WorldWideScience

Sample records for astrid-2 emma magnetic

  1. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    The Swedish micro-satellite Astrid-2 contains a tri-axial fluxgate magnetometer with the sensor co-located with a Technical University of Denmark (DTU) star camera for absolute attitude, and extended about 0.9 m on a hinged boom. The magnetometer is part of the RIT EMMA electric and magnetic fields...... Survey of Sweden near Stockholm on the night of May 15.-16., 1997. The magnetic calibration and the intercalibration between the star camera and the magnetic sensor was performed by measuring the Earth's magnetic field and simultaneously observing the star sky with the camera. The rotation matrix between...... fit calibration parameters. Owing to time shortage, we did not evaluate the temperature coefficients of the flight sensor calibration parameters. However, this was done for an identical flight spare magnetometer sensor at the magnetic coil facility belonging to the Technical University of Braunschweig...

  2. EMMA - the electric and magnetic monitor of the aurora on Astrid-2

    DEFF Research Database (Denmark)

    Blomberg, L.G.; Marklund, G.T.; Lindqvist, P.A.

    2004-01-01

    . The boom system was flown for the first time on this mission and worked flawlessly. The magnetic field is measured by a tri-axial fluxgate sensor located at the tip of a rigid. hinged boom extended along the spacecraft spin axis and facing away from the Sun. The new advanced-design fluxgate magnetometer...... discuss in the present paper, is designed to provide simultaneous sampling of two electric and three magnetic field components up to about 1 kHz. The spin plane components of the electric field are measured by two pairs of opposing probes extended by wire booms with a separation distance of 6.7 m...

  3. The spinning Astrid-2 satellite used for modeling the Earth's main magnetic field

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Jørgensen, P.S.; Risbo, T.;

    2002-01-01

    , and therefore mapping of the Earth's magnetic field was possible. The spacecraft spins about a highly stable axis in space. This fact and the globally distributed data make the magnetic measurements well suited for the estimate of a magnetic field model at the spacecraft altitude (about 1000 km). This paper......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit in December 1998. Despite the fact that the primary science mission was auroral research, the magnetic instrument was designed to accomplish high-resolution and high-precision vector field magnetic measurements...... describes the initial analysis of the Astrid-2 magnetic data. As a result of the study of a single day (February 7, 1999), magnetically fairly quiet, it was possible to in-flight adjust the calibration of the magnetometer and find a magnetic field model fitting the scalar component of the measurements...

  4. Modelling the Earth's Main Magnetic Field by the spinning Astrid-2 satellite

    DEFF Research Database (Denmark)

    Merayo, Jose Maria Garcia; Jørgensen, Peter Siegbjørn; Risbo, T.;

    1999-01-01

    and therefore the mapping of the Earth's magnetic field may be possible. The spinning of the spacecraft about a certain axis makes the stabilisation in space possible. This fact and the well distributed data over the globe makes the magnetic data well suited for the estimation of the magnetic field model......The Swedish micro-satellite Astrid-2 was successfully launched into a near polar orbit last December 98. Despite the fact that its primary mission was the research of Auroral phenomena, the magnetic instrumentation has been designed to accomplish high resolution vector field magnetic measurements...... at the spacecraft altitude (circa 1000km). Several methods for field modelling are presented in this paper with the assumption that the direction of the spin axis is nearly constant. In any case the orientation of the magnetometer is to bedetermined simultaneously with the instrument calibration and main field...

  5. Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-07-01

    Full Text Available We study the wave-related (AC and static (DC parallel Poynting vector (Poynting energy flux as a function of altitude in auroral field lines using Polar EFI and MFE data. The study is statistical and contains 5 years of data in the altitude range 5000–30000 km. We verify the low altitude part of the results by comparison with earlier Astrid-2 EMMA Poynting vector statistics at 1000 km altitude. The EMMA data are also used to statistically compensate the Polar results for the missing zonal electric field component. We compare the Poynting vector with previous statistical DMSP satellite data concerning the electron precipitation power. We find that the AC Poynting vector (Alfvén-wave related Poynting vector is statistically not sufficient to power auroral electron precipitation, although it may, for Kp>2, power 25–50% of it. The statistical AC Poynting vector also has a stepwise transition at R=4 RE, so that its amplitude increases with increasing altitude. We suggest that this corresponds to Alfvén waves being in Landau resonance with electrons, so that wave-induced electron acceleration takes place at this altitude range, which was earlier named the Alfvén Resonosphere (ARS. The DC Poynting vector is ~3 times larger than electron precipitation and corresponds mainly to ionospheric Joule heating. In the morning sector (02:00–06:00 MLT we find that the DC Poynting vector has a nontrivial altitude profile such that it decreases by a factor of ~2 when moving upward from 3 to 4 RE radial distance. In other nightside MLT sectors the altitude profile is more uniform. The morning sector nontrivial altitude profile may be due to divergence of the perpendicular Poynting vector field at R=3–4 RE.

    Keywords. Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions – Space plasma physics (Wave-particle interactions

  6. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  7. Emma

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    When Emma Woodhouse sets out on a career of match-making in the little town of Highbury she manages to cause confusion at every step. Jane Austen was particularly proud of Emma, in which she takes apart the desires and foibles of small-town society with unnerving accuracy.

  8. Digital fluxgate magnetometer for the "Astrid-2" satellite

    DEFF Research Database (Denmark)

    Pedersen, Erik Bøje; Primdahl, Fritz; Petersen, Jan Raagaard

    1999-01-01

    The design and performance of the Astrid-2 magnetometer are described. The magnetometer uses mathematical routines implemented by software for commercially available digital dignal processors to determine the magnetic field from the fluxgate sensor. The sensor is from the latest generation of amo...

  9. The MEDUSA electron and ion spectrometer and the PIA ultraviolet photometers on Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    Full Text Available The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.

    Key words. Ionosphere (instruments and techniques – Magnetospheric physics (auroral phenomena; instruments and techniques

  10. EMMA: Towards Multicultural Learning

    Science.gov (United States)

    Kerr, Ruth; Merciai, Ilaria

    2016-01-01

    Interest on the part of European Institutions to explore the potential of MOOCs for providing the kind of inclusive and multicultural education that was needed for 21st century learners was confirmed by funding of projects such as EMMA (http://www.europeanmoocs.eu). The definition of "European" for the EMMA consortium was based on…

  11. Fluxgate sensor for the vector magnetometer onboard the ’Astrid-2’ satellite

    DEFF Research Database (Denmark)

    Brauer, Peter; Risbo, T.; Merayo, José M.G.

    2000-01-01

    The vector magnetometer sensor onboard the Astrid-2 satellite is made as a compact ringcore fluxgate sensor with single axis compensation. The ringcores used in the sensor are identical to the cores used in the fluxgate (CSC-) sensor in the high quality magnetometer onboard the field mapping...... satellite called 'Orsted'. To obtain good axial stability special attention is drawn to the mechanical construction of the tri-axial sensor configuration. Almost all parts of the sensor are machined from the glassy material MACOR(R) that has approximately the same thermal expansion coefficient as the core...... ribbon. The single axis compensated ringcore sensors are known to have some linearity problems with large uncompensated fields perpendicular to the measuring axis, This phenomenon is also seen for the Astrid-2 sensor, and from a coil-calibration of the flight-spare sensor we observe: non...

  12. Reading embodied consciousness in "Emma".

    Science.gov (United States)

    Harbus, Antonina

    2011-01-01

    The language of Emma (1815) reflects Jane Austen's developing view of embodied consciousness and her particular interest in this novel in the physical manifestations of emotions, such as blushes and nervous responses. The discursive exploration of the inner life in Emma is the product of a cultural context that features emerging brain science and Austen's own conceptualization of the psychophysical nature of emotions. This article analyzes the language of mind and emotion in Emma, to contend that Austen grapples with the implications of the idea of embodied consciousness in a narrative that contrasts mind reading with interpreting the body.

  13. Images of Ladies in Emma

    Institute of Scientific and Technical Information of China (English)

    戴和倩

    2013-01-01

    Jane Austen (1775-1817) is a British novelist, she began writing from 20 years old. Her most famous novel is Emma. In the novel, Jane Austen analyzes images of ladies in Emma. It mainly analyzes the hero Emma Smith and Jane who observe Em⁃ma’s self-righteous, self-contradictory by using the heart. The author explains images of ladies in Jane Austen ’s writing through shaping these three kinds of characters. Tough oblige has defects, which narrates the writer's understanding and perception to real⁃ity. It shows the images of ladies in Emma through portraying the three characters providing readers to amend themselves and consummate themselves, thought-provoking.

  14. Comparison of EMMA Parameter Predictions

    CERN Document Server

    Keil, E

    2010-01-01

    This note compares the results for cell tunes, radial offsets at the centre of the long straight section, and time of flight from five programs in the baseline lattice of EMMA, the FFAG electron model under construction at the Daresbury Laboratory. The results are shown in graphs and tables. Both agreements and disagreements between programs are found.

  15. EMMA - gordost Finljandii / Viktoria Panova

    Index Scriptorium Estoniae

    Panova, Viktoria

    2006-01-01

    Soomes Espoos avati uus kaasaegse kunsti muuseum EMMA (Espoo Museum of Modern Art). Põhiekspositsiooni kõrval saab näha nelja ajutist näitust: Kazimir Malevitshi maale, ühenduse "Bubnovõi valet" loomingut, Shirin Neshati foto- ja videoloomingut ning Timo Kelaranta fotokunsti

  16. An Interpretation of Emma as Female Bildungsroman

    Institute of Scientific and Technical Information of China (English)

    朱蕾

    2015-01-01

    Emma is"the greatest and most representative work"written by Jane Austen.After experiencing a period of pain and displeasure because of growing-up,Emma finally becomes more mature and self-recognized.This thesis tries to interpret the book from the perspective of female Bildungsroman,which can be seen as one of the reasons why the novel is so substantial and attractive.

  17. EMMA: A New Paradigm in Configurable Software

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. It provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  18. EAS selection in the EMMA underground array

    DEFF Research Database (Denmark)

    Sarkamo, J.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed...

  19. Teaching the 'A' Level Text: Emma.

    Science.gov (United States)

    Huband, David

    1987-01-01

    Notes how important it is that any critical writing assignments should take into account the individual reading, and that the teacher's role is to steer discussion that stems from a class of individual readings. Explores some of the aspects of Jane Austen's novel "Emma" to which students readily respond. (HTH)

  20. The Most Influential People to the Growth of Emma

    Institute of Scientific and Technical Information of China (English)

    史妍青

    2014-01-01

    Jane Austen (1775-1817)’s most famous novel is Emma in which she portrays the growing image of Emma Wood⁃house, from a spoiled, headstrong girl to a rational young lady. The writer depicts the writing of Emma through shaping many kinds of characters, mainly Mr Knightley, a close friend of Emma’s family and Harriet Smith, a pretty,sweet, non-too-bright girl of inferior social class and the natural daughter of somebody unknown.

  1. Dense ion clouds of 0.1 − 2 keV ions inside the CPS-region observed by Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    Full Text Available Data from the Astrid-2 satellite taken between April and July 1999 show several examples of dense ion clouds in the 0.1–2 keV energy range inside the inner mag-netosphere, both in the northern and southern hemispheres. These inner magnetospheric ion clouds are found predomi-nantly in the early morning sector, suggesting that they could have originated from substorm-related ion injections on the night side. However, their location and density show no cor-relation with Kp, and their energy-latitude dispersion is not easily reproduced by a simple particle drift model. There-fore, these ion clouds are not necessarily caused by substorm-related ion injections. Alternative explanations for the ion clouds are the direct solar wind injections and up-welling ions from the other hemisphere. These explanations do not, however, account for all of the observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storm and substorms

  2. Underground cosmic-ray experiment EMMA

    DEFF Research Database (Denmark)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 – 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis....... The array operates in the Pyhäsalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented....

  3. "Emma Zunz" de Jorge Luis Borges

    Directory of Open Access Journals (Sweden)

    Ángeles Ma. del Rosario Pérez Bernal

    2007-01-01

    Full Text Available El objetivo de este artículo es realizar un estudio crítico de la fi cción de Jorge Luis Borges intitulada “Emma Zunz”, que devele al lector la manera en la que el entramado narrativo integra una reescritura de algunas ideas de Schopenhauer y de la Cábala, las cuales son conmutadas por nuevas signifi caciones para deleite y perplejidad de sus lectores. Las herramientas utilizadas para el análisis provienen, esencialmente, de la hermenéutica de Paul Ricoeur, quien considera a la obra de fi cción como un proceso de innovación semántica que a través de la activación del círculo de la mimesis, constituye y organiza la multiplicidad de acontecimientos en una historia única y completa.

  4. Stellar feedback during the reionization with EMMA

    Science.gov (United States)

    Deparis, N.; Aubert, D.; Ocvirk, P.

    2016-12-01

    Stellar feedback during the epoch of reionization is a complex problem that is far to be fully understood. The apparition of first stars in the Universe involves highly nonlinear processes that are studied using numerical simulations. We present here a model of star formation, radiation and supernovae feedback, implemented in a new AMR code with fully coupled radiative-hydrodynamic named EMMA. We present a preliminary study concerning the flow of matter and radiation passing through the virial sphere of each halos. We found a class of low-mass halo (less than 10^9 M_⊙) getting at the same time gas outflow and radiative inflow, suggesting a photo-heating effect.

  5. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  6. Bootcamp EMMA MOOC Assessment for learning in practice

    NARCIS (Netherlands)

    Firssova, Olga; Brouns, Francis

    2016-01-01

    At the EDEN Conference an introduction to the EMMA platform will be combined with learning activities relevant to the topic of Formative Assessment. EDEN conference participants will have an opportunity to join the MOOC prior to the conference or at the conference. A range of learning activities wil

  7. Garri Potter povzroslel! / Daniel Radcliffe, Emma Watson ; interv. Stass Tõrkin

    Index Scriptorium Estoniae

    Radcliffe, Daniel, 1989-

    2005-01-01

    Peaosatäitja järjekorras neljandas Potteri ekraniseeringus "Harry Potter ja tulepeeker" endast, oma tegelaskuju arengust. Samas ka lühiintervjuu näitlejanna Emma Watsoniga. Režissöör Mike Newell : Suurbritannia-USA 2005

  8. Negative capability and truth in Borges's 'Emma Zunz'.

    Science.gov (United States)

    Priel, Beatriz

    2004-08-01

    The author's main contention is that Borges's short story 'Emma Zunz' not only includes psychoanalytic themes, but also succeeds in effecting, through the fictional text's form, a reading akin to a psychoanalytic approach to the vicissitudes of truth and meaning. This is an approach named by Bion, after Keats, 'negative capability'; for example, an openness, not to the (impossible) knowledge of truth, but to its effects. The effect of reading Borges's story is analyzed as conveyed through three main narrative strategies: (a) the minute description of Emma's falsities and her fabrication of lies, as processes through which the awareness of internal reality is thoroughly transformed; (b) the subversion of the detective narrative genre making obsolete its conventions; (c) the introduction of a narrator who paradoxically knows and doesn't know crucial aspects of Emma's internal and external reality, who is both close to and distant from the reader, and who never decides among the diverse alternatives he proposes. These narrative strategies transform the story into a perplexing playground for the reader's expectations. Borges's peculiar way of narrating the story of 'Emma Zunz' powerfully appeals to the reader's capability not to search for the truth, but to allow herself to be affected by it; not to decipher, but to follow the patient's discourse or the story in the written text.

  9. Positiivne ränne Baltimaade kunstielus / Emma Duester ; intervjueerinud Laura Põld

    Index Scriptorium Estoniae

    Duester, Emma

    2015-01-01

    Emma Duesteri dissertatsioonist, mille raames uuriti Tallinna, Riia ja Vilniuse päritolu kunstnike sisserännet Suurbritanniasse. Mobiilsusest immigratsiooniküsimuse kontekstis, kunstielust Baltimaades

  10. A Tentative Analysis on Two Versions of EMMA at the Semantic Level

    Institute of Scientific and Technical Information of China (English)

    雷鸣

    2015-01-01

    Jane Austin has been considered as one of the most distinguished English woman novelists.Among her six completed novels,Emma represents her full achievements.This paper tries to make a tentative analysis at the semantic level on the two versions of Emma,from Zhang Jinghao and Zhu Qingying.

  11. EMMA: an AMR cosmological simulation code with radiative transfer

    CERN Document Server

    Aubert, Dominique; Ocvirk, Pierre

    2015-01-01

    EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive 3D mesh and the spatial resolution can be dynamically modified based on physically-motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation : the light is transported at the resolution of the non-refined grid and only once the dynamics have been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics proc...

  12. Emma Kohman and the early history of nutritional edema.

    Science.gov (United States)

    Bing, F C

    1983-06-01

    Nutritional edema is a generalized edematous condition that afflicted whole populations of central European countries during World War 1--and other areas since that time--with a mortality rate of about 50%. An analogous condition in white rats was produced by Emma Kohman as a graduate student in Chicago (1916 to 1919). She fed the rats a diet similar to that consumed by human subjects but prevented or cured nutritional edema in the animals by feeding them good quality protein in suitable amounts. Her work, verified by others, was of immense practical significance and helped establish the value of animal experiments in the study of human diseases. Ms. Kohman gave up a scientific career to be a homemaker when she married in 1919.

  13. Microstorie magistrali: Emma Tettoni fra carduccianesimo e reti emancipative

    Directory of Open Access Journals (Sweden)

    Loredana Magazzeni

    2015-12-01

    Full Text Available Emma Tettoni (Novara, 1859 – Bergamo, 1891 was a teacher in secondary schools for women, headmistress of the Scuola normale femminile in Rovigo (Italy, student of Giosuè Carducci at Bologna University (1879-1881 and classmate of Giovanni Pascoli and Giulia Cavallari Cantalamessa. She devoted her life to teaching and writing, considering them prerequisites for female emancipation. Moving from her correspondence with the great Italian poet - teacher, but also from her female friendship network, it is possible to trace the phases of her arduous life as social and professional engaged young woman. Because of the novelty of her ideas, expressed in education lectures (on love, women’s work, women scientists and the faults of Italian mothers, she suffered the painful ostracism of conservative factions. In 1890 she joined the organization of VI Centenary of Beatrice Portinari, in Florence.

  14. EPA data for EMMA of Peatland Discharge to an Alaskan Stream Journal of Hydrology 2015

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains primarily the EPA generated data for the EMMA (End-Member-Mixing Analysis) model that was presented in the associated J. of Hydrology (2015)...

  15. Analysis on the Tragedy Figure of Gustave Flaubert--Emma in Madam Bovary

    Institute of Scientific and Technical Information of China (English)

    申辰瑜

    2015-01-01

    Emma is considered to be the most successful character created by Flaubert,though arouse fierce criticize at the time of her first debut. Finally,the novel receives the due respect and attention and Emma,becomes the center of the discussion of numerous readers and critics. In this paper,I would like to provide my analysis of Madam Bovary,focusing on the tragic traits of this characterand attempt tofind the answers.

  16. Analysis on the Tragedy Figure of Gustave Flaubert——Emma in Madam Bovary

    Institute of Scientific and Technical Information of China (English)

    申辰瑜

    2015-01-01

    Emma is considered to be the most successful character created by Flaubert,though arouse fierce criticize at the time of her first debut. Finally,the novel receives the due respect and attention and Emma,becomes the center of the discussion of numerous readers and critics. In this paper,I would like to provide my analysis of Madam Bovary,focusing on the tragic traits of this character and attempt to fi nd the answers.

  17. Emma Zunz by Jorge Luis Borges: the Concept of Justice

    Directory of Open Access Journals (Sweden)

    Rosa Vila

    2014-12-01

    Full Text Available Emma Zunz, by Jorge Luis Borges, is the story of a girl who decides to kill her boss in order to avenge her father’s death, believing that her father’s version of an event that occurred years before was true. Thus, she devises a secret plan, which includes losing her virginity to a complete stranger, shortly before committing the crime, so she could argue that her boss had raped her and that she killed him in self-defense. Firstly, the text shows the contrast between formal justice and taking justice into own hands. Secondly, the question of self-inflicted punishment, which in the story takes place before the perpetration of the crime. Finally, the issue whether truth is the version that can be inferred from the evidence presented in a trial, or the one which is kept to themselves by those involved in a crime. Emma Zunz, de Jorge Luis Borges, es la historia de una chica que decide matar a su jefe para vengar la muerte de su padre, creyendo que la versión de su padre de un hecho que ocurrió años atrás era cierta. De este modo, diseña un plan secreto, que incluye la pérdida de su virginidad con un desconocido, poco antes de cometer el crimen, para poder argumentar que su jefe la había violado y que ella lo mató en defensa propia. En primer lugar, el texto muestra el contraste entre la justicia formal y la justicia por cuenta propia. En segundo lugar, la cuestión de la pena infligida a uno mismo, lo que en la historia se produce antes de la comisión del delito. Por último, la cuestión de si la verdad es la versión que se puede inferir de las pruebas presentadas en un juicio, o la que se guardan para sí mismas las personas involucradas en un crimen. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=2519490

  18. Creativity and oedipal fantasy in Austen's Emma: 'An ingenious and animating suspicion'.

    Science.gov (United States)

    Fitzpatrick Hanly, Margaret Ann

    2003-08-01

    Austen's Emma is one of the great novels of the Western tradition. In this paper the author explores the meaning of Emma's 'ingenious and animating suspicion' that Jane Fairfax seduced her best friend's husband, Mr Dixon. The interpretation that a psychoanalytic understanding makes possible shows how this suspicion represents an oedipal fantasy projected on to Miss Fairfax. Further exploration demonstrates how the fantasy is linked both to Emma's systematic unkindness to Jane Fairfax and to Emma's famous insult to Jane's aunt, Miss Bates. Emma's suspicion projects an oedipal fantasy with its incestuous impulses on to her rival and satisfies an envious aggression at the same time. The author's purpose in this paper is to bring to light through psychoanalytic understanding Austen's dramatisation of the complexity and creativity of the oedipal situation. In addition to the regression in oedipal fantasy, the primary process also functions with a progressive quality that expands and enriches the ego, a double movement described in Keats's 'negative capability', which has been elaborated by Bion. The primal-scene fantasies are often brought alive in the analytic transference. These situations and painful emotions are dramatically portrayed through Austen's genius as vehicles for change. A sudden integration follows a phase of disorganization: 'It darted through her with the speed of an arrow. Mr Knightley must marry no-one but herself'. Emma, who is Austen's 'imaginist', moves from the projected fantasy of the sad love triangle through envy aggression and the narcissistic blows of self-doubt and loss of love to moments of illumination and connection.

