WorldWideScience

Sample records for astigmatic optical modes

  1. Optical advantages of astigmatic aberration corrected heliostats

    Science.gov (United States)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  2. Kerr-lens Mode Locking Without Nonlinear Astigmatism

    CERN Document Server

    Yefet, Shi; Pe'er, Avi

    2013-01-01

    We demonstrate a Kerr-lens mode locked folded cavity using a planar (non-Brewster) Ti:sapphire crystal as a gain and Kerr medium, thus cancelling the nonlinear astigmatism caused by a Brewster cut Kerr medium. Our method uses a novel cavity folding in which the intra-cavity laser beam propagates in two perpendicular planes such that the astigmatism of one mirror is compensated by the other mirror, enabling the introduction of an astigmatic free, planar-cut gain medium. We demonstrate that this configuration is inherently free of nonlinear astigmatism, which in standard cavity folding needs a special power specific compensation.

  3. Astigmatism transfer phenomena in the optical parametric amplification process

    Science.gov (United States)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  4. Astigmatism

    Science.gov (United States)

    ... requiring new glasses or contact lenses. Laser vision correction can most often eliminate, or greatly reduce astigmatism. ... A.M. Editorial team. Related MedlinePlus Health Topics Refractive Errors Browse the Encyclopedia A.D.A.M., Inc. ...

  5. Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-08-15

    In the previous work, non-imaging focusing heliostat that consists of m x n facet mirrors can carry out continuous astigmatic correction during sun-tracking with the use of only (m + n - 2) controllers. For this paper, a simplified astigmatic correction of non-imaging focusing heliostat is proposed for reducing the number of controllers from (m + n - 2) to only two. Furthermore, a detailed optical analysis of the new proposal has been carried out and the simulated result has shown that the two-controller system can perform comparably well in astigmatic correction with a much simpler and more cost effective design. (author)

  6. Assessment of refractive astigmatism and simulated therapeutic refractive surgery strategies in coma-like-aberrations-dominant corneal optics

    OpenAIRE

    ZHOU Wen; Stojanovic, Aleksandar; Utheim, Tor Paaske

    2016-01-01

    Background The aim of the study is to raise the awareness of the influence of coma-like higher-order aberrations (HOAs) on power and orientation of refractive astigmatism (RA) and to explore how to account for that influence in the planning of topography-guided refractive surgery in eyes with coma-like-aberrations-dominant corneal optics. Methods Eleven eyes with coma-like-aberrations-dominant corneal optics and with low lenticular astigmatism (LA) were selected for astigmatism analysis and f...

  7. Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters

    NARCIS (Netherlands)

    T. Wang (Teng); A.F.W. van der Steen (Ton); G. van Soest (Gijs)

    2012-01-01

    textabstractEndoscopic optical coherence tomography (OCT) catheters comprise a transparent tube to separate the imaging instrument from tissues. This tube acts as a cylindrical lens, introducing astigmatism into the beam. In this report, we quantified this negative effect using optical simulations o

  8. Postoperative astigmatism.

    Science.gov (United States)

    Swinger, C A

    1987-01-01

    With the numerous significant advances in surgical methodology--e.g., microinstrumentation, the operating microscope, the surgical keratometer, and intraocular lenses--that have been developed over the past two decades, both surgeons and patients have become increasingly aware of the final optic result of any surgical intervention. This is especially so since the development of refractive surgery, where good uncorrected vision is frequently the final arbiter of success. We have progressed to the stage where the optic manipulation of the cornea, whether intentional or otherwise, can be understood in terms of a number of variables. These include the preparation and closure of the surgical wound, the choice of suture material, and both intraoperative and postoperative manipulations. Where these have failed and postoperative astigmatism still occurs, a number of surgical procedures are available to reduce the astigmatic error to an acceptable level.

  9. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    Science.gov (United States)

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  10. Digital in-line holography for the characterization of flowing particles in astigmatic optical systems

    Science.gov (United States)

    Sentis, Matthias P. L.; Bruel, Laurent; Charton, Sophie; Onofri, Fabrice R. A.; Lamadie, Fabrice

    2017-01-01

    An extended Generalized Fresnel Transform (GFT) is proposed to account for the astigmatism introduced by optical elements described, in the paraxial approximation, with a ray transfer matrix analysis. Generalized impulse response and generalized Fresnel transfer function propagators as well as sampling conditions are derived to properly implement this transformation. As a test case, the near-field diffraction patterns and in-line holograms produced by droplets flowing in a tube with cylindrical interfaces have been simulated. A best fitting approach is introduced to retrieve, from the propagated holograms, the 3D position and size of the droplets. Several hologram focusing indicators based on the analysis of droplets focus region are also proposed to further improve the estimation of the droplets position along the optical axis. Numerical simulations and experimental results confirm the applicability and accuracy of the proposed methods.

  11. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain.

    Science.gov (United States)

    Cai, Yangjian; Zhu, Shijun

    2014-04-01

    We derive the general expression for the orbital angular momentum (OAM) flux of an astigmatic partially coherent beam carrying twist phase [i.e., twisted anisotropic Gaussian-Schell model (TAGSM) beam] propagating through an astigmatic ABCD optical system with loss or gain. The evolution properties of the OAM flux of a TAGSM beam in a Gaussian cavity or propagating through a cylindrical thin lens are illustrated numerically with the help of the derived formula. It is found that we can modulate the OAM of a partially coherent beam by varying the parameters of the cavity or the orientation angle of the cylindrical thin lens, which will be useful in some applications, such as free-space optical communications and particle trapping.

  12. Comparative assessment of astigmatism-corrected Czerny-Turner imaging spectrometer using off-the-shelf optics

    Science.gov (United States)

    Yuan, Qun; Zhu, Dan; Chen, Yueyang; Guo, Zhenyan; Zuo, Chao; Gao, Zhishan

    2017-04-01

    We present the optical design of a Czerny-Turner imaging spectrometer for which astigmatism is corrected using off-the-shelf optics resulting in spectral resolution of 0.1 nm. The classic Czerny-Turner imaging spectrometer, consisting of a plane grating, two spherical mirrors, and a sensor with 10-μm pixels, was used as the benchmark. We comparatively assessed three configurations of the spectrometer that corrected astigmatism with divergent illumination of the grating, by adding a cylindrical lens, or by adding a cylindrical mirror. When configured with the added cylindrical lens, the imaging spectrometer with a point field of view (FOV) and a linear sensor achieved diffraction-limited performance over a broadband width of 400 nm centered at 800 nm, while the maximum allowable bandwidth was only 200 nm for the other two configurations. When configured with the added cylindrical mirror, the imaging spectrometer with a one-dimensional field of view (1D FOV) and an area sensor showed its superiority on imaging quality, spectral nonlinearity, as well as keystone over 100 nm bandwidth and 10 mm spatial extent along the entrance slit.

  13. An Astigmatic Detection System for Polymeric Cantilever-based Sensors

    DEFF Research Database (Denmark)

    Hwu, En-Te; Liao, Hsien-Shun; Bosco, Filippo;

    2012-01-01

    We demonstrate the use of an astigmatic detection system (ADS) for resonance frequency identification of polymer microcantilever sensors. The ADS technology is based on a DVD optical head combined with an optical microscope (OM). The optical head has a signal bandwidth of 80 MHz, allowing thermal...... submicrometer-sized cantilevers. The resonant frequency of SU-8 microcantilevers is measured by both thermal fluctuation and excited vibration measurement modes of the ADS....

  14. Astigmatically compensated cw dye laser resonators using lenses

    Energy Technology Data Exchange (ETDEWEB)

    Hueffer, W.; Schieder, R.; Brinkmann, U. (Koeln Univ. (Germany, F.R.). 1. Physikalisches Inst.)

    1978-01-01

    The compensation of the astigmatism of Brewster-angled dye cells can be performed with lenses as well as with spherical mirrors. The advantages of cw dye laser resonators using lenses lie in the linear configuration of the optics and the convenient adjustability of astigmatism compensation. An output efficiency of 30% already at 1.6 W pumping power has been observed. In addition, ring laser resonators with lenses have been investigated and they delivered up to 400mW single mode power in travelling wave operation at less than 2 W pumping power.

  15. Keratophakia--postoperative astigmatism.

    Science.gov (United States)

    Swinger, C A; Troutman, R C; Forman, J S

    1987-01-01

    Forty-nine cases of primary keratophakia and 13 cases of secondary keratophakia were analyzed for postoperative astigmatism. For primary cases, the surgically induced astigmatism was 1.55 D, whereas for secondary cases it was 0.19 D (insignificant). There was a tendency for both procedures to induce against-the-rule astigmatism, and both procedures were found capable of producing irregular astigmatism.

  16. Axially astigmatic surfaces: different types and their properties

    Science.gov (United States)

    Malacara-Doblado, Daniel; Malacara-Hernandez, Daniel; Garcia-Marquez, Jorge L.

    1996-12-01

    Axially astigmatic surfaces have different curvatures in orthogonal diameters. Toroidal and spherocylindrical optical surfaces are two mathematically different special cases of axially astigmatic surfaces as noted by Menchaca and Malacara (1986), but they are almost identical in the vicinity of the optical axis. The different between these two surfaces increases when the distance to the optical axis increases. We study the general properties of astigmatic surfaces and some special interesting cases.

  17. Resonance modes in optical fibres

    Institute of Scientific and Technical Information of China (English)

    余寿绵; 余恬

    2002-01-01

    The weakly nonlinear boundary value problem of wave propagation in an optical fibre (for the transverse electric mode, for example) is formulated and a modified linear solution is obtained. It is shown that a self-consistent theory of fibre optics should be weakly nonlinear. The mode of critical refraction that does not exist in the linear theory is obtained, showing that it is a mode consisting of resonance modes. It is shown that the signal carriers in a long fibre are of resonance modes, not normal modes. Some experimental data are given for comparison with the theoretical predictions, and the agreement seems satisfactory.

  18. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  19. Light with a twist : ray aspects in singular wave and quantum optics

    NARCIS (Netherlands)

    Habraken, Steven Johannes Martinus

    2010-01-01

    Light may have a very rich spatial and spectral structure. We theoretically study the structure and physical properties of coherent optical modes and quantum states of light, focusing on optical vortices, general astigmatism, orbital angular momentum and rotating light.

  20. Tubular astigmatism-tunable fluidic lens.

    Science.gov (United States)

    Kopp, Daniel; Zappe, Hans

    2016-06-15

    We demonstrate a new means to fabricate three-dimensional liquid lenses which may be tuned in focal length and astigmatism. Using actuation by electrowetting-on-dielectrics, astigmatism in arbitrary directions may be tuned independently, with almost no cross talk between orthogonal orientations. The lens is based on electrodes structured on planar polyimide foils and subsequently rolled, enabling high-resolution patterning of complex electrodes along the azimuthal and radial directions of the lens. Based on a design established through fluidic and optical simulations, the astigmatism tuning is experimentally verified by a change of the corresponding Zernike coefficients measured using a Shack-Hartmann wavefront sensor. It was seen that the back focal length can be tuned by 5 mm and 0° and 45° astigmatism by 3 μm through application of voltages in the range of 50  Vrms. It was observed that the cross talk with other aberrations is very low, suggesting a novel means for astigmatism control in imaging systems.

  1. Prevalence of corneal astigmatism before cataract surgery.

    Science.gov (United States)

    Mohammadi, Mehran; Naderan, Mohammad; Pahlevani, Rozhin; Jahanrad, Ali

    2016-12-01

    The purpose of this study was to describe and analyze the prevalence and pattern of corneal astigmatism in cataract surgery candidates. In a prospective cross-sectional study, preoperative demographics, and keratometric and refractive values of cataract surgery candidates were collected from January 2013 to December 2014. Axial length (AL) and flat and steep keratometry measurements were optically measured by a partial coherence interferometry device (IOLMaster). This study consisted of 2156 eyes of 1317 patients with a mean age of 64.92 ± 11.48 (SD) (30-88 years). The mean of AL was 23.33 ± 1.37 mm, and the mean of corneal astigmatism was 1.12 ± 1.10 diopter (D) (range 0.0-7.00), in all patients. Furthermore, the mean of flat and steep keratometry were 43.70 ± 1.70 and 44.83 ± 1.79 D, respectively. Corneal astigmatism was 1.50 D or less in 1590 eyes (73.7 %), more than 1.50 D in 566 eyes (26.2 %), 3.00 D or more in 161 eyes (7.4 %), WTR in 796 eyes (36.9 %), ATR in 1010 eyes (46.8 %), and oblique in 350 eyes (16.2 %). ATR astigmatism axis significantly increased with the increase in age. Corneal astigmatism of most cataract surgery candidates fell between 0.50 and 1.50 D. The results of our study however is confined to our demographics might provide useful data for cataract patients, surgeons, and intraocular lens manufacturers for different purposes.

  2. Properties of Single Mode Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    YANG Dong-xiao

    2003-01-01

    The density,dynamic modulus,Young's modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-methacrylate optical fiber.The results show that the fiber can provide large strain range for polymeric optical fiber Bragg gratings.

  3. Dark propagation modes in optical lattices

    CERN Document Server

    Schiavoni, M; Carminati, F R; Renzoni, F; Grynberg, G; Schiavoni, Michele; Sanchez-Palencia, Laurent; Carminati, Francois-Regis; Renzoni, Ferruccio; Proxy, Gilbert Grynberg; ccsd-00000108, ccsd

    2002-01-01

    We examine the stimulated light scattering onto the propagation modes of a dissipative optical lattice. We show that two different pump-probe configurations may lead to the excitation, via different mechanisms, of the same mode. We found that in one configuration the scattering on the propagation mode results in a resonance in the probe transmission spectrum while in the other configuration no modification of the scattering spectrum occurs, i.e. the mode is dark. A theoretical explanation of this behaviour is provided.

  4. Soliton mode-locking in optical microresonators

    CERN Document Server

    Herr, T; Gorodetsky, M L; Kippenberg, T J

    2012-01-01

    The discovery of mode-locking via saturable absorbers has led to optical femto-second pulses with applications ranging from eye-surgery to the analysis of chemical reactions on ultra-short timescales. In the frequency domain a train of such optical pulses corresponds to a frequency comb (equidistant optical laser lines spaced by the pulse repetition rate), which find use in precision spectroscopy and optical frequency metrology. Not relying on mode-locking, frequency combs can also be generated in continuously driven high-Q Kerr-nonlinear optical microresonators via cascaded four-wave mixing. Over the past years these Kerr-combs have been demonstrated in a variety of microresonator geometries. Applying a pulse-shaping mode locking mechanism, could enable compact femto-second pulse generators. However, conventional saturable absorbers are challenging to apply to microresonators, as they affect the high-quality-factor. Here, we report on passive mode-locking in microresonators without saturable absorber. This m...

  5. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...... produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garnett theory for homogenizing a fine metamaterial structure...

  6. Contrast sensitivity and higher-order aberrations in patients with astigmatism

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guang-ying; ZHANG Wei-xia; DU Jun; ZHANG Jin-song; LIU Su-bing; NIE Xiao-li; ZHU Xiao-hong; TANG Xiu-xia; XIN Bao-li; MAI Zhi-bin

    2007-01-01

    Background Astigmatism is one of the most significant obstacles for achieving satisfactory visual function. This study was to evaluate the influence of astigmatism on contrast sensitivity (CS) and higher-order aberrations.Methods CS, accommodation response and wavefront aberration were measured in 113 patients with astigmatism,aged 18-36 years. Both single and binocular visual performance were examined under four lighting conditions: photopia,photopia with glare, scotopia and scotopia with glare respectively. Accommodation response was classified as normal,abnormal and low. The contribution of the power and axis of astigmatism to CS, accommodation response and wavefront aberration was analyzed.Results As the dioptric power of astigmatism increased, the loss of CS spatial frequency changed from high to intermediate, and then to low frequency. CS scores varied at different illuminance levels, descending in the following sequence: photopia, photopia with glare, scotopia, and scotopia with glare. However, the normal accommodation group showed better CS values under photopia with glare than without glare. The range of influenced direction of sine-wave gratings remained mostly at the meridian line of high dioptric power, which would be expanded when optical accommadation attenuated. The patients with symmetrical astigmatism got higher CS scores with binoculus vision than with dominant eye vision, while the patients with asymmetrical astigmatism did this only at scotopia with glare. Among higher-order aberrations, coma aberration, secondary coma aberration and the total higher order aberration were influenced by astigmatism, all of which rising with the power of astigmatism increased.Conclusions Reducing astigmatism might improve the performance of visual function. Not only the power of astigmatism should be cut down, but also the binocular axes should be made symmetrically.

  7. Engineering modes in optical fibers with metamaterial

    Institute of Scientific and Technical Information of China (English)

    Min YAN; Niels Asger MORTENSEN; Min QIU

    2009-01-01

    In this paper, we report a preliminary theoret-ical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguish-able by the operating wavelength. We refer to such fibers as metamaterial optical fibers, which can conceptually be considered as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garner theory for homogenizing a fine metamaterial structure to a homogeneous one. The accuracies of the two homogenization approaches are compared with full-structure calculation.

  8. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  9. Electrically controlled optical-mode switch for fundamental mode and first order mode

    Science.gov (United States)

    Imansyah, Ryan; Tanaka, Tatsushi; Himbele, Luke; Jiang, Haisong; Hamamoto, Kiichi

    2016-08-01

    We have proposed an optical mode switch, the principle of which is based on the partial phase shift of injected light; therefore, one important issue is to clarify the proper design criteria for the mode combiner section. We focused on the bending radius of the S-bend waveguide issue that is connected to the multi mode waveguide in the Y-junction section that acts as mode combiner. Long radius leads to undesired mode coupling before the Y-junction section, whereas a short radius causes radiation loss. Thus, we simulated this mode combiner by the beam-propagation method to obtain the proper radius. In addition, we used a trench pin structure to simplify the fabrication process into a single-step dry-etching process. As a result, we successfully fabricated an optical-mode switch with the bending radius R = 610 µm. It showed the successful electrical mode switching and the achieved mode crosstalk was approximately -10 dB for 1550 nm wavelength with the injection current of 60 mA (5.7 V).

  10. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    Science.gov (United States)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  11. Optically active mechanical modes of tapered optical fibers

    CERN Document Server

    Wuttke, Chrisitan; Rauschenbeutel, Arno

    2013-01-01

    Tapered optical fibers with a nanofiber waist are widely used tools for efficient coupling of light to photonic devices or quantum emitters via the nanofiber's evanescent field. In order to ensure well-controlled coupling, the phase and polarization of the nanofiber guided light field have to be stable. Here, we show that in typical tapered optical fibers these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that opto-mechanically couple to the nanofiber-guided light. We present a simple ab-initio theoretical model that quantitatively explains the torsional mode spectrum and that can be used to design tapered optical fibers with tailored mechanical properties.

  12. Experimental phase-space-based optical amplification of scar modes

    CERN Document Server

    Michel, Claire; Doya, Valerie; Aschieri, Pierre; Blanc, Wilfried; Legrand, Olivier; Mortessagne, Fabrice

    2012-01-01

    Waves billiard which are chaotic in the geometrical limit are known to support non-generic spatially localized modes called scar modes. The interaction of the scar modes with gain has been recently investigated in optics in micro-cavity lasers and vertically-cavity surface-emitting lasers. Exploiting the localization properties of scar modes in their wave analogous phase space representation, we report experimental results of scar modes selection by gain in a doped D-shaped optical fiber.

  13. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  14. Mode-selective optical packet switching in mode-division multiplexing networks.

    Science.gov (United States)

    Diamantopoulos, N P; Hayashi, M; Yoshida, Y; Maruta, A; Maruyama, R; Kuwaki, N; Takenaga, K; Uemura, H; Matsuo, S; Kitayama, K

    2015-09-07

    A novel mode-selective optical packet switching, based on mode-multiplexers/demultiplexers and multi-port optical micro-electro-mechanical systems (MEMS) switches, has been proposed and experimentally demonstrated. The experimental demonstration was performed using the LP(01), LP(11a) and LP(11b) modes of a 30-km long mode-division multiplexed few-mode fiber link, utilizing 40 Gb/s, 16-QAM signals.

  15. Single mode variable-sensitivity fiber optic sensors

    Science.gov (United States)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  16. Designing whispering gallery modes via transformation optics

    Science.gov (United States)

    Kim, Yushin; Lee, Soo-Young; Ryu, Jung-Wan; Kim, Inbo; Han, Jae-Hyung; Tae, Heung-Sik; Choi, Muhan; Min, Bumki

    2016-10-01

    In dielectric cavities with a rotational symmetry, whispering gallery modes (WGMs) with an extremely long lifetime (that is, a very high Q factor) can be formed by total internal reflection of light around the rim of the cavities. The ultrahigh Q factor of WGMs has enabled a variety of impressive photonic systems, such as ultralow threshold microlasers, bio-sensors with unprecedented sensitivity and cavity optomechanical devices. However, the isotropic emission of WGMs, which is due to the rotational symmetry, is a serious drawback in applications that require directional light sources. Considerable efforts have thus been devoted to achieving directional emission by intentionally breaking the rotational symmetry. However, all of the methods proposed so far have suffered from substantial Q-spoiling. Here, we show how the mode properties of dielectric whispering gallery cavities, such as the Q factor and emission directionality, can be tailored at will using transformation optics. The proposed scheme will open a new horizon of applications beyond the conventional WGMs.

  17. Interference of selective higher-order modes in optical fibers

    Institute of Scientific and Technical Information of China (English)

    Li Enbang; Peng Gangding

    2007-01-01

    The interference of selective higher-order modes in optical fibers is investigated both theoretically and experimentally.It has been demonstrated that by coupling the LP01 mode in a step-index single-mode fiber(SMF)to the LPom modes in step-index muhimode fibers(MMFs)with different parameters,one can selectively generate higher-order modes and construct all-fiber interferometers.The research presented in this paper forms a basis of a new type of fiber devices with potential applications in fiber sensing,optical fiber communications,and optical signal processing.

  18. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  19. Large-mode-area leaky optical fibre fabricated by MCVD

    OpenAIRE

    Dussardier, Bernard; Trzesien, Stanislaw; Ude, Michèle; Rastogi, Vipul; Kumar, Ajeet; Monnom, Gérard

    2008-01-01

    International audience; A large mode area single-mode optical fibre based on leaky mode filtering was prepared by MCVD. The cladding structure discriminates the fundamental mode from the higher order ones. A preliminary version has 25-µm core diameter and 0.11 numerical aperture. A Gaussian-like mode with 22-µm MFD is observed after 3-m propagation, in agreement with modeling.

  20. Optical mode switch based on multimode interference couplers

    Science.gov (United States)

    Xiao, Huifu; Deng, Lin; Zhao, Guolin; Liu, Zilong; Meng, Yinghao; Guo, Xiaonan; Liu, Guipeng; Liu, Su; Ding, Jianfeng; Tian, Yonghui

    2017-02-01

    In this paper, we propose an optical mode switch based on two cascaded multimode interference (MMI) couplers. After a fundamental mode divided into two equal-power fundamental modes in the first MMI coupler, the thermo-optic effect is employed to modulate the phase of the two fundamental modes before directed to the next MMI for the purpose of mode switching. By adjusting the electric signals applied to the modulation arms, the proposed device can implement mode switching in three states: (a) one first-order and two fundamental modes simultaneously output, (b) one first-order mode output, and (c) two fundamental modes output. As a result, the simulated excess losses are -0.29 dB, -0.10 dB, and -0.63 dB, respectively.

  1. Changes in Astigmatism, Densitometry, and Aberrations After SMILE for Low to High Myopic Astigmatism

    DEFF Research Database (Denmark)

    Pedersen, Iben Bach; Ivarsen, Anders; Hjortdal, Jesper

    2017-01-01

    PURPOSE: To evaluate 12-month changes in refraction, visual outcome, corneal densitometry, and postoperative aberrations after small incision lenticule extraction (SMILE) for myopic astigmatism. METHODS: This 12-month prospective clinical trial comprised 101 eyes (101 patients) treated with SMILE...... be identified. CONCLUSIONS: Treatment of astigmatism with SMILE seems to be predictable and effective, but with an astigmatic undercorrection of approximately 11% and a small counterclockwise rotation of the axis. [J Refract Surg. 2017;33(1):11-17.]....

  2. Mode field expansion in index-guiding microstructured optical fibers

    Science.gov (United States)

    Sharma, Dinesh Kumar; Sharma, Anurag

    2013-05-01

    The mode-field expander (MFE) is a microstructured optical fiber (MOF) based device that enlarges the modal field distribution and can couple light from large mode area (LMA) fibers into small core fibers or vice-versa and other optical waveguides. Using our earlier developed analytical field model, we studied the mode-field expansion in MOFs having triangular lattice, and low-loss splicing of MOFs to standard single-mode fibers (SMFs), based on the controlled all airhole collapse method, which leads to an optimum mode-field match at the joint interface of the MOF-SMF. Comparisons with available experimental and simulation results have also been included.

  3. Design, optimization and fabrication of an optical mode filter for integrated optics.

    Science.gov (United States)

    Magnin, Vincent; Zegaoui, Malek; Harari, Joseph; François, Marc; Decoster, Didier

    2009-04-27

    We present the design, optimization, fabrication and characterization of an optical mode filter, which attenuates the snaking behavior of light caused by a lateral misalignment of the input optical fiber relative to an optical circuit. The mode filter is realized as a bottleneck section inserted in an optical waveguide in front of a branching element. It is designed with Bézier curves. Its effect, which depends on the optical state of polarization, is experimentally demonstrated by investigating the equilibrium of an optical splitter, which is greatly improved however only in TM mode. The measured optical losses induced by the filter are 0.28 dB.

  4. Visual Motor and Perceptual Task Performance in Astigmatic Students

    Directory of Open Access Journals (Sweden)

    Erin M. Harvey

    2017-01-01

    Full Text Available Purpose. To determine if spectacle corrected and uncorrected astigmats show reduced performance on visual motor and perceptual tasks. Methods. Third through 8th grade students were assigned to the low refractive error control group (astigmatism < 1.00 D, myopia < 0.75 D, hyperopia < 2.50 D, and anisometropia < 1.50 D or bilateral astigmatism group (right and left eye ≥ 1.00 D based on cycloplegic refraction. Students completed the Beery-Buktenica Developmental Test of Visual Motor Integration (VMI and Visual Perception (VMIp. Astigmats were randomly assigned to testing with/without correction and control group was tested uncorrected. Analyses compared VMI and VMIp scores for corrected and uncorrected astigmats to the control group. Results. The sample included 333 students (control group 170, astigmats tested with correction 75, and astigmats tested uncorrected 88. Mean VMI score in corrected astigmats did not differ from the control group (p=0.829. Uncorrected astigmats had lower VMI scores than the control group (p=0.038 and corrected astigmats (p=0.007. Mean VMIp scores for uncorrected (p=0.209 and corrected astigmats (p=0.124 did not differ from the control group. Uncorrected astigmats had lower mean scores than the corrected astigmats (p=0.003. Conclusions. Uncorrected astigmatism influences visual motor and perceptual task performance. Previously spectacle treated astigmats do not show developmental deficits on visual motor or perceptual tasks when tested with correction.

  5. Mode-matching for Optical Antennas

    OpenAIRE

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2016-01-01

    The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based ...

  6. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.;

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  7. Mode spectrum and temporal soliton formation in optical microresonators

    CERN Document Server

    Herr, T; Jost, J D; Mirgorodskiy, I; Lihachev, G; Gorodetsky, M L; Kippenberg, T J

    2013-01-01

    The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the resonator mode spectrum on temporal soliton formation. Using frequency comb assisted diode laser spectroscopy, the measured mode structure of crystalline MgF2 resonators are correlated with temporal soliton formation. While an overal general anomalous dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonator's mode structure. Mode coupling induced avoided crossings in the resonator mode spectrum are found to prevent soliton formation, when affecting resonator modes close to the pump laser. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations, which reveal the rich interplay of mode crossings and soliton f...

  8. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  9. Characteristics of paraxial propagation of a super Lorentz-Gauss SLG01 mode in uniaxial crystal orthogonal to the optical axis

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2012-01-01

    Analytical propagation expression of a super Lorentz-Gauss(SLG)01 mode in uniaxial crystal orthogonal to the optical axis is derived.The SLG01 mode propagating in umiaxial crystal orthogonal to the optical axis mainly depends on the ratio of the extraordinary refractive index to the ordinary refractive index.The SLG01 mode propagating in uniaxial crystals becomes an astigmatic beam.The beam spot of the SLGo1 mode in the uniaxial crystal is elongated in the x-or y-direction,which is determined by the ratio of the extraordinary refractive index to the ordinary refractive index.With the increase of the deviation of the ratio of the extraordinary refractive index to the ordinary refractive index from unity,the elongation of the beam spot also augments.In different observation planes,the phase distribution of an SLGo1 mode in the uniaxial crystal takes on different shapes.With the variation of the ratio of the extraordinary refractive index to the ordinary refractive index,the phase distribution is elongated in one transversal direction and is contracted in the other perpendicular direction.This research is beneficial to the practical applications of an SLG mode.

  10. Second harmonic generation in thin optical fibers via cladding modes.

    Science.gov (United States)

    Elzahaby, Eman A; Kandas, Ishac; Aly, Moustafa H

    2016-05-30

    Since silica goes under the category of amorphous materials, it is difficult to investigate important processes such as second harmonic generation (SHG) in silica-based fibers. In this paper, we proposed a method for SHG relaying on cladding modes as pump modes. Cladding modes are introduced in optical fibers through tilted long period grating (T-LPG), where power of core mode is transferred into cladding modes. By functionalizing T-LPG with nonlinear coating, the interaction occurs between cladding modes and the coating material, consequently second harmonic signal (SHS) is generated with efficiency up to 0.14%.

  11. Angular and radial mode analyzer for optical beams.

    Science.gov (United States)

    Abouraddy, Ayman F; Yarnall, Timothy M; Saleh, Bahaa E A

    2011-12-01

    We describe an approach to determining both the angular and the radial modal content of a scalar optical beam in terms of optical angular momentum modes. A modified Mach-Zehnder interferometer that incorporates a spatial rotator to determine the angular modes and an optical realization of the fractional Hankel transform (fHT) to determine the radial modes is analyzed. Varying the rotation angle and the order of the fHT produces a two-dimensional (2D) interferogram from which we extract the modal coefficients by simple 2D Fourier analysis.

  12. Optical waveguide mode control by nanoslit-enhanced terahertz field

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zalkovskij, Maksim; Malureanu, Radu

    2012-01-01

    In this Letter we propose a scheme providing control over an optical waveguide mode by a terahertz (THz) wave. The scheme is based on an optimization of the overlap between the optical waveguide mode and the THz field, with the THz field strength enhanced by the presence of a metallic nanoslit...... surrounding the waveguide. We find an optimum balance between the optical mode attenuation and Kerr-induced change in the propagation constant. The criterion for a π/2-cumulative phase shift, for instance for application in a Mach–Zehnder interferometer configuration, requires 10  kV/cm THz field, which...

  13. Mode-matching for Optical Antennas

    CERN Document Server

    Feichtner, Thorsten; Hecht, Bert

    2016-01-01

    The emission rate of a point dipole can be strongly increased in presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring e.g.~ohmic losses and non-negligible field penetration in metals at optical frequencies. Here we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  14. Diffractive optical elements for transformation of modes in lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  15. Complex coupled-mode theory for tapered optical waveguides.

    Science.gov (United States)

    Mu, Jianwei; Huang, Wei-Ping

    2011-03-15

    A coupled-mode formulation based on complex local modes is developed for tapered and longitudinally varying optical waveguides. Different from the conventional coupled-mode theory that requires integration over the entire spectrum of radiation modes, the new formulation treats the radiation fields via discrete complex modes similarly to the guided modes. Accuracy, convergence, and scope of validity for the solutions of the complex coupled-mode equations are investigated in detail for a typical single-mode waveguide taper. It is demonstrated that the complex coupled-mode theory has overcome the difficulties of the conventional theory in simulation of radiation field effects while preserving the simplicity and intuitiveness of this popular method.

  16. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high......-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour...... an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors....

  17. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  18. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-01-01

    We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.

  19. Synchronization of Fourier-Synthesized Optical Pulses to a Mode-Locked Optical Clock

    Institute of Scientific and Technical Information of China (English)

    Masaharu; Hyodo; Kazi; Sarwal; Abedin; Noriaki; Onodera; Masayoshi; Watanabe

    2003-01-01

    A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.

  20. Mode structure of planar optical antennas on dielectric substrates.

    Science.gov (United States)

    Word, Robert C; Könenkamp, Rolf

    2016-08-08

    We report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

  1. Mode-dependent attenuation of optical fibers: excess loss.

    Science.gov (United States)

    Olshansky, R; Nolan, D A

    1976-04-01

    A theory is presented for calculating the excess loss produced by random perturbations of optical fibers. The theory is applicable to perturbations whose longitudinal spatial frequencies are below the range required for mode coupling. To illustrate the method, losses due to diameter variations are calculated for the case of a step-index optical fiber. The diameter variations are found to produce a strong attenuation of the higher order modes. The total excess loss is approximately wavelength independent.

  2. Optical Mode Control by Geometric Phase in Quasicrystal Metasurface

    CERN Document Server

    Yulevich, Igor; Shitrit, Nir; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2015-01-01

    We report on the observation of optical spin-controlled modes from a quasicrystalline metasurface as a result of an aperiodic geometric phase induced by anisotropic subwavelength structure. When geometric phase defects are introduced in the aperiodic structured surface, the modes exhibit polarization helicity dependence resulting in the optical spin-Hall effect. The radiative thermal dispersion bands from a quasicrystal structure were studied where the observed bands arise from the optical spin-orbit interaction induced by the aperiodic space-variant orientations of anisotropic antennas. The optical spin-flip behavior of the revealed modes that arise from the geometric phase pickup was experimentally observed within the visible spectrum by measuring the spin-projected diffraction patterns. The introduced ability to manipulate the light-matter interaction of quasicrystals in a spin-dependent manner provides the route for molding light via spin-optical aperiodic artificial planar surfaces.

  3. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  4. Coherent analysis of quantum optical sideband modes

    CERN Document Server

    Huntington, E H; Robilliard, C; Ralph, T C

    2005-01-01

    We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments.

  5. The clinical features of simple myopic astigmatism

    Directory of Open Access Journals (Sweden)

    S. I. Abramov

    2012-01-01

    Full Text Available Purpose: Evaluation of the clinical features of simple myopic astigmatism.Methods: In the framework of the follow-up observation of surveyed 64 patients (128 eyes with the phenomena of simple myopic astigmatism in both eyes without concomitant ocular pathology.Results: the most common are weak (up to 1.0 D — 42%, 1.25-2.0 D — 28% of the value, expressed astigmatism (more than 2.0 D is observed in 30% of cases. In terms of direct myopic astigmatism up to 1.0 D the most characteristic visual acuity is 0.6-0.7, when the value of astigmatism from 1.25 up to 2.0 D the most frequently noted visual acuity is 0.3-0.5. the indicator of «primary use» statistically significantly depended on the indicator «astenopic complaints» (correlation coefficient was 0.59 is 0.72, p<0.0001.Conclusion: the emergence of the patient with visually-intensive work (especially working in conditions of shortage of time re- quires of excimer laser correction for the preservation of visual capacity and the required level of professional reliability, as well as the extension of the professional longevity of the body of view.

  6. The clinical features of simple myopic astigmatism

    Directory of Open Access Journals (Sweden)

    S. I. Abramov

    2014-07-01

    Full Text Available Purpose: Evaluation of the clinical features of simple myopic astigmatism.Methods: In the framework of the follow-up observation of surveyed 64 patients (128 eyes with the phenomena of simple myopic astigmatism in both eyes without concomitant ocular pathology.Results: the most common are weak (up to 1.0 D — 42%, 1.25-2.0 D — 28% of the value, expressed astigmatism (more than 2.0 D is observed in 30% of cases. In terms of direct myopic astigmatism up to 1.0 D the most characteristic visual acuity is 0.6-0.7, when the value of astigmatism from 1.25 up to 2.0 D the most frequently noted visual acuity is 0.3-0.5. the indicator of «primary use» statistically significantly depended on the indicator «astenopic complaints» (correlation coefficient was 0.59 is 0.72, p<0.0001.Conclusion: the emergence of the patient with visually-intensive work (especially working in conditions of shortage of time re- quires of excimer laser correction for the preservation of visual capacity and the required level of professional reliability, as well as the extension of the professional longevity of the body of view.

  7. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  8. Mode crosstalk matrix measurement of a 1  km elliptical core few-mode optical fiber.

    Science.gov (United States)

    Milione, Giovanni; Ip, Ezra; Li, Ming-Jun; Stone, Jefferey; Peng, Gaozhu; Wang, Ting

    2016-06-15

    The spatial modes of a 1 km elliptical core few-mode optical fiber (6 spatial modes) are analyzed by using liquid crystal on silicon spatial light modulators to measure the fiber's mode crosstalk matrix in Hermite-Gaussian, Laguerre-Gaussian, and linearly polarized spatial mode bases. It is shown that the fiber's spatial modes can be described by Hermite-Gaussian modes, which can propagate 1 km over the optical fiber with <-20  dB (1%) average mode crosstalk even when the fiber has multiple 1 cm diameter bends. The use of elliptical core few-mode optical fibers for space division multiplexing in data centers is discussed.

  9. Selective suture cutting for control of astigmatism following cataract surgery

    Directory of Open Access Journals (Sweden)

    Bansal R

    1992-01-01

    Full Text Available Use of 10-0 monofilament nylon in ECCE cataract surgery leads to high with the rule astigmatism. Many intraoperative and post operative methods have been used to minimise post operative astigmatism. We did selective suture cutting in 38 consecutive patients. Mean keratometric astigmatism at three and six weeks post operative was 5.76 and 5.42 dioptres (D respectively. 77.5% of eyes had astigmatism above 2 D. Selective suture cutting along the axis of the plus high cylinder was done after six weeks of surgery. Mean post suture cutting keratometric astigmatism was 3.3 D and 70% of the eyes had astigmatism below 2 D. After 3 months of surgery mean keratometric astigmatism was reduced to 1.84 D. Axis of the astigmatism also changed following suture cutting. 40% of the eyes showed improvement in their Snellen acuity following reduction in the cylindrical power.

  10. Three methods for correction of astigmatism during phacoemulsification

    Directory of Open Access Journals (Sweden)

    Hossein Mohammad-Rabei

    2016-01-01

    Conclusion: There was no significant difference in astigmatism reduction among the three methods of astigmatism correction during phacoemulsification. Each of these methods can be used at the discretion of the surgeon.

  11. Emergence of transverse spin in optical modes of semiconductor nanowires

    CERN Document Server

    Alizadeh, M H

    2016-01-01

    The transverse spin angular momentum of light has recently received tremendous attention as it adds a new degree of freedom for controlling light-matter interactions. In this work we demonstrate the generation of transverse spin angular momentum by the weakly-guided mode of semiconductor nanowires. The evanescent field of these modes in combination with the transversality condition rigorously accounts for the occurrence of transverse spin angular momentum. The intriguing and nontrivial spin properties of optical modes in semiconductor nanowires are of high interest for a broad range of new applications including chiral optical trapping, quantum information processing, and nanophotonic circuitry.

  12. Rayleigh scattering in few-mode optical fibers

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  13. Rectangular Laser Resonators with Astigmatic Compensation

    DEFF Research Database (Denmark)

    Skettrup, Torben

    2005-01-01

    An investigation of rectangular resonators with a view to the compensation of astigmatism has been performed. In order to have beam waists placed at the same positions in the tangential and sagittal planes, pairs of equal mirrors were considered. It was found that at least two concave mirrors...... are necessary to obtain compensation. Four-concave-mirror systems are most stable close to the quadratic geometry, although the symmetric quadratic resonator itself cannot be compensated for astigmatism. Using four equal concave mirrors, compensation of astigmatism can be obtained in two arms at the same time....... Usually several stability ranges are found for four-mirror resonators with pair-wise equal mirrors, and it is possible with these systems to obtain small compensated beam waist radii suitable for frequency conversion. Relevant formulae are given and several relevant examples are shown using simulation...

  14. Normal modes and mode transformation of pure electron vortex beams

    Science.gov (United States)

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.; Yuan, J.

    2017-02-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams. This article is part of the themed issue 'Optical orbital angular momentum'.

  15. [Essential features of astigmatism and its correction with excimer laser].

    Science.gov (United States)

    Vlaicu, Valeria

    2012-01-01

    The correction of astigmatism is an essential element for the refractive surgery because the majority of patients have important preoperative cylinder An uncorrected astigmatism decreases visual acuity and can also cause glare, asthenopia, headaches, monocular diplopia. It is important to remark that a complete elimination of astigmatism for the eye is very rarely achieved.

  16. Meridional lenticular astigmatism associated with bilateral concurrent uveal metastases in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Priluck JC

    2012-11-01

    Full Text Available Joshua C Priluck, Sandeep Grover, KV ChalamDepartment of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USAPurpose: To demonstrate a case illustrating meridional lenticular astigmatism as a result of renal cell carcinoma uveal metastases.Methods: Case report with images.Results: Clinical findings and diagnostic testing of a patient with acquired meridional lenticular astigmatism are described. The refraction revealed best-corrected visual acuity of 20/20–1 OD (−2.50 + 0.25 × 090 and 20/50 OS (−8.25 + 3.25 × 075. Bilateral concurrent renal cell carcinoma metastases to the choroid and ciliary body are demonstrated by utilizing ultrasonography, ultrawidefield fluorescein angiography, and unique spectral-domain optical coherence tomography.Conclusions: Metastatic disease should be included in the differential of acquired astigmatism. Spectral-domain optical coherence tomography, ultrawidefield fluorescein angiography, and ultrasonography have roles in delineating choroidal metastases.Keywords: astigmatism, metastasis, optical coherence tomography, renal cell carcinoma

  17. Comparison of astigmatic correction after femtosecond lenticule extraction and small-incision lenticule extraction for myopic astigmatism.

