of uranium in the natural environment); sedimentary host rocks (sandstones; tabular deposits; roll-front deposits; black shales); metamorphic host rocks (exploration techniques); geologic techniques (alteration features in sandstones; favourable features in metamorphic rocks); geophysical techniques (radiometric surveys; surface vehicle methods; airborne methods; input surveys); geochemical techniques (hydrogeochemistry; petrogeochemistry; stream sediment geochemistry; pedogeochemistry; emanometry; biogeochemistry); geochemical model for roll-front deposits; geologic model for vein-like deposits. (U.K.)

  19. Time Series Explorer

    Science.gov (United States)

    Loredo, Thomas

    The key, central objectives of the proposed Time Series Explorer project are to develop an organized collection of software tools for analysis of time series data in current and future NASA astrophysics data archives, and to make the tools available in two ways: as a library (the Time Series Toolbox) that individual science users can use to write their own data analysis pipelines, and as an application (the Time Series Automaton) providing an accessible, data-ready interface to many Toolbox algorithms, facilitating rapid exploration and automatic processing of time series databases. A number of time series analysis methods will be implemented, including techniques that range from standard ones to state-of-the-art developments by the proposers and others. Most of the algorithms will be able to handle time series data subject to real-world problems such as data gaps, sampling that is otherwise irregular, asynchronous sampling (in multi-wavelength settings), and data with non-Gaussian measurement errors. The proposed research responds to the ADAP element supporting the development of tools for mining the vast reservoir of information residing in NASA databases. The tools that will be provided to the community of astronomers studying variability of astronomical objects (from nearby stars and extrasolar planets, through galactic and extragalactic sources) will revolutionize the quality of timing analyses that can be carried out, and greatly enhance the scientific throughput of all NASA astrophysics missions past, present, and future. The Automaton will let scientists explore time series - individual records or large data bases -- with the most informative and useful analysis methods available, without having to develop the tools themselves or understand the computational details. Both elements, the Toolbox and the Automaton, will enable deep but efficient exploratory time series data analysis, which is why we have named the project the Time Series Explorer. Science

  20. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  1. Human exploration mission studies

    Science.gov (United States)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  2. Exploration Supply Chain Simulation

    Science.gov (United States)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  3. Radio Wavelength Observatories within the Exploration Architecture

    CERN Document Server

    Lazio, J; Burns, J; Demaio, L; Jones, D L; Weiler, K W

    2007-01-01

    Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

  4. NASA Robotics for Space Exploration

    Science.gov (United States)

    Fischer, RIchard T.

    2007-01-01

    This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

  5. Exploring the Moon

    CERN Document Server

    Harland, David M

    2008-01-01

    David Harland opens with a review of the robotic probes, namely the Rangers which returned television before crashing into the Moon, the Surveyors which ''soft landed'' in order to investigate the nature of the surface, and the Lunar Orbiters which mapped prospective Apollo landing sites. He then outlines the historic landing by Apollo 11 in terms of what was discovered, and how over the next several missions the program was progressively geared up to enable the final three missions each to spend three days on comprehensive geological investigations. He concludes with a review of the robotic spacecraft that made remote-sensing observations of the Moon. Although aimed at the enthusiast, and can be read as an adventure in exploration, the book develops the scientific theme of lunar geology, and therefore will be of use as background reading for undergraduate students of planetary sciences. In addition, with the prospect of a resumption of human missions, it will help journalists understand what Apollo achieved ...

  6. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  7. Exploring Entrepreneurial Network Relationships

    DEFF Research Database (Denmark)

    Norus, Jesper

    2003-01-01

    explores four different strategies for dealing with network relations; the research oriented strategy, the incubator strategy, the industrial partnering strategy, and the policy-oriented strategy. The research-oriented strategy is narrowly focusing on how a biotechnology firm transforms their scientific...... of bringing the technologies from an experimental stage at a research lab to be able handle industrial processes and full-scale production. Last but not least the policy oriented strategy focus on problem of having products approved by the public authorities.Theoretically the article draws upon network...... theories and a dynamic view of network relations. That is done in order to capture the nature of the relationships between different types of actors, but also in order to emphasize the informal nature of some of these relationships.The article has a dual purpose; 1) From a corporate point of view...

  8. Bayesian Adaptive Exploration

    CERN Document Server

    Loredo, T J

    2004-01-01

    I describe a framework for adaptive scientific exploration based on iterating an Observation--Inference--Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data and predict future data, and Bayesian decision theory to identify which new observations would teach us the most. When the goal of the experiment is simply to make inferences, the framework identifies a computationally efficient iterative ``maximum entropy sampling'' strategy as the optimal strategy in settings where the noise statistics are independent of signal properties. Results of applying the method to two ``toy'' problems with simulated data--measuring the orbit of an extrasolar planet, and locating a hidden one-dimensional object--show the approach can significantly improve observational eff...

  9. Exploring String Theory Backgrounds

    CERN Document Server

    Williams, B P

    2004-01-01

    This thesis examines phenomenological and theoretical questions by exploring string theoretic backgrounds. Part I focuses on cosmology. First we propose that the induced metric along a brane moving through a curved bulk may be interpreted as the cosmology of the brane universe, providing a resolution to the apparent cosmological singularity on the brane. We then look at various decay channels of the certain meta-stable de Sitter vacua and show that there exist NS5-brane meditated decays which are much faster than decays to decompactification. Part II discusses a new class of nongeometric vacua in string theory. These backgrounds may be described locally as T2 fibrations. By enlarging the monodromy group of the fiber to include perturbative stringy duality symmetries we are able to explicitly construct nongeometric backgrounds.

  10. Exploring Oman's Energy Sector

    Science.gov (United States)

    Al-Saqlawi, Juman; Madani, Kaveh; Mac Dowell, Niall

    2016-04-01

    Located in a region where over 40% of the world's oil and gas reserves lie and in a trend similar to that of its neighbors, Oman's economy has been reliant on crude oil export since the 1970's. Being aware of the dangers of this reliance along with the discovery of Natural Gas since the 1980s, the Omani government's policy of diversifying its economy has shifted its reliance on Oil to another fossil fuel, namely Natural Gas. Given that energy is the lifeline of Oman's economy, effective and efficient forward planning and policy development is essential for the country's current and future economic development. This presentation explores the current status of the energy sector in Oman from home production and import to eventual final uses. The presentation highlights the major issues with Oman's current energy policies and suggests various strategies that could be adopted by Oman for a more efficient and sustainable future.

  11. KEEPING Exploring New Frontiers

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2010-01-01

    @@ "To live fully is to surge ahead constantly. After achieving what you have aimed at, you should aim higher.Therefore, success doesn't mean what level you are at, but the journey of achieving next level". This is the meaning of success in the eyes of Guy Lam, Chairman of Pacrim International Capital Inc, Over 20 years since he began to engage in business, He has been keeping it in mind that the value of life lies in the journey to new creation but not the level of ownership. Therefore, when he achieved one success after another in different fields, Guy was never content with the achievement he had obtained.but more eager to explore new frontiers.

  12. Outreach and capacity building activities for engaging youth and public in Exploration

    Science.gov (United States)

    Foing, Bernard H.