  19. EMMA: An Efficient Massive Mapping Algorithm Using Improved Approximate Mapping Filtering

    Institute of Scientific and Technical Information of China (English)

    Xin ZHANG; Zhi-Wei CAO; Zhi-Xin LIN; Qing-Kang WANG; Yi-Xue LI

    2006-01-01

    Efficient massive mapping algorithm (EMMA), an algorithm on efficiently mapping massive cDNAs onto genomic sequences, has recently been developed. The process of mapping massive cDNAs onto genomic sequences has been improved using more approximate mapping filtering based on an enhanced suffix array coupled with a pruned fast hash table, algorithms of block alignment extensions, and k-longest paths. When compared with the classical BLAT software in this field, the computing of EMMA ranges from two to forty-one times faster under similar prediction precisions.

  20. The Role of Concrete Materials in Emma Castelnuovo's View of Mathematics Teaching

    Science.gov (United States)

    Furinghetti, Fulvia; Menghini, Marta

    2014-01-01

    Emma Castelnuovo (1913-2014) was an Italian mathematics teacher of grades 6 to 8 in secondary school. During the crucial period of the 1950s and 1960s, when important reforms were proposed, she was involved in significant events such as the first CIEAEM meetings and the Royaumont Seminar. She was an active contributor to the development of…

  1. An Adaptive Display to Treat Stress-Related Disorders: EMMA's World

    Science.gov (United States)

    Banos, R. M.; Botella, C.; Guillen, V.; Garcia-Palacios, A.; Quero, S.; Breton-Lopez, J.; Alcaniz, M.

    2009-01-01

    Most of the virtual environments currently available in the field of psychological treatments were designed to solve a specific problem. Our research group has developed a versatile virtual reality system (an adaptive display) called "EMMA's world", which can address a wide range of problems. It was designed to assist in clinical situations where…

  2. Photometry and models of selected main belt asteroids. III. 283 Emma, 665 Sabine, and 690 Wratislavia

    Science.gov (United States)

    Michałowski, T.; Kaasalainen, M.; Polińska, M.; Marciniak, A.; Kwiatkowski, T.; Kryszczyńska, A.; Velichko, F. P.

    2006-11-01

    Photometric observations of 283 Emma (1998, 2000, 2001, 2004), 665 Sabine (1998, 1999, 2001, 2004, 2005), and 690 Wratislavia (1998, 2000, 2004, 2005-2006) carried out on 44 nights at two observatories are presented. Using all available lightcurves, the spin vectors, senses of rotation, and shape models for these three asteroids have been determined.

  3. Analysis of the question-answer service of the Emma Children's Hospital information centre

    NARCIS (Netherlands)

    Kruisinga, F.H.; Heinen, R.C.; Heymans, H.S.A.

    2010-01-01

    The information centre of the Emma Children's Hospital AMC (EKZ AMC) is a specialised information centre where paediatric patients and persons involved with the patient can ask questions about all aspects of disease and its social implications. The aim of the study was to evaluate the question-answe

  4. The Orthogonalization of Magnetic Systems

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Primdahl, Fritz; Brauer, Peter

    2001-01-01

    The construction of an orthogonal reference frame based on a set of three skew axes for a magnetic coil system and a magnetic sensor is discussed and presented. For a skew system, it is possible to define the coil axes and the magnetic axes as a dual set of axes that are linked to the system...... for the magnetic sensors compact spherical coil (CSC) (Orsted satellite) and compact detector coil (CDC) (Astrid-2 satellite) are analyzed and identified. In principle, only the transformation matrix that orthogonalizes the sensor is needed, but it is customary to express this matrix as a function of some non....... Therefore, one orthogonal reference frame can be identified from the coil axes and another from the magnetic axes. Although this representation is not unique, it is the most intuitive visual representation as it is shown. The parametrizations based on the operation of the fluxgate transducer...

  5. Amando de olhos abertos: Emma Goldman e o dissenso político nos EUA Loving with open eyes: Emma Goldman and the political dissent in the Unites States

    Directory of Open Access Journals (Sweden)

    Cecilia Azevedo

    2007-12-01

    Full Text Available Este artigo apresenta a trajetória de Emma Goldman, grande nome do anarquismo, pacifismo e feminismo nos EUA, procurando apresentá- la como uma representante da chamada tradição de dissenso neste país que, ao longo de toda sua história, tem disputado os sentidos a serem atribuídos aos ideais nacionais. Em meio à atual guerra no Iraque, a memória e o legado de Emma Goldman vêm sendo recuperados no embate político em torno do sentido do americanismo.This article presents the life of Emma Goldman, who played a central role in the history of anarchism, pacifism and feminism in the United States. In the present days, when a new war is taking place in Iraq, the memory and legacy of Emma Goldman are being reassessed amidst the debate over the political meaning of Americanism.

  6. Bravo Emma! Music in the life and work of Charles Darwin.

    Science.gov (United States)

    Derry, J F

    2009-03-01

    The long-term marital dance of Emma and Charles Darwin was set to the routine beat of an almost daily piano recital. Emma was a proficient pianist, and so a quality instrument was a welcome and appropriate house-warming present for their first marital home in London. That same piano accompanied the Darwins on their move to Downe before being upgraded for a newer model, which is still there, whilst another, cheaper piano may have played in Charles Darwin's work, particularly on earthworms. Whilst he lamented his own lack of musicality, Darwin revelled in his wife's prowess, a capacity that he recognised could be inherited, not least through observation of his own children. The evolution of musicality, he reasoned, was rooted in sexual attraction as a form of communication that preceded language.

  7. Glycogen synthase kinase-3--a promising therapeutic target: Dr Hagit Eldar-Finkelman interviewed by Emma Quigley.

    Science.gov (United States)

    Eldar-Finkelman, Hagit

    2006-04-01

    Dr Hagit Eldar-Finkelman (Sackler School of Medicine, Israel) was interviewed by Emma Quigley (Commissioning Editor, Expert Opinion on Therapeutic Targets) on 16th February 2006. Born in Jerusalem, Dr Eldar-Finkelman received her BSc in Chemistry in 1984 and both her MSc in Physical Chemistry (1986) and PhD in Life Science (1993) from the Weizmann Institute of Science. She was a recipient of the British Council Award, which allowed her to conduct research in biological nuclear magnetic resonance at the University of Oxford in the laboratory of Professor George K Radda. Following postdoctoral work at the School of Medicine of the University of Washington with Nobel Laureate Professor Edwin G Krebs, she became an Assistant Professor in the Department of Medicine at Harvard Medical School. Dr Eldar-Finkelman joined the Sackler School of Medicine at Tel Aviv University in 1999. Dr Eldar-Finkelman's research focuses on the molecular mechanisms regulating the protein kinase glycogen synthase kinase-3 (GSK-3), and their implications in negative regulation of signalling pathways. In particular, her work aims to develop specific inhibitors for GSK-3 and to test their functions in vitro and in vivo, considering the concept that such inhibitors may be useful in insulin resistance and Type 2 diabetes. These studies provide a conceptual basis for development of GSK-3 inhibitors and may lead to design of small molecules for treatment of diabetes and or neurodegenerative disorders.

  8. iPhone, Android, or Kindle: The Emma S. Clark Memorial Library Has an App for That and So Can You

    Science.gov (United States)

    Johnson, Bob; Gutmann, Ted

    2013-01-01

    If you are like the millions of people buying the latest smartphone, iPhone 5, or Samsung Galaxy S III, your local library should have something to offer you. The Emma S. Clark Memorial Library, for one, has an app for that! Dubbed "Emma Mobile," the library's application works with iOS (Apple), Android (Google), and Amazon Kindle Fire devices.…

  9. iPhone, Android, or Kindle: The Emma S. Clark Memorial Library Has an App for That and So Can You

    Science.gov (United States)

    Johnson, Bob; Gutmann, Ted

    2013-01-01

    If you are like the millions of people buying the latest smartphone, iPhone 5, or Samsung Galaxy S III, your local library should have something to offer you. The Emma S. Clark Memorial Library, for one, has an app for that! Dubbed "Emma Mobile," the library's application works with iOS (Apple), Android (Google), and Amazon Kindle Fire…

  10. On Emma's Self-existence%论爱玛自我之存在

    Institute of Scientific and Technical Information of China (English)

    柴鲜

    2012-01-01

    The heroine Emma from Gustave Flaubert's novel has been a prolonged topic of discussion. From the view of Sartre's concept of existence, self-existence must pay attention to the relationship between oneself and the others. The relationship between Emma and her self can be understood from three aspects, which includes her imaginary, subjective and objective self, but they only exist in two dimensions: the past and the present. Emma highly distinguishes from the others when treating the relationship between herself and others, to pursue the satisfaction of her imaginary sells objective desires in the space-time beyond her self existence, the multiple splits of her self existence and the differences of actual time and space. Eventually she confesses the return of her self awareness existence through ending her physical life.%福楼拜笔下的女主人公爱玛一直是人们经久不息的讨论话题。从萨特的存在观来看,自我的存在要关注与自我本身和与他人的关系。爱玛与自我的关系包含想象的自我,自以为的自我和客观实际中的自我三个层面,却只存在于过去和现在两个时间维度。爱玛高居于他人之外来对待与他人的关系,在超越自我实存的时空去追求“想象的自我”的客体欲望满足,自我存在的多层分裂和时空差异的实存,最终以消灭自己的肉体生命来承认自我意识存在的回归。

  11. Effect of mating status on the fecundity of a cricket, Teleogryllus emma

    Institute of Scientific and Technical Information of China (English)

    Lü-Quan Zhao; Dao-Hong Zhu

    2011-01-01

    Fecundity in some insects is affected by mating status. The effect of mating status on the fecundity and total egg production of Teleogryllus emma (Ohmachi et Mat-sumura) (Orthoptera: Gryllidae) was examined in this study. The results showed that the pre-oviposition period was shorter for amphigonic females than that for virgin females. However, no significant difference in pre-oviposition was found between amphigonic females and those that had mated with a male with either the phallodeum or testes extirpated. There is no difference in adult longevity between the above four groups. The fecundity and total egg production were much higher in amphigonic females than in those controlled under the three non-amphigonic treatments. The females of T. emma that mated with the testes-extirpated males produced more eggs (up to two-fold more) than both the virgin females and those that mated with the phallodeum-extirpated males, but there was no difference between them. The fecundity-enhancing substances transferred from male to female can stimulate the female to produce more eggs, but this stimulation has to occur in collaboration with sperm.

  12. Magnetometer for measuring planetary magnetic fields

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter

    The investigation of the magnetism of the Solar system planets is became one of the important issues for understanding their evolution and history. This has special relevance at Mars after the NASA MGS mission unexpectedly detected higher crustal magnetic anomalies than those existing on Earth....... The mass, power and volume are important factors when designing planetary magnetometers. However, the performance must not be compromised. The DTU magnetometer consisting of a triaxial fluxgate sensor and controlling electronics is a miniaturized version of the instruments flown on the Oersted, Astrid-2...... satellite, the instrument (including hardness) weights less than 1 kg and the electronics unit (featuring redundancy) of the instrument and the sensor has dimensions of 100x100x40 mm and 54x46x33 mm. For a lander, station and/or aerial platform, the instrument can be delivered for direct assembly in a board...

  13. Emma Dreams

    Directory of Open Access Journals (Sweden)

    Margaret Libby

    2013-01-01

    Full Text Available "Mom, you don't even know how kids think!" said my daughter as we drove to school one morning. I thought about that all day. I don't know how she thinks. I can make guesses according to the clues she gives me in her words, actions, and body language, but I can't get inside her mind. I'm left with my experience of our relationship, my feelings about the emotional intensity of our interactions. Sometimes when I'm with her I feel big, sometimes small, sometimes far away, fragmented, happy or angry. How do we influence each other's identities? When is an identity finished? When is a work of art finished?

  14. Emma Kleè Koch and children's art exhibitions: rituals colored by modern education (1949-1952)

    OpenAIRE

    Osinski, Dulce Regina Baggio; Universidade Federal do Paraná - UFPR; Simão, Giovana; Faculdade de Artes do Paraná

    2014-01-01

    This article analyses children's art exhibitions organized by thePolish educator and artist Emma Kleè Koch (1904-1975), wholived in Curitiba, Brazil. These exhibitions were held as part of theactions by the Arts Education Department of the Education andCulture Secretariat of Paraná State (1949-1952), under theadministration of Erasmo Pilotto, an intellectual and educator whoidentified with the ideals of the New School trends. Using officialdocuments, exhibition signature lists, government pro...

  15. Analysis of the question-answer service of the Emma Children's Hospital information centre.

    Science.gov (United States)

    Kruisinga, Frea H; Heinen, Richard C; Heymans, Hugo S A

    2010-07-01

    The information centre of the Emma Children's Hospital AMC (EKZ AMC) is a specialised information centre where paediatric patients and persons involved with the patient can ask questions about all aspects of disease and its social implications. The aim of the study was to evaluate the question-answer service of this information centre in order to determine the role of a specialised information centre in an academic children's hospital, identify the appropriate resources for the service and potential positive effects. For this purpose, a case management system was developed in MS ACCESS. The characteristics of the requester and the question, the time it took to answer questions, the information sources used and the extent to which we were able to answer the questions were registered. The costs of the service were determined. We analysed all questions that were asked in the year 2007. Fourteen hundred thirty-four questions were asked. Most questions were asked by parents (23.3%), healthcare workers (other than nurses; 16.5%) and nurses (15.3%). The scope of the most frequently asked questions include disease (20.2%) and treatment (13.0%). Information on paper was the main information source used. Most questions could be solved within 15 min. Twelve percent to 28% of total working hours are used for the question-answer service. Total costs including staff salary are rather large. In conclusions, taking over the task of providing additional medical information and by providing readily available, good quality information that healthcare professionals can use to inform their patients will lead to less time investment of these more expensive staff members. A specialised information service can anticipate on the information need of parents and persons involved with the paediatric patient. It improves information by providing with relatively simple resources that has the potential to improve patient and parent satisfaction, coping and medical results. A specialised

  16. Ver Antígone em (quase toda mulher: Ruth Klüger e Emma Zunz

    Directory of Open Access Journals (Sweden)

    Flavia Trocoli

    2014-09-01

    Full Text Available Este ensaio propõe uma leitura das ressonâncias da tragédia Antígone, de Sófocles, tal como interpretada por Jacques Lacan, no relato autobiográfico de Ruth Klüger e na ação da personagem Emma Zunz, do conto homônimo de Jorge Luis Borges. Destaco e analiso, primeiro, a diferença entre um desejo de morte da personagem sofocliana e um luto efetuado pela sobrevivente da Shoah e, em seguida, a homologia entre Antígone e Emma Zunz em relação a um desejo mortífero e a uma impossibilidade de luto, isto é, de separação dos mortos.Resumé: Cet essai propose une lecture des résonances de la tragédie d’Antigone, de Sophocle, tel qu’elle est interprétée par Jacques Lacan, dans le récit autobiographique de Ruth Klüger et dans l’action de Emma Zunz, personnage de la nouvelle homonyme de Jorge Luis Borges. La différence entre un désir de mort de Antigone et le deuil accompli de Klüger será ici analyser, ainsi que l’homologie entre Antigone et Emma Zunz en ce qui concerne leur désir mortel et leur impossibilité de faire le deuil.Mots-clés: Antigone, Jorge Luis Borges, Ruth Klüger, littérature et psychanalyseFlavia Trocoli é Professora do Departamento de Ciência da Literatura da Universidade Federal do Rio de Janeiro. É doutora em Teoria e História Literária (2004 e pós-doutora (2007 pelo IEL/UNICAMP. Tem experiência na área de Letras, com ênfase em Teoria Literária, Literatura Comparada e Literatura e Psicanálise. É membro-fundador do Centro de Pesquisas Outrarte: psicanálise entre ciência e arte, no IEL/UNICAMP. É autora de A inútil paixão do ser: figurações do narrador moderno, 2014, e coorganizadora de Um retorno a Freud, 2008, e Teoria Literária e suas fronteiras, 2014.

  17. The Feminism in Emma%《爱玛》中的女权主义思想

    Institute of Scientific and Technical Information of China (English)

    郎婷婷; 李辩

    2014-01-01

    Jane Austen was a star of English literary in the 18th century, and also was the feminist representative at that time. As a female writer, Jane Austen paid more attention on women and women’s problems;she regarded the females as the center charac-ters. Emma was a book which was considered as the most successful novel by Jane Austen;it chiefly exposes the low social status of women and is a protest of the patriarchal society. This thesis expounds the reflection of Jane Austen ’s Feminism consciousness in her work Emma through analyze the story of the novel and the characters of two protagonists.%简·奥斯汀是18世纪英国文坛一颗璀璨的明星,也是那个时代女权主义的代表。作为一个女性作家,简·奥斯汀更关注女性及女性问题,她的小说都以女性为中心人物。《爱玛》被认为是她最成功、最成熟的一部作品,主要揭露了当时女性低下的社会地位,对父权社会是一种抵抗。该文通过对小说故事和两位女主人公性格的分析,阐述简·奥斯汀女权主义意识在其作品《爱玛》中的体现。

  18. THE INTERPRETATION OF EMMA FROM THE PERSPECTIVE OF "CINDERALLA"ARCHETYPE%爱玛的“灰姑娘”原型解读

    Institute of Scientific and Technical Information of China (English)

    岳莉

    2013-01-01

    Deeply haunted by "Cinderalla" complex, Austen sketches it again in her novel, Emma. In analysis, the majority of people interpret Jane Fairfax, the second heroine in the novel, from the perspective of "Cinderalla" archetype. The paper reveals the fact that Emma herself, the first heroine, is "Cinderalla". In various respects, the paper shows that, with Emma, Austen not only reproduces but also surpasses "Cinderalla" archetype.%奥斯丁在小说《爱玛》中再一次勾勒了萦绕其心头的“灰姑娘”情结。“灰姑娘”原型这一视角常常被用来分析第二女主人公简。费尔法克斯,现试用“灰姑娘”原型解读爱玛本人,可以发现奥斯丁用爱玛从不同方面再现并超越了“灰姑娘”这一童话原型。

  19. Earthquake Mechanisms of the Mediterranean Area (EMMA) version 3: an improved tool for characterizing the tectonic deformation styles in the Mediterranean.

    Science.gov (United States)

    Vannucci, G.; Imprescia, P.; Gasperini, P.

    2009-04-01

    EMMA (Earthquake Mechanisms of the Mediterranean Area) database contains available literature data with the goal of making them more usable and available. EMMA is continuously improving by the addition of further focal mechanisms found in literature. At the present time, EMMA pre-release 3 includes more than 12700 focal solutions, about twice of previous official release 2.2 (Vannucci and Gasperini, 2004). They cover a time window from 1905 to 2006. In the new release, many added solutions are in areas not much covered or completely uncovered in the previous one (e.g. Bulgaria, Germany, Anatolia). As in the previous versions (Vannucci and Gasperini, 2003 and 2004), we have uniformed the different formats and notations of the data available from different sources and we have tried to solve misprints, inaccuracies and inconsistencies that might make the data unusable for other investigations. By an automatic procedure based on several criteria, we have chosen the "most representative" (best) solution when more than one is available for the same earthquake. Thanks to this, we have obtained about 6000 best solutions. The end user can use the best solution obtained with our procedure or he can change criteria. The database allows to make selections and to export data files suitable to be handled by graphic software and user generated scripts. In the new version, still MS-ACCESS based, we have added geographic information to the display of the focal solution, as well as we have integrated the hypocentral and magnitude data found on the original papers with those reported by regional and local catalogs and bulletins. In order to make EMMA more accessible, a web version is currently in progress. Through an internet connection it will be possible data selection and export, without installation and configuration problems found in the past. EMMA was already used in the past and will be (hopefully) useful in the future to better characterize the tectonic deformation styles (e

  20. The cause of Emma's tragedy life from female perspective interpretation%从女性视角解读爱玛人生悲剧的原因

    Institute of Scientific and Technical Information of China (English)

    李晓玲

    2015-01-01

    19世纪法国作家福楼拜的代表作品《包法利夫人》,它它讲述的是一个受过贵族化教育的农家女爱玛的感情生活和悲惨的命运。爱玛的悲剧,是由自身原因造成的,原因在于她过于幻想、虚荣、极端的爱情观,她短暂的一生是在不断追求理想爱情的过程中度过的,可她追求的理想爱情一再破灭,最后在走投无路中死去。本文从女性视角出发,解读爱玛人生悲剧原因,从而达到对我们世人的警示作用。%In the 19th century French writer Flaubert's representative work Madame Bovary, tells a highly nobility education farm girl Emma's love life and tragic fate. The tragedy of Emma, is due to their own, the reason is that she is too fancy, vanity, extreme love, her brief life is spent in the process of constant pursuit of ideal love, but her pursuit of ideal love repeatedly burst, finally died in desperation. This article starts from the female perspective, Emma life tragedy, so as to achieve the warning role of the world to us.

  1. Grieta en la pared, carcoma interior. Realidad frente a deseo en Emma Bovary y Ana Ozores. Perspectiva temática

    Directory of Open Access Journals (Sweden)

    Concepción Pérez - Pérez

    2015-04-01

    Full Text Available This article carries out a comparative analysis of the characters of Emma Bovary and Ana Ozores considering the assumptions of thematic criticism. The way that certain cosmological and material elements are regarded as real, brings about a set of recurrent images that acquire symbolical dimension. These images, which are the visible representation of the psycho-sensory level of the text, may relate, therefore, to the specific individual dimension of the way of perceiving and constructing a daydream vision of the real world in the act of writing. However, certain parallelisms can be established in the writings of both, Flaubert and Clarín.

  2. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    Science.gov (United States)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  3. D11.3.1: Results from the operation of EMMA using the new diagnostics

    CERN Document Server

    Machida, S

    2012-01-01

    In a Fixed-Field, Alternating-Gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high energy physics colliders. Until now a ‘scaling’ principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12 to 18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity prot...

