WorldWideScience

Sample records for astigmatic optical modes

  1. Geometric phases in astigmatic optical modes of arbitrary order

    International Nuclear Information System (INIS)

    Habraken, Steven J. M.; Nienhuis, Gerard

    2010-01-01

    The transverse spatial structure of a paraxial beam of light is fully characterized by a set of parameters that vary only slowly under free propagation. They specify bosonic ladder operators that connect modes of different orders, in analogy to the ladder operators connecting harmonic-oscillator wave functions. The parameter spaces underlying sets of higher-order modes are isomorphic to the parameter space of the ladder operators. We study the geometry of this space and the geometric phase that arises from it. This phase constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. It reduces to the ordinary Gouy phase and the geometric phase of nonastigmatic optical modes with orbital angular momentum in limiting cases. We briefly discuss the well-known analogy between geometric phases and the Aharonov-Bohm effect, which provides some complementary insights into the geometric nature and origin of the generalized Gouy phase shift. Our method also applies to the quantum-mechanical description of wave packets. It allows for obtaining complete sets of normalized solutions of the Schroedinger equation. Cyclic transformations of such wave packets give rise to a phase shift, which has a geometric interpretation in terms of the other degrees of freedom involved.

  2. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  3. Association between mode of delivery and astigmatism in preschool children.

    Science.gov (United States)

    Liu, Fengyang; Yang, Xubo; Tang, Angcang; Liu, Longqian

    2018-03-01

    To determine whether mode of delivery has any impact on astigmatism. This case-control study was performed in the Department of Ophthalmology in 2015. Exposure was mode of delivery [vaginal delivery (VD) or caesarean section (CS), which here included both elective and emergency CS]. Outcome was astigmatism (≥2.5 D), which was determined by cycloplegic refraction. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were computed to assess the associations between mode of delivery and astigmatism from logistic regression models. Of the 659 children studied here (341 boys; mean age, 4.37 years), 440 were born by CS and 219 by VD. The incidence of severe astigmatism (≥2.5 D) in the CS and VD groups was 22.06% and 13.24%, respectively. Children delivered by CS had a 77.9% higher risk of severe astigmatism compared with vaginally delivered children (OR = 1.779; 95% CI, 1.121 to 2.824). After dividing CS into elective CS and emergency CS, children delivered by elective CS had an 87.3% increased risk of severe astigmatism (OR = 1.873; 95% CI, 1.157 to 3.032), but children delivered by emergency CS did not differ from vaginally delivered children. In addition, the children whose mothers had histories of breastfeeding had a 44.6% lower risk of severe astigmatism than children whose mother did not breastfeed them (OR = 0.554, 95% CI, 0.335-0.914). Birth by CS, especially elective CS, increases the risk of severe astigmatism (≥2.50 D) in childhood. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Zhao Chunnong; Ju Li; Blair, David G [School of Physics, University of Western Australia, Crawley, WA6009 (Australia)

    2006-03-02

    Using a conventional mode-cleaner with the output beam taken through a diagonal mirror it is impossible to achieve a non-astigmatic output. The geometrical astigmatism of triangular mode-cleaners for gravitational wave detectors can be self-compensated by thermally induced astigmatism in the mirrors substrates. We present results from finite element modelling of the temperature distribution of the suspended mode-cleaner mirrors and the associated beam profiles. We use these results to demonstrate and present a self-compensated mode-cleaner design. We show that the total astigmatism of the output beam can be reduced to 5x10{sup -3} for {+-}10% variation of input power about a nominal value when using the end mirror of the cavity as output coupler.

  5. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, Pablo J. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)]. E-mail: pbarriga@cyllene.uwa.edu.au; Zhao Chunnong [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Blair, David G. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)

    2005-06-06

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen.

  6. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    International Nuclear Information System (INIS)

    Barriga, Pablo J.; Zhao Chunnong; Blair, David G.

    2005-01-01

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen

  7. Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-08-15

    In the previous work, non-imaging focusing heliostat that consists of m x n facet mirrors can carry out continuous astigmatic correction during sun-tracking with the use of only (m + n - 2) controllers. For this paper, a simplified astigmatic correction of non-imaging focusing heliostat is proposed for reducing the number of controllers from (m + n - 2) to only two. Furthermore, a detailed optical analysis of the new proposal has been carried out and the simulated result has shown that the two-controller system can perform comparably well in astigmatic correction with a much simpler and more cost effective design. (author)

  8. Assessment of refractive astigmatism and simulated therapeutic refractive surgery strategies in coma-like-aberrations-dominant corneal optics.

    Science.gov (United States)

    Zhou, Wen; Stojanovic, Aleksandar; Utheim, Tor Paaske

    2016-01-01

    The aim of the study is to raise the awareness of the influence of coma-like higher-order aberrations (HOAs) on power and orientation of refractive astigmatism (RA) and to explore how to account for that influence in the planning of topography-guided refractive surgery in eyes with coma-like-aberrations-dominant corneal optics. Eleven eyes with coma-like-aberrations-dominant corneal optics and with low lenticular astigmatism (LA) were selected for astigmatism analysis and for treatment simulations with topography-guided custom ablation. Vector analysis was used to evaluate the contribution of coma-like corneal HOAs to RA. Two different strategies were used for simulated treatments aiming to regularize irregular corneal optics: With both strategies correction of anterior corneal surface irregularities (corneal HOAs) were intended. Correction of total corneal astigmatism (TCA) and RA was intended as well with strategies 1 and 2, respectively. Axis of discrepant astigmatism (RA minus TCA minus LA) correlated strongly with axis of coma. Vertical coma influenced RA by canceling the effect of the with-the-rule astigmatism and increasing the effect of the against-the-rule astigmatism. After simulated correction of anterior corneal HOAs along with TCA and RA (strategies 1 and 2), only a small amount of anterior corneal astigmatism (ACA) and no TCA remained after strategy 1, while considerable amount of ACA and TCA remained after strategy 2. Coma-like corneal aberrations seem to contribute a considerable astigmatic component to RA in eyes with coma-like-aberrations dominant corneal optics. If topography-guided ablation is programmed to correct the corneal HOAs and RA, the astigmatic component caused by the coma-like corneal HOAs will be treated twice and will result in induced astigmatism. Disregarding RA and treating TCA along with the corneal HOAs is recommended instead.