    We report to the COSPAR Panel on Education and relevant community on activities, pilot projects and results relevant for outreach and engagement in exploration. Number of activities were developed in the frame of the International Lunar Exploration Working Group (ILEWG) including the participation of students in lunar symposia, space conferences or ICEUM International Conferences on Exploration and Utilisation of the Moon* ILEWG with support from various space agencies, universities and institutions has organized events for young professionals with a wide background (including scientist, engineers, humanistic, law, art students) a Moon academy, lunar and planetary students work-shops, technical training workshops, international observe the Moon sessions. ILEWG has organised or sponsored participants to a series of field training and research campaigns in Utah desert research station, Eifel volcanic park, Iceland, Rio Tinto, La Reunion island. Education and outreach projects used space missions data (SMART-1 views of the Moon, Earth views from space, Mars views, Mars crowdsourcing games, astronomy data analysis) to engage the public in citizen science and exploration. Artistic and sociological projects (e.g. "social lunar telescope, lunar zen garden, Moon academy, MoonLife, MoonLife concept store, Moon republic, artscience projects, space science in the arts, artists in residence, artists in MoonMars base") were also initiated with artists to engage the wide public in exploration. A number of projects have been developed with support from ITACCUS IAF committee. We shall discuss how these pilot projects could be expanded for the benefit of future space projects, young professionals, the space community and the public. Acknowledgements: we thank collaborators from ILEWG community and partner institutes for the different projects mentioned http://sci.esa.int/ilewg/ http://sci.esa.int/ilewg/47170-gluc-iceum11-beijing-2010lunar-declaration/ Foing B., Stoker C

  13. Ice Giant Exploration

    Science.gov (United States)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  14. Mineral exploration in developing countries

    International Nuclear Information System (INIS)

    The chapter provides an overview and comparisons of mineral exploration in Botswana and Papua New Guinea, including selection comparisons with Australia and Canada. It describes the history of exploration in Botswana and PNG. The concluding section summarizes the findings

  15. Deep Exploration via Bootstrapped DQN

    OpenAIRE

    Osband, Ian; Blundell, Charles; Pritzel, Alexander; Van Roy, Benjamin

    2016-01-01

    Efficient exploration in complex environments remains a major challenge for reinforcement learning. We propose bootstrapped DQN, a simple algorithm that explores in a computationally and statistically efficient manner through use of randomized value functions. Unlike dithering strategies such as epsilon-greedy exploration, bootstrapped DQN carries out temporally-extended (or deep) exploration; this can lead to exponentially faster learning. We demonstrate these benefits in complex stochastic ...

  16. Explorations in Statistics: Permutation Methods

    Science.gov (United States)

    Curran-Everett, Douglas

    2012-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eighth installment of "Explorations in Statistics" explores permutation methods, empiric procedures we can use to assess an experimental result--to test a null hypothesis--when we are reluctant to trust statistical…

  17. Explorations in Statistics: the Bootstrap

    Science.gov (United States)

    Curran-Everett, Douglas

    2009-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…

  18. Uranium exploration in Ethiopia

    International Nuclear Information System (INIS)

    Full text: Radioactive exploration dates back to 1955 and since then little progress has been made. Few pits and trenches in some places show radioactive anomalies.The Wadera radioactive anomaly occurs within the lower part of Wadera series, Southern Ethiopia. As observed from a trench the anomalous bed has a thickness of 0.9-1.2 m and is made of reddish-grey thin bedded sandstones.The presence of Xenotime in arkosic sandstone points to the sedimentary origin of mineralization. It was noticed that the sandstone in the lower part of Wadera series has at places a radioactivity 2-3 times higher than adjacent gneisses. The presence of a placer of such a type in the Wadera series is probably a clue for the existence of larger deposits in the area. In 2007 geological, geochemical and geophysical surveys were conducted to identify and delineate Uranium mineralization in three localities(Kuro, Kalido and Gueti) of Werri area, southern Ethiopia. Kaolinization, silicification, epidotization and chloritization are the main types of alteration associated with different units in the area. Uranium-bearing grains which are hosted in pegmatite veins and associated with magnetite/or ilmenite were observed in the three localities. Geochemical exploration accompanied by geological mapping and radiometric survey was done by employing heavy mineral concentrate, soil, chip and trench channel sampling. Radiometric readings of total count, U,Th and K were taken using GAD-6.Soil and trench geochemical samples of the localities analyzed by ICP-MS have shown 0.1 to 3.8 ppm and 3.9 to 147 ppm Uranium and 3.5 to 104.7 ppm and 3.9 to 147ppm Thorium respectively. Radiometric reading is higher in pegmatite veins that host Uranium-bearing minerals and some course grained pegmatoidal granite varieties. The areas recognized for Uranium associations need further investigations using state-of-the-art to discover economic deposits for development and utilization of the resource. (author)

  19. Endogenous strategy in exploration.

    Science.gov (United States)

    Solman, Grayden J F; Kingstone, Alan

    2015-12-01

    We examined the characteristics of endogenous exploratory behaviors in a generalized search task in which guidance signals (e.g., landmarks, semantics, visual saliency, layout) were limited or precluded. Individuals looked for the highest valued cell in an array and were scored on the quality of the best value they could find. Exploration was guided only by the cells that had been previously examined, and the value of this guidance was manipulated by adjusting spatial autocorrelation to produce relatively smooth and rough landscapes-that is, arrays in which nearby cells had unrelated values (low correlation = rough) or similar values (high correlation = smooth). For search in increasingly rough as compared with smooth arrays, we found reduced performance despite increased sampling and increased time spent searching after revelation of a searcher's best cell. Spatially, sampling strategies tended toward more excursive, branching, and space-filling patterns as correlation decreased. Using a novel generalized-recurrence analysis, we report that these patterns reflect an increase in systematic search paths, characterized by regularized sweeps with localized infilling. These tendencies were likewise enhanced for high-performance as compared with low-performance participants. The results suggest a trade-off between guidance (in smooth arrays) and systematicity (in rough arrays), and they provide insight into the particular strategic approaches adopted by searchers when exogenous guiding information is minimized. PMID:26214501

  20. International Ultraviolet Explorer (IUE)

    Science.gov (United States)

    Boehm, Karl-Heinz

    1992-01-01

    The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.

  1. Dynamics Explorer guest investigator

    Science.gov (United States)

    Sojka, Jan J.

    1991-01-01

    A data base of satellite particle, electric field, image, and plasma data was used to determine correlations between the fields and the particle auroral boundaries. A data base of 8 days of excellent coverage from all instruments was completed. The geomagnetic conditions associated with each of the selected data periods, the number of UV image passes per study day that were obtained, and the total number of UV images for each day are given in tabular form. For each of the days listed in Table 1, both Vector Electric Field Instrument (VEFI) electric potential data and LAPI integrated particle energy fluxes were obtained. On the average, between 8 and 11 passes of useful data per day were obtained. These data are displayed in a format such that either the statistical electric field model potential or the statistical precipitation energy flux could be superimposed. The Heppner and Maynard (1987) and Hardy et al. (1987) models were used for the electric potential and precipitation, respectively. In addition, the auroral image intensity along the Dynamics Explorer-2 satellite pass could be computed and plotted along with the LAPI precipitation data and Hardy et al. (1987) values.

  2. Human Space Exploration

    Science.gov (United States)

    Jeevarajan, Antony

    2014-01-01

    The Mars probe, launched by India a few months ago, is on its way to Mars. At this juncture, it is appropriate to talk about the opportunities presented to us for the Human Exploration of Mars. I am planning to highlight some of the challenges to take humans to Mars, descend, land, stay, ascend and return home safely. The logistics of carrying the necessary accessories to stay at Mars will be delivered in multiple stages using robotic missions. The primary ingredients for human survival is air, water, food and shelter and the necessity to recycle the primary ingredients will be articulated. Humans have to travel beyond the van Allen radiation belt under microgravity condition during this inter-planetary travel for about 6 months minimum one way. The deconditioning of human system under microgravity conditions and protection of humans from Galactic cosmic radiation during the travel should be taken into consideration. The multi-disciplinary effort to keep the humans safe and functional during this journey will be addressed.

  3. Exploring the dusty Universe

    Directory of Open Access Journals (Sweden)

    Borghese, F

    2005-11-01

    Full Text Available Dust is an ubiquitous inhabitant of the interstellar medium, and leaves an unmistakable signature in its optical properties, and physico-chemical evolution. Although there is little direct knowledge of the true nature of interstellar dust grains, strong evidences point toward the possibility that such grains are composites of many small monomers (mainly made of silicates and carbonaceous materials. We consider two different models of fluffy dust aggregates, occurring as result of ballistic particle-cluster and cluster-cluster aggregation, and a cluster with a Gaussian-like sphere size distribution. We study the optical properties of such composite structures through the multipole fields and the Transition Matrix approach. Our results show the severe limits of applicability of the effective medium theories. By comparing radiation and gravitational forces, we also infer some relevant insights into the dynamical evolution of composite grains in the Solar System. We finally explore the possible role of composite fluffy dust grains in igniting an extraterrestrial prebiotic chemistry.