    Directory of Open Access Journals (Sweden)

    Hidenaga Kobashi

    Full Text Available To compare postoperative astigmatic correction between femtosecond lenticule extraction (FLEx and small-incision lenticule extraction (SMILE in eyes with myopic astigmatism.We examined 26 eyes of 26 patients undergoing FLEx and 26 eyes of 26 patients undergoing SMILE to correct myopic astigmatism (manifest astigmatism of 1 diopter (D or more. Visual acuity, cylindrical refraction, the predictability of the astigmatic correction, and the astigmatic vector components using Alpin's method, were compared between the two groups 3 months postoperatively.We found no statistically significant difference in manifest cylindrical refraction (p=0.74 or in the percentage of eyes within ± 0.50 D of their refraction (p=0.47 after the two surgical procedures. Moreover, no statistically significant difference was detected between the groups in astigmatic vector components, namely, surgically induced astigmatism (0.80, target induced astigmatism (p=0.87, astigmatic correction index (p=0.77, angle of error (p=0.24, difference vector (p=0.76, index of success (p=0.91, flattening effect (p=0.79, and flattening index (p=0.84.Both FLEx and SMILE procedures are essentially equivalent in correcting myopic astigmatism using vector analysis, suggesting that the lifting or non-lifting of the flap does not significantly affect astigmatic outcomes after these surgical procedures.

  18. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  19. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects.

    Science.gov (United States)

    Dai, Daoxin

    2014-11-01

    A vertical multimode waveguide enabling micro-bends is proposed for mode-multiplexed optical interconnect links. The multimode waveguide is designed to be singlemode in the lateral direction and support higher-order modes in the vertical direction. The characteristic analysis for an SOI (silicon-on-insulator)-based vertical multimode waveguide with a ~0.3μm × ~1.5μm cross section is given as an example. The theoretical pure bending loss is negligible for all the lowest eight modes when the bending radius is even less than 5μm. When light goes through the structure consisting of a straight section connected with a bent section, it is found that some inter-mode crosstalk is caused by the significant mode hybridization happening in the sharply bent multimode waveguide. For the designed SOI-based vertical multimode waveguide, the inter-mode crosstalk is lower than -20dB even when the bending radius is chosen as small as R = 10μm, which is one order smaller than that for the traditional lateral multimode waveguide (whose minimal bending radius is about 130μm). The inter-mode crosstalk can be even reduced to -30dB when choosing R = 30μm. Such a multimode optical waveguide microbend with low inter-mode crosstalk is promising for realizing compact mode-multiplexing links.

  20. All-optical mode unscrambling on a silicon photonic chip

    CERN Document Server

    Morichetti, Francesco; Grillanda, Stefano; Peserico, Nicola; Carminati, Marco; Ciccarella, Pietro; Ferrari, Giorgio; Guglielmi, Emanuele; Sorel, Marc; Melloni, Andrea

    2015-01-01

    We demonstrate a 4-channel silicon photonic MIMO demultiplexer performing all-optical unscrambling of four mixed modes. Mode unscrambling is achieved by means of a cascaded Mach-Zehnder architecture that is sequentially reconfigured by individually monitoring each stage though integrated transparent detectors, namely Contact Less Integrated Photonic Probes (CLIPPs). Robust demultiplexing of 10 Gbit/s channels with less than -20 dB crosstalk is achieved.

  1. Optical combs with a crystalline whispering gallery mode resonator

    CERN Document Server

    Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Solomatine, Iouri; Seidel, David; Maleki, Lute

    2008-01-01

    We report on the experimental demonstration of a tunable monolithic optical frequency comb generator. The device is based on the four-wave mixing in a crystalline calcium fluoride whispering gallery mode resonator. The frequency spacing of the comb is given by an integer number of the free spectral range of the resonator. We select the desired number by tuning the pumping laser frequency with respect to the corresponding resonator mode. We also observe interacting optical combs and high-frequency hyperparametric oscillation, depending on the experimental conditions. A potential application of the comb for generating narrowband frequency microwave signals is demonstrated.

  2. Integrated optics dissipative soliton mode-locked laser on glass

    Science.gov (United States)

    Charlet, Bertrand; Bastard, Lionel; Broquin, Jean-Emmanuel

    2011-01-01

    Mode-lock lasers have been studied a lot in the past years for producing pulses as short as possible. These devices have mostly been realized in bulk optics and they are consequently cumbersome and sensitive to vibrations. There are only a few studies on integrated optics mode-lock lasers, though this technology is very promising because of its stability, compactness and the possibility to integrate several functions on a single chip. In this paper, we present an ion-exchange passively mode-locked laser in dissipative soliton operation. One of the key characteristics of this structure is its mechanical stability. Indeed, no bulk optics is needed because the saturable absorber is hybridized on the top of the waveguide in order to interact with the evanescent part of the guided mode. Indeed, the device that has been obtained is composed of an ion-exchanged single mode waveguide realized in a Neodymium doped phosphate glass. The laser feedback is produced by a Fabry-Perot cavity realized with two multilayers dielectric mirrors stuck on the waveguides facets. We implemented a bis(4- dimethylaminodithiobenzil)nickel (BDN) dye included in a cellulose acetate thick film, which presents a saturable absorber behaviour around 1.06 μm. With this structure, pulses with repetition rates of 3.3 GHz and a single mode output have been measured. Moreover, the use of an autocorrelation set-up allowed us measuring picosecond pulse durations.

  3. Quasi two-dimensional astigmatic solitons in soft chiral metastructures

    Science.gov (United States)

    Laudyn, Urszula A.; Jung, Paweł S.; Karpierz, Mirosław A.; Assanto, Gaetano

    2016-03-01

    We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response.

  4. Characterization of optical whispering gallery mode resonance and applications

    Science.gov (United States)

    Quan, Haiyong

    The whispering-gallery mode microdisk or microsphere resonators have supercompact size, high energy storage, very narrow resonance bandwidth, and high sensitivity. These appealing properties have attracted much attention in the realization of microlasers, narrow filters, optical switching, biosensing, high resolution spectroscopy, and so on. In this dissertation, the optical and energy transport phenomena of whispering-gallery mode resonance and its potentials in some optical sensing applications will be characterized. A 2D theoretical analysis is first presented based on the method of separation of variables and by deriving several appropriate and reasonable boundary conditions to describe the electrical field distribution at resonance modes. This analytical model can precisely predict the intrinsic resonance frequencies of isolated whispering-gallery mode resonators. To consider the coupling of light-delivery waveguides with resonators and investigate the resonance phenomena of the resonator-waveguide system and/or device, simulations using a Finite Element Method solver of Maxwell's equations are conducted. The results indicate the influences of the geometric dimensions, refractive indices, gap distances, and excitation wavelengths on the main characteristics of the resonance modes such as the quality factor Q, the finesse, the mode intensity, and so on. Furthermore, the gap effects are detailedly studied by both theoretical analysis and simulation modeling. The optimal gap for the maximum coupling efficiency and the optimum gap for the best sensing application of the whispering gallery mode resonators are introduced and discussed based on simulation data and theoretical estimations. Three prospective applications of the whispering gallery mode-based sensors are introduced and proof-of-concept studies are demonstrated. The design schemes and fabrication process of the on-chip resonance device made of the Si3N4/SiO2 material system using nanofabrication

  5. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  6. Quantum optical ABCD theorem in two-mode case

    Institute of Scientific and Technical Information of China (English)

    Fan Hong-Yi; Hu Li-Yun

    2008-01-01

    By introducing the entangled Fresnel operator (EFO) this paper demonstrates that there exists ABCD theorem for two-mode entangled case in quantum optics.The canonical operator method as mapping of ray-transfer ABCD matrix is explicitly shown by EFO's normally ordered expansion through the coherent state representation and the technique of integration within an ordered product of operators.

  7. Efficient single sideband microwave to optical conversion using an electro-optical whispering gallery mode resonator

    CERN Document Server

    Rueda, Alfredo; Collodo, Michele C; Vogl, Ulrich; Stiller, Birgit; Schunk, Gerhard; Strekalov, Dmitry V; Marquardt, Christoph; Fink, Johannes M; Painter, Oskar; Leuchs, Gerd; Schwefel, Harald G L

    2016-01-01

    Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible...

  8. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  9. Effects of posterior corneal astigmatism on the accuracy of AcrySof toric intraocular lens astigmatism correction

    Science.gov (United States)

    Zhang, Bin; Ma, Jing-Xue; Liu, Dan-Yan; Guo, Cong-Rong; Du, Ying-Hua; Guo, Xiu-Jin; Cui, Yue-Xian

    2016-01-01

    AIM To evaluate the effects of posterior corneal surface measurements on the accuracy of total estimated corneal astigmatism. METHODS Fifty-seven patients with toric intraocular lens (IOL) implantation and posterior corneal astigmatism exceeding 0.5 diopter were enrolled in this retrospective study. The keratometric astigmatism (KA) and total corneal astigmatism (TA) were measured using a Pentacam rotating Scheimpflug camera to assess the outcomes of AcrySof IOL implantation. Toric IOLs were evaluated in 26 eyes using KA measurements and in 31 eyes using TA measurements. Preoperative corneal astigmatism and postoperative refractive astigmatism were recorded for statistical analysis. The cylindrical power of toric IOLs was estimated in all eyes. RESULTS In all cases, the difference of toric IOL astigmatism magnitude between KA and TA measurements for the estimation of preoperative corneal astigmatism was statistically significant. Of a total of 57 cases, the 50.88% decreased from Tn to Tn-1, and 10.53% decreased from Tn to Tn-2. In all cases, 5.26% increased from Tn to Tn+1. The mean postoperative astigmatism within the TA group was significantly lower than that in the KA group. CONCLUSION The accuracy of total corneal astigmatism calculations and the efficacy of toric IOL correction can be enhanced by measuring both the anterior and posterior corneal surfaces using a Pentacam rotating Scheimpflug camera. PMID:27672591

  10. Modulation instabilities in randomly birefringent two-mode optical fibers

    Science.gov (United States)

    Li, Jin-Hua; Ren, Hai-Dong; Pei, Shi-Xin; Cao, Zhao-Lou; Xian, Feng-Lin

    2016-12-01

    Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Pcr, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Pcr), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Pcr, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The MI analysis in this paper is verified by numerical simulation. Project supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 14KJB140009), the National Natural Science Foundation of China (Grant No. 11447113), and the Startup Foundation for Introducing Talent of NUIST (Grant No. 2241131301064).

  11. The Interaction of Optical Guided Modes with Waveguide Diffraction Gratings.

    Science.gov (United States)

    Weller-Brophy, Laura Ann

    In this thesis the results of a theoretical and experimental investigation of the coupling of guided modes by waveguide gratings are presented. This work is motivated by the potential application of waveguide gratings to integrated optical devices. The coupling of guided modes obliquely incident to both periodic and aperiodic gratings is a mechanism basic to the operation of integrated optical components such as filters, reflectors, beamsplitters, and modulators. It is shown in the Introduction to this thesis, that this mechanism is not modeled consistently by the analyses presented in the literature. For the case of TM-TM coupling, virtually each analytical treatment predicts a different value for the grating reflectivity. In addition, it is found that the typical Coupled-Mode formalisms used to derive the grating reflectivity do not offer an intuitive picture of the operation of waveguide gratings. These two particular problem areas serve as the focal points of this thesis. The latter of these is addressed through the development of a thin film model of the operation of waveguide gratings. This model presents an intuitively appealing picture of the interaction of waveguide gratings and guided modes. It also yields grating reflectivities which are in excellent agreement with those obtained through the numerical solution of the Coupled-Mode equations for both periodic and aperiodic gratings. The bulk of this research project is directed towards resolving the conflicting theoretical grating analyses presented in the literature. A new derivation of the coupling of guided modes obliquely incident to periodic gratings is presented in Chapter II of this thesis. This derivation is based on the Local Normal Mode expansion used by Marcuse for the case of normal incidence. It produces coupling coefficients which are nearly identical to those derived using the rigorous Boundary Perturbation technique. The coupling coefficients predicted by this Local Normal Mode formalism

  12. Nonlinear interface optical switch structure for dual mode switching revisited

    Science.gov (United States)

    Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph

    1998-07-01

    There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.

  13. Optical mode control of surface-plasmon quantum cascade lasers

    Science.gov (United States)

    Moreau, V.; Bahriz, M.; Palomo, J.; Wilson, L. R.; Krysa, A. B.; Sirtori, C.; Austin, D. A.; Cockburn, J. W.; Roberts, J. S.; Colombelli, R.

    2007-04-01

    Surface-plasmon waveguides based on metallic strips can provide a two dimensional optical confinement. This concept has been successfully applied to quantum cascade lasers, processed as ridge waveguides, to demonstrate that the lateral extension of the optical mode can be influenced solely by the width of the device top contact. For devices operating at a wavelength of λ ≈7.5 μm, the room-temperature threshold current density was reduced from 6.3 kA/cm2 to 4.4 kA/cm2 with respect to larger devices with full top metallization.

  14. Optical sum-frequency generation in whispering gallery mode resonators

    CERN Document Server

    Strekalov, Dmitry V; Huang, Yu-Ping; Kumar, Prem

    2013-01-01

    We demonstrate sum-frequency generation in a nonlinear whispering gallery mode resonator between a telecom wavelength and the Rb D2 line, achieved through natural phase matching. Due to the strong optical field confinement and ultra high Q of the cavity, we achieve a 1000-fold enhancement in the conversion efficiency compared to existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory in the spherical geometry employed. The experimental and theoretical results point to a new platform to manipulate the color and quantum states of light waves toward applications such as atomic memory based quantum networking and logic operations with optical signals.

  15. Optothermal transport behavior in whispering gallery mode optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Soheil [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Armani, Andrea M., E-mail: armani@usc.edu [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  16. Effect of astigmatism on spectral switches of partially coherent beams

    Institute of Scientific and Technical Information of China (English)

    Zhao Guang-Pu; Xiao Xi; Lü Bai-Da

    2004-01-01

    A detailed study of the spectrum of partially coherent beams diffracted at an astigmatic aperture lens is performed.Considerable attention is paid to the effect of astigmatism on spectral switches of polychromatic Gaussian Schell-model beams. It is shown that the spectral switch can also take place in the vicinity of intensity minimum in a geometrical focal plane for the astigmatic case, but the astigmatism of the lens and the spatial correlation of the beam affect the critical position uc, spectral minimum Smin, and transition height △ of spectral switches.

  17. Corneal astigmatism change and wavefront aberration evaluation after cataract surgery: "Single" versus "paired opposite" clear corneal incisions

    Directory of Open Access Journals (Sweden)

    Hasan Razmjoo

    2014-01-01

    Full Text Available Background: Correcting the pre-existing astigmatism is an optimal goal in cataract surgery. The aim of this study is to compare the astigmatic correcting effect of a single regular 3.2 mm clear corneal incision (CCI with paired opposite CCI in cataract patients and effect of these incisions on optical aberrations using the wavefront quantitative analysis. Materials and Methods: This was a randomized controlled trial study undertaken in an ophthalmology referral center on 50 patients planned for cataract surgery who were randomized to either single 3.2 mm CCI or paired opposite CCI group. Post-operative evaluation was performed at 12 weeks and included refraction, keratometery, corneal topography and wavefront analysis. Corneal astigmatism and post-operative values were compared in two groups. Results: The mean pre-operative corneal astigmatism was 2.58 ± 1.03 D in the single incision group and 2.70 ± 0.94 D in the paired opposite incisions group. After 12 weeks of surgery, the corneal astigmatism was reached to 2.15 ± 0.82 D in single incision group and 1.63 ± 1.21 in the paired opposite incisions group. There was a statistically significant difference in two arms of treatment regarding to surgically induced astigmatism after 3 months. The mean post-operative total and higher order aberrations and values were not significantly different in two groups. Conclusion: The results of our study showed that paired opposite incisions is an effective procedure for reducing pre-existing corneal astigmatism in cataract surgery. Paired incisions did not show any beneficial effect regarding wavefront aberrations compared with conventional single incision method.

  18. Optical microfiber mode interferometer for temperature-independent refractometric sensing.

    Science.gov (United States)

    Salceda-Delgado, G; Monzon-Hernandez, D; Martinez-Rios, A; Cardenas-Sevilla, G A; Villatoro, J

    2012-06-01

    We report on a functional optical microfiber mode interferometer and its applications for absolute, temperature-insensitive refractive index sensing. A standard optical fiber was tapered down to 10 μm. The central part of the taper, i.e., the microfiber, is connected to the untapered regions with two identical abrupt transitions. The transmission spectrum of our device exhibited a sinusoidal pattern due to the beating between modes. In our interferometer the period of the pattern-an absolute parameter-depends strongly on the surrounding refractive index but it is insensitive to temperature changes. The period, hence the external index, can be accurately measured by taking the fast Fourier transform (FFT) of the detected interference pattern. The measuring refractive index range of the device here proposed goes from 1.33 to 1.428 and the maximum resolution is on the order of 3.7×10(-6).

  19. Multi-mode Scanning Near-field Optical Microscope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A scanning near-field optical microscope using uncoated fiber tip is described, which can work in transmission and reflection configurations, both capable of working in illumination and collection-mode, so that either transparent or opaque sample can be investigated. Depending on different applications, either constant-gap or constant-height images can be achieved. A compact homemade translator permits to select interested area of sample in the range of 4mm×4mm. Working in the constant-height as well as transmission and collection-mode configuration, several kinds of samples such as holographic grating, liposome and zeolite were investigated. The experimental results revealed the dependence of the optical resolution of the SNOM on the tip-sample separation.

  20. Guiding mode in elliptical core microstructured polymer optical fiber

    Institute of Scientific and Technical Information of China (English)

    Yani Zhang; Liyong Ren; Kang Li; Hanyi Wang; Wei Zhao; Lili Wang; Runcai Miao; Maryanne C. J. Large; Martijn A. van Eijkelenborg

    2007-01-01

    A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting insitu chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region,and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150μm, the average holes diameter of 3.3μm, and the averageole spacing of .3μm by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result.This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.

  1. Guiding mode in elliptical core microstructured polymer optical fiber

    Science.gov (United States)

    Zhang, Yani; Ren, Liyong; Li, Kang; Wang, Hanyi; Zhao, Wei; Wang, Lili; Miao, Runcai; Large, Maryanne C. J.; van Eijkelenborg, Martijn A.

    2007-04-01

    A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting in-situ chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region, and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150 microns, the average holes diameter of 3.3 microns, and the average hole spacing of 6.3 microns by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result. This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.

  2. Transformation of general astigmatic Gaussian beams in a four-dimensional phase space

    Institute of Scientific and Technical Information of China (English)

    Baoxin Chen

    2006-01-01

    @@ A phase space model of two-dimensional (2D) Gaussian beam propagation is generalized for threedimensional (3D) general astigmatic Gaussian beam passing through first-order optical system. The general astigmatic Gaussian beam is represented by a four-dimensional (4D) phase super-ellipsoid that defined by an associated 4 × 4 real matrix, then the transformation formula of the phase super-ellipsoid of the beam through first-order optical system is derived. In particular, in the phase space framework, the beam propagation factor M2 value is proved to be a ratio of phase area of real beam to ideal beam, and a novel approach for a qualitative examination of the properties of fractional Fourier transform (FRT) for the beam is also provided.

  3. Direct Optical Probing of Transverse Electric Mode in Graphene

    CERN Document Server

    Menabde, Sergey; Kornev, Evgeny; Lee, Changhee; Park, Namkyoo

    2015-01-01

    Unique electrodynamic response of graphene implies a manifestation of an unusual propagating and localised transverse-electric (TE) mode near the spectral onset of interband transitions. However, excitation and further detection of the TE mode supported by graphene is considered to be a challenge for it is extremely sensitive to excitation environment and phase matching condition adherence. Here for the first time, we experimentally prove an existence of the TE mode by its direct optical probing, demonstrating significant coupling to an incident wave in electrically doped multilayer graphene sheet at room temperature. We believe that proposed technique of careful phase matching and obtained access to graphene TE excitation would stimulate further studies of this unique phenomenon, and enable its potential employing in various fields of photonics as well as for characterization of graphene.

  4. Orthogonality breaking through few-mode optical fiber.

    Science.gov (United States)

    Parnet, Francois; Fade, Julien; Alouini, Mehdi

    2016-04-01

    Polarization sensing and imaging through optical fibers is a technological challenge motivated by promising applications for in vivo, in situ polarimetric endoscopy for biomedical diagnosis. Among the recent approaches proposed to solve this issue, the depolarization/dichroism sensing by polarization orthogonality breaking (DSOB) technique was shown to perform remotely through single-mode optical fibers for depolarization/diattenuation measurements. In this article, we investigate the applicability of such a technique in slightly multimode waveguides. Through theoretical modeling and numerical simulations, we evidence the conditions required for the polarization orthogonality to be preserved after propagation in a few-mode fiber, notably in terms of detection geometry of the spatial modes. Original experiments realized in few-mode fibers both in transmission and reflection configurations are also reported and validate the theoretical predictions. These results allow us to analyze the influence of the experimental parameters, such as detection geometry, sample tilt, or fiber length, on orthogonality preservation and on the measurement dynamics of the DSOB technique in slightly multimode waveguides.

  5. Extended depth of focus intra-ocular lens: a solution for presbyopia and astigmatism

    Science.gov (United States)

    Zlotnik, Alex; Raveh, Ido; Ben Yaish, Shai; Yehezkel, Oren; Belkin, Michael; Zalevsky, Zeev

    2010-02-01

    Purpose: Subjects after cataract removal and intra-ocular lens (IOL) implantation lose their accommodation capability and are left with a monofocal visual system. The IOL refraction and the precision of the surgery determine the focal distance and amount of astigmatic aberrations. We present a design, simulations and experimental bench testing of a novel, non-diffractive, non-multifocal, extended depth of focus (EDOF) technology incorporated into an IOL that allows the subject to have astigmatic and chromatic aberrations-free continuous focusing ability from 35cm to infinity as well as increased tolerance to IOL decentration. Methods: The EDOF element was engraved on a surface of a monofocal rigid IOL as a series of shallow (less than one micron deep) concentric grooves around the optical axis. These grooves create an interference pattern extending the focus from a point to a length of about one mm providing a depth of focus of 3.00D (D stands for Diopters) with negligible loss of energy at any point of the focus while significantly reducing the astigmatic aberration of the eye and that generated during the IOL implantation. The EDOF IOL was tested on an optical bench simulating the eye model. In the experimental testing we have explored the characteristics of the obtained EDOF capability, the tolerance to astigmatic aberrations and decentration. Results: The performance of the proposed IOL was tested for pupil diameters of 2 to 5mm and for various spectral illuminations. The MTF charts demonstrate uniform performance of the lens for up to 3.00D at various illumination wavelengths and pupil diameters while preserving a continuous contrast of above 25% for spatial frequencies of up to 25 cycles/mm. Capability of correcting astigmatism of up to 1.00D was measured. Conclusions: The proposed EDOF IOL technology was tested by numerical simulations as well as experimentally characterized on an optical bench. The new lens is capable of solving presbyopia and astigmatism

  6. Electro-optical circuit board with single-mode glass waveguide optical interconnects

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Pernthaler, Dominik; Weber, Daniel; Sirbu, Bogdan; Herbst, Christian; Frey, Christopher; Queisser, Marco; Wöhrmann, Markus; Manessis, Dionysios; Schild, Beatrice; Oppermann, Hermann; Eichhammer, Yann; Schröder, Henning; Hâkansson, Andreas; Tekin, Tolga

    2016-03-01

    A glass optical waveguide process has been developed for fabrication of electro-optical circuit boards (EOCB). Very thin glass panels with planar integrated single-mode waveguides can be embedded as a core layer in printed circuit boards for high-speed board-level chip-to-chip and board-to-board optical interconnects over an optical backplane. Such singlemode EOCBs will be needed in upcoming high performance computers and data storage network environments in case single-mode operating silicon photonic ICs generate high-bandwidth signals [1]. The paper will describe some project results of the ongoing PhoxTroT project, in which a development of glass based single-mode on-board and board-to-board interconnection platform is successfully in progress. The optical design comprises a 500 μm thin glass panel (Schott D263Teco) with purely optical layers for single-mode glass waveguides. The board size is accommodated to the mask size limitations of the fabrication (200 mm wafer level process, being later transferred also to larger panel size). Our concept consists of directly assembling of silicon photonic ICs on cut-out areas in glass-based optical waveguide panels. A part of the electrical wiring is patterned by thin film technology directly on the glass wafer surface. A coupling element will be assembled on bottom side of the glass-based waveguide panel for 3D coupling between board-level glass waveguides and chip-level silicon waveguides. The laminate has a defined window for direct glass access for assembling of the photonic integrated circuit chip and optical coupling element. The paper describes the design, fabrication and characterization of glass-based electro-optical circuit board with format of (228 x 305) mm2.

  7. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  8. Thermal Correction of Astigmatism in the Gravitational Wave Observatory GEO 600

    CERN Document Server

    Wittel, Holger; Affeldt, Christoph; Dooley, Katherine L; Grote, Hartmut; Leong, Jonathan R; Prijatelj, Mirko; Schreiber, Emil; Slutsky, Jacob; Strain, Kenneth A; Was, Michal; Willke, Benno; Danzmann, Karsten

    2013-01-01

    The output port of GEO 600 is dominated by unwanted high order modes (HOMs). The current thermal actuation system, a ring heater behind one of the folding mirrors, causes a significant amount of astigmatism, which produces HOMs. We have built and installed an astigmatism correction system, based on heating this folding mirror at the sides (laterally). With these side heaters and the ring heater behind the mirror, it is possible to tune its radius of curvature in the horizontal and the vertical degree of freedom. We use this system to match the mirrors in the two arms of GEO 600 to each other, thereby reducing the contrast defect. The use of the side heaters reduces the power of the HOMs at the output of GEO 600 by approximately 37%.

  9. Astigmatic changes following pterygium removal: Comparison of 5 different methods

    Directory of Open Access Journals (Sweden)

    Rana Altan-Yaycioglu

    2013-01-01

    Full Text Available Aims: To investigate the effect of surgery type on the postoperative astigmatism in pterygium surgery. Settings and Design: Retrospective comparative clinical trial. Materials and Methods: Data of 240 eyes that underwent pterygium excision were investigated. Following removal of the pterygium, patients underwent 5 different types of surgeries: Conjunctival autograft with sutures (CAG-s or fibrin glue (CAG-g, conjunctival rotational flap (CRF, or amniotic membrane transplantation with either suture (AMT-s or with glue (AMT-g. The preoperative and postoperative keratometric measurements, evaluated using an automated keratorefractometer, were noted. Statistical Analysis: The overall changes in BCVA and astigmatic degree were evaluated using Wilcoxon signed rank test. The difference in astigmatic values between groups was calculated using one way analysis of variance (ANOVA. Results: The most commonly performed procedure was CAG-s (N = 115, followed by CAG-g (N = 53, CRF (N = 47, AMT-s (N = 15, and AMT-g (N = 10. Following surgery, astigmatic values decreased from 3.47 ± 2.50 D to 1.29 ± 1.07 D (P < 0.001, paired t test. The changes in astigmatism was significantly related to the preoperative size of the pterygium (ρ = 3.464, P = 0.005. The postoperative astigmatism correlated with preoperative astigmatism (ρ = 0.351, P < 0.001, Spearman correlation analysis. The changes in astigmatic values was not related to the method of surgery (P = 0.055, ANOVA. Conclusion: Pterygium results in high corneal astigmatism, which decreases to an acceptable level following excision. According to our study, the type of grafting as CAG, CRF or AMT or the use of suture or glue to fixate the graft does not have a significant effect on the change in astigmatism degree.

  10. Finite Element Simulation of the Optical Modes of Semiconductor Lasers

    CERN Document Server

    Pomplun, J; Schmidt, F; Schliwa, A; Bimberg, D; Pietrzak, A; Wenzel, H; Erbert, G; 10.1002/pssb.200945451

    2010-01-01

    In the present article we investigate optical near fields in semiconductor lasers. We perform finite element simulations for two different laser types, namely a super large optical waveguide (SLOW) laser, which is an edge emitter, and a vertical cavity surface emitting laser (VCSEL). We give the mathematical formulation of the different eigenvalue problems that arise for our examples and explain their numerical solution with the finite element method. Thereby, we also comment on the usage of transparent boundary conditions, which have to be applied to respect the exterior environment, e.g., the very large substrate and surrounding air. For the SLOW laser we compare the computed near fields to experimental data for different design parameters of the device. For the VCSEL example a comparison to simplified 1D mode calculations is carried out.

  11. Design of SMS (Single mode-Multi mode coreless-Single mode) optical fiber as corrosion sensor

    Science.gov (United States)

    Aisyah, Putri Yeni; Hatta, Agus M.; Pratama, Detak Yan

    2016-11-01

    Conventional corrosion sensors such as ultrasonic guided waves, eddy current and thermography have been widely applied, however, these sensors have disadvantage of suffering from additional damage, as these sensors are placed in corrosive environment, often hidden and could not be directly observed, therefore corrosion inspection using conventional sensor is much more expensive and time consuming. Usage of optical fiber as corrosion sensor, based on changes in light intensity due to corrosion effect, is an alternative to overcome the disadvantage of conventional sensors. We proposed to use Single mode - Multimode Coreless - Single mode structured optical fiber as sensor. Multimode section of the optical fiber is coated with aluminium as the corrosion object. Experiment result shows that the corrosion process have an effect of decreasing the output sensor power as the corrosion rate increasing. Experimental test is conducted on the sensor, in which time interval of corrosion treatment is 9 hours. It is obtained from the test result that the highest value of output power is 13.19 dBm. Furthermore when the weight loss range of aluminium layer is 0 - 140 mg after corrosion treatment and the length of multimode fiber is 10 mm, the highest sensitivity of the sensor is 0.094 dBm/mg.

  12. AcrySof toric intraocular lens for post-keratoplasty astigmatism

    Directory of Open Access Journals (Sweden)

    Nishant Gupta

    2012-01-01

    Full Text Available We report a 63-year-old male who had undergone left eye optical penetrating keratoplasty for central leucomatous corneal opacity 10 years earlier. The eye had clear donor graft with residual astigmatism of −6.50 diopter cylinder (DC at 30°. The patient underwent clear corneal phacoemulsification with implantation of +6.0 D spherical equivalent AcrySof SN60T9 intraocular lens (IOL. Postoperatively, at 10 months, the patient had distance corrected visual acuity of 20/30 with −2.00 DC at 20°. AcrySof toric IOL offers an effective treatment option for post-keratoplasty high corneal astigmatism in patients with cataract.

  13. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  14. Efficient magneto-optical mode converter on glass

    Science.gov (United States)

    Garayt, Jean Philippe; Parsy, François; Jamon, Damien; Neveu, Sophie; Royer, François; Ghibaudo, Elise; Broquin, Jean-Emmanuel

    2014-03-01

    The integration of magneto-optical materials to realize non-reciprocal functions is still a difficult problem, because classical magneto-optical materials require an annealing temperature as high as 700°C. In this framework, this study shows how it is possible to realize efficient magneto-optical mode converter using the association of a magnetic nanoparticles silica/zirconia composite with an ion-exchanged glass waveguide. Using a sol gel process, a silica/zirconia matrix is doped by magnetic nanoparticles (CoFe2O4) and coated on a glass substrate containing straight channel waveguides made by a silver/sodium ion exchange. The extremities of the guides were previously buried using electric field-assisted burial in order to facilitate light injection. Soft annealing (90°C) and UV treatment, both compatible with the ion exchange process, have been implemented to finalize the magneto-optical film. Depending on the amount of nanoparticles in the composite, on the spatial distribution of the field in the guide and on the modal birefringence of the hybrid structure, the TE-TM conversion varies from several degrees to several tens of degrees.

  15. Intrinsic Localized Modes in Optical Photonic Lattices and Arrays

    Science.gov (United States)

    Christodoulides, Demetrios

    Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode

  16. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics

    OpenAIRE

    Ruffato, Gianluca; Massari, Michele; Parisi, Giuseppe; Romanato, Filippo

    2016-01-01

    In recent years, mode-division multiplexing (MDM) has been proposed as a promising solution in order to increase the information capacity of optical networks both in free-space and in optical fiber transmission. Here we present the design, fabrication and test of diffractive optical elements for mode-division multiplexing based on optical transformations in the visible range. Diffractive optics have been fabricated by means of 3D high-resolution electron beam lithography on polymethylmethacry...

  17. Treatment of corneal astigmatism with the new small-incision lenticule extraction (SMILE) laser technique: Is treatment of high degree astigmatism equally accurate, stable and safe as treatment of low degree astigmatism?

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Grauslund, Jakob; Lyhne, Niels;

    Field: Ophthalmology Introduction: SMILE has proven effective in treatment of myopia and low degrees of astigmatism (less than 2 dioptres (D)), but there are no studies on treatment of high degrees of astigmatism (2 or more D). The aim of this study was to compare results after SMILE treatment.......6%) treated for low astigmatism and four eyes (3.2%) treated for high astigmatism (P=0.02) had lost two or more lines of BSCVA after three months. Conclusion: This study is the first of its kind, and our results indicate that SMILE treatment of high degree astigmatism is equally accurate and stable...... as treatment of low degree astigmatism. More eyes treated for high degree astigmatism lose two or more lines of BSCVA up to three months after surgery. Keywords Refractive surgery, astigmatism, SMILE...

  18. Treatment of corneal astigmatism with the new small-incision lenticule extraction (SMILE) laser technique: Is treatment of high degree astigmatism equally accurate, stable and safe as treatment of low degree astigmatism?

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    Field: Ophthalmology Introduction: SMILE has proven effective in treatment of myopia and low degrees of astigmatism (less than 2 dioptres (D)), but there are no studies on treatment of high degrees of astigmatism (2 or more D). The aim of this study was to compare results after SMILE treatment...... for low or high degrees of astigmatism concerning accuracy, stability, and safety. Methods: Retrospective study of 1017 eyes treated with SMILE for myopia with low astigmatism or myopia with high astigmatism from 2011-2013 at the Department of Ophthalmology, Odense University Hospital, Denmark. Inclusion.......6%) treated for low astigmatism and four eyes (3.2%) treated for high astigmatism (P=0.02) had lost two or more lines of BSCVA after three months. Conclusion: This study is the first of its kind, and our results indicate that SMILE treatment of high degree astigmatism is equally accurate and stable...

  19. Parametric interaction of optical modes in fiber-optic light guide

    Science.gov (United States)

    Stirzhevskiy, V. L.; Fonmaniy, V. A.; Yashkir, Yu. N.

    1987-10-01

    Parametric interaction of optical modes in an arbitrary fiber-optic structure with quadratically nonlinear susceptibility is analyzed, assuming propagation of natural modes along the fiber axis and a known transverse field distribution. Generation of a sum-frequency wave by interaction of a pump wave and an infrared signal wave is considered, for specificity, assuming that the amplitudes of all three fields vary slowly as functions of the longitudinal coordinate. The corresponding system of integro-differential equations is solved for TEM modes, in standard shorthand notation, with the mathematical apparatus of Bessel and Hankel functions. The solution yields the overlap integral and the Umov-Poynting vector. On this basis we calculate the dependence of the conversion efficiency on the fiber radius and on the half-width of the Gaussian pump-power distribution over modes in a fiber of given radius, this half-width being normalized to the number of the highest-order mode still propagating at the pump wavelength and being proportional to the angular width of the laser beam at the fiber entrance.

  20. Mode-field half-widths of Gaussian approximation for the fundamental mode of two kinds of optical waveguides

    Institute of Scientific and Technical Information of China (English)

    Li Lian-Huang; Guo Fu-Yuan

    2009-01-01

    This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Gaussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.

  1. The effects of lateral head tilt on ocular astigmatic axis

    Directory of Open Access Journals (Sweden)

    Hamid Fesharaki

    2014-01-01

    Conclusion: Any minimal angle of head tilt may cause erroneous measurement of astigmatic axis and should be avoided during refraction. One cannot rely on the compensatory function of ocular counter-torsion during the refraction.

  2. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler

    CERN Document Server

    Wang, Teng; Shi, Fan; Pang, Fufei; Huang, Sujuan; Wang, Tingyun; Zeng, Xianglong

    2016-01-01

    We experimentally demonstrated a high-order optical vortex pulsed laser based on a mode selective all-fiber fused coupler composed of a single-mode fiber (SMF) and a few-mode fiber (FMF). The fused SMF-FMF coupler inserted in the cavity not only acts as mode converter from LP01 mode to LP11 or LP21 modes with a broadband width over 100 nm, but also directly delivers femtosecond vortex pulses out of the mode locked cavity. To the best of our knowledge, this is the first report on the generation of high-order pulse vortex beams in mode-locked fiber laser. The generated 140 femtosecond vortex beam has a spectral width of 67 nm centered at 1544 nm.

  3. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.

    Science.gov (United States)

    Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Pascual, Daniel; Marcos, Susana

    2013-06-28

    The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to

  4. Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings.

    Science.gov (United States)

    Villanueva, Guillermo E; Jakubinek, Michael B; Simard, Benoit; Oton, Claudio J; Matres, Joaquín; Shao, Li-Yang; Pérez-Millán, Pere; Albert, Jacques

    2011-06-01

    Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment.

  5. Dispersion and optical gradient force from high-order mode coupling between two hyperbolic metamaterial waveguides

    Science.gov (United States)

    Wang, Guanghui; Zhang, Weifeng; Lu, Jiahui; Zhao, Huijun

    2016-08-01

    We analytically study dispersion properties and optical gradient forces of different-order transverse magnetic (TM) modes in two coupled hyperbolic metamaterial waveguides (HMMWs). According to Maxwell's equations, we obtain the dispersion relation of symmetric and antisymmetric modes, and calculate optical gradient forces of different-order modes by using Maxwell stress tensor. Numerical results show that the dispersion properties are dependent on the filling ratio, and the optical gradient forces of high-order TM modes are larger than the fundamental mode when the gap between two HMMWs is very narrow, but they weaken much faster than the case of low-order TM modes with the gap width increasing. In addition, the effects of the dielectric surrounding of waveguides on the coupling effect and optical gradient force are clarified. These properties offer an avenue for various optomechanical applications in optical sensors and actuators.

  6. Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization

    Science.gov (United States)

    Ruffato, Gianluca; Massari, Michele; Romanato, Filippo

    2016-04-01

    During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today’s optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.

  7. Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics

    Science.gov (United States)

    Zhang, Suzhen; Li, Jiahua; Yu, Rong; Wang, Wei; Wu, Ying

    2017-01-01

    We study a three-mode (i.e., a clockwise mode, a counterclockwise mode, and a mechanical mode) coherent coupling regime of the optical whispering-gallery-mode (WGM) microresonator optomechanical system by considering a pair of counterpropagating modes in a general case. The WGM microresonator is coherently driven by a strong control laser field and a relatively weak probe laser field via a tapered fiber. The system parameters utilized to explore this process correspond to experimentally demonstrated values in the WGM microresonator optomechanical systems. By properly adjusting the coupling rate of these two counterpropagating modes in the WGM microresonator, the steady-state displacement behaviors of the mechanical oscillation and the normalized power transmission and reflection spectra of the output fields are analyzed in detail. It is found that the mode coupling plays a crucial role in rich line-shape structures. Some interesting phenomena of the system, including optical multistability and sharp asymmetric Fano-shape optomechanically induced transparency (OMIT), can be generated with a large degree of control and tunability. Our obtained results in this study can be used for designing efficient all-optical switching and high-sensitivity sensor.

  8. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter.

    Science.gov (United States)

    Jung, Yongmin; Brambilla, Gilberto; Richardson, David J

    2008-09-15

    We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.

  9. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  10. All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    NARCIS (Netherlands)

    O'Shea, D.; Junge, C.; Poellinger, M.; Vogler, A.; Rauschenbeutel, A.

    2011-01-01

    We review our recent work on tunable, ultra-high quality factor whispering-gallery-mode bottle microresonators and highlight their applications in non-linear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q=3.6x10(8), a small mode volume, and nea

  11. Treatment of myopic astigmatism with photorefractive keratectomy using an erodible mask.

    Science.gov (United States)

    Cherry, P M; Tutton, M K; Bell, A; Neave, C; Fichte, C

    1994-01-01

    The Summit Technology erodible mask treatment of astigmatism does not alter the keratometric astigmatism significantly, even though the refractive astigmatism appears to improve by about 50%. Myopia is satisfactorily treated with the erodible mask, but there is slightly more undercorrection compared to photorefractive keratectomy (PRK) using an expanding diaphragm. Increasing the minus power in ordering the mask cylinder improves the myopia result, but not the keratometric astigmatism result. The following factors do not influence the keratometric astigmatism result: 1) The type of astigmatism (with-, against-the-rule, or oblique); 2) The initial keratometry readings; and 3) The time from the commencement of epithelial removal to laser treatment.

  12. Quantum Computations with Transverse Modes of an Optical Field Propagating in Waveguides

    Institute of Scientific and Technical Information of China (English)

    符建; 唐少芳

    2003-01-01

    A fully optical method to perform quantum computation with transverse modes of the optical field propagating in waveguide is proposed by supplying the prescriptions for a universal set of quantum gates. The proposal for quantum computation is based on implementing a quantum bit with two normal modes of multi-mode waveguides. The proposed C-NOT gate has the potential of being more compact and easily realized than some optical implementations, since it is based on planar lightwave circuit technology and can be constructed by using Mach-Zehnder interferometer having semiconductor optical amplifiers with very large refractive nonlinearity in its arms.

  13. A Novel Acoustic Emission Fiber Optic Sensor Based on a Single Mode Optical Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    CHEN Rongsheng; LIAO Yanbiao; ZHENG Gangtie; LIU Tongyu; Gerard Franklyn Fernando

    2001-01-01

    This paper reports, for the first time, on the use of a fused-taper single mode optical fiber coupler as a sensing element for the detection of acoustic emission (AE) and ultrasound. When an acoustic wave impinges on the mode-coupling region of a coupler, the coupling coefficient is modulated via the photo-elastic effect. Therefore, the transfer function of the coupler is modulated by an acoustic wave. The sensitivity of the sensor at 140 kHz was approximately 5.2 mV/Pa and the noise floor was 1 Pa. The bandwidth of the sensor was up to several hundred kHz. This AE sensor exhibits significant advantage compared with interferometer-based AE sensors.