  9. Astigmatism and biometric optic components of diode laser-treated threshold retinopathy of prematurity at 9 years of age

    Science.gov (United States)

    Yang, C-S; Wang, A-G; Shih, Y-F; Hsu, W-M

    2013-01-01

    Purpose To assess the prevalence of astigmatism and its relationship with biometric optic components in preterm school children with diode laser-treated threshold retinopathy of prematurity (ROP). Methods A prospective, cross-sectional study in which cycloplegic keratometry, refraction, and ultrasound biometric measurement of optic components were performed on 24 consecutive preterm children with diode laser-treated threshold ROP at the age of 9 years. The study results were compared with data on 1021 age-matched full-term control children from a national survey. Results The laser-treated eyes had a mean astigmatism of 3.47 D, with a mean spherical equivalent of −4.49 D. Of the 46 eyes studied, 98% of eyes showed astigmatism ≥0.5 D and 50% had high astigmatism (>3.0 D). Most astigmatic eyes (97.7%) showed with-the-rule astigmatism, with the mean plus cylinder axis at 89.30o. Further correlation analysis showed the astigmatism in refraction was highly correlated with the corneal astigmatism (r=0.921, P<0.001) and the vertical corneal curvature (r=0.405, P=0.005). There was significantly steeper vertical corneal curvature (P=0.003) and flatter horizontal corneal curvature (P=0.031) in eyes with laser-treated ROP when compared with age-matched full-term controls. The eyes with laser-treated ROP also show significantly thicker lens (3.93 mm) and shallower anterior chamber depth (ACD; 2.92 mm) than full-term controls (P<0.001). Conclusions There is significantly higher prevalence and greater magnitude of astigmatism in eyes with laser-treated threshold ROP compared with full-term controls. The steeper vertical corneal curvature component contributes to the increased astigmatism in eyes with laser-treated ROP. PMID:23222565

  10. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  11. Optical treatment of amblyopia in astigmatic children: the sensitive period for successful treatment.

    Science.gov (United States)

    Harvey, Erin M; Dobson, Velma; Clifford-Donaldson, Candice E; Miller, Joseph M

    2007-12-01

    To compare the effectiveness of eyeglass treatment of astigmatism-related amblyopia in children younger than 8 years (range, 4.75-7.99 years) versus children 8 years of age and older (range, 8.00-13.53 years) over short (6-week) and long (1-year) treatment intervals. Prospective, interventional, comparative case-control study. Four hundred forty-six nonastigmatic (right and left eye, or =1.00 D) Native American (Tohono O'odham) children in kindergarten or grades 1 through 6. Eyeglass correction of refractive error, prescribed for full-time wear, in astigmatic children. Amount of change in mean right-eye best-corrected letter visual acuity for treated astigmatic children versus untreated, age-matched nonastigmatic children after short (6-week) and long (1-year) treatment intervals. Astigmatic children had significantly reduced mean best-corrected visual acuity at baseline compared to nonastigmatic children. Astigmats showed significantly greater improvement in mean best-corrected visual acuity (0.08 logarithm of the minimum angle of resolution [logMAR] unit; approximately 1 line), than the nonastigmatic children (0.01 logMAR unit) over the 6-week treatment interval. No additional treatment effect was observed between 6 weeks and 1 year. Treatment effectiveness was not dependent on age group ( or =8 years) and was not influenced by previous eyeglass treatment. Despite significant improvement, mean best-corrected visual acuity in astigmatic children remained significantly poorer than in nonastigmatic children after 1 year of eyeglass treatment, even when analyses were limited to results from highly compliant children. Sustained eyeglass correction results in significant improvement in best-corrected visual acuity in astigmatic children, including those previously believed to be beyond the sensitive period for successful treatment.

  12. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  13. Hartmann tests to measure the spherical and cylindrical curvatures and the axis orientation of astigmatic lenses or optical surfaces.

    Science.gov (United States)

    Hernández-Gómez, Geovanni; Malacara-Hernández, Zacarías; Malacara-Hernández, Daniel

    2014-02-20

    The measurement of astigmatic lenses, optical surfaces or wavefronts are a highly studied problem and many different instruments have been commercially fabricated to perform this task. Many of them use a Hartmann arrangement to obtain the result. In this paper, we analyze with detail the algorithms that can be used to make the necessary calculations and propose several alternatives with different advantages and disadvantages. Different mathematical algorithms that are involved in the calculation process have been given whereas any description of the instrument itself is not proposed, but only the different mathematical algorithms that are involved in the calculation process.

  14. Optical treatment reduces amblyopia in astigmatic children who receive spectacles before kindergarten.

    Science.gov (United States)

    Dobson, Velma; Clifford-Donaldson, Candice E; Green, Tina K; Miller, Joseph M; Harvey, Erin M

    2009-05-01

    To examine the effect of spectacle correction of astigmatism during preschool on best-corrected recognition visual acuity (VA), grating VA, and meridional amblyopia (difference between acuity for vertical versus horizontal gratings) once the children reach kindergarten. Comparative case series. Seventy-three astigmatic (right eye > or =1.50 diopters [D] cylinder) Native American (Tohono O'odham) children 5 to 7 years of age. All had with-the-rule astigmatism. In 28 children, the astigmatism was simple myopic, compound myopic, or mixed (M/MA), and in 45 children, it was simple or compound hyperopic (HA). Thirty-nine children (Treated Group) had spectacle correction of refractive error, prescribed for full-time wear, in preschool (0.8-2.4 years before testing). Thirty-four children (Untreated Group) had no prior correction. Comparison of Treated versus Untreated Groups for mean best-corrected right-eye recognition VA, measured with the Early Treatment Diabetic Retinopathy Study (ETDRS) chart and the Lea Symbols chart, for grating VA, measured with modified Teller acuity card stimuli, and for meridional amblyopia, based on grating acuity results. Mean ETDRS VA was significantly better in the Treated Group (20/37) than in the Untreated Group (20/48; P<0.003), but the difference between mean Lea Symbols VA in the Treated Group (20/33) and in the Untreated Group (20/38) was not significant. No significant Treated versus Untreated Group differences were found for either vertical or horizontal grating acuity. Meridional amblyopia differed between the M/MA group, which showed better acuity for vertical than for horizontal gratings, and the HA group, which showed better acuity for horizontal than for vertical gratings. However, in neither the M/MA group nor the HA group was there a significant difference in magnitude of meridional amblyopia in the Treated versus the Untreated Group. Spectacle correction during the preschool years results in a significant improvement in best

  15. Analysis of focusing error signals by differential astigmatic method under off-center tracking in the land-groove-type optical disk

    Science.gov (United States)

    Shinoda, Masahisa; Nakatani, Hidehiko

    2015-04-01

    We theoretically calculate the behavior of the focusing error signal in the land-groove-type optical disk when the objective lens traverses on out of the radius of the optical disk. The differential astigmatic method is employed instead of the conventional astigmatic method for generating the focusing error signals. The signal behaviors are compared and analyzed in terms of the gain difference of the slope sensitivity of the focusing error signals from the land and the groove. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and advantageous conditions for suppressing the gain difference are investigated. The calculation method and results described in this paper will be reflected in the next generation land-groove-type optical disks.