  4. Planetary Exploration Panel PEX: Support for lunar exploration

    Science.gov (United States)

    Ehrenfreund, Pascale

    2010-05-01

    The new era of space exploration will be international, human-centric, transdisciplinary and participatory. It will also provide an opportunity to inspire, motivate, and involve an ever increasing number of countries. The objective of the COSPAR Panel on Space Exploration (PEX) is to provide the best, independent, input to support the development of worldwide space exploration programs and to safeguard the scientific assets of solar system objects. The input will be drawn from expertise provided via the contacts maintained by COSPAR's various Associates within the international community and scientific entities. For lunar exploration, the International Lunar Exploration Working Group (ILEWG) and the Lunar Exploration Analysis Group (LEAG), as well as other committees, represent important foci for an even broader base of expertise. Seven NASA Lunar Science Institute nodes are actively supporting space exploration in the US. In addition, the International Space Exploration Coordination group ISECG was established to implement the Global Exploration Strategy GES, contained in a document that was elaborated by representatives of 14 space agencies. PEX provides synergies of existing documents and roadmaps of each of these bodies to support existing space exploration groups, foster transnational alliances and support joint research and education.

  5. Mineral exploration in South Africa

    International Nuclear Information System (INIS)

    While the level of mineral exploration in much of Africa over the last ten to fifteen years has stagnated or declines, it has risen dramatically in South Africa. This chapter reviews this growth trend along with changes in the type of minerals sought through these exploration expenditures, and then identifies factors important to these shifts over time in the level and distribution of exploration expenditures. The chapter describes certain aspects of the South African mining industry which are important for exploration and which distinguish South Africa from other mineral-producing countries. Annual exploration expenditures for South Africa are shown in millions of current and constant (1982) and in figure 5-2 for the period from 1960 to 1983. The data include exploration for nonfuel minerals as well as two mineral fuels - uranium and coal

  6. Bill would expand ocean exploration

    Science.gov (United States)

    Showstack, Randy

    Legislation introduced by U.S. Congressman James Greenwood (R-Penn.) on June 9 could lead to increased study and exploration of the world's oceans.“The Exploration of the Seas Act” (House Resolution 2090) would direct the Secretary of Commerce to contract with the National Academy of Sciences to establish a Coordinated Oceanographic Program Advisory Panel to report to Congress on the adoption and establishment of an international effort to explore the potential of the oceans.

  7. Exploring Conditional Rewriting Logic Computations

    OpenAIRE

    Alpuente Frasnedo, María; Ballis, Demis; Frechina Navarro, Francisco; Sapina, Julia

    2015-01-01

    Trace exploration is concerned with techniques that allow computation traces to be dynamically searched for specific contents. Depending on whether the exploration is carried backward or forward, trace exploration techniques allow provenance tracking or impact tracking to be done. The aim of provenance tracking is to show how (parts of) a program output depends on (parts of) its input and to help estimate which input data need to be modified to accomplish a change in the ...

  8. Affinity of Smectite and Divalent Metal Ions (Mg2+, Ca2+, Cu2+) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology

    Science.gov (United States)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg2+, Ca2+ and Cu2+) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu2+- exchanged SMT and minimal affinity for Mg2+- exchanged SMT. The vibrational frequency shifts of —NH3 + and —COO- favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu—M2+ complex, M = Mg2+, Ca2+, Cu2+) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu—M2+ × (H2O)n, ( n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.

  9. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  10. Avionics Architecture for Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Avionics Architectures for Exploration Project team will develop a system level environment and architecture that will accommodate equipment from multiple...

  11. Science goals and mission concept for the future exploration of Titan and Enceladus

    Science.gov (United States)

    Tobie, G.; Teanby, N. A.; Coustenis, A.; Jaumann, R.; Raulin, F.; Schmidt, J.; Carrasco, N.; Coates, A. J.; Cordier, D.; De Kok, R.; Geppert, W. D.; Lebreton, J.-P.; Lefevre, A.; Livengood, T. A.; Mandt, K. E.; Mitri, G.; Nimmo, F.; Nixon, C. A.; Norman, L.; Pappalardo, R. T.; Postberg, F.; Rodriguez, S.; Schulze-Makuch, D.; Soderblom, J. M.; Solomonidou, A.; Stephan, K.; Stofan, E. R.; Turtle, E. P.; Wagner, R. J.; West, R. A.; Westlake, J. H.

    2014-12-01

    Saturn's moons, Titan and Enceladus, are two of the Solar System's most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus' plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution

  12. Learning, Exploration and Chaotic Policies

    Science.gov (United States)

    Potapov, Alexei B.; Ali, M. K.

    We consider different versions of exploration in reinforcement learning. For the test problem, we use navigation in a shortcut maze. It is shown that chaotic ɛ-greedy policy may be as efficient as a random one. The best results were obtained with a model chaotic neuron. Therefore, exploration strategy can be implemented in a deterministic learning system such as a neural network.

  13. Exploring Civilizations with 'Seven Wolves'

    Institute of Scientific and Technical Information of China (English)

    Yang Jie

    2007-01-01

    @@ Beijing - A farewell party for the CCTV (China Central Television) crew 'Road to Civilizations-Global Exploration Tour of World Major Civilizations' - the world's first TV series documenting the journey of exploring the 12 civilizations in the human world, was sponsored by Fujian Septwolves Industry Co., Ltd and held at the Beijing Landmark hotel on 16 January.

  14. Colombia extends its exploration horizon

    International Nuclear Information System (INIS)

    The Return 1 Contract, currently being awarded under the tender system, faithfully reflects Colombia's new approach to hydrocarbon exploration and exploitation. This policy aims to increase reserves and has Ecopetrol assume a more aggressive role in its direct activities by sharing the exploration risks with private partners

  15. International Collaboration for Venus Exploration

    Science.gov (United States)

    Cutts, James; Limaye, Sanjay; Zasova, Ludmila; Wilson, Colin; Ocampo, Adriana; Glaze, Lori; Svedhem, H.; Nakamura, Masato; Widemann, Thomas

    The Venus Exploration Analysis Group (VEXAG) was established by NASA in July 2005 to identify scientific priorities and strategy for exploration of Venus. From the outset, VEXAG has been open to the international community participation and has followed the progress of the ESA Venus Express Mission and the JAXA Akasuki mission as well exploring potential broad international partnerships for Venus exploration through coordinated science and missions. This paper discussed three mechanisms through which these collaborations are being explored in which VEXAG members participate One pathway for international collaboration has been through COSPAR. The International Venus Exploration Working Group (IVEWG) was formed during the 2012 COSPAR general assembly in Mysore, India. Another potentially significant outcome has been the IVEWG’s efforts to foster a formal dialog between IKI and NASA/PSD on the proposed Venera D mission resulting in a meeting in June 2013 to be followed by a discussion at the 4MS3 conference in October 2013. This has now resulted in an agreement between NASA/PSD and IKI to form a joint Science Definition Team for Venera D. A second pathway has been through an international focus on comparative climatology. Scientists from the established space faring nations participated in a first international conference on Comparative Climatology for Terrestrial Planet (CCTP) in Boulder Colorado in June 2012 sponsored by several international scientific organizations. A second conference is planned for 2015. The Planetary Robotics Exploration Coordinating Group (PRECG) of International Academy of Astronautics (IAA) the IAA has been focusing on exploring affordable contributions to the robotic exploration by non-space-faring nations wishing to get involved in planetary exploration. PRECG has sponsored a two year study of Comparative Climatology for which Venus is the focal point and focused on engaging nations without deep space exploration capabilities. A third

  16. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    Science.gov (United States)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  17. Borehole logging for uranium exploration

    International Nuclear Information System (INIS)

    The present text has been prepared taking into account the requirements of both developing countries, which might be at an incipient stage of uranium exploration, and industrialized countries, where more advanced exploration and resource evaluation techniques are commonly in use. While it was felt necessary to include some discussion of exploration concepts and fundamental physical principles underlying various logging methods, it was not the intention of the consultants to provide a thorough, detailed explanation of the various techniques, or even to give a comprehensive listing thereof. However, a list of references has been included, and it is strongly recommended that the serious student of mineral logging consult this list for further guidance

  18. Exploring Geometric Shapes with Touch

    CERN Document Server

    Pietrzak, Thomas; Brewster, Stephen A; Martin, Benoît; Pecci, Isabelle; 10.1007/978-3-642-03655-2_18

    2012-01-01

    We propose a new technique to help users to explore geometric shapes without vision. This technique is based on a guidance using directional cues with a pin array. This is an alternative to the usual technique that consists of raising the pins corresponding to dark pixels around the cursor. In this paper we compare the exploration of geometric shapes with our new technique in unimanual and bimanual conditions. The users made fewer errors in unimanual condition than in bimanual condition. However they did not explore the shapes more quickly and there was no difference in confidence in their answer.