  14. Intensity based sensor based on single mode optical fiber patchcords

    Science.gov (United States)

    Bayuwati, Dwi; Waluyo, Tomi Budi; Mulyanto, Imam

    2016-11-01

    This paper describes the use of several single mode (SM) fiber patchcords available commercially in the market for intensity based sensor by taking the benefit of bending loss phenomenon. Firtsly, the full transmission spectrum of all fiber patchcords were measured and analyzed to examine its bending properties at a series of wavelength using white light source and optical spectrum analyzer. Bending spectral at various bending diameter using single wavelength light sources were then measured for demonstration.Three good candidates for the intensity based sensor are SM600 fiber patchcord with 970 nm LED, SMF28 fiber patchcord with 1050 nm LED and 780HP fiber patchcord with 1310 nm LED which have noticeable bending sensitive area. Experiments show that the combination of the SMF28with 1050 nm LED has 30 mm measurement range which is the widest; with sensitivity 0.107 dB/mm and resolution 0.5 mm compared with combination of SM600 patchcord and LED 970 nm which has the best sensitivity (0.891 dB/mm) and resolution (0.06 mm) but smaller range measurement (10 mm). Some suitable applications for each fiber patchcord - light source pair have also been discussed.

  15. Optical absorption in commercial single mode optical fibres for the LHC machine

    CERN Document Server

    Wijnands, T J; Kuhnhenn, J; Hoeffgen, S K; Weinand, U; TS

    2007-01-01

    The optical absorption of light at 1310 nm and 1550 nm in various commercially available Single Mode (SM) fibres samples has been studied. The absorption was measured as a function of dose, dose rate, temperature and light power. The samples were irradiated with gamma rays from a 60Co source and exposed to a complex radiation field from high energy physics. One fibre sample with an F-doped core exhibits extreme low absorption of light at 1310 nm during irradiation up to doses of at least 100 kGy.

  16. Design of dual-mode optical fibres for the FTTH applications

    Science.gov (United States)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.

  17. Multidiameter optical ring and Hermite-Gaussian vortices for wavelength division multiplexing-mode division multiplexing

    Science.gov (United States)

    Amphawan, Angela; Fazea, Yousef

    2016-10-01

    Optical vortices are high-capacity data carriers for mode division multiplexing (MDM) in multimode fiber (MMF). This paper reports on the MDM of a combination of helical-phased optical vortices comprising donut modes and Hermite-Gaussian (HG) modes for different radial offsets from the MMF axis. A data rate of 44 Gbps is achieved for wavelength division multiplexing-MDM of two pairs of helical-phased donut mode and HG mode at wavelengths 1550.12 and 1551.72 nm for a MMF length of 1500 m.

  18. Optical Generation of Single- or Two-Mode Excited Entangled Coherent States

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-Zhong; JING Hui; ZHANG Xian-Zhou

    2008-01-01

    With nonlinear Mach-Zehnder interferometer (NLMZI) and a type-Ⅰ beta-barium borate (BBO) crystal, we optically generate single-mode excited entangled coherent states. This scheme can be easily generalized to generate two-mode excited entangled coherent states. We simply analyse different influences of single- and two-mode photon excitations on entangled coherent states.

  19. Optical Synthesis of Terahertz and Millimeter-Wave Frequencies with Discrete Mode Diode Lasers

    CERN Document Server

    O'Brien, Stephen; Bitauld, David; Brandonisio, Nicola; Amann, Andreas; Phelan, Richard; Kelly, Brian; O'Gorman, James

    2010-01-01

    It is shown that optical synthesis of terahertz and millimeter-wave frequencies can be achieved using two-mode and mode-locked discrete mode diode lasers. These edge-emitting devices incorporate a spatially varying refractive index profile which is designed according to the spectral output desired of the laser. We first demonstrate a device which supports two primary modes simultaneously with high spectral purity. In this case sinusoidal modulation of the optical intensity at terahertz frequencies can be obtained. Cross saturation of the material gain in quantum well lasers prevents simultaneous lasing of two modes with spacings in the millimeter-wave region. We show finally that by mode-locking of devices that are designed to support a minimal set of four primary modes, we obtain a sinusoidal modulation of the optical intensity in this frequency region.

  20. Analysis of Optical Fiber Complex Propagation Matrix on the Basis of Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng;

    2016-01-01

    We propose and experimentally demonstrate a novel method for reconstruction of the complex propagation matrix of optical fibers supporting propagation of multiple vortex modes. This method is based on the azimuthal decomposition approach and allows the complex matrix elements to be determined...... by direct calculations. We apply the proposed method to demonstrate the feasibility of optical compensation for coupling between vortex modes in optical fiber....

  1. Complex coupled-mode theory for optical waveguides.

    Science.gov (United States)

    Huang, Wei-Ping; Mu, Jianwei

    2009-10-12

    A coupled-mode formulation is described in which the radiation fields are represented in terms of discrete complex modes. The complex modes are obtained from a waveguide model facilitated by the combination of perfectly matched boundary (PML) and perfectly reflecting boundary (PRB) condition. By proper choice of the PML parameters, the guided modes of the structure remain unchanged, whereas the continuous radiation modes are discretized into orthogonal and normalizable complex quasi-leaky and PML modes. The complex coupled-mode formulation is identical to that for waveguides with loss and/or gain and can be solved by similar analytical and numerical techniques. By identifying the phase-matching conditions between the complex modes, the coupled mode formulation may be further simplified to yield analytical solutions. The complex coupled-mode theory is applied to Bragg grating in slab waveguides and validated by rigorous mode-matching method. It is for the first time that we can treat guided and radiation field in a unified and straightforward fashion without having to resort to cumbersome radiation modes. Highly accurate and insightful results are obtained with consideration of only the nearly phase-matched modes.

  2. 110x110 optical mode transfer matrix inversion.

    Science.gov (United States)

    Carpenter, Joel; Eggleton, Benjamin J; Schröder, Jochen

    2014-01-13

    The largest complete mode transfer matrix of a fiber is measured consisting of 110 spatial and polarization modes. This matrix is then inverted and the pattern required to produce a desired output at the receiver are launched at the transmitter.

  3. Coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks.

    Science.gov (United States)

    Fan, Ren-Hao; Qi, Dong-Xiang; Hu, Qing; Qin, Ling; Peng, Ru-Wen; Wang, Mu

    2013-02-01

    In this work, we investigate the coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks theoretically and experimentally. We have observed three kinds of modes in these structures: the cavity mode, the propagated surface plasmon (PSP) mode and the localized surface plasmon (LSP) mode, which can enhance the optical transmission. Firstly, it is shown that the cavity mode is excited in the grating stacks. And the cavity mode has redshift if we enhance the thickness of metal layers, while it has blueshift when we increase the thickness of dielectric layers. The redshift of the cavity mode also occurs when the number of repeating layers is increased. Secondly, the PSP mode is also excited, which can be described by the effective permittivity method. It is found that the PSP modes are coupled with each other, which leads to a modified dispersion relation of surface plasmon polaritons (SPP). The theoretical analysis is in good agreement with the observed transmission enhancement in the grating stacks. And the coupling of PSPs also leads to a blueshift when the number of metal layers is increased. Thirdly, the LSP mode, generated in single metal strip, can also enhance the optical transmission of the grating stacks. Yet the transmission intensity induced by LSP decreases rapidly with increasing the number of metal layers. The investigations here may have potential applications in designing plasmonic metamaterials and subwavelength optical devices.

  4. Optical injection induced polarization mode switching and correlation analysis on a VCSEL

    CERN Document Server

    Damodarakurup, Sajeev; Vudayagiri, Ashok

    2015-01-01

    Vertical cavity Surface Emitting Laser (VCSEL) diodes emit light in two polarization modes. The amount of optical feedback is found to influence the intensities of the emitted modes. We investigate the effect of the amount of total output polarization feedback and polarization selective feedback on the intensities of the two emitted polarization modes. A 40 micro seconds resolution time series correlation analysis is done for different feedback conditions and investigate the power spectral continuity and onset of chaos on two polarization modes

  5. Goos-Hänchen and Imbert-Fedorov shifts for astigmatic Gaussian beams

    Science.gov (United States)

    Ornigotti, Marco; Aiello, Andrea

    2015-06-01

    In this work we investigate the role of the beam astigmatism in the Goos-Hänchen and Imbert-Fedorov shift. As a case study, we consider a Gaussian beam focused by an astigmatic lens and we calculate explicitly the corrections to the standard formulas for beam shifts due to the astigmatism induced by the lens. Our results show that the different focusing in the longitudinal and transverse direction introduced by an astigmatic lens may enhance the angular part of the shift.

  6. Goos-H\\"anchen and Imbert-Fedorov shifts for astigmatic Gaussian beams

    CERN Document Server

    Ornigotti, Marco

    2015-01-01

    In this work we investigate the role of the beam astigmatism in the Goos-H\\"anchen and Imbert-Fedorov shift. As a case study, we consider a Gaussian beam focused by an astigmatic lens and we calculate explicitly the corrections to the standard formulas for beam shifts due to the astigmatism induced by the lens. Our results show that astigmatism may enhance the angular part of the shift.

  7. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  8. Effects of transverse mode coupling and optical confinement factor on gallium-nitride based laser diode

    Institute of Scientific and Technical Information of China (English)

    Jin Xiao-Ming; Zhang Bei; Dai Tao; Zhang Guo-Yi

    2008-01-01

    We have investigated the transverse mode pattern and the optical field confinement factor of gallium nitride (GaN) laser diodes (LDs) theoretically. For the particular LD structure, composed of approximate 4μm thick n-GaN substrate layer, the maximum optical confinement factor was found to be corresponding to the 5th order transverse mode, the so-called lasing mode. Moreover, the value of the maximum confinement factor varies periodically when increasing the n-side GaN layer thickness, which simultaneously changes and increases the oscillation mode order of the GaN LD caused by the effects of mode coupling. The effects of the thickness and the average composition of Al in the AlGaN/GaN superlattice on the optical confinement factor are also presented. Finally, the mode coupling and optimization of the layers in the GaN-based LD are discussed.

  9. Nonlinear optics in the LP(02) higher-order mode of a fiber.

    Science.gov (United States)

    Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A

    2013-07-29

    The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

  10. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  11. Stimulated Raman scattering modes in highly elliptical-core optical fiber

    Institute of Scientific and Technical Information of China (English)

    王兆民; 顾春明; 林景全; 郑学彦

    1996-01-01

    Stimulated Raman scattering (SRS) transmission modes in highly elliptical-core optical fiber of three different structures are experimentally researched.The measuring setup,SRS spectrum and photographs of Stokes modes are given.The observed phenomena are completely different from those on circular-core graded-index optical fiber.The beam sizes of SRS remain constant and SRS light transmits with the characteristics of higher-order.mode.In addition,the experimental results are theoretically explained with fiber-optical dispersion theory and SRS phase matching conditions.Experimental results and theoretical analyses are in good agreement.

  12. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.

    Science.gov (United States)

    Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J

    2009-11-09

    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

  13. Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor.

    Science.gov (United States)

    Bichler, Anthony; Lecler, Sylvain; Serio, Bruno; Fischer, Sylvain; Pfeiffer, Pierre

    2012-11-01

    A step index multimode optical fiber with a perturbation on a micrometer scale, inducing a periodic deformation of the fiber section along its propagation axis, is theoretically investigated. The studied microperturbation is mechanically achieved using two microstructured jaws squeezing the straight fiber. As opposed to optical fiber microbend sensors, the optical axis of the proposed transducer is not bended; only the optical fiber section is deformed. Further, the strain applied on the fiber produces a periodical elliptical modification of the core and a modulation of the index of refraction. As a consequence of the micrometer scale perturbation period, the resulting mode coupling occurs directly between guided and radiated modes. To simulate the transmission induced by these kinds of perturbations, simplified models considering only total mode couplings are often used. In order to investigate the range of validity of this approximation, results are compared to the electromagnetic mode couplings rigorously computed for the first time, to our knowledge, with a large multimode fiber (more than 6000 linear polarized modes) using the Marcuse model. In addition, in order to have a more complete modeling of the proposed transducer, the anisotropic elasto-optic effects in the stressed multimode fiber are considered. In this way, the transmission of the microperturbed optical fiber transmission and, therefore, the behavior of the transducer are physically explained and its applications as a future stretching sensor are discussed.

  14. Center mode of a doubly resonant optical periodic structure

    Science.gov (United States)

    Alagappan, G.; Png, C. E.

    2016-07-01

    An optical periodic structure with a single spatial resonance exhibits a stopband. When a second spatial resonance very close to the first one is added, the resulting doubly resonant structure exhibits a Gaussian enveloped, high quality factor transmission state right at the center of the original stopband. Using a slowly varying envelope approximation, we describe the optical characteristics of this transmission state analytically. The transmission state exists despite an optical structure of low refractive index contrast, and has potential applications in nano-optics, and photonics.

  15. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    Science.gov (United States)

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  16. Sharp photonic Crystal Defect Modes and Their Response to Ultrashort Optical Pulses

    Institute of Scientific and Technical Information of China (English)

    Kyozo Kanamoto; Sheng Lan; Naoki Ikeda; Yoshimasa Sugimoto; Kiyoshi Asakawa; Hiroshi Ishikawa

    2003-01-01

    Single photonic crystal defects based on an air-bridge structure were fabricated. We obtained sharp defect modes with quality factors higher than 600 and observed their response to ultrashort optical pulses by utilizing two-photon absorption.

  17. Normal mode splitting and mechanical effects of an optical lattice in a ring cavity

    CERN Document Server

    Klinner, J; Lindholdt, M; Nagorny, B; Hemmerich, Andreas; Klinner, Julian; Lindholdt, Malik; Nagorny, Boris

    2005-01-01

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detunedby about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  18. Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity

    Science.gov (United States)

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-01

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  19. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    Directory of Open Access Journals (Sweden)

    De-Wen Duan

    2012-08-01

    Full Text Available In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented.

  20. An astigmatic corrected target-aligned heliostat for high concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zaibel, R.; Dagan, E.; Karni, J. [Solar Research Facility, The Weizmann Institute of Science, Rehovot (Israel); Ries, Harald [Ludwig-Maximilians-Universitaet, Sektion Physik, Munich (Germany)

    1995-05-28

    Conventional heliostats suffer from astigmatism for non-normal incidence. For tangential rays the focal length is shortened while for sagittal rays it is longer than the nominal focal length. Due to this astigmatism it is impossible to produce a sharp image of the sun, and the rays will be spread over a larger area. In order to correct this the heliostat should have different curvature radii along the sagittal and tangential direction in the heliostat plane just like a non axial part of a paraboloid. In conventional heliostats, where the first axis, fixed with respect to the ground, is vertical while the second, fixed with respect to the reflector surface, is horizontal, such an astigmatism correction is not practical because the sagittal and tangential directions rotate with respect to the reflector. We suggest an alternative mount where the first axis is oriented towards the target. The second axis, perpendicular to the first and tangent to the reflector, coincides with the tangential direction. With this mounting sagittal and tangential direction are fixed with respect to the reflector during operation. Therefore a partial astigmatism compensation is possible. We calculate the optimum correction and show the performance of the heliostat. We also show predicted yearly average concentrations

  1. Optical Control of Plasmonic Bloch Modes on Periodic Nanostructures

    NARCIS (Netherlands)

    Gjonaj, B.; Aulbach, J.; Johnson, P.M.; Mosk, A.P.; Kuipers, L.; Lagendijk, A.

    2012-01-01

    We study and actively control the coherent properties of surface plasmon polaritons (SPPs) optically excited on a nanohole array. Amplitude and phase of the optical excitation are externally controlled via a digital spatial light modulator (SLM) and SPP interference fringe patterns are designed and

  2. Observation of Amorphous Recording Marks Using Reflection-Mode Near-Field Scanning Optical Microscope Supported by Optical Interference Method

    Science.gov (United States)

    Sakai, Masaru; Mononobe, Shuji; Yusu, Keiichiro; Tadokoro, Toshiyasu; Saiki, Toshiharu

    2005-09-01

    A signal enhancing technique for a reflection-mode near-field scanning optical microscope (NSOM) is proposed. Optical interference between the signal light, from an aperture at the tip of a tapered optical fiber, and the reflected light, from a metallic coating around the aperture, enhances the signal intensity. We used a rewritable high-definition digital versatile disc (HD DVD) with dual recording layers as a sample medium, and demonstrated observation of amorphous recording marks on the semitransparent (the first) recording layer. In spite of low optical contrast between the crystal region and the amorphous region on this layer, we successfully observed recording marks with good contrast.

  3. Excitation and Imaging of Resonant Optical Modes of Au Triangular Nano-Antennas Using Cathodoluminescence Spectroscopy

    CERN Document Server

    Kumar, Anil; Mabon, James C; Chow, Edmond; Fang, Nicholas X

    2010-01-01

    Cathodoluminescence (CL) imaging spectroscopy is an important technique to understand resonant behavior of optical nanoantennas. We report high-resolution CL spectroscopy of triangular gold nanoantennas designed with near-vacuum effective index and very small metal-substrate interface. This design helped in addressing issues related to background luminescence and shifting of dipole modes beyond visible spectrum. Spatial and spectral investigations of various plasmonic modes are reported. Out-of-plane dipole modes excited with vertically illuminated electron beam showed high-contrast tip illumination in panchromatic imaging. By tilting the nanostructures during fabrication, in-plane dipole modes of antennas were excited. Finite-difference time-domain simulations for electron and optical excitations of different modes showed excellent agreement with experimental results. Our approach of efficiently exciting antenna modes by using low index substrates is confirmed both with experiments and numerical simulations....

  4. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  5. Active optics: deformable mirrors with a minimum number of actuators

    CERN Document Server

    Laslandes, Marie; Ferrari, Marc; 10.2971/jeos.2012.12036

    2012-01-01

    We present two concepts of deformable mirror to compensate for first order optical aberrations. Deformation systems are designed using both elasticity theory and Finite Element Analysis in order to minimize the number of actuators. Starting from instrument specifications, we explain the methodology to design dedicated deformable mirrors. The work presented here leads to correcting devices optimized for specific functions. The Variable Off-Axis paraboLA concept is a 3-actuators, 3-modes system able to generate independently Focus, Astigmatism and Coma. The Correcting Optimized Mirror with a Single Actuator is a 1-actuator system able to generate a given combination of optical aberrations.

  6. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators

    CERN Document Server

    Kristensen, Philip Trøst; Hughes, Stephen

    2015-01-01

    We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations.

  7. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels;

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...

  8. Optical rogue waves in whispering-gallery-mode resonators

    Science.gov (United States)

    Coillet, Aurélien; Dudley, John; Genty, Goëry; Larger, Laurent; Chembo, Yanne K.

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering-gallery-mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering-gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we give evidence of a range of parameters where rare and extreme events associated with non-Gaussian statistics of the field maxima are observed.

  9. Optical Rogue Waves in Whispering-Gallery-Mode Resonators

    CERN Document Server

    Coillet, Aurélien; Genty, Goery; Larger, Laurent; Chembo, Yanne K

    2014-01-01

    We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.

  10. Correction of low corneal astigmatism in cataract surgery

    Institute of Scientific and Technical Information of China (English)

    Pia; Leon; Marco; Rocco; Pastore; Andrea; Zanei; Ingrid; Umari; Meriem; Messai; Corrado; Negro; Daniele; Tognetto

    2015-01-01

    · AIM: To evaluate and compare aspheric toric intraocular lens(IOL) implantation and aspheric monofocal IOL implantation with limbal relaxing incisions(LRI) to manage low corneal astigmatism(1.0-2.0 D) in cataract surgery.· METHODS: A prospective randomized comparative clinical study was performed. There were randomly recruited 102 eyes(102 patients) with cataracts associated with corneal astigmatism and divided into two groups. The first group received toric IOL implantation and the second one monofocal IOL implantation with peripheral corneal relaxing incisions. Outcomes considered were: visual acuity, postoperative residual astigmatism, endothelial cell count, the need for spectacles, and patient satisfaction. To determine the postoperative toric axis, all patients who underwent the toric IOL implantation were further evaluated using an OPD Scan III(Nidek Co, Japan). Follow-up lasted 6mo.· RESULTS: The mean uncorrected distance visual acuity(UCVA) and the best corrected visual acuity(BCVA) demonstrated statistically significant improvement after surgery in both groups. At the end of the follow-up the UCVA was statistically better in the patients with toric IOL implants compared to those patients who underwent implantation of monofocal IOL plus LRI. The mean residual refractive astigmatism was of 0.4 D for the toric IOL group and 1.1 D for the LRI group(P <0.01). No difference was observed in the postoperative endothelial cell count between the two groups.· CONCLUSION: The two surgical procedures demonstrated a significant decrease in refractive astigmatism. Toric IOL implantation was more effective and predictable compared to the limbal relaxing incision.

  11. Length control of an optical resonator using second-order transverse modes

    CERN Document Server

    Miller, John

    2014-01-01

    We present the analysis of an unorthodox technique for locking a laser to a resonant optical cavity. Error signals are derived from the interference between the fundamental cavity mode and higher-order spatial modes of order two excited by mode mismatch. This scheme is simple, inexpensive and, in contrast to similar techniques, first-order-insensitive to beam jitter. After mitigating sources of technical noise, performance is fundamentally limited by quantum shot-noise.

  12. Numerical Simulation of Bell Inequality's Violation Using Optical Transverse Modes in Multimode Waveguides

    Institute of Scientific and Technical Information of China (English)

    FU Jian; GAO Shu-Juan

    2008-01-01

    We numerically demonstrate that 'mode-entangled states' based on the transverse modes of classical optical fields in multimode waveguides violatc Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.

  13. Demonstration of whispering-gallery-mode resonant enhancement of optical forces

    CERN Document Server

    Li, Yangcheng; Limberopoulos, Nicholaos I; Astratov, Vasily N

    2015-01-01

    We experimentally studied whispering-gallery modes(WGMs) and demonstrated resonance enhancement of optical forces evanescently exerted on dielectric microspheres. We showed that the resonant light pressure can be used for optical sorting of microparticles with extraordinary uniform resonant properties that is unachievable by conventional sorting techniques.

  14. Invited Paper: Optical fibers for the transmission of orbital angular momentum modes

    Science.gov (United States)

    Brunet, Charles; Rusch, Leslie A.

    2016-09-01

    Orbital angular momentum (OAM) of light is a promising means for exploiting the spatial dimension of light to increase the capacity of optical fiber links. We summarize how OAM enables efficient mode multiplexing for optical communications, with emphasis on the design of OAM fibers.

  15. On the fundamental mode of the optical resonator with toroidal mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  16. In-line single-mode fiber variable optical attenuator based on electrically addressable microdroplets

    Science.gov (United States)

    Duduś, A.; Blue, R.; Zagnoni, M.; Stewart, G.; Uttamchandani, D.

    2014-07-01

    We report an in-line, fiber optic, broadband variable optical attenuator employing a side-polished, single-mode optical fiber integrated on a digital microfluidics platform. The system is designed to electrically translate a liquid droplet along the polished surface of an optical fiber using electrowetting forces. This fiber optic device has the advantage of no moving mechanical parts and lends itself to miniaturization. A maximum attenuation of 25 dB has been obtained in the wavelength range between 1520 nm and 1560 nm.

  17. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  18. Optically induced mode conversion in graded-index fibers using ultra-short laser pulses

    CERN Document Server

    Hellwig, Tim; Fallnich, Carsten

    2013-01-01

    We propose the use of graded-index few-mode fibers for mode-conversion by long-period gratings (LPG) transiently written by ultrashort laser pulses using the optical Kerr effect. The mode inter- action is studied by numerically solving the multi-mode coupled nonlinear Schroedinger equations. We present highly efficient conversion of the LP 01 - into the LP 11 -mode preserving the pulse shape in contrast to previous results in step-index fibers. Furthermore, mode conversion using different wavelengths for inducing and probing the LPG is shown. Due to the flat phase-matching curve of the examined modes in the graded-index fiber, mode-conversion can be observed for probe center wavelengths of 1100nm up to 1800nm with a write beam centered around 1030nm. Therefore, a complete separation of the probe from the write beam should be possible as well as the application of optically induced guided mode conversion for all optical modulation across a broad wavelength range.

  19. Supporting IP dense mode multicast routing protocols in WDM all-optical networks

    Science.gov (United States)

    Salvador, Marcos R.; Heemstra de Groot, Sonia; Dey, Diptish

    2000-09-01

    Recent developments in all-optical networking and wavelength division multiplexing technologies allow for the support of optical multicasting, a missing feature towards the optical Internet. In this paper we propose a protocol to construct source-rooted WDM multicast trees. The protocol works under dense mode multicasting routing IP protocols and supports network nodes with different degrees of light splitting, wavelength conversion, and add/drop capabilities.

  20. Design of distributed Raman temperature sensing system based on single-mode optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ziheng XU; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Wengang WANG

    2009-01-01

    The distributed optical fiber temperature sensor system based on Raman scattering has developed rapidly since it was invented in 1970s. The optical wavelengths used in most of the distributed temperature optical fiber sensor system based on the Raman scattering are around from 840 to 1330 nm, and the system operates with multimode optical fibers. However, this wavelength range is not suitable for long-distance transmission due to the high attenuation and dispersion of the transmission optical fiber. A novel distributed optical fiber Raman temperature sensor system based on standard single-mode optical fiber is proposed. The system employs the wavelength of 1550 nm as the probe light and the standard communication optical fiber as the sensing medium to increase the sensing distance. This system mainly includes three modules: the probe light transmitting module, the light magnifying and transmission module, and the signal acquisition module.

  1. Efficient mode conversion in an optical nanoantenna mediated by quantum emitters

    CERN Document Server

    Straubel, Jakob; Rockstuhl, Carsten; Slowik, Karolina

    2016-01-01

    Converting signals between different electromagnetic modes is an asset for future information technologies. In general, slightly asymmetric optical nanoantennas enable the coupling between bright and dark modes sustained by an optical nanoantenna. However, the conversion efficiency might be very low. Here, we show that the additional incorporation of a quantum emitter allows to tremendously enhance this efficiency. The enhanced local density of states cycles the quantum emitter between its upper and lower level at an extremely hight rate; hence converting the energy very efficient. The process is robust with respect to possible experimental tolerances and adds a new ingredient to be exploited while studying and applying coupling phenomena in optical nanosystems.

  2. Transmission test in connection of different types of optical fibers: a dispersion-shifted single-mode optical fiber (DSF) and a single-mode optical fiber (SM); DSF-SM ishu hikari fiber setsuzoku ni okeru denso shiken

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, J. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1998-08-25

    The currently used optical transmission system usually uses a single-mode optical fiber (SM) with 1.3 {mu} m band. For sections requiring long-distance transmission, a dispersion-shifted single-mode optical fiber (DSF) with 1.55 {mu} m band is beginning to be partly used. If, in using these fibers, the different types of optical fibers, SM and DSF, can be used directly connected with each other, structuring an economical optical communication network including the existing SM fibers may become possible. This paper describes measurements of connection loss between the different optical fibers of DSF and SM, a transmission test on the connection between the different optical fibers of DSF and SM by using an amplifier for optical fibers used in an actual field, and an optical wave multiplex transmission test. The measurements and the tests were carried out in winter and summer of 1997 by using the existing OPGW optical fibers among the Okayama substation, the Higashi-Okayama substation, and the Susai substation. The connection between the different optical fibers of DSF and SM generates greater connection loss than in connection with the same type of fibers due to difference in the mode field diameters. Therefore, it will be necessary in constituting an optical fiber line to incorporate connection loss of about 1 to 2 dB in connector connection and about 0.5 to 1 dB in welding connection. 1 ref., 17 figs., 7 tabs.

  3. Geometrically Protected Resonance Modes and Optical Fano Resonances

    CERN Document Server

    Regan, Emma C; Lopez, Josue J; Hsu, Chia Wei; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    Traditionally, photonic crystal slabs can support resonances that are strongly confined to the slab but also couple to external radiation. However, when a photonic crystal slab is placed on a substrate, the resonance modes become less confined, and as the index contrast between slab and substrate decreases, they eventually disappear. Using the scale structure of the Dione Juno butterfly wing as an inspiration, we present a low-index zigzag surface structure that supports resonance modes even without index contrast with the substrate. The zigzag structure supports resonances that are contained away from the substrate; this geometrically protects the modes from coupling to the substrate. We experimentally verify the protected resonance property of the zigzag structure in the visible wavelength regime. Potential applications include substrate-independent structural color and light guiding.

  4. Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation

    CERN Document Server

    Hoffman, Jonathan E; Beadie, Guy; Rolston, Steven L; Orozco, Luis A

    2015-01-01

    Optical nanofibers provide a rich platform for exploring atomic and optical phenomena even when they support only a single spatial mode. Nanofibers supporting higher-order modes provide additional degrees of freedom to enable complex evanescent field profiles for interaction with the surrounding medium, but local control of these profiles requires nondestructive evaluation of the propagating fields. Here, we use Rayleigh scattering for rapid measurement of the propagation of light in few-mode optical nanofibers. Imaging the Rayleigh scattered light provides direct visualization of the spatial evolution of propagating fields throughout the entire fiber, including the transition from core-cladding guidance to cladding-air guidance. We resolve the interference between higher-order modes to determine local beat lengths and modal content along the fiber, and show that the modal superposition in the waist can be systematically controlled by adjusting the input superposition. With this diagnostic we can measure vari...

  5. Measuring the mode volume of plasmonic nanocavities using coupled optical emitters

    CERN Document Server

    Russell, Kasey J; Hu, Evelyn; 10.1103/PhysRevB.85.245445

    2012-01-01

    Metallic optical systems can confine light to deep sub-wavelength dimensions, but verifying the level of confinement at these length scales typically requires specialized techniques and equipment for probing the near-field of the structure. We experimentally measured the confinement of a metal-based optical cavity by using the cavity modes themselves as a sensitive probe of the cavity characteristics. By perturbing the cavity modes with conformal dielectric layers of sub-nm thickness using atomic layer deposition, we find the exponential decay length of the modes to be less than 5% of the free-space wavelength (\\lambda) and the mode volume to be of order \\lambda^3/1000. These results provide experimental confirmation of the deep sub-wavelength confinement capabilities of metal-based optical cavities.

  6. Optical phonon modes in rhombohedral boron monosulfide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Cherednichenko, Kirill A. [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France); IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris (France); LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse (France); Sokolov, Petr S.; Solozhenko, Vladimir L., E-mail: vladimir.solozhenko@univ-paris13.fr [LSPM–CNRS, Université Paris Nord, 93430 Villetaneuse (France); Kalinko, Aleksandr [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France); Institute of Solid State Physics, University of Latvia, LV-1063 Riga (Latvia); Le Godec, Yann; Polian, Alain [IMPMC, UPMC Sorbonne Universités, CNRS UMR 7590, 75005 Paris (France); Itié, Jean-Paul [Synchrotron SOLEIL, 91192 Gif-sur-Yvette (France)

    2015-05-14

    Raman spectra of rhombohedral boron monosulfide (r-BS) were measured under pressures up to 34 GPa at room temperature. No pressure-induced structural phase transition was observed, while strong pressure shift of Raman bands towards higher wavenumbers has been revealed. IR spectroscopy as a complementary technique has been used in order to completely describe the phonon modes of r-BS. All experimentally observed bands have been compared with theoretically calculated ones and modes assignment has been performed. r-BS enriched by {sup 10}B isotope was synthesized, and the effect of boron isotopic substitution on Raman spectra was observed and analyzed.

  7. Comparison of Numerical Modelling of Degradation Mechanisms in Single Mode Optical Fibre Using MATLAB and VPIphotonics

    Directory of Open Access Journals (Sweden)

    Jana Sajgalikova

    2015-01-01

    Full Text Available Mathematical models for description of physical phenomena often use the statistical description of the individual phenomena and solve those using suitable methods. If we want to develop numerical model of optical communication system based on transmission through single mode optical fibres, we need to consider whole series of phenomena that affect various parts of the system. In the single-mode optical fibre we often encounter influence of chromatic dispersion and nonlinear Kerr effects. By observing various different degradation mechanisms, every numerical model should have its own limits, which fulfil more detailed specification. It is inevitable to consider them in evaluation. In this paper, we focus on numerical modelling of degradation mechanisms in single-mode optical fibre. Numerical solution of non-linear Schroedinger equation is performed by finite difference method applied in MATLAB environment and split-step Fourier method, which is implemented by VPIphotonics software.

  8. Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects

    CERN Document Server

    Navarro-Urrios, D; Capuj, N E; Alzina, F; Griol, A; Puerto, D; Martínez, A; Sotomayor-Torres, C M

    2016-01-01

    We report on the modification of the optical and mechanical properties of a silicon 1D optomechanical crystal cavity due to thermo-optic effects in a high phonon/photon population regime. The cavity heats up due to light absorption in a way that shifts the optical modes towards longer wavelengths and the mechanical modes to lower frequencies. By combining the experimental optical results with finite-difference time-domain simulations we establish a direct relation between the observed wavelength drift and the actual effective temperature increase of the cavity. By assuming that the Young's modulus decreases accordingly to the temperature increase, we find a good agreement between the mechanical mode drift predicted using a finite element method and the experimental one.

  9. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector

    Directory of Open Access Journals (Sweden)

    YouLiang Jing

    2016-04-01

    Full Text Available We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP modes and the localized surface polariton (LSP mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms are analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.

  10. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  11. Chirped Optical Solitons in Single-mode Birefringent Fibers.

    Science.gov (United States)

    Mahmood, M F

    1996-12-01

    The trapping behavior of two chirped solitons forming a bound state in a single-mode birefringent fiber is investigated on the basis of a model of coupled nonlinear Schroedinger equations. The positive initial chirp plays an important role in controlling the threshold amplitude for soliton trapping without causing excessive pulse broadening.

  12. Plasmonic Mode Converter for Controlling Optical Impedance and Nanoscale Light-matter Interaction

    CERN Document Server

    Hung, Yun-Ting; Huang, Jer-Shing

    2012-01-01

    Nanoantennas and plasmonic waveguides can concentrate and manipulate light in a sub-wavelength area. To ensure strong interaction between light and nanomatter, it is of key importance to control the spatial distribution and polarization of the guided modes such that the optical impedance matches to that of nearby quantum systems. Nanosized plasmonic two-wire transmission lines consisting of two parallel plasmonic nanowires separated by a nanogap provide unique opportunity to achieve the required control. According to the symmetry of the charge distribution, the guided transverse electric and transverse magnetic modes on a two-wire transmission line exhibit distinct propagation properties and optical impedance that are suitable for various different circuit functions. In this work, we present efficient mode converters for the control of guided modes in a plasmonic nanocircuit. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. We demonst...

  13. Engineering optical mode ferromagnetic resonance in FeCoB films with ultrathin Ru insertion

    Science.gov (United States)

    Li, Shandong; Wang, Cuiling; Chu, Xian-Ming; Miao, Guo-Xing; Xue, Qian; Zou, Wenqin; Liu, Meimei; Xu, Jie; Li, Qiang; Dai, Youyong; Yan, Shishen; Kang, Shishou; Long, Yunze; Lü, Yueguang

    2016-09-01

    Ferromagnetic resonance (FMR) in soft magnetic films (SMFs) to a large extent determines the maximum working frequency of magnetic devices. The FMR frequency (fr) in an optical mode is usually much higher than that in the corresponding acoustic mode for exchange coupled ferromagnet/nonmagnet/ferromagnet (FM/NM/FM) trilayers. In this study, we prepared a 50 nm FeCoB film with uniaxial magnetic anisotropy (UMA), showing a high acoustic mode fr of 4.17 GHz. When an ultrathin Ru spacer was inserted in the very middle of the UMA-FeCoB film, the zero-field FMR was abruptly switched from an acoustic mode to an optical one with fr dramatically enhanced from 4.17 GHz to 11.32 GHz. Furthermore, the FMR mode can be readily tuned to optical mode only, acoustic mode only, or double mode by simply varying the applied filed, which provides a flexible way to design multi-band microwave devices.

  14. Fibre Optic Sensors Using Adiabatically Tapered Single Mode Fibres

    Science.gov (United States)

    1994-02-01

    Membrane L!2ht Scurce ,ettor ([3Iar~nca] Property ImmobilIzatIon Optical Flba UAnpLl Dynamoc Range SeMfle Su art Arran ramene ,-t n i esuaorn Tlrrm...8217Solution-deposited thin films as passive and active light guides’, Applied Optics, 1972, 11, No 2, pp. 428-34. 397. Urbano , E. , H. Offenbacher, O.S...Chimica Acta, 1988, 208, pp. 53-8. 427. Wolfbeis, O.S., E. Urbano , ’A fluorimetric, heavy-metal-free method for the analysis of chlorine, bromine, and

  15. White-Light Whispering Gallery Mode Optical Resonator System and Method

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical resonator system and method that includes a whispering-gallery mode (WGM) optical resonator that is capable of resonating across a broad, continuous swath of frequencies is provided. The optical resonator of the system is shaped to support at least one whispering gallery mode and includes a top surface, a bottom surface, a side wall, and a first curved transition region extending between the side wall and the top surface. The system further includes a coupler having a coupling surface which is arranged to face the transition region of the optical resonator and in the vicinity thereof such that an evanescent field emitted from the coupler is capable of being coupled into the optical resonator through the first curved transition region

  16. Success rates in the correction of astigmatism with toric and spherical soft contact lens fittings

    Directory of Open Access Journals (Sweden)

    Sevda Aydin Kurna

    2010-08-01

    Full Text Available Sevda Aydin Kurna, Tomris Şengör, Murat Ün, Suat AkiFatih Sultan Mehmet Education and Research Hospital, Ophthalmology Clinics, lstanbul, TurkeyObjectives: To evaluate success rates in the correction of astigmatism with toric and spherical soft contact lens fitting.Methods: 30 patients with soft toric lenses having more than 1.25 D of corneal astigmatism (25 eyes; Group A or having 0.75–1.25 D of corneal astigmatism (22 eyes; Group B and 30 patients with soft spheric lenses having 0.75–1.25 D of corneal astigmatism (28 eyes; Group C or less than 0.75 D of corneal astigmatism (23 eyes; Group D were included in the study. Corrected and uncorrected monocular visual acuity measurement with logMAR, biomicroscopic properties, autorefractometry and corneal topography were performed for all patients immediately before and at least 20 minutes after the application of contact lenses. ­Success of contact lens fitting was evaluated by three parameters: astigmatic neutralization, visual success, and retinal deviation.Results: After soft toric lens application, spheric dioptres, cylindric and keratometric astigmatism, and retinal deviation decreased significantly in Groups A and B (P < 0.05. In Group C, spheric dioptres and retinal deviation decreased (P < 0.05, while cylindric and keratometric astigmatism did not change significantly (P > 0.05. In Group D, spheric dioptres, retinal deviation, and cylindric astigmatism decreased (P < 0.05. Keratometric astigmatism did not change significantly (P > 0.05 and astigmatic neutralization even increased.Conclusions: Visual acuity and residual spherical equivalent refraction remained between tolerable limits with the use of toric and spheric contact lenses. Spherical lenses failed to mask corneal toricity during topography, while toric lenses caused central neutralization and decrease in corneal cylinder in low and moderate astigmatic eyes.Keywords: astigmatism, soft toric lenses, soft spheric lenses

  17. Continuous spectrum of modes for optical micro-sphere resonators

    Science.gov (United States)

    Nooramin, Amir Saman; Shahabadi, Mahmoud

    2016-09-01

    This paper presents an improved modal analysis for the spherical dielectric resonator. This is commonly carried out by assuming an outgoing spherical Hankel function for the region surrounding the dielectric sphere. It will be shown that this assumption is incomplete and cannot lead to the entire spectrum of resonance frequencies. Following an analytical formulation, we prove that, like cylindrical resonators, the only choice for the outer region of the dielectric sphere can be a proper linear combination of an inward and an outward traveling wave. Starting from this formulation, we determine the complete spectrum of the resonance frequencies and the associated mode fields. In this analysis, the continuous spectrum of resonance frequencies is introduced and the properties of radiation modes are studied in detail. The proposed analytical formulation is thereafter employed to calculate the quality factor of the resonator due to radiation and dielectric loss.

  18. Dispersion flattened single mode optical fiber with large effective area

    Science.gov (United States)

    Babita, Rastogi, Vipul

    2013-06-01

    In this paper we present design of a fiber having ultra-flattened dispersion with large effective area over a wide range of wavelengths. The maximum value of the dispersion and dispersion slope within the spectral range 1450-1600 nm are 1.0 ps/km/nm and 0.05 ps/km/nm2 respectively. Effective mode area within the aforementioned wavelength range varies from 100-295 μm2.

  19. Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre

    Science.gov (United States)

    Kumar, Ravi; Gokhroo, Vandna; Deasy, Kieran; Maimaiti, Aili; Frawley, Mary C.; Phelan, Ciarán; Chormaic, Síle Nic

    2015-01-01

    Optical nanofibres are used to confine light to sub-wavelength regions and are very promising tools for the development of optical fibre-based quantum networks using cold, neutral atoms. To date, experimental studies on atoms near nanofibres have focussed on fundamental fibre mode interactions. In this work, we demonstrate the integration of a few-mode optical nanofibre into a magneto-optical trap for 87Rb atoms. The nanofibre, with a waist diameter of ∼700 nm, supports both the fundamental and first group of higher order modes (HOMs) and is used for atomic fluorescence and absorption studies. In general, light propagating in higher order fibre modes has a greater evanescent field extension around the waist in comparison with the fundamental mode. By exploiting this behaviour, we demonstrate that the detected signal of fluorescent photons emitted from a cloud of cold atoms centred at the nanofibre waist is larger if HOMs are also included. In particular, the signal from HOMs appears to be about six times larger than that obtained for the fundamental mode. Absorption of on-resonance, HOM probe light by the laser-cooled atoms is also observed. These advances should facilitate the realization of atom trapping schemes based on HOM interference.

  20. [Results of refractive surgery in hyperopic and combined astigmatism].

    Science.gov (United States)

    Vlaicu, Valeria

    2013-01-01

    The refractive surgery includes a lot of procedures for changing the refraction of the eye to obtain a better visual acuity with no glasses or contact lenses. LASIK is the most commonly performed laser refractive surgery today. The goal is to present the postoperative evolution of the refraction and visual acuity after LASIK for Mixed and Hyperopic Astigmatism. The results show that LASIK is safe and predictible if we have well performed interventions and well-selected patients.

  1. Research progress of correction of cornea astigmatism after cataract extraction%白内障术后角膜散光矫正的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨宁

    2012-01-01

    随着白内障手术由复明手术向屈光手术的转变,角膜散光已成为影响白内障术后裸眼视力的主要因素之一.矫正术前存在的角膜散光,控制手术源性散光,是解决白内障术后因散光导致的术后视力不佳的有效方法.本文将对控制和矫正白内障术后散光的治疗进展进行综述.%Cataract operation has evolved from pure vision improvement toward the optics for reducing refractive errors. The main factor affecting naked vision of postoperative cataract surgery is cornea astigmatism . To correct cornea astigmatism and decrease surgically induced astigmatism are required for resolving problems of post cataract operative refraction and improving visual acuity. The research progress of reducing and correcting astigmatism after cataract extraction was summarized in this paper.