  16. Anti-drift and auto-alignment mechanism for an astigmatic atomic force microscope system based on a digital versatile disk optical head.

    Science.gov (United States)

    Hwu, E-T; Illers, H; Wang, W-M; Hwang, I-S; Jusko, L; Danzebrink, H-U

    2012-01-01

    In this work, an anti-drift and auto-alignment mechanism is applied to an astigmatic detection system (ADS)-based atomic force microscope (AFM) for drift compensation and cantilever alignment. The optical path of the ADS adopts a commercial digital versatile disc (DVD) optical head using the astigmatic focus error signal. The ADS-based astigmatic AFM is lightweight, compact size, low priced, and easy to use. Furthermore, the optical head is capable of measuring sub-atomic displacements of high-frequency AFM probes with a sub-micron laser spot (~570 nm, FWHM) and a high-working bandwidth (80 MHz). Nevertheless, conventional DVD optical heads suffer from signal drift problems. In a previous setup, signal drifts of even thousands of nanometers had been measured. With the anti-drift and auto-alignment mechanism, the signal drift is compensated by actuating a voice coil motor of the DVD optical head. A nearly zero signal drift was achieved. Additional benefits of this mechanism are automatic cantilever alignment and simplified design.

  17. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    Science.gov (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  18. Analysis of behavior of focusing error signals generated by astigmatic method when a focused spot moves beyond the radius of a land-groove-type optical disk

    Science.gov (United States)

    Shinoda, Masahisa; Nakatani, Hidehiko; Nakai, Kenya; Ohmaki, Masayuki

    2015-09-01

    We theoretically calculate behaviors of focusing error signals generated by an astigmatic method in a land-groove-type optical disk. The focusing error signal from the land does not coincide with that from the groove. This behavior is enhanced when a focused spot of an optical pickup moves beyond the radius of the optical disk. A gain difference between the slope sensitivities of focusing error signals from the land and the groove is an important factor with respect to stable focusing servo control. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and the dependences of the gain difference on various factors are investigated. The gain difference strongly depends on the optical intensity distribution of the laser beam in the optical pickup. The calculation method and results in this paper will be reflected in newly developed land-groove-type optical disks.

  19. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  20. Two mode optical fiber in space optics communication

    Science.gov (United States)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  1. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    Science.gov (United States)

    Trappe, Neil; Murphy, J. Anthony; Withington, Stafford

    2003-07-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.

  2. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    International Nuclear Information System (INIS)

    Trappe, Neil; Murphy, J Anthony; Withington, Stafford

    2003-01-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking - for comparison - examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration

  3. Higher order modes of coupled optical fibres

    International Nuclear Information System (INIS)

    Alexeyev, C N; Yavorsky, M A; Boklag, N A

    2010-01-01

    The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security

  4. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  5. Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT).

    Science.gov (United States)

    Schmid, Tobias; Rolland, Jannick P; Rakich, Andrew; Thompson, Kevin P

    2010-08-02

    We present the nodal aberration field response of Ritchey-Chrétien telescopes to a combination of optical component misalignments and astigmatic figure error on the primary mirror. It is shown that both astigmatic figure error and secondary mirror misalignments lead to binodal astigmatism, but that each type has unique, characteristic locations for the astigmatic nodes. Specifically, the characteristic node locations in the presence of astigmatic figure error (at the pupil) in an otherwise aligned telescope exhibit symmetry with respect to the field center, i.e. the midpoint between the astigmatic nodes remains at the field center. For the case of secondary mirror misalignments, one of the astigmatic nodes remains nearly at the field center (in a coma compensated state) as presented in Optics Express 18, 5282-5288 (2010), while the second astigmatic node moves away from the field center. This distinction leads directly to alignment methods that preserve the dynamic range of the active wavefront compensation component.

  6. Optical defect modes in chiral liquid crystals

    International Nuclear Information System (INIS)

    Belyakov, V. A.; Semenov, S. V.

    2011-01-01

    An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

  7. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  8. Active composite waveguides with a suppressed competition of optical modes

    International Nuclear Information System (INIS)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2008-01-01

    The possibilities of separating the fundamental optical mode in composite waveguides by selecting the structure of amplifying regions are analysed. Conditions are presented under which the fundamental mode preserves the highest gain at any saturation. (letters)

  9. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  10. Longitudinal change and stability of refractive, keratometric, and internal astigmatism in childhood.

    Science.gov (United States)

    Harvey, Erin M; Miller, Joseph M; Twelker, J Daniel; Sherrill, Duane L

    2014-12-16

    To assess longitudinal change in refractive, keratometric, and internal astigmatism in a sample of students from a population with a high prevalence of with-the-rule (WTR) astigmatism and to determine the optical origins of changes in refractive astigmatism. A retrospective analysis of longitudinal measurements of right eye refractive and keratometric astigmatism in Tohono O'odham Native American children was conducted. Changes in refractive and keratometric astigmatism per year were compared in a younger cohort (n = 1594, 3 to O'odham children. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  11. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  12. Frustration of Bragg reflection by cooperative dual-mode interference: a new mode of optical propagation.

    Science.gov (United States)

    Yariv, A

    1998-12-01

    A new optical mode of propagation is described, which is the natural eigenmode (supermode) of a fiber (or any optical waveguide) with two cospatial periodic gratings. The mode frustrates the backward Bragg scattering from the grating by destructive interference of its two constituent submodes (which are eigenmodes of a uniform waveguide). It can be used in a new type of spatial mode conversion in optical guides.

  13. Research and design of quasi-optical mode converter

    International Nuclear Information System (INIS)

    Liu Jianwei; Zhao Qing

    2013-01-01

    This paper presents a quasi-optical mode converter which can convert the output mode of gyrotrons and other high-power microwave oscillators into quasi-Gaussian beam, aiming to achieve transverse output of quasi-Gaussian beam TEM 00 mode. First, we analyze mode propagation in the waveguide and the working mechanism of the Vlasov launcher. Then the radiation fields are calculated using vector diffraction theory. At last a quasi-optical mode converter is designed to convert the 94 GHz, TE 62 mode millimeter wave into quasi-Gaussian beam with programming method. The results prove that quasi-Gaussian mode can be obtained at the output window with a simple Vlasov launcher and two mirrors, and the power transmission efficiency of the quasi-optical mode converter reaches to 87.5%. (authors)

  14. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation.......We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  15. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  16. [Astigmatic keratotomy with the femtosecond laser: correction of high astigmatisms after keratoplasty].