  19. Exploration through Business Model Innovation

    DEFF Research Database (Denmark)

    Knab, Sebastian; Rohrbeck, René

    2015-01-01

    utilities in the emerging virtual power plant market. Based on the behavioral theory of the firm, we study how the cognitive and physical elements of an incumbent’s strategy can be changed and how these changes affect its business model innovation activities in the exploration process. Our preliminary......With this research we aim to enhance our understanding about how incumbents can explore emerging opportunities through business model innovation. Using a multiple-case, longitudinal research design spanning 2008 to 2014 we investigate exploration activities of the four largest German energy...

  20. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  1. Exploration in the United States

    International Nuclear Information System (INIS)

    This chapter examines issues on U.S. exploration expenditures and discoveries available in 1984 when the chapter was completed. Reviewing the limitations of these data as part of the analysis the section presents two measures of exploration success: gross value of discoveries from 1940 to 1982 and success ratios from 1955 to 1982. It also analyzes the distribution of success among various types of companies and geologic deposit types. For uranium, exploration from 1940 to 1957 supplied adequate reserves for nuclear weapons. Development of nuclear power plants led to another boom between 1967 and 1980, largely terminated by major high-grade discoveries in Canada and Australia, along with decreased demand. Uranium exploration is now dormant

  2. Electromagnetic exploration system. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    A design for a cost effective, highly flexible, and portable controlled source EM exploration system is presented. The design goals of the CMOS micro-processor based receiver and its companion transmitter are listed. (MHR)

  3. Mars Exploration Rover Surface Operations

    Science.gov (United States)

    Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.

    2002-01-01

    The Mars Exploration Rover Project is an ambitious mission to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launching in 2003, surface operations will commence on January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover will end on April 27, 2004. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.

  4. Isotope analysis in petroleum exploration

    International Nuclear Information System (INIS)

    The study about isotopic analysis in petroleum exploration performed at Petrobras Research Center is showed. The results of the petroleum recuperation in same Brazilian basin and shelves are comented. (L.H.L.L.)

  5. Contemporary Priorities for Mars Exploration

    Science.gov (United States)

    Eisen, H.; Sherwood, B.

    2012-06-01

    Human/robotic exploration implemented by an SMD/HEOMD/OCT partnership should refocus mission objectives beyond either refining prior measurements, or fixating on a singular sample return Pathway. The opportunity cost of default is too high.

  6. Exobiology in Solar System Exploration

    Science.gov (United States)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  7. The business of petroleum exploration

    International Nuclear Information System (INIS)

    This book contains the proceedings of the Business of Petroleum Exploration. The following topics are included: Petroleum business; Economic aspects of the business; Managing business; and Legal, Political, Ethical and environment aspects of the business

  8. Bringing life to space exploration.

    Science.gov (United States)

    Noor, A K; Doyle, R J; Venneri, S L

    1999-11-01

    Characteristics of 21st century space exploration are examined. Characteristics discussed include autonomy, evolvability, robotic outposts, and an overview of future missions. Sidebar articles examine the application of lessons from biological systems to engineered systems and mission concepts taking shape at NASA. Those mission concepts include plans for Mars missions, sample return missions for Venus and a comet nucleus, Europa orbiter and lander missions, a Titan organics explorer, and a terrestrial planet finder. PMID:11542653

  9. Designerly Ways of Exploring Crowds

    OpenAIRE

    Li, J.; Vermeeren, A.P.O.S.; De Ridder, H.

    2014-01-01

    In this article, we present examples of using designerly ways to explore “crowd” phenomenon in a cross-disciplinary project named EWiDS. The phrase ‘designerly ways’ refers to visual communication methods such as drawings and videos, which are widely acknowledged as effective approaches to crossdisciplinary collaboration. This study started with designerly ways of exploring crowd experience and crowd management. Three crowd situations, public transportation, outdoor event, and indoor event, w...

  10. Exploring Geometric Shapes with Touch

    OpenAIRE

    Pietrzak, Thomas; Crossan, Andrew; Brewster, Stephen,; Martin, Benoît; Pecci, Isabelle

    2009-01-01

    We propose a new technique to help users to explore geometric shapes without vision. This technique is based on a guidance using directional cues with a pin array. This is an alternative to the usual technique that consists of raising the pins corresponding to dark pixels around the cursor. In this paper we compare the exploration of geometric shapes with our new technique in unimanual and bimanual conditions. The users made fewer errors in unimanual condition than in bimanual condition. Howe...

  11. Exploring Marketing in Micro Firms

    OpenAIRE

    WÀgar, Karolina; Björk, Peter; Ravald, Annika; West, Björn

    2007-01-01

    Purpose - The purpose of the paper is to explore the practice of marketing in micro firms. Which are the challenges micro firms encounter and how do they handle them? Methodology - The research methodology is based on the theory-in-use approach (Zaltman, Heffring & LeMasters 1982) in order to inductively explore the practice of marketing in micro firms. The empirical findings rest on ten case studies, where data has been generated through repeated interactions with each case. Find...

  12. Guided exploration in virtual environments

    Science.gov (United States)

    Beckhaus, Steffi; Eckel, Gerhard; Strothotte, Thomas

    2001-06-01

    We describe an application supporting alternating interaction and animation for the purpose of exploration in a surround- screen projection-based virtual reality system. The exploration of an environment is a highly interactive and dynamic process in which the presentation of objects of interest can give the user guidance while exploring the scene. Previous systems for automatic presentation of models or scenes need either cinematographic rules, direct human interaction, framesets or precalculation (e.g. precalculation of paths to a predefined goal). We report on the development of a system that can deal with rapidly changing user interest in objects of a scene or model as well as with dynamic models and changes of the camera position introduced interactively by the user. It is implemented as a potential-field based camera data generating system. In this paper we describe the implementation of our approach in a virtual art museum on the CyberStage, our surround-screen projection-based stereoscopic display. The paradigm of guided exploration is introduced describing the freedom of the user to explore the museum autonomously. At the same time, if requested by the user, guided exploration provides just-in-time navigational support. The user controls this support by specifying the current field of interest in high-level search criteria. We also present an informal user study evaluating this approach.

  13. The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    CERN Document Server

    McGuire, P C; Wendt, L; Bonnici, A; Souza-Egipsy, V; Ormo, J; Diaz-Martinez, E; Foing, B H; Bose, R; Walter, S; Oesker, M; Ontrup, J; Haschke, R; Ritter, H

    2009-01-01

    (ABRIDGED)In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing hav...

  14. Uranium exploration planning and strategy

    International Nuclear Information System (INIS)

    A country may decide to begin uranium exploration for any of the following three reasons: 1. To meet the needs of a domestic nuclear power programme; 2. To supply uranium as a commodity to the world market in order to earn foreign exchange; 3. To acquire national information on the country's mineral resource planning. In any of these cases, a country must make some basic decisions regarding the means and modes whereby the uranium exploration will be carried out - by national organizations exclusively; by state organizations in joint venture with outside interests by foreign interests under the control of national regulations. Most uranium exploration is carried out following an exploration strategy in which the programme is divided into a series of steps or stages. Each of the phases is designed to eliminate areas of low potential to contain uranium deposits, while focusing attention on areas of higher potential that will be explored in greater detail at higher cost in the subsequent phase. The methods used in each phase are selected to provide the maximum information at the minimum cost so that at the end of each phase a decision can be made whether to continue to the next phase of stop. Because uranium exploration is a high cost high risk activity, governments must make decisions at the outset whether they wish to carry our the work alone and whether they can support the costs involved, or whether they wish to attract foreign investors to help absorb the costs and therefore the risks. In either case, major policy decisions are required to be made to establish the legal and fiscal environment in which the programm will be carried out. (author). 4 refs, 4 figs

  15. Might Astrobiological Findings Evoke a Religious Crisis?

    Science.gov (United States)

    Peters, T.; Froehlig, J. L.