  2. Leaky Modes of Waveguides as a Classical Optics Analogy of Quantum Resonances

    Directory of Open Access Journals (Sweden)

    Sara Cruz y Cruz

    2015-01-01

    Full Text Available A classical optics waveguide structure is proposed to simulate resonances of short range one-dimensional potentials in quantum mechanics. The analogy is based on the well-known resemblance between the guided and radiation modes of a waveguide with the bound and scattering states of a quantum well. As resonances are scattering states that spend some time in the zone of influence of the scatterer, we associate them with the leaky modes of a waveguide, the latter characterized by suffering attenuation in the direction of propagation but increasing exponentially in the transverse directions. The resemblance is complete because resonances (leaky modes can be interpreted as bound states (guided modes with definite lifetime (longitudinal shift. As an immediate application we calculate the leaky modes (resonances associated with a dielectric homogeneous slab (square well potential and show that these modes are attenuated as they propagate.

  3. Second-harmonic mode coupling in microresonator-based optical frequency comb generation

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Jaramillo-Villegas, Jose A; Wang, Pei-Hsun; Leaird, Daniel E; Erkintalo, Miro; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based optical frequency comb (microcomb) generation can potentially achieve ultra-compact volume and low power consumption for portable applications. The comb formation is a consequence of cascaded four-wave-mixing due to the third-order Kerr nonlinearity. Mode coupling can affect the comb self-starting and mode-locking behaviors, resulting in complex dynamics that is far from well understood. Understanding the mechanism of mode coupling in comb generation proves highly important to achieve stable and robust microcomb sources. Here, we report a nonlinear mode coupling mechanism in microresonators with simultaneous second- and third-order nonlinearities. The nonlinear dynamics governed by the third-order nonlinearity is altered by second-harmonic mode coupling. As a demonstration of this effect, second-harmonic assisted coherent comb generation is achieved in the normal dispersion region, where comb creation is prohibited in the absence of mode coupling. Since second-order nonlinearity has been ...

  4. Multi-parameter Laser Modes in Paraxial Optics

    CERN Document Server

    Koutschan, Christoph; Suslov, Sergei K

    2014-01-01

    We study multi-parameter solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation which include oscillating laser beams in a parabolic waveguide, spiral light beams, and other important families of propagation-invariant laser modes in weakly varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film is also discussed. In the supplementary electronic material, we provide a computer algebra verification of the results presented here, and of some related mathematical tools that were stated without proofs in the literature.

  5. Radial localization of edge modes in Alcator C-Mod pedestals using optical diagnostics

    Science.gov (United States)

    Theiler, C.; Terry, J. L.; Edlund, E.; Cziegler, I.; Churchill, R. M.; Hughes, J. W.; LaBombard, B.; Golfinopoulos, T.; the Alcator C-Mod Team

    2017-02-01

    Dedicated experiments in ion cyclotron range heated enhanced D-alpha (EDA) H-mode and I-mode plasmas have been performed on Alcator C-Mod to identify the location of edge fluctuations inside the pedestal and to determine their plasma frame phase velocity. For this purpose, measurements from gas puff imaging (GPI) and gas puff charge exchange recombination spectroscopy (GP-CXRS) have been collected using the same optical views. The data suggest that the EDA H-mode-specific quasi-coherent mode (QCM) is centered near the radial electric field (E r) well minimum and propagates along the ion diamagnetic drift direction in the plasma frame. The weakly coherent mode (WCM) and the geodesic acoustic mode observed in I-mode, on the other hand, are found to be located around the outer shear layer of the E r well. This results in a weak plasma frame phase velocity mostly along the electron diamagnetic drift direction for the WCM. The findings in these EDA H-mode plasmas differ from probe measurements in ohmic EDA H-mode (LaBombard et al 2014 Phys. Plasmas 21 056108), where the QCM was identified as an electron drift-wave located several mm outside the E r well minimum in a region of positive E r. To explore if instrumental effects of the optical diagnostics could be the cause of the difference, a synthetic diagnostic for GPI is introduced. This diagnostic reproduces amplitude ratios and relative radial shifts of the mode profiles determined from poloidally and toroidally oriented optics and, if instrumental effects related to GP-CXRS are also included, indicates that the measured location of the QCM and WCM relative to the E r well reported here is only weakly affected by instrumental effects.

  6. Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals.

    Science.gov (United States)

    Trevino, Jacob; Liew, Seng Fatt; Noh, Heeso; Cao, Hui; Dal Negro, Luca

    2012-01-30

    We present a numerical study of the structural properties, photonic density of states and bandedge modes of Vogel spiral arrays of dielectric cylinders in air. Specifically, we systematically investigate different types of Vogel spirals obtained by the modulation of the divergence angle parameter above and below the golden angle value (≈137.507°). We found that these arrays exhibit large fluctuations in the distribution of neighboring particles characterized by multifractal singularity spectra and pair correlation functions that can be tuned between amorphous and random structures. We also show that the rich structural complexity of Vogel spirals results in a multifractal photonic mode density and isotropic bandedge modes with distinctive spatial localization character. Vogel spiral structures offer the opportunity to create novel photonic devices that leverage radially localized and isotropic bandedge modes to enhance light-matter coupling, such as optical sensors, light sources, concentrators, and broadband optical couplers.

  7. Extended wavelet transformation to digital holographic reconstruction: application to the elliptical, astigmatic Gaussian beams.

    Science.gov (United States)

    Remacha, Clément; Coëtmellec, Sébastien; Brunel, Marc; Lebrun, Denis

    2013-02-01

    Wavelet analysis provides an efficient tool in numerous signal processing problems and has been implemented in optical processing techniques, such as in-line holography. This paper proposes an improvement of this tool for the case of an elliptical, astigmatic Gaussian (AEG) beam. We show that this mathematical operator allows reconstructing an image of a spherical particle without compression of the reconstructed image, which increases the accuracy of the 3D location of particles and of their size measurement. To validate the performance of this operator we have studied the diffraction pattern produced by a particle illuminated by an AEG beam. This study used mutual intensity propagation, and the particle is defined as a chirped Gaussian sum. The proposed technique was applied and the experimental results are presented.

  8. Use of nondegenerate resonant leaky modes to fashion diverse optical spectra.

    Science.gov (United States)

    Ding, Y; Magnusson, Robert

    2004-05-03

    In this paper, we show that bandstop and bandpass filters with versatile spectral attributes can be implemented with modulated films possessing asymmetric grating profiles. The profile asymmetry breaks the resonant leaky mode degeneracy at normal incidence thereby permitting precise spectral spacing of interacting leaky modes with interesting implications in optical filter design. Several example filters, containing only a single grating layer, are designed with this methodology to demonstrate the concept.

  9. Interaction of laser-cooled $^{87}$Rb atoms with higher order modes of an optical nanofiber

    CERN Document Server

    Kumar, Ravi; Maimaiti, Aili; Deasy, Kieran; Frawley, Mary C; Chormaic, Síle Nic

    2013-01-01

    Optical nanofibers can be used to confine light to submicron regions and are very promising for the realization of optical fiber-based quantum networks using cold, neutral atoms. Light propagating in the higher order modes of a nanofiber has a greater evanescent field extension around the waist in comparison with the fundamental mode, leading to a stronger interaction with the surrounding environment. In this work, we report on the integration of a few-mode, optical nanofiber, with a waist diameter of ~700 nm, into a magneto-optical trap for $^{87}$Rb atoms. The nanofiber is fabricated from 80 $\\mu$m diameter fiber using a brushed hydrogen-oxygen flame pulling rig. We show that absorption by laser-cooled atoms around the waist of the nanofiber is stronger when probe light is guided in the higher order modes than in the fundamental mode. As predicted by Masalov and Minogin*, fluorescent light from the atoms coupling in to the nanofiber through the waist has a higher pumping rate (5.8 times) for the higher-orde...

  10. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  11. Compact all-optical switches based on photon-induced suppression of mode interference

    Institute of Scientific and Technical Information of China (English)

    Longzhi Li; Yi Tang; Jianyi Yang; Minghua Wang; Xiaoqing Jiang

    2006-01-01

    @@ An optically activated optical switch based on suppression of mode interference (SMI) is presented. The imaging properties of multi-mode interference (MMI) section in the switch with Y-branch can be modified by a controlling light injection. The switch was simulated by finite difference beam propagation method(FD-BPM) and fabricated on GaAIAs/GaAs epitaxial materials. At the wavelength of 1.31 μm, the primary experiment showed an extinction ratio of about 8 dB with controlling light power density of 73.5W/mm2.

  12. Sputtered-silica defect layer in artificial opals: tunability of highly transmitted and reflected optical modes

    CERN Document Server

    Hong, Phan Ngoc; Coolen, Laurent; Maître, Agnès; Schwob, Catherine

    2013-01-01

    We propose an original and efficient method to engineer a defect between two well-ordered silica opals by sputtering silica on the top of the first one. As the amount of sputtered silica can be well controlled, it is also the case for the thickness of the layer and consequently for the spectral position of the defect mode. The optical response of these sandwich structures is studied in terms of specular reflection and transmission spectroscopy. Tunable highly transmitted and reflected optical modes are evidenced. The very good agreement between the experimental results and the simulations, run without fitting parameters, demonstrates the almost perfect order of the synthesized structures.

  13. Efficient and spurious-free integral-equation-based optical waveguide mode solver.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2007-10-29

    Modal analysis of waveguides and resonators by integra-lequation formulations can be hindered by the existence of spurious solutions. In this paper, spurious solutions are shown to be eliminated by introduction of a Rayleigh-quotient based matrix singularity measure. Once the spurious solutions are eliminated, the true modes may be determined efficiently and reliably, even in the presence of degeneracy, by an adaptive search algorithm. Analysis examples that demonstrate the efficacy of the method include an elliptical dielectric waveguide, two unequal touching dielectric cylinders, a plasmonic waveguide, and a realistic micro-structured optical fiber. A freely downloadable version of an optical waveguide mode solver based on this article is available.

  14. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  15. Focusing properties of Gaussian Schell-model beams by an astigmatic aperture lens

    Institute of Scientific and Technical Information of China (English)

    Pan Liu-Zhan; Ding Chao-Liang

    2007-01-01

    This paper studies the focusing properties of Gaussian Schell-model (GSM) beams by an astigmatic aperture lens.It is shown that the axial irradiance distribution, the maximum axial irradiance and its position of focused GSM beams by an astigmatic aperture lens depend upon the astigmatism of the lens, the coherence of partially coherent light, the truncation parameter of the aperture and Fresnel number. The numerical calculation results are given to illustrate how these parameters affect the focusing property.

  16. Optical surface modes in the presence of nonlinearity and disorder

    CERN Document Server

    Molina, M I; Tsironis, G P

    2011-01-01

    We investigate numerically the effect of the competition of disorder, nonlinearity, and boundaries on the Anderson localization of light waves in finite-size, one-dimensional waveguide arrays. Using the discrete Anderson - nonlinear Schr\\"odinger equation, the propagation of the mode amplitudes up to some finite distance is monitored. The analysis is based on the calculated localization length and the participation number, two standard measures for the statistical description of Anderson localization. For relatively weak disorder and nonlinearity, a higher disorder strength is required to achieve the same degree of localization at the edge than in the interior of the array, in agreement with recent experimental observations in the linear regime. However, for relatively strong disorder and/or nonlinearity, this behavior is reversed and it is now easier to localize an excitation at the edge than in the interior.

  17. Review of self-focusing of high power lasers in large-mode-area optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chujun; Li Ying; Lei Dajun; Yang Hua; Wen Shuangchun; Fan Dianyuan; Wen Jianguo, E-mail: scwen@vip.sina.com [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)

    2011-02-01

    The main progress about the self-focusing of high power lasers in large-mode-area optical fiber has been reviewed. The theoretical models including the self-focusing effects have been discussed. Some different views on the whole beam self focusing and small scale self-focusing effects in optical fiber have been introduced. Moreover, the possible methods exceeding the bulk-media self-focusing threshold have been discussed and explored.

  18. Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers

    OpenAIRE

    2011-01-01

    International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...

  19. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges.

    Science.gov (United States)

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-12-10

    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

  20. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  1. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng;

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  2. Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology.

    Science.gov (United States)

    Zhao, Ying; Pang, Fufei; Dong, Yanhua; Wen, Jianxiang; Chen, Zhenyi; Wang, Tingyun

    2013-11-04

    The atomic layer deposition (ALD) technology is introduced to enhance the sensitivity of optical fiber cladding mode to surrounding refractive index (SRI) variation. The highly uniform Al2O nanofilm was deposited around the double cladding fiber (DCF) which presents cladding mode resonant feature. With the high refractive index coating, the cladding mode resonant spectrum was tuned. And the sensitivity enhancement for SRI sensor was demonstrated. Through adjusting the deposition cycles, a maximum sensitivity of 723 nm/RIU was demonstrated in the DCF with 2500 deposition cycles at the SRI of 1.34. Based on the analysis of cladding modes reorganization, the cladding modes transition of the coated DCF was investigated theoretically. With the high performance nanofilm coating, the proposed SRI sensor is expected to have wide applications in chemical sensors and biosensors.

  3. Surface-mode model of the extraordinary optical transmission without plasmons.

    Science.gov (United States)

    Xie, Yunya; Liu, Haitao; Jia, Hongwei; Zhong, Ying

    2015-03-09

    We propose a microscopic surface-mode model for the extraordinary optical transmission (EOT) through subwavelength metallic slit array covered with a thin dielectric layer under illumination of transverse-electric (TE) polarization. Remarkably, surface plasmon polarizations (SPPs) do not exist for this polarization. It is commonly believed that the waveguide mode in the dielectric layer plays a role similar to that of the SPP in classical EOT. To check the intuitive belief, we derive a surface-mode model by considering the multiple scattering process of the fundamental waveguide mode and neglecting all other residual field in the thin dielectric layer. The model captures the main feature of EOT and provides a phase-matching condition to predict the transmission resonance. Quantitative comparison between fully-vectorial calculations and model predictions shows that besides the fundamental waveguide mode, other residual field in the thin dielectric layer also contributes to the EOT without SPP.

  4. Nonlinear localized modes in PT-symmetric optical media with competing gain and loss

    CERN Document Server

    Midya, Bikashkali

    2014-01-01

    The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expressions of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effect of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined.

  5. Changes in Refractive Trends Error of Children with Mixed Astigmatism%儿童混合性散光的屈光演变

    Institute of Scientific and Technical Information of China (English)

    杨小梅; 杨发斌; 师文; 左芸; 胡雪篱

    2011-01-01

    Objective To investigate changes in refractive trends error of children with mixed astigmatism.Method Sixty three patients (113 eyes) with mixed astigmatism between 3 and 16 years of age were confirmed as mixed astigmatism with cycloplegic retinoscopy.Participates were performed optometric examination annually over a 3 year period.Refractive status data were collected and trends of in refractive error changes were analyzed.Result The astigmatic values remained stable over three year period (F =0.175,P =0.840),which indicated the maximum and minimum refractive trends errors could help the evolvement.There was a statistically highly significant difference in degrees of spherical lens that appeared to gradually decreased (F =14.151,P =0.000).Conclusions Refractive status can evolve into myopia as growth and development of ocular optical components in children with mixed astigmatism.Early screening and cum correction is advantageous to the children with mixed astigmatism.It is also highly recommend that cycloplegic retinoscopy is a very important and necessary method for diagnosis and therapy of children with mixed astigmatism.%目的 了解混合性散光儿童屈光发展的变化规律.方法 选择门诊初诊的3~16岁儿童63例(113只眼),使用睫状肌麻痹剂检影验光后确诊为混合性散光,每年验光1次,将其连续3年的屈光结果进行追踪观察.结果 3年来散光度数改变不明显(F =0.175,P=0.840),说明其最大和最小屈光子午线的屈光状态在同步发展.而远视球镜度数逐渐降低,其差异显著有统计学意义(F =14.151,P=0.000).结论 混合性散光的儿童,随年龄增长及眼球发育,屈光状态逐渐降低甚至会向近视方向发展.该类患儿如能早期戴镜矫正,可获得较满意的视力.必须强调使用睫状肌麻痹剂检影验光对儿童混合性散光的必要性和重要性.

  6. Nonlinear localized modes in PT-symmetric optical media with competing gain and loss

    Energy Technology Data Exchange (ETDEWEB)

    Midya, Bikashkali, E-mail: bikash.midya@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Advanced Center for Nonlinear and Complex Phenomena, Kolkata 700075 (India)

    2014-02-15

    The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expression of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effects of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined. -- Highlights: • Existence of localized modes is investigated in PT-symmetric complex potentials. • Exact analytical expression of the localized modes is obtained. • Effect of gain/loss profile on the stability of these localized modes is discussed. • Localized modes in 2D and associated transverse power-flow density are also examined.

  7. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.;

    2010-01-01

    efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  8. Ion-exchanged diffractive elements in glass for substrate-mode optics.

    Science.gov (United States)

    Salmio, R P; Saarinen, J; Noponen, E

    1998-08-01

    We recently demonstrated the use of continuous-phase ion-exchanged diffractive elements in glass for free-space optics. We extend our design methods to substrate-mode optics, which permits compact packing of miniature-sized free-space optical systems. We designed one-dimensional gratings for equal-intensity 1 ? 3 and 1 ? 5 beam splitting, assuming both planar and conical incidence angles. An experimental demonstration of a 1 ? 3 beam splitter with a uniformity error of 3.4% is presented.

  9. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  10. Astigmatism management in cataract surgery with Precizon® toric intraocular lens: a prospective study

    Science.gov (United States)

    Vale, Carolina; Menezes, Carlos; Firmino-Machado, J; Rodrigues, Pedro; Lume, Miguel; Tenedório, Paula; Menéres, Pedro; Brochado, Maria do Céu

    2016-01-01

    Purpose The purpose of this study was to evaluate the visual and refractive outcomes and rotational stability of the new aspheric Precizon® toric intraocular lens (IOL) for the correction of corneal astigmatism in cataract surgery. Setting Department of Ophthalmology, Hospital Geral de Santo António – Centro Hospitalar do Porto, EPE and Hospital de Pedro Hispano, Matosinhos, Portugal. Design This was a prospective clinical study. Patients and methods A total of 40 eyes of 27 patients with corneal astigmatism greater than 1.0 diopter (D) underwent cataract surgery with implantation of Precizon® toric IOL. IOL power calculation was performed using optical coherence biometry (IOLMaster®). Outcomes of uncorrected (UDVA) and best-spectacle corrected distance visual acuities (BCDVA), refraction, and IOL rotation were analyzed at the 1st week, 1st, 3rd, and 6th month’s evaluations. Results The median postoperative UDVA was better than preoperative best-spectacle corrected distance visual acuity (0.02 [0.06] logMAR vs 0.19 [0.20] logMAR, P<0.001). At 6 months, postoperative UDVA was 0.1 logMAR or better in 95% of the eyes. At last follow-up, the mean spherical equivalent was reduced from −3.35±3.10 D to −0.02±0.30 D (P<0.001) with 97.5% of the eyes within ±0.50 D of emmetropia. The mean preoperative keratometric cylinder was 2.34±0.95 D and the mean postoperative refractive cylinder was 0.24±0.27 D (P<0.001). The mean IOL rotation was 2.43°±1.55°. None of the IOLs required realignment. Conclusion Precizon® toric IOL revealed very good rotational stability and performance regarding predictability, efficacy, and safety in the correction of preexisting regular corneal astigmatism associated with cataract surgery. PMID:26855559

  11. 870nm Bragg grating in single mode TOPAS microstructured polymer optical fibre

    DEFF Research Database (Denmark)

    Yuan, Wu; Webb, David J.; Kalli, Kyriacos;

    2011-01-01

    We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phase-mask technique using a 325 nm HeCd laser. The static tensile strain se...

  12. All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.

  13. An Exact Solution and the Pancharatnam Phase for the Generalized Two-Mode Optical System

    Institute of Scientific and Technical Information of China (English)

    侯邦品; 王顺金; 余万伦

    2002-01-01

    Using the algebraic dynamical method, we obtain the exact solution for the generalized two-mode optical system. From the solution, the Pancharatnam phase and the mean values of the number operators of the system are calculated. It is emphasized that the system can be used as a quantum memory.

  14. Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide.

    Science.gov (United States)

    Chen, Fan; Cao, Zhuangqi; Shen, Qishun; Deng, Xiaoxu; Duan, Biming; Yuan, Wen; Sang, Minghuang; Wang, Shengqian

    2005-12-12

    An improved scheme for displacement measurement using the ultrahigh-order guided modes in a symmetrical metal-cladding optical waveguide is proposed. Based on this idea together with the lock-in amplification technique, a sensor with a stable displacement resolution of 3.3 pm is experimentally demonstrated without any complicated servo system.

  15. Optical modes at the interface between two dissimilar discrete meta-materials.

    Science.gov (United States)

    Suntsov, S; Makris, K G; Christodoulides, D N; Stegeman, G I; Morandotti, R; Volatier, Maïte; Aimez, Vincent; Arès, Richard; Rüter, Christian E; Kip, Detlef

    2007-04-16

    We have studied theoretically and experimentally the properties of optical surface modes at the hetero-interface between two meta-materials. These meta-materials consisted of two 1D AlGaAs waveguide arrays with different band structures.

  16. Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Harb, Charles C.;

    2006-01-01

    We demonstrate quantum correlations in the transverse plane of continuous wave light beams by producing -4.0 dB, -2.6 dB and -1.5 dB of squeezing in the TEM_{00}, TEM_{10} and TEM_{20} Hermite-Gauss modes with an optical parametric amplifier, respectively. This has potential applications in quant...

  17. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov;

    2001-01-01

    of systematic tests, the applicability of this system is tested on an industrial 1 kW Nd:YAG laser. Three separate series of tests are conducted, one with the diffractive optical system at 500 W and two without the diffractive system at 400 W and 500 W, respectively. In principle the diffractive, optical system......In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...... functions as intended. Three spots are produced with a variable amount of energy between the center spot and two support spots. On average, the penetration depth drops to roughly half of that obtained with standard optics and the seam width increases 30 to 40 percent. The results show that at similar...

  18. Nanofabrication and test of novel diffractive optics for OAM-mode division multiplexing in optical fibers

    Science.gov (United States)

    Ruffato, G.; Massari, M.; Romanato, F.

    2016-09-01

    The orbital angular momentum (OAM) of light offers a promising solution to today's overwhelming demand of bandwidth and has known an increasing attention as a new degree of freedom in the telecom field. Here we present the design, fabrication and optical characterization of miniaturized phase-only diffractive optical elements (DOE) for OAM beams generation, multiplexing and sorting. Samples have been fabricated with high-resolution electron-beam lithography and exhibit high fabrication quality. Different DOE designs are presented for the sorting of optical vortices with different steering geometries in far-field and applications in free-space and optical fibers.

  19. Single-mode planar optics for 4-20um wavelengths astronomical interferometry

    Science.gov (United States)

    Laurent, E.; Kern, P.; Schanen, I.; Rousselet-Perraut, K.

    2002-06-01

    Single-mode planar optics for 4-20 micrometers wavelengths astronomical interferometry. Spatial filtering is a critical issue to achieve nulling interferometry in the framework of spatial missions aimed at the detection of exoplanets. Several working interferometric instruments take benefits of guided optics for spatial filtering in the near IR wavelengths and thus provide accurate visibility measurements. Futhermore planar optics would also provides beam combining functions within a single compact and stable device. Existing telecom technology allows beam combiner realizations for 0.8 to 1.6 micrometers wavelengths. Last works allow us to valid these technologies up to 2.4 micrometers for stellar interferometry in the H and K bands. Technological developments are required to meet the scientific domain of the spatial missions like IRSI/DARWIN and TPF dedicated to thermal infrared wavelengths [4-20 micrometers]. We present the most promising materials with their technologies to manufacture single-mode planar optics for this wavelength range. First set of solutions involved chalcogenide glasses. Channel waveguides could be manufactured by photo-exposition method or thin layer etching process. Another solution is using porous silicon obtained from an acid dissolution of a silicon substrate which allows refractive index modulation. The last set of solution is based on thin films etching of semiconductor materials like silicon, germanium, zinc sulfide and zinc selenide.Test benches for the single-mode behavior are also presented. For each solutions, we present some manufactured waveguides with their optical characterizations.

  20. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  1. Leaky Mode Engineering: A General Design Principle for Dielectric Optical Antenna Solar Absorbers

    CERN Document Server

    Yu, Yiling

    2014-01-01

    We present a general principle for the rational design of dielectric optical anatennas with optimal solar absorption: leaky mode engineering. This builds upon our previous study that demonstrates the solar absorption in a given amount of materials dictated by the modal properties of leaky modes. Here we synergistically examine the correlation among the modal properties of leaky modes, the physical features of dielectric structures, and the solar absorption in these structures. Our analysis clearly points out the general guideline for the design of dielectric optical antennas with optimal solar absorption enhenacement: a) using 0D structures; b) the shape does not matter much; c) heterostructuring with non-absorbing materials is a promising strategy; d) the design of a large-scale nanostructure array can literally build upon the design of single nanostructure solar absorbers.

  2. Controllable Photonic Band Gap and Defect Mode in a 1D CO2-Laser Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi; YIN Jian-Ping

    2008-01-01

    We Dropose a new method to form a novel controllable photonic crystal with cold atoms and study the photonic band gap(PBG)of an infinite 1D CO2-laser optical lattice of 85Rb atoms under the condition of quantum coherence.A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed.Using the eigenquation of defect mode,we calculate the defect mode when a defect is introduced into such a lattice.Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.

  3. Magneto-optic Crystal Polarization Controller Assisted Mode-Locked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-Zhen; GUI Li-Li; XIAO Xiao-Sheng; YANG Chang-Xi

    2011-01-01

    We report a passively mode-locked erbium-doped fiber laser based on a compact magneto-optic crystal polarization controller. The length of the polarization controller consisting of four magneto-optic crystal rotators and two quarter wave-plates is only 10cm.Adjusting the polarization controller, central wavelength around 1559nm and repetition rate 21.10 MHz mode-locked pulse are obtained. Pulse duration and 3 dB spectrum width are 598.4fs and 6.24nm respectively. Single pulse energy is about 151.7pJ. Because of its small size, low insertion loss,good controllability and negligible dispersion, the magneto-optic crystal polarization controller could be an ideal polarization controller in fiber lasers.

  4. Observation of optical domino modes in arrays of non-resonant plasmonic nanoantennas

    Science.gov (United States)

    Sinev, Ivan S.; Samusev, Anton K.; Voroshilov, Pavel M.; Mukhin, Ivan S.; Denisyuk, Andrey I.; Guzhva, Mikhail E.; Belov, Pavel A.; Simovski, Constantin R.

    2014-09-01

    Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways for development of low-absorptive structures for effective focusing of light at the nanoscale.

  5. Thermoacoustic optical path length stabilization in a single-mode optical fiber.

    Science.gov (United States)

    Lewoczko-Adamczyk, Wojciech; Schiemangk, Max; Müller, Holger; Peters, Achim

    2009-02-01

    We present a simple technique to actively stabilize the optical path length in an optical fiber. A part of the fiber is coated with a thin, electrically conductive layer, which acts as a heater. The optical path length is thus modified by temperature-dependent changes in the refractive index and the mechanical length of the fiber. For the first time, we measure the dynamic response of the optical path length to the periodic changes of temperature and find it to be in agreement with our former theoretical prediction. The fiber's response to the temperature changes is determined by the speed of sound in quartz rather than by slow thermal diffusion. Making use of this fact, we succeeded in actively stabilizing the optical path length with a closed-loop bandwidth of 3.8 kHz.

  6. FIBER-OPTIC AND OTHER WAVEGUIDES: Characteristics of nonlinear optical excitation of modes in planar waveguide structures

    Science.gov (United States)

    Yashkir, O. V.; Yashkir, Yu N.

    1987-06-01

    A theoretical investigation is made of nonlinear excitation of planar waveguide modes at frequencies ω when external plane optical waves of frequency ω1 are incident on the waveguide surface. The general formulas for the efficiency of the excitation of modes by a monochromatic wave are obtained and analyzed for the case of self-interaction of the ω = ω1 + ω1 - ω1 type and by a biharmonic wave in the case of generation of the difference frequency ω = ω1 - ω1'. The efficiency of parametric conversion of waveguide modes ω accompanied by an increase of the frequency to the range ω' is considered for the case when the sum frequency ω + ω1 = ω1' is generated. The numerical method developed by the authors is used to analyze the characteristic features of these processes in some specific cases.

  7. Relaxing incision for control of postoperative astigmatism following keratoplasty.

    Science.gov (United States)

    Troutman, R C; Swinger, C

    1980-02-01

    A new technique has been presented which provides a second surgical approach to correct excessive residual astigmatism following keratoplasty. The relaxing incision procedure has advantages over wedge resection in that it can be performed at the slit lamp, it gives no initial overcorrection, and it has a much shorter postoperative course while giving rapid results without suturing. Since this technique does not appear to produce significant hyperopia and may produce a tendency toward myopia, the corneal surgeon would thus have alternative techniques from which to choose, depending, in part, on the spherical component of the refraction.

  8. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    Science.gov (United States)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  9. Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber

    Directory of Open Access Journals (Sweden)

    V. V. G. Krishna Inavalli

    2012-01-01

    Full Text Available We present here an experimental demonstration of the wavelength dependence of the polarization singularities due to linear combination of the vector modes excited directly in a two-mode optical fiber. The coherent superposition of the vector modes excited by linearly polarized Gaussian beam as offset skew rays propagated in a helical path inside the fiber results in the generation of phase singular beams with edge dislocation in the fiber output. The polarization character of these beams is found to change dramatically with wavelength—from left-handed elliptically polarized edge dislocation to right-handed elliptically polarized edge-dislocation through disclinations. The measured behaviour is understood as being due to intermodal dispersion of the polarization corrections to the propagating vector modes, as the wavelength of the input beam is scanned.

  10. High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity.

    Science.gov (United States)

    Renoirt, Jean-Michel; Zhang, Chao; Debliquy, Marc; Olivier, Marie-Georges; Mégret, Patrice; Caucheteur, Christophe

    2013-11-18

    The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes. For this, we make use of tilted fiber Bragg gratings (TFBGs) as spectral combs to excite the orthogonally polarized cladding modes families separately. TFBGs were coated with a nanometer-scale transparent thin film characterized by a refractive index value close to 1.9, well higher than the one of pure silica. This coating brings two important assets: an ~8-fold increase in refractometric sensitivity is obtained in comparison to bare TFBGs while the sensitivity is extended to surrounding refractive index (SRI) values above 1.45.

  11. Development of Whispering Gallery Mode Polymeric Micro-optical Electric Field Sensors

    Science.gov (United States)

    Ioppolo, Tindaro; Ötügen, Volkan; Ayaz, Ulas

    2013-01-01

    Optical modes of dielectric micro-cavities have received significant attention in recent years for their potential in a broad range of applications. The optical modes are frequently referred to as "whispering gallery modes" (WGM) or "morphology dependent resonances" (MDR) and exhibit high optical quality factors. Some proposed applications of micro-cavity optical resonators are in spectroscopy1, micro-cavity laser technology2, optical communications3-6 as well as sensor technology. The WGM-based sensor applications include those in biology7, trace gas detection8, and impurity detection in liquids9. Mechanical sensors based on microsphere resonators have also been proposed, including those for force10,11, pressure12, acceleration13 and wall shear stress14. In the present, we demonstrate a WGM-based electric field sensor, which builds on our previous studies15,16. A candidate application of this sensor is in the detection of neuronal action potential. The electric field sensor is based on polymeric multi-layered dielectric microspheres. The external electric field induces surface and body forces on the spheres (electrostriction effect) leading to elastic deformation. This change in the morphology of the spheres, leads to shifts in the WGM. The electric field-induced WGM shifts are interrogated by exciting the optical modes of the spheres by laser light. Light from a distributed feedback (DFB) laser (nominal wavelength of ~ 1.3 μm) is side-coupled into the microspheres using a tapered section of a single mode optical fiber. The base material of the spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are used: (1) PDMS sphere with a 60:1 volumetric ratio of base-to-curing agent mixture, (2) multi layer sphere with 60:1 PDMS core, in order to increase the dielectric constant of the sphere, a middle layer of 60:1 PDMS that is mixed with varying amounts (2% to 10% by volume) of barium titanate and an outer layer of 60:1 PDMS and (3) solid silica sphere

  12. Properties of Optical Resonant Modes in Ⅲ-Nitride Semiconductor Micro-Cone Cavities

    Institute of Scientific and Technical Information of China (English)

    DAI Lun; ZHANG Bei; LIN Jing-Yu; JIANG Hong-Xing

    2001-01-01

    Arrays of Ⅲ-nitride semiconductor micro-cone cavities with a base diameter of 3.3μm were fabricated by ion beam etching. The micro-cones consisted of 58 nm thick multiple quantum wells of ln0.22Ga0.78N/In0.06Ga0.94N as well as a 1.5μm thick epilayer of GaN. Optical resonant modes from a single micro-cone could be clearly observed in the photoluminescence spectra at temperatures up to 200K under a pumping power density two orders of magnitude lower than that for the Ⅲ-nitride semiconductor micro-disk or micro-ring cavity. Using a novel optical ray tracing method, we have figured out four main types of optical resonant cavities inside the three-dimensional micro-cone, including two Fabry-Perot (F-P) mode types as well as two Whispering Gallery mode types. The three corresponding mode spacings among the four agree perfectly with the experimental results. The advantages of this new class of micro-cavity over the other micro-cavities are discussed. These findings are expected to have an impact on the design of the ultraviolet/blue micro-cavity laser diodes.

  13. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode

    CERN Document Server

    Verhagen, E; Weis, S; Schliesser, A; Kippenberg, T J

    2011-01-01

    Quantum control of engineered mechanical oscillators can be achieved by coupling the oscillator to an auxiliary degree of freedom, provided that the coherent rate of energy exchange exceeds the decoherence rate of each of the two sub-systems. We achieve such quantum-coherent coupling between the mechanical and optical modes of a micro-optomechanical system. Simultaneously, the mechanical oscillator is cooled to an average occupancy of n = 1.7 \\pm 0.1 motional quanta. Pulsed optical excitation reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. These results provide a route towards the realization of efficient quantum interfaces between mechanical oscillators and optical fields.

  14. Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator

    CERN Document Server

    Santos, Felipe G S; Luiz, Gustavo O; Benevides, Rodrigo S; Wiederhecker, Gustavo S; Alegre, Thiago P Mayer

    2016-01-01

    Optomechanical cavities have proven to be an exceptional tool to explore fundamental and technological aspects of the interaction between mechanical and optical waves. Such interactions strongly benefit from cavities with large optomechanical coupling, high mechanical and optical quality factors, and mechanical frequencies larger than the optical mode linewidth, the so called resolved sideband limit. Here we demonstrate a novel optomechanical cavity based on a disk with a radial mechanical bandgap. This design confines light and mechanical waves through distinct physical mechanisms which allows for independent control of the mechanical and optical properties. Our device design is not limited by unique material properties and could be easily adapted to allow large optomechanical coupling and high mechanical quality factors with other promising materials. Finally, our demonstration is based on devices fabricated on a commercial silicon photonics facility, demonstrating that our approach can be easily scalable.

  15. Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique.

    Science.gov (United States)

    Nakazawa, Masataka; Yoshida, Masato

    2008-05-15

    We have succeeded in achieving independent control of the repetition rate and optical frequency of a pulse laser by employing a regenerative mode-locking technique. By adopting a voltage-controlled microwave phase shifter or an optical delay line in a regenerative feedback loop we can control the repetition rate of the laser without directly disturbing the optical frequencies. We experimentally show how this independent control can be realized by employing a 40 GHz harmonically and regeneratively mode-locked fiber laser.

  16. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory.

    Science.gov (United States)

    Ju, Guohao; Yan, Changxiang; Gu, Zhiyuan; Ma, Hongcai

    2016-05-01

    In active optics systems, one concern is how to quantitatively separate the effects of astigmatic and trefoil figure errors and misalignments that couple together in determining the total aberration fields when wavefront measurements are available at only a few field points. In this paper, we first quantitatively describe the impact of mount-induced trefoil deformation on the net aberration fields by proposing a modified theoretical formulation for the field-dependent aberration behavior of freeform surfaces based on the framework of nodal aberration theory. This formulation explicitly expresses the quantitative relationships between the magnitude of freeform surfaces and the induced aberration components where the freeform surfaces can be located away from the aperture stop and decentered from the optical axis. On this basis, and in combination with the mathematical presentation of nodal aberration theory for the effects of misalignments, we present the analytic expressions for the aberration fields of two-mirror telescopes in the presence of astigmatic primary mirror figure errors, mount-induced trefoil deformations on both mirrors, and misalignments. We quantitatively separate these effects using the analytical expressions with wavefront measurements at a few field points and pointing errors. Valuable insights are provided on how to separate these coupled effects in the computation process. Monte Carlo simulations are conducted to demonstrate the correctness and accuracy of the analytic method presented in this paper.

  17. Goos-Hänchen shift and localization of optical modes in deformed microcavities.

    Science.gov (United States)

    Unterhinninghofen, Julia; Wiersig, Jan; Hentschel, Martina

    2008-07-01

    Recently, an interesting phenomenon of spatial localization of optical modes along periodic ray trajectories near avoided resonance crossings has been observed [Wiersig, Phys. Rev. Lett. 97, 253901 (2006)]. For the case of a microdisk cavity with elliptical cross section, we use the Husimi function to analyze this localization in phase space. Moreover, we present a semiclassical explanation of this phenomenon in terms of the Goos-Hänchen shift, which works very well even deep in the wave regime. This semiclassical correction to the ray dynamics modifies the phase-space structure such that modes can localize either on stable islands or along unstable periodic ray trajectories.

  18. Observation of Defect-Free Surface Modes in Optical Waveguide Arrays

    Science.gov (United States)

    Szameit, Alexander; Garanovich, Ivan L.; Heinrich, Matthias; Sukhorukov, Andrey A.; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; Tünnermann, Andreas; Kivshar, Yuri S.

    2008-11-01

    We report on the experimental observation of novel defect-free surface modes predicted theoretically for modulated photonic lattices [I. L. Garanovich et al., Phys. Rev. Lett. 100, 203904 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.203904]. We generate the linear surface modes in truncated arrays of periodically curved optical waveguides created in fused silica by a laser direct-writing technique. Our results demonstrate that the degree of surface wave localization can be controlled by selecting the waveguide bending amplitude.

  19. General complex envelope solutions of coupled-mode optics with quadratic or cubic nonlinearity

    CERN Document Server

    Hesketh, Graham D

    2015-01-01

    The analytic general solutions for the complex field envelopes are derived using Weierstrass elliptic functions for two and three mode systems of differential equations coupled via quadratic $\\chi_2$ type nonlinearity as well as two mode systems coupled via cubic $\\chi_3$ type nonlinearity. For the first time, a compact form of the solutions is given involving simple ratios of Weierstrass sigma functions (or equivalently Jacobi theta functions). A Fourier series is also given. All possible launch states are considered. The models describe sum and difference frequency generation, polarization dynamics, parity-time dynamics and optical processing applications.

  20. Majorana modes and topological superfluids for ultracold fermionic atoms in anisotropic square optical lattices

    Science.gov (United States)

    Wu, Ya-Jie; Li, Ning; Kou, Su-Peng

    2016-12-01

    Motivated by the recent experimental realization of two-dimensional spin-orbit coupling through optical Raman lattice scheme, we study attractive interacting ultracold gases with spin-orbit interaction in anisotropic square optical lattices, and find that rich s-wave topological superfluids can be realized, including Z2 topological superfluids beyond the characterization of "tenfold way" in addition to chiral topological superfluids. The topological defects-superfluid vortex and edge dislocations-may host Majorana modes in some topological superfluids, which are helpful for realizing topological quantum computation and Majorana fermionic quantum computation. In addition, we also discuss the Berezinsky-Kosterlitz-Thouless phase transitions for different topological superfluids.

  1. Mode-locked pulse oscillation of a self-resonating enhancement optical cavity

    CERN Document Server

    Hosaka, Yuji; Kosuge, Atsushi; Omori, Tsunehiko; Sakaue, Kazuyuki; Takahashi, Tohru; Uesugi, Yuuki; Urakawa, Junji; Washio, Masakazu

    2016-01-01

    A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and a high repetition frequency, which is not feasible by using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity, and has become a major technical issue in developing such cavities. We developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstration of a mode-locked pulse oscillation using the new system.

  2. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.;

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  3. Selective coupling of optical energy into the fundamental diffusion mode of a scattering medium

    CERN Document Server

    Ojambati, Oluwafemi S; Lagendijk, Ad; Mosk, Allard P; Vos, Willem L

    2015-01-01

    We demonstrate experimentally that optical wavefront shaping selectively couples light into the fundamental diffusion mode of a scattering medium. The total energy density inside a scattering medium of zinc oxide (ZnO) nanoparticles was probed by measuring the emitted fluorescent power of spheres that were randomly positioned inside the medium. The fluorescent power of an optimized incident wave front is observed to be enhanced compared to a non-optimized incident front. The observed enhancement increases with sample thickness. Based on diffusion theory, we derive a model wherein the distribution of energy density of wavefront-shaped light is described by the fundamental diffusion mode. The agreement between our model and the data is striking not in the least since there are no adjustable parameters. Enhanced total energy density is crucial to increase the efficiency of white LEDs, solar cells, and of random lasers, as well as to realize controlled illumination in biomedical optics.

  4. Influence of Temperature and Pressure on Dispersion Properties of Nonlinear Single Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Mostafa H. Ali, Ahmed E. Elsamahy, Maher A. Farhoud and Taymour A. Hamdalla

    2012-10-01

    Full Text Available Near field distribution, propagation constant and dispersion characteristics of nonlinear single-mode optical fibers have been investigated. Shooting-method technique is used and implemented into a computer code for both profiles of step-index and graded-index fibers. An error function is defined to estimate the discrepancy between the expected electric-field radial derivative at the core-cladding interface and that obtained by numerically integrating the wave equation through the use of Runge-Kutta method. All of the above calculations done under the ocean depth in which the depth will affect the refractive index that have a direct effect on all the optical fiber parameters.KeyWords: Nonlinear refractive index, Normalized propagation constant, Mode delay factor, Material dispersion, Waveguide dispersion.