    Science.gov (United States)

    Kook, D; Bühren, J; Klaproth, O K; Bauch, A S; Derhartunian, V; Kohnen, T

    2011-02-01

    The purpose of this study was to evaluate a novel technique for the correction of postoperative astigmatism after penetrating keratoplasty with the use of the femtosecond laser creating astigmatic keratotomies (femto-AK) in the scope of a retrospective case series. Clinical data of ten eyes of nine patients with high residual astigmatism after penetrating keratoplasty undergoing paired femto-AK using a 60-kHz femtosecond laser (IntraLase™, AMO) were analyzed. A new software algorithm was used to create paired arcuate cuts deep into the donor corneal button with different cut angles. Target values were refraction, uncorrected visual acuity, best corrected visual acuity, topographic data (Orbscan®, Bausch & Lomb, Rochester, NY, USA), and corneal wavefront analysis using Visual Optics Lab (VOL)-Pro 7.14 Software (Sarver and Associates). Vector analysis was performed using the Holladay, Cravy and Koch formula. Statistical analysis was performed to detect significances between visits using Student's t test. All procedures were performed without any major complications. The mean follow-up was 13 months. The mean patient age was 48.7 years. The preoperative mean uncorrected visual acuity (logMAR) was 1.27, best corrected visual acuity 0.55, mean subjective cylinder -7.4 D, and mean topometric astigmatism 9.3 D. The postoperative mean uncorrected visual acuity (logMAR) was 1.12, best corrected visual acuity 0.47, mean subjective cylinder -4.1 D, and mean topometric astigmatism 6.5 D. Differences between corneal higher order aberrations showed a high standard deviation and were therefore not statistically significant. Astigmatic keratotomy using the femtosecond laser seems to be a safe and effective tool for the correction of higher corneal astigmatisms. Due to the biomechanical properties of the cornea and missing empirical data for the novel femto-AK technology, higher numbers of patients are necessary to develop optimal treatment nomograms.

  17. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...

  18. Harnessing the mode mixing in optical fiber-tip cavities

    International Nuclear Information System (INIS)

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  19. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  20. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  1. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  2. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  3. Simulated astigmatism impairs academic-related performance in children.

    Science.gov (United States)

    Narayanasamy, Sumithira; Vincent, Stephen J; Sampson, Geoff P; Wood, Joanne M

    2015-01-01

    implications for the clinical management of non-amblyogenic levels of astigmatism in relation to academic performance in children. Correction of low to moderate levels of astigmatism may improve the functional performance of children in the classroom. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  4. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  5. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    Science.gov (United States)

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  6. Testing ultrafast mode-locking at microhertz relative optical linewidth

    OpenAIRE

    Martin, Michael J.; Foreman, Seth M.; Schibli, T. R.; Ye, Jun

    2008-01-01

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb. We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 micro Hz relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  7. Diffractive optical elements for transformation of modes in lasers

    Science.gov (United States)

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  8. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high...

  9. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  10. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs

    2017-01-01

    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...

  11. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  12. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  13. Whispering gallery mode selection in optical bottle microresonators

    Science.gov (United States)

    Ding, Ming; Senthil Murugan, Ganapathy; Brambilla, Gilberto; Zervas, Michalis N.

    2012-02-01

    We demonstrated a method to excite selected whispering gallery modes in optical bottle microresonators (BMR) by inscribing microgroove scars on their surface by focused ion beam milling. Substantial spectral clean-up is obtained in appropriately scarred BMRs, providing the potential for high performance sensors and other optical devices.

  14. 3D finite element simulation of optical modes in VCSELs

    OpenAIRE

    Rozova, M.; Pomplun, J.; Zschiedrich, L.; Schmidt, F.; Burger, S.

    2011-01-01

    We present a finite element method (FEM) solver for computation of optical resonance modes in VCSELs. We perform a convergence study and demonstrate that high accuracies for 3D setups can be attained on standard computers. We also demonstrate simulations of thermo-optical effects in VCSELs.

  15. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    Science.gov (United States)

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  16. Optical phonon modes of wurtzite InP

    Science.gov (United States)

    Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.

    2013-03-01

    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.

  17. The astigmatism factor for semiconductor injection lasers

    International Nuclear Information System (INIS)

    Zhao Yiguang; Guo Changzhi

    1988-03-01

    The relations between the astigmatism factor and the waveguide structure, working conditions etc. were accurately calculated, using a method for deriving a self-consistent solution of the optical field equation and the carrier diffusion equation. Various theoretical models regarding the spontaneous emission factor were analyzed and compared. The results show that there is a difference between astigmatism factors of semiconductor lasers with different waveguide structures. W. Streifer's results, for a model having an invariable distribution of the complex refractive index, are larger by a factor of 6 to 80 than the accurate calculated value. K. Petermann's theory regarding the spontaneous emission factor is more appropriate than other theories. (author). 19 refs, 6 figs

  18. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  19. Prevalence of corneal astigmatism before cataract surgery in northeast China

    Directory of Open Access Journals (Sweden)

    Zuo-Feng Guo

    2016-05-01

    Full Text Available AIM:To analyze the prevalence and presentation patterns of corneal astigmatism in cataract surgery candidates of Shenyang in northeast China.METHODS:A retrospective survey was used to study the corneal astigmatism which were measured by intraocular lens(IOLMaster optical biometer before cataract surgery between Jan. 1st, 2014 and Dec. 31st, 2014. Descriptive statistics of corneal astigmatism data were analyzed.RESULTS:The keratometric data from 4 543 eyes from 3 821 patients with a mean age of 66.36±10.38y(SD. In 10.50% of eyes, corneal astigmatism was between 0.5 diopters(Dor less; in 30.05% of eyes, it was 0.5-1.0 D; in 23.60%, it was 1.0-1.5 D; in 13.19%, it was 1.5-2.0 D; in 7.68%, it was 2.0-2.5 D; in 6.41%, it was 2.5-3.0 D; in 8.58%, it was 3.0 D or higher. With-the-rule astigmatism was found in 27.69% of eyes, while against-the-rule was found in 53.84% of eyes.CONCLUSION:About 59.46% of eyes in this study had preoperative corneal astigmatism equal to or above 1.0 D. Findings indicated more surgical techniques or toric intraocular lenses to meet the potential demand of the cataract surgery candidates.