    2009-12-01

    What might be the likely impact of confirmed discovery of extraterrestrial life—microbial or intelligent life—on terrestrial religion? Many have speculated that the anthropo-centrism and earth-centrism which allegedly have characterized our religious traditions would be confronted with a crisis. Would new knowledge that we are not alone in the universe lead to a collapse of traditional religious belief? This presentation will summarize the results of the Peters Religious Crisis Survey of 1325 respondents. This survey shows that the majority of adherents to Christianity, Islam, Judaism, and Buddhism demonstrate little or no anxiety regarding the prospect of contact with extraterrestrial life, even if they express some doubts regarding their respective religious tradition and the traditions of others. This presentation will also show that theological speculation regarding other worlds has sparked lively debate beginning as far back as the middle ages and continuing into our present era. Ted Peters is a research and teaching scholar with the Center for Theology and the Natural Sciences at the Graduate Theological Union in Berkeley, California. He is co-editor of the journal, Theology and Science, and author of the books, The Evolution of Terrestrial and Extraterrestrial Life (Pandora 2008) and Playing God? Genetic Determinism and Human Freedom (Routledge, rev. ed., 2003).

  16. Astrobiology Investigations at a Martian Hematite Site

    Science.gov (United States)

    Allen, Carlton, C.; Westall, Frances; Schelble, Rachel T.

    2001-01-01

    Christensen et al, using data from the Mars Global Surveyor Thermal Emission Spectrometer (TES), have identified gray crystalline hematite in a 350 km by 750 km region near Sinus Meridiani. The deposit corresponds closely to the low-albedo highlands unit 'sm', mapped as a wind-eroded, ancient, subaqueous sedimentary deposit. Christensen et al interpreted the Sinus Meridiani deposit to be 'an in-place, rock-stratigraphic sedimentary unit characterized by smooth, friable layers composed primarily of basaltic sediments with approximately 10 to 15 % crystalline gray hematite.' Christensen et al discussed five possible mechanisms for the formation of this deposit: direct precipitation from standing, oxygenated, Fe-rich water; precipitation from Fe-rich hydrothermal fluids; low-temperature dissolution and precipitation through mobile groundwater leaching; surface weathering and coatings; thermal oxidation of magnetite-rich lavas. Four of these mechanisms involve the interactions of rock with water, and thus have implications in the search for evidence of microbial life.

  17. On The Timescale Forcing in Astrobiology

    OpenAIRE

    Vukotic, B.; Cirkovic, M. M.

    2007-01-01

    We investigate the effects of correlated global regulation mechanisms, especially Galactic gamma-ray bursts (GRBs), on the temporal distribution of hypothetical inhabited planets, using simple Monte Carlo numerical experiments. Starting with recently obtained models of planetary ages in the Galactic Habitable Zone (GHZ), we obtain that the times required for biological evolution on habitable planets of the Milky Way are highly correlated. These results run contrary to the famous anti-SETI ant...

  18. From Astrochemistry to Astrobiology ...... and Back Again

    Science.gov (United States)

    Allamandola, L. J.

    2006-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty five years thanks to significant developments in observational infrared astronomy and laboratory astrophysics. Twenty five years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds generally ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of interstellar dust is reasonably well understood. In molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared spectroscopic studies of interstellar space, combined with laboratory simulations and theoretical studies of PAHs and interstellar ices, have revealed the widespread presence of interstellar PAHs and the composition of interstellar precometary ices. The remainder of the presentation will focus on the photochemical evolution of these icy materials. Within a molecular cloud, and especially the presolar nebula, materials frozen into the ices are photoprocessed by ultraviolet light and more complex molecules are produced. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex materials delivered to habitable planets and their composition may be related to the origin of life.

  19. Astrobiology with Robotic Telescopes at CAB

    OpenAIRE

    Jorge Navas; Antonio Pérez-Verde; Aurora Ullán; Luis Cuesta; M. Teresa Eibe

    2010-01-01

    The key objectives of RTRCAB are the identification of new exoplanets and especially the characterization of the known exoplanets by observing photometric and systematic monitoring of their transits. These telescopes, equipped with advanced technology, optimized control programs, and optical and technical characteristics adequate for this purpose, are ideal to make the observations that are required to carry out these programs. The achievement of these goals is ensured by the existence of thr...

  20. Astrobiology with Robotic Telescopes at CAB

    Directory of Open Access Journals (Sweden)

    Luis Cuesta

    2010-01-01

    Full Text Available The key objectives of RTRCAB are the identification of new exoplanets and especially the characterization of the known exoplanets by observing photometric and systematic monitoring of their transits. These telescopes, equipped with advanced technology, optimized control programs, and optical and technical characteristics adequate for this purpose, are ideal to make the observations that are required to carry out these programs. The achievement of these goals is ensured by the existence of three separated geographical stations. In this sense, there are several planned missions that have the same objectives among their scientific goals, like Kepler, CoRoT, GAIA, and PLATO.

  1. Nanomaterials for Space Exploration Applications

    Science.gov (United States)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  2. Interactive Network Exploration with Orange

    Directory of Open Access Journals (Sweden)

    Miha Štajdohar

    2013-04-01

    Full Text Available Network analysis is one of the most widely used techniques in many areas of modern science. Most existing tools for that purpose are limited to drawing networks and computing their basic general characteristics. The user is not able to interactively and graphically manipulate the networks, select and explore subgraphs using other statistical and data mining techniques, add and plot various other data within the graph, and so on. In this paper we present a tool that addresses these challenges, an add-on for exploration of networks within the general component-based environment Orange.

  3. Exploring Enterprise Architecture Evaluation Practices

    DEFF Research Database (Denmark)

    Andersen, Peter; Carugati, Andrea; Grue Sørensen, Morten

    2015-01-01

    using empirical and practical studies. This paper presents the findings from a case study exploring how enterprise architecture (EA) evaluation takes place in practice. The aim of the case study is to explore EA evaluation from the practical view of primarily enterprise architects and project managers......EA evaluation has received very little attention in academic publications on EA. While EA evaluation to some extent has been described in the literature, the different ways of evaluating architecture have mainly used a top-down approach deriving measures from theory rather than a bottom-up approach...

  4. The history of space exploration

    Science.gov (United States)

    Collins, Martin J.; Kraemer, Sylvia K.

    1994-01-01

    Presented are the acknowledgements and introduction sections of the book 'Space: Discovery and Exploration.' The goal of the book is to address some basic questions of American space history, including how this history compares with previous eras of exploration, why the space program was initiated when it was, and how the U.S. space program developed. In pursuing these questions, the intention is not to provide exhaustive answers, but to point the reader toward a more varied picture of how our venture in space has intersected with American government, politics, business, and science.

  5. A Phenomenological Exploration of Adoption

    Science.gov (United States)

    Baltimore, Diana L.; Crase, Sedahlia Jasper

    2009-01-01

    This qualitative analysis explored children's and adults' experiences with adoption. We used phenomenological methodology and individually interviewed 25 participants and included adoptive mothers and fathers, and their children, each adopted before 18 months of age. Two research questions guided the data analysis: (a) What are children's and…

  6. Explorations in Second Language Reading

    Science.gov (United States)

    Cohen, Roger, Ed.

    2009-01-01

    The chapters in "Explorations in Second Language Reading" reveal the importance of reading in the classroom and how instructors can use reading as a bridge to improve learners' other linguistic and interpersonal skills. Most significantly, each author prompts us to rediscover how enjoyable ESOL reading can be and how it can increase learner…

  7. From space exploration to commercialisation

    NARCIS (Netherlands)

    Tkatchova, S.A.