  5. Arc-discharge effects on residual stress and refractive index in single-mode optical fibers.

    Science.gov (United States)

    Wang, Pengfei; Jenkins, Micah H; Gaylord, Thomas K

    2016-03-20

    Arc-discharge effects on the residual stress and refractive index in single-mode optical fibers are investigated using a previously developed three-dimensional concurrent stress-index measurement method. Using commercial optical fibers and a commercial fusion splicer, the residual stress and refractive index perturbations caused by weak electrical arc discharges in single-mode fibers were measured. Refractive index changes greater than 10-4 and longitudinal perturbation lengths of less than 500 μm were shown to be possible. The subsequent prospects for arc-induced long-period fiber gratings are analyzed, and a typical transmission resonance is predicted to have a depth of 56 dB and a bandwidth of 0.08 nm at a wavelength of 1585 nm. The results of this investigation will be useful in modeling device performance and optimization of arc-induced long-period fiber grating fabrication.

  6. Surface modes of a sessile water drop: an optical tweezer based study.

    Science.gov (United States)

    Ghosh, Shankar; Sharma, Prerna; Bhattacharya, S

    2007-11-01

    A high-precision method to study the dynamics of two-fluid interfaces using an optical tweezer and a phase-sensitive detection technique are described. The disturbances set up at the interface are studied by analyzing the motion of an optically trapped particle in the bulk of the fluid, i.e., away from the interface. The usefulness of the technique is demonstrated for the well-known problem of a horizontally vibrated sessile liquid drop. The vibrational modes of the liquid drop excited by sinusoidally vibrating the support in a horizontal plane appear as resonances in the motion of the trapped particle. The nature of the resonance is studied in detail by measuring the real part, the imaginary part, and the phase response of the motion of the particle as a function of the "effective" size of the liquid drop. Excellent quantitative agreement with the theoretically predicted values of the eigenfrequencies and damping of the surface modes is obtained.

  7. Surface modes of a sessile water drop: An optical tweezer based study

    Science.gov (United States)

    Ghosh, Shankar; Sharma, Prerna; Bhattacharya, S.

    2007-11-01

    A high-precision method to study the dynamics of two-fluid interfaces using an optical tweezer and a phase-sensitive detection technique are described. The disturbances set up at the interface are studied by analyzing the motion of an optically trapped particle in the bulk of the fluid, i.e., away from the interface. The usefulness of the technique is demonstrated for the well-known problem of a horizontally vibrated sessile liquid drop. The vibrational modes of the liquid drop excited by sinusoidally vibrating the support in a horizontal plane appear as resonances in the motion of the trapped particle. The nature of the resonance is studied in detail by measuring the real part, the imaginary part, and the phase response of the motion of the particle as a function of the "effective" size of the liquid drop. Excellent quantitative agreement with the theoretically predicted values of the eigenfrequencies and damping of the surface modes is obtained.

  8. Optimal coupling of entangled photons into single-mode optical fibers

    CERN Document Server

    Andrews, R; Sarkar, S; Sarkar, Sarben

    2004-01-01

    We present a consistent multimode theory that describes the coupling of single photons generated by collinear Type-I parametric down-conversion into single-mode optical fibers. We have calculated an analytic expression for the fiber diameter which maximizes the pair photon count rate. For a given focal length and wavelength, a lower limit of the fiber diameter for satisfactory coupling is obtained.

  9. Low-coherence spectral interferometry with a Michelson interferometer applied to dispersion measurement of a two-mode optical fiber

    Science.gov (United States)

    Hlubina, Petr

    1999-12-01

    Intermodal dispersion in a two-mode optical fiber can be measured in the spectral domain when the spectral interference between modes at the output of the optical fiber shows up as a periodic modulation of the source spectrum that can be processed. However, this technique cannot be used to measure intermodal dispersion in the two- mode optical fiber when the period of modulation is too small to be resolved by a spectrometer. Consequently, we proposed a new measuring technique utilizing a tandem configuration of a dispersive Michelson interferometer and the two-mode optical fiber in which the spectral interference can be resolved even if a low-resolution spectrometer is used. In the tandem configuration of the Michelson interferometer and the two-mode optical fiber, the optical path difference (OPD) in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the feasibility of this technique has successfully been demonstrated in obtaining the intermodal dispersion in the two-model optical fiber.

  10. Electro-optical characteristics of a chiral hybrid in-plane switching liquid crystal mode for high brightness.

    Science.gov (United States)

    Gwag, Jin Seog; Sohn, Kyunghwa; Kim, Young-Ki; Kim, Jae-Hoon

    2008-08-04

    We propose a new in-plane switching (IPS) nematic liquid crystal (LC) mode which uses a twist effect with a hybrid LC alignment and interdigitated electrodes as an approach for a high brightness. This is optimized to a normally white mode to minimize loss of transmittance at the electrode compared to the conventional IPS mode. The proposed mode shows an excellent dark state because the bulk LCs are aligned in parallel to the optic axis of the polarizer under low electric fields. Consequently, this proposed mode exhibits a much higher contrast ratio (980:1) than that of the conventional IPS mode (550:1).

  11. X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating

    Science.gov (United States)

    Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim

    We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.

  12. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    Science.gov (United States)

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-09

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.

  13. Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy

    Indian Academy of Sciences (India)

    Rajeev R Prabhu; M Abdul Khadar

    2008-06-01

    The reduction in the grain size to nanometer range can bring about radical changes in almost all of the properties of semiconductors. CdS nanoparticles have attracted considerable scientific interest because they exhibit strongly size-dependent optical and electrical properties. In the case of nanostructured materials, confinement of optical phonons can produce noticeable changes in their vibrational spectra compared to those of bulk crystals. In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time intervals. The crystal structure and grain size of the samples were determined using X-ray diffraction and HRTEM. The Raman spectra of the as-prepared and heat treated samples were recorded using conventional Raman and micro-Raman techniques. The spectrum of as prepared sample exhibited an intense, broad peak at 301 cm-1 corresponding to the LO phonon mode. Higher order phonon modes were also observed in the spectra. A noticeable asymmetry in the Raman line shape indicated the effect of phonon confinement. Other features in the spectra are discussed in detail.

  14. Investigations on Shaped Mirror Systems in Quasi-Optical Mode Converters Based on Irradiance Moments Method

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2016-01-01

    Full Text Available A method of transforming high-order Gaussian beams (GBs mode into circular symmetry fundamental Gaussian beam (FGB mode with arbitrary waist size is presented using irradiance moments method in quasi-optical (QO mode converters. The double shaped mirrors correcting amplitude and phase simultaneously are generated by a single incidence irradiance sampling data and known ideal output FGB taking advantage of linear moment matching technique and Fresnel diffraction theory, which can be applied to a wide frequency range especially significant for terahertz band. The numerical coding procedure of creating double correcting mirrors and its fast convergence speed are discussed at 325 GHz. Numerical and experimental comparisons reveal the conclusion that enhancing surface precision and increasing moments order can improve main lobe levels.

  15. Synergetic interaction of Dark-Modes and Faraday Rotation for Enhanced Magneto-Optics

    CERN Document Server

    Mazor, Y; Steinberg, Ben Z

    2016-01-01

    We examine the efficacy of Dark-mode plasmonics as a platform for enhanced magneto-optics. Dark-mode of a small particle consists of two co-existing equal-intensity and mutually opposing dipolar excitations. Each of these two opposing dipoles may even resonate intensely at or near the dark-mode frequency, but the net dipole moment of the system vanishes due to the mutual cancelation between the opposing dipoles. We show that application of external magnetic bias may alleviate the intense destructive interference. Furthermore, under external magnetic bias the opposing dark-resonances of a plasmonic particle shift in opposite directions and create a region of extremely sensitive Faraday rotation. We show that the magnetized dark resonance in Ag particle may provide 50 degrees rotation under magnetic fields of the order of 1-2 Tesla, exhibiting magneto-plasmonic activity that is nearly three orders of magnitude larger than that observed in conventional plasmonic particle.

  16. Distributed optical fiber sensor for spatial location of polarization mode coupling

    Science.gov (United States)

    Cokgor, Ilkan; Handerek, Vincent A.; Rogers, Alan J.

    1993-03-01

    Transverse stress applied to a highly birefringent fiber at an arbitrary angle (other than 0 or 90 degrees) to the fiber birefringence axes causes rotation of the birefringence axes and changes the beat length of the fiber in that section. If one of the polarization modes is excited at the input, coupling of light from one mode to the other will be observed at a stress point. The presentation describes a method for determining the locations of discrete mode coupling points spaced along a polarization maintaining fiber using a pump-prob architecture based on the optical Kerr effect. Probe light experiences coupling at different stress locations. Counterpropagating strong pump light also experiences coupling while inducing additional birefringence, and changing the polarization state of the probe at the output. This system may be made temperature independent by introducing a phase tracking/triggering system. The advantages and limitations of this technique are described.

  17. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes.

    Science.gov (United States)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng; Olmos, Juan José Vegas; Garrido-Balsells, José María; Monroy, Idelfonso Tafur

    2015-12-28

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by ℳ turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.

  18. Experimental verification of a model describing the intensity distribution from a single mode optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2011-01-24

    The intensity distribution of a transmission from a single mode optical fiber is often approximated using a Gaussian-shaped curve. While this approximation is useful for some applications such as fiber alignment, it does not accurately describe transmission behavior off the axis of propagation. In this paper, another model is presented, which describes the intensity distribution of the transmission from a single mode optical fiber. A simple experimental setup is used to verify the model's accuracy, and agreement between model and experiment is established both on and off the axis of propagation. Displacement sensor designs based on the extrinsic optical lever architecture are presented. The behavior of the transmission off the axis of propagation dictates the performance of sensor architectures where large lateral offsets (25-1500 {micro}m) exist between transmitting and receiving fibers. The practical implications of modeling accuracy over this lateral offset region are discussed as they relate to the development of high-performance intensity modulated optical displacement sensors. In particular, the sensitivity, linearity, resolution, and displacement range of a sensor are functions of the relative positioning of the sensor's transmitting and receiving fibers. Sensor architectures with high combinations of sensitivity and displacement range are discussed. It is concluded that the utility of the accurate model is in its predicative capability and that this research could lead to an improved methodology for high-performance sensor design.

  19. Near-field imaging of optical antenna modes in the mid-infrared.

    Science.gov (United States)

    Olmon, Robert L; Krenz, Peter M; Jones, Andrew C; Boreman, Glenn D; Raschke, Markus B

    2008-12-08

    Optical antennas can enhance the coupling between free-space propagating light and the localized excitation of nanoscopic light emitters or receivers, thus forming the basis of many nanophotonic applications. Their functionality relies on an understanding of the relationship between the geometric parameters and the resulting near-field antenna modes. Using scattering-type scanning near-field optical microscopy (s-SNOM) with interferometric homodyne detection, we investigate the resonances of linear Au wire antennas designed for the mid-IR by probing specific vector near-field components. A simple effective wavelength scaling is observed for single wires with lambda(eff) = lambda /(2.0+/- 0.2), specific to the geometric and material parameters used. The disruption of the coherent current oscillation by introducing a gap gives rise to an effective multipolar mode for the two near-field coupled segments. Using antenna theory and numerical electrodynamics simulations two distinct coupling regimes are considered that scale with gap width or reactive near-field decay length, respectively. The results emphasize the distinct antenna behavior at optical frequencies compared to impedance matched radio frequency (RF) antennas and provide experimental confirmation of theoretically predicted scaling laws at optical frequencies.

  20. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  1. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering.

    Science.gov (United States)

    Hsieh, Bao-Yu; Chen, Sung-Liang; Ling, Tao; Guo, L Jay; Li, Pai-Chi

    2014-03-01

    Ultrasound (US) and photoacoustic (PA) multimodality imaging has the advantage of combining good acoustic resolution with high optical contrast. The use of an all-optical scanhead for both imaging modalities can simplify integration of the two systems and miniaturize the imaging scanhead. Herein we propose and demonstrate an all-optical US/PA scanhead using a thin plate for optoacoustic generation in US imaging, a polymer microring resonator for acoustic detection, and a dichroic filter to switch between the two imaging modes by changing the laser wavelength. A synthetic-aperture focusing technique is used to improve the resolution and contrast. Phantom images demonstrate the feasibility of this design, and show that axial and lateral resolutions of 125 μm and 2.52°, respectively, are possible.

  2. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    A Zendehnam; M Mirzaei; A Farashiani; L Horabadi Farahani

    2010-04-01

    Loss of optical power in a single-mode optical fibre due to bending has been investigated for a wavelength of 1550 nm. In this experiment, the effects of bending radius (4–15 mm, with steps of 1 mm), and wrapping turns (up to 40 turns) on loss have been studied. Twisting the optical fibre and its influence on power loss also have been investigated. Variations of bending loss with these two parameters have been measured, loss with number of turns and radius of curvature have been measured, and with the help of computer curve fitting method, semi-empirical relationships between bending loss and these two parameters have been found, which show good agreement with the obtained experimental results.

  3. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Fidler Franz

    2008-01-01

    Full Text Available Abstract In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  4. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Oswald Wallner

    2008-05-01

    Full Text Available In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  5. The Comprehensive Control of Astigmatism during and Following Intraocular Lens Implantation.

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The operating corneoloscope and Terry operative keratometer were used respectively in 29 and 34 eyes during the intraocular lens implantation to measure the corneal astigmatism qualitatively or quantitatively,so that the tension of incision closure could be adjusted. The surgically induced astigmatism in qualitative group two weeks after the operation was 3. 5 ± 1. 70 D and that in quantitative group was 2. 56±1. 60 D. There were 55.17% and 38. 24% of the eyes with over 2. 00 D corneal astigmatism in qu...

  6. Success rates in the correction of astigmatism with toric and spherical soft contact lens fittings

    OpenAIRE

    Sevda Aydin Kurna; Tomris Şengör; Murat Ün; et al

    2010-01-01

    Sevda Aydin Kurna, Tomris Şengör, Murat Ün, Suat AkiFatih Sultan Mehmet Education and Research Hospital, Ophthalmology Clinics, lstanbul, TurkeyObjectives: To evaluate success rates in the correction of astigmatism with toric and spherical soft contact lens fitting.Methods: 30 patients with soft toric lenses having more than 1.25 D of corneal astigmatism (25 eyes; Group A) or having 0.75–1.25 D of corneal astigmatism (22 eyes; Group B ) and 30 patients with soft sp...

  7. Success rates in the correction of astigmatism with toric and spherical soft contact lens fittings

    OpenAIRE

    Aydin Kurna, Sevda; Tomris,Sengor

    2010-01-01

    Sevda Aydin Kurna, Tomris Şengör, Murat Ün, Suat AkiFatih Sultan Mehmet Education and Research Hospital, Ophthalmology Clinics, lstanbul, TurkeyObjectives: To evaluate success rates in the correction of astigmatism with toric and spherical soft contact lens fitting.Methods: 30 patients with soft toric lenses having more than 1.25 D of corneal astigmatism (25 eyes; Group A) or having 0.75–1.25 D of corneal astigmatism (22 eyes; Group B ) and 30 patients with soft s...

  8. Proximity- and Astigmatism-Tolerant Testsites For Electrical Linewidth Measurement

    Science.gov (United States)

    Lin, Burn J.

    1989-07-01

    Electrical linewidth measurement is well-known for high precision and throughput. However, the standard four-point probe testsite is only useful for measuring the width of an isolated conducting line. Line-and-space and isolated spaces can be simulated satisfactorily by adding dummy lines parallel to the active line but weak links or potential electrical shorting situations often prematurely cause these structures to fail before their true limits are reached. In this paper, fully wrapped proximity- and astigmatism-tolerant designs for line-and-space and isolated spaces are shown. They have been successfully demonstrated with printed images. An application in evaluating the exposure-defocus window of a one-layer i-line resist using the proximity-tolerant testsites is given.

  9. Multiple Observing Modes for Wide-field Optical Surveillance of GEO Space

    Science.gov (United States)

    McGraw, J.; Zimmer, P.; Ackermann, M.

    2016-09-01

    Very wide field of view optical sensors with silicon detectors are being used in multiple survey modes by J. T. McGraw and Associates to provide persistent, affordable surveillance of GEO space to faint limiting magnitudes. Examples include: classical staring mode with typical integration times of seconds provided by multiple co-directed sensors to provide a deep mosaic of tens of square degrees per exposure to faint limiting magnitude b) step-and-stare observations of several second integration time from which a continuous, overlapped, mosaicked image of GEO space can be provided time-delay and integrate (TDI) imagery obtained by driving the telescope in declination and stepping the telescope in the E-W direction, which produces repeated, overlapping (if desired), synoptic images of GEO space. With current 350 mm diameter optics, detection limits for concentrated observations (e.g. "neighborhood watch") detection limits of magnitude 18 are achieved, and for uncued survey the detection limits are fainter than magnitude 16. Each of these techniques can employ multiple telescopes to obtain search rates in excess of 1000 square degrees per hour, allowing complete uncued CONUS GEO surveillance to +/- 15 degrees latitude every two nighttime hours. With appropriate placement, sensors could provide complete coverage of GEO to these limiting magnitudes at the same survey rate. At each step of the development of this unique capability we discuss the fundamental underlying physical principals of optics, detectors, search modes and siting that enable this survey, a valuable adjunct to RF, radar, GEODSS and other optical surveys of GEO space.

  10. Ultrafast, low-power, all-optical switching via birefringent phase-matched transverse mode conversion in integrated waveguides

    CERN Document Server

    Hellwig, Tim; Schnack, Martin; Boller, Klaus -J; Fallnich, Carsten

    2015-01-01

    We demonstrate the potential of birefringence-based, all-optical, ultrafast conversion between the transverse modes in integrated optical waveguides by modelling the conversion process by numerically solving the multi-mode coupled nonlinear Schroedinger equations. The observed conversion is induced by a control beam and due to the Kerr effect, resulting in a transient index grating which coherently scatters probe light from one transverse waveguide mode into another. We introduce birefringent phase matching to enable efficient all-optically induced mode conversion at different wavelengths of the control and probe beam. It is shown that tailoring the waveguide geometry can be exploited to explicitly minimize intermodal group delay as well as to maximize the nonlinear coefficient, under the constraint of a phase matching condition. The waveguide geometries investigated here, allow for mode conversion with over two orders of magnitude reduced control pulse energy compared to previous schemes and thereby promise ...

  11. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.

    Science.gov (United States)

    Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute

    2016-09-15

    Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform.

  12. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    Directory of Open Access Journals (Sweden)

    Edward Davies

    2014-11-01

    Full Text Available A finite element analysis (FEA model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel.

  13. Detection and identification of microparticles/nanoparticles and blood components using optical resonance of whispering-gallery modes in microspheres

    Science.gov (United States)

    Tcherniavskaia, E. A.; Saetchnikov, V. A.

    2010-11-01

    We present experimental data on the dependence of optical resonance spectra of whispering-gallery modes in dielectric microspheres on the constituent composition of solutions modeling blood plasma and also containing disease indicators and virus ghosts. We observe substantial changes in the optical resonance spectra of whispering-gallery modes, associated both with a change in the macroscopic parameters of the microsphere environment and with possible interaction between the microsphere surface and components of the solution.

  14. [Review on label-free optical bio-sensing technology based on whisper-gallery-mode].

    Science.gov (United States)

    Jiang, Jun-feng; Liu, Tie-gen; Li, Hai-wei; Hui, Rong-qing; Liu, Kuni; Zhang, Yi-mo

    2010-11-01

    Optical biosensors are becoming an important tool for drug research and life science, and the label-free optical biosensor based on whisper-gallery-mode (WGM) is reviewed in the present paper. The WGM-based sensors are categorized into three types according to the microcavity structure. The biosensor using microsphere got extensive research because of high quality factor, and its response to protein, virus, and bacteria had been studied. The models based on single photon resonant state and perturbation theory were established. The biosensor using microdisk was proposed early since it can make use of mature lithography technology; however, the quality factor was increased greatly only after the thermal reflow process was introduced and single molecule measurement was then realized. The biosensor using microring has simpler mode structure and materials such as polymer, silicon nitride and silicon-on-insulator had been used for sensor fabrication. As a 3-dimension expansion, sensor using microtube can combine the optical channel and fluidic channel, which attracting more and more attention.

  15. Design, fabrication and characterisation of nano-imprinted single mode waveguide structures for intra-chip optical communications

    Science.gov (United States)

    Justice, John; Khan, Umar; Korhonen, Tia; Boersma, Arjen; Wiegersma, Sjoukje; Karppinen, Mikko; Corbett, Brian

    2015-03-01

    In the Information and Communications Technology (ICT) sector, the demands on bandwidth continually grow due to increased microprocessor performance and the need to access ever increasing amounts of stored data. The introduction of optical data transmission (e.g. glass fiber) to replace electronic transmission (e.g. copper wire) has alleviated the bandwidth issue for communications over distances greater than 10 meters, however, the need has arisen for optical data transfer over shorter distances such as those found inside computers. A possible solution for this is the use of low-cost single mode polymer based optical waveguides fabricated by direct patterning Nanoimprint Lithography (NIL). NIL has emerged as a scalable manufacturing technology capable of producing features down to the hundred nanometer scale with the potential for large scale (roll-to-roll) manufacturing. In this paper, we present results on the modeling, fabrication and characterization of single mode waveguides and optical components in low-loss ORMOCER™ materials. Single mode waveguides with a mode field diameter of 7 μm and passive structures such as bends, directional couplers and multi-mode interferometers (MMIs) suitable for use in 1550 nm optical interconnects were fabricated using wafer scale NIL processes. Process issues arising from the nano-imprint technique such as residual layers and angled sidewalls are modeled and investigated for excess loss and higher order mode excitation. Conclusions are drawn on the applicability of nano-imprinting to the fabrication of circuits for intrachip/ board-level optical interconnect.

  16. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  17. SURGICALLY INDUCED ASTIGMATISM AFTER 20G VS 23G PARS PLANA VITRECTOMY

    Directory of Open Access Journals (Sweden)

    Lokabhi Reddy

    2015-05-01

    Full Text Available Pars Plana Vitrectomy is done to clear the Vitreous cavity of the Eye. Trans conjunctival Sutureless Vitrectomy with 23G & 25G has become more popular over the Conventional 20G Vitrectomy in recent times. It has many advantages. Less amount of Surgically Induc ed Astigmatism is one of the Advantages with Sutureless Vitrectomy, which will have the Advantage of Early Visual rehabilitation with better Vision. An interventional comparative study was done between 20G & 23 G Pars Plana Vitrectomy in 2 Groups of 30 pat ients each to assess the amount of Post - Operative Astigmatism. The cases were followed up for 6 months to assess the long term effects. There was a significant difference in immediate Post - Operative Astigmatism. But after some time the difference is much l ess showing that the main advantage on Astigmatism with Trans conjunctival Sutureless Vitrectomy is noted mainly during the first few weeks after the Surgery.

  18. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik;

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...

  19. Single-Mode Propagation in Optical Waveguides and Fibres: A Critical Review of its Treatment in Physics Textbooks

    Science.gov (United States)

    Ruddock, Ivan S.

    2009-01-01

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…

  20. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  1. Numerical analysis of intermodal delay in few-mode fibers for mode division multiplexing in optical fiber communication systems

    Institute of Scientific and Technical Information of China (English)

    Abid Munir; XIN Xiang-jun; LIU Bo; Abdul Latif; Aftab Hussain; Shahab Ahmad Niazi

    2012-01-01

    In order to achieve higher spectral efficiency,mode division multiplexing (MDM) in few-mode fibers is a new research area.The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system.This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers.We analyze numerically all the parameters of fiber,which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.

  2. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity

    CERN Document Server

    Ozdemir, Sahin Kaya; He, Lina; Yang, Lan

    2011-01-01

    We investigate scattering process in an ultra-high-Q optical microcavity coupled to subwavelength scatterers by introducing "splitting quality" Qsp, a dimensionless parameter defined as the ratio of the scatterer-induced mode splitting to the total loss of the coupled system. A simple relation is introduced to directly estimate the Purcell factor from single-shot measurement of transmission spectrum of scatterer-coupled cavity. Experiments with polystyrene (PS) and gold (Au) nanoparticles, Erbium ions and Influenza A virions show that Purcell-factor-enhanced preferential funneling of scattering into the cavity mode takes place regardless of the scatterer type. Experimentally determined highest Qsp for single PS and Au nanoparticles are 9.4 and 16.19 corresponding to Purcell factors with lower bounds of 353 and 1049, respectively. The highest observed Qsp was 31.2 for an ensemble of Au particles. These values are the highest Qsp and Purcell factors reported up to date.

  3. Ultrasound-modulated optical tomography in reflection mode with ring-shaped light illumination

    Science.gov (United States)

    Kim, Chulhong; Song, Kwang Hyun; Maslov, Konstantin; Wang, Lihong V.

    2009-03-01

    We have succeeded in implementing ring-shaped light illumination ultrasound-modulated optical tomography (UOT) in reflection mode. The system used intense acoustic bursts and a charge-coupled device (CCD) camera-based speckle contrast detection method. In addition, the implementation allows placing the tissue sample below (not within) an acoustic coupling water tank and scanning the tissue without moving the sample. Thus, the UOT system is more clinically applicable than previous transmission-mode systems. Furthermore, we have successfully imaged an ex vivo methylene-blue-dyed sentinel lymph node (SLN) embedded at a depth of 13 mm in chicken breast tissue. This UOT system offers several advantages: noninvasiveness, nonionizing radiation, portability, cost effectiveness, and the possibility of combination with ultrasound pulse-echo imaging and photoacoustic imaging. One potential application of the UOT system is mapping SLNs in axillary staging for breast cancer patients.

  4. Micro-lensed single-mode optical fiber with high numerical aperture

    CERN Document Server

    Kato, Shinya; Aoki, Takao

    2013-01-01

    We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemispherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62\\lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29\\lambda for \\lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.

  5. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.

    Science.gov (United States)

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-08-01

    We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.

  6. Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins

    Science.gov (United States)

    Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.

    1994-07-01

    An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.

  7. Collective polaritonic modes in an array of two-level quantum emitters coupled to optical nanofiber

    CERN Document Server

    Kornovan, D F; Petrov, M I

    2016-01-01

    In this paper we develop a microscopic analysis of the light scattering on a periodic two-level atomic array coupled to an optical nanofiber. We extend the scattering matrix approach for two-level system interaction with nanofiber fundamental waveguiding mode HE_{11}, that allows us modeling the scattering spectra. We support these results considering the dispersion of the polaritonic states formed by the superposition of the fundamental mode of light HE_{11} and the atomic chain states. To illustrate our approach we start with considering a simple model of light scattering over atomic array in the free space. We discuss the Bragg diffraction at the atomic array and show that the scattering spectrum is defined by the non-symmetric coupling of two-level system with nanofiber and vacuum modes. The proposed method allows considering two-level systems interaction with full account for dipole-dipole interaction both via near fields and long-range interaction owing to nanofiber mode coupling.

  8. Interface-Optical-Phonon Modes in Quasi-one-dimensional Wurtzite Rectangular Quantum Wires

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li

    2006-01-01

    By employing the dielectric continuum model and Loudon's uniaxial crystal model, the interface optical(IO) phonon modes in a freestanding quasi-one-dimensional (Q1D) wurtzite rectangular quantum wire are derived and analyzed. Numerical calculation on a freestanding wurtzite GaN quantum wire is performed. The results reveal that the dispersion frequencies of IO modes sensitively depend on the geometric structures of the Q1D wurtzite rectangular quantum wires, the free wave-number kz in z-direction and the dielectric constant of the nonpolar matrix. The degenerating behavior of the IO modes in Q1D wurtzite rectangular quantum wire has been clearly observed in the case of small wave-number kz and large ratio of length to width of the rectangular crossing profile. The limited frequency behaviors of IO modes have been analyzed deeply, and detailed comparisons with those in wurtzite planar quantum wells and cylindrical quantum wires are also done. The present theories can be looked on as a generalization of that in isotropic rectangular quantum wires, and it can naturally reduce to the case of Q1D isotropic quantum wires once the anisotropy of the wurtzite material is ignored.

  9. Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator

    Science.gov (United States)

    Westcott, Sarah L.; Zhang, Jiangquan; Shelton, Robert K.; Bruce, Nellie M. K.; Gupta, Sachin; Keen, Steven L.; Tillman, Jeremy W.; Wald, Lara B.; Strecker, Brian N.; Rosenberger, A. T.; Davidson, Roy R.; Chen, Wei; Donovan, Kevin G.; Hryniewicz, John V.

    2008-03-01

    We demonstrate the ability to excite and monitor many whispering gallery modes (WGMs) of a microsphere resonator simultaneously in order to make broadband optical absorbance measurements. The 340μm diameter microsphere is placed in a microfluidic channel. A hemispherical prism is used for coupling the WGMs into and out of the microsphere. The flat surface of the prism seals the microfluidic channel. The slight nonsphericity in the microsphere results in coupling to precessed modes whose emission is spatially separated from the reflected excitation light. The evanescent fields of the light trapped in WGMs interact with the surrounding environment. The change in transmission observed in the precessed modes is used to determine the absorbance of the surrounding environment. In contrast to our broadband optical absorbance measurements, previous WGM sensors have used only a single narrow mode to measure properties such as refractive index. With the microfluidic cell, we have measured the absorbance of solutions of dyes (lissamine green B, sunset yellow, orange G, and methylene blue), aromatic molecules (benzylamine and benzoic acid), and biological molecules (tryptophan, phenylalanine, tyrosine, and o-phospho-L-tyrosine) at visible and ultraviolet wavelengths. The microsphere surface was reacted with organosilane molecules to attach octadecyl groups, amino groups, and fluorogroups to the surface. Both electrostatic and hydrophobic interactions were observed between the analytes and the microsphere surface, as indicated by changes in the measured effective pathlength with different organosilanes. For a given analyte and coated microsphere, the pathlength measurement was repeatable within a few percent. Methylene blue dye had a very strong interaction with the surface and pathlengths of several centimeters were measured. Choosing an appropriate surface coating to interact with a specific analyte should result in the highest sensitivity detection.

  10. Optical vibration modes and electron-phonon interaction in ternary mixed crystals of polar semiconductors

    Institute of Scientific and Technical Information of China (English)

    Liang Xi-Xia; Ban Shi-Liang

    2004-01-01

    @@ Optical vibrations of the lattice and the electron-phonon interaction in polar ternary mixed crystals are studied in the framework of the continuum model of Born and Huang and the random-element-isodisplacement model. A normal-coordinate system to describe the optical vibration in ternary mixed crystals is correctly adopted to derive a new Frohlich-like Hamiltonian for the electron-phonon interaction including the unit-cell volume variation influence.The numerical results for the phonon modes, the electron-phonon coupling constants and the polaronic energies for several typical materials are obtained. It is verified that the nonlinearity of the electron-phonon coupling effects with the composition is essential and the unit-cell volume effects cannot be neglected for most ternary mixed crystals.

  11. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...... implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment. With a moderate SOA current (270 mA) we achieve up......, enable acquisition of densely sampled three-dimensional datasets covering a wide field of view. However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have...

  12. Single-Mode Optical Waveguides on Native High-Refractive-Index Substrates

    CERN Document Server

    Grote, Richard R

    2016-01-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs) , but the conventional methods of achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. Our waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. The proposed waveguide geometry removes the need for a buried-oxide-layer in silicon photonics, as well as the InGaAsP layer in InP-based PICs and will allow for photonic integration on emerging material platforms such as diamond and SiC.

  13. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    Science.gov (United States)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  14. Yield enhancement in whispering gallery mode biosensors: microfluidics and optical forces

    CERN Document Server

    Khosla, Kiran; Knittel, Joachim; Bowen, Warwick P

    2010-01-01

    A microfluidic whispering gallery mode (WGM) biosensing system is proposed for enhanced delivery and detection of target molecules. A microtoroid resonator coupled to a tapered optical fiber is immersed within a microfluidic channel, and supplied with target molecules at various flow rates. We show through Monte Carlo simulations that the flow characteristics and resonantly enhanced optical forces of the sensor substantially improve both the sensing time and yield. When compared to a diffusion-limited sensing modality, the average time required to detect a single molecule is reduced from more than 100 minutes to less than 10 seconds, and the overall yield of the device is enhanced from less than 5% to a maximum of 70.6% for femtomolar concentrations of analyte.

  15. Localization and fractal spectra of optical phonon modes in quasiperiodic structures

    Science.gov (United States)

    Anselmo, D. H. A. L.; Dantas, A. L.; Medeiros, S. K.; Albuquerque, E. L.; Freire, V. N.

    2005-04-01

    The dispersion relation and localization profile of confined optical phonon modes in quasiperiodic structures, made up of nitride semiconductor materials, are analyzed through a transfer-matrix approach. The quasiperiodic structures are characterized by the nature of their Fourier spectrum, which can be dense pure point (Fibonacci sequences) or singular continuous (Thue-Morse and Double-period sequences). These substitutional sequences are described in terms of a series of generations that obey peculiar recursion relations and/or inflation rules. We present a quantitative analysis of the localization and magnitude of the allowed band widths in the optical phonons spectra of these quasiperiodic structures, as well as how they scale as a function of the number of generations of the sequences.

  16. A modified split—step fourier method for optical pulse propagation with polarization mode dispersion

    Institute of Scientific and Technical Information of China (English)

    RaoMin; SunXiao-Han; ZhangMing-De

    2003-01-01

    A modified split-step Fourier method (SSFM) is presented to solve the coupled nonlinear Schroedinger equation (CNLS) that can be used to model high-speed pulse propagation in optical fibres with polarization mode dispersion (PMD). We compare our approach with the SSFM and demonstrate that our approach is much faster with no loss of pre-chirped RZ(CRZ) formats in the presence of high PMD through this approach. The simulation results show that CRZ pulses are the most tolerant to high PMD values and the extinct ratio has a great impact on the transmission performance.

  17. Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures

    Science.gov (United States)

    Boriskina, Svetlana V.; Gopinath, Ashwin; Negro, Luca Dal

    2009-05-01

    Based on the rigorous generalized Mie theory solution of Maxwell's equations for dielectric cylinders we theoretically investigate the optical properties of two-dimensional deterministic structures based on the Fibonacci, Thue-Morse and Rudin-Shapiro aperiodic sequences. In particular, we investigate bandgap formation and mode localization properties in aperiodic photonic structures based on the accurate calculation of their local density of states (LDOS). In addition, we explore the potential of photonic structures based on aperiodic order for the engineering of radiative rates and emission patterns in erbium-doped silicon-rich nitride photonic structures.

  18. Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods

    Science.gov (United States)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)

    2007-01-01

    A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.

  19. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques.

    Science.gov (United States)

    Hammond, G Denise; Vojta, Adam L; Grant, Sheila A; Hunt, Heather K

    2016-06-15

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.

  20. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    Directory of Open Access Journals (Sweden)

    G. Denise Hammond

    2016-06-01

    Full Text Available The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.

  1. Probing the size dependence on the optical modes of anatase nanoplatelets using STEM-EELS

    Science.gov (United States)

    Liberti, Emanuela; Menzel, Robert; Shaffer, Milo S. P.; McComb, David W.

    2016-05-01

    Anatase titania nanoplatelets with predominantly exposed {001} facets have been reported to have enhanced catalytic properties in comparison with bulk anatase. To understand their unusual behaviour, it is essential to fully characterize their electronic and optical properties at the nanometer scale. One way of assessing these fundamental properties is to study the dielectric function. Valence electron energy-loss spectroscopy (EELS) performed using a scanning transmission electron microscope (STEM) is the only analytical method that can probe the complex dielectric function with both high energy (platelets less than 10 nm thick, the frequency of these optical modes varies according to their thickness. This unique optical behaviour prompts the enhancement of light absorption in the ultraviolet regime. Finally, the effect of finite size on the dielectric signal is gradually lost by stacking consistently two or more platelets in a specific crystal orientation, and eventually suppressed for large stacks of platelets.Anatase titania nanoplatelets with predominantly exposed {001} facets have been reported to have enhanced catalytic properties in comparison with bulk anatase. To understand their unusual behaviour, it is essential to fully characterize their electronic and optical properties at the nanometer scale. One way of assessing these fundamental properties is to study the dielectric function. Valence electron energy-loss spectroscopy (EELS) performed using a scanning transmission electron microscope (STEM) is the only analytical method that can probe the complex dielectric function with both high energy (platelets less than 10 nm thick, the frequency of these optical modes varies according to their thickness. This unique optical behaviour prompts the enhancement of light absorption in the ultraviolet regime. Finally, the effect of finite size on the dielectric signal is gradually lost by stacking consistently two or more platelets in a specific crystal orientation

  2. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  3. 光学诱导散光对视觉信号传导及皮层反应的影响%Electrophysiological research on the effects of optic-induced astigmatism on transmission time and response intensity of visual signals in the visual cortex

    Institute of Scientific and Technical Information of China (English)

    解来青; 徐国旭; 赵堪兴

    2012-01-01

    Objective To evaluate the contribution of different degrees of astigmatism on the latency and amplitude of pattern visual evoked potentials (PVEPs).The effect of astigmatism on the transmission and response intensity of visual signals in the visual cortex was evaluated.Methods It was a random designed study.PVEPs were measured in subjects with normal or normal corrected visual acuity using a checkerboard pattern stimulus under varying conditions using different astigmatic trial lens powers in succession (0-5 D).Paired samples t test,analysis of variance and Pearson correlation was performed.Results When a lower spatial frequency (60' checkerboards stimulus) was used,there was little change in the latency of P100 (F=0.290,P>0.05).However,when a higher spatial frequency (15' checkerboards stimulus) was used,VEP latency increased with a greater degree of astigmatism (F=10.850,P<0.01; r=0.647,P<0.01).There was a gradual reduction of amplitudes of P100 as convex cylindrical lens power increased (when 60' checkerboards were used, F=3.947,P<0.01; r=-0.470,P<0.01; when 15' checkerboards were used,F=14.280,P<0.01; r=-0.699,P<0.01).Conclusion The transmission of visual signals depends on the quality of the visual image formed on the retina.Visual signal transmission time and response intensity in the visual cortex are affected not only by the defocus of the retinal image but also by the spatial frequency of the pattern stimulus.With a high spatial frequency,the transmission of visual signals is faster and the response intensity of the visual cortex is greater if the visual image formed on the retina is clear.%目的 研究光学诱导不同程度散光产生的视觉信号对皮层反应时间及强度的影响;研究散光是否可导致视觉信号传导时程异常,观察视觉信号传导时间及视皮层反应强度与散光程度的量化关系.方法 完全随机设计研究.对视力或矫正视力正常的被检者眼前依次放置0~5 D度数正

  4. An ultrafast optics undergraduate advanced laboratory with a mode-locked fiber laser

    Science.gov (United States)

    Schaffer, Andrew; Fredrick, Connor; Hoyt, Chad; Jones, Jason

    2015-05-01

    We describe an ultrafast optics undergraduate advanced laboratory comprising a mode-locked erbium fiber laser, auto-correlation measurements, and an external, free-space parallel grating dispersion compensation apparatus. The simple design of the stretched pulse laser uses nonlinear polarization rotation mode-locking to produce pulses at a repetition rate of 55 MHz and average power of 5.5 mW. Interferometric and intensity auto-correlation measurements are made using a Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode for the second order correlation between 1550 nm laser pulses. After a pre-amplifier and compression, pulse widths as narrow as 108 fs are measured at 17 mW average power. A detailed parts list includes previously owned and common components used by the telecommunications industry, which may decrease the cost of the lab to within reach of many undergraduate and graduate departments. We also describe progress toward a relatively low-cost optical frequency comb advanced laboratory. NSF EIR #1208930.

  5. Achievable information rates calculation for optical OFDM few-mode fiber long-haul transmission systems.

    Science.gov (United States)

    Lin, Changyu; Djordjevic, Ivan B; Zou, Ding

    2015-06-29

    We propose a method to estimate the lower bound of achievable information rates (AIRs) of high speed orthogonal frequency-division multiplexing (OFDM) in spatial division multiplexing (SDM) optical long-haul transmission systems. The estimation of AIR is based on the forward recursion of multidimensional super-symbol efficient sliding-window Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. We consider most of the degradations of fiber links including nonlinear effects in few-mode fiber (FMF). This method does not consider the SDM as a simple multiplexer of independent data streams, but provides a super-symbol version for AIR calculation over spatial channels. This super-symbol version of AIR calculation algorithm, in principle, can be used for arbitrary multiple-input-multiple-output (MIMO)-SDM system with channel memory consideration. We illustrate this method by performing Monte Carlo simulations in a complete FMF model. Both channel model and algorithm for calculation of the AIRs are described in details. We also compare the AIRs results for QPSK/16QAM in both single mode fiber (SMF)- and FMF-based optical OFDM transmission.

  6. An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode.

    Science.gov (United States)

    Schultze, Volkmar; Schillig, Bastian; IJsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Stolz, Ronny

    2017-03-10

    We present an optically pumped magnetometer working in a new operational mode-the light-shift dispersed Mz (LSD-Mz) mode. It is realized combining various features; (1) high power off-resonant optical pumping; (2) Mz configuration, where pumping light and magnetic field of interest are oriented parallel to each other; (3) use of small alkali metal vapor cells of identical properties in integrated array structures, where two such cells are pumped by circularly polarized light of opposite helicity; and (4) subtraction of the Mz signals of these two cells. The LSD-Mz magnetometer's performance depends on the inherent and very complex interplay of input parameters. In order to find the configuration of optimal magnetometer resolution, a sensitivity analysis of the input parameters by means of Latin Hypercube Sampling was carried out. The resulting datasets of the multi-dimensional parameter space exploration were assessed by a subsequent physically reasonable interpretation. Finally, the best shot-noise limited magnetic field resolution was determined within that parameter space. As the result, using two 50 mm3 integrated vapor cells a magnetic field resolution below 10 fT/√Hz at Earth's magnetic field strength is possible.

  7. A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals

    Indian Academy of Sciences (India)

    Shyamal Mondal; Satya Pratap Singh; Sourabh Mukhopadhyay; Aditya Date; Kamal Hussain; Shouvik Mukherjee; Prasanta Kumar Datta

    2014-02-01

    A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.