  20. Visual acuity with simulated and real astigmatic defocus.

    Science.gov (United States)

    Ohlendorf, Arne; Tabernero, Juan; Schaeffel, Frank

    2011-05-01

    To compare the effects of "simulated" and "real" spherical and astigmatic defocus on visual acuity (VA). VA was determined with letter charts that were blurred by calculated spherical or astigmatic defocus (simulated defocus) or were seen through spherical or astigmatic trial lenses (real defocus). Defocus was simulated using ZEMAX and the Liou-Brennan eye model. Nine subjects participated [mean age, 27.2 ± 1.8 years; logarithm of the minimum angle of resolution (logMAR), -0.1]. Three different experiments were conducted in which VA was reduced by 20% (logMAR 0.0), 50% (logMAR 0.2), or 75% (logMAR 0.5) by either (1) imposing positive spherical defocus, (2) imposing positive and negative astigmatic defocus in three axes (0, 45, and 90°), and (3) imposing cross-cylinder defocus in the same three axes as in (2). Experiment (1): there were only minor differences in VA with simulated and real positive spherical defocus. Experiment (2): simulated astigmatic defocus reduced VA twice as much as real astigmatic defocus in all tested axes (p < 0.01 in all cases). Experiment (3): simulated cross-cylinder defocus reduced VA much more than real cross-cylinder defocus (p < 0.01 in all cases), similarly for all three tested axes. The visual system appears more tolerant against "real" spherical, astigmatic, and cross-cylinder defocus than against "simulated" blur. Possible reasons could be (1) limitations in the modeling procedures to simulate defocus, (2) higher ocular aberrations, and (3) fluctuations of accommodation. However, the two optical explanations (2) and (3) cannot account for the magnitude of the effect, and (1) was carefully analyzed. It is proposed that something may be special about the visual processing of real astigmatic and cross-cylinder defocus-because they have less effect on VA than simulations predict.

  1. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  2. Gaussian mode selection with intracavity diffractive optics

    CSIR Research Space (South Africa)

    Litvin, IA

    2009-10-01

    Full Text Available discrimination good, but this is at the expense of high intrinsic loss for the oscillating modes, making such cavities suitable only for lasers with high gain. A major advance to overcome such problems was the introduction of so–called graded–phase mirrors [1... half the peak intensity when the order N >> 1. This is important when considering practical issues such as thermally induced stress OSA Published by 6 fracture, and thermal aberrations, in solid state gain materials. However, the disadvantage...

  3. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  4. Optical Communications With A Geiger Mode APD Array

    Science.gov (United States)

    2016-02-09

    practical performance of a Geiger mode avalanche photodiode ( GM -APD, or Geiger mode APD) array for use in optical com- munications systems. I designed and...signal quality in the first half of the frame. These shorter reset times also did not offer any advantage in the maximum number of counts able to be...pattern was advantageous for the modifications being made in post-processing on the benchmark data. In particular, this allowed post-processing results

  5. Quasi-optical millimeter wave rotating TE62 mode generator

    International Nuclear Information System (INIS)

    Li Shaopu; Zhang Conghui; Wang Zhong; Guo Feng; Chen Hongbin; Hu Linlin; Pan Wenwu

    2011-01-01

    The design,measurement technique and experimental results of rotating TE 6 2 mode generator are presented. The source includes millimeter wave optical system and open coaxial wave guide system. The millimeter wave optical system consists of pyramid antenna, hyperbolical reflector, parabolic reflector and quasi parabolic reflector. The open coaxial wave guide system contains open coaxial wave guide cavity, cylinder wave guide and output antenna. It is tested by network analyser and millimeter wave near field pattern auto-test system, and the purity of rotating TE 6 2 mode at 96.4 GHz is about 97%. (authors)

  6. Toric intraocular lens implantation versus astigmatic keratotomy to correct astigmatism during phacoemulsification.

    Science.gov (United States)

    Titiyal, Jeewan S; Khatik, Mukesh; Sharma, Namrata; Sehra, Sri Vatsa; Maharana, Parfulla K; Ghatak, Urmimala; Agarwal, Tushar; Khokhar, Sudarshan; Chawla, Bhavana

    2014-05-01

    To compare toric intraocular lens (IOL) implantation and astigmatic keratotomy (AK) in correction of astigmatism during phacoemulsification. Tertiary care hospital. Prospective randomized trial. Consecutive patients with visually significant cataract and moderate astigmatism (1.25 to 3.00 diopters [D]) were randomized into 2 groups. Temporal clear corneal 2.75 mm phacoemulsification with toric IOL implantation was performed in the toric IOL group and with 30-degree coupled AK at the 7.0 mm optic zone in the keratotomy group. The uncorrected (UDVA) and corrected (CDVA) distance visual acuities, refraction, keratometry, topography, central corneal thickness, and endothelial cell density were evaluated preoperatively and 1 day, 1 week, and 1 and 3 months postoperatively. The study enrolled 34 eyes (34 patients), 17 in each group. There was no difference in UDVA or CDVA between the 2 groups at any follow-up visit. The mean preoperative and postoperative refractive cylinder was 2.00 D ± 0.49 (SD) and 0.33 ± 0.17 D, respectively, in the toric IOL group and 1.95 ± 0.47 D and 0.57 ± 0.41 D, respectively, in the keratotomy group (P=.10). The mean residual astigmatism at 3 months was 0.44 ± 1.89 @ 160 in the toric IOL group and 0.77 ± 1.92 @ 174 in the keratotomy group (P=.61). All eyes in the toric IOL group and 14 eyes (84%) in the keratotomy group achieved a residual refractive cylinder of 1.00 D or less (P=.17). Toric IOL implantation was comparable to AK in eyes with moderate astigmatism having phacoemulsification. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Robust fiber optic flexure sensor exploiting mode coupling in few-mode fiber

    Science.gov (United States)

    Nelsen, Bryan; Rudek, Florian; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter

    2015-05-01

    Few-mode fiber (FMF) has become very popular for use in multiplexing telecommunications data over fiber optics. The simplicity of producing FMF and the relative robustness of the optical modes, coupled with the simplicity of reading out the information make this fiber a natural choice for communications. However, little work has been done to take advantage of this type of fiber for sensors. Here, we demonstrate the feasibility of using FMF properties as a mechanism for detecting flexure by exploiting mode coupling between modes when the cylindrical symmetry of the fiber is perturbed. The theoretical calculations shown here are used to understand the coupling between the lowest order linearly polarized mode (LP01) and the next higher mode (LP11x or LP11y) under the action of bending. Twisting is also evaluated as a means to detect flexure and was determined to be the most reliable and effective method when observing the LP21 mode. Experimental results of twisted fiber and observations of the LP21 mode are presented here. These types of fiber flexure sensors are practical in high voltage, high magnetic field, or high temperature medical or industrial environments where typical electronic flexure sensors would normally fail. Other types of flexure measurement systems that utilize fiber, such as Rayleigh back-scattering [1], are complicated and expensive and often provide a higher-than necessary sensitivity for the task at hand.