    2006-01-01

    Space exploration has captured the imagination and dreams of many scientists, engineers and visionaries.The ISS is being built by five ISS partners; NASA, RSA, ESA, CSA and JAXA. ISS commercialisation is the process by which ISS products and services are sold to private companies, without transferri

  8. Exploring Home Education in Japan

    OpenAIRE

    Christopher, Bozek; ボゼック,クリストファー_ジョン

    2015-01-01

    Homeschooling is very unusual in Japan and therefore many Japanese people are not familiar with the idea at all. This paper presents the definition of homeschooling and some basic principles such as why parents decide to teach at home and what group of people homeschool the most. It also explores the advantages of teaching children at home instead of sending them to school.

  9. Exploring Leader Identity and Development.

    Science.gov (United States)

    Priest, Kerry L; Middleton, Eric

    2016-01-01

    Taking on a leader identity can be a motivating force for pursuing leader development. This chapter explores the reciprocal and recursive nature of identity development and leader development, emphasizing how shifting views of self influence one's motivation to develop as a leader. PMID:26895262

  10. Stretching Probability Explorations with Geoboards

    Science.gov (United States)

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  11. Nuclear propulsion for space exploration

    Science.gov (United States)

    Miller, Thomas J.; Bennett, Gary L.

    1992-01-01

    The results of some recent studies of the application of both nuclear electric and nuclear thermal propulsion systems in space exploration are presented. Issues that require further study and which have a significant effect on the propulsion system design and selection are identified. Attention is given to robotic missions, lunar piloted and cargo missions, and Mars missions.

  12. Compilation of geothermal information: exploration

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  13. Exploring Coronal Structures with SOHO

    Indian Academy of Sciences (India)

    Μ. Karovska; Β. Wood; J. Chen; J. Cook; R. Howard

    2000-09-01

    We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.

  14. Exploring Water Pollution. Part II

    Science.gov (United States)

    Rillo, Thomas J.

    1975-01-01

    This is part two of a three part article related to the science activity of exploring environmental problems. Part one dealt with background information for the classroom teacher. Presented here is a suggested lesson plan on water pollution. Objectives, important concepts and instructional procedures are suggested. (EB)

  15. Uranium exploration planning and practice

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency has long had an interest in providing manuals and guidebooks to assist workers in the most effective use of uranium exploration methods and techniques. These have been widely used by the mineral industry around the world. Little has been done, however, to guide and assist senior levels of management of national Atomic Energy Commissions or Geological Surveys in planning for and managing their uranium exploration had development programmes. The nature of uranium, and its potential military use makes it a commodity requiring special consideration. On the other hand, the fact that it is a mineral fuel commodity that is explored for and mined like other mineral commodities presents management with problems of mineral economics unlike those normally faced by government scientific organizations. In order to address these questions, the IAEA convened a Advisory Group meeting in December 1988, to discuss the requirements for uranium exploration planning and practice, from the point of view of national policy and strategy. The six advisors, three observers and four Agency staff members brought to the discussions a wealth of experience in government and in the minerals industry dealing with uranium. The present document, comprising 8 papers as well as transcribed discussions on each, should be of interest and value to senior government planners charged with the task of regulating and controlling their country's uranium development. Refs, figs and tabs

  16. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  17. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  18. Exploring the Phenomenology of Suicide

    Science.gov (United States)

    Pompili, Maurizio

    2010-01-01

    Phenomenology studies conscious experience as experienced from the subjective or first-person point of view. This paper was developed with the aim of shedding light on the phenomenology of suicide; that is, to focus on suicide as a phenomenon affecting a unique individual with unique motives for the suicidal act. To explore this topic, the author…

  19. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  20. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-12-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  1. The Explored Asteroids: Science and Exploration in the Space Age

    Science.gov (United States)

    Sears, D. W. G.

    2015-11-01

    Interest in asteroids is currently high in view of their scientific importance, the impact hazard, and the in situ resource opportunities they offer. They are also a case study of the intimate relationship between science and exploration. A detailed review of the twelve asteroids that have been visited by eight robotic spacecraft is presented here. While the twelve explored asteroids have many features in common, like their heavily cratered and regolith covered surfaces, they are a remarkably diverse group. Some have low-eccentricity orbits in the main belt, while some are potentially hazardous objects. They range from dwarf planets to primary planetesimals to fragments of larger precursor objects to tiny shards. One has a moon. Their surface compositions range from basaltic to various chondrite-like compositions. Here their properties are reviewed and what was confirmed and what was newly learned is discussed, and additionally the explored asteroids are compared with comets and meteorites. Several topics are developed. These topics are the internal structure of asteroids, water distribution in the inner solar system and its role in shaping surfaces, and the meteoritic links.

  2. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    Science.gov (United States)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the

  3. Nuclear Energy for Space Exploration

    Science.gov (United States)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  4. Advances in lunar exploration detectors

    Institute of Scientific and Technical Information of China (English)

    XU Tao; OUYANG Ziyuan; LI Chunlai; XU Lin

    2005-01-01

    Due to the rapid development of modem science and technology, many advanced sensors have been put into use to explore our solar system, including the Moon. With the help of those detectors,we can retrieve more information to about the Moon' s composition and evolution. The Clementine (January, 1994), Lunar Prospector ( January, 1998) and especially Smart-1 ( September, 2003 ) launched successively have demonstrated the next-generation planet exploration techniques. Now China has decided to send a probe to the Moon. So it is necessary to overview the development of detectors used for the scientific observation of the Moon. In this paper, some main instruments used to acquire geochemistry information are described, which include UV-VIS-NIR CCD imaging spectroscope, neutronray, gamma-ray, and X-ray spectrometers. Moreover, the payloads of China' s first lunar satellite are introduced briefly.

  5. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  6. Oil exploration in carbonated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, J.S.

    1980-06-01

    This report gives a detailed description of the oil and gas fields of Chiapas-Tabasco in south Mexico. A history of the discovery of these Mesozoic reservoirs as well as the basic factors taken into account in order to explore and develop these important fields are presented. The stratigraphic column of these pools is shown and explained according to information gathered by superficial geology, gravimetry, and well drilling as well as from data obtained from seismology.

  7. Lunar Exploration Communications Relay Microsatellite

    OpenAIRE

    Kolodziejski, Paul; Knowles, Steve; Dar, Kauser; Wetzel, Eric

    2007-01-01

    In 2005 Andrews Space, Inc. completed some preliminary microsatellite design work for a NASA Cislunar flight experiment known as Micro-X. This paper describes a low-risk satellite design option that leverages the work completed under the Micro-X contract and addresses NASA's near-term Robotic Lunar Exploration Program (RLEP) Objectives. Specifically, this paper describes enhancements to the Micro-X design that includes additional communication and data relay technologies with the Lunar Roboti...

  8. The Exploration Water Recovery System

    Science.gov (United States)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  9. From space exploration to commercialisation

    OpenAIRE

    Tkatchova, S.A.

    2006-01-01

    Space exploration has captured the imagination and dreams of many scientists, engineers and visionaries.The ISS is being built by five ISS partners; NASA, RSA, ESA, CSA and JAXA. ISS commercialisation is the process by which ISS products and services are sold to private companies, without transferring ISS ownership. This thesis has two objectives; to propose a collaboration between space agencies and commercial partners and to describe and predict strategic and market developments in ISS comm...

  10. Exploring the atmosphere using smartphones

    CERN Document Server

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C

    2015-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for the earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the flight information system of an aircraft. The experimental results are compared with the International Standard Atmosphere and other simple approximations: isothermal and constant density atmospheres.

  11. Marfan syndrome: Exploring its jurisdiction

    Directory of Open Access Journals (Sweden)

    Dilip Gude

    2012-01-01

    Full Text Available Marfan syndrome is an inherited disorder of connective tissue with multisystem involvement. Associations with tuberculosis may quagmire the diagnostic capacities in delineating the exclusivity of pulmonary spectra of Marfan syndrome from tuberculosis especially in sputum negative (for acid fast bacilli patients. The disorder also casts a huge spectrum of clinical manifestations some of them less known. We discuss our case of Marfan syndrome with sputum positive tuberculosis and explore the occurrence of such unusual presentations.