  4. Discussion of Emma's Tragic Destiny in Madame Bovary%论《包法利夫人》中爱玛的悲剧命运

    Institute of Scientific and Technical Information of China (English)

    高云

    2012-01-01

    Madame Bovary is one of the representative works written by the French writer Gustave Flaubert.Emma is the heroine of this novel,she has been pursuing an empty romance throughout her short life.As the ideal love that she has been pursuing lost again and again,she has to be tied down to debts and fall into an abyss of death in the end.This paper tries to analyze the reasons of Emma's tragic destiny.%爱玛是福楼拜的小说《包法利夫人》中的主人公,她短暂的一生是在不断追求虚无浪漫爱情的过程中度过的。可她所追求的理想爱情一再破灭,最后因债台高筑,在走投无路中服毒自尽。本文将对造成爱玛悲剧命运的原因一一进行分析。

  5. Tunnetades kuumust / Emma Duncan

    Index Scriptorium Estoniae

    Duncan, Emma

    2006-01-01

    Autor prognoosib, et juba lähiajal hakkavad Valitsustevahelise Kliimamuutuste Ekspertrühma (IPCC- Intergovernmental Panel on Climate Change) aruanded mõjutama poliitikakujundamist maailmas. Diagramm: Elavhõbedasammas kerkib

  6. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  7. “La excavación” de Roa Bastos y “Emma Zunz” de Borges, en honor a la verdad

    Directory of Open Access Journals (Sweden)

    Cecilia Rubio Rubio

    2014-06-01

    Full Text Available En este artículo presento la relación intertextual entre el relato “La excavación” (El trueno entre las hojas, 1953 de Augusto Roa Bastos y el borgia- no “Emma Zunz” (El Aleph, 1949, a partir del análisis contrastivo. Ade- más, presento y comento la segunda versión de “La excavación” (Madera quemada, 1967 y la comparo con la primera, advirtiendo el alejamiento de la intertextualidad con Borges. Finalmente, someto a interpretación este cambio, comentando la distinción entre “verdad moral” y “verdad factual” que se presenta en los dos relatos.

  8. Fundamentos Curriculares del Liceo Laboratorio Emma Gamboa: Construcción teórica a partir de una Institución Participativa

    Directory of Open Access Journals (Sweden)

    Gurdián Fernández, Alicia

    2002-12-01

    Full Text Available Este artículo presenta los fundamentos teóricos del Proyecto Pedagógico del Liceo Laboratorio Emma Gamboa elaborados por las investigadoras a partir de una reflexión teórica que retoma la visión y la misión con las que se creó el Liceo, la percepción y el análisis en el marco de una evaluación curricular llevada a cabo por las investigadoras, el personal docente y docente administrativo. Estos fundamentos son resultado de una investigación participativa que permitió al personal docente y docente administrativo del período de 1996 a 1998, definir las premisas conceptuales que caracterizan a ese proyecto curricular desde un punto de vista epistemológico.

  9. Los fundamentos curriculares del liceo laboratorio emma gamboa: construcción teórica a partir de una investigación participativa

    Directory of Open Access Journals (Sweden)

    Jacqueline García Fallas

    2002-01-01

    Full Text Available Este artículo presenta los fundamentos teóricos del Proyecto Pedagógico del Liceo Laboratorio Emma Gamboa elaborados por las investigadoras a partir de una reflexión teórica que retoma la visión y la misión con las que se creó el Liceo, la percepción y el análisis en el marco de una evaluación curricular llevada a cabo por las investigadoras, el personal docente y docente administrativo. Estos fundamentos son resultado de una investigación participativa que permitió al personal docente y docente administrativo del período de 1996 a 1998, definir las premisas conceptuales que caracterizan a ese proyecto curricular desde un punto de vista epistemológico.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  13. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  15. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  16. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  17. Empowerment, motivation, and medical adherence (EMMA: the feasibility of a program for patient-centered consultations to support medication adherence and blood glucose control in adults with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Varming AR

    2015-09-01

    Full Text Available Annemarie Reinhardt Varming,1 Ulla Møller Hansen,1 Gudbjörg Andrésdóttir,2 Gitte Reventlov Husted,1 Ingrid Willaing1 1Patient Education Research, 2Complications Research, Steno Diabetes Center, Gentofte, Denmark Purpose: To explore the feasibility of a research-based program for patient-centered consultations to improve medical adherence and blood glucose control in patients with type 2 diabetes.  Patients and methods: The patient-centered empowerment, motivation, and medical adherence (EMMA consultation program consisted of three individual consultations and one phone call with a single health care professional (HCP. Nineteen patients with type 2 diabetes completed the feasibility study. Feasibility was assessed by a questionnaire-based interview with patients 2 months after the final consultation and interviews with HCPs. Patient participation was measured by 10-second event coding based on digital recordings and observations of the consultations.  Results: HCPs reported that EMMA supported patient-centered consultations by facilitating dialogue, reflection, and patient activity. Patients reported that they experienced valuable learning during the consultations, felt understood, and listened to and felt a trusting relationship with HCPs. Consultations became more person-specific, which helped patients and HCPs to discover inadequate diabetes self-management through shared decision-making. Compared with routine consultations, HCPs talked less and patients talked more. Seven of ten dialogue tools were used by all patients. It was difficult to complete the EMMA consultations within the scheduled time.  Conclusion: The EMMA program was feasible, usable, and acceptable to patients and HCPs. The use of tools elicited patients’ perspectives and facilitated patient participation and shared decision-making. Keywords: type 2 diabetes, adherence, participation, dialogue, health education, self-management

  18. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  19. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  20. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  3. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  4. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  5. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  6. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  7. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  8. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  9. Two Young Women Destroyed by Passion-Contrast between Anna and Emma%两个为激情所毁的少妇:安娜和埃玛比较研究

    Institute of Scientific and Technical Information of China (English)

    杨正先

    2011-01-01

    《安娜·卡列宁娜》中的安娜和《包法利夫人》中的埃玛是两个为激情所毁的少妇,她们的悲剧有某些相同的地方。但她们毕竟是出于不同国家、处于不同的时代,且是出自两个不同作家笔下,因此,这两个形象之间在实质上有着较大的差异。安娜追求的是高尚的爱情,而埃玛追求的在很大程度上是低级的情欲。%Anna in Anna · Kalieningnain and Emma in Madame Bovary are two young women destroyed by the passion,and their tragedies are of some similarity.However,these two images have big differences as they are from different countries at different times and dipicted by two different authors.Therefore,Anna is the noble pursuit of love,while Emma is largely low-level pursuit of passions.

  10. A Woman's Ideal Husband --Mr. Knightly in "Emma"%女性心目中的理想丈夫--《爱玛》中的南特利先生

    Institute of Scientific and Technical Information of China (English)

    董娜

    2012-01-01

    As the most mature work of Jane Austen, "Emma" has been drawing great attention from literature reviewers. The heroine Emma is just Austen's favorite one. At the same time we still can not ignore that the hero Mr. Knightly is a perfect image of gentleman of all Jane Austen's works. He is regarded as an ideal husband among women.%作为简·奥斯丁最为成熟的一部作品,《爱玛》在文学评论界一直受到广泛的关注。女主人公爱玛也是作者本人最喜爱的女主人公。但不容忽视的是:这部作品里的男主人公南特利先生也是奥斯丁塑造的一位最完美的绅士形象,可以称之为女性心目中的理想丈夫.

  11. 马克思主义女性主义视角下的《爱玛》%An Interpretation ofEmma from the Perspective of Marxist Feminism

    Institute of Scientific and Technical Information of China (English)

    王丽; 朱传莲

    2016-01-01

    《爱玛》是英国著名小说家简·奥斯丁的著作。她一生完成了六部小说,其中《爱玛》是她的巅峰之作,被很多评论家认为是她最成功、最成熟的作品。这不仅是指她的写作技巧,而且是指她思想认识上的成熟。随着西方女性主义文学批评理论的蓬勃发展,简·奥斯丁作为表现女性意识的女作家的先驱,她对英国女性文学的产生、发展及18世纪以后的文学产生了重要影响。该文用马克思主义女性主义批判中的男性统治中的父权制、资本主义经济制度、资本主义伦理道德来解读《爱玛》。%Emma is famous English novelist Jane Austen’s work. She completed six novels during her lifetime, including Pride and Prejudice,Sense and Sensibility,Persuasion and so on. Among her works, Emma is her most successful work. It is considered as her most successful and mature work by many reviewers. This comment not only refers to her writing skills, but also refers to the mature in thinking and understanding. With the flourishing development of the Western feminist literary criticism theory, Jane Austen, as the pioneer of women writers, has exerted important inlfuence on the start and development of British feminist literature and the later literature in the 18th century. The paper analyzes Emma with the theory of male-domination patriarchy, economic institutions of capitalism and the ethics of capitalism in the Marxist feminism criticism.

  12. A Comparative Study of Two Chinese Versions of Emma in the Perspective of Pragmatic Adaptation Theory%语用顺应论视角下《爱玛》两个中译本评析

    Institute of Scientific and Technical Information of China (English)

    万书婷

    2012-01-01

    以维索尔伦的语用顺应论为指导,从语境因素、语言结构、动态顺应等维度举例比较分析简·奥斯汀的代表作——《爱玛》两个中文版本:张经浩译本和孙致礼译本,由此探讨在文学翻译过程中,译者为了使目的语读者更好地理解原著是如何做出一系列语言选择以顺应原语和目的语的语言和文化。%Taking Verschueren's adaptation theory as theoretical framework,this paper sets out to compare two Chinese versions of Jane Austen's Emma-SUN Zhi-li's version and ZHANG Jing-hao's from contextual aspect,linguistic aspect and dynamic aspect,from which it discusses in the process of literary translation,how translators make linguistic choices to adapt to the source language's characteristic,culture and those of the target language,for the purpose of helping the readers better understand the original works.

  13. Magnetism and magnetic materials

    CERN Document Server

    Coey, J M D

    2010-01-01

    Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data. Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes - from nanoscale to astronomical scale - focussing on modern applications, including permanent magnet structures and spin electronic devices. Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The 38 principal magnetic materials, and many more related compounds, are treated in detail

  14. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  15. Magnetic Nanocapsules

    Institute of Scientific and Technical Information of China (English)

    Zhidong ZHANG

    2007-01-01

    A brief review on recent advances in the area of the magnetic nanocapsules is given. The most applicable nanoencapsulation procedures are introduced, which include: (1) physical techniques such as arc-discharge,evaporating, etc.; (2) chemical techniques such as chemical vapor deposition, solid-state reactions, etc. The structure and magnetic properties of various nanocapsules with different core/shell structures are studied in details, for possibly applications in magnetic recording, magnetic refrigerator, magnetic fluids, superconductors and medicine.

  16. 夹缝中挣扎的艾菲与爱玛--试比较《艾菲•布里斯特》与《包法利夫人》中的主要女性人物形象%Effi and Emma Struggling in Dilemmas:Comparison of the Main Female Figures in "Effi Briest" and "Madame Bovary"

    Institute of Scientific and Technical Information of China (English)

    季文心

    2015-01-01

    In Gustave Flaubert and Theodor Fontane's works, two females, Effi and Emma, have many similarities although they are from different countries, social backgrounds and classes. They possess good natures, but they are struggling painfully in the dilemmas of individual and social contradictions and finally have to be ruined. Their lives are individual tragedies, but imply the tragedy of the whole times.%在福楼拜和冯塔纳笔下,两位处在不同国家、不同社会背景、不同阶层的女性艾菲与爱玛有着许多相似之处,她们拥有美好的天性,却在个人与社会矛盾的夹缝中苦苦挣扎,最终不得不走向毁灭。她们的人生是个人的悲剧,却又暗含着整个时代的悲剧。

  17. Magnetic Reconnection

    NARCIS (Netherlands)

    Schep, T. J.

    1994-01-01

    This lecture deals with the concept of magnetic field lines and with the conservation of magnetic flux. In high temperature fusion devices like tokamaks flux conservation can be violated and reconnection can occur at closed magnetic field lines. Reconnection processes lead to changes in the global t

  18. Magnetizing of permanent magnets using HTS bulk magnets

    Science.gov (United States)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  19. Magnetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  20. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  1. Quantum Magnetism

    CERN Document Server

    Barbara, Bernard; Sawatzky, G; Stamp, P. C. E

    2008-01-01

    This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...

  2. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  3. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  4. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  5. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  6. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  7. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  8. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  9. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  10. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel

    2005-01-01

    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  11. Magnetic monopoles and dipoles

    CERN Multimedia

    Dominguez, Daniel

    2016-01-01

    Conventional bar magnets are also called ‘magnetic dipoles’ because they have two magnetic poles (a “North” and a “South” magnetic pole, like the Earth). In theory, “magnetic monopoles” could exist that act like an isolated “magnetic charge”, i.e. either a “North” or a “South” magnetic pole.

  12. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R.

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  13. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...

  14. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  15. Magnetic Design of Superconducting Magnets

    CERN Document Server

    Todesco, E

    2014-01-01

    In this paper we discuss the main principles of magnetic design for superconducting magnets (dipoles and quadrupoles) for particle accelerators. We give approximated equations that govern the relation between the field/gradient, the current density, the type of superconductor (Nb−Ti or Nb3Sn), the thickness of the coil, and the fraction of stabilizer. We also state the main principle controlling the field quality optimization, and discuss the role of iron. A few examples are given to show the application of the equations and their validity limits.

  16. Magnetic Fluids: Biomedical Applications and Magnetic Fractionation

    OpenAIRE

    Rheinländer, Thomas; Kötitz, Róman; Weitschies, Werner; Semmler, Wolfhard

    2000-01-01

    In addition to engineering applications, magnetic fluids containing magnetic nanoparticles are being increasingly applied to biomedical purposes. Besides the well established use of magnetic particles for biological separation or as contrast agents for magnetic resonance imaging, magnetic particles are also being tested for the inductive heat treatment of tumors or as markers for the quantification of biologically active substances. The properties of magnetic nanoparticles usually exhibit a b...

  17. LHC prototype magnet

    CERN Multimedia

    1991-01-01

    1.5 metre superconducting magnet. This prototype magnet for the LHC was cooled to a few degrees above absolute zero, which allowed it to obtain the world record for the highest magnetic field for an accelerator magnet in 1991.

  18. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  19. Y Emma Bovary aprendió a hablar en gallego...

    Directory of Open Access Journals (Sweden)

    Cecilia Fernández Santomé

    2012-05-01

    Full Text Available Les traductions des œuvres de Flaubert sont nombreuses. Cet abondant flux de versions comporte une multiplicité de solutions aux « problèmes » que les textes flaubertiens peuvent poser au médiateur linguistique. Ainsi, l’adaptation de leur esthétique particulière et du ton général de l’écriture ne repose pas toujours sur les mêmes stratégies formelles, qui varient suivant les traits du système littéraire récepteur de l’œuvre traduite. Pourtant, la traduction en galicien de Madame Bovary est imprégnée non seulement des caractéristiques propres à cette langue, mais encore des dispositions inhérentes à un champ littéraire encore peu consolidé.Flaubert’s works have been translated into an important number of languages all around the world. These versions present different solutions to the “problems” of Flaubert’s style. In fact, translated books content many aesthetic and formal modifications that are intimately related to the strategies actives into the literary system that receives the resultant text. However, there is a kind of double gaze in the translator’s work that hides the simultaneous development of other aspects that are not literary features. The Galician translation of Madame Bovary shows how stylistic choices are determined by extra-literary politics into a cultural system that is already not completely consolidated.Son muchas las traducciones existentes de las obras de Flaubert. Esta multitud de versiones conlleva la existencia de múltiples soluciones a los “problemas” que los textos de origen presentan al traductor. De hecho, la adaptación de la particular estética de los mismos y del tono general de su escritura no sigue un patrón único, al variar en función de las características inherentes al sistema literario receptor de la obra traducida. Es más, el respeto al principio de literalidad o las libertades del traductor, disimulan aspectos más allá de lo estrictamente literario y que también conviene tener en cuenta. La traducción al gallego de Madame Bovary está impregnada no solamente de las disposiciones lingüísticas propias de dicho idioma, sino que en ella pueden descifrarse algunos de los rasgos que afectan al desarrollo de un campo literario aún en proceso de consolidación.

  20. How can the EMMA approach to learning analytics improve employability?

    NARCIS (Netherlands)

    Brouns, Francis; Tammets, Kairit; Padrón-Nápoles, Carmen L.

    2014-01-01

    In our current society there is a strong need for citizens to work on their employability and to develop key competences. Developing those competences should starts during formal education, but maintained throughout working life. MOOCs can accommodate several of the needs of the lifelong learners.

  1. Potentsial opiinogo maka / Emma Bonino ; tõlk. Nikolai Zhdanovitsh

    Index Scriptorium Estoniae

    Bonino, Emma

    2006-01-01

    Euroopa Parlament võttis vastu Afganistani puudutava resolutsiooni, mis võib rajada teed objektiivsemale lähenemisele narkootikumidevastase võitluse strateegias. Resolutsioon kutsub Londonis toimuva konverentsi osavõtjaid üles võtma vaatluse alla ettepanekud oopiumi litsentseeritud tootmiseks meditsiinilistel eesmärkidel

  2. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  3. MAGNET / INFRASTRUCTURE

    CERN Multimedia

    D. Campi

    The final fast discharge of the Magnet took place on 3rd of November. The Coil reached a temperature of 70K by internal energy dissipation. By injecting a current of 200 A room temperature was reached on the 23rd November. During the heating of the coil un-connecting of the first magnet connectors on YBO was started to give the earliest possible access to the assembly groups and to continue the installation of the muon chambers. The removal of the pumping lines and the disconnection of the vacuum system was instead done as soon as the room temperature was reached: more precisely from the 4 to the 18 December. The disconnection of the transfer line from the cold box and the completion of the removal of the control cables of the vacuum system and cryogenics was done at last. In January 2007 the disconnection of MCS-MSS, CDS, vacuum racks and their cable trays was also achieved. After coil disconnection the effort of the magnet team has been mainly devoted in optimizing the lowering and reassembly of the a...

  4. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  5. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  6. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder...

  7. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic energy product. In order to control the particle size......Enhancing the magnetic properties of magnetic nanoparticles J. V. Ahlburg, M. S. Músquiz, C. Zeuthen, S. Kjeldgaard, M. Stingaciu, M. Christensen Center for Materials Crystallography, Departement of Chemistry & iNano, Aarhus University, Denmark Strong magnets with a high energy product are vital...... when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets with a similar magnetic performance. There are several different...

  8. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders;

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  9. Physics of magnetism and magnetic materials

    CERN Document Server

    Buschow, K H J

    2003-01-01

    In this book, the fundamentals of magnetism are treated, starting at an introductory level. The origin of magnetic moments, the response to an applied magnetic field, and the various interactions giving rise to different types of magnetic ordering in solids are presented and many examples are given. Crystalline-electric-field effects are treated at a level that is sufficient to provide the basic knowledge necessary in understanding the properties of materials in which these effects play a role. Itinerant-electron magnetism is presented on a similar basis. Particular attention has been given to magnetocrystalline magnetic anisotropy and the magnetocaloric effect. Also, the usual techniques for magnetic measurements are presented. About half of the book is devoted to magnetic materials and the properties that make them suitable for numerous applications. The state of the art is presented of permanent magnets, high-density recording materials, soft-magnetic materials, Invar alloys and magnetostrictive materials....

  10. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.

    Science.gov (United States)

    Kanazawa, Naoya; Seki, Shinichiro; Tokura, Yoshinori

    2017-03-17

    The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is reviewed: B20 metals, Cu2 OSeO3 , Co-Zn-Mn alloys, and GaV4 S8 , where Dzyaloshinskii-Moriya interaction plays a key role in the stabilization of skyrmion spin texture. Their topological spin arrangements and consequent emergent electromagnetic fields give rise to striking features in transport and magnetoelectric properties in metals and insulators, such as the topological Hall effect, efficient electric-drive of skyrmions, and multiferroic behavior. Such electric controllability and nanometric particle natures highlight magnetic skyrmions as a potential information carrier for high-density magnetic storage devices with excellent energy efficiency.

  11. Magnetic fluids - suspensions of magnetic dipoles and their magnetic control

    CERN Document Server

    Odenbach, S

    2003-01-01

    Suspensions of magnetic nanoparticles exhibit normal liquid behaviour coupled with superparamagnetic properties. This leads to the possibility to control the properties and the flow of these liquids with moderate magnetic fields. The magnetic control enables various experiments in fluid mechanics and gives rise to the development of numerous technical and medical applications. Ferrofluids and their general properties will be introduced and, as examples for the magnetic control of their flow and properties, thermomagnetic convection and magnetoviscous effects will be discussed in some detail.

  12. Electrically Tunable Magnetism in Magnetic Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-14

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  13. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  14. Thin Magnetically Soft Wires for Magnetic Microsensors

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2009-11-01

    Full Text Available Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

  15. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  16. Development of Magnetic Refrigerator

    Science.gov (United States)

    Ogiwara, Hiroyasu; Nakagome, Hideki; Kuriyama, Tohru

    A series of R & D of magnetic refrigerators has been done in order to realize an advanced type cryocooler for superconducting magnets of maglev trains and MRI medical system. As a result of efforts on both the magnetic refrigerator and superconducting magnets, a parasitic type magnetic refrigeration system was proposed.

  17. The magnetization process: Hysteresis

    Science.gov (United States)

    Balsamel, Richard

    1990-01-01

    The magnetization process, hysteresis (the difference in the path of magnetization for an increasing and decreasing magnetic field), hysteresis loops, and hard magnetic materials are discussed. The fabrication of classroom projects for demonstrating hysteresis and the hysteresis of common magnetic materials is described in detail.

  18. Magnetic Nano-structures

    Institute of Scientific and Technical Information of China (English)

    姚永德

    2004-01-01

    Fabrication of magnetic nano-structures with dots array and wires has been paid attention recently due to the application of high-density magnetic recording. In this study, we fabricated the magnetic dots array and wires through several ways that ensure the arrangement of magnetic dots and wires to be the structures we designed. Their magnetic properties are studied experimentally.

  19. Magnetic Resonance Imaging

    Science.gov (United States)

    ... metallic objects from being attracted by the powerful magnet of the MR system, you will typically receive ... teeth with magnetic keepers Other implants that involve magnets Medication patch (i.e., transdermal patch) that contains ...

  20. Magnetism of Carbonados

    Science.gov (United States)

    Kletetschka, G.; Taylor, P. T.; Wasilewski, P. J.

    2000-01-01

    Origin of Carbonado is not clear. Magnetism of Carbonado comes from the surface, indicating contemporary formation of both the surface and magnetic carriers. The interior of carbonado is relatively free of magnetic phases.

  1. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  2. Magnetized accretion

    Science.gov (United States)

    Heyvaerts, J.

    This lecture reviews in simple terms the general subject of large scale magnetic field coupling to plasma flows in the vicinity of accreting compact stars. The relevant astrophysical phenomenology is summarized. Disk interaction with the magnetosphere of accreting stars is first discussed, in particular the structure of the magnetopause, its stability and plasma ejection in so-called propeller systems. The physics of accretion/ejection is then considered. Acceleration and focusing mechanisms of jets from accretion disks around compact stars or black holes and the question of the self-consistency of accretion and ejection are described. By contrast, small scale MHD turbulence in disks is not discussed, neither are accretion columns near the polar caps of neutron stars or white dwarfs. The reader is only assumed to have some basic knowledge of astrophysics and of fluid mechanics and electromagnetism.