  8. Quasi-optical mode converter for a coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Jin, J.

    2007-03-01

    This work concentrates on the synthesis of the quasioptical mode converter for the 170 GHz, TE 34,19 -mode, 2MW, CW coaxial-cavity gyrotron at Forschungszentrum Karlsruhe (FZK). The improvement of the general method for the design of so-call dimpled-wall launcher to provide a good Gaussian mode content is described. This method is verified through the design of a launcher operating in the TE 22,6 mode at 118 GHz. A phase rule is proposed as a quality criterion for monitoring the optimization and the choices of parameters of the quasi-optical mode converter. High-order harmonics introduced to the launcher wall deformations are proposed for this gyrotron. The launcher is numerically optimized, the fields on the cut edges are suppressed. The fields in the launcher are well approximated by the waveguide modes, the radiated fields are calculated using the scalar diffraction integral. The procedure for the numerical optimization of the mirror system is improved, the tolerance conditions of the phase correcting mirrors are investigated. A conversion efficiency of 95.8% to the circular fundamental Gaussian distribution with 20mm beam waist and power transmission of 90% are achieved in the window plane using the optimized quasi-optical mode converter. The methods to ameliorate the initial conditions of the phase correcting mirrors are explored. (orig.)

  9. Holograms for laser diode: Single mode optical fiber coupling

    Science.gov (United States)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  10. Amblyopia in astigmatic infants and toddlers.

    Science.gov (United States)

    Dobson, Velma; Harvey, Erin M; Clifford-Donaldson, Candice E; Green, Tina K; Miller, Joseph M

    2010-05-01

    To determine whether reduced astigmatism-corrected acuity for vertical (V) and/or horizontal (H) gratings and/or meridional amblyopia (MA) are present before 3 years of age in children who have with-the-rule astigmatism. Subjects were 448 children, 6 months through 2 years of age with no known ocular abnormalities other than with-the-rule astigmatism, who were recruited through Women, Infants and Children clinics on the Tohono O'odham reservation. Children were classified as non-astigmats (2.00 diopters) based on right eye non-cycloplegic autorefraction measurements (Welch Allyn SureSight). Right eye astigmatism-corrected grating acuity for V and H stimuli was measured using the Teller Acuity Card procedure while children wore cross-cylinder lenses to correct their astigmatism or plano lenses if they had no astigmatism. Astigmatism-corrected acuity for both V and H gratings was significantly poorer in the astigmats than in the non-astigmats, and the reduction in acuity for astigmats was present for children in all three age groups examined (6 months to <1 year, 1 to <2 years, and 2 to <3 years). There was no significant difference in V-H grating acuity (no evidence of MA) for the astigmatic group as a whole, or when data were analyzed for each age group. Even in the youngest age group, astigmats tested with astigmatism correction showed reduced acuity for both V and H gratings, which suggests that astigmatism is having a negative influence on visual development. We found no evidence of orientation-related differences in astigmatism-corrected grating acuity, indicating either that MA does not develop before 3 years of age, or that most of the astigmatic children had a type of astigmatism, i.e., hyperopic, that has proven to be less likely than myopic or mixed astigmatism to result in MA.

  11. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  12. Two-photon optics of Bessel-Gaussian modes

    CSIR Research Space (South Africa)

    McLaren, M

    2013-09-01

    Full Text Available In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated in spontaneous parametric down-conversion of a Gaussian pump beam. We provide a general theoretical expression for the orbital angular momentum (OAM) spectrum...

  13. Surgical correction of postoperative astigmatism

    Directory of Open Access Journals (Sweden)

    Lindstrom Richard

    1990-01-01

    Full Text Available The photokeratoscope has increased the understanding of the aspheric nature of the cornea as well as a better understanding of normal corneal topography. This has significantly affected the development of newer and more predictable models of surgical astigmatic correction. Relaxing incisions effectively flatten the steeper meridian an equivalent amount as they steepen the flatter meridian. The net change in spherical equivalent is, therefore, negligible. Poor predictability is the major limitation of relaxing incisions. Wedge resection can correct large degrees of postkeratoplasty astigmatism, Resection of 0.10 mm of tissue results in approximately 2 diopters of astigmatic correction. Prolonged postoperative rehabilitation and induced irregular astigmatism are limitations of the procedure. Transverse incisions flatten the steeper meridian an equivalent amount as they steepen the flatter meridian. Semiradial incisions result in two times the amount of flattening in the meridian of the incision compared to the meridian 90 degrees away. Combination of transverse incisions with semiradial incisions describes the trapezoidal astigmatic keratotomy. This procedure may correct from 5.5 to 11.0 diopters dependent upon the age of the patient. The use of the surgical keratometer is helpful in assessing a proper endpoint during surgical correction of astigmatism.

  14. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  15. Four-port mode-selective silicon optical router for on-chip optical interconnect.

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-04-16

    We propose and demonstrate a four-port mode-selective optical router on a silicon-on-insulator platform. The passive routing property ensures that the router consumes no power to establish the optical links. For each port, input signals with different modes are selectively routed to the target ports through the pre-designed architecture. In general, the device intrinsically supports broadcasting of multiplexed signals from one port to the other three ports through mode division multiplexing. In some applications, the input signal from one port would only be sent to another port as in reconfigurable optical routers. The prototype is constructed by mode multiplexers/de-multiplexers and single-mode interconnect waveguides between them. The insertion losses for all optical links are lower than 8.0 dB, and the largest optical crosstalk values are lower than -18.7 dB and -22.0 dB for the broadcasting and port-to-port routing modes, respectively, at the wavelength range of 1525-1565 nm. In order to verify the routing functionality, a 40-Gbps bidirectional data transmission experiment is performed. The device offers a promising building block for passive routing by utilizing the dimension of the modes.

  16. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  17. Quasi-optical internal mode converters for 110 GHz gyrotrons

    International Nuclear Information System (INIS)

    Harper, B.M.; Lorbeck, J.A.; Vernon, R.J.

    1995-01-01

    Many early gyrotrons had a microwave output in the same mode that was produced in the microwave cavity, e.g. the TE 02 mode. These modes were often converted outside of the tube to a more desirable mode for plasma heating using a system of perturbed-wall waveguide mode converters. The current generation of gyrotrons commonly have cavity modes with a high azimuthal index, such as the rotating TE 22,6 mode. Mode conversion by means of waveguide mode converters is not usually practical for such cases. However, an output of a Gaussian beam or other desirable field pattern can be obtained by using a Vlasov-type launcher feeding a series of two or more reflectors. This system may be placed outside or inside of the gyrotron but there are advantages to placing it within the tube, e.g. allowing for a larger collector and smaller reflectors. When such a converter system is placed inside the gyrotron, it is usually preferable to use a modification to the simple Vlasov launcher such as the Denisov-type launcher, which incorporates a series of perturbations within it. The authors have designed both internal and external versions of such quasi-optical converters. They discuss an internal converter which was designed for use inside of a Varian 110 GHz gyrotron producing the TE 22,6 cavity mode. This design consists of four reflectors which are fed by a Denisov-type launcher. Design techniques for the reflector system are discussed and experimental results are presented

  18. Optothermal transport behavior in whispering gallery mode optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Soheil [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Armani, Andrea M., E-mail: armani@usc.edu [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  19. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  20. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-04-01

    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  1. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  2. Optically active vibrational modes of PPV derivatives on textile substrate

    International Nuclear Information System (INIS)

    Silva, M.A.T. da; Dias, I.F.L.; Santos, E.P. dos; Martins, A.A.; Duarte, J.L.; Laureto, E.; Reis, G.A. dos; Guimarães, P.S.S.; Cury, L.A.