  12. Exploring Innovative & Open Educational Resources

    OpenAIRE

    Shaffer, Clifford; Jantzen, Benjamin C.; Mahin, Bruce; Walz, Anita R.

    2014-01-01

    Panelists include: Dr. Clifford Shaffer, Professor of Computer Science, Virginia Tech Dr. Benjamin Jantzen, Asst. Professor Philosophy, Virginia Tech Dr. Bruce Mahin, Professor of Composition and Music Theory, Radford University The Multimedia tour will showcase innovative and open educational resources from Virginia Tech, Radford, and beyond. Panel themes will be further explored in the after-panel hands-on workshop. URLs for two of the live demos: http://algoviz.org (Cliff Shaffer) https://...

  13. Exploring Trajectories of Distributed Development

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Wæhrens, Brian Vejrum; Niang, Mohamed

    2014-01-01

    that not only standardized manufacturing tasks, but also knowledge-intensive and proprietary activities, including research and development (R&D), are increasingly subject to global dispersion. The purpose of this chapter is to explore structural and infrastructural arrangements that take place in...... practices used by the companies in order to achieve control and coordination of distributed development activities. Three propositions are developed to advance our understanding of the continual search for an optimal organizational form for managing distributed development....

  14. Exploring trajectories of distributed development

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Wæhrens, Brian Vejrum; Niang, Mohamed

    2013-01-01

    only standardized manufacturing tasks, but also knowledge-intensive and proprietary activities, including research and development (R&D), are increasingly subject to global dispersion The purpose of this paper is to explore structural and infrastructural arrangements that take place in industrial firms...... used by the companies in order to achieve control and coordination of distributed development activities. Three propositions are developed to advance the understanding of the continual search for an optimal organisational form to manage distributed development....

  15. Europa Explorer Operational Scenarios Development

    Science.gov (United States)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  16. The CATSAT Student Explorer Mission

    OpenAIRE

    Forrest, D. J.; Levenson, K.; Vestrand, W. T.; Reister, K.; J. Smith; Wood, C.; Williams, C.; Whitford, C.; Watcon, D.; Owens, A.

    1996-01-01

    CATSAT (Cooperative Astrophysical and Technology SATellite) is one of three missions being developed under NASA/USRA's Student Explorer Demonstration Initiative (STEDI) for launch in 1997-98. STEDI is a pilot program to "assess the efficacy of smaller, low-cost spaceflight missions ... that is matched to the traditional process of research and development at universities". This program allows $4 million and 2-3 years for all aspects of the mission, i.e. instrument and satellite development, i...

  17. Mind: Explore the Space Inside

    OpenAIRE

    Rajendra Barve

    2015-01-01

    When caught in the dilemma of career choice, a critical conversation helped the writer crystallize the decision to plunge into the field of mental health. The decision just not only kindled interest in psychiatry but passion to study the science of the mind despite the fact that in earlier times psychiatry mainly catered to patients with chronic schizophrenia and uncontrolled bipolar disorder. Weathering the curious glances of colleagues the writer pursued to explore the field of the science ...

  18. Multirobot Coordination for Space Exploration

    OpenAIRE

    Yliniemi, Logan; Oregon State University; Agogino, Adrian K.; Tumer, Kagan; Oregon State University

    2014-01-01

    Teams of artificially intelligent planetary rovers have tremendous potential for space exploration, allowing for reduced cost, increased flexibility and increased reliability. However, having these multiple autonomous devices acting simultaneously leads to a problem of coordination: to achieve the best results, the they should work together. This is not a simple task. Due to the large distances and harsh environments, a rover must be able to perform a wide variety of tasks with a wide variety...

  19. Fission Systems for Mars Exploration

    Science.gov (United States)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  20. The Gravitational Wave Detector EXPLORER

    CERN Multimedia

    2002-01-01

    %RE5 EXPLORER is a cryogenic resonant-mass gravitational wave (GW) detector. It is in operation at CERN since 1984 and it has been the first cryogenic GW antenna to perform continuous observations (since 1990).\\\\ \\\\EXPLORER is actually part of the international network of resonant-mass detectors which includes ALLEGRO at the Louisiana State University, AURIGA at the INFN Legnaro Laboratories, NAUTILUS at the INFN Frascati Laboratories and NIOBE at the University of Western Australia. The EXPLORER sensitivity, at present of the same order of the other antennas, is 10$^{-20}$ Hz$^{-1/2}$ over a bandwidth of 20 Hz and 6 10$^{-22}$ Hz$^{-1/2}$ with a bandwidth of about 0.5 Hz, corresponding to a sensitivity to short GW bursts of \\textit{h} = 6 10$^{-19}$.\\\\ \\\\This sensitivity should allow the detection of the burst sources in our Galaxy and in the Local Group. No evidence of GW signals has been reported up to now.\\\\ \\\\The principle of operation is based on the assumption that any vibrational mode of a resonant bo...

  1. Tangible Exploration of Subsurface Data

    Science.gov (United States)

    Petrasova, A.; Harmon, B.; Mitasova, H.; White, J.

    2014-12-01

    Since traditional subsurface visualizations using 2D maps, profiles or charts can be difficult to interpret and often do not convey information in an engaging form, scientists are interested in developing alternative visualization techniques which would help them communicate the subsurface volume data with students and general public. We would like to present new technique for interactive visualization of subsurface using Tangible geospatial modeling and visualization system (Tangeoms). It couples a physical, three-dimensional model with geospatial modeling and analysis through a cycle of scanning and projection. Previous applications of Tangeoms were exploring the impact of terrain modifications on surface-based geophysical processes, such as overland water flow, sediment transport, and also on viewsheds, cast shadows or solar energy potential. However, Tangeoms can serve as a tool for exploring subsurface as well. By creating a physical sand model of a study area, removing the sand from different parts of the model and projecting the computed cross-sections, we can look under the ground as if we were at an excavation site, and see the actual data represented as a 3D raster in that particular part of the model. Depending on data availability, we can also incorporate temporal dimension. Our method is an intuitive and natural way of exploring subsurface data and for users, it represents an alternative to more abstract 3D computer visualization tools, by offering direct, tangible interface.

  2. Lab-on-a-Chip Instrument Development for Titan Exploration

    Science.gov (United States)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  3. World mineral exploration trends and economic issues

    International Nuclear Information System (INIS)

    The subjects and methodologies presented in this book vary from the presentation of a heretofore unavailable collection of data on worldwide mineral exploration to case studies of mineral exploration in the developing countries of Botswana and Papua New Guinea to a study of the economic productivity of base metal exploration in Australia and Canada. Some authors concentrate on particular actors or participants in the exploration process, such as major mining companies, while other focus on a particular country such as the Soviet Union, France, or South Africa. Most chapters deal with exploration for nonfuel minerals, and particularly metals, although some take in uranium and coal exploration; oil and gas exploration is specifically excluded

  4. Exploration Atmospheres for Beyond-LEO Human Exploration Missions

    Science.gov (United States)

    Henninger, Donald, L.

    2013-01-01

    Atmospheric pressure and oxygen concentration of human-occupied space vehicles and habitats are an important life support parameter. The atmosphere is critical in terms of not only safety but also in terms of maximizing human capabilities at the point of scientific discovery. Human exploration missions beyond low earth orbit (LEO) will include extravehicular activity (EVA). EVAs are carried out in low pressure (4.3 psi/29.6 kilopascals) space suits running at 100 percent oxygen. New suits currently in development will be capable of running at a range of pressures between approximately 8.2 psi/56.5 kilopascals and 4.3 psi/29.6 kilopascals. In order to carry out high-frequency EVA phases of a mission safely and more efficiently, it is advantageous to have cabin or vehicle atmospheres at lower total pressure and higher oxygen concentrations. This allows for much reduced pre-breathe times for a fixed risk of decompression sickness and thus more efficient EVAs. The recommended oxygen concentration is 32% and represents a trade with respect to controlling the risk of decompression sickness and risk of fire. Work carried out by NASA in 2006 and continued in 2012 established an atmospheric pressure and oxygen concentration to optimize EVA. This paper will review previous work and describe current recommendations for beyond-LEO human exploration missions.