  3. Smashing magnets

    Science.gov (United States)

    Ferrier-Barbut, Igor

    2016-11-01

    Understanding or designing phases of matter relies in the first place on the knowledge at the microscopic level of the interactions taking place between the constituents. In quantum gases, a renewed interest is rising about the interaction between two dipoles, owing to its anisotropic and long-range character. In a new paper, Burdick et al (2016 New J. Phys. 18 113004) demonstrate experimentally the angular-dependence of collisions between two dysprosium atoms, an atomic species that carries a magnetic dipole moment among the largest in the periodic table. This is realized by colliding two 164Dy Bose-Einstein condensates, and the experiments are backed by a theoretical analysis to connect these results with the two-body scattering cross-section. This represents a further step on the way to the full control of dipole-interacting many-body systems.

  4. Electromechanical integrated magnetic gear

    OpenAIRE

    Xiu-hong Hao; Hong-fei Zhang; Ji-de Men

    2016-01-01

    This study proposes a new type of magnetic gear, namely, the electromechanical integrated magnetic gear, that integrates the traditional field-modulated magnetic gear, drive, and control. The topology and operating principle of the electromechanical integrated magnetic gear are described in detail in this article, and the constraints of parameter design and speed ratio of electromechanical integrated magnetic gear are presented. Moreover, magnetic field distribution is analyzed with the finit...

  5. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  6. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  7. Magnetic domains the analysis of magnetic microstructures

    CERN Document Server

    Hubert, Alex

    1998-01-01

    The book gives a systematic and comprehensive survey of the complete area of magnetic microstructures. It reaches from micromagnetism of nanoparticles to complex structures of extended magnetic materials. The book starts with a comprehensive evaluation of traditional and modern experimental methods for the observation of magnetic domains and continues with the treatment of important methods for the theoretical analysis of magnetic microcstructures. A survey of the necessary techniques in materials characterization is given. The book offers an observation and analysis of magnetic domains in all

  8. Magnetic hyperthermia in solid magnetic colloids

    Science.gov (United States)

    Zubarev, A. Yu.; Iskakova, L. Yu.; Abu-Bakr, A. F.

    2017-02-01

    We present results of theoretical study of magnetic hyperthermia in systems of single-domain ferromagnetic particles homogeneously distributed in a solid matrix. The heat effect is induced by linearly polarized alternating magnetic field. The effect of magnetic interaction between the particles as well as influence of orientation of the particles magnetic axes are in a focus of our consideration. Analysis shows that the interparticle interaction increases intensity of the heat production. The thermal effect in the systems with parallel orientation of the particles axes of easy magnetization is significantly higher than that in the case of random orientation of these axes.

  9. Environmental magnetism

    CERN Document Server

    Thompson, Roy

    1986-01-01

    The scientist will be forced, in the unenthusiastic words of one of my scientific colleagues, 'to slosh about in the primordial ooze known as inter-disciplinary studies'. John Passmore Man's responsibility for nature The present text has arisen from some thirteen years advances in our perception, appraisal and creative use of collaboration between the two authors. During that of order in natural systems. Out of this can come period, upwards of a dozen postgraduates in enhanced insight into processes, structures and Edinburgh, the New University of Ulster and Liver­ systems interactions on all temporal and spatial scales pool have been closely involved in exploring many of and at all integrative levels from subatomic to cosmic. the applications of magnetic measurements described In the environment, elements of order are often in the second half of the book. Much of the text is difficult to appraise and analyse, not only because of based on their work, both published and unpublished. intrinsic complexity, but ...

  10. Hoosier Magnetics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-30

    Hoosier Magnetics proposes to replace the indirect clinker water cooling system with a cooling system that recycles heat from the hot ferrite to preheat the combustion air. This innovative process would significantly reduce the amount of natural gas required to heat the combustion air while eliminating Hoosier’s largest source of downtime. According to the Department of Energy’s Industrial Technologies Program for Energy Efficiency and Renewable Energy, process temperature is customarily used as a rough indication of where preheating air will be cost effective. Previous studies have concluded that processes operating above 1,600° F are ideal candidates for the utilization of pre-heated combustion air. Hoosier Magnetics’ operating temperatures run between 1800-2200° F making Hoosier the perfect candidate. Using preheated air at 1200° F will result in 35% fuel savings, or $298,935 annually. Additionally, the new system would have improved process reliability and result in both production efficiency increases and cost savings. This technology is NOT practiced or utilized on a wide-spread basis but could have a significant energy reduction impact in many different high heat utilizing industries in the country. While the energy savings is apparent with this theory the application and design of such a process has not been studied.

  11. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  12. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  13. Ferroelectricity in spiral magnets

    NARCIS (Netherlands)

    Mostovoy, M

    2006-01-01

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric suscepti

  14. Magnetic multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Herget, Philipp; O' Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2017-03-21

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  15. Magnetic effects in electrochemistry

    Directory of Open Access Journals (Sweden)

    NEBOJSA D. NIKOLIC

    2005-05-01

    Full Text Available The effect of imposed magnetic fields onto the electrodeposition of magnetic (nickel and non – magnetic (copper metals was analysed. Also, magnetic properties of electrochemically obtained nanocontacts were examined. An effort to establish a possible correlation between the morphologies of the nanocontacts and the effect of the very large ballistic magnetoresistance (BMR effect was made.

  16. A Magnetic Paradox

    Science.gov (United States)

    Arndt, Ebe

    2006-01-01

    Two recent articles in this journal described how an air core solenoid connected to an ac power source may restore the magnetization of a bar magnet with an alternating magnetic field (see Figs. 1 and 2). Although we are quite accustomed to using a constant magnetic field in an air core solenoid to remagnetize a ferromagnet, it is puzzling that we…

  17. Fundamentals of magnetism

    CERN Document Server

    Reis, Mario

    2013-01-01

    The Fundamentals of Magnetism is a truly unique reference text, that explores the study of magnetism and magnetic behavior with a depth that no other book can provide. It covers the most detailed descriptions of the fundamentals of magnetism providing an emphasis on statistical mechanics which is absolutely critical for understanding magnetic behavior. The books covers the classical areas of basic magnetism, including Landau Theory and magnetic interactions, but features a more concise and easy-to-read style. Perfect for upper-level graduate students and industry researchers, The Fu

  18. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  19. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, S.

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  20. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  1. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  2. Magnetic novae

    Science.gov (United States)

    Zemko, Polina; Orio, Marina

    2016-07-01

    We present the results of optical and X-ray observations of two quiescent novae, V2491 Cyg and V4743 Sgr. Our observations suggest the intriguing possibility of localization of hydrogen burning in magnetic novae, in which accretion is streamed to the polar caps. V2491 Cyg was observed with Suzaku more than 2 years after the outburst and V4743 Sgr was observed with XMM Newton 2 and 3.5 years after maximum. In the framework of a monitoring program of novae previously observed as super soft X-ray sources we also obtained optical spectra of V4743 Sgr with the SALT telescope 11.5 years after the eruption and of V2491 Cyg with the 6m Big Azimutal Telescope 4 and 7 years post-outburst. In order to confirm the possible white dwarf spin period of V2491 Cyg measured in the Suzaku observations we obtained photometric data using the 90cm WIYN telescope at Kitt Peak and the 1.2 m telescope in Crimea. We found that V4743 Sgr is an intermediate polar (IP) and V2491 Cyg is a strong IP candidate. Both novae show modulation of their X-ray light curves and have X-ray spectra typical of IPs. The Suzaku and XMM Newton exposures revealed that the spectra of both novae have a very soft blackbody-like component with a temperature close to that of the hydrogen burning white dwarfs in their SSS phases, but with flux by at least two orders of magnitude lower, implying a possible shrinking of emitting regions in the thin atmosphere that is heated by nuclear burning underneath it. In quiescent IPs, independently of the burning, an ultrasoft X-ray flux component originates at times in the polar regions irradiated by the accretion column, but the soft component of V4743 Sgr disappeared in 2006, indicating that the origin may be different from accretion. We suggest it may have been due to an atmospheric temperature gradient on the white dwarf surface, or to continuing localized thermonuclear burning at the bottom of the envelope, before complete turn-off. The optical spectra of V2491 Cyg and V

  3. Magnetically Damped Furnace Bitter Magnet Coil 1

    Science.gov (United States)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  4. Cosmological Magnetic Fields

    CERN Document Server

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  5. Multifunctionality in molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  6. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  7. Tamper resistant magnetic stripes

    Science.gov (United States)

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  8. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  9. The magnetic stress tensor in magnetized matter

    CERN Document Server

    Espinosa, Olivier R; Espinosa, Olivier; Reisenegger, Andreas

    2003-01-01

    We derive the form of the magnetic stress tensor in a completely general, stationary magnetic medium, with an arbitrary magnetization field $vec M(vec r)$ and free current density $vec j(vec r)$. We start with the magnetic force density $vec f$ acting on a matter element, modelled as a collection of microscopic magnetic dipoles in addition to the free currents. We show that there is a unique tensor ${bf T}$ quadratic in the magnetic flux density $vec B(vec r)$ and the magnetic field $vec H(vec r)=vec B-4pivec M$ whose divergence is $nablacdot{bf T}=vec f$. In the limit $vec M=0$, the well-known vacuum magnetic stress tensor is recovered. However, the general form of the tensor is asymmetric, leading to a divergent angular acceleration for matter elements of vanishing size. We argue that this is not inconsistent, because it occurs only if $vec M$ and $vec B$ are not parallel, in which case the macroscopic field does indeed exert a torque on each of the microscopic dipoles, so this state is only possible if the...

  10. Enhanced Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  11. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  12. Active magnetic regenerator

    Science.gov (United States)

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  13. ISR magnet power supplies

    CERN Multimedia

    1970-01-01

    At the left, for the main magnets, the 18 kV switchgear is in the foreground and at the rear are cubicles with rectifiers and filters. At the right, rear, are rectifiers for pole face windings and auxiliary magnets.

  14. Project Magnet 1996

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Project Magnet data include low altitude, high density individual track line surveys, high altitude vector data and regional magnetic anomaly grids.

  15. Electromechanical integrated magnetic gear

    Directory of Open Access Journals (Sweden)

    Xiu-hong Hao

    2016-06-01

    Full Text Available This study proposes a new type of magnetic gear, namely, the electromechanical integrated magnetic gear, that integrates the traditional field-modulated magnetic gear, drive, and control. The topology and operating principle of the electromechanical integrated magnetic gear are described in detail in this article, and the constraints of parameter design and speed ratio of electromechanical integrated magnetic gear are presented. Moreover, magnetic field distribution is analyzed with the finite element method. Subsequently, the harmonics of the magnetic field and the electromagnetic torque are calculated. The static torques on all the components are exhibited by finite element method and torque test. The effects of the design parameters on the torques and the torque densities are discussed, and the results show that electromechanical integrated magnetic gear has a high speed ratio and can generate a high torque at low speed. The maximum torques are affected by air-gap thickness and other parameters.

  16. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  17. Magnetic induction hyperthermia

    Science.gov (United States)

    Nikiforov, V. N.

    2007-09-01

    A review of physical principles and experimental data on magnetic hyperthermia are presented. The main principles of magnetic hyperthermia are considered. Results of its application in the therapy of oncology diseases are presented.

  18. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  19. Enhanced Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  20. Magnetic Graphene Nanohole Superlattices

    CERN Document Server

    Yu, Decai; Liu, Miao; Liu, Wei; Liu, Feng

    2008-01-01

    We investigate the magnetic properties of nano-holes (NHs) patterned in graphene using first principles calculations. We show that superlattices consisting of a periodic array of NHs form a new family of 2D crystalline "bulk" magnets whose collective magnetic behavior is governed by inter-NH spin-spin interaction. They exhibit long-range magnetic order well above room temperature. Furthermore, magnetic semiconductors can be made by doping magnetic NHs into semiconducting NH superlattices. Our findings offer a new material system for fundamental studies of spin-spin interaction and magnetic ordering in low dimensions, and open up the exciting opportunities of making engineered magnetic materials for storage media and spintronics applications.

  1. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  2. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  3. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  4. Magnetic cluster excitations

    Science.gov (United States)

    Furrer, Albert; Waldmann, Oliver

    2013-01-01

    Magnetic clusters, i.e., assemblies of a finite number (between two or three and several hundred) of interacting spin centers which are magnetically decoupled from their environment, can be found in many materials ranging from inorganic compounds and magnetic molecules to artificial metal structures formed on surfaces and metalloproteins. Their magnetic excitation spectra are determined by the nature of the spin centers and of the magnetic interactions, and the particular arrangement of the mutual interaction paths between the spin centers. Small clusters of up to four magnetic ions are ideal model systems in which to examine the fundamental magnetic interactions, which are usually dominated by Heisenberg exchange, but often complemented by anisotropic and/or higher-order interactions. In large magnetic clusters, which may potentially deal with a dozen or more spin centers, there is the possibility of novel many-body quantum states and quantum phenomena. In this review the necessary theoretical concepts and experimental techniques to study the magnetic cluster excitations and the resulting characteristic magnetic properties are introduced, followed by examples of small clusters, demonstrating the enormous amount of detailed physical information that can be retrieved. The current understanding of the excitations and their physical interpretation in the molecular nanomagnets which represent large magnetic clusters is then presented, with a section devoted to the subclass of single-molecule magnets, distinguished by displaying quantum tunneling of the magnetization. Finally, there is a summary of some quantum many-body states which evolve in magnetic insulators characterized by built-in or field-induced magnetic clusters. The review concludes by addressing future perspectives in the field of magnetic cluster excitations.

  5. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  6. Nanochemistry and magnetism

    Science.gov (United States)

    Buchachenko, A. L.

    2009-10-01

    An analysis of magnetism of nanochemical systems opens up new ways to creating ferromagnets from diamagnetic substances and new principles for constructing molecular ferromagnets, hybrid magnetic materials, and monomolecular magnets on the basis of high-spin molecules and complexes. Their use in spin computing is considered.

  7. Magnetism in meteorites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.

    1974-01-01

    An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.

  8. Common Magnets, Unexpected Polarities

    Science.gov (United States)

    Olson, Mark

    2013-01-01

    In this paper, I discuss a "misconception" in magnetism so simple and pervasive as to be typically unnoticed. That magnets have poles might be considered one of the more straightforward notions in introductory physics. However, the magnets common to students' experiences are likely different from those presented in educational…

  9. Magnetic hyperthermia with hard-magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kashevsky, Bronislav E., E-mail: bekas@itmo.by [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Kashevsky, Sergey B.; Korenkov, Victor S. [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Istomin, Yuri P. [N. N. Alexandrov National Cancer Center of Belarus, Lesnoy-2, Minsk 223040 (Belarus); Terpinskaya, Tatyana I.; Ulashchik, Vladimir S. [Institute of Physiology, Belarus Academy of Sciences, Akademicheskaya str. 28, Minsk 220072 (Belarus)

    2015-04-15

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner–Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner–Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body. - Highlights: • Hard-magnetic nanoparticles are shown superior for hyperthetmia to superparamagnetic. • Optimal system parameters are found from magnetic reversal model in movable particle. • Penetrating suspension of HM particles with aggregation-independent SAR is developed. • For the first time, mice with tumors are healed in AC field acceptable for human body.

  10. Permanent-Magnet Meissner Bearing

    Science.gov (United States)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  11. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  12. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  13. Switchable molecular magnets.

    Science.gov (United States)

    Sato, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes.

  14. Magnetic volumetric hologram memory with magnetic garnet.

    Science.gov (United States)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-06-30

    Holographic memory is a promising next-generation optical memory that has a higher recording density and a higher transfer rate than other types of memory. In holographic memory, magnetic garnet films can serve as rewritable holographic memory media by use of magneto-optical effect. We have now demonstrated that a magnetic hologram can be recorded volumetrically in a ferromagnetic garnet film and that the signal image can be reconstructed from it for the first time. In addition, multiplicity of the magnetic hologram was also confirmed; the image could be reconstructed from a spot overlapped by other spots.

  15. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  16. Tunneling magnetic force microscopy

    Science.gov (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  17. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  18. Molecule-based magnets

    Indian Academy of Sciences (India)

    J V Yakhmi

    2009-06-01

    The conventional magnetic materials used in current technology, such as, Fe, Fe2O3, Cr2O3, SmCo5, Nd2Fe14B etc are all atom-based, and their preparation/processing require high temperature routes. Employing self-assembly methods, it is possible to engineer a bulk molecular material with long-range magnetic order, mainly because one can play with the weak intermolecular interactions. Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be categorized on the basis of the chemical nature of the magnetic units involved: organic-, metal-based systems, heterobimetallic assemblies, or mixed organic–inorganic systems. The design of molecule-based magnets has also been extended to the design of poly-functional molecular magnets, such as those exhibiting second-order optical nonlinearity, liquid crystallinity, or chirality simultaneously with long-range magnetic order. Solubility, low density and biocompatibility are attractive features of molecular magnets. Being weakly coloured, unlike their opaque classical magnet ‘cousins’ listed above, possibilities of photomagnetic switching exist. Persistent efforts also continue to design the ever-elusive polymer magnets towards applications in industry. While providing a brief overview of the field of molecular magnetism, this article highlights some recent developments in it, with emphasis on a few studies from the author’s own lab.

  19. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  20. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  2. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  3. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of journal bearings and seals. The main contribution...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  4. Magnetization arrangement of hard magnetic phases and mechanism of magnetization and reversal magnetization of nano-composite magnets

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-cai; XIE Ren; PAN Jing

    2009-01-01

    During the process of directional solidification, laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets, or die-upsetting of nano-composites, the arrangements of the easy-magnetization-axes of the hard magnetic phases (Nd_2Fe_(14)B, SmCo_5 or Sm_2Co_(17) type) in their designed directions have been studied. In Fe-Pt nano-composite magnets, attempts have been taken to promote phase transformation from disordered, soft magnetic A1 to ordered, hard magnetic L_(10) FePt phase at reduced temperatures. The dependence of the magnetization and reversal magnetization processes on the microstructures, involving the morphology and three critical sizes of particles of the FePt nano-composite magnets, are summarized. With the decrease of the nominal thickness of the anisotropic FePt film epitaxially grown on the single crystal MgO (001) substrate, the reversal magnetization process firstly changes from full domain wall displacement to partial magnetic wall pinning related to the morphology change, where the coercive force increases abruptly. The reversal magnetization process secondly changes from magnetic wall pinning to incoherent magnetization rotation associated with the particles being below the first critical size at which multi-domain particles turn into single domain ones, where the coercive force is still increased. And the reversal magnetization mode thirdly changes from incoherent to coherent rotation referred to the second critical size, where the increase of the coercive force keeps on. However, when the particle size decreases to approach the third critical size where the particles turn into the supperparamagnetic state, the coercive force begins to decrease due to the interplay of the size effect and the incomplete ordering induced by the size effect. Meanwhile, due to the size effect, Curie temperature of the ultra-small FePt particles reduces.

  5. Magnetic Excitations and Magnetic Ordering in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Chapellier, M.; Mackintosh, A. R.;

    1975-01-01

    The dispersion relations for magnetic excitons propagating on the hexagonal sites of double-hcp Pr provide clear evidence for a pronounced anisotropy in the exchange. The energy of the excitations decreases rapidly as the temperature is lowered, but becomes almost constant below about 7 K......, in agreement with a random-phase-approximation calculation. No evidence of magnetic ordering has been observed above 0.4 K, although the exchange is close to the critical value necessary for an antiferromagnetic state....

  6. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  7. Magnetism in Medicine

    Science.gov (United States)

    Schenck, John

    2000-03-01

    For centuries physicians, scientists and others have postulated an important role, either as a cause of disease or as a mode of therapy, for magnetism in medicine. Although there is a straightforward role in the removal of magnetic foreign bodies, the majority of the proposed magnetic applications have been controversial and have often been attributed by mainstream practitioners to fraud, quackery or self-deception. Calculations indicate that many of the proposed methods of action, e.g., the field-induced alignment of water molecules or alterations in blood flow, are of negligible magnitude. Nonetheless, even at the present time, the use of small surface magnets (magnetotherapy) to treat arthritis and similar diseases is a widespread form of folk medicine and is said to involve sales of approximately one billion dollars per year. Another medical application of magnetism associated with Mesmer and others (eventually known as animal magnetism) has been discredited, but has had a culturally significant role in the development of hypnotism and as one of the sources of modern psychotherapy. Over the last two decades, in marked contrast to previous applications of magnetism to medicine, magnetic resonance imaging or MRI, has become firmly established as a clinical diagnostic tool. MRI permits the non-invasive study of subtle biological processes in intact, living organisms and approximately 150,000,000 diagnostic studies have been performed since its clinical introduction in the early 1980s. The dramatically swift and widespread acceptance of MRI was made possible by scientific and engineering advances - including nuclear magnetic resonance, computer technology and whole-body-sized, high field superconducting magnets - in the decades following World War Two. Although presently used much less than MRI, additional applications, including nerve and muscle stimulation by pulsed magnetic fields, the use of magnetic forces to guide surgical instruments, and imaging utilizing

  8. Molecules in Magnetic Fields

    Science.gov (United States)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  9. Magnetic Coordinate Systems

    CERN Document Server

    Laundal, K M

    2016-01-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the...

  10. Magnetic heat pumping

    Science.gov (United States)

    Brown, G. V. (Inventor)

    1983-01-01

    The method employs ferromagnetic or ferromagnetic elements, preferably of rare-earth based material, for example gadolinium, and preferably employs a regenerator. The steps comprise controlling the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram repeatedly to traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four sided, with, for example, two isotherms and two adiabats (constant entropy portions.

  11. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  12. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  13. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus;

    ], or are applicable only to analytically solvable geometries[4]. In addition, some questions remained fundamentally unanswered, such as how to segment a given design into N uniformly magnetized pieces.Our method calculates the globally optimal shape and magnetization direction of each segment inside a certain......We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... designarea with an optional constraint on the total amount of magnetic material. The method can be applied to any objective functional which is linear respect to the field, and with any combination of linear materials. Being based on an analytical-optimization approach, the algorithm is not computationally...