    2013-01-01

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on “dirty” textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I (01) /I (00) , were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: ► MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. ► Their properties were studied by photoluminescence and Raman techniques. ► We observed inversion of first vibrational band in relation to purely electronic peak. ► Optically active vibrational modes of PPV derivatives were studied.

  3. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  4. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  5. Mode-routed fiber-optic add-drop filter

    Science.gov (United States)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  6. Mode-field half-widths of Gaussian approximation for the fundamental mode of two kinds of optical waveguides

    International Nuclear Information System (INIS)

    Lian-Huang, Li; Fu-Yuan, Guo

    2009-01-01

    This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field. Then, it presents a new method where the mode-field half-width of Gaussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed

  7. Experimental demonstration of time- and mode-division multiplexed passive optical network

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-07-01

    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  8. Current measurements by Faraday rotation in single mode optical fibers

    International Nuclear Information System (INIS)

    Chandler, G.I.; Jahoda, F.C.

    1984-01-01

    Development of techniques for measuring magnetic fields and currents by Faraday rotation in single-mode optical fibers has continued. We summarize the results of attempts to measure the toroidal plasma current in the ZT-40 Reversed-Field-Pinch using multi-turn fiber coils. The fiber response is reproducible and in accord with theory, but the amount and distribution of the stress-induced birefringence in this case are such that prediction of the sensor response at low currents is difficult if not impossible. The low-current difficulty can be overcome by twisting the fiber to induce a circular birefringence bias. We report the results of auxiliary experiments with a fiber that has been twisted with 15 turns per meter and then re-coated to lock the twist in place

  9. Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides

    NARCIS (Netherlands)

    Bertolotti, M.; Symes, W.W.; Stoffer, Remco; Hiremath, K.R.; Driessen, A.; Michelotti, F; Hammer, Manfred

    Analysis of integrated optical cylindrical microresonators involves the coupling between a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is based on analytically represented mode profiles. With the bend modes expressed in Cartesian coordinates, coupled mode

  10. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  11. Sensitivity optimization in whispering gallery mode optical cylindrical biosensors

    Science.gov (United States)

    Khozeymeh, F.; Razaghi, M.

    2018-01-01

    Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.

  12. Polarization mode dispersion in optical fiber transmission systems

    Science.gov (United States)

    Cameron, John Charles

    The birefringence of optical fibers causes pulse broadening in fiber-optic communication systems. This phenomenon is known as polarization mode dispersion (PMD). PMD is one of the most important limiting factors for high capacity fiber-optic systems. A number of aspects of PMD are examined in this thesis. In Chapter 2 an expression is derived for the probability density function of the pulse broadening due to first-order PMD. This result is used to obtain an expression for the system limitation due to PMD. The birefringence of optical fibers is commonly simulated with the waveplate model. In Chapter 3 two standard versions of the waveplate model are introduced. In addition, a novel waveplate model is proposed. The characteristics of the three versions of the waveplate model are examined to confirm their suitability for use in subsequent chapters of the thesis. Simulations with the waveplate model are performed in Chapter 4 for three purposes: (1) to determine the impact of chromatic dispersion on the system limitation due to PMD, (2) to examine the effectiveness of three different PMD compensation techniques in the presence of chromatic dispersion, and (3) to examine the interaction of second-order chromatic dispersion with PMD. The simulations in Chapter 4 reveal that it is possible with one compensation technique to have output pulses that are narrower than the input pulses. In Chapter 5, this anomalous pulse narrowing is demonstrated analytically for a simple model of PMD and through experiment. It is also shown that this pulse narrowing can be explained as an interference phenomenon. Chapter 6 presents measurements of PMD and state of polarization on installed optical fibers. The PMD coefficients of 122 fibers are presented and the results are analyzed in terms of the age of the fibers and the type of cabling. Measurements of the time evolution of PMD and state of polarization are presented for fibers installed in both buried and aerial cables. The uncertainty

  13. Propagation of an optical discharge through optical fibres upon interference of modes

    International Nuclear Information System (INIS)

    Bufetov, I A; Frolov, A A; Shubin, A V; Likhachev, M E; Lavrishchev, S V; Dianov, E M

    2008-01-01

    The propagation of an optical discharge (OD) through optical fibres upon interference of LP 01 and LP 02 modes is studied. Under these conditions after the OD propagation through the fibre, the formation of an axially-symmetric group sequence of voids with a spatial period equal to that of mode interference (200-500 μm depending on the parameters of the fibre) is observed. The groups of voids are formed near the sections of the fibre with a minimal diameter of the intensity distribution of laser radiation. Large spaces between voids in the fibre have allowed us to measure accurately the difference Δn of refractive indices of the fibre core and cladding and distribution of dopants in different cross sections of the fibre after the OD propagation. A substantial increase in Δn (up to ten times) is observed. Approximately half this increase is caused by compression and densification of the fibre material after the propagation of the optical discharge. (interaction of laser radiation with matter. laser plasma)

  14. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  15. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  16. Design of dual-mode optical fibres for the FTTH applications

    Science.gov (United States)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.

  17. Design of dual-mode optical fibres for the FTTH applications

    International Nuclear Information System (INIS)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique

  18. Low power excitation of gyrotron-type modes in cylindrical waveguide using quasi-optical techniques

    International Nuclear Information System (INIS)

    Alexandrov, N.L.; Whaley, D.R.; Tran, M.Q.; Denisov, D.R.

    1995-03-01

    Experimental results of low power excitation of a 118 GHz TE 22,6 rotating mode are presented. A rectangular mode is converted to a TE 22,6 circular waveguide using quasi-optical techniques. A good conversion efficiency is measured and the experimentally observed field intensity profiles show the percentage of unwanted modes to be small. (author) 10 figs., 10 refs

  19. Analysis of Optical Fiber Complex Propagation Matrix on the Basis of Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We propose and experimentally demonstrate a novel method for reconstruction of the complex propagation matrix of optical fibers supporting propagation of multiple vortex modes. This method is based on the azimuthal decomposition approach and allows the complex matrix elements to be determined...... by direct calculations. We apply the proposed method to demonstrate the feasibility of optical compensation for coupling between vortex modes in optical fiber....