  5. Archexplorer for automatic design space exploration

    OpenAIRE

    Desmet, V; Girbal, Sylvain; Ramírez Bellido, Alejandro; Temam, Olivier; Vega, Augusto

    2010-01-01

    Growing architectural complexity and stringent time-to-market constraints suggest the need to move architecture design beyond parametric exploration to structural exploration. ArchExplorer is a Web-based permanent and open design-space exploration framework that lets researchers compare their designs against others. The authors demonstrate their approach by exploring the design space of an on-chip memory subsystem and a multicore processor.

  6. Generic Design Space Exploration for Reconfigurable Architectures

    OpenAIRE

    Bossuet, Lilian; Gogniat, Guy; Philippe, Jean Luc

    2005-01-01

    We propose in this paper an original design space exploration method for reconfigurable architectures adapted to fine and coarse grain resources. The exploration flow deals with communication hierarchical distribution and processing resources use rate for the architecture under exploration. With this information, designer can explore the architectural design space to define a power-efficient architecture. Exploration results for image computing and cryptography applications are provided to de...

  7. Ethics and the Space Explorer

    Science.gov (United States)

    Mendell, W.

    2002-01-01

    Ethics is not a word often encountered at meetings of space activists or in work groups planning a space future. Yet, the planning of space exploration ought to have ethical dimensions because space workers are not disconnected from the remainder of society in either their professional disciplines, in their institutions, or in the subject matter they choose to study. As a scientist, I have been trained in the schema of research. Although the scientific method is noted for its system of self -correction in the form of peer review, sharing of information, and repeatability of new findings, the enterprise of universal knowledge still depends heavily on an ethical system rooted in honesty in the reporting of findings and in the processing of data. As a government employee, I receive annual "ethical training". However, the training consists almost entirely of reminders to obey various laws governing the activities and the external relationships of government employees. For 20 years l have been involved in discussions of possible futures for human exploration of space beyond low Earth orbit. Many scenarios ranging from lunar landing to Martian settlement have been discussed without any mention of possible ethical issues. l remember hearing Apollo astronaut Harrison Schmitt once remark that space exploration was attractive because technology can be employed in its purest form in the conquest of space. His point was that the challenge was Man against Nature, a struggle in which the consequences or side effects of technology was not an issue. To paraphrase, in space you do not need an environmental impact study. I wish to analyze this proposition with regard to contexts in which people initiate, or plan to initiate, activities in space. Depending on the situation, space can be viewed as a laboratory, as a frontier, as a resource, as an environment, or as a location to conduct business. All of these associations and contexts also are found in our everyday activities on Earth

  8. Revolutionizing Remote Exploration with ANTS

    Science.gov (United States)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.

    2002-05-01

    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.

  9. Report on geologic exploration activities

    International Nuclear Information System (INIS)

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is reponsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. Th ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed

  10. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  11. Dynamics Explorer-1 (DE-1)

    Science.gov (United States)

    Gordon, F.; Pashby, P.

    1991-01-01

    The Dynamics Explorer (DE) mission is designed to study the Earth's electromagnetic fields at varying heights up to 4 Earth radii. The DE-1 was launched on a Delta 3913 launch vehicle from the Western Test Range and was placed in a 561 x 23279 km orbit with a 90 degree inclination. The Deep Space Network (DSN) began to support this extended mission on February 1, 1985. Coverage consists of five passes per day that last for 45 minutes each. Information is given in tabular form for DSN support, frequency assignments, telemetry, command, and tracking mission responsibility.

  12. Interactive Exploration for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Jérôme Fournier

    2005-08-01

    Full Text Available We present a new version of our content-based image retrieval system RETIN. It is based on adaptive quantization of the color space, together with new features aiming at representing the spatial relationship between colors. Color analysis is also extended to texture. Using these powerful indexes, an original interactive retrieval strategy is introduced. The process is based on two steps for handling the retrieval of very large image categories. First, a controlled exploration method of the database is presented. Second, a relevance feedback method based on statistical learning is proposed. All the steps are evaluated by experiments on a generalist database.

  13. Power systems for space exploration

    Science.gov (United States)

    Shipbaugh, Calvin; Solomon, Kenneth A.

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  14. Genetic testing: a conceptual exploration.

    OpenAIRE

    Zimmern, R. L.

    1999-01-01

    This paper attempts to explore a number of conceptual issues surrounding genetic testing. It looks at the meaning of the terms, genetic information and genetic testing in relation to the definition set out by the Advisory Committee on Genetic Testing in the UK, and by the Task Force on Genetic Testing in the USA. It argues that the special arrangements that may be required for the regulation of genetic tests should not be determined by reference to the nature or technology of the test, but by...

  15. Apex, actively positioned exploration system.

    OpenAIRE

    Greger, B

    1990-01-01

    A conceptually new, modularly designed exploration system for the deep sea (600 m) has been constructed and tested. In its base unit, different soil sampling tools can be integrated. These are, for the time being, a drill core barrel with 0 48 mm iD and a length of 500 mm for rocky basements as a box corer for softer soils as well as an orange peel grab. Towed along via a coaxial cable from a research vessel, the system is TV-guided and can be actively positioned by means of 2 thrusters in or...

  16. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne;

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs......’ automation processes. The paper presents an embedded case study based on 10 low- and medium-tech Danish companies. Based on the development of production paradigms and the presented study, this research helps to understand key determinants and processes for SMEs’ exploration of future directions of...

  17. The Primordial Inflation Explorer (PIXIE)

    Science.gov (United States)

    Kogut, Alan; Chuss, David T.; Dotson, Jessie; Dwek, Eli; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan; Moseley, S. Harvey; Seiffert, Michael D.; Spergel, David N.; Wollack, Edward J.

    2014-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 µK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than 10(exp -3) at 5 standard deviations. In addition, PIXIE will measure the absolute frequency spectrum to constrain physical processes ranging from inflation to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture with an emphasis on the expected level of systematic error suppression.

  18. Smallsats, Cubesats and Scientific Exploration

    Science.gov (United States)

    Stofan, E. R.

    2015-12-01

    Smallsats (including Cubesats) have taken off in the aerospace research community - moving beyond simple tools for undergraduate and graduate students and into the mainstream of science research. Cubesats started the "smallsat" trend back in the late 1990's early 2000's, with the first Cubesats launching in 2003. NASA anticipates a number of future benefits from small satellite missions, including lower costs, more rapid development, higher risk tolerance, and lower barriers to entry for universities and small businesses. The Agency's Space Technology Mission Directorate is currently addressing technology gaps in small satellite platforms, while the Science Mission Directorate pursues miniaturization of science instruments. Launch opportunities are managed through the Cubesat Launch Initiative, and the Agency manages these projects as sub-orbital payloads with little program overhead. In this session we bring together scientists and technologists to discuss the current state of the smallsat field. We explore ideas for new investments, new instruments, or new applications that NASA should be investing in to expand the utility of smallsats. We discuss the status of a NASA-directed NRC study on the utility of small satellites. Looking to the future, what does NASA need to invest in now, to enable high impact ("decadal survey" level) science with smallsats? How do we push the envelope? We anticipate smallsats will contribute significantly to a more robust exploration and science program for NASA and the country.

  19. Enabling Exploration Through Docking Standards

    Science.gov (United States)

    Hatfield, Caris A.

    2012-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  20. French mineral exploration, 1973-82

    International Nuclear Information System (INIS)

    Both private and government-controlled organizations play significant roles in French mineral exploration. This chapter reviews French exploration from 1973 to 1982, a period in which exploration expenditures increased significantly. It begins by examining aggregate exploration expenditures for the period, as well as the allocation of funds according to geographic area and mineral type, and then identifies several influences upon these expenditure trends. The chapter concludes by looking at the productivity of French exploration and making tentative international comparisons. French uranium exploration is detailed