  8. VO(2) based waveguide-mode plasmonic nano-gratings for optical switching.

    Science.gov (United States)

    Sharma, Yashna; Tiruveedhula, Veeranjaneya A; Muth, John F; Dhawan, Anuj

    2015-03-09

    In this paper, we present one dimensional plasmonic narrow groove nano-gratings, covered with a thin film of VO(2) (Vanadium Dioxide), as novel optical switches. These narrow groove gratings couple the incident optical radiation to plasmonic waveguide modes leading to high electromagnetic fields in the gaps between the nano-gratings. Since VO(2) changes from its semiconductor to its metallic phase on heating, on exposure to infra-red light, or on application of voltage, the optical properties of the underlying plasmonic grating also get altered during this phase transition, thereby resulting in significant switchability of the reflectance spectra. Moreover, as the phase transition in VO(2) can occur at femto-second time-scales, the VO(2)-coated plasmonic optical switch described in this paper can potentially be employed for ultrafast optical switching. We aim at maximizing this switchability, i.e., maximizing the differential reflectance (DR) between the two states (metallic and semiconductor) of this VO(2) coated nano-grating. Rigorous Coupled Wave Analysis (RCWA) reveals that the switching wavelengths - i.e., the wavelengths at which the values of the differential reflectance between VO(2) (S) and VO(2) (M) phases are maximum - can be tuned over a large spectral regime by varying the nano-grating parameters such as groove width, depth of the narrow groove, grating width, and thickness of the VO(2) layer. A comparison of the proposed ideal nano-gratings with various types of non-ideal nano-gratings - i.e., nano-gratings with non-parallel sidewalls - has also been carried out. It is found that significant switchability is also present for these non-ideal gratings that are easy to fabricate. Thus, we propose highly switchable and wide-spectra VO(2) based narrow groove nano-gratings that do not have a complex structure and can be easily fabricated.

  9. Low complexity MIMO method based on matrix transformation for few-mode multi-core optical transmission system

    Science.gov (United States)

    Pan, Xiaolong; Liu, Bo; Li, Li; Tian, Qinghua

    2016-07-01

    This paper proposes and demonstrates a low complexity multiple-input multiple-output (MIMO) equalization digital signal processing (DSP) method for the few mode multi-core (FMMC) fiber optical transmission system. The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing (SDM) transmission system. Compared with traditional MIMO method, the proposed scheme has increased the convergence rate by 4 times and reduced the number of finite impulse response (FIR) filters by 55% when the numbers of mode and core are three.

  10. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    Science.gov (United States)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  11. Axial interface optical phonon modes in a double-nanoshell system

    Energy Technology Data Exchange (ETDEWEB)

    Kanyinda-Malu, C; Clares, F J; Cruz, R M de la [Departamento de Fisica, Universidad Carlos III de Madrid, EPS Avenida de la Universidad 30, 28911 Leganes (Madrid) (Spain)], E-mail: clement.kanyindamalu@urjc.es, E-mail: rmc@fis.uc3m.es

    2008-07-16

    Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.

  12. Dark mode-Faraday rotation synergy for enhanced magneto-optics

    Science.gov (United States)

    Mazor, Y.; Meir, M.; Steinberg, Ben Z.

    2017-01-01

    We examine the efficacy of dark-mode plasmonics as a platform for enhanced magneto-optics. The dark mode of a small particle consists of two co-existing equal-intensity and mutually opposing dipolar excitations. Each of these two opposing dipoles may even resonate at or near the dark-mode frequency, but the net dipole moment vanishes due to the mutual cancellation between the opposing dipoles. We show that application of external magnetic bias may alleviate the intense destructive interference. Furthermore, under external magnetic bias the opposing dark resonances of a plasmonic particle shift in opposite directions and create a region of extremely sensitive Faraday rotation. We show that the magnetized dark resonance in a lossless Ag-like particle may provide more than 20 degrees rotation under magnetic fields of the order of 1-2 Tesla, exhibiting magnetoplasmonic activity that is 2-3 orders of magnitude larger than that observed in a conventional plasmonic particle of the same material.

  13. Fiber Transmission Stabilization by Optical Heterodyning Techniques and Synchronization of Mode-Locked Lasers Using Two Spectral Lines

    CERN Document Server

    Staples, J W

    2005-01-01

    Stabilization of the transit time through a glass fiber using an optical heterodyne technique promises to provide jitter reduction down to the few femtosecond level using inexpensive commodity hardware. An acousto-optical frequency shifter provides the optical frequency offset that is used to downconvert phase shifts at optical frequency to equivalent phase shifts at radio frequency which are used to close a phase-lock loop driving a piezoelectric phase shifter. Using the stabilized fiber transmission medium, two spectral lines of a mode locked laser lock two low-power CW lasers which are transmitted to a receiver which phase locks the same spectral lines of a second mode-locked laser to the first. The optical transmission system operates at low power and is linear, providing excellent signal-to-noise ratio and allows many signals to be transmitted without mutual interference. Experimental results will be presented.

  14. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  15. A novel color-LED corneal topographer to assess astigmatism in pseudophakic eyes

    Science.gov (United States)

    Ferreira, Tiago B; Ribeiro, Filomena J

    2016-01-01

    Purpose To assess the accuracy of corneal astigmatism evaluation measured by four techniques, Orbscan IIz®, Lenstar LS900®, Cassini®, and Total Cassini (anterior + posterior surface), in pseudophakic eyes. Patients and methods A total of 30 patients (46 eyes) who had undergone cataract surgery with the implantation of a monofocal intraocular lens (AcrySof IQ) were assessed after surgery. For each eye, subjective assessment of astigmatism and its axis was performed. Minimum, maximum, and mean keratometry and astigmatism and its axis were evaluated using the four measurement techniques. All measurements were compared with the subjective measurements. Agreement between each measurement technique and subjective assessment was evaluated using Bland–Altman plots. Linear regressions were performed and compared. Results Linear regression analysis of astigmatism axis showed very high R2 for all models, with Total Cassini showing the least difference to the unit slope (0.052) and the least difference to a null constant (3.790), although not statistically different from the other models. Regarding astigmatism value, the Cassini and Total Cassini models were similar and statistically better than the Lenstar model. Cassini and Total Cassini showed better J0 compared with Orbscan. Conclusion On linear regression models, Cassini and Total Cassini showed the best performance regarding astigmatism value. Cassini and Total Cassini also showed the least J0 deviation from the Cartesian origin compared with Orbscan, which had the lowest performance. Total corneal measurement with the color LED topographer seems to be a better technique for astigmatism assessment. PMID:27574391

  16. Generalised Hermite-Gaussian beams and mode transformations

    CERN Document Server

    Wang, Yi; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    Generalised Hermite-Gaussian modes (gHG modes), an extended notion of Hermite-Gaussian modes (HG modes), are formed by the summation of normal HG modes with a characteristic function $\\alpha$, which can be used to unite conventional HG modes and Laguerre-Gaussian modes (LG modes). An infinite number of normalised orthogonal modes can thus be obtained by modulation of the function $\\alpha$. The gHG mode notion provides a useful tool in analysis of the deformation and transformation phenomena occurring in propagation of HG and LG modes with astigmatic perturbation.

  17. Efficient analysis and design of low-loss whispering-gallery-mode coupled resonator optical waveguide bends

    CERN Document Server

    Pishko, Svetlana V; Benson, Trevor M; Boriskina, Svetlana V

    2007-01-01

    Waveguides composed of electromagnetically-coupled optical microcavities (coupled resonator optical waveguides or CROWs) can be used for light guiding, slowing and storage. In this paper, we present a two-dimensional analysis of finite-size straight and curved CROW sections based on a rigorous Muller boundary integral equations method. We study mechanisms of the coupling of whispering gallery (WG) modes and guiding light around bends in CROWs composed of both identical and size-mismatched microdisk resonators. Our accurate analysis reveals differences in WG modes coupling in the vicinity of bends in CROWs composed of optically-large and wavelength-scale microcavities. We propose and discuss possible ways to design low-loss CROW bends and to reduce bend losses. These include selecting specific bend angles depending on the azimuthal order of the WG mode and tuning the radius of the microdisk positioned at the CROW bend.

  18. CORNEAL ASTIGMATISM AFTER ECCE: A COMPARATIVE STUDY BETWEEN SILK VERSUS NYLON SUTURE

    Directory of Open Access Journals (Sweden)

    Sunita

    2013-11-01

    Full Text Available ABSTRAC T: INTRODUCTION: Cataract as a potent cause of loss of vision in old age persons is probably known since the dawn of human civilization. Post operative astigmatism after cataract extraction remains a big problem for cataract surgeons since Jacques Daviel e ra. Astigmatism is that type of refractive anomaly in which no point focus is formed owing to the unequal refraction of the incident light by the diopteric system of the eye in different meridians. The goal of modern cataract surgery is to produce a pseudo phakic with the quality of vision of a normal phakic eye. Various studies to find out any effect of IOL on post operative astigmatism were carried out but results are controversial. MATERIAL AND METHODS: 60 patients suffering from cataract and fit for extr action were enlisted during the month of August 2008 to February 2009. The general, physical and local examination including preoperative Keratometry, vision and tension were recorded. RESULTS: In the present study, male patients were 38 (63% and female p atients were 22 (37%. Out of the total 60 cases studied, corneo - scleral section of 28 cases (47% were sutured with 10 - 0 nylon suture (Group A while sections of 32 cases were sutured with 8 - 0 black virgin silk suture (Group B.Out of 28 cases of Group A, interrupted sutures were applied in 14 cases (50% (Group A 1 . Cross interrupted sutures were applied in 9 cases (32% Group A 2 , while bootlace continuous sutures were applied in 5 cases (18% (Group A 3 . Out of 32 cases of Group B, interrupted sutures we re applied in 26 cases (80% (Group B 1 , cross interrupted were applied in 3 cases (10% (Group B 2 , while bootlace continuous suture were applied in 3 cases (Group B 3 . In the present series, 19 cases (31% showed with the rule astigmatism, 21 cases (36% showed astigmatism against the rule and 20 cases (33% showed no astigmatism preoperatively, 16 cases were in the range of 0.50D to 1.0D and 12 cases were in the range of 1

  19. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    Science.gov (United States)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  20. Goos–Hänchen effect for optical vibrational modes in a semiconductor structure

    Science.gov (United States)

    Villegas, Diosdado; Arriaga, J.; de León-Pérez, Fernando; Pérez-Álvarez, R.

    2017-03-01

    We study the tunneling of optical vibrational modes with transverse horizontal polarization that impinge, at a given angle, on a semiconductor heterostructure. We find a large influence of the Goos–Hänchen shift on tunneling times. In particular, a Goos–Hänchen shift larger than the barrier thickness is reported for the first time. The relation between Goos–Hänchen and Hartman effects is also discussed. The identity that equals the dwell time to the sum of transmission and interference times, previously derived for one-dimensional tunneling problems, is extended to the two-dimensional case. Closed-form expressions are developed for the relevant quantities. Instead of using the standard approach, the interference time is computed from the vibrational energy density. The present study could be useful for the design of semiconductor devices.

  1. Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers

    CERN Document Server

    Miranowicz, A; Miranowicz, Adam; Leonski, Wieslaw

    2006-01-01

    Schemes for optical-state truncation of two cavity modes are analysed. The systems, referred to as the nonlinear quantum scissors devices, comprise two coupled nonlinear oscillators (Kerr nonlinear coupler) with one or two of them pumped by external classical fields. It is shown that the quantum evolution of the pumped couplers can be closed in a two-qubit Hilbert space spanned by vacuum and single-photon states only. Thus, the pumped couplers can behave as a two-qubit system. Analysis of time evolution of the quantum entanglement shows that Bell states can be generated. A possible implementation of the couplers is suggested in a pumped double-ring cavity with resonantly enhanced Kerr nonlinearities in an electromagnetically-induced transparency scheme. The fragility of the generated states and their entanglement due to the standard dissipation and phase damping are discussed by numerically solving two types of master equations.

  2. Goos-Hänchen effect for optical vibrational modes in a semiconductor structure.

    Science.gov (United States)

    Villegas, Diosdado; Arriaga, J; de León-Pérez, Fernando; Pérez-Álvarez, R

    2017-03-29

    We study the tunneling of optical vibrational modes with transverse horizontal polarization that impinge, at a given angle, on a semiconductor heterostructure. We find a large influence of the Goos-Hänchen shift on tunneling times. In particular, a Goos-Hänchen shift larger than the barrier thickness is reported for the first time. The relation between Goos-Hänchen and Hartman effects is also discussed. The identity that equals the dwell time to the sum of transmission and interference times, previously derived for one-dimensional tunneling problems, is extended to the two-dimensional case. Closed-form expressions are developed for the relevant quantities. Instead of using the standard approach, the interference time is computed from the vibrational energy density. The present study could be useful for the design of semiconductor devices.

  3. Meta-Optical Chirality and Emergent Eigen-polarization Modes via Plasmon Interactions

    Science.gov (United States)

    Moocarme, Matthew; Proscia, Nicholas V.; Vuong, Luat T.

    2017-02-01

    The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces.

  4. A modified split-step Fourier method for optical pulse propagation with polarization mode dispersion

    Institute of Scientific and Technical Information of China (English)

    饶敏; 孙小菡; 张明德

    2003-01-01

    A modified split-step Fourier method (SSFM) is presented to solve the coupled nonlinear Schrǒdinger equation (CNLS) that can be used to model high-speed pulse propagation in optical fibres with polarization mode dispersion (PMD). We compare our approach with the SSFM and démonstrate that our approach is much faster with no loss of accuracy. We discuss the pulse distortion and system Q-factor of non-return-to-zero (NRZ), return-to-zero (RZ) and pre-chirped RZ (CRZ) formats in the presence of high PMD through this approach. The simulation results show that CRZ pulses are the most tolerant to high PMD wlues and the extinct ratio has a great impact on the transmission performance.

  5. Hard X-ray optics simulation using the coherent mode decomposition of Gaussian Schell model

    CERN Document Server

    Hua, Wenqiang; Song, Li; Li, Xiuhong; Wang, Jie

    2013-01-01

    The propagation of hard X ray beam from partially coherent synchrotron source is simulated by using the novel method based on the coherent mode decomposition of Gaussian Schell model and wave front propagation. We investigate how the coherency properties and intensity distributions of the beam are changed by propagation through optical elements. Here, we simulate and analyze the propagation of the partially coherent radiation transmitted through an ideal slit. We present the first simulations for focusing partially coherent synchrotron hard X ray beams using this novel method. And when compared with the traditional method which assumes the source is a totally coherent point source or completely incoherent, this method is proved to be more reasonable and can also demonstrate the coherence properties of the focusing beam. We also simulate the double slit experiment and the simulated results validate the academic analysis.

  6. Quantum phases and dynamics of bosonic atoms trapped in a single-mode optical cavity

    Science.gov (United States)

    Sundar, Bhuvanesh; Mueller, Erich

    2016-05-01

    Motivated by experiments performed by R. Landig et al. (arXiv:1511.00007), we theoretically explore the behavior of bosonic atoms trapped in a single-mode cavity in the presence of a two-dimensional optical lattice. As explained by arXiv:1511.00007, Rayleigh scattering of light from the lattice-inducing beams into the cavity produces infinite-range cavity-mediated interactions between the atoms, leading to competition between superfluid, supersolid, Mott insulating and charge density wave phases. We calculate the phase diagram for a uniform trap using a variation of the Gutzwiller Ansatz. We also calculate the spatial distribution of the different phases in the gas in the presence of a harmonic trap. We explore hysteretic behavior when parameters of the system are changed.

  7. Narrow Bandwidth 850-nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Wu; Markos, Christos;

    2011-01-01

    We report on the inscription and characterization of narrow bandwidth fiber Bragg gratings (FBGs) with 850-nm resonance wavelength in polymer optical fibers (POFs). We use two fibers: an in-house fabricated microstructured POF (mPOF) with relative hole size of 0.5 and a commercial step-index POF......, which supports six modes at 850 nm. The gratings have been written with the phase-mask technique and a 325-nm HeCd laser. The mPOF grating has a full-width at half-maximum (FWHM) bandwidth of 0.29 nm and the step-index POF has a bandwidth of 0.17 nm. For both fibers, the static tensile strain...

  8. Preoperative corneal astigmatism among adult patients with cataract in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    Mohammed Isyaku

    2014-01-01

    Full Text Available The prevalence and nature of corneal astigmatism among patients with cataract has not been well-documented in the resident African population. This retrospective study was undertaken to investigate preexisting corneal astigmatism in adult patients with cataract. We analyzed keratometric readings acquired by manual Javal-Schiotz keratometry before surgery between January 1, 2011 and December 31, 2011. There were 3,169 patients (3286 eyes aged between 16 and 110 years involved with a Male to female ratio of 1.4:1. Mean keratometry in diopters was K1 = 43.99 and K2 = 43.80. Mean corneal astigmatism was 1.16 diopter and a majority (45.92% of eyes had astigmatism between 1.00 and 1.99 diopters. Two-thirds of the eyes (66.9% in this study had preoperative corneal astigmatism equal to or above 1.00 diopter. Findings will help local cataract surgeons to estimate the potential demand for toric intraocular lenses.

  9. Phenomenological model of stochastic, spatiotemporal, intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber.

    Science.gov (United States)

    Armstrong, Cameron R; David, John A; Thompson, John R

    2015-07-13

    We present a simple numerical model that is used in conjunction with a systematic algorithm for parameter optimization to understand the three-dimensional stochastic intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. The primary factors driving the complex dynamics appear to be thermal density fluctuations, transverse pump fluctuations, and asymmetric transverse mode fractions over the beam cross-section.

  10. Tuning the defect mode in ternary photonic crystal with external voltage for designing a controllable optical filter

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Rashidi, Shiva; Vahedi, Ali

    2015-09-01

    In this work, behavior of defect mode in one-dimensional ternary photonic crystal (1DTPC) structure with arrangement of (MgF2/Ag/TiO2)5LiNbO3(TiO2/Ag/MgF2)5 was investigated under the applied external electric dc voltage. The defect layer is lithium niobate (LiNbO3), an electro-optical (EO) material whose refractive index is voltage-dependent with high EO coefficient. In comparison, magnesium fluoride (MgF2) and titanium dioxide (TiO2) layers have very low EO coefficients. A narrow localized defect mode with perfect transmittance was appeared inside the photonic band gap. Under applying the positive or negative biases, red shift and blue shift was observed in the defect mode, respectively. More than 120 nm tunability was obtained under externally applied voltage in the range of -200 V to 200 V. The physical interpretation is very simple. Change in optical path-length displaces the localized wavelength of the defect mode due to Bragg interface condition. The externally tunable localized mode can be employed in designing a controllable optical filter, one of the essential devices for new-generation all-optical integrated circuits.

  11. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  12. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  13. Magneto-optical mode conversion in a hybrid glass waveguide made by sol-gel and ion-exchange techniques

    Science.gov (United States)

    Royer, François; Amata, Hadi; Parsy, François; Jamon, Damien; Ghibaudo, Elise; Broquin, Jean-Emmanuel; Neveu, Sophie

    2012-01-01

    The integration of magneto-optical materials with classical technologies being still a difficult problem, this study explores the possibility to realize a mode converter based on a hybrid structure. A composite magneto-optical layer made of a silica/zirconia matrix doped by magnetic nanoparticles is coated on the top face of ion-exchanged glass waveguides. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement. Furthermore, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is analysed taking into account the magneto-optical confinement and the modal birefringence of the structure.

  14. Optomechanical coupling between two optical cavities: cooling of a micro-mirror and parametric normal mode splitting

    CERN Document Server

    Kumar, Tarun; ManMohan,

    2011-01-01

    We propose a technique aimed at cooling a harmonically oscillating mirror mechanically coupled to another vibrating mirror to its quantum mechanical ground state. Our method involves optmechanical coupling between two optical cavities. We show that the cooling can be controlled by the mechanical coupling strength between the two movable mirrors, the phase difference between the mechanical modes of the two oscillating mirrors and the photon number in each cavity. We also show that both mechanical and optical cooling can be achieved by transferring energy from one cavity to the other. We also analyze the occurrence of normal-mode splitting (NMS). We find that a hybridization of the two oscillating mirrors with the fluctuations of the two driving optical fields occurs and leads to a splitting of the mechanical and optical fluctuation spectra.

  15. Application of coupled mode theory and coherent superposition theory to phase-shift measurements on optical microresonators

    Science.gov (United States)

    Barnes, Jack A.; Loock, Hans-Peter

    2016-10-01

    Several mathematical models exist in the literature to describe the properties of optical resonators. Here, coupled mode theory and coherent superposition theory are compared and their consistency is demonstrated as they are applied to phase-shift cavity ring-down measurements in optical (micro-)cavities. In the particular case of a whispering gallery mode in a microsphere cavity these models are applied to transmission measurements and backscattering measurements through the fiber taper that couples light into the microresonator. It is shown that both models produce identical relations when applied to these traveling wave cavities.

  16. Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism.

    Science.gov (United States)

    Arnold, S; Shopova, S I; Holler, S

    2010-01-04

    Thermo-optic and reactive mechanisms for label-free sensing of bio-particles are compared theoretically for Whispering Gallery Mode (WGM) resonators (sphere, toroid) formed from silica and stimulated into a first order equatorial mode. Although it has been expected that a thermo-optic mechanism should "greatly enhance" wavelength shift signals [A.M. Armani et al, Science 317, 783-787 (2007)] accompanying protein binding on a silica WGM cavity having high Q (10(8)), for a combination of wavelength (680 nm), drive power (1 mW), and cavity size (43 microm radius), our calculations find no such enhancement. The possible reasons for this disparity are discussed.

  17. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge

    Science.gov (United States)

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115 K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes.

  18. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    Science.gov (United States)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  19. Ultrafast, low-power, all-optical switching via birefringent phase-matched transverse mode conversion in integrated waveguides.

    Science.gov (United States)

    Hellwig, Tim; Epping, Jörn P; Schnack, Martin; Boller, Klaus-J; Fallnich, Carsten

    2015-07-27

    We demonstrate the potential of birefringence-based, all-optical, ultrafast conversion between the transverse modes in integrated optical waveguides by modelling the conversion process by numerically solving the multi-mode coupled nonlinear Schroedinger equations. The observed conversion is induced by a control beam and due to the Kerr effect, resulting in a transient index grating which coherently scatters probe light from one transverse waveguide mode into another. We introduce birefringent phase matching to enable efficient all-optically induced mode conversion at different wavelengths of the control and probe beam. It is shown that tailoring the waveguide geometry can be exploited to explicitly minimize intermodal group delay as well as to maximize the nonlinear coefficient, under the constraint of a phase matching condition. The waveguide geometries investigated here, allow for mode conversion with over two orders of magnitude reduced control pulse energy compared to previous schemes and thereby promise nonlinear mode switching exceeding efficiencies of 90% at switching energies below 1 nJ.

  20. Biochemical component identification by light scattering techniques in whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-03-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins (albumin, interferon, C reactive protein), microelements (Na+, Ca+), antibiotic of different generations, in both single and multi component solutions under varied in wide range concentration are represented. Analysis has been performed on the light scattering parameters of whispering gallery mode (WGM) optical resonance based sensor with dielectric microspheres from glass and PMMA as sensitive elements fixed by spin - coating techniques in adhesive layer on the surface of substrate or directly on the coupling element. Sensitive layer was integrated into developed fluidic cell with a digital syringe. Light from tuneable laser strict focusing on and scattered by the single microsphere was detected by a CMOS camera. The image was filtered for noise reduction and integrated on two coordinates for evaluation of integrated energy of a measured signal. As the entrance data following signal parameters were used: relative (to a free spectral range) spectral shift of frequency of WGM optical resonance in microsphere and relative efficiency of WGM excitation obtained within a free spectral range which depended on both type and concentration of investigated agents. Multiplexing on parameters and components has been realized using spatial and spectral parameters of scattered by microsphere light with developed data processing. Biochemical component classification and identification of agents under investigation has been performed by network analysis techniques based on probabilistic network and multilayer perceptron. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis.

  1. An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    CERN Document Server

    Makidon, R B; Perrin, M D; Roberts, L C; Soummer, R; Oppenheimer, B R; Graham, J R

    2005-01-01

    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. ...

  2. Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator.

    Science.gov (United States)

    Santos, Felipe G S; Espinel, Yovanny A V; Luiz, Gustavo O; Benevides, Rodrigo S; Wiederhecker, Gustavo S; Mayer Alegre, Thiago P

    2017-01-23

    Optomechanical cavities have proven to be an exceptional tool to explore fundamental and applied aspects of the interaction between mechanical and optical waves. Here we demonstrate a novel optomechanical cavity based on a disk with a radial mechanical bandgap. This design confines light and mechanical waves through distinct physical mechanisms which allows for independent control of the mechanical and optical properties. Simulations foresee an optomechanical coupling rate g0 reaching 2π × 100 kHz for mechanical frequencies around 5 GHz as well as anchor loss suppression of 60 dB. Our device design is not limited by unique material properties and could be easily adapted to allow for large optomechanical coupling and high mechanical quality factors with other promising materials. Finally, our devices were fabricated in a commercial silicon photonics facility, demonstrating g0/2π = 23 kHz for mechanical modes with frequencies around 2 GHz and mechanical Q-factors as high as 2300 at room temperature, also showing that our approach can be easily scalable and useful as a new platform for multimode optomechanics.

  3. Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS.

    Science.gov (United States)

    Shainline, Jeffrey M; Orcutt, Jason S; Wade, Mark T; Nammari, Kareem; Moss, Benjamin; Georgas, Michael; Sun, Chen; Ram, Rajeev J; Stojanović, Vladimir; Popović, Miloš A

    2013-08-01

    We demonstrate the first (to the best of our knowledge) depletion-mode carrier-plasma optical modulator fabricated in a standard advanced complementary metal-oxide-semiconductor (CMOS) logic process (45 nm node SOI CMOS) with no process modifications. The zero-change CMOS photonics approach enables this device to be monolithically integrated into state-of-the-art microprocessors and advanced electronics. Because these processes support lateral p-n junctions but not efficient ridge waveguides, we accommodate these constraints with a new type of resonant modulator. It is based on a hybrid microring/disk cavity formed entirely in the sub-90 nm thick monocrystalline silicon transistor body layer. Electrical contact of both polarities is made along the inner radius of the multimode ring cavity via an array of silicon spokes. The spokes connect to p and n regions formed using transistor well implants, which form radially extending lateral junctions that provide index modulation. We show 5 Gbps data modulation at 1265 nm wavelength with 5.2 dB extinction ratio and an estimated 40 fJ/bit energy consumption. Broad thermal tuning is demonstrated across 3.2 THz (18 nm) with an efficiency of 291 GHz/mW. A single postprocessing step to remove the silicon handle wafer was necessary to support low-loss optical confinement in the device layer. This modulator is an important step toward monolithically integrated CMOS photonic interconnects.

  4. Frontoparietal traffic signals: a fast optical imaging study of preparatory dynamics in response mode switching.

    Science.gov (United States)

    Baniqued, Pauline L; Low, Kathy A; Fabiani, Monica; Gratton, Gabriele

    2013-06-01

    Coordination between networks of brain regions is important for optimal cognitive performance, especially in attention demanding tasks. With the event-related optical signal (a measure of changes in optical scattering because of neuronal activity) we can characterize rapidly evolving network processes by examining the millisecond-scale temporal correlation of activity in distinct regions during the preparatory period of a response mode switching task. Participants received a precue indicating whether to respond vocally or manually. They then saw or heard the letter "L" or "R," indicating a "left" or "right" response to be implemented with the appropriate response modality. We employed lagged cross-correlations to characterize the dynamic connectivity of preparatory processes. Our results confirmed coupling of frontal and parietal cortices and the trial-dependent relationship of the right frontal cortex with response preparation areas. The frontal-to-modality-specific cortex cross-correlations revealed a pattern in which first irrelevant regions were deactivated, and then relevant regions were activated. These results provide a window into the subsecond scale network interactions that flexibly tune to task demands.

  5. Single-mode optical waveguides on native high-refractive-index substrates

    Science.gov (United States)

    Grote, Richard R.; Bassett, Lee C.

    2016-10-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs). However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  6. Development of high-density single-mode polymer waveguides with low crosstalk for chip-to-chip optical interconnection.

    Science.gov (United States)

    Sugama, Akio; Kawaguchi, Kenichi; Nishizawa, Motoyuki; Muranaka, Hidenobu; Arakawa, Yasuhiko

    2013-10-01

    High-density single-mode polymer waveguides were fabricated for chip-to-chip optical interconnection. The waveguides were designed as minimized mode field diameters for the lowest inter-channel crosstalk caused by mode coupling. The optimum relative index difference chosen was 1.2% to ensure compatibility with low crosstalk and wide fabrication tolerances. The 60-mm-length linear waveguides demonstrated a low propagation loss of 0.6 dB/cm and -45 dB crosstalk at 1310 nm. Also, a new crosstalk mechanism for a curved waveguide was revealed.

  7. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Marler, Joan; Albert, Magnus

    2010-01-01

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes...... are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them....

  8. An optical pulse width modulation generator based on the injection-locking property of single mode FP-LD

    Science.gov (United States)

    Tran, Quoc Hoai; Nakarmi, Bikash; Won, Yong Hyub

    2013-03-01

    A novel simple optical pulse width modulation generator (OPWMG) based on injection-locking property of a single mode FP-LD (SMFP-LD) has been proposed and experimentally verified. The OPWMG consists of a SMFP-LD (which acts as comparator), an optical sinusoidal wave source (analog input), and a continuous optical beam (control signal). The power required for fully injection-locking the SMFP-LD acts as the referent power whereas the combination power of continuous optical beam and analog optical sinusoidal signals work as control signals for changing the duty cycle of the proposed OPWMG. The presence of only continuous optical beam is not sufficient to suppress the dominant mode of SMFP-LD with high ON/OFF contrast ratio; however, the application of additional sinusoidal wave of constant amplitude and frequency, the dominant mode of SMFP-LD can be suppressed for the certain time window. Since, injection-locking power is dependent with the combined power of input injected continuous beam and sinusoidal optical wave, the time window of injection-locking can be varied by changing input beam power which provides different duty cycle of 13% to 68% at the output. Current available schemes for generating PWM signals are in electrical domain, hence, they need to convert electrical signals into optical domain by using expensive O/E converters for application in optical control and signal processing. The proposed OPWMG scheme has several advantages, such as low cost, low power consumption (~0.5 mW) which can be used for various applications where the effect of EMI/EMR is considered as an important factor such as control circuit for high voltage converters in power plant and electrical vehicles.

  9. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    Science.gov (United States)

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  10. Off-Axis Astigmatic Gaussian Beam Combination Beyond the Paraxial Approximation

    Institute of Scientific and Technical Information of China (English)

    GAO Zeng-Hui; L(U) Bai-Da

    2007-01-01

    Taking the off-axis astigmatic Gaussian beam combination as an example, the beam-combination concept is extended to the nonparaxial regime. The closed-form propagation expressions for coherent and incoherent combinations of nonparaxial off-axis astigmatic Gaussian beams with rectangular geometry are derived and illustrated with numerical examples. It is shown that the intensity distributions of the resulting beam depend on the combination scheme and beam parameters in general, and in the paraxial approximation (i.e., for the small f-parameter)our results reduce to the paraxial ones.

  11. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  12. Degradation of Side-Mode Suppression Ratio in a DFB Laser Integrated With a Semiconductor Optical Amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Lestrade, Michel; Camel, Jérôme

    2004-01-01

    The degradation of the side-mode suppression ratio (SMSR) in a monolithically integrated distributed feedback laser and semiconductor optical amplifier (SOA) cavity is investigated. An expression is derived that gives the degradation of the SMSR in the case of a perfectly antireflection-coated SOA...

  13. Toric intraocular lens orientation and residual refractive astigmatism: an analysis

    Directory of Open Access Journals (Sweden)

    Potvin R

    2016-09-01

    astigmatism as a result of misorientation. The Tecnis Toric IOL appears more likely to be misoriented in a counterclockwise direction; no such bias was observed with the AcrySof Toric, the Trulign® Toric, or the Staar Toric IOLs. Keywords: rotation, AcrySof, Tecnis, toric back-calculator, cylinder

  14. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  15. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  16. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift.

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Yokoi, Hideki; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2017-01-09

    We fabricated a magneto-optical (MO) isolator with a TE mode nonreciprocal phase shift. The isolator is based on a Mach-Zehnder interferometer composed of 3-dB directional couplers, a reciprocal phase shifter, and a nonreciprocal phase shifter. To realize TE mode operation in the optical isolator, we designed a novel waveguide structure composed of a hydrogenated amorphous silicon waveguide with an asymmetric MO garnet lateral clad on a garnet substrate. The isolator operation is successfully demonstrated in a fabricated device showing the different transmittances between forward and backward directions. The maximum isolation of the fabricated isolator is 17.9 dB at a wavelength of 1561 nm for the TE mode.

  17. Electro-optically generating and controlling right- and left-handed circularly polarized multiring modes of light beams.

    Science.gov (United States)

    Zhu, Wenguo; She, Weilong

    2012-07-15

    We propose a simple method for generating and controlling right- and left-handed circularly polarized (RHP and LHP) multiring modes of light beams by means of Pockels effect in a single strontium barium niobate (SBN) crystal. The numerical results show that an LHP Laguerre-Gaussian LG(0l) beam, propagating along the optical axis of the crystal, will partly turn into an RHP vortex light field of order l+2. Moreover, a pair of the LHP and RHP components of the output light field is LG-like modes sharing an identically radial index, which is electro-optically controllable. The power ratio between these two components depends on the applied electric field and the mode of input beam.

  18. General demonstration of principal states of polarization and real-time monitoring of polarization mode dispersion in optical fibres

    Institute of Scientific and Technical Information of China (English)

    Dong Hui; Wu Chong-Qing; Fu Song-Nian

    2004-01-01

    We investigated the general properties of polarization effects in optical fibres and demonstrated the existence of socalled principal states of polarization (PSP), which mean the fixed points in mathematics, in different polarization effects,such as birefringence and polarization mode dispersion, by using fixed point theory. Furthermore, a time evolution vector is defined to describe the time evolution of polarization state in optical fibres, which is used to investigate the time evolution of polarization mode dispersion vector (PDV), including differential group delay and PSP. The experimentalresults of real-time monitoring of PDV by using this method are reported. To our knowledge, this is the first report on monitoring PSP evolution in optical fibres.

  19. Low pumping energy mode of the "optical bars''/"optical lever" topologies of gravitational-wave antennae

    OpenAIRE

    Khalili, F. Ya

    2003-01-01

    The ``optical bars''/``optical lever'' topologies of gravitational-wave antennae allow to obtain sensitivity better that the Standard Quantum Limit while keeping the optical pumping energy in the antenna relatively low. Element of the crucial importance in these schemes is the local meter which monitors the local test mirror position. Using cross-correlation of this meter back-action noise and its measurement noise it is possible to further decrease the optical pumping energy. In this case th...

  20. Real-sky adaptive optics experiments on optimal control of tip-tilt modes

    Science.gov (United States)

    Doelman, Niek; Fraanje, Rufus; den Breeje, Remco

    2011-09-01

    In recent years various researchers have concentrated on control performance improvement for adaptive optics systems by using more sophisticated design methods. These approaches account for the inherent spatial and temporal correlations in the wavefront sensor data. Several control schemes have been proposed, of which the common essence is the minimization of a criterion function, yielding so-called 'optimal' or LQG control solutions. These are in some cases also referred to as 'predictive control'. Following the H2-optimal control design approach proposed by Hinnen [JOSA A Vol. 24, 2007], a real-sky experiment has been carried out on the McMath-Pierce solar telescope on Kitt Peak, Arizona. The purpose of the experiment was to validate the favourable results of optimal control, as obtained in simulations and laboratory experiments, on a real-time AO system on a telescope with real-sky turbulence. During the experimental week, it appeared that the deformable mirror did not have sufficient stroke to cope with the strong wavefront aberrations as measured by the AO wavefront sensor. Therefore, it was decided to focus on optimal control of the lower aberration modes tip and tilt only (using the separate TT-mirror). The control experiments demonstrate that for the particular AO system and seeing conditions (Nov 14, 2010) real-time optimal control can reduce the tip and tilt amplitudes by an additional factor of about 2 (RMS), compared to the common integrator control of the tip and tilt modes. For the low frequency band the improvement ranges from 10 to 20 dB. This performance agrees reasonably well with the predicted performance which is based on off-line analysis of the WFS data. The paper will discuss the experimental results in detail and also address important aspects like the non-stationarity of the wavefront aberrations, coupled versus decoupled tip-tilt control and measures to increase the robustness of the controller.

  1. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  2. High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Steinvurzel, P. E.; Chen, Y.;

    2012-01-01

    We demonstrate, for the first time, four-wave mixing, in the 1-μm spectral regime, in an LMA silica fiber. Pumping a 618-μm2 LP07 mode (λo = 1038.4 nm) with a 1064.6-nm Nd:YAG laser results in the generation of modulation instability, and multiple Stokes/anti-Stokes lines, opening up the prospect...

  3. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    Science.gov (United States)

    Yu, Liqiang; Zhou, Daibing; Zhao, Lingjuan

    2014-09-01

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained.

  4. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  5. End Face Damage and Fiber Fuse Phenomena in Single-Mode Fiber-Optic Connectors

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2016-01-01

    Full Text Available The evolution of both the core melting and fiber fuse phenomena in a single-mode fiber-optic connector was studied theoretically. Carbon black was chosen as a light-absorbent material. A thin absorbent layer with a thickness of 1 μm order was assumed to be formed between the fiber end faces in the connector. When a high-power laser operating at 1.48 or 1.55 μm was input into the connector, the temperature on the fiber core surface increased owing to heat conduction from the light-absorbent material. The heat flow process of the core, which caused the core to melt or the fiber fuse phenomenon, was theoretically calculated with the explicit finite-difference method. The results indicated that initial attenuation of less than 0.5 dB was desirable to prevent core fusion in the connectors when the input 1.48 μm laser power was 1 W. It was found that a core temperature of more than 4000 K was necessary to generate and maintain a fiber fuse.

  6. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  7. [Post-operative residual astigmatism after cataract surgery: Current surgical methods of treatment].

    Science.gov (United States)

    Pisella, P-J

    2012-03-01

    Residual astigmatism after cataract surgery can be corrected by three different techniques: classic limbal relaxing incisions, easy to perform but with limited precision; laser refractive surgery (PRK or Lasik), additionally allowing for correction of spherical equivalent; and more recently the use of a piggyback toric intraocular lens in the ciliary sulcus.

  8. Astigmatism treatment during phacoemulsification: a review of current surgical strategies and their rationale

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-12-01

    Full Text Available Preexisting corneal astigmatism, present at the time of cataract surgery, is reviewed in detail throughout this article on its most important aspects such as occurrence rates, clinical relevance and current treatment options. Special emphasis is given to the latter aspect. Each method's rationale, advantage and limitation ishigh lightened. Comparisons between treatment options, whenever possible, are also provided.

  9. Prevalence of Corneal Astigmatism and Anterior Segmental Biometry Characteristics Before Surgery in Chinese Congenital Cataract Patients.

    Science.gov (United States)

    Lin, Duoru; Chen, Jingjing; Liu, Zhenzhen; Wu, Xiaohang; Long, Erping; Luo, Lixia; Lin, Zhuoling; Li, Xiaoyan; Zhang, Li; Chen, Hui; Liu, Jinchao; Chen, Weirong; Lin, Haotian; Liu, Yizhi

    2016-02-25

    The prevalence and the distribution characteristics of corneal astigmatism (CA) and anterior segment biometry before surgery in Chinese congenital cataract (CC) patients are not completely understood. This study involved 400 CC patients from the Zhongshan Ophthalmic Center enrolled from February 2011 to August 2015. Data on CA, keratometry, central corneal thickness (CCT) and anterior chamber depth (ACD) were measured by the Pentacam Scheimpflug System. The mean age of patients was 54.27 months, and the ratio of boys to girls was 1.53:1. The mean CA was 2.03 diopters (D), and 39.25% of subjects had CA values ≥2 D. The most frequent (71.8%) diagnosis was with-the-rule astigmatism. Oblique astigmatism was present in 16.2% of cases, and 12% of cases had against-the-rule astigmatism. The mean keratometry measurement of cataractous eyes in bilateral patients was significantly larger than that in unilateral patients. Girls had a larger mean keratometry but a thinner CCT than did boys. The CA, CCT, and ACD of cataractous eyes were significantly larger than those of non-cataractous eyes in unilateral patients. The CA, mean keratometry, CCT, and ACD in CC patients varied with age, gender, and laterality. Fully understanding these characteristics may help inform guidelines and treatment decisions in CC patients.

  10. Prevalence of Keratoconus and Subclinical Keratoconus in Subjects with Astigmatism Using Pentacam Derived Parameters

    Directory of Open Access Journals (Sweden)

    Huseyin Serdarogullari

    2013-01-01

    Full Text Available Purpose: To determine the prevalence of keratoconus (KCN and subclinical KCN among subjects with two or more diopters (D of astigmatism, and to compare Pentacam parameters among these subjects. Methods: One hundred and twenty eight eyes of 64 subjects with astigmatism ≥2D were included in the study. All subjects underwent a complete ophthalmic examination which included refraction, visual acuity measurement, slit lamp biomicroscopy, retinoscopy, fundus examination, conventional corneal topography and elevation-based topography with Pentacam. The diagnosis of KCN and subclinical KCN was made by observing clinical findings and topographic features; and confirmed by corneal thickness and elevation maps of Pentacam. Several parameters acquired from Pentacam were analyzed employing the Mann-Whitney U Test. Results: Mean age of the study population was 29.9±9.8 (range 15-45 years which included 39 (60.9% female and 25 (39.1% male subjects. Maximum corneal power, index of vertical asymmetry, keratoconus index and elevation values were significantly higher and pachymetry was significantly thinner in eyes with clinical or subclinical KCN than normal astigmatic eyes (P< 0.05. Conclusion: The current study showed that subjects with 2D or more of astigmatism who present to outpatient clinics should undergo corneal topography screening for early diagnosis of KCN even if visual acuity is not affected. Pentacam may provide more accurate information about anterior and posterior corneal anatomy especially in suspect eyes.