  20. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Science.gov (United States)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  1. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Directory of Open Access Journals (Sweden)

    Amphawan Angela

    2017-01-01

    Full Text Available A free-space optics mode-wavelength division multiplexing (MWDM system using Laguerre-Gaussian (LG modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  2. Visual Motor and Perceptual Task Performance in Astigmatic Students

    Directory of Open Access Journals (Sweden)

    Erin M. Harvey

    2017-01-01

    Full Text Available Purpose. To determine if spectacle corrected and uncorrected astigmats show reduced performance on visual motor and perceptual tasks. Methods. Third through 8th grade students were assigned to the low refractive error control group (astigmatism < 1.00 D, myopia < 0.75 D, hyperopia < 2.50 D, and anisometropia < 1.50 D or bilateral astigmatism group (right and left eye ≥ 1.00 D based on cycloplegic refraction. Students completed the Beery-Buktenica Developmental Test of Visual Motor Integration (VMI and Visual Perception (VMIp. Astigmats were randomly assigned to testing with/without correction and control group was tested uncorrected. Analyses compared VMI and VMIp scores for corrected and uncorrected astigmats to the control group. Results. The sample included 333 students (control group 170, astigmats tested with correction 75, and astigmats tested uncorrected 88. Mean VMI score in corrected astigmats did not differ from the control group (p=0.829. Uncorrected astigmats had lower VMI scores than the control group (p=0.038 and corrected astigmats (p=0.007. Mean VMIp scores for uncorrected (p=0.209 and corrected astigmats (p=0.124 did not differ from the control group. Uncorrected astigmats had lower mean scores than the corrected astigmats (p=0.003. Conclusions. Uncorrected astigmatism influences visual motor and perceptual task performance. Previously spectacle treated astigmats do not show developmental deficits on visual motor or perceptual tasks when tested with correction.

  3. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  4. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  5. Nonlinear optics in the LP(02) higher-order mode of a fiber.

    Science.gov (United States)

    Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A

    2013-07-29

    The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

  6. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  7. Geometric transformations of optical orbital angular momentum spatial modes

    Science.gov (United States)

    He, Rui; An, Xin

    2018-02-01

    With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.

  8. Prevalence of astigmatism in Native American infants and children.

    Science.gov (United States)

    Harvey, Erin M; Dobson, Velma; Clifford-Donaldson, Candice E; Green, Tina K; Messer, Dawn H; Miller, Joseph M

    2010-06-01

    To describe the prevalence of high astigmatism in infants and young children who are members of a Native American tribe with a high prevalence of astigmatism. SureSight autorefraction measurements were obtained for 1461 Tohono O'odham children aged 6 months to 8 years. The prevalence of astigmatism >2.00 diopters was 30% in Tohono O'odham children during infancy (6 months to O'odham infants show a high prevalence of astigmatism, which decreases in the second year of life. However, the prevalence of high astigmatism in Tohono O'odham children increases by age 2 to <3 years to a level near that seen in infancy and remains at that level until at least age 8 years. Longitudinal data are needed to determine whether the increase in high astigmatism after infancy occurs in infants who had astigmatism as infants or is due to the development of high astigmatism in children who did not show astigmatism during infancy.

  9. On the magnon interaction in haematite. I - Magnon energy of optical mode.

    Science.gov (United States)

    Nagai, O.; Tanaka, T.; Bonavito, N. L.

    1972-01-01

    The effect of magnon interaction on the magnon energies of haematite was studied by the use of a recently developed random phase approximation. In this study, the spin Hamiltonian and the magnon energy were written in a power series of (1/S), where S denotes the magnitude of spin. It is known that the expression of magnon energy is rigorous up to the second term of this series. It is found that the optic mode energy is small if the free optic mode energy is small, which is contrary to Herbert's (1969) conclusion. This direct proportionality between the optic mode energy and the free optic mode energy was not confirmed in the higher order terms of 1/S.

  10. A Study on the Transversal Optical Mode in Amorphous Gallium Arsenide

    OpenAIRE

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    1998-01-01

    Contributions to the far-infrared spectrum corresponding to both dynamical and structural disorders in a-GaAs are examined when frequency coincides with the transversal optical mode. Under these circumstances, dipole moment matrix element is discussed.

  11. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  12. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  13. Radiation-induced transient absorption in single mode optical fibers

    International Nuclear Information System (INIS)

    Looney, L.D.; Lyons, P.B.

    1988-01-01

    This paper reviews the measurements conducted by the Los Alamos National Laboratory in support of these NATO efforts wherein radiation-induced transient absorption was measured over time ranges from a few ns to several μs for two single mode fibers. Experimental conditions were varied to provide data for future development of standarized test conditions for single mode fibers. 8 refs., 11 figs

  14. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  15. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant

  16. A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.

    Science.gov (United States)

    Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

  17. On the fundamental mode of the optical resonator with toroidal mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  18. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov

    2001-01-01

    In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...

  19. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey

    2018-03-01

    We demonstrate a crystalline CaF2 resonator with thermal sensitivity of the optical modes approaching zero. The resonator is made by laminating a calcium fluoride layer forming an optical monolithic cavity with ceramic compensation layers. The ceramics is characterized with negative thermal expansion coefficient achievable in a certain temperature range. The thermally compensated resonator has a potential application for laser frequency stabilization.

  20. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  1. Finite-mode analysis by means of intensity information in fractional optical systems

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2002-01-01

    It is shown how a coherent optical signal that contains only a finite number of Hermite-Gauss modes, can be reconstructed from the knowledge of its Radon-Wigner transform -- associated with the intensity distribution in a fractional Fourier transform optical system -- at only two transversal points.

  2. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  3. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Peřina, J.; Miranowicz, A.

    2016-01-01

    Roč. 94, č. 1 (2016), 1-15, č. článku 013807. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-mode Gaussian fields * optical parametric processes Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  4. On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel

    2017-01-01

    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....

  5. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...... efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  6. Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids.

    Science.gov (United States)

    Pumpe, Sebastian; Chemnitz, Mario; Kobelke, Jens; Schmidt, Markus A

    2017-09-18

    We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.

  7. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    Science.gov (United States)

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  8. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  9. Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1980-01-01

    The propagating beam method utilizes discrete Fourier transforms for generating configuration-space solutions to optical waveguide problems without reference to modes. The propagating beam method can also give a complete description of the field in terms of modes by a Fourier analysis with respect to axial distance of the computed fields. Earlier work dealt with the accurate determination of mode propagation constants and group delays. In this paper the method is extended to the computation of mode eigenfunctions. The method is efficient, allowing generation of a large number of eigenfunctions from a single propagation run. Computations for parabolic-index profiles show excellent agreement between analytic and numerically generated eigenfunctions

  10. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity

    International Nuclear Information System (INIS)

    Genes, Claudiu; Vitali, David; Tombesi, Paolo

    2008-01-01

    Laser cooling of a mechanical mode of a resonator by the radiation pressure of