  14. Magnetic nanocap arrays with tilted magnetization

    Science.gov (United States)

    Albrecht, Manfred

    2009-03-01

    In modern magnetic recording materials the ``superparamagnetic effect'' has become increasingly important as new magnetic hard disk drive products are designed for higher storage densities. In this regard, patterned media [1], where two-dimensional arrays of nanostructures are used, is one of the concepts that might provide the required areal density in future magnetic recording devices. However, also nanostructure arrays will ultimately need high anisotropy material such as L10-FePt to provid enough thermal stability and thus much higher writing fields than currently obtainable from perpendicular magnetic recording heads. One proposed solution to this problem is the use of tilted magnetic recording media [2]. The basic idea is to tilt the easy axis of the magnetic medium from the perpendicular direction to 45 degree. In this case, the switching field will be reduced by a foctor of two in the Stoner-Wohlfarth limit. Recently, this approach was realized by oblique film deposition onto arrays of self-assembled spherical particles [3-5]. In this presentation, recent results on different film systems including Co/Pt multilayers, FePt and CoPtCr-SiO2 alloys which have been deposited onto SiO2 particle monolayers will be presented. It turned out that by tuning the growth conditions single domain nanocaps with enhanced magnetic coercivity and tilted anisostropy axis can be achieved even for particle sizes below 50 nm. [4pt] [1] B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199 [0pt] [2] J.-P. Wang, Nat. Mater. 4, 191 (2005). [0pt] [3] M. Albrecht et al., Nat. Mater. 4, 203 (2005). [0pt] [4] T. Ulbrich et al., Phys. Rev. Lett. 96 (2006) 077202. [0pt] [5] D. Makarov et al., Appl. Phys. Lett. 93, 153112 (2008).

  15. Magnetic Electrochemical Finishing Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    How to improve the finishing efficiency and surface roughness have been all along the objective of research in electrochemical polishing. However, the research activity, i.e. during electrochemical polishing, directly introduce the magnetic field to study how the magnetic field influences on the finishing efficiency, quality and the electrochemical process in the field of finishing machining technology, is insufficient. When introducing additional magnetic field in the traditional electrochemical pol...

  16. Magnetic Spring Device

    OpenAIRE

    Hassam, A. B.; Rodgers, J. C.

    2009-01-01

    A cylindrical system is proposed that will store magnetic energy in a localized azimuthal field that can then be quickly released on Alfvenic timescales, accompanied by the formation of a flowing Z-pinch plasma. The magnetized plasma is MHD in character and will have unilateral axial momentum with Alfvenic speeds. Conventional plasma gun injectors (Marshall type) have a limited parameter space of operation. The "magnetic spring" momentum injector differs from Marshall guns in that it has an a...

  17. Theoretical magnetic flux emergence

    OpenAIRE

    MacTaggart, David

    2011-01-01

    Magnetic flux emergence is the subject of how magnetic fields from the solar interior can rise and expand into the atmosphere to produce active regions. It is the link that joins dynamics in the convection zone with dynamics in the atmosphere. In this thesis, we study many aspects of magnetic flux emergence through mathematical modelling and computer simulations. Our primary aim is to understand the key physical processes that lie behind emergence. The first chapter intro...

  18. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  19. SPS : the magnet system

    CERN Multimedia

    CERN Neyrac Films

    1974-01-01

    English version. Part of a series of films about the SPS. This one ois from May 1974 to December 1974. Roy Billinge, Vince Hatton explain about magnet system. Technical requirements, accuracy checks, installation, magnetic measurements, mechanical measurements. Discussion of a particular problem which can come from variation in the thickness of the vacuum chambers. Dipoles, quadrapoles and other speciality magnets. Necessity for close international cooperation to coordinate the work. Nice meeting sequence at end. (calculator on the table.)

  20. GHz magnetic film inductors

    CERN Document Server

    Korenivski, V

    2000-01-01

    Use of magnetic films for miniaturization of planar inductors operating at ultra-high frequencies is reviewed. Materials and design aspects determining the efficiency of the devices are analyzed. Mechanisms involved in magnetic dissipation and their role in limiting the device operation frequency range and quality factor are discussed. Typical inductor geometries are considered. A magnetically sandwiched strip inductor is argued to hold a promise for GHz applications.

  1. Magnetic record support

    Science.gov (United States)

    Nakayama, M.; Morita, H.; Tokuoka, Y.; Izumi, T.; Fukuda, K.; Kubota, Y.

    1984-01-01

    The magnetic layer of a magnetic record support is coated with a thin film of a polymer with a siloxane bond. The magnetic layer consists of a thin film obtained by vacuum metallization, cathode sputtering or dispersion of a ferromagnetic metal powder in a binder. The polymer with a siloxane bond is produced by the polymerization of an organic silicon compound which inherently contains or is able to form this bond. Polymerization is preferably performed by plasma polymerization.

  2. Magnetic latching solenoid

    Science.gov (United States)

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  3. Magnetic latching solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Marts, Donna J. (Idaho Falls, ID); Richardson, John G. (Idaho Falls, ID); Albano, Richard K. (Idaho Falls, ID); Morrison, Jr., John L. (Idaho Falls, ID)

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  4. Magnets in prosthetic dentistry.

    Science.gov (United States)

    Riley, M A; Walmsley, A D; Harris, I R

    2001-08-01

    Magnetic retention is a popular method of attaching removable prostheses to either retained roots or osseointegrated implants. This review chronicles the development of magnets in dentistry and summarizes future research in their use. The literature was researched by using the Science Citation Index and Compendex Web from 1981 to 2000. Articles published before 1981 were hand researched from citations in other publications. Articles that discussed the use of magnets in relation to prosthetic dentistry were selected.

  5. LHCb experiment magnets

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The leading members of the LHCb magnet project, from left to right: Pierre-Ange Giudici, who organized and supervised the industrial production of the coils; Marcello Losasso, who performed the 3D calculations to optimise the magnetic field; Olivier Jamet, responsible for the 3D design; Jean Renaud, in charge of the magnet assembly, and Wilfried Flegel, project leader. The LHCb detector will investigate matter-antimatter differences in B mesons at the LHC. The coils of the detector's huge dipole magnet are seen here in April 2004.

  6. Magnetic Nernst effect

    Science.gov (United States)

    Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2015-09-01

    The thermodynamics of irreversible processes in continuous media predicts the existence of a magnetic Nernst effect that results from a magnetic analog to the Seebeck effect in a ferromagnet and magnetophoresis occurring in a paramagnetic electrode in contact with the ferromagnet. Thus, a voltage that has DC and AC components is expected across a Pt electrode as a response to the inhomogeneous magnetic induction field generated by magnetostatic waves of an adjacent YIG slab subject to a temperature gradient. The voltage frequency and dependence on the orientation of the applied magnetic induction field are quite distinct from that of spin pumping.

  7. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  8. Covariant Magnetic Connection Hypersurfaces

    CERN Document Server

    Pegoraro, F

    2016-01-01

    In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.

  9. Magnetic Spring Device

    CERN Document Server

    Hassam, A B

    2009-01-01

    A cylindrical system is proposed that will store magnetic energy in a localized azimuthal field that can then be quickly released on Alfvenic timescales, accompanied by the formation of a flowing Z-pinch plasma. The magnetized plasma is MHD in character and will have unilateral axial momentum with Alfvenic speeds. Conventional plasma gun injectors (Marshall type) have a limited parameter space of operation. The "magnetic spring" momentum injector differs from Marshall guns in that it has an already stored strong magnetic field before release. The resulting parameter space is much broader. There are possible applications to momentum injectors for fusion and to plasma and rail guns.

  10. Magnetic flocculation and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Yiacoumi, Sotira; Chin, Ching-Ju; Yin, Tung-Yu [Georgia Inst. of Tech., Atlanta, GA (United States). School of Civil and Environmental Engineering; Tsouris, C., DePaoli, D.W.; Chattin, M.R.; Spurrier, M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A model is available in predicting flocculation frequencies between particles of various properties under the influence of a magnetic field. This model provides a basic understanding of fundamental phenomena, such as particle-particle and particle-collector interactions, occurring in HGMF (high gradient magnetic field), and will be extended to describe experimental data of particle flocculation and filtration and predict the performance of high- gradient magnetic filters. It is also expected that this model will eventually lead to a tool for design and optimization of magnetic filters for environmental, metallurgical, biochemical, and other applications.

  11. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    D Bahadur; Jyotsnendu Giri

    2003-06-01

    Magnetism plays an important role in different applications of health care. Magnetite (Fe34) is biocompatible and therefore is one of the most extensively used biomaterials for different applications ranging from cell separation and drug delivery to hyperthermia. Other than this, a large number of magnetic materials in bulk as well as in the form of nano particles have been exploited for a variety of medical applications. In this review, we summarize the salient features of clinical applications, where magnetic biomaterials are used. Magnetic intracellular hyperthermia for cancer therapy is discussed in detail.

  12. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...

  13. Engineering magnetism in semiconductors

    Directory of Open Access Journals (Sweden)

    Tomasz Dietl

    2006-11-01

    Full Text Available Transition metal doped III-V, II-VI, and group IV compounds offer an unprecedented opportunity to explore ferromagnetism in semiconductors. Because ferromagnetic spin-spin interactions are mediated by holes in the valence band, changing the Fermi level using co-doping, electric fields, or light can directly manipulate the magnetic ordering. Moreover, engineering the Fermi level position by co-doping makes it possible to modify solubility and self-compensation limits, affecting magnetic characteristics in a number of surprising ways. The Fermi energy can even control the aggregation of magnetic ions, providing a new route to self-organization of magnetic nanostructures in a semiconductor host.

  14. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  15. Magnetic chemically peculiar stars

    CERN Document Server

    Schöller, Markus

    2015-01-01

    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.

  16. Magnetism v.5

    CERN Document Server

    Suhl, Harry

    1973-01-01

    Magnetism, Volume V: Magnetic Properties of Metallic Alloys deals with the magnetic properties of metallic alloys and covers topics ranging from conditions favoring the localization of effective moments to the s-d model and the Kondo effect, along with perturbative, scattering, and Green's function theories of the s-d model. Asymptotically exact methods used in addressing the Kondo problem are also described.Comprised of 12 chapters, this volume begins with a review of experimental results and phenomenology concerning the formation of local magnetic moments in metals, followed by a Har

  17. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  18. Ultrafast magnetization dynamics in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, O [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Hervieux, P-A; Manfredi, G [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: morandi@dipmat.univpm.it

    2009-07-15

    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second-order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes that restore the initial ferromagnetic order in a nanosecond timescale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within the timescale of a few hundred picoseconds.

  19. Magnetic Properties and Intergranular Action in Bonded Hybrid Magnets

    Institute of Scientific and Technical Information of China (English)

    Hua Zhenghe; Li Shandong; Han Zhida; Wang Dunhui; Zhong Wei; Gu Benxi; Lu Mu; Zhang Jianrong; Du Youwei

    2007-01-01

    Magnetic properties and intergranular action in bonded hybrid magnets, based on NdFeB and strontium ferrite powders were investigated. The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets, and neither of them could be neglected. Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.

  20. Magnetic Structure of Erbium

    DEFF Research Database (Denmark)

    Gibbs, D.; Bohr, Jakob; Axe, J. D.

    1986-01-01

    , and at positions split symmetrically about the fundamental. As the temperature is lowered below 52 K the charge and magnetic scattering display a sequence of lock-in transitions to rational wave vectors. A spin-slip description of the magnetic structure is presented which explains the wave vectors...

  1. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  2. Magnetic Implants Aid Hearing

    Institute of Scientific and Technical Information of China (English)

    陈宏

    1995-01-01

    The next generation of hearing aids may use tiny magnets that fit inside the ear. Researchersat a California company and an engineer at the University of Virginia are both developing systems that rely on magnets to convey sounds. Conventional hearing aids have three components:a microphone, an amplifier, and a speaker. The microphone picks up sounds and sends them to the am-

  3. Magnetism in massive stars

    NARCIS (Netherlands)

    Henrichs, H.F.

    2012-01-01

    Stars with mass more than 8 solar masses end their lives as neutron stars, which we mostly observe as highly magnetized objects. Where does this magnetic field come from? Such a field could be formed during the collapse, or is a (modified) remnant of a fossil field since the birth of the star, or ot

  4. Streched Magnetic Moments

    CERN Document Server

    Zamick, Larry

    2012-01-01

    We note that for a system of 2 nucleons in a stretched case (J=J1+J2) the magnetic moment of the combined system is the sum of the magnetic moments of the 2 constituents. In general there is no additive rule for g factors.

  5. Magnetic shape memory fatigue

    Science.gov (United States)

    Heczko, Oleg; Straka, Ladislav; Soderberg, Outi; Hannula, Simo-Pekka

    2005-05-01

    Single crystal specimens of having compositions close to Ni2MnGa and exhibiting magnetic shape memory effect (MSME) were tested in a rotating magnetic field at a frequency of 5.7 Hz. The applied magnetic field, about 0.7 T was strong enough to induce the MSME. Test of one specimen was discontinued because of the structural failure of the specimens after 0.5 million cycles. Second specimen was tested up to 37 millions cycles. The evolution of the martensitic morphology and crack propagation were observed by optical microscopy. To characterize the magnetic shape memory behavior the simultaneous measurements of the field-induced strain and magnetization as a function of the magnetic field and external load was used. The full MSM effect, about 6% obtained prior the test, decreased to about 3% during the first million cycles. This value stayed then approximately constant up to 37 millions cycles of rotating magnetic field. The magnetic field needed to initiate the MSME increased. The observed behavior is discussed within the framework of observed martensitic band structure in the specimens and the existence of initial cracks and other obstacles for martensitic twin boundary motion.

  6. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  7. PS auxiliary magnet

    CERN Multimedia

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  8. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  9. Magnetic bipolar transistor

    OpenAIRE

    Fabian, Jaroslav; Zutic, Igor; Sarma, S. Das

    2003-01-01

    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.

  10. Teaching Tips: Mind Magnets

    Science.gov (United States)

    Fortenberry, Callie L.; Fowler, Teri W.

    2006-01-01

    Mind magnets are maps to guide instruction and facilitate the comprehension processes. They extend individual comprehension strategy instruction, which does not typically show students how to link application of appropriate strategies to whole texts. The mind magnet framework allows teachers to plan powerful interactions between the reader and the…

  11. Strong Little Magnets

    Science.gov (United States)

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  12. Selected topics in magnetism

    CERN Document Server

    Gupta, L C

    1993-01-01

    Part of the ""Frontiers in Solid State Sciences"" series, this volume presents essays on such topics as spin fluctuations in Heisenberg magnets, quenching of spin fluctuations by high magnetic fields, and kondo effect and heavy fermions in rare earths amongst others.

  13. Wobbly Corner: Magnetism

    Science.gov (United States)

    Corbett, Lisa; Maklad, Rania; Dunne, Mick; Grace, Pierre

    2014-01-01

    During a final seminar with BA year 4 science specialist trainee teachers, the authors posed a question about the difficulties associated with understanding magnetism. The ensuing discussion focused on a number of concerns commonly identified by students, which may also be of interest to classroom teachers teaching magnetism. Issues raised…

  14. The LHCb magnet

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The LHCb magnet consists of two huge 27 tonne coils mounted inside a 1450 tonne iron yoke. As charged particles pass through the magnet's field their trajectories will be bent according to their momentum, allowing their momentum to be measured as they pass through the detector walls. LHCb will study bottom quarks, which will be produced close to the two colliding proton beams.

  15. Magnetization of ancient ceramics

    NARCIS (Netherlands)

    Van Klinken, J

    2001-01-01

    The saturation magnetization sigma of soft baked pottery appears to be determined during the firing process by transitions between the iron oxides magnetite, maghemite, hematite and perhaps goethite. The finding of large variations in a motivated the design and construction of a 'magnetization-gravi

  16. Magnetic support system

    NARCIS (Netherlands)

    Nijsse, G.J.P.; Spronck, J.W.

    1999-01-01

    There is described a support system enabling supporting an object such as a platform (1) free from vibration, in that bearing elements (50) have a stiffness (k) which at a working point (z0) equals zero. A bearing element (50) comprises two magnetic couplings (51, 52) provided by permanent magnets (

  17. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Ying, T.Y.; Chin, C.J.; Lu, S.C.; Yiacoumi, S. [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering] [and others

    1997-10-01

    Magnetic-seeding filtration consists of two steps: heterogeneous particle flocculation of magnetic and nonmagnetic particles in a stirred tank and high-gradient magnetic filtration (HGMF). The effects of various parameters affecting magnetic-seeding filtration (HGMF). The effects of various parameters affecting magnetic seeding filtration are theoretically and experimentally investigated. A trajectory model that includes hydrodynamic resistance, van der Waals, and electrostatic forces is developed to calculate the flocculation frequency in a turbulent-shear regime. Fractal dimension is introduced to simulate the open structure of aggregates. A magnetic-filtration model that consists of trajectory analysis, a particle build-up model, a breakthrough model, and a bivariate population-balance model is developed to predict the breakthrough curve of magnetic-seeding filtration. A good agreement between modeling results and experimental data is obtained. The results show that the model developed in this study can be used to predict the performance of magnetic-seeding filtration without using empirical coefficients or fitting parameters. 35 refs., 7 figs., 1 tab.

  18. Stellar magnetic cycles

    Science.gov (United States)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  19. Neutrino Magnetic Moment

    OpenAIRE

    Balantekin, A. B.

    2006-01-01

    Current experimental and observational limits on the neutrino magnetic moment are reviewed. Implications of the recent results from the solar and reactor neutrino experiments for the value of the neutrino magnetic moment are discussed. It is shown that spin-flavor precession in the Sun is suppressed.

  20. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  1. Magnetic Particle Technology

    Science.gov (United States)

    Oliveira, Luiz C.A.; A. Rios, Rachel V.R.; Fabris, Jose D.; Lago, Rachel M.; Sapag, Karim

    2004-01-01

    An exciting laboratory environment is activated by the preparation and novel use of magnetic materials to decontaminate water through adsorption and magnetic removal of metals and organics. This uncomplicated technique is also adaptable to the possible application of adsorbents to numerous other environmental substances.

  2. EXOTIC MAGNETS FOR ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  3. One thousand magnets delivered!

    CERN Multimedia

    2005-01-01

    The little matchstick-like objects, neatly lined up like colouring pencils in their box, are in fact LHC magnets seen from the air. These particular ones are being stored at Point 19 just alongside SM18, the magnet assembly and testing hall, which can be seen on the right of the picture. On the right in the background, is the Meyrin site.

  4. Analogue Magnetism: An Ansatz

    CERN Document Server

    Osano, Bob

    2016-01-01

    We present an ansatz for the relationship between magnetic flux density and fluid vorticity evolution equations. We also suggest that the magnetic flux density evolution equations be compared to the evolution equation for an effective vorticity ($\\omega_{eff}$), which bears a power law relation to the ordinary vorticity.

  5. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)], E-mail: ihara@port.kobe-u.ac.jp

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  6. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    Science.gov (United States)

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  7. The magnetic properties of the hollow cylindrical ideal remanence magnet

    CERN Document Server

    Bjørk, R

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.

  8. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  9. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  10. Study on healthcare magnetic concrete

    Institute of Scientific and Technical Information of China (English)

    YANG Yushan; DONG Faqin; FENG Jianjun

    2006-01-01

    Magnetic concrete was prepared by adding SrFe12O9 magnetic functional elementary material into concrete, and its magnetism was charged by magnetizing machine. The effect of SrFe12O9 content on magnetic field intensity and the attenuation of magnetic field intensity were investigated in different medium. The blood viscosity of rats kept in magnetic concrete was carried out. The results show that magnetic concrete can be prepared by adding SrFe12O9, and magnetic fields intensity increases with the augment of ferrite content. The attenuation of magnetic fields is mainly related with the density of medium, but it is secondary to the properties of medium. The blood viscosity of rats decreases under magnetic condition, but the blood cells remain the same as before. Experimental results support that magnetic concrete has great healthcare function.

  11. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  12. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  13. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  14. Physics of magnetic nanostructures

    CERN Document Server

    Owens, Frank J

    2015-01-01

    This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage.

  15. Electricity and magnetism

    CERN Document Server

    Purcell, Edward M

    2013-01-01

    For 50 years, Edward M. Purcell's classic textbook has introduced students to the wonders of electricity and magnetism. The third edition has been brought up to date and is now in SI units. It features hundreds of new examples, problems and figures and contains discussions of real-life applications. The textbook covers all the standard introductory topics, such as electrostatics, magnetism, circuits, electromagnetic waves and electric and magnetic fields in matter. Taking a non-traditional approach, magnetism is derived as a relativistic effect. Mathematical concepts are introduced in parallel with the physics topics at hand, making the motivations clear. Macroscopic phenomena are derived rigorously from microscopic phenomena. With worked examples, hundreds of illustrations and nearly 600 end-of-chapter problems and exercises, this textbook is ideal for electricity and magnetism courses. Solutions to the exercises are available for instructors at www.cambridge.org/9781107014022.

  16. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  17. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  18. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  19. Quasi-continuous magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sims, J.R. [Los Alamos National Lab., NM (United States); Naumovich, G.J.; Hoang, T.A.; Dent, P.C. [Everson Electric Co., Bethlehem, PA (United States)

    1996-05-01

    The National High Magnetic Field Laboratory is completing a quasi-continuous magnet which will sustain a constant field of 60 T for 100 ms in a 32-mm 77 K bore. This magnet consists of 9 mechanically independent, nested, liquid nitrogen-cooled coils which are individually reinforced by high-strength stainless steel outer shells. The coils were wound from rectangular large cross-section, high-strength, high-conductivity copper conductor insulated wtih polyimide and fiberglass tapes. After winding, the coils were inserted into closely fitted, stainless steel reinforcing shells and impregnated with epoxy resin. Design, analysis, material, fabrication and operational issues for this class of magnets are reviewed. Fabrication and quality assurance testing of the 60 T coil set are covered in detail. Future growth of and possible links from this technology to other magnet systems are discussed. Needed improvements in design, analysis, materials, and fabrication are outlined.

  20. Magnetically responsive dry fluids

    Science.gov (United States)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  1. Rare Earths and Magnetic Refrigeration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.

  2. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  3. Magnetic measurements inside the Omicron magnet.

    CERN Multimedia

    1977-01-01

    The multipurpose detection system (Omicron) built at the SC in the late seventies in the Proton Hall made use of the large aperture magnet (on loan from Rutherford Lab, 85 cm gap height, 1 m width, 1.8 m length, 1 Tesla peak field). See CERN Courier 17 (1977) p. 61.

  4. Review and comparison of magnet designs for magnetic refrigeration

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving the magnet design. A detailed analysis of the efficiency of different published permanent magnet designs used in magnetic refrigeration applications is presented in this paper. Each design is analyzed based on the generated magnetic flux density, the volume of the region where this flux is generated and the amount of magnet material used. This is done by characterizing each design by a figure of merit magnet design efficiency parameter, $\\Lambda_\\mathrm{cool}$. The designs are then compared and the best design found. Finally recommendations for designing the ideal magnet design are presented based on the analysis of the reviewed designs.