  11. A new single-mode LMA optical fiber based on an anti-resonance in the cladding

    Science.gov (United States)

    Sharabi, Avidan; Sheintop, Uzziel; Goldin, Shlomo

    2016-03-01

    A novel single-mode large-mode-area (LMA) optical fiber is proposed. The primary part of the cladding is a thin layer with high refractive index. The layer possesses a periodic array of holes (or intrusions) which are either drawn in the propagation direction or drilled in the radial direction. When the holes (or intrusions) are drawn in the propagation direction, the periodicity of their array is in the azimuthal direction. The core may be hollow. The light confinement is achieved via a transmission anti-resonance. Namely, the array of holes allows coupling between an optical mode inside the primary cladding layer and the light both in the core and in the outer space. The light then sees two channels to penetrate the cladding: direct transmission and holes-assisted transmission. A distractive interference between these channels is achieved at an appropriate combination of fiber parameters. The fiber can be designed to hold nearly anyone of TE/TMnm modes. Computer simulations of the fiber were performed using COMSOL. The open boundary was simulated using a perfectly matched layer and the attenuation constants of different modes were determined via the imaginary parts of their propagation constants. As an example, a fiber holding a single TE01 mode inside a core of 100 μm diameter for the vacuum wavelength 1.55 μm was designed. The attenuation constant of the TE01 mode was found to be 5.8 ṡ 10-6 [dB/cm] while the other modes had attenuation of at least 4 orders of magnitude larger. Required fabrication tolerances were calculated and the fabrication of fibers of lengths 10 - 1000 m was found to be feasible. The bandwidth of the fiber was found to be in the range of 5 - 35 nm, depending on its length. Possible applications include high-power CW and pulsed lasers and amplifiers, sensors and others.

  12. Computational Modeling of the Size Effects on the Optical Vibrational Modes of H-Terminated Ge Nanostructures

    Directory of Open Access Journals (Sweden)

    Miguel Cruz-Irisson

    2013-04-01

    Full Text Available The vibrational dispersion relations of porous germanium (pGe and germanium nanowires (GeNWs were calculated using the ab initio density functional perturbation theory with a generalized gradient approximation with norm-conserving pseudopotentials. Both pores and nanowires were modeled using the supercell technique. All of the surface dangling bonds were saturated with hydrogen atoms. To address the difference in the confinement between the pores and the nanowires, we calculated the vibrational density of states of the two materials. The results indicate that there is a slight shift in the highest optical mode of the Ge-Ge vibration interval in all of the nanostructures due to the phonon confinement effects. The GeNWs exhibit a reduced phonon confinement compared with the porous Ge due to the mixed Ge-dihydride vibrational modes around the maximum bulk Ge optical mode of approximately 300 cm−1; however, the general effects of such confinements could still be noticed, such as the shift to lower frequencies of the highest optical mode belonging to the Ge vibrations.

  13. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    Science.gov (United States)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  14. Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography

    Science.gov (United States)

    Elmogi, Ahmed; Bosman, Erwin; Missinne, Jeroen; Van Steenberge, Geert

    2016-02-01

    This paper reports on the fabrication and characterization of single-mode polymer optical waveguides at telecom and SOI compatible wavelengths; by making a comparison between an epoxy and a siloxane polymer waveguide material system (both commercially-available). The proposed waveguides can be used in short-reach optical interconnects targeting chip-to-chip communication on the interposer level or providing a coupling interface between single-mode optical fibers and photonic integrated circuits (PICs). This technology enables the integration of optoelectronic chips for photonic packaging purposes. First, the single-mode dimensions (4 × 4 μm2 and 5 × 5 μm2) for both materials at selected wavelengths (1.31 μm and 1.55 μm) were determined based on the refractive index measurements. Then, the waveguides were patterned by a direct-write lithography method. The fabricated waveguides show a high-quality surface with smooth sidewalls. The optical propagation losses were measured using the cut-back method. For the siloxane-based waveguides, the propagation losses were found to be 0.34 dB/cm and 1.36 dB/cm at 1.31 μm and 1.55 μm respectively while for the epoxy-based waveguides the losses were 0.49 dB/cm and 2.23 dB/cm at 1.31 μm and 1.55 μm respectively.

  15. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  16. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    CERN Document Server

    Liu, Yu-Long; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2016-01-01

    We theoretically study a strongly-driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar those observed in $\\mathcal{PT}$-symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that: (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically-induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultra-long group delay. The time delay $\\tau$ can be optimized by regulating the optomechanical coupling strength through the control field and improved up to several orders of magnitude ($\\tau\\sim2$ $\\math...

  17. Pairwise entanglement and readout of atomic-ensemble and optical wave-packet modes in traveling-wave Raman interactions

    CERN Document Server

    Wasilewski, W; Wasilewski, Wojciech

    2005-01-01

    We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored at...

  18. Multichannel mode conversion and multiplexing based on a single spatial light modulator for optical communication

    Science.gov (United States)

    Nie, Song; Yu, Song; Cai, Shanyong; Lan, Mingying; Gu, Wanyi

    2016-07-01

    A method is proposed to achieve multichannel mode conversion and multiplexing by dividing a single spatial light modulator into several blocks with the mode conversion pattern and blazed grating loaded on each block. The conversion patterns realize the precise excitation of higher order modes using combined amplitude and phase modulation. The blazed gratings bring together incident beams, so these beams can be coupled into few-mode fiber (FMF). In the experiment, four higher order modes are precisely excited and converge with a tilt angle. Through the simulation method, these beams can be coupled into FMF with small tilt angles (0.0344 deg for LP11 mode).

  19. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

    Science.gov (United States)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Chen, Liang

    2015-12-01

    We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry-Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8-1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

  20. Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection.

    Science.gov (United States)

    Gatare, I; Sciamanna, M; Nizette, M; Thienpont, H; Panajotov, K

    2009-08-01

    We report theoretically on the interplay between polarization switching and bifurcations to nonlinear dynamics in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection. Qualitatively different bifurcation scenarios leading to polarization switching are found and mapped out in the plane of the injection parameters, i.e., the frequency detuning vs injection strength plane. A Hopf bifurcation mechanism on the two-polarization-mode solution determines the injection-locking boundaries and influences polarization switching induced by optical injection. We furthermore report on a torus bifurcation emerging from a two-linearly polarized (LP) mode time-periodic dynamics before polarization switching and injection locking appear. It corresponds to an interesting combination of relaxation oscillation dynamics in the x -LP mode together with wave mixing dynamics in the injected y -LP mode. In agreement with recent experiments, we unveil a period-doubling route to chaos that involves both VCSEL orthogonal LP modes. The corresponding region of chaotic dynamics coincides with abrupt changes in the polarization switching boundaries in the plane of the injection parameters.

  1. High-order polarization mode crosstalk effect: a calibration scheme of white light-based optical coherence domain polarimetry

    Science.gov (United States)

    Wu, Bing; Yang, Jun; Zhang, Jianzhong; Liang, Shuai; Yu, Zhangjun; Yuan, Yonggui; Peng, Feng; Zhou, Ai; Zhang, Yu; Yuan, Libo

    2015-09-01

    We propose a calibration scheme of the white light interferometer based optical coherence domain polarimetry (OCDP), which could be used to measure the ultra-weak polarization mode crosstalk (PMC) or the ultra-high polarization extinction ratio (PER) of different polarization optical devices. The calibration depends on the first and second order PMC effect of different polarization devices in series. The first and second PMCs between 0 and -90dB, established by five pieces of polarization maintaining fiber (PMF) and a Y-waveguide, is used to prove its feasibility.

  2. VUV 157nm laser ablation of spherical particles and modelling of whispering gallery mode optical antenna structures

    Energy Technology Data Exchange (ETDEWEB)

    Walton, C. D.; Cockcroft, S.; Metheringham, W. J. [Department of Physics, University of Hull, HU6 7RX (United Kingdom)

    2012-07-30

    We report on VUV 157nm F{sub 2} laser irradiation of CR-39 polymer substrates that have been intentionally seeded with spherical glass particles. We discuss the importance of adhesive forces for realizing spherical cavity structures by laser ablation. Strong optical absorption at 157nm in CR-39 enables precise control of pedestal height by controlling the laser fluence and the number of laser pulses. Resonant modes for free-standing spherical cavities have been calculated and we discuss briefly the potential applications for use as optical sources on-board lab-on-chip devices.

  3. TM and TE Directional Modes of an Optical Microdisk Resonator with a Point Scatterer

    NARCIS (Netherlands)

    Dettmann, C.P.; Morozov, G.V.; Sieber, M.; Waalkens, H.

    2008-01-01

    Dielectric microresonators are becoming key components for novel opto-electronic devices. Circular microresonators (microdisks) are natural candidates for lasing since some of their modes have extremely high Q-factor (low thresholds). In those modes, which are called whispering gallery modes, light

  4. Optically tunable microwave, millimeter-wave and submillimeter-wave utilizing single-mode Fabry-Pérot laser diode subject to optical feedback.

    Science.gov (United States)

    Wu, Jian-Wei; Nakarmi, Bikash; Won, Yong Hyub

    2016-02-01

    In this paper, we use optical feedback injection technique to generate tunable microwave, millimeter-wave and submillimeter-wave signals using single-mode Fabry-Pérot laser diode. The beat frequency of the proposed generator ranges from 30.4 GHz to 3.40 THz. The peak power ratio between two resonating modes at the output spectrum of can be less than 0.5 dB by judiciously selecting feedback wavelength. In the stabilization test, the peak fluctuation of photonic signal is as low as 0.19 dB within half hour. Aside from locking regions, where the laser is easily locked by the injection beam, the side-mode suppression ratio is well over 25 dB with the maximum value of 36.6 dB at 30.4 GHz beat frequency. In addition, the minimum beat frequency interval between two adjacent photonic signals is as low as 10 GHz.

  5. An Efficient Wavelength variation approach for Bend Sensing in Single mode-Multimode-Single mode Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Abdul Samee Khan

    2012-09-01

    Full Text Available Several aspects of the SMS edge filters have been investigated, including the effect of bending the SMS fiber cores due to fabrication tolerances, polarization dependence, and temperature dependence. These aspects can impair the performance of a wavelength measurement system. There are several approaches which have been proposed and demonstrated to achieve high resolution and accuracy of wavelength measurement. Bending effects due to the splicing process on the spectral characteristics of SMS fibre structure-based edge filters are investigated experimentally with the help of MATLAB. A limit for the tolerable of the cores of an SMS fibre structure-based edge filter is proposed, beyond which the edge filter’s spectral performance degrades unacceptably. We use Wavelength variation approach by which we reduce the power loss due to the bending in the optical fiber. Due to the power loss the power transmission is increases and efficiency reduces. So by wavelength variation approach we developed an efficient spectrometer capable of performing a wide variety of coherent multidimensional measurements at optical wavelengths. In this approach we fixed the power and perform variation in the wavelength to sense the bending accurately. The two major components of the largely automated device are a spatial beam shaper which controls the beam geometry and a spatiotemporal pulse shaper which controls the temporal waveform of the femtosecond pulse in each beam. By which we sense the distortion to reduce the power transmission. We apply our algorithm for performing several comparison considerations which shows the performance of our algorithm which is better in comparison to the previous work.

  6. Thermo-Optical Tuning of Whispering Gallery Modes in Er:Yb Doped Glass Microspheres to Arbitrary Probe Wavelengths

    CERN Document Server

    Watkins, Amy; Chormaic, Síle Nic

    2012-01-01

    We present experimental results on an all-optical, thermally-assisted technique for broad range tuning of microsphere cavity resonance modes to arbitrary probe wavelengths. An Er:Yb co-doped phosphate glass (Schott IOG-2) microsphere is pumped at 978 nm via the supporting stem and the heat generated by absorption of the pump light expands the cavity and changes the refractive index. This is a robust tuning method that decouples the pump from the probe and allows fine tuning of the microsphere's whispering gallery modes. Pump/probe experiments were performed to demonstrate thermo-optical tuning to specific probe wavelengths, including the 5S1/2 F = 3 to 5P3/2 F' = 4 laser cooling transition of 85Rb. This is of particular interest for cavity QED-type experiments, while the broad tuning range achievable is useful for integrated photonic devices, including sensors and modulators.

  7. Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation.

    Science.gov (United States)

    Savović, Svetislav; Djordjevich, Alexandar

    2002-05-20

    The power-flow equation is approximated by the Fokker-Planck equation that is further transformed into a stochastic differential (Langevin) equation, resulting in an efficient method for the estimation of the state of mode coupling along step-index optical fibers caused by their intrinsic perturbation effects. The inherently stochastic nature of these effects is thus fully recognized mathematically. The numerical integration is based on the computer-simulated Langevin force. The solution matches the solution of the power-flow equation reported previously. Conceptually important steps of this work include (i) the expression of the power-flow equation in a form of the diffusion equation that is known to represent the solution of the stochastic differential equation describing processes with random perturbations and (ii) the recognition that mode coupling in multimode optical fibers is caused by random perturbations.

  8. Thermo-Optical Tuning of Whispering Gallery Modes in Erbium:Ytterbium Doped Glass Microspheres to Arbitrary Probe Wavelengths

    Science.gov (United States)

    Watkins, Amy; Ward, Jonathan; Chormaic, Síle Nic

    2012-05-01

    We present experimental results on an all-optical, thermally-assisted technique for broad range tuning of microsphere cavity resonance modes to arbitrary probe wavelengths. An erbium:ytterbium co-doped phosphate glass (Schott IOG-2) microsphere is pumped at 978 nm via the supporting stem and the heat generated by absorption of the pump light expands the cavity and changes the refractive index. This is a robust tuning method that decouples the pump from the probe and allows fine tuning of the microsphere's whispering gallery modes. Pump/probe experiments were performed to demonstrate thermo-optical tuning to specific probe wavelengths, including the 5S1/2 F= 3 to 5P3/2 F'= 4 laser cooling transition of rubidium-85. This is of particular interest for cavity quantum electrodynamics (QED)-type experiments, while the broad tuning range achievable is useful for integrated photonic devices, including sensors and modulators.

  9. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio;

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  10. An optical wall shear stress sensor based on whispering gallery modes of dielectric microspheres

    Science.gov (United States)

    Ayaz, Ulas Kemal

    In recent years, whispering gallery modes (WGM) of dielectric resonators have received significant attention. Based on this phenomenon, many applications have been proposed ranging from spectroscopy [1], micro-cavity laser technology [2] and optical communications (switching [3], filtering [4] and wavelength division and multiplexing [5]). WGM phenomenon have also been exploited in several sensor concepts such as protein adsorption [6,7], trace gas detection [8], impurity detection in liquids [9], structural health monitoring of composite materials [10], detection of electric fields [11], magnetic fields [12, 13] and temperature [14, 15] as well as mechanical sensing, such as pressure [16] and force [17,18]. A remarkable feature of the WGMs of dielectric microspheres is that they can exhibit extremely high quality factors (Q -factors). In literature, Q-factors as high as ˜10 10 have been reported [19]. In sensor applications, Q-factors determine the resolution of the sensor. Since WGMs of dielectric microspheres exhibit such high Q values, proposed WGM based sensors have extremely good sensing resolutions. In this dissertation, a WGM based wall shear stress sensor that is capable of measuring the shear stress directly is presented. The proposed sensor's feasibility is studied both analytically and experimentally. The experimental study included sensor development, fabrication, calibration, frequency response, dynamic range and proof of concept. The sensor showed that it has potential to measure the shear stress in a wide range of Reynolds numbers. Finally, the sensor is tested in a real flow environment to provide the first direct shear stress measurement in a real flow.

  11. Demonstration of mode splitting in an optical microcavity in aqueous environment

    CERN Document Server

    Kim, Woosung; Zhu, Jiangang; He, Lina; Yang, Lan; 10.1063/1.3481352

    2010-01-01

    Scatterer induced modal coupling and the consequent mode splitting in a whispering gallery mode resonator is demonstrated in aqueous environment. The rate of change in splitting as particles enter the resonator mode volume strongly depends on the concentration of particle solution: The higher is the concentration, the higher is the rate of change. Polystyrene nanoparticles of radius 50nm with concentration as low as 5x10^(-6)wt% have been detected using the mode splitting spectra. Observation of mode splitting in water paves the way for constructing advanced resonator based sensors for measuring nanoparticles and biomolecules in various environments.

  12. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  13. On the features of the Optical Rogue Waves observed in the Kerr lens mode locked Ti:Sapphire laser

    CERN Document Server

    Hnilo, Alejandro A; Tredicce, Jorge R

    2014-01-01

    Kerr lens-mode-locked Ti:Sapphire lasers are known to display three coexistent modes of operation, that can be described as: continuous wave (CW), transform limited pulses (P1) and positive chirped pulses (P2). Optical rogue waves, in the form of pulses of high energy appearing much often than expected in a Gaussian distribution, are observed in the chaotic regime of the mode P2, but not of P1. These high energy pulses appear in an unpredictable way, but it is observed that their separation (if measured in number of round trips) can take only some definite values, which received the name of "magic numbers". The existence of optical rogue waves in P2 and not in P1, and also of the magic numbers, are correctly reproduced by a numerical simulation based on a five-variables iterative map. But, a successful numerical simulation provides limited insight on the physical causes of the observed phenomena. We present evidence that optical rogue waves in this laser follow a modulational instability, and that an initial ...

  14. The Experimental Study on Acousto-optic Modulation Based on Single-mode Fiber Fused Coupler

    Institute of Scientific and Technical Information of China (English)

    Liu Guoxiang; Hu Li; Ye Kunzhen; Lin Weigan

    2002-01-01

    In-line acoustic-optic (AO) modulation experiments were demonstrated based on the acoustic-optic effect in optical fiber fused taper couplers.About 73%,64%,and 61% modulation have been achieved at frequencies of 0.169 MHz,0.367 MHz and 0.521 MHz with an electrical driving power less than 10 mW,respectively.

  15. Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL

    NARCIS (Netherlands)

    Karppinen, M.; Salminen, N.; Korhonen, T.; Alajoki, T.; Petäjä, J.; Bosman, E.; Steenberge, G. van; Justice, J.; Khan, U.; Corbett, B.; Boersma, A.

    2015-01-01

    Polymer-based integrated optics is attractive for inter-chip optical interconnection applications, for instance, for coupling photonic devices to fibers in high density packaging. In such a hybrid integration scheme, a key challenge is to achieve efficient optical coupling between the photonic chips

  16. An Efficient Wavelength variation approach for Bend Sensing in Single mode- Multimode-Single mode Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Abdul Samee Khan

    2012-09-01

    Full Text Available Several aspects of the SMS edge filters have beeninvestigated, including the effect of bending the SMS fibercores due to fabrication tolerances, polarizationdependence, and temperature dependence. These aspectscan impair the performance of a wavelength measurementsystem. There are several approaches which have beenproposed and demonstrated to achieve high resolution andaccuracy of wavelength measurement. Bending effects dueto the splicing process on the spectral characteristics ofSMS fibre structure-based edge filters are investigatedexperimentally with the help of MATLAB. A limit for thetolerable of the cores of an SMS fibre structure-based edgefilter is proposed, beyond which the edge filter’s spectralperformance degrades unacceptably. We use Wavelengthvariation approach by which we reduce the power loss dueto the bending in the optical fiber. Due to the power lossthe power transmission is increases and efficiency reduces.So by wavelength variation approach we developed anefficient spectrometer capable of performing a wide varietyof coherent multidimensional measurements at opticalwavelengths. In this approach we fixed the power andperform variation in the wavelength to sense the bendingaccurately. The two major components of the largelyautomated device are a spatial beam shaper which controlsthe beam geometry and a spatiotemporal pulse shaperwhich controls the temporal waveform of the femtosecondpulse in each beam. By which we sense the distortion toreduce the power transmission. We apply our algorithm forperforming several comparison considerations whichshows the performance of our algorithm which is better incomparison to the previous work

  17. Fully compatible magneto-optical sol-gel material with glass waveguides technologies: application to mode converters

    Science.gov (United States)

    Royer, François; Jamon, Damien; Broquin, Jean-Emmanuel; Amata, Hadi; Kekesi, Renata; Neveu, Sophie; Blanc-Mignon, Marie-Françoise; Ghibaudo, Elise

    2011-01-01

    To overcome the difficult problem of the integration of magneto-optical materials with classical technologies, our group has developped a composite magneto-optical material made of a hybrid organic-inorganic silica type matrix doped by magnetic nanoparticles. Thin films of this material are obtained through a soft chemistry sol-gel process which gives a full compatibility with an integration on glass substarte. Due to an interesting magneto optical activity (Faraday rotation of 310°/cm) several magneto-optical functionnalities have been realized. A thin film of such composite material coated on a pyrex™ substrate acts as non-reciprocal TE/TM mode converter. An hybrid stucture made of a composite film coated on an ion-exchanged glass waveguide has been realized with a good propagation of light through a hybrid mode. Finally, the sol gel process has been adapted in order to obtain 3D inverse opals which should behave as magnetophotonic crystals. Transmittance curves reveal the photonic band gap of such opals doped with magnetic nanoparticles.

  18. Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode

    CERN Document Server

    Yang, Fan; Moiseev, E S; Simon, Christoph; Lvovsky, A I

    2016-01-01

    The Rayleigh limit has so far applied to all microscopy techniques that rely on linear optical interaction and detection in the far field. Here we demonstrate that detecting the light emitted by an object in higher-order transverse electromagnetic modes (TEMs) can help achieving sub-Rayleigh precision for a variety of microscopy-related tasks. Using optical heterodyne detection in TEM01, we measure the position of coherently and incoherently emitting objects to within 0.0015 and 0.012 of the Rayleigh limit, respectively, and determine the distance between two incoherently emitting slits positioned within 0.28 of the Rayleigh limit with a precision of 0.019 of the Rayleigh limit. Extending our technique to higher-order TEMs enables full imaging with resolution significantly below the Rayleigh limit in a way that is reminiscent of quantum tomography of optical states.

  19. Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring Laser by Forward Injection Optical Pulse

    Institute of Scientific and Technical Information of China (English)

    YAN Shuang-Yi; ZHANG Jian-Guo; ZHAO Wei; LU Hong-Qiang; WANG Wei-Qiang

    2008-01-01

    @@ We present a broadly tunable active mode-locked fibre ring laser based on a semiconductor optical amplifier (SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength-tunable optical bandpass filter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental configuration of the pulse laser is very simple and easy to setup with no polarization-sensitive components.

  20. Nanoscale optical thermometry using a time-correlated single-photon counting in an illumination-collection mode

    Science.gov (United States)

    Seto, Daichi; Nikka, Ren; Nishio, Shogo; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji

    2017-01-01

    A nanoscale thermometry method called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed using near-field fluorescence imaging. This method can detect local temperature distributions with a nanoscale spatial resolution by measuring the fluorescence lifetimes of Cd/Se quantum dots (QDs) as a temperature probe. To increase the sensitivity of Fluor-NOTN, time-correlated single-photon counting (TCSPC) was introduced with a triple-tapered fusion-spliced near-field (TFN) optical fiber probe. This highly sensitive technique for measuring the fluorescence lifetime of QDs enabled the detection of low-level light signals with a picosecond time resolution at high-precision in an illumination-collection mode for Fluor-NOTN. The feasibility of this proposed method was experimentally verified by measuring the temperature dependence of the fluorescence lifetimes of the QDs by Fluor-NOTN using TCSPC with a TFN optical fiber probe with an aperture of 70 nm.

  1. All-optical mode conversion via spatially-multimode four-wave mixing

    CERN Document Server

    Danaci, Onur; Glasser, Ryan T

    2016-01-01

    We experimentally demonstrate the conversion of a Gaussian beam to an approximate Bessel-Gauss mode by making use of a non-collinear four-wave mixing process in hot atomic vapor. The presence of a strong, spatially non-Gaussian pump both converts the probe beam into a non-Gaussian mode, and generates a conjugate beam that is in a similar non-Gaussian mode. The resulting probe and conjugate modes are compared to the output of a Gaussian beam incident on an annular aperture that is then spatially filtered according to the phase-matching conditions imposed by the four-wave mixing process. We find that the resulting experimental data agrees well with both numerical simulations, as well as analytical formulae describing the effects of annular apertures on Gaussian modes. These results show that spatially-multimode gain platforms may be used as a new method of mode conversion.

  2. Analytical Solution and Production of Coherent State of the Generalized Dissipative Two-Mode Optical System

    Institute of Scientific and Technical Information of China (English)

    HOU Bang-Pin; WANG Shun-Jin; YU Wan-Lun; SUN Wei-Li; WANG Gang

    2004-01-01

    @@ We obtain the analytical solution to the master equation in the photon number representation by using algebraic dynamical method in the nonautonomous case. Based on the solution we find that a two-mode coherent sate can be produced within dissipative background, and the averaged photon number for each mode is related to the damping constant, external field amplitude and coupling constant between two modes.

  3. Induced astigmatism after cataract surgery - a retrospective analysis of cases from the University of Port Harcourt Teaching Hospital, Nigeria

    Directory of Open Access Journals (Sweden)

    A. O. Adio

    2011-12-01

    Full Text Available Visual rehabilitation after cataract surgery may often be disappointing due to induction of corneal astigmatism following issues in realigning, point to point, the corneal wound margin in the process of surgery despite biometry and use of the appropriateintraocular lens. The purpose of this study is to determine the amount of surgically induced astigmatism after sutured cataract extraction-extracapsular cataract extraction (ECCE and intracapsular cataract extraction (ICCE and intraocular lens (IOLimplantation in the University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. Folders of all cataract patients operated on in the eye theatre of the aforenamed tertiary facility between2002 and 2006 were considered.  Relevant patient details and intraoperative and postoperative management were examined and reported upon. One hundred and fourteen eyes (114 of one hundred patients who had cataract surgeries done within the five-year period of this study were examined. ECCE + IOL implantation were examined in the period under review. The post-operative refraction objectively and subjectively was retrieved from the records of each patient. The post-operative cylinderpower (total astigmatism was recorded.Of 114 eyes, only 83 eyes (72.8% had refraction results postoperatively due to loss of fol-low-up. The total number with astigmatism was 57(68.7%. Forty-two had against-the-rule (73.7%, twelve (21.1% with-the-rule, while five (0.09% were oblique. The mean post-operative astigmatism was 1.85 D. The surgically induced corneal astigmatism was highest with ECCE with PCIOL. Astigmatism less than 2 D was highest in this group (ECCE with IOL while ICCE with ACIOL had the highest number with astigmatism in the range between 2 D and 4 D. The total astigmatism which was mainly with-the-rule (vertical plus cylinder did not seem to impair severely the post-operative visual acuity of the patients.In conclusion, surgically induced astigmatism affected almost

  4. Coupling to Modes of a Near-Confocal Optical Resonator Using a Digital Light Modulator

    CERN Document Server

    Papageorge, Alexander T; Lev, Benjamin L

    2016-01-01

    Digital Micromirror Devices (DMD) provide a robust platform with which to implement digital holography, in principle providing the means to rapidly generate propagating transverse electromagnetic fields with arbitrary mode profiles at visible and IR wavelengths. We use a DMD to probe a Fabry-P\\'{e}rot cavity in single-mode and near-degenerate confocal configurations. Pumping arbitrary modes of the cavity is possible with excellent specificity by virtue of the spatial overlap between the incident light field and the cavity mode.

  5. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  6. Operational optical turbulence forecast for the service mode of top-class ground based telescopes

    Science.gov (United States)

    Masciadri, Elena; Lascaux, Franck; Turchi, Alessio; Fini, Luca

    2016-07-01

    In this contribution we present the most relevant results obtained in the context of a feasibility study (MOSE) undertaken for ESO. The principal aim of the project was to quantify the performances of an atmospherical non-hydrostatical mesoscale model (Astro-Meso-NH code) in forecasting all the main atmospherical parameters relevant for the ground-based astronomical observations and the optical turbulence (CN2 and associated integrated astroclimatic parameters) above Cerro Paranal (site of the VLT) and Cerro Armazones (site of the E-ELT). A detailed analysis on the score of success of the predictive capacities of the system have been carried out for all the astroclimatic as well as for the atmospherical parameters. Considering the excellent results that we obtained, this study proved the opportunity to implement on these two sites an automatic system to be run nightly in an operational configuration to support the scheduling of scientific programs as well as of astronomical facilities (particularly those supported by AO systems) of the VLT and the E-ELT. At the end of 2016 a new project for the implementation of a demonstrator of an operational system to be run on the two ESO's sites will start. The fact that the system can be run simultaneously on the two sites is an ancillary appealing feature of the system. Our team is also responsible for the implementation of a similar automatic system at Mt.Graham, site of the LBT (ALTA Project). Our system/method will permit therefore to make a step ahead in the framework of the Service Mode for new generation telescopes. Among the most exciting achieved results we cite the fact that we proved to be able to forecast CN2 profiles with a vertical resolution as high as 150 m. Such a feature is particularly crucial for all WFAO systems that require such detailed information on the OT vertical stratification on the whole 20 km above the ground. This important achievement tells us that all the WFAO systems can rely on automatic

  7. Design and prototyping of self-centering optical single-mode fiber alignment structures

    Science.gov (United States)

    Ebraert, Evert; Gao, Fei; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-06-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s-1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μm. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μm, which is no problem for robustness according to the FEA model. Finally connector-assemblies are made with the alignment system and we show that an

  8. Quantifying light scattering with single-mode fiber -optic confocal microscopy

    Directory of Open Access Journals (Sweden)

    Haidekker Mark A

    2009-11-01

    Full Text Available Abstract Background Confocal microscopy has become an important option for examining tissues in vivo as a diagnostic tool and a quality control tool for tissue-engineered constructs. Collagen is one of the primary determinants of biomechanical stability. Since collagen is also the primary scattering element in skin and other soft tissues, we hypothesized that laser-optical imaging methods, particularly confocal scattered-light scanning, would allow us to quantify scattering intensity and determine collagen content in biological layers. Methods We built a fully automated confocal scattered-light scanner to examine how light scatters in Intralipid, a common tissue phantom, and three-dimensional collagen gels. Intralipid with 0.5%, 1.0%, 1.5%, and 2.0% concentration was filled between precisely spaced glass coverslips. Collagen gels at collagen concentrations from 0.30 mg/mL to 3.30 mg/mL were prepared, and all samples underwent A-mode scanning with multiple averaged scans. In Intralipid samples, light reflected from the upper fluid-glass interface was measured. In collagen gels, average scattering intensity inside the actual gel was measured. In both cases, intensity was correlated with concentration. Results By measuring light attenuation at interface reflections of various thicknesses using our device, we were able to determine that the scattering coefficient at 660 nm of Intralipid at increasing concentrations in water to be 39 cm-1 for each percent increase of Intralipid. We were also able to measure the amount of scattering of various concentrations of collagen in gels directly using backscattered light. The results show a highly linear relationship with an increase of 8.2 arbitrary units in backscattering intensity for every 1 mg increase of collagen within a 1 mL gel volume. Conclusion The confocal scattered-light scanner allows to accurately quantify scattering in Intralipid and collagen gels. Furthermore, a linear relationship between

  9. Comparison of the Keratometric Corneal Astigmatic Power after Phacoemulsification: Clear Temporal Corneal Incision versus Superior Scleral Tunnel Incision

    Directory of Open Access Journals (Sweden)

    Yongqi He

    2009-01-01

    Full Text Available Objective. This is prospective randomized control trial to compare the mean keratometric corneal astigmatism diopter power (not surgical induced astigmatism among preop and one-month and three-month postop phacoemulcification of either a clear temporal corneal incision or a superior scleral tunnel Incision, using only keratometric astigmatic power reading to evaluate the difference between the two cataract surgery incisions. Methods. 120 patients (134 eyes underwent phacoemulcification were randomly assigned to two groups: Group A, the clear temporal corneal incision group, and Group B, the superior scleral tunnel incision group. SPSS11.5 Software was used for statistical analysis to compare the postsurgical changes of cornea astigmatism on keratometry. Results. The changes of corneal astigmatic diopter in Groups A and B after 3 month postop from keratometric reading were 1.04 + 0.76 and 0.94 + 0.27, respectively (=.84>.05, which showed no statistic significance difference. Conclusion. The incision through either temporal clear cornea or superior scleral tunnel in phacoemulcification shows no statistic difference in astigmatism change on keratometry 3-month postop.

  10. Numerical analysis and optimization of a dual-order mode all-optical wavelength converter

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Wolfson, David; Kloch, Allan;

    2001-01-01

    A numerical analysis of a dual-order mode (DOMO) wavelength converter has been carried out. We optimize the waveguide dimensions for high speed and compare to a single mode device. We also identify a crosstalk penalty when converting to wavelengths close to the original....

  11. Thermoplasmonic Study of a Triple Band Optical Nanoantenna Strongly Coupled to Mid IR Molecular Mode

    Science.gov (United States)

    Hasan, Dihan; Ho, Chong Pei; Pitchappa, Prakash; Yang, Bin; Yang, Chunsheng; Lee, Chengkuo

    2016-02-01

    We report the first thermal study of a triple band plasmonic nanoantenna strongly coupled to a molecular mode at mid IR wavelength (MW IR). The hybrid plasmonic structure supports three spatially and spectrally variant resonances of which two are magnetic and one is dipolar in nature. A hybridized mode is excited by coupling the structure’s plasmonic mode with the vibrational mode of PMMA at 5.79 μm. Qualitative agreement between the spectral changes in simulation and experiment clearly indicates that resistive heating is the dominant mechanisms behind the intensity changes of the dipolar and magnetic peaks. The study also unveils the thermal insensitivity of the coupled mode intensity as the temperature is increased. We propose a mechanism to reduce the relative intensity change of the coupled mode at elevated temperature by mode detuning and surface current engineering and demonstrate less than 9% intensity variation. Later, we perform a temperature cycling test and investigate into the degradation of the Au-PMMA composite device. The failure condition is identified to be primarily associated with the surface chemistry of the material interface rather than the deformation of the nanopatterns. The study reveals the robustness of the strongly coupled hybridized mode even under multiple cycling.

  12. New concept for combining three telescopes with integrated optics: multi-mode interferences (MMI)

    Science.gov (United States)

    Rooms, Frederic; Morand, Alain; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel; Haguenauer, Pierre; Berger, Jean-Philippe; Martin, M.; Benyattou, Taha

    2003-02-01

    Integrated optics technologies are an attractive alternative to classical bulk optics for the beam combination function of an interferometer. We propose a new integrated optics combiner for three apertures giving access to the closure phase on each output. It uses a multimode interference combination scheme realized by ion exchange on a glass substrate. This paper describes the theoretical behaviour of the beam combiner and its design constraints. Its interferometric behaviour is simulated and first experimental results using for the first time, as far as we know, a Near field Scanning Optical Measurement (NSOM) technique are discussed.

  13. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Science.gov (United States)

    Arkhipov, Ievgen I.; Peřina, Jan; Peřina, Jan; Miranowicz, Adam

    2016-07-01

    The behavior of general nonclassical two-mode Gaussian states at a beam splitter is investigated. Single-mode nonclassicality as well as two-mode entanglement of both input and output states are analyzed suggesting their suitable quantifiers. These quantifiers are derived from local and global invariants of linear unitary two-mode transformations such that the sum of input (or output) local nonclassicality measures and entanglement measure gives a global invariant. This invariant quantifies the global nonclassicality resource. Mutual transformations of local nonclassicalities and entanglement induced by the beam splitter are analyzed considering incident noisy twin beams, single-mode noisy squeezed vacuum states, and states encompassing both squeezed states and twin beams. A rich tapestry of interesting nonclassical output states is predicted.

  14. Polar Value Analysis of Corneal Astigmatism in Intrastromal Corneal Ring Segment Implantation

    OpenAIRE

    Chang Rae Rho; Min-Ji Kim; Choun-Ki Joo

    2016-01-01

    Purpose. To evaluate surgically induced astigmatism (SIA) and the average corneal power change in symmetric intrastromal corneal ring segment (ICRS) implantation. Methods. The study included 34 eyes of 34 keratoconus patients who underwent symmetric Intacs SK ICRS implantation. The corneal pocket incision meridian was the preoperative steep meridian. Corneal power data were obtained before and 3 months after Intacs SK ICRS implantation using scanning-slit topography. Polar value analysis was ...

  15. Clinical Efficacy of Toric Orthokeratology in Myopic Ado-lescent with Moderate to High Astigmatism

    Institute of Scientific and Technical Information of China (English)

    Ming Luo; Shengsheng Ma; Na Liang

    2014-01-01

    Purpose:.To observe the efficacy of toric design orthokera-tology.(ortho-k).for correcting myopia and astigmatism in my-opic adolescents with moderate to high astigmatism. Methods:.This was a self-controlled clinical study..Twenty-four subjects(42 eyes).aged 9 to 16 years with myopia of 2.50-6.00 D complicated with rule astigmatism of 1.50-3.50 D were fitted with Lucid Night Toric Ortho-k Lenses (LUCID,KO-REA)..The changes in uncorrected visual acuity (UCVA), spherical degree, refraction, axial length (AL),.and corneal status were assessed at baseline, 1 night, 1 week, 1 month, 3 months, 6 months, and 1 year after the commencement of or-tho-k lens wear. Results: The success rate of the first lens fit was 92.8%. The UCVA after ortho-k wearing was improved significantly com-pared to the baseline during each visit (all P0.05)..Grade 1 corneal staining was observed at 1 week (23.8%),.1 month (21.4%), and 1 year (16.7%) fol-lowing lens wear, and was improved by lens cleaning,.discon-tinuing lens wear, and moistening the cornea with eye drops. No severe adverse events were reported. Conclusion: The toric ortho-k lens was effective and safe for correction of low to moderate myopia in children with moder-ate to high astigmatism..The lens also effectively controlled axial length elongation during 1 year of observation..However, the long-term efficacy remains to be elucidated.

  16. Polar Value Analysis of Corneal Astigmatism in Intrastromal Corneal Ring Segment Implantation

    Science.gov (United States)

    Rho, Chang Rae; Kim, Min-Ji

    2016-01-01

    Purpose. To evaluate surgically induced astigmatism (SIA) and the average corneal power change in symmetric intrastromal corneal ring segment (ICRS) implantation. Methods. The study included 34 eyes of 34 keratoconus patients who underwent symmetric Intacs SK ICRS implantation. The corneal pocket incision meridian was the preoperative steep meridian. Corneal power data were obtained before and 3 months after Intacs SK ICRS implantation using scanning-slit topography. Polar value analysis was used to evaluate the SIA. Hotelling's trace test was used to compare intraindividual changes. Results. Three months postoperatively, the combined mean polar value for SIA changed significantly (Hotelling's T2 = 0.375; P = 0.006). The SIA was 1.54 D at 99° and the average corneal power decreased significantly by 3.8 D. Conclusion. Intacs SK ICRS placement decreased the average corneal power and corneal astigmatism compared to the preoperative corneal power and astigmatism when the corneal pocket incision was made at the preoperative steep meridian. PMID:27795856

  17. Polar Value Analysis of Corneal Astigmatism in Intrastromal Corneal Ring Segment Implantation

    Directory of Open Access Journals (Sweden)

    Chang Rae Rho

    2016-01-01

    Full Text Available Purpose. To evaluate surgically induced astigmatism (SIA and the average corneal power change in symmetric intrastromal corneal ring segment (ICRS implantation. Methods. The study included 34 eyes of 34 keratoconus patients who underwent symmetric Intacs SK ICRS implantation. The corneal pocket incision meridian was the preoperative steep meridian. Corneal power data were obtained before and 3 months after Intacs SK ICRS implantation using scanning-slit topography. Polar value analysis was used to evaluate the SIA. Hotelling’s trace test was used to compare intraindividual changes. Results. Three months postoperatively, the combined mean polar value for SIA changed significantly (Hotelling’s T2=0.375; P=0.006. The SIA was 1.54 D at 99° and the average corneal power decreased significantly by 3.8 D. Conclusion. Intacs SK ICRS placement decreased the average corneal power and corneal astigmatism compared to the preoperative corneal power and astigmatism when the corneal pocket incision was made at the preoperative steep meridian.

  18. Customized toric intraocular lens implantation for correction of extreme corneal astigmatism due to corneal scarring

    Directory of Open Access Journals (Sweden)

    R Bassily

    2010-03-01

    Full Text Available R Bassily, J LuckOphthalmology Department, Royal United Hospital, Combe Park, Bath, UKAbstract: A 76-year-old woman presented with decreased visual function due to cataract formation. Twenty-five years prior she developed right sided corneal ulceration that left her with 10.8 diopters (D of irregular astigmatism at 71.8° (steep axis. Her uncorrected visual acuity was 6/24 and could only ever wear a balanced lens due to the high cylindrical error. Cataract surgery was planned with a custom designed toric intraocular lens (IOL with +16.0 D sphere inserted via a wound at the steep axis of corneal astigmatism. Postoperative refraction was -0.75/+1.50 × 177° with a visual acuity of 6/9 that has remained unchanged at six-week follow-up with no IOL rotation. This case demonstrates the value of high power toric IOLs for the correction of pathological corneal astigmatism.Keywords: intraocular lens, corneal ulceration, visual acuity, scarring

  19. Toric Intraocular Lens Implantation for Correction of Astigmatism in Cataract Patients with Corneal Ectasia

    Directory of Open Access Journals (Sweden)

    Efstratios A. Parikakis

    2013-11-01

    Full Text Available Our purpose was to examine the long-term efficacy of toric intraocular lens (IOL implantation in cataract patients with high astigmatism due to corneal ectasia, who underwent phacoemulsification cataract surgery. Five eyes of 3 cataract patients with topographically stable keratoconus or pellucid macular degeneration (PMD, in which phacoemulsification with toric IOL implantation was used to correct high astigmatism, are reported. Objective and subjective refraction, visual acuity measurement and corneal topography were performed in all cases before and after cataract surgery. In all cases, there was a significant improvement in visual acuity, as well as refraction, which remained stable over time. Specifically, in subjective refraction, all patients achieved visual acuity from 7/10 to 9/10 with up to -2.50 cyl. Corneal topography also remained stable. Postoperative follow-up was 18-28 months. Cataract surgery with toric IOL implantation seems to be safe and effective in correcting astigmatism and improving visual function in cataract patients with topographically stable keratoconus or PMD.

  20. [Optimization of broad-band flat-field holographic concave grating without astigmatism].