  5. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  6. Model of THz Magnetization Dynamics

    Science.gov (United States)

    Bocklage, Lars

    2016-01-01

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997

  7. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  8. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  9. MAGNETIC CIRCUIT EQUIVALENT OF THE SYNCHRONOUS MOTOR WITH INCORPORATED MAGNETS

    Directory of Open Access Journals (Sweden)

    Fyong Le Ngo

    2015-01-01

    Full Text Available Magnetic circuitry computation is one of the central stages of designing a synchronous motor with incorporated magnets, which can be performed by means of a simplified method of the magnetic-circuits equivalent modeling. The article studies the magnetic circuit of the motor with the rotor-incorporated magnets, which includes four sectors: constant magnets with the field pole extension made of magnetically soft steel, magniflux dispersion sections containing air barriers and steel bridges; the air gap; the stator grooves, cogs and the frame yoke. The authors introduce an equivalent model of the magnetic circuit. High-energy magnets with a linear demagnetization curve are employed in the capacity of constant magnets. Two magnets create the magnetic flux for one pole. The decline of magnetic potential in the steel of the pole is negligible consequent on the admission that the poles magnetic inductivity µ = ∞. The rotor design provides for the air barriers and the steel bridges that close leakage flux. The induction-permeability curve linearization serves for the bridges magnetic saturation accountability and presents a polygonal line consisting of two linear sections. The estimation of the magnet circuit section including the cogs and the frame yoke is executed with account of the steel saturation, their magnetic conductivities thereat being dependent on the saturation rate. Relying on the equivalent model of the magnetic circuit, the authors deduce a system of two equations written from the first and the second Kirchhoff laws of the magnetic circuits. These equations allow solving two problems: specifying dimensions of the magnets by the preset value of the magnetic flow in the clearance and determining the clearance magnetic flow at the preset motor rotor-and-stator design.

  10. TPC magnet cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  11. Magnetically mediated thermoacoustic imaging

    Science.gov (United States)

    Feng, Xiaohua; Gao, Fei; Zheng, Yuanjin

    2014-03-01

    In this paper, alternating magnetic field is explored for inducing thermoacoustic effect on dielectric objects. Termed as magnetically mediated thermo-acoustic (MMTA) effect that provides a contrast in conductivity, this approach employs magnetic resonance for delivering energy to a desired location by applying a large transient current at radio frequency below 50MHz to a compact magnetically resonant coil. The alternating magnetic field induces large electric field inside conductive objects, which then undergoes joule heating and emanates acoustic signal thermo-elastically. The magnetic mediation approach with low radio frequency can potentially provide deeper penetration than microwave radiation due to the non-magnetic nature of human body and therefore extend thermoacoustic imaging to deep laid organs. Both incoherent time domain method that applies a pulsed radio frequency current and coherent frequency domain approach that employs a linear chirp signal to modulate the envelop of the current are discussed. Owing to the coherent processing nature, the latter approach is capable of achieving much better signal to noise ratio and therefore potential for portable imaging system. Phantom experiments are carried out to demonstrate the signal generation together with some preliminary imaging results. Ex-vivo tissue studies are also investigated.

  12. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    Science.gov (United States)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  13. Magnetic refrigeration materials

    Institute of Scientific and Technical Information of China (English)

    戴闻; 沈保根; 高政祥

    2001-01-01

    Magnetic refrigeration has drawn much attention because of its greater efficiency and higher reliability than the traditional gas-cycle refrigeration technology. Recently, a kind of new materials with a giant magnetocaloric effect in the subroom temperature range, Gd5 (Six Ge1- x)4, was discovered, which boosts the search for high-performance magnetic refrigerants. However, the intermetallic compounds Gd5 (SixGe1 - x )4 belong to the first order transition materials; their performance in practical magnetic refrigeration cycles remains controversial. In this paper the developing tendency of the refrigerants are discussed on the basis of our work.

  14. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  15. Magnetic Actuators and Sensors

    Science.gov (United States)

    Brauer, John R.

    2005-12-01

    Magnetic actuators and sensors are needed to enable computer and manual control of motion. Magnetic actuators allow a small electrical signal to move small or large objects. To sense the amount of motion, magnetic sensors are frequently used. This book provides the most up-to-date coverage of topics important to modern engineers, both electrical and mechanical. The author includes the latest findings and design techniques from computer models. The latest software tools are used.

  16. Frontiers in Magnetic Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

  17. Magnetic Exitations in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Rainford, B. D.; Jensen, J.;

    1979-01-01

    The magnetic excitations in a single crystal of dhcp Pr have been studied by inelastic neutron scattering. The excitations on the hexagonal sites, and their dependence on magnetic fields up to 43 kOe applied in the basal plane, have been analyzed in terms of a Hamiltonian in which exchange, crystal......-field, and magnetoelastic interactions are included. The exchange is found to be strongly anisotropic, and this anisotropy is manifested directly in a splitting of most branches of the dispersion relations. By considering a variety of magnetic properties, we have been able to determine the crystal-field level scheme...

  18. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  19. Advanced Magnetic Metrology Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The extraordinary progress in magnetic peripheral storage systems has been fueled by the ad vancements in heads (MR, GMR, spin valves) and in very high coercivity, Iow remanence thickness product (Mrt) media. These advancements are imposing new performance require ments on the magnetometers (VSMs) used to characterize these materials. At the same time, they have introduced a new paradigm for in-process (nondestructive, robotic) magnetic metrol ogy tools to assure the stringent product uniformity requirements. In this paper, we discuss the recent advancements in magnetometry for characterizing state-of-the-art media and heads, as well as other magnetic materials.

  20. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  1. Numerical analysis of thermally actuated magnets for magnetization of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li Quan; Yan Yu; Rawlings, Colin; Coombs, Tim, E-mail: ql229@cam.ac.u [EPEC Superconductivity Group, Engineering Department, University of Cambridge, Trumpington Street. Cambridge, CB2 1PZ (United Kingdom)

    2010-06-01

    Superconductors, such as YBCO bulks, have extremely high potential magnetic flux densities, comparing to rare earth magnets. Therefore, the magnetization of superconductors has attracted broad attention and contribution from both academic research and industry. In this paper, a novel technique is proposed to magnetize superconductors. Unusually, instead of using high magnetic fields and pulses, repeatedly magnetic waves with strength of as low as rare earth magnets are applied. These magnetic waves, generated by thermally controlling a Gadolinium (Gd) bulk with a rare earth magnet underneath, travel over the flat surface of a YBCO bulk and get trapped little by little. Thus, a very small magnetic field can be used to build up a very large magnetic field. In this paper, the modelling results of thermally actuated magnetic waves are presented showing how to transfer sequentially applied thermal pulses into magnetic waves. The experiment results of the magnetization of YBCO bulk are also presented to demonstrate how superconductors are progressively magnetized by small magnetic field

  2. Review and comparison of magnet designs for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving the m...... of the reviewed designs....

  3. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  4. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  5. Random porous media and magnetic separation of magnetic colloids

    NARCIS (Netherlands)

    Baars, R.J.

    2016-01-01

    The separation of magnetic nanoparticles from a stable dispersion is a challenging task because of the nanoparticles' thermal motion and relatively small magnetic moments. Strong magnetic gradients are required to capture such particles, which can be achieved in a high-gradient magnetic separator. I

  6. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  7. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming Fan; Zhenfu Luo; Yuemin Zhao; Qingru Chen; Daniel Tao; Xiuxiang Tao; Zhenqiang Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  8. Magnetic Nanoparticles in Non-magnetic CNTs and Graphene

    Science.gov (United States)

    Kayondo, Moses; Seifu, Dereje

    Magnetic nanoparticles were embedded in non-magnetic CNTs and graphene matrix to incorporate all the advantages and the unique properties of CNTs and graphene. Composites of CNTs and graphene with magnetic nanoparticles may offer new opportunities for a wide variety of potential applications such as magnetic data storage, magnetic force microscopy tip, electromagnetic interference shields, thermally conductive films, reinforced polymer composites, transparent electrodes for displays, solar cells, gas sensors, magnetic nanofluids, and magnetically guided drug delivery systems. Magnetic nanoparticles coated CNTs can also be used as an electrode in lithium ion battery to replace graphite because of the higher theoretical capacity. Graphene nanocomposites, coated with magnetic sensitive nanoparticles, have demonstrated enhanced magnetic property. We would like to acknowledge support by NSF-MRI-DMR-1337339.

  9. Magnetic susceptibility, magnetization, magnetic moment and characterization of Carancas meteorite

    CERN Document Server

    Rosales, Domingo

    2015-01-01

    On September, 15th, 2007, in the community of Carancas (Puno, Peru) a stony meteorite formed a crater explosive type with a mean diameter of 13.5 m. some samples meteorite fragments were collected. The petrologic analysis performed corresponds to a meteorite ordinary chondrite H 4-5. In this paper we have analyzed the magnetic properties of a meteorite fragment with a proton magnetometer. Also in order to have a complete characterization of the Carancas meteorite and its crater, from several papers, articles and reports, we have made a compilation of the most important characteristics and properties of this meteorite.

  10. World Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  11. Magnetically Actuated Seal

    Science.gov (United States)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  12. Magnetic gripper device

    Science.gov (United States)

    Meyer, Ross E.

    1993-01-01

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  13. Magnetic WKB Constructions

    Science.gov (United States)

    Bonnaillie-Noël, V.; Hérau, F.; Raymond, N.

    2016-08-01

    This paper is devoted to the semiclassical magnetic Laplacian. Until now WKB expansions for the eigenfunctions were only established in the presence of a non-zero electric potential. Here we tackle the pure magnetic case. Thanks to Feynman-Hellmann type formulas and coherent states decomposition, we develop here a magnetic Born-Oppenheimer theory. Exploiting the multiple scales of the problem, we are led to solve an effective eikonal equation in pure magnetic cases and to obtain WKB expansions.We also investigate explicit examples for which we can improve our general theorem: global WKB expansions, quasi-optimal Agmon estimates and upper bound of the tunelling effect (in symmetric cases).We also apply our strategy to get more accurate descriptions of the eigenvalues and eigenfunctions in a wide range of situations analyzed in the last two decades.

  14. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  15. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  16. Ultrafast Magnetic Light

    CERN Document Server

    Makarov, Sergey V; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01

    We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generation of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the "ultrafast magnetic light" concept.

  17. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  18. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  19. Magnetic Catalysis in Graphene

    CERN Document Server

    Winterowd, Christopher; Zafeiropoulos, Savvas

    2015-01-01

    One of the most important developments in condensed matter physics in recent years has been the discovery and characterization of graphene. A two-dimensional layer of Carbon arranged in a hexagonal lattice, graphene exhibits many interesting electronic properties, most notably that the low energy excitations behave as massless Dirac fermions. These excitations interact strongly via the Coulomb interaction and thus non-perturbative methods are necessary. Using methods borrowed from lattice QCD, we study the graphene effective theory in the presence of an external magnetic field. Graphene, along with other $(2+1)$-dimensional field theories, has been predicted to undergo spontaneous breaking of flavor symmetry including the formation of a gap as a result of the external magnetic field. This phenomenon is known as magnetic catalysis. Our study investigates magnetic catalysis using a fully non-perturbative approach.

  20. Last PS magnet refurbished

    CERN Multimedia

    2009-01-01

    PS Magnet Refurbishment Programme Completed. The 51st and final refurbished magnet was transported to the PS on Tuesday 3 February. The repair and consolidation work on the PS started back in 2003 when two magnets and a busbar connection were found to be faulty during routine high-voltage tests. The cause of the fault was a combination of age and radiation on electrical insulation. After further investigation the decision was taken to overhaul half of the PS’s 100 magnets to reduce the risk of a similar fault. As from 20 February the PS ring will start a five-week test programme to be ready for operation at the end of March.

  1. World Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  2. Magnetically Coupled Microcalorimeters

    Science.gov (United States)

    Bandler, S. R.; Irwin, K. D.; Kelly, D.; Nagler, P. N.; Porst, J. P.; Rotzinger, H.; Sadleir, J. E.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetic calorimeters have been under development for over 20 years targeting a wide variety of different applications that require very high resolution spectroscopy. They have a number of properties that distinguish them from other 10w temperature detectors. In this paper we review these properties and emphasize the types of application to which they are most suited. We will describe what has been learned about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. While most magnetic calorimeter research has concentrated on the use of paramagnets to provide the temperature sensitivity, recently magnetically coupled microcalorimeters have been in development that utilize the diamagnetic response of superconductors. We will contrast some of the properties of the two different magnetic sensor types.

  3. Neutrino magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, D. (Northwestern Univ., Evanston, IL (USA). Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL (USA)); Senjanovic, G. (Zagreb Univ. (Yugoslavia). Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  4. Quantum Theory of Magnetism

    CERN Document Server

    Nolting, Wolfgang

    2009-01-01

    Magnetism is one of the oldest and most fundamental problems of Solid State Physics although not being fully understood up to now. On the other hand it is one of the hottest topic of current research. Practically all branches of modern technological developments are based on ferromagnetism, especially what concerns information technology. The book, written in a tutorial style, starts from the fundamental features of atomic magnetism, discusses the essentially single-particle problems of dia- and paramagnetism, in order to provide the basis for the exclusively interesting collective magnetism (ferro, ferri, antiferro). Several types of exchange interactions, which take care under certain preconditions for a collective ordering of localized or itinerant permanent magnetic moments, are worked out. Under which conditions these exchange interactions are able to provoke a collective moment ordering for finite temperatures is investigated within a series of theoretical models, each of them considered for a very spec...

  5. ANOMALOUS MAGNETIC FILMS,

    Science.gov (United States)

    Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’

  6. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  7. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  8. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35-tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which completed its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. 'The production is proceeding well and we expect to be complete in October as foreseen,' said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have already been delivered.

  9. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35 tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which finished its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. "The production is proceeding well and we expect to be complete in October as previously foreseen," said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have been delivered.

  10. Self pumping magnetic cooling

    Science.gov (United States)

    Chaudhary, V.; Wang, Z.; Ray, A.; Sridhar, I.; Ramanujan, R. V.

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn-Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (ΔT) by ~20 °C and ~28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink.

  11. Magnetically Actuated Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  12. Magnetic Pulse Welding Technology

    Directory of Open Access Journals (Sweden)

    Ahmad K. Jassim

    2011-12-01

    Full Text Available In this paper, the benefits of using Magnetic Pulse machine which is belong to Non-conventional machine instead of conventional machine. Magnetic Pulse Technology is used for joining dissimilar metals, and for forming and cutting metals. It is a non contact technique. Magnetic field is used to generate impact magnetic pressure for welding and forming the work piece by converted the electrical energy to mechanical energy. It is enable us to design previously not possible by welding dissimilar materials and allowing to welds light and stronger materials together. It can be used to weld metallic with non metallic materials to created mechanical lock on ceramics, polymers, rubbers and composites. It is green process; there is no heat, no radiation, no gas, no smoke and sparks, therefore the emissions are negligible.

  13. Magnetic separation of algae

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  14. Quantization of edge currents along magnetic barriers and magnetic guides

    CERN Document Server

    Dombrowski, N; Raikov, G D

    2010-01-01

    We investigate the edge conductance of particles submitted to an Iwatsuka magnetic field, playing the role of a purely magnetic barrier. We also consider magnetic guides generated by generalized Iwatsuka potentials. In both cases we prove quantization of the edge conductance. Next, we consider magnetic perturbations of such magnetic barriers or guides, and prove stability of the quantized value of the edge conductance. Further, we establish a sum rule for edge conductances. Regularization within the context of disordered systems is discussed as well.

  15. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  16. Permanent magnet design methodology

    Science.gov (United States)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  17. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  18. LHC Magnet test failure

    CERN Multimedia

    2007-01-01

    "On Tueday, March 22, a Fermilab-built quadrupole magnet, one of an "inner triplet" of three focusing magnets, failed a high-pressure test at Point 5 in the tunnel of the LHC accelerator at CERN. Since Tuesday, teams at CERN and Fermilab have worked closely together to address the problem and have identified the cause of the failure. Now they are at work on a solution.:" (1 page)

  19. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  20. Magnetic flux concentration methods for magnetic energy harvesting module

    Directory of Open Access Journals (Sweden)

    Wakiwaka Hiroyuki

    2013-01-01

    Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an air­core Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the air­core coil, our designed magnetic core makes the harvested energy ten­fold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.

  1. Magnetic metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  2. Lodestone: Nature's own permanent magnet

    Science.gov (United States)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  3. Planet migration and magnetic torques

    Science.gov (United States)

    Strugarek, A.; Brun, A. S.; Matt, S. P.; Reville, V.

    2016-10-01

    The possibility that magnetic torques may participate in close-in planet migration has recently been postulated. We develop three dimensional global models of magnetic star-planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the development of magnetic torques. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that magnetic torques can vary by roughly an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field is strong enough, we find that magnetic migration time scales can be as fast as ~100 Myr. Hence, our model supports the idea that magnetic torques may participate in planet migration for some close-in star-planet systems.

  4. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined...... for fabrication of silicon based systems. This fabrication scheme is explained, and it is shown how, it is applied with variations for several designs of magnetic separators. An experimental setup for magnetic separation experiments has been developed. It has been coupled with an image analysis program....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  5. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  6. Study of Magnetic Domain Dynamics Using Nonlinear Magnetic Responses: Magnetic Diagnostics of the Itinerant Magnet MnP

    Science.gov (United States)

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Deguchi, Hiroyuki; Kishine, Jun-ichiro; Inoue, Katsuya; Kousaka, Yusuke; Yano, Shin-ichiro; Nakao, Yuya; Akimitsu, Jun

    2015-10-01

    The nonlinear and linear magnetic responses to an ac magnetic field H are useful for the study of the magnetic dynamics of both magnetic domains and their constituent spins. In particular, the third-harmonic magnetic response M3ω reflects the dynamics of magnetic domains. Furthermore, by considering the ac magnetic response as a function of H, we can evaluate the degree of magnetic nonlinearity, which is closely related to M3ω. In this study, a series of approaches was used to examine the itinerant magnet MnP, in which both ferromagnetic and helical phases are present. On the basis of this investigation, we systematize the diagnostic approach to evaluating nonlinearity in magnetic responses.

  7. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  8. Magnetic cooling at Risoe DTU

    OpenAIRE

    Nielsen, Kaspar Kirstein; Bjørk, Rasmus; Jensen, Jesper Buch; Bahl, Christian Robert Haffenden; Pryds, Nini; Smith, Anders; Nordentoft, Anders; Hattel, Jesper Henri

    2009-01-01

    Magnetic refrigeration at room temperature is of great interest due to a long-term goal of making refrigeration more energy-efficient, less noisy and free of any environmentally hostile materials. A refrigerator utilizing an active magnetic regenerator (AMR) is based on the magnetocaloric effect, which manifests itself as a temperature change in magnetic materials when subjected to a varying magnetic field. In this work we present the current state of magnetic refrigeration research at Risoe ...

  9. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  10. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  11. Magnetically textured ferrofluid in a non-magnetic matrix: Magnetic properties

    Indian Academy of Sciences (India)

    Mrudul Gadhvi; R V Upadhyay; Kinnari Parekh; R V Mehta

    2004-04-01

    Texturing of two different magnetic fluids were carried out in paraffin wax under the influence of an external magnetic field. The textured samples were characterized using magnetization measurement and a.c. susceptibility techniques. The results are discussed in the light of ratio of anisotropic energy to magnetic and thermal energies.

  12. Design Study Of Cyclotron Magnet With Permanent Magnet

    Science.gov (United States)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  13. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    Boris Filippov; Olesya Martsenyuk; Abhishek K. Srivastava; Wahab Uddin

    2015-03-01

    In the early 1990s, it was found that the strongest disturbances of the space–weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to strong, sometimes catastrophic changes in space–weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index (). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

  14. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    Science.gov (United States)

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  15. Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet

    OpenAIRE

    Ohji, T.; Mukhopadhyay, S. C.; Iwahara, Masayoshi; Yamada, Sotoshi

    2000-01-01

    Permanent magnet bearing system utilizes the repulsive forces between the stator and rotor permanent magnets (PM) for the levitation of the system and it results a simplified axial control scheme. A repulsive type magnetic bearing system based on the above principle was fabricated in our laboratory. Material characteristics and the configuration of the permanent magnets are the central component for this type of bearing system. Due to aging or as both the magnets are repelling each other, the...

  16. Forces Between a Permanent Magnet and a Soft Magnetic Plate

    DEFF Research Database (Denmark)

    Beleggia, Marco; Vokoun, David; De Graef, Marc

    2012-01-01

    Forces between a hard/permanent magnet of arbitrary shape and an ideally soft magnetic plate in close proximity are derived analytically from the image method applied to magnetostatics. We found that the contact force, defined as the force required to detach the hard magnet from the plate......, coincides with that between two identical touching permanent magnets. Furthermore, if the hard and the soft magnets are displaced by some amount, their attraction equals that between two identical permanent magnets displaced by twice that amount. Experimental results are presented that validate...

  17. Extraterrestrial magnetic minerals

    Science.gov (United States)

    Pechersky, D. M.; Markov, G. P.; Tsel'movich, V. A.; Sharonova, Z. V.

    2012-07-01

    Thermomagnetic and microprobe analyses are carried out and a set of magnetic characteristics are measured for 25 meteorites and 3 tektites from the collections of the Vernadsky Geological Museum of the Russian Academy of Sciences and Museum of Natural History of the North-East Interdisciplinary Science Research Institute, Far Eastern Branch of the Russian Academy of Sciences. It is found that, notwithstanding their type, all the meteorites contain the same magnetic minerals and only differ by concentrations of these minerals. Kamacite with less than 10% nickel is the main magnetic mineral in the studied samples. Pure iron, taenite, and schreibersite are less frequent; nickel, various iron spinels, Fe-Al alloys, etc., are very rare. These minerals are normally absent in the crusts of the Earth and other planets. The studied meteorites are more likely parts of the cores and lower mantles of the meteoritic parent bodies (the planets). Uniformity in the magnetic properties of the meteorites and the types of their thermomagnetic (MT) curves is violated by secondary alterations of the meteorites in the terrestrial environment. The sediments demonstrate the same monotony as the meteorites: kamacite is likely the only extraterrestrial magnetic mineral, which is abundant in sediments and associated with cosmic dust. The compositional similarity of kamacite in iron meteorites and in cosmic dust is due to their common source; the degree of fragmentation of the material of the parent body is the only difference.

  18. Turbulent General Magnetic Reconnection

    CERN Document Server

    Eyink, Gregory L

    2014-01-01

    Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...

  19. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  20. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    Science.gov (United States)

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  1. Replacement reactor to revolutionise magnets

    CERN Document Server

    Atkins, G

    2002-01-01

    Electric motors, hearing aids and magnetic resonance imaging are only some of the applications that will benefit from the first advances in magnets in a quarter of a century. Magnets achieve their characteristics when electrons align themselves to produce a unified magnetic field. Neutrons can probe these magnetic structures. The focus is not just on making more powerful magnets, but also identifying the characteristics that make magnets cheaper and easier for industry to manufacture. Staff from the ANSTO's Neutron Scattering Group have already performed a number of studies on the properties of magnets using using HIFAR, but the Replacement Research Reactor that will produce cold neutrons would allow scientists to investigate the atomic properties of materials with large molecules. A suite of equipment will enable studies at different temperatures, pressures and magnetic fields

  2. Magnetic Reconnection in Astrophysical Environments

    CERN Document Server

    Lazarian, A; Vishniac, E; Kowal, G

    2014-01-01

    Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Traditionally, magnetic reconnection was associated mostly with solar flares. In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen in field lines and magnetic reconnection. We consider magnetic reconnection in realistic 3D geometry in the presence of turbulence. This turbulence in most astrophysical settings is of pre-existing nature, but it also can be induced by magnetic reconnection itself. In this situation turbulent magnetic field wandering opens up reconnection outflow regions, making reconnection fast. We discuss Lazarian \\& Vishniac (1999) model of turbulent reconnection, its numerical and observational testings, as well as its connection to the modern understanding of the Lagrangian properties of turbulent fluids. We show that the predicted dependences of the reconnection rates on the level of...

  3. Magnetic digital microfluidics - a review.

    Science.gov (United States)

    Zhang, Yi; Nguyen, Nam-Trung

    2017-03-14

    A digital microfluidic platform manipulates droplets on an open surface. Magnetic digital microfluidics utilizes magnetic forces for actuation and offers unique advantages compared to other digital microfluidic platforms. First, the magnetic particles used in magnetic digital microfluidics have multiple functions. In addition to serving as actuators, they also provide a functional solid substrate for molecule binding, which enables a wide range of applications in molecular diagnostics and immunodiagnostics. Second, magnetic digital microfluidics can be manually operated in a "power-free" manner, which allows for operation in low-resource environments for point-of-care diagnostics where even batteries are considered a luxury item. This review covers research areas related to magnetic digital microfluidics. This paper first summarizes the current development of magnetic digital microfluidics. Various methods of droplet manipulation using magnetic forces are discussed, ranging from conventional magnetic particle-based actuation to the recent development of ferrofluids and magnetic liquid marbles. This paper also discusses several new approaches that use magnetically controlled flexible substrates for droplet manipulation. In addition, we emphasize applications of magnetic digital microfluidics in biosensing and medical diagnostics, and identify the current limitations of magnetic digital microfluidics. We provide a perspective on possible solutions to close these gaps. Finally, the paper discusses the future improvement of magnetic digital microfluidics to explore potential new research directions.

  4. Digitalisation of Fluxgate Magnetometer

    DEFF Research Database (Denmark)

    Pedersen, Erik Bøje

    1999-01-01

    in digital signal Processors. The basic properties behind the instrument are described and it is shown that the instrument works equally well as the analogue version. The first fully working instrument, based on digital signal processing for the Swedish micro-satellite Astrid-2, is described. Finally...... instrument.However, some problems are still present in the analogue electronics.In this thesis an instrument, based on digital signal processing, is presented. The instrument uses an early digitalisation of the fluxgate sensor signal and derives the magnetic field with mathematical algorithms implemented...

  5. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  6. Perspectives on magnetic reconnection

    Science.gov (United States)

    Yamada, Masaaki

    2016-01-01

    Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection. PMID:28119547

  7. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  8. A Magnetic Consistency Relation

    CERN Document Server

    Jain, Rajeev Kumar

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the Cosmic Microwave Background anisotropies and Large Scale Structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  9. Magnetic hyperbolic optical metamaterials

    CERN Document Server

    Kruk, Sergey S; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N; Kivshar, Yuri S; Zhang, Xiang

    2015-01-01

    Strongly anisotropic media where the principal components of the electric permittivity and/or magnetic permeability tensor have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wavevectors, and therefore they exhibit unique optical properties. However in all artificial and natural optical structures studied to date the hyperbolic dispersion originates solely from their electric response. This restricts functionality of these materials for only one polarization of light and inhibits impedance matching with free space. Such restrictions can be overcome in media having components of opposite signs in both electric and magnetic tensors. Here we present the first experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure experimentally metamaterial's dispersion and trace the topological transition between the elliptic and hyperbolic regimes. We experimentally demonstrate that due to the uniq...

  10. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  11. Skyrmions in magnetic materials

    CERN Document Server

    Seki, Shinichiro

    2016-01-01

    This brief reviews current research on magnetic skyrmions, with emphasis on formation mechanisms, observation techniques, and materials design strategies. The response of skyrmions, both static and dynamical, to various electromagnetic fields is also covered in detail. Recent progress in magnetic imaging techniques has enabled the observation of skyrmions in real space, as well as the analysis of their ordering manner and the details of their internal structure. In metallic systems, conduction electrons moving through the skyrmion spin texture gain a nontrivial quantum Berry phase, which provides topological force to the underlying spin texture and enables the current-induced manipulation of magnetic skyrmions. On the other hand, skyrmions in an insulator can induce electric polarization through relativistic spin-orbit interaction, paving the way for the control of skyrmions by an external electric field without loss of Joule heating. Because of its nanometric scale, particle nature, and electric controllabil...

  12. Magnetism in curved geometries

    Science.gov (United States)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  13. Cardiovascular Magnetic Resonance Imaging

    Science.gov (United States)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  14. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  15. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  16. DC Magnetics Measurement System Design

    Science.gov (United States)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  17. Magnet management in electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang

    2017-03-21

    A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

  18. Superconductivity for Magnets

    CERN Document Server

    Flükiger, R

    2014-01-01

    The present state of development of a series of industrial superconductors is reviewed in consideration of their future applications in high field accelerator magnets, with particular attention on the material aspect. The discussion is centred on Nb3Sn and MgB2, which are industrially available in a round wire configuration in kilometre lengths and are already envisaged for use in the LHC Upgrade (HL-LHC). The two systems Bi-2212 and R.E.123 may be used in magnets with even higher fields in future accelerators: they are briefly described.

  19. Ultrasonic magnetic abrasive finishing

    Institute of Scientific and Technical Information of China (English)

    LU Ya-ping; MA Ji; ZHANG Jun-qiang; WANG Long-shan

    2006-01-01

    Put forward a new kind of polishing method, ultrasonic magnetic abrasive finishing (UMAF), and studied its mechanism of improving polishing efficiency. By analyzing all kind of forces acting on single abrasive particle in the polishing process and calculating the size of the composition of forces, get the conclusion that UMAF will enhance the efficiency of the normal magnetic abrasive finishing(MAF) due to the ultrasonic vibration increases the cutting force and depth. At last the idea of designing the UMAF system based on numerical control milling machine is put forward which is convenient to setup and will accelerate the practical application of MAF.

  20. Magnetism in layered Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, Paul C.

    2008-07-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca{sub 2-x}Sr{sub x}RuO{sub 4} have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4} above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr{sub 2}RuO{sub 4}. With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7}, the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T{sub N}, excitations at this

  1. Controlling magnetism with multiferroics

    Directory of Open Access Journals (Sweden)

    Ying-Hao Chu

    2007-10-01

    Full Text Available Multiferroics, materials combining multiple order parameters, offer an exciting way of coupling phenomena such as electronic and magnetic order. Using epitaxial growth and heteroepitaxy, researchers have grown high-quality thin films and heterostructures of the multiferroic BiFeO3. The ferroelectric and antiferromagnetic domain structure and coupling between these two order parameters in BiFeO3 is now being studied. We describe the evolution of our understanding of the connection between structure, properties, and new functionalities (including electrical control of magnetism using BiFeO3 as a model system.

  2. On Magnetized Neutron Stars

    CERN Document Server

    Lopes, Luiz L

    2014-01-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach uses a different prescription for the calculation of the pressure based on the chaotic field formalism for the stress tensor and also a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density.

  3. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  4. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  5. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin

    2015-05-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  6. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  7. Materials chemistry: A magnetic facelift for non-magnetic metals

    Science.gov (United States)

    Raman, Karthik V.; Moodera, Jagadeesh S.

    2015-08-01

    Copper and manganese have been engineered to show magnetism at room temperature in thin films interfaced with organic molecules. The findings show promise for developing new magnetic materials. See Letter p.69

  8. Magnetic Force Between Magnetic Nano Probes at Optical Frequency

    CERN Document Server

    Guclu, Caner; Capolino, Filippo

    2014-01-01

    Magnetic force microscopy based on the interaction of static magnetic materials was demonstrated in the past with resolutions in the order of nanometers. Measurement techniques based on forces between electric dipoles oscillating at optical frequencies have been also demonstrated leading to the standard operation of the scanning force microscope (SFM). However the investigations of a SFM based on the magnetic force generated by magnetic dipole moments oscillating at optical frequencies has not been tackled yet. With this goal in mind we establish a theoretical model towards observable magnetic force interaction between two magnetically polarizable nanoparticles at optical frequency and show such a force to be in the order of piconewtons which could be in principle detected by conventional microscopy techniques. Two possible principles for conceiving magnetically polarizable nano probes able to generate strong magnetic dipoles at optical frequency are investigated based on silicon nanoparticles and on clusters...

  9. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2015-01-01

    Full Text Available Localized magnetic hyperthermia using magnetic nanoparticles (MNPs under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed.

  10. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  11. Repulsive Magnetic Levitation Systems Using Motion Control of Magnets

    OpenAIRE

    水野, 毅; 石野, 裕二; 荒木, 獻次; 大内, 泰平

    1995-01-01

    Repulsive magnetic levitation systems with magnets driven by actuators were studied in this paper. In one system, a levitation magnet was driven in the direction of repulsive force to control the position and vibration of the levitated object. In another, a levitation magnet was moved in the lateral directions to stabilize the system in the manner of an inverted pendulum. The first type was studied experimentally with an experimental setup using a magnetostrictive actuator. The damping charac...

  12. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  13. Three-dimensional magnetic reconnection through a moving magnetic null

    OpenAIRE

    Lukin, V. S.; Linton, M. G.

    2011-01-01

    A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fi...

  14. Optical fibers with composite magnetic coating for magnetic field sensing

    Energy Technology Data Exchange (ETDEWEB)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N. E-mail: ntalijan@elab.tmf.bg.ac.yu; Trifunovic, D.; Aleksic, R

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo{sub 5} permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  15. Optical fibers with composite magnetic coating for magnetic field sensing

    Science.gov (United States)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N.; Trifunovic, D.; Aleksic, R.

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo5 permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  16. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  17. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...

  18. Microfluidic magnetic separator using an array of soft magnetic elements

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Lund-Olesen, Torsten; Hansen, Mikkel Fougt;

    2006-01-01

    We present the design, fabrication, characterization, and demonstration of a new passive magnetic bead separator. The device operates in an effective state when magnetized by an external magnetic field of only 50 mT, which is available from a tabletop electromagnet. We demonstrate the complete...

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... help detect certain chronic diseases of the nervous system, such as multiple sclerosis diagnose problems with the ... the magnet. Some MRI units, called short-bore systems , are designed so that the magnet does not ...

  20. Magnetic Resonance Imaging (MRI) - Spine

    Science.gov (United States)

    ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  1. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does it ... and MRI Breast-feeding and MRI What is MRI and how does it work? Magnetic resonance imaging, ...

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the brain and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  5. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  6. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  7. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  8. Electricity and magnetism

    CERN Document Server

    Robertson, William C

    2005-01-01

    Shocked by static? Mixed up about magnets? Curious about currents? This book will help you get beyond memorizing electricity-related formulas, rules, and procedures so you can understand the topic at a deep level deep enough to teach it with confidence and comfort. By covering the basics of static electricity, current electricity, and magnetism, the book develops a scientific model showing that electricity and magnetism are really the same phenomenon in different forms. A bonus feature: access to interactive software that you can download from the NSTA Web site. The software will help you investigate electrical circuits from simple to complex without having to buy a lot of expensive materials (or risking electrocution!). Electricity and Magnetism is the fifth title in the award-winning NSTA Press Stop Faking It! Series. As author Bill Robertson writes, The book you have in your hands is not a textbook. It is, however, designed to help you get science at a level you never thought possible, and also to bring yo...

  9. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs. Spin-dependen

  10. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.;

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  11. Magnetic targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Timothy Wiedmann

    2009-10-01

    Full Text Available Lung cancer is the most common cause of death from cancer in both men and women. Treatment by intravenous or oral administration of chemotherapy agents results in serious and often treatment-limiting side effects. Delivery of drugs directly to the lung by inhalation of an aerosol holds the promise of achieving a higher concentration in the lung with lower blood levels. To further enhance the selective lung deposition, it may be possible to target deposition by using external magnetic fields to direct the delivery of drug coupled to magnetic particles. Moreover, alternating magnetic fields can be used to induce particle heating, which in turn controls the drug release rate with the appropriate thermal sensitive material.With this goal, superparamagetic nanoparticles (SPNP were prepared and characterized, and enhanced magnetic deposition was demonstrated in vitro and in vivo. SPNPs were also incorporated into a lipid-based/SPNP aerosol formulation, and drug release was shown to be controlled by thermal activation. Because of the inherent imaging potential of SPNPs, this use of nanotechnology offers the possibility of coupling the diagnosis of lung cancer to drug release, which perhaps will ultimately provide the “magic bullet” that Paul Ehrlich originally sought.

  12. Magnetic Stimulation and Epilepsy

    Science.gov (United States)

    2013-10-14

    investigated using behavioral recording and electroencephalographic (EEG) recording. The results (Figures 1~7) obtained have been submitted to Epilepsia ...Magnetic Stimulation on Penicillin-Induced Seizures in Rats. Epilepsia (submitted). * corresponding author. IV. OTHER CHANGES N/A V. FUTURE PLANS

  13. Magnetic-Optical Filter

    CERN Document Server

    Formicola, I; Pinto, C; Cerulo, P

    2007-01-01

    Magnetic-Optical Filter (MOF) is an instrument suited for high precision spectral measurements for its peculiar characteristics. It is employed in Astronomy and in the field of the telecommunications (it is called FADOF there). In this brief paper we summarize its fundamental structure and functioning.

  14. Quantum vacuum magnetic birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Berceau, Paul; Battesti, Remy; Fouche, Mathilde; Frings, Paul; Nardone, Marc; Portugall, Oliver; Rikken, Geert L. J. A.; Rizzo, Carlo, E-mail: carlo.rizzo@lncmi.cnrs.fr [UPR 3228, CNRS-UPS-UJF-INSA, Laboratoire National des Champs Magnetiques Intenses (France)

    2012-05-15

    In this contribution to EXA2011 congress, we present the status of the BMV (Birefringence Magnetique du Vide) experiment which is based on the use of a state-of-the-art optical resonant cavity and high pulsed magnetic fields, and it is hosted by the Laboratoire National des Champs Magnetiques Intenses in Toulouse, France.

  15. Magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bushong, S.C.

    1988-01-01

    This book introduces the fundamentals and principles of MRI, its capabilities and various techniques of application. Appropriate background for MRI is provided, including basic nuclear magnetic phenomena, modifications required for imaging, the current state of clinical knowledge and a survey of the future potential for in vivo MRI.

  16. Magnetism of quaternary sediments

    Science.gov (United States)

    Heller, Friedrich

    Magnetism of Quaternary sediments was the topic of a well-attended symposium held during the 13th INQUA (International Union of Quaternary Research) congress in Beijing, China, August 2-9. More than 40 papers were delivered by scientists from Belgium, England, France, Germany, Japan, New Zealand, Sweden, Switzerland, Taiwan, the United States, the Soviet Union, Yugoslavia, and other countries. The host country contributed to a productive session that was part of the first large scientific meeting to take place in Beijing after the June 4, 1989, upheaval.Nearly half of the studies focused on paleomagnetic and rock magnetic properties of loess in Alaska, Central Asia, China, and New Zealand. Magnetostratigraphic polarity dating was done at some sections in the western (Shaw et al.) and central Chinese loess plateau (Bai and Hus; Wang and Evans; Yue). The interpretation of the polarity pattern found in the western loess plateau still is not unambiguous. In the central part, certain polarity boundaries, such as the Brunhes/Matuyama (B/M) boundary, are found in slightly different stratigraphic positions (Hus et al.; Yue). In deep-sea sediments the lock-in depth of natural remanent magnetization (NRM) at the B/M boundary seems to be a linear function of sedimentation rate (de Menocal et al.). Although the magnetization process in the Chinese loess is not well understood, detailed records of polarity transitions have been reported for the B/M and the Jaramillo R→N transition (Ma et al.; Rolph).

  17. Twisted molecular magnets

    DEFF Research Database (Denmark)

    Inglis, Ross; Milios, Constantinos J.; Jones, Leigh F.

    2012-01-01

    The use of derivatised salicylaldoximes in manganese chemistry has led to the synthesis of a family of approximately fifty hexanuclear ([Mn(III)(6)]) and thirty trinuclear ([Mn(III)(3)]) Single-Molecule Magnets (SMMs). Deliberate, targeted structural distortion of the metallic core afforded family...

  18. LEAR bending magnet quadrant

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    During 1981, the PS South-Hall, no longer used for physics experiments, was cleared for the installation of the Low Energy Antiproton Ring, LEAR. In October 1981, 3 of the 4 bending magnet quadrants were in place, this is one of them.

  19. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  20. Single spin magnetic resonance

    Science.gov (United States)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  1. High Performance Magnets

    Science.gov (United States)

    2000-03-29

    Our efforts in this project were focused on three different materials, namely; interstitial Sm-Fe carbides and nitrides, high energy product Nd2Fe14B ...magnets with MgO addition, and nanocomposite Nd2Fe14B /alpha-Fe consisting of a fine mixture of hard and soft phases. In the Sm-Fe carbides and

  2. Optimal magnetic attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Markley, F.L.

    1999-01-01

    because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...

  3. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    2001-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the particles.

  4. Solar Magnetic Fields

    CERN Document Server

    Hood, Alan W

    2011-01-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulation...

  5. Magnetic Biotransport: Analysis and Applications

    OpenAIRE

    Edward P. Furlani

    2010-01-01

    Magnetic particles are finding increasing use in bioapplications, especially as carrier particles to transport biomaterials such as proteins, enzymes, nucleic acids and whole cells etc. Magnetic particles can be prepared with biofunctional coatings to target and label a specific biomaterial, and they enable controlled manipulation of a labeled biomaterial using an external magnetic field. In this review, we discuss the use of magnetic nanoparticles as transport agents in various bioapplicatio...

  6. Magnetic to magnetic and kinetic to magnetic energy transfers at the top of the Earth's core

    Science.gov (United States)

    Huguet, Ludovic; Amit, Hagay; Alboussière, Thierry

    2016-11-01

    We develop the theory for the magnetic to magnetic and kinetic to magnetic energy transfer between different spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. We show that non-zero secular variation of the total magnetic energy could be significant and may provide evidence for the existence of stretching secular variation, which suggests the existence of radial motions at the top of the Earth's core-whole core convection or MAC waves. However, the uncertainties of the small scales of the geomagnetic field prevent a definite conclusion. Combining core field and flow models we calculate the detailed magnetic to magnetic and kinetic to magnetic energy transfer matrices. The magnetic to magnetic energy transfer shows a complex behaviour with local and non-local transfers. The spectra of magnetic to magnetic energy transfers show clear maxima and minima, suggesting an energy cascade. The kinetic to magnetic energy transfers, which are much weaker due to the weak poloidal flow, are either local or non-local between degree one and higher degrees. The patterns observed in the matrices resemble energy transfer patterns that are typically found in 3-D MHD numerical simulations.

  7. DNA templated magnetic nanoparticles

    Science.gov (United States)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  8. Low-temperature magnetic refrigerator

    Science.gov (United States)

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  9. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  10. Complementary magnetic localized surface plasmons

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Zhang, Baile

    2015-01-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field.

  11. Aerospace applications of magnetic bearings

    Science.gov (United States)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  12. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.;

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive medical ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  15. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  16. Metastable states in magnetic nanorings

    DEFF Research Database (Denmark)

    Castaño, F. J.; Ross, C. A.; Frandsen, Cathrine;

    2003-01-01

    Magnetization states and hysteresis behavior of small ferromagnetic rings, of diameters 180-520 nm, have been investigated using magnetic force microscopy. In addition to the expected bi-domain ("onion") and flux-closed ("vortex") magnetization states, a metastable state has been found...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  18. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  19. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  20. Magnetic field concentrator for probing optical magnetic metamaterials.

    Science.gov (United States)

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  1. Terahertz Magnetic Modulator based on Magnetically-Clustered Nanoparticles

    CERN Document Server

    Shalaby, Mostafa; Ozturk, Yavuz; Al-Naib, Ibraheem; Hauri, Christoph P; Morandotti, Roberto

    2014-01-01

    Random orientation of liquid-suspended magnetic nanoparticles (Ferrofluid) gives rise to zero net magnetic orientation. An external magnetic field tends to align them into clusters, leading to a strong linear dichroism on a propagating wave. Using 10 nm-sized Fe3O4, we experimentally realize a polarization-sensitive magnetic modulator operating at terahertz wavelengths. We reached a modulation depth of 66% using a field of 35 mT. The proposed concept offers a solution towards fundamental terahertz magnetic modulators.

  2. Magnetic microwires a magneto-optical study

    CERN Document Server

    Chizhik, Alexander

    2014-01-01

    PrefaceKerr Effect as Method of Investigation of Magnetization Reversal in Magnetic Wires Cold-Drawn Fe-Rich Amorphous Wire Conventional Co-Rich Amorphous WireInteraction Between Glass-Covered MicrowiresCircular Magnetic Bistability in Co-Rich Amorphous Microwires Effect of High-Frequency Driving Current on Magnetization Reversal in Co-Rich Amorphous MicrowiresRelation Between Surface Magnetization Reversal and Magnetoimpedance Helical Magnetic Structure Magnetization Reversal in Crossed Magnetic Field Visualization of Barkhausen Jump Magnetizatio

  3. Evidence for a magnetic Seebeck effect.

    Science.gov (United States)

    Brechet, Sylvain D; Vetro, Francesco A; Papa, Elisa; Barnes, Stewart E; Ansermet, Jean-Philippe

    2013-08-23

    The irreversible thermodynamics of a continuous medium with magnetic dipoles predicts that a temperature gradient in the presence of magnetization waves induces a magnetic induction field, which is the magnetic analog of the Seebeck effect. This thermal gradient modulates the precession and relaxation. The magnetic Seebeck effect implies that magnetization waves propagating in the direction of the temperature gradient and the external magnetic induction field are less attenuated, while magnetization waves propagating in the opposite direction are more attenuated.