    Science.gov (United States)

    Kong, Peng; Tang, Yu-guo; Bayanheshig; Li, Wen-hao; Cui, Jin-jiang

    2012-02-01

    The desirable imaging locations of the flat-field holographic concave gratings should be in a plane. And the object can be imaged perfectly by the grating when the tangential focal curve and sagittal focal curve both superpose the intersection of the image plane and dispersion plane. But actually, the defocus can not be eliminated over the entire wavelength range, while the astigmatism vanishes when the grating parameters satisfy some conditions. An optimization method for broad-band flat-field holographic concave gratings with absolute astigmatism correction was proposed. The ray tracing software ZEMAX was used for investigating the imaging properties of the grating. And we made a comparison between spectral performance of gratings designed by this new method and that by conventional method, respectively. The results indicated that the spectral performance of gratings designed by using the absolute astigmatism correction method can be as good as gratings designed with the conventional method. And the focusing performance in the sagittal direction is much better, so that the S/N ratio can be greatly improved.

  1. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    Science.gov (United States)

    Perez, J.; Llorente, R.

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with -31 dBm WiMAX EVM.

  2. Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors

    Science.gov (United States)

    Sakakibara, Youichi; Rozhin, Aleksey G.; Kataura, Hiromichi; Achiba, Yohji; Tokumoto, Madoka

    2005-04-01

    We fabricated single-wall carbon nanotube (SWNT)/poly(vinylalcohol) (PVA) nanocomposite freestanding films and examined their application in devices in which the saturable absorption of SWNTs at near-infrared optical telecommunication wavelengths can be utilized. In a passively mode-locked fiber laser, we integrated a 30-μm-thick SWNT/PVA film into a fiber connection adaptor with the film sandwiched by a pair of fiber ferrules. A ring fiber laser with a SWNT/PVA saturable absorber was operated very easily in the mode-locked short-pulse mode with a pulse width of about 500 fs. Reproducible stable device performance was confirmed. In examining noise suppression for optical amplifiers, mixed light of semiconductor amplified spontaneous emission (ASE) source and 370 fs laser pulses was passed through a 100-μm-thick SWNT/PVA film. The transmission loss of the femtosecond pulse light was smaller than that of the ASE light. This proved that the SWNT/PVA film has the ability to suppress ASE noise.

  3. Nonlinear force dependence on optically bound arrays of micro-particles trapped in the evanescent fields of fundamental and higher order microfibre modes

    CERN Document Server

    Maimaiti, Aili; Truong, Viet Giang; Ritsch, Helmut; Chormaic, Sile Nic

    2016-01-01

    Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 {\\mu}m polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles, which can be well modelled by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data an...

  4. External cavity based single mode Fabry-Pérot laser diode and its application towards all-optical digital circuits

    Science.gov (United States)

    Nakarmi, Bikash; Zhang, Xuping; Won, Yong Hyub

    2012-11-01

    We have proposed a novel approach of realizing all-optical logic gates and combinational circuit using external cavity based single mode Fabry-Pérot laser diodes (SMFP-LDs). Different techniques and critical parameters for injection locking the any one of the modes of SMFP-LDs are discussed. Taking consideration of wavelength detuning and input injected power, we have proposed and demonstrated multi-input injection locking, supporting beam injection locking with the conventional injection locking which are used for demonstrating different logic gates (NAND, AND, XNOR, XOR, NOT, NOR) and digital circuits (Half adder and Comparator). Since we have used SMFP-LDs, there is no requirement of additional probe beam and associated components as required by other optical technologies making the realization simple in configuration, cost effective and power efficient. Clear output waveforms, eye diagrams, risingfalling times and BER are presented to verify the proposed method. All-optical logic units and digital circuit are demonstrated at the data rate of 10 Gbps with the waveform of NRZ signal waveform and measured eye diagram and BER of the PRBS of 231-1 signal. The maximum power penalty among all demonstrated units is below 1.4 dB at the BER of 10-9.

  5. Propagation of Single-Mode Fibre Laser Beams through an Optical ABCD System with Circular Aperture at the Fibre Output End

    Institute of Scientific and Technical Information of China (English)

    DUAN Sai-Liang; LI Jian-Feng; ZHAO Wei; WANG Yi-Shan

    2008-01-01

    @@ Based on the expansion expression of the fundamental mode of a single-mode fibre in terms of Laguerre-Gauss modes, the propagation of a beam of a weakly guiding fibre laser through an optical ABCD system with a circular aperture at the fibre end is studied. The results show that there is much difference between the propagation of the laser beam described by the expansion expression and by the Gaussian mode approximation. The depth of focus of the laser beam is longer than that of the Gaussian modes.

  6. Deep optical access on multi-core and multi-mode fiber for integrated wireless applications

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Beltrán, Marta; Macho, Andrés.

    2015-01-01

    Deep integrated optical access networks target to provide great capillarity and multiple ONTs for cost- and energy-efficient pervasive connectivity seamless supporting integrated wireless. Several key optical technologies are herein reported supporting integrated deep optical access: Bundled radio-over-fiber transmission is proposed and demonstrated for the provision of quintuple-play services achieving 125 km SSMF optical reach. Bend-insensitive fiber in-building distribution is also proposed and demonstrated supporting joint legacy coaxial transmission. Multimode POF is also proposed and demonstrated suitable for joint in-building distribution of MATV and SMATV broadcasting signals. Optical comb technology us is also demonstrated suitable for mm-wave radio generation of multiband OFDM wireless signals. Finally, multicore fiber transmission is also proposed and demonstrated suitable for the transmission of LTE and WIMAX in wireless fronthaul applications in a minimized inter-core crosstalk penalty configuration.

  7. Use of a Toric Intraocular Lens and a Limbal-Relaxing Incision for the Management of Astigmatism in Combined Glaucoma and Cataract Surgery

    Science.gov (United States)

    Gibbons, Allister

    2016-01-01

    Purpose We report the surgical management of a patient with glaucoma undergoing cataract surgery with high preexisting astigmatism. A combination of techniques was employed for her astigmatism management. Methods A 76-year-old female with 5.5 dpt of corneal astigmatism underwent surgery in her left eye consisting of one-site trabeculectomy, phacoemulsification, toric intraocular lens implantation and a single inferior limbal-relaxing incision. Results Intraocular pressure control was achieved with no medication at 11 mm Hg; before the filtering procedure, the pressure was 16 mm Hg on two topical drugs. Astigmatism was reduced to 0.75 dpt, and both corrected and uncorrected visual acuity improved. Conclusions Astigmatism management can have a good outcome in combined procedures. We encourage surgeons to address astigmatism in the preoperative planning of patients undergoing glaucoma surgery associated with phacoemulsification. PMID:27293408

  8. Equal-Amplitude Optical Pulse Generation from a Rational Harmonic Mode-Locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    FENG Xin-Huan; YUAN Shu-Zhong; LI Yao; LIU Yan-Ge; KAI Gui-Yun; DONG Xiao-Yi

    2004-01-01

    A simple technique for the generation of equal-amplitude high repetition rate pulses from a rational harmonic mode-locked fibre ring laser is demonstrated. The principle is based on the combination of the nonlinear characteristics of the modulator and the effect of rational harmonic mode-locking. The two sources act on each other and the integrated effect eventually leads to the pulse amplitude-equalization. We obtain amplitude-equalized short pulses up to the fifth-order rational harmonic mode-locking with an optimum bias level and modulation depth of the modulator, which demonstrates the efficiency of this method.

  9. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  10. Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua

    2003-01-01

    A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.

  11. Electro-optical and dielectric characterizations of the Goldstone mode relaxation in ferroelectric chiral smectic C liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hemine, J [Laboratoire de Physique de la Matiere Condensee, Universite Hassan II, FST Mohammedia, BP 146, Mohammedia (Morocco); Legrand, C [Laboratoire d' Etude des Materiaux et des Composants pour l' Electronique, EA 2601, Universite du Littoral-Cote d' Opale, BP 717, Calais (France); Daoudi, A [Laboratoire de Thermophysique de la Matiere Condensee, Equipe de l' UMR-CNRS 8024, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59 140 Dunkerque (France); Isaert, N [Laboratoire de Dynamique et Structures des Materiaux Moleculaires, UMR-CNRS 8024, Universite des Sciences et Technologies de Lille, Batiment P5, 59655 Villeneuve d' Ascq Cedex (France); Kaaouachi, A El [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences Ibnou Zohr, BP 28/S 80000, Agadir (Morocco); Nguyen, H T [Centre de Recherche Paul Pascal, Universite de Bordeaux 1, 33600 Pessac (France)

    2007-07-25

    We report structural (helical pitch), electro-optical (tilt angle and spontaneous polarization) and dielectric (Goldstone mode) investigations of ferroelectric liquid crystals (FLCs) exhibiting the chiral smectic C phase (SmC*). All these characterizations were performed on two pure FLCs showing the SmC*-SmA-N* phase sequence and having small pitch, high spontaneous polarization and a large relaxation frequency. We have determined the Goldstone rotational viscosity and the twist elastic constant in the SmC* phase from the helical pitch, tilt angle, polarization, dielectric strength experimental data and from the relaxation frequency of the Goldstone-mode relaxation. An Arrhenius-type behaviour of the Goldstone rotational viscosity was obtained and the corresponding activation energies were evaluated.

  12. Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes

    Science.gov (United States)

    Saravanan, S.; Dubey, R. S.

    2016-10-01

    Presently, energy problems and environmental issues have attracted the scientific community for the development of cost-effective and high-performance solar cells. Thin film solar cells are cheaper but weak light absorption in longer wavelength has demanded an efficient light trapping scheme for the better harvesting of solar radiation to a maximum possibility. In this paper, we numerically explore the design efforts of an ultrathin film silicon solar cell, integrated with top dielectric and bottom metal gratings. The proposed design is influenced by the localized surface plasmon modes, surface plasmon polariton and optical resonances which leads to the optimal harvesting of sunlight within 40 nm thick absorbing layer. The optimized design of solar cell shows enhanced light absorption with cell efficiency ∼25% at normal transverse magnetic polarization condition. Our design approach assisted by photonic and plasmonic modes is promising for the realization of new generation, low-cost ultrathin film solar cells.

  13. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    Science.gov (United States)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  14. One-wave optical time-reversal mirror by actively coupling arbitrary light fields into a single-mode reflector

    CERN Document Server

    Lee, KyeoReh; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-01-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomena made possible by the wave property of light. To exploit this phenomenon, many diverse research fields have pursed the realization of an ideal phase conjugation mirror, but the ideal phase conjugation mirror - an optical system that requires a single-input and a single-output beam, like natural conventional mirrors - has never been demonstrated. Here, we demonstrate the realization of a one-wave optical time-reversal mirror using a spatial light modulator and a single-mode reflector. Our method is simple, alignment free, and fast while allowing unlimited power throughput in the time reversed wave, which have not been simultaneously demonstrated before. Using our method, we demonstrate high throughput time-reversal full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence.

  15. Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes.

    Science.gov (United States)

    Wang, Rui; Wang, Jia; Hao, Fenghuan; Zhang, Mingqian; Tian, Qian

    2010-04-01

    We developed a tip-enhanced Raman spectrometer (TERS) with reflection mode. The instrument, with a scanning shear-force microscope (ShFM) and a side-illumination Raman spectroscope, can overcome the diffraction limit and has high sensitivity. A chemical method to fabricate optical fiber probes with Ag coating is proposed. The local electromagnetic responses of the silver-coated optical fiber probe are numerically analyzed by the finite-difference time-domain method, and the excitation wavelength is optimized to resonate with the localized surface plasmons (LSP) of the probe tip. The instrument is applied to investigate a single multiwall carbon nanotube. The experiment results indicate that our TERS instrument has a spatial resolution better than 70 nm, and the enhancement factor is about 5 x 10(3).

  16. One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector

    Science.gov (United States)

    Lee, KyeoReh; Lee, Junsung; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-10-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomenon made possible by the wave property of light. Here, we demonstrate the realization of a one-wave optical phase conjugation mirror using a spatial light modulator. An adaptable single-mode filter is created, and a phase-conjugate beam is then prepared by reverse propagation through this filter. Our method is simple, alignment free, and fast while allowing high power throughput in the time-reversed wave, which has not been simultaneously demonstrated before. Using our method, we demonstrate high throughput full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence.

  17. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  18. Large-Scale Procurement of Radiation Resistant Single-Mode Optical Fibers for CERN

    CERN Document Server

    Guillermain, Elisa; Kuhnhenn, Jochen; Ricci, Daniel; Weinand, Udo

    2015-01-01

    2400 km of special radiation resistant optical fibres were procured by CERN (European Organization for Nuclear Research), for the installation of more than 55 km of optical fibre cables in the accelerator complex underground during the Long Shutdown 1 (LS1). In the frame of this large-scale industrial production, a thorough quality assurance plan (QAP) was put in place and followed at each step of the process. In-depth qualification of optical fibres preceded the 17-month procurement process. All supplied batches were tested for their resistance to radiation, leading to more than 65 quality control irradiation tests. During the cable assembly process and the installations works, a full traceability down to the optical fibre level was ensured. The actions put in place in the frame of the QAP led to successful installation works and to full respect of the LS1 planning.

  19. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    Science.gov (United States)

    Liu, Yu-Long; Wu, Rebing; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2017-01-01

    We theoretically study a strongly driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar to those observed in PT -symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultralong group delay. The time delay τ can be optimized by regulating the optomechanical coupling strength through the control field, and it can be improved up to several orders of magnitude (τ ˜2 ms ) compared to that of conventional optomechanical systems (τ ˜1 μ s ). The presence of mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a powerful platform to control light transport using a PT -symmetric-like optomechanical system.

  20. Surface optomechanics: Calculating optically excited acoustical whispering gallery modes in microspheres

    CERN Document Server

    Zehnpfennig, John; Tomes, Matthew; Carmon, Tal

    2011-01-01

    Stimulated Brillouin scattering recently allowed experimental excitation of surface acoustic resonances in micro-devices, enabling vibration at rates in the range of 50 MHz to 12 GHz. The experimental availability of such mechanical whispering gallery modes in photonic-MEMS raises questions on their structure and spectral distribution. Here we calculate the form and frequency of such vibrational surface whispering gallery modes, revealing diverse types of surface vibrations including longitudinal, transverse, and Rayleigh-type deformations. We parametrically investigate these various modes by changing their orders in the azimuthal, radial, and polar directions to reveal different vibrational structures including mechanical resonances that are localized near the interface with the environment where they can sense changes in the surroundings.

  1. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  2. A simple and inexpensive optical technique to help students visualize mode shapes.

    Science.gov (United States)

    Moore, Thomas R; Cannaday, Ashley E; Zietlow, Sarah A

    2012-03-01

    An imaging technique is introduced that is suitable for visualizing the mode shapes of vibrating structures in an educational setting. The method produces images similar to those obtained using electronic speckle pattern interferometry (ESPI), but it can be implemented for less than 1/10 the cost of a commercial ESPI system, and the apparatus is simple enough that it can be constructed by undergraduate students. This technique allows for real-time visualization of the normal modes and deflection shapes of harmonically vibrating structures, including those with shapes that make generating Chladni patterns with sand or powder impossible. The theory of operation and construction details are discussed.

  3. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system

    Science.gov (United States)

    Yu, Binxing; Woo, Joseph; Kong, Michael; O'Carroll, Deirdre M.

    2015-07-01

    We present an experimental and theoretical study of the electromagnetic interaction between a single gold nanoparticle and a thin gold substrate separated by a sub-50 nm-thick optically absorptive polythiophene spacer layer. Single-particle dark-field scattering spectra show distinct resonance features assigned to four different modes: a horizontal image dipole coupling mode, a vertical image dipole coupling mode and horizontal and vertical coupling modes between localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs). Relatively broadband spectral tuning of the modes can be achieved by modification of the thickness of either the absorptive spacer or the underlying metal film. Dark-field images also reveal the existence of particles for which the signal of the horizontal image dipole coupling mode is suppressed. This is attributed to partial-embedding of gold nanoparticles into the polythiophene spacer and leads to higher scattered light intensities at longer wavelengths. Full-field electromagnetic simulations show good agreement with the experimental results for the various sample conditions. Strong local electric field confinement at longer wavelengths in the polythiophene spacer, due to the vertical image dipole coupling mode and a LSPR-SPP coupling mode, is also observed in simulations and contributes to absorption enhancement in the spacer. Furthermore, we find absorption enhancement in the semiconducting polythiophene spacer increases with decreasing thickness, indicating the increased light trapping ability of the gold nanoparticles for ultra-thin semiconductor layers. The need for ever-thinner semiconductor layers in optoelectronic devices requires effective light trapping at deeply-subwavelength scales. This work demonstrates that light trapping in sub-50 nm-thick semiconductor layers is possible using a ``sphere-on-plane'' system and offers insight into how coupling modes can be manipulated in this system.We present an

  4. Fluorescence-enhanced optical spectroscopy using early arriving photons in transmission mode: a finite element approach

    Science.gov (United States)

    Piron, Vianney; L'Huillier, Jean-Pierre

    2012-06-01

    Optical imaging of turbid media is a challenging problem mainly due to the scattering process that reduces image contrast and degrades spatial resolution. The development of fluorescent probes has recently improved the noninvasive optical technique. In this paper, we are interested in the time gating fluorescence signals. The diffusion approximation is used in order to describe the light propagation of a laser pulse in a turbid media that mimics breast like biological tissue. A numerical model based on a finite element method is proposed. Fluorescence time dependent numerical simulations are performed in order to compute time-gated intensities resulting from line scans across partially absorbing and scattering slab configurations. Optical properties of embedded objects are chosen to be the same as optical properties of breast tumor. Tacking into account two hidden objects, we investigate the lateral resolution aimed by fluorescence modality, and we also compared the results to thus obtained by photon propagation. Different widths of the time gate are computed and it is demonstrated that both lateral localization of one inclusion, and resolution of two inclusions, are enhanced when the time-gate width (▵t) is decreased. The overall computations confirm that fluorescent time-gating technique is very sensitive to local variations in optical properties that are due to breast-like tumors in turbid media.

  5. Research and implementation of the burst-mode optical signal bit-error test

    Science.gov (United States)

    Huang, Qiu-yuan; Ma, Chao; Shi, Wei; Chen, Wei

    2009-08-01

    On the basis of the characteristic of TDMA uplink optical signal of PON system, this article puts forward a method of high-speed optical burst bit-error rate testing based on FPGA. The article proposes a new method of generating the burst signal pattern include user-defined pattern and pseudo-random pattern, realizes the slip synchronization, self-synchronization of error detection using data decomposition technique and the traditional irrigation code synchronization technology, completes high-speed burst signal clock synchronization using the rapid synchronization technology of phase-locked loop delay in the external circuit and finishes the bit-error rate test of high-speed burst optical signal.

  6. Mode-Locked 1.5 um Semiconductor Optical Fiber Ring

    DEFF Research Database (Denmark)

    Pedersen, Niels Vagn; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product = 0.7) 1.5 um 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...

  7. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    DEFF Research Database (Denmark)

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...

  8. High-power single-transverse-mode ridge optical waveguide semiconductor lasers

    NARCIS (Netherlands)

    Popovichev, VV; Davydova, EI; Marmalyuk, AA; Simakov, A; Uspenskii, MB; Chel'nyi, AA; Bogatov, AP; Drakin, AE; Plisyuk, SA; Sratonnikov, AA

    2002-01-01

    More than 200 mW of a single-transverse-mode cw output power is obtained from a semiconductor heterolaser by optimising the waveguide properties of its ridge structure. e laser-beam divergence is close to the diffraction limit and its brightness exceeds 5 x 10(7) W cm(-2) sr(-1). The calculated and

  9. On Stability of Flat Band Modes in a Rhombic Nonlinear Optical Waveguide Array

    CERN Document Server

    Maimistov, Andrey I

    2016-01-01

    The quasi-one-dimensional rhombic array of the waveguides is considered. In the nonlinear case the system of equations describing coupled waves in the waveguides has the solutions that represent the superposition of the flat band modes. The property of stability of these solutions is considered. It was found that the flat band solution is unstable until the power threshold be attained.

  10. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range

    CERN Document Server

    Lin, Guoping

    2015-01-01

    Optical whispering gallery mode (WGM) resonators have been very attracting platforms for versatile Kerr frequency comb generations. We report a systematic study on the material dispersion of various optical materials that are capable of supporting quality factors above $10^9$. Using an analytical approximation of WGM resonant frequencies in disk resonators, we investigate the effect of the geometry and transverse mode order on the total group-velocity dispersion ($GVD$). We demonstrate that the major radii and the radial mode indices play an important role in tailoring the $GVD$ of WGM resonators. In particular, our study shows that in WGM disk-resonators, the polar families of modes have very similar $GVD$, while the radial families of modes feature dispersion values that can differ by up to several orders of magnitude. The effect of these giant dispersion shifts are experimentally evidenced in Kerr comb generation with magnesium fluoride. From a more general perspective, this critical feature enables to pus...

  11. ROLE OF INCISION SITE IN REDUCING SURGICALLY INDUCE D ASTIGMATISM IN MANUAL SMALL INCISION CATARACT SURGE RY

    Directory of Open Access Journals (Sweden)

    Sathish

    2013-04-01

    Full Text Available INTRODUCTION: Phacoemulsification and foldable IOLs allow modern day surgeon to aim at minimal induction of any astigmatic error as well a s correct any pre-operative refractive errors thus making patients’ life, spectacle free i.e. una ided emmetropia. But its high price and maintenance with a long learning curve for the surg eon make it unsuitable for the Indian camp scenario. Manual SICS in comparison needs a larger incision f or both nucleus removal and a rigid IOL insertion, but still provides for a sutureless and c onvenient alternative to phaco. Manual SICS does induce some amount of astigmatism by altering corneal curvatures (i.e., by coupling effect, while phaco surgery with 3 mm incision is astigmatic ally neutral. Manifold of studies have been done to compare Surgically Induced Astigmatism of ma nual SICS to phaco surgery but not much has been done to compare various techniques in manua l SICS itself. In this study an attempt has been made to analyze t he role of incision site depending on the pre operative keratometry readings in reducing su rgically induced astigmatism in manual small incision cataract surgery.

  12. Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere

    NARCIS (Netherlands)

    Zijlstra, Peter; Molen, van der Karen L.; Mosk, Allard P.

    2007-01-01

    The authors propose the use of an optically trapped, dye doped polystyrene microsphere for spatial probing of the refractive index at any position in a fluid. Using the dye embedded in the microsphere as an internal broadband excitation source the authors eliminated the need for a tunable excitation

  13. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing.

    Science.gov (United States)

    Wang, Xiandi; Que, Miaoling; Chen, Mengxiao; Han, Xun; Li, Xiaoyi; Pan, Caofeng; Wang, Zhong Lin

    2017-01-06

    Pressure sensor matrix (PSM) with full dynamic range can accurately detect and spatially map pressure profile. A 100 × 100 large-scale PSM gives both electrical and optical signals by itself without applying an external power. The device represents a major step toward digital imaging and visible display of pressure distribution covers a large dynamic range.

  14. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng;

    2015-01-01

    communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...

  15. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat;

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its ...

  16. Design considerations for multi-core optical fibers in nonlinear switching and mode-locking applications

    CERN Document Server

    Nazemosadat, Elham

    2014-01-01

    We explore the practical challenges which should be addressed when designing a multi-core fiber coupler for nonlinear switching or mode-locking applications. The inevitable geometric imperfections formed in these fiber couplers during the fabrication process affect the performance characteristics of the nonlinear switching device. Fabrication uncertainties are tolerable as long as the changes they impose on the propagation constant of the modes are smaller than the linear coupling between the cores. It is possible to reduce the effect of the propagation constant variations by bringing the cores closer to each other, hence, increasing the coupling. However, higher coupling translates into a higher switching power which may not be desirable in some practical situations. Therefore, fabrication errors limit the minimum achievable switching power in nonlinear couplers.

  17. Research on optical fiber magnetic field sensors based on multi-mode fiber and spherical structure

    Science.gov (United States)

    Wang, Yan; Tong, Zheng-rong; Zhang, Wei-hua; Luan, Pan-pan; Zhao, Yue; Xue, Li-fang

    2017-01-01

    A magnetic field sensor with a magnetic fluid (MF)-coated intermodal interferometer is proposed and experimentally demonstrated. The interferometer is formed by sandwiching a segment of single mode fiber (SMF) between a segment of multi-mode fiber (MMF) and a spherical structure. It can be considered as a cascade of the traditional SMF-MMF-SMF structure and MMF-SMF-sphere structure. The transmission spectral characteristics change with the variation of applied magnetic field. The experimental results exhibit that the magnetic field sensitivities for wavelength and transmission loss are 0.047 nm/mT and 0.215 dB/mT for the interference dip around 1 535.36 nm. For the interference dip around 1548.41nm, the sensitivities are 0.077 nm/mT and 0.243 dB/mT. Simultaneous measurement can be realized according to the different spectral responses.

  18. A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber

    Science.gov (United States)

    Gasior, Katarzyna; Martynkien, Tadeusz; Napiorkowski, Maciej; Zolnacz, Kinga; Mergo, Pawel; Urbanczyk, Waclaw

    2017-02-01

    For the first time to our knowledge, we report a successful fabrication of surface plasmon resonance (SPR) sensors in a specially developed single-mode birefringent polymer D-shape fiber with a core made of PMMA/PS copolymer. A small distance between the core and the cladding boundary allows to deposit a gold layer directly onto the flat fiber surface, which significantly simplifies the sensors fabrication process. The developed SPR sensor exhibits a sensitivity of 2765 nm RIU-1 for the refractive index of external medium equal to 1.410, which is similar to the sensitivity of the SPR sensors based on conventional side-polished single-mode silica fibers. Using the finite element method, we also numerically studied the sensor performance. The sensor characteristics obtained in the simulations are in a relatively good agreement with the experimental results.

  19. Effectiveness of Toric Orthokeratology in the Treatment of Patients with Combined Myopia and Astigmatism

    Science.gov (United States)

    Lyu, Byul; Hwang, Kyu Yeon; Kim, Sun Young; Kim, Su Young

    2016-01-01

    Purpose The purpose of this multi-institute, single-group clinical trial was to evaluate the effectiveness and safety of toric orthokeratology lenses for the treatment of patients with combined myopia and astigmatism. Methods A total of 44 patients were included in this clinical trial. The patients ranged in age from 7 to 49 years, with myopia of -0.75 to -6.0 diopters (D) and astigmatism of 1.25 to 4.0 D. After excluding 21 subjects, 23 subjects (39 eyes) were analyzed after toric orthokeratology lens use. The subjects underwent ophthalmologic examination after 1 day and 1, 2, 3, and 4 weeks of wearing overnight toric orthokeratology lenses. Results A total of 19 subjects (31 eyes) completed the trial after five subjects (eight eyes) dropped out. In the patients who completed the study by wearing lenses for 4 weeks, the myopic refractive error decreased significantly by 2.60 ± 2.21 D (p refractive error were also significantly decreased by 0.63 ± 0.98 D (p = 0.001), from 2.07 ± 0.83 to 1.44 ± 0.99 D. The mean uncorrected and corrected visual acuities before wearing the lenses were 2.14 ± 0.80 logarithm of the logMAR (logMAR) and 0.05 ± 0.13 logMAR, respectively, which changed to 0.12 ± 0.30 logarithm of the logMAR (p correcting visual acuity in patients with combined myopia and astigmatism. PMID:27980362

  20. Flexible Toric Iris Claw Phakic Intraocular Lens Implantation for Myopia and Astigmatism

    Directory of Open Access Journals (Sweden)

    Mohammad Ghoreishi

    2014-01-01

    Full Text Available Purpose: To assess the visual and refractive outcomes of flexible toric iris claw phakic intraocular lens implantation for correction of moderate to high myopia with astigmatism. Methods: In this non-randomized prospective study, 31 eyes of 18 patients including 8 male and 10 female subjects with mean age of 27.62±5.53 (range 19 to 38 years with moderate to high myopia and astigmatism underwent toric Artiflex (Ophtec BV, Groningen, Netherlands phakic intraocular lens (PIOL implantation. Uncorrected distance visual acuity (UDVA and corrected distance visual acuity (CDVA were measured in logarithm of minimum angle of resolution (logMAR notations. Manifest refraction, safety, efficacy, predictability and complications were measured 6 months after surgery. Results: Pre-operatively, mean spherical equivalent (SE refractive error was -9.68±1.92 (range -14.00 to -6.00 diopter (D and mean cylinder was -2.79±1.06 (range -4.75 to -1.00 D. After a minimum of 6 months, mean SE was -0.38±0.27 (range -0.87 to 0.00 D and mean cylinder was -0.66±0.43 (range -1.50 to 0.00 D. SE was within 0.50 D of emmetropia in 63.8% and within 1.0 D of target refraction in 100% of eyes. UDVA was equal or better than 20/20 in 45.1% of eyes while CDVA was equal or better than 20/20 in 67.7%; 83.8% of eyes gained 1 or more Snellen lines of CDVA after surgery. No serious complications occurred in this series of cases. Conclusions: Implantation of the toric Artiflex PIOL is a safe and effective procedure for correction of moderate to high myopia with astigmatism.

  1. SURGICALLY INDUCED ASTIGMATISM AFTER IMPLANTATION OF FOLDABLE AND NON - FOLDABLE LENSES IN CATARACT SURGERY BY PHACOEMULSIFICATION

    Directory of Open Access Journals (Sweden)

    Vikas

    2015-01-01

    Full Text Available This prospective comparative study included 300 matched patients of different grades of senile cataract. All of them willfully underwent phacoemulsification at the hands of a single experienced surgeon, performing with a single and individual technique {Woodcutter’s technique 1 }; half of them were implanted with a foldable intraocular lens and the other half with a non - foldable PMMA intraocular lens. All the patients undergoing phacoemulsification had an improvement in vision. There was no statistically significant difference in the surgically induced astigmatism after implanting foldable or non - foldable IOL

  2. Toric Intraocular Lenses in the Correction of Astigmatism During Cataract Surgery

    DEFF Research Database (Denmark)

    Kessel, Line; Andresen, Jens; Tendal, Britta

    2016-01-01

    TOPIC: We performed a systematic review and meta-analysis to evaluate the benefit and harms associated with implantation of toric intraocular lenses (IOLs) during cataract surgery. Outcomes were postoperative uncorrected distance visual acuity (UCDVA) and distance spectacle independence. Harms were...... literature search in the Embase, PubMed, and CENTRAL databases within the Cochrane Library. We included randomized clinical trials (RCTs) if they compared toric with non-toric IOL implantation (± relaxing incision) in patients with regular corneal astigmatism and age-related cataracts. We assessed the risk...

  3. Analysis of Single-Mode Fiber Link Performance for Attenuation in Long-Haul Optical Networks

    Science.gov (United States)

    Kaur, Karamjit; Singh, Hardeep

    2017-03-01

    In the past decades, optical fiber has been widely used in communication system owing to low transmission losses, large information carrying capacity, small size, immunity to electrical interference and increased signal security. Focusing on increasing the network transmission capacity, control on the quality of transmission was the field that withdraws attention of research community. For this reason, fiber losses and their compensation remain the important design issue. In the present work, an effort is put in to design a system capable of doing error analysis of system for power losses taking place in the presence of attenuation effect. Attenuation is one of the important phenomena that determine the maximum possible distance between a transmitter and receiver or quantity and position of amplifiers and repeaters in optical networks. The mathematical model equations are obtained representing variation trends of bit error rate BER and Q-value with varying attenuation, which has been verified by different wavelength sources and network conditions.

  4. Combinational-deformable-mirror adaptive optics system for compensation of high-order modes of wavefront

    Institute of Scientific and Technical Information of China (English)

    Huafeng Yang; Guilin Liu; Changhui Rao; Yudong Zhang; Wenhan Jiang

    2007-01-01

    A new kind of adaptive optics (AO) system, in which several low spatial frequency deformable mirrors(DMs) with optical conjugation relationship are combined to correct high-order aberrations, is proposed.The phase compensation principle and the control method of the combinational AO system are introduced.The numerical simulations for the AO system with two 60-element DMs are presented. The results indicate that the combinational DM in the AO system can correct different aberrations effectively as one single DM with more actuators, and there is no change of control method. This technique can be applied to a large telescope AO system to improve the spatial compensation capability for wavefront by using current DM.

  5. Coupling of single NV Center to adiabatically tapered optical single mode fiber

    CERN Document Server

    Vorobyov, Vadim V; Bolshedvorskii, Stepan V; Javadzade, Javid; Lebedev, Nikolay; Smolyaninov, Andrey N; Sorokin, Vadim N; Akimov, Alexey V

    2016-01-01

    We demonstrated a simple and reliable technique of coupling diamond nanocrystal containing NV center to tapered optical fiber. We carefully studied fluorescence of the fiber itself and were able to suppress it to the level lower than single photon emission from the NV center. Single photon statistics was demonstrated at the fiber end as well as up to 3 times improvement in collection efficiency with respect to our confocal microscope

  6. Comparison of clinical outcomes between limbal relaxing incisions and toric intraocular lenses in eyes with astigmatic corneas

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2014-01-01

    Full Text Available Objective: To compare refractive and vectorial outcomes of limbal relaxing incisions (LRI versus toric intraocular lenses (IOL in the treatment of preexisting corneal astigmatism at the time of phacoemulsification. Methods: This longitudinal observational case series assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted in two groups: one assigned to receive AcrySof Toric™ IOL in both eyes, and another one assigned to have AcrySof Natural™ IOL associated with LRI, also in both eyes. All patients were re-evaluated, postoperatively, at 1, 3 and 6 months, when refractive astigmatism analysis was performed using vectorial methods proposed by Thibos. Variability of outcomes within each group and between groups were assessed and compared. Results: Manifest refractive cylinder, in diopters (D, as means ± standard deviation, in the LRI group for 1-month, 3-month and 6-month re-evalutions were respectively -0.66 ± 0.30; -0.70 ± 0.21 and -0.74 ± 0.26 when compared to -0.58 ± 0.24; -0.63 ± 0.20, and -0.62 ± 0.17 in the toric IOL group. (p value ≥ 0.06. Vectorial analysis evidenced greater astigmatism reduction in the toric IOL group in the 6th postoperative month, when postoperative mean astigmatic power vector was 0.31 D, when compared to 0.37 D in the LRI group (p value = 0.00. Conclusions: A trend of slightly better refractive outcomes favoring toric IOL group was seen, although such a trend was not statistically significant. Vectorial analysis, however, suggests that the use of toric IOL may constitute a more advantageous approach in the treatment of pre-existing corneal astigmatism, simultaneously with phacoemulsification.

  7. A COMPARATIVE STUDY OF THE AMOUNT OF ASTIGMATISM FOLLOWING CONVENTIONAL EXTRACAPSULAR CATARACT EXTRACTION AND MANUAL SMALL INCISION CATARACT SURGERY

    Directory of Open Access Journals (Sweden)

    Rajkumari Bigyabati

    2016-06-01

    Full Text Available BACKGROUND Cataract is the principal cause of avoidable blindness in India and throughout the world. Surgical removal of the cataractous lens remains the only effective treatment for management of cataract blindness. The success of cataract surgery is determined by best and earliest visual recovery. But the occurrence of postoperative astigmatism has become a major hurdle in achieving this goal. AIMS The study was designed to compare the amount of astigmatism following conventional extracapsular cataract extraction (ECCE and manual small incision cataract surgery (SICS. MATERIALS AND METHODS The study was carried out in 100 eyes of 75 patients aged between 50 and 80 years admitted for cataract surgery. Out of these, 50 eyes were operated by conventional extracapsular cataract extraction and 50 eyes by manual small incision cataract surgery. The patients were followed up at 2 nd , 4 th , 6 th and 8 th weeks. At each follow-up visual acuity, refraction and acceptance and keratometry were recorded and the findings analysed for astigmatism. RESULTS In the current study, the mean (SD astigmatism developed at the end of the 2 nd , 4 th and 6 th of follow-up was significantly lower in the SICS group as compared to the ECCE group (P<0.000. At the end of 8 weeks of follow-up, the mean (SD astigmatism of the SICS group was 0.64±0.56 D as compared to the mean (SD of the ECCE group of 1.39±86 D and the difference was found to be significant (p<0.014. CONCLUSION The current study concludes that manual small incision cataract surgery is a better technique to control postoperative astigmatism than conventional extracapsular cataract extraction.

  8. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping

    Science.gov (United States)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  9. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    OpenAIRE

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental results agree well with the simulation results obtained using a transmission line laser model (TLLM) model, Both experiments and numerical simulations show how the RF power and the detuning affect the pu...

  10. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  11. Flat Supercontinuum Generated in a Single-Mode Optical Fibre with a New Chromatic Dispersion Profile

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Zhao; REN Xiao-Min; ZHANG Xia; HUANG Yong-Qing; XU Wen-Cheng

    2005-01-01

    @@ A new chromatic dispersion profile of a single-mode opticalfibre is proposed for generating a supercontinuum with a flatly broadened spectrum. The chromatic dispersion D( λ, z) is a convex function of wavelengths and has no zero-dispersion wavelengths over the whole part of thefibre as D(λ, z) is negative. It is shown that the flat supercontinuum spectrum is obtained when the pump wavelength is set in the vicinity of the wavelength at which the peak chromatic dispersion is near zero and the strong residual pump component is eliminated.

  12. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    Science.gov (United States)

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  13. Wannier-Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO2 coatings

    Science.gov (United States)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-12-01

    Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0-800 nm thick. The Wannier-Stark electro-optical effect due to strong electric field on Si-SiO2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  14. Audio-band Coating Thermal Noise Measurement for Advanced LIGO with a Multi-mode Optical Resonator

    CERN Document Server

    Gras, S; Yam, W; Martynov, D; Evans, M

    2016-01-01

    In modern high precision optical instruments, such as in gravitational wave detectors or frequency references, thermally induced fluctuations in the reflective coatings can be a limiting noise source. This noise, known as coating thermal noise, can be reduced by choosing materials with low mechanical loss. Examination of new materials becomes a necessity in order to further minimize the coating thermal noise and thus improve sensitivity of next generation instruments. We present a novel approach to directly measure coating thermal noise using a high finesse folded cavity in which multiple Hermite-Gaussian modes co-resonate. This method is used to probe surface fluctuations on the order 10^-17 m\\rtHz in the frequency range 30-400 Hz. We applied this technique to measure thermal noise and loss angle of the coating used in Advanced LIGO.

  15. Generation of Flat Supercontinuum in a Single-mode Optical Fiber with a Convex Chromatic Dispersion Profile

    Institute of Scientific and Technical Information of China (English)

    XU Yong-zhao; WANG Hong-chen; ZHOU Shou-li

    2009-01-01

    A single-mode optical fiber with a convex chromatic dispersion profile is proposed for generating a flat supercontinuum(SC). The fiber has normal dispersion and the dispersion parameter D(λ,z) is a convex function of wavelengths. It is shown from the numerical results that the chromatic dispersion, the flatness of the dispersion curve and the pump conditions have significant effect on SC generation. A flat and broad SC without strong residual pump component can be obtained when the pump wavelength is set in the vicinity of the wavelength at which the fiber has small normal group-velocity dispersion(GVD) and small dispersion slope. The fiber with a smaller normal GVD, a flatter dispersion profile and a higher nonlinear coefficient are more suitable for broad SC generation.

  16. A Versatile Setup for Ultrafast Broadband Optical Spectroscopy of Coherent Collective Modes in Strongly Correlated Quantum Systems

    CERN Document Server

    Baldini, Edoardo; Borroni, Simone; Arrell, Christopher; van Mourik, Frank; Carbone, Fabrizio

    2016-01-01

    A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide range of temperatures. By combining a temporal resolution of 45 fs and a broad detection range between 1.75 and 2.85 eV, this apparatus can provide insightful information on the interplay between coherent collective modes and high-energy electronic excitations, which is one of the distinctive characteristics of strongly interacting and correlated quantum systems. The use of a single-shot readout CMOS array detector at frame rates up to 10 kHz allows to resolve coherent oscillations with amplitudes below 10$^{-4}$ in $\\Delta$R/R. We demonstrate the operation of this setup on the prototypical charge-transfer insulator La$_2$CuO$_4$, revealing the presence of coherent optical phonons with frequencies as high as 13 THz.

  17. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    Science.gov (United States)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  18. Development of Optical Voltage Transducer Based on Dual-Mode Highly Elliptical-Core Polarization Maintenance Fiber

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Bi; Feng Liu; Xuan Guo

    2008-01-01

    This paper describes an optical voltage transducer (OVT) for the 35 kV electric power system based on modular interference in dual-mode highly elliptical-core polarization maintenance fiber (E-Core PMIF). The temperature and environmental perturb-bation can be compensated automatically. In the scheme, a quartz crystal cylinder wrapped with highly elliptical-core fiber plays the role of voltage sensor head. The two interference output lobes' intensity from the E-core PMF is modulated with the converse piezoelectric effect of quartz crystal. A PZT wrapped with E-core PMF at ground potential serves as the static modular phase difference control and temperature compensation unit. The experiment results indicate that the OVT designed in this paper has satisfying performance and could successfully rejects the temperature perturbation.

  19. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  20. FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy.

    Science.gov (United States)

    Vargas, J; Otón, J; Marabini, R; Jonic, S; de la Rosa-Trevín, J M; Carazo, J M; Sorzano, C O S

    2013-02-01

    In this work we present a fast and automated algorithm for estimating the contrast transfer function (CTF) of a transmission electron microscope. The approach is very suitable for High Throughput work because: (a) it does not require any initial defocus estimation, (b) it is almost an order of magnitude faster than existing approaches, (c) it opens the way to well-defined extensions to the estimation of higher order aberrations, at the same time that provides defocus and astigmatism estimations comparable in accuracy to well established methods, such as Xmipp and CTFFIND3 approaches. The new algorithm is based on obtaining the wrapped modulating phase of the power spectra density pattern by the use of a quadrature filter. This phase is further unwrapped in order to obtain the continuous and smooth absolute phase map; then a Zernike polynomial fitting is performed and the defocus and astigmatism parameters are determined. While the method does not require an initial estimation of the defocus parameters or any non-linear optimization procedure, these approaches can be used if further refinement is desired. Results of the CTF estimation method are presented for standard negative stained images, cryo-electron microscopy images in the absence of carbon support, as well as micrographs with only ice. Additionally, we have also tested the proposed method with micrographs acquired from tilted and untilted samples, obtaining good results. The algorithm is freely available as a part of the Xmipp package [http://xmipp.cnb.csic.es].