  4. Evidence for a Magnetic Seebeck effect

    OpenAIRE

    Bréchet, Sylvain; Vetro', Antonio; Papa, Elisa; Barnes, Stewart; Ansermet, Jean-Philippe

    2013-01-01

    The irreversible thermodynamics of a continuous medium with magnetic dipoles predicts that a temperature gradient in the presence of magnetization waves induces a magnetic induction field, which is the magnetic analog of the Seebeck effect. This thermal gradient modulates the precession and relaxation. The magnetic Seebeck effect implies that magnetization waves propagating in the direction of the temperature gradient and the external magnetic induction field are less attenuated, while magnet...

  5. Magnetically modified bioсells in constant magnetic field

    Science.gov (United States)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  6. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    Science.gov (United States)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  7. Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper ana lyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope,including the height of the rope axis, the half-width of the rope, and the length of the vertical current sheet below the rope, are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity.The implication of this result in solar active phenomena is briefly discussed.

  8. Assembly of magnetic spheres in strong homogeneous magnetic field

    Science.gov (United States)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  9. Electrical detection of magnetization reversal without auxiliary magnets

    Science.gov (United States)

    Olejník, K.; Novák, V.; Wunderlich, J.; Jungwirth, T.

    2015-05-01

    First-generation magnetic random access memories based on anisotropic magnetoresistance required magnetic fields for both writing and reading. Modern all-electrical read/write memories use instead nonrelativistic spin transport connecting the storing magnetic layer with a reference ferromagnet. Recent studies have focused on electrical manipulation of magnetic moments by relativistic spin torques requiring no reference ferromagnet. Here we report the observation of a counterpart magnetoresistance effect in such a relativistic system which allows us to electrically detect the sign of the magnetization without an auxiliary magnetic field or ferromagnet. We observe the effect in a geometry in which the magnetization of a uniaxial (Ga,Mn)As epilayer is set either parallel or antiparallel to a current-induced nonequilibrium spin polarization of carriers. In our structure, this linear-in-current magnetoresistance reaches 0.2% at current density of 106Acm -2 .

  10. An approach for estimating the magnetization direction of magnetic anomalies

    Science.gov (United States)

    Li, Jinpeng; Zhang, Yingtang; Yin, Gang; Fan, Hongbo; Li, Zhining

    2017-02-01

    An approach for estimating the magnetization direction of magnetic anomalies in the presence of remanent magnetization through correlation between normalized source strength (NSS) and reduced-to-the-pole (RTP) is proposed. The observation region was divided into several calculation areas and the RTP field was transformed using different assumed values of the magnetization directions. Following this, the cross-correlation between NSS and RTP field was calculated, and it was found that the correct magnetization direction was that corresponding to the maximum cross-correlation value. The approach was tested on both simulated and real magnetic data. The results showed that the approach was effective in a variety of situations and considerably reduced the effect of remanent magnetization. Thus, the method using NSS and RTP is more effective compared to other methods such as using the total magnitude anomaly and RTP.

  11. The Magnets Puzzle is NP-Complete

    DEFF Research Database (Denmark)

    Kölker, Jonas

    2012-01-01

    In a Magnets puzzle, one must pack magnets in a box subjet to polarity and numeric constraints. We show that solvability of Magnets instances is NP-complete.......In a Magnets puzzle, one must pack magnets in a box subjet to polarity and numeric constraints. We show that solvability of Magnets instances is NP-complete....

  12. Recent Activities in Magnetic Separation in Sweden

    OpenAIRE

    Wang, Yanmin; Forssberg, Eric

    1995-01-01

    This paper describes some industrial applications of magnetic separation in Swedish mineral industry. Recent studies on magnetic treatment of minerals in Sweden are also presented. These studies involve selectivity of wet magnetic separation, wet magnetic recovery of mineral fines and ultrafines, sulphide processing by magnetic means, as well as dry magnetic purification of industrial minerals.

  13. Limits for primordial magnetic fields

    CERN Document Server

    Caprini, Chiara

    2011-01-01

    A possible explanation for the origin of the magnetic fields observed today in matter structures is that they were generated in the primordial universe. After briefly revising the model of a primordial stochastic magnetic field and sketching the main features of its time evolution in the primordial plasma, we illustrate the current upper bounds on the magnetic field amplitude and spectral index from Cosmic Microwave Background observations and gravitational wave production. We conclude that a primordial magnetic field generated by a non-causal process such as inflation with a red spectrum seems to be favoured as a seed for the magnetic fields observed today in structures.

  14. Classification of Magnetic Nanoparticle Systems

    DEFF Research Database (Denmark)

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxomet...... the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles....... and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from...

  15. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  16. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  17. Magnetic bearings for cryogenic turbomachines

    Science.gov (United States)

    Iannello, Victor; Sixsmith, Herbert

    1991-01-01

    Magnetic bearings offer a number of advantages over gas bearings for the support of rotors in cryogenic turboexpanders and compressors. Their performance is relatively independent of the temperature or pressure of the process gas for a large range of conditions. Active magnetic bearing systems that use capacitive sensors have been developed for high speed compressors for use in cryogenic refrigerators. Here, the development of a magnetic bearing system for a miniature ultra high speed compressor is discussed. The magnetic bearing has demonstrated stability at rotational speeds exceeding 250,000 rpm. This paper describes the important features of the magnetic bearing and presents test results demonstrating its performance characteristics.

  18. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail: osoro@posta.unizar.es; Larrea, A.; Abadia, A.R.; Romero, M.S

    2002-09-01

    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  19. Magnetic microscopy of layered structures

    CERN Document Server

    Kuch, Wolfgang; Fischer, Peter; Hillebrecht, Franz Ulrich

    2015-01-01

    This book presents the important analytical technique of magnetic microscopy. This method is applied to analyze layered structures with high resolution. This book presents a number of layer-resolving magnetic imaging techniques that have evolved recently. Many exciting new developments in magnetism rely on the ability to independently control the magnetization in two or more magnetic layers in micro- or nanostructures. This in turn requires techniques with the appropriate spatial resolution and magnetic sensitivity. The book begins with an introductory overview, explains then the principles of the various techniques and gives guidance to their use. Selected examples demonstrate the specific strengths of each method. Thus the book is a valuable resource for all scientists and practitioners investigating and applying magnetic layered structures.

  20. SMARTer for magnetic structure studies

    Indian Academy of Sciences (India)

    E G R Putra; A Ikram; J Kohlbrecher

    2008-11-01

    SMARTer, a 36-meter small angle neutron scattering (SANS) spectrometer was installed at the Neutron Scattering Laboratory (NSL), National Nuclear Energy Agency of Indonesia – BATAN in Serpong, Indonesia and has performed the experiment for studying the magnetic structures of Cu(NiFe), CuCo and FeSiBNbCu metal alloys. The experiments were conducted at room temperature and up to 1 T (10 kOe) of external magnetic field. At zero fields, isotropic scattering identified as nuclear scattering is dominant. When a magnetic field is applied in a horizontal direction perpendicular to the neutron beam, the response of the magnetic scattering permits extraction of the field-induced re-arrangement of the magnetic moment. With increasing field the distortion is more pronounced and the magnetic scattering dominates the intensity and affects the peak position. Radial and angular averaging from experimental data are given to show the details of magnetic structures.

  1. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  2. Manganese-based Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Ian Baker

    2015-08-01

    Full Text Available There is a significant gap between the energy product, BH, where B is the magnetic flux density and H is the magnetic field strength, of both the traditional ferrite and AlNiCo permanent magnets of less than 10 MGOe and that of the rare earth magnets of greater than 30 MGOe. This is a gap that Mn-based magnets could potentially, inexpensively, fill. This Special Issue presents work on the development of both types of manganese permanent magnets. Some of the challenges involved in the development of these magnets include improving the compounds’ energy product, increasing the thermal stability of these metastable compounds, and producing them in quantity as a bulk material.[...

  3. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  4. Functional magnetic microspheres

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Landel, Robert F. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  5. Fragment Driven Magnetic Reconnection

    CERN Document Server

    Galsgaard, K

    2004-01-01

    In this paper, we investigate a simple model where two, initially unconnected, flux systems are forced to interact in response to the imposed boundary driving by solving the non-ideal 3D MHD equations numerically. The reconnection rate of the dynamical process is determined and compared with the corresponding rate for the potential evolution of the magnetic field. This shows that the dynamic reconnection rate is about a factor of two smaller than the potential (perfect, instantaneous) rate for realistic solar driving velocities demonstrating that this three-dimensional magnetic reconnection process is fast. The energy input for a fixed advection distance is found to be independent of the driving velocity. The Joule dissipation associated with the reconnection process is also found to be basically dependent on the advection distance rather than driving velocity. This implies that the timescale for the event determines the effect the heating has on the temperature increase. Finally, the numerical experiments in...

  6. Magnetic current sensor

    Science.gov (United States)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  7. Early lunar magnetism

    Science.gov (United States)

    Banerjee, S. K.; Mellema, J. P.

    1976-01-01

    A new method (Shaw, 1974) for investigating paleointensity (the ancient magnetic field) was applied to three subsamples of a single, 1-m homogeneous clast from a recrystallized boulder of lunar breccia. Several dating methods established 4 billion years as the age of boulder assembly. Results indicate that the strength of the ambient magnetic field at the Taurus-Littrow region of the moon was about 0.4 oersted at 4 billion years ago. Values as high as 1.2 oersted have been reported (Collison et al., 1973). The required fields are approximately 10,000 times greater than present interplanetary or solar flare fields. It is suggested that this large field could have arisen from a pre-main sequence T-Tauri sun.

  8. Parallel Magnetic Resonance Imaging

    CERN Document Server

    Uecker, Martin

    2015-01-01

    The main disadvantage of Magnetic Resonance Imaging (MRI) are its long scan times and, in consequence, its sensitivity to motion. Exploiting the complementary information from multiple receive coils, parallel imaging is able to recover images from under-sampled k-space data and to accelerate the measurement. Because parallel magnetic resonance imaging can be used to accelerate basically any imaging sequence it has many important applications. Parallel imaging brought a fundamental shift in image reconstruction: Image reconstruction changed from a simple direct Fourier transform to the solution of an ill-conditioned inverse problem. This work gives an overview of image reconstruction from the perspective of inverse problems. After introducing basic concepts such as regularization, discretization, and iterative reconstruction, advanced topics are discussed including algorithms for auto-calibration, the connection to approximation theory, and the combination with compressed sensing.

  9. Magnetic Shape Memory Microactuators

    Directory of Open Access Journals (Sweden)

    Manfred Kohl

    2014-11-01

    Full Text Available By introducing smart materials in micro systems technologies, novel smart microactuators and sensors are currently being developed, e.g., for mobile, wearable, and implantable MEMS (Micro-electro-mechanical-system devices. Magnetic shape memory alloys (MSMAs are a promising material system as they show multiple coupling effects as well as large, abrupt changes in their physical properties, e.g., of strain and magnetization, due to a first order phase transformation. For the development of MSMA microactuators, considerable efforts are undertaken to fabricate MSMA foils and films showing similar and just as strong effects compared to their bulk counterparts. Novel MEMS-compatible technologies are being developed to enable their micromachining and integration. This review gives an overview of material properties, engineering issues and fabrication technologies. Selected demonstrators are presented illustrating the wide application potential.

  10. MRI (Magnetic Resonance Imager)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshinori [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1995-05-01

    MRI is a widely used diagnostic imaging modality because it has excellent diagnostic capabilities, is safe to use and generates images not affected by bone artifacts. Images are obtained by utilizing the phenomenon of Nuclear Magnetic Resonance (NMR) by which protons located in a static magnetic field absorb radio frequency (RF) pulses with a specific frequency and release a part of the energy as a NMR signal. Potentially MRI has the ability to provide functional and metabolic information (such as flow, temperature, diffusion, neuron activity) in addition to morphological information. This paper describes the imaging principles and provides a general outline of some applications: flow imaging, metabolite imaging and temperature imaging. (J.P.N.).

  11. Existence of magnetic charge

    Science.gov (United States)

    Akers, David

    1990-10-01

    A status report is presented on the existence of quarks carrying the Dirac unit of magnetic charge g = (137/2) e. The Paschen-Back effect in dyonium is discussed. From the dyonium model, Akers predicted the existence of a new η meson at 1814 MeV with I G(JPC) = 0+(0-+). Experimental evidence now confirms the existence of the meson resonance.

  12. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  13. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  14. GANIL magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Barre, D.; Bidet, D.; Bourgarel, M.P. (GANIL, 14 - Caen (France))

    1984-01-01

    The GANIL (Grand Accelerateur National d'Ions Lourds) consists of four accelerators, two injector cyclotrons (CO/sub 1/ and CO/sub 2/), and two big accelerators (separated sector cyclotrons SSC/sub 1/ and SSC/sub 2/). This complex includes as well four beam lines for the machine and the experimental areas, and special magnets for physicists. The GANIL running started in November and the first physics experiment took place in January 1983.

  15. Future Accelerator Magnet Needs

    CERN Document Server

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  16. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  17. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    Science.gov (United States)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  18. Nuclear Magnetic Resonance Gyroscope

    Science.gov (United States)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  19. Magnetic Launch Assist

    Science.gov (United States)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  20. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  1. Magnetic liquefier for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  2. Magnetically controlled ferromagnetic swimmers

    Science.gov (United States)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-01-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490

  3. Magnetized White Dwarfs

    CERN Document Server

    Terrero, D Alvear; Martínez, A Pérez

    2016-01-01

    The purpose of this thesis is to obtain more realistic equations of state to describe the matter forming magnetized white dwarfs, and use them to solve its structure equations. The equations of state are determined by considering the weak magnetic field approximation $Bmagnetic field introduces anisotropic pressures, even for the moderate values present in white dwarfs. Also, we consider the energy and pressure correction due to the Coulomb interaction of the electron gas with the ions located in a crystal lattice. Moreover, spherically symmetric Tolman-Oppenheimer-Volkoff structure equations are solved independently for the perpendicular and parallel pressures, confirming the necessity of using axisymmetric structure equations, more adequate to describe the anisotropic system. Therefore, we study the solutions in cylindrical coordinates. In this case, the mass per longitude unit is obtained instead of the total mass of the whit...

  4. Disconnecting Solar Magnetic Flux

    CERN Document Server

    DeForest, C E; McComas, D J

    2011-01-01

    Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by CMEs and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctie shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly-disconnected flux takes the form of a "U"-shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m/s^2 to 320 km/s, expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8uT, 6 Rs above the photosphere, and the entrained flux to be 1.6x10^11 Wb (1.6x10^19 Mx). We mod...

  5. Magnetically controlled ferromagnetic swimmers

    Science.gov (United States)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-03-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

  6. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  7. Ultrahard magnetic nanostructures

    Science.gov (United States)

    Sahota, P. K.; Liu, Y.; Skomski, R.; Manchanda, P.; Zhang, R.; Franchin, M.; Fangohr, H.; Hadjipanayis, G. C.; Kashyap, A.; Sellmyer, D. J.

    2012-04-01

    The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much less important, but we find that the energy product remains the main figure of merit down to very small features sizes. However, hysteresis loops are much easier to control on small length scales, as epitomized by Fe-Co-Pt thin films with magnetizations of up to 1.78 T and coercivities of up to 2.52 T. Our numerical and analytical calculations show that the feature size and geometry have a big effect on the hysteresis loop. Layered soft regions, especially if they have a free surface, are more harmful to coercivity and energy product than spherical inclusions. In hard-soft nanocomposites, an additional complication is provided by the physical properties of the hard phases. For a given soft phase, the performance of a hard-soft composite is determined by the parameter (Ms - Mh)/Kh.

  8. The Magnetic Bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; Funk, Stefan; /KIPAC, Menlo Park

    2007-10-10

    Recent observations with TeV telescopes strongly indicate that young supernova remnants are capable of accelerating cosmic ray protons almost to PeV energies. On quite general grounds, this, in turn, suggests that the magnetic field strength must be enhanced above the standard interstellar value by about two orders of magnitude. It is suggested that protons and electrons are accelerated through diffusive shock acceleration, with the highest energy protons streaming furthest ahead of the shock front. It is then shown that the pressure of the {approx} 300TeV protons dominates that of the ambient thermal particles and magnetic field and is likely to be sufficiently anisotropic to render the pre-shock fluid unstable to resonant and non-resonant instability. A new theory of the non-resonant instabilities is outlined. The nonlinear evolution of these instabilities requires careful numerical simulation but it is conjectured that the magnetic field is amplified in this location and provides the means for efficient acceleration of progressively lower energy particles as it is convected towards the subshock in the thermal plasma. Further possible implications of these ideas are sketched.

  9. Saclay Magnet-Fest

    CERN Multimedia

    Jean Ernwein

    Three large LHC projects in which the Saclay laboratory has contributed in a major way have recently come to their successful completion: the LHC quadrupoles, the CMS solenoid and the ATLAS barrel toroid. These superconducting magnets were initially designed and partly prototyped in Saclay, their components manufactured in European industry, assembled and tested in industry or at CERN in the framework of large collaborations. The barrel toroid "Common Project" was conducted by the ATLAS project management and involved, in addition to the Saclay "Magnet Lab", the Italian LASA and CERN. You may recall the various steps which led to the commissioning of the barrel toroid in the cavern with full current in November of last year. The initial "race track" magnet was tested in Saclay where the B0 prototype coil was also built. The eight full size coils were assembled and individually tested in building 180 at CERN, before being lowered to the cavern and assembled. To mark these achievements, a happy gathering of m...

  10. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell.

    Science.gov (United States)

    Liu, Fei; Zhu, Jinghan; Yang, Wenlong; Dong, Yunhe; Hou, Yanglong; Zhang, Chenzhen; Yin, Han; Sun, Shouheng

    2014-02-17

    Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange-coupled nanocomposites of hard magnetic face-centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct-FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct-FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct-FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.

  11. Magnetic microstructure and coercivity mechanism of high performance Nd-Fe-B magnets

    Institute of Scientific and Technical Information of China (English)

    ZHU Minggang; LIU Xingmin; FANG Yikun; LI Zhengbang; LI Wei

    2006-01-01

    Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model.

  12. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.Y.; Jian, Z.F. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Horng, H.E. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China)], E-mail: phyfv001@scc.ntnu.edu.tw; Hong, C.-Y. [Department of Mechanical Engineering, Nan-Kai Institute of Technology, Nantou County, Taiwan (China)], E-mail: cyhong@nkc.edu.tw; Yang, H.C. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Wu, C.C [Departments of Primary Care and Internal Medicine, College of Medicine, National Taiwan University, Taipei 102, Taiwan (China); Lee, Y.H. [Medical Metrology Center, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2008-11-15

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  13. Observation of asymmetric distributions of magnetic singularities across magnetic multilayers

    Science.gov (United States)

    Hierro-Rodriguez, A.; Quirós, C.; Sorrentino, A.; Blanco-Roldán, C.; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.; Pereiro, E.; Vélez, M.; Ferrer, S.

    2017-01-01

    Whereas a great deal of work is being devoted to magnetic singularities in two-dimensional (2D) systems (surfaces, interfaces, films) due to their possible applications, much less is known about their properties along the perpendicular direction. Here, we report on a pronounced asymmetry of the in-depth distribution of meronlike magnetic textures, which are magnetic singularities similar to ½ skyrmions, in magnetic layers. Meron textures are observed to be distributed in two groups defined by their topology. One of them resides almost exclusively at the top surface of the film and the other at the bottom one. This observation has been brought to light with element-specific magnetic transmission soft x-ray microscopy. Micromagnetic simulations reveal that closure domains are at the origin of this asymmetry. The result might be of general interest for controlling magnetic three-dimensional (3D) architectures.

  14. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio of the r......We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio....... This factor decreases for increasing field strength, indicatingthat the superconducting solenoid could be suitable for high field, large coolingpower applications. ...

  15. Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Arenholz, E.; Suzuki, Y.

    2010-03-09

    We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures.

  16. [Modern toxicology of magnetic nanomaterials].

    Science.gov (United States)

    Cywińska, Monika A; Grudziński, Ireneusz P

    2012-01-01

    Current advances in nanobiotechnology have led to the development of new field of nanomedicine, which includes many applications of nano(bio)materials for both diagnostic and therapeutic purposes (theranostics). Major expectations and challenges are on bioengineered magnetic nanoparticles when their come to delivering drug compounds, especially to targeting anticancer drugs to specific molecular endpoints in cancer therapy. The unique physicochemical properties of these nanoparticles offer great promise in modern cancer nanomedicine to provide new technological breakthroughs, such as guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cancer cell tracking and molecular magnetic resonance imaging. Along with the expanding interest in bio-engineered magnetic nanoproducts their potential toxicity has become one of the major concerns. To date, a number of recent scientific evidences suggest that certain properties of magnetic nanoparticles (e.g., enhanced reactive area, ability to cross cell membranes, resistance to biodegradation) may amplify their cytotoxic potential relative to bulk non-nanoscale counterparts. In other words, safety assessment developed for ordinary magnetic materials may be of limited use in determining the health and environmental risks of the novel bio-engineered magnetic nanoproducts. In the present paper we discuss the main directions of research conducted to assess the toxicity of magnetic nanocompounds in experimental in vitro and in vivo models, pointing to the key issues concerning the toxicological analysis of magnetic nanomaterials. In addition new research directions of nanotoxicological studies elucidating the importance of developing alternative methods for testing magnetic nano(bio)products are also presented.

  17. Magnetic resonance of magnetic fluid and magnetoliposome preparations

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Paulo C. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil)]. E-mail: pcmor@unb.br; Santos, Judes G. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil); Skeff Neto, K. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil); Pelegrini, Fernando [Universidade Federal de Goias, Instituto de Fisica, 74001-970 Goiania-GO (Brazil); Cuyper, Marcel de [Katholieke Universiteit Leuven, Campus Kortrijk, Interdisciplinary Research Centre, B-8500 Kortrijk (Belgium)

    2005-05-15

    In this study, magnetic resonance was used to investigate lauric acid-coated magnetite-based magnetic fluid particles and particles which are surrounded by a double layer of phospholipid molecules (magnetoliposomes). The data reveal the presence of monomers and dimers in both samples. Whereas evidence for a thermally induced disruption of dimers is found in the magnetic fluid, apparently, the bilayer phospholipid envelop prevents the dissociation in the magnetoliposome samples.

  18. Three-dimensional magnetic reconnection through a moving magnetic null

    OpenAIRE

    Lukin, V. S.; Linton, M. G.

    2011-01-01

    A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the sphe...

  19. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  20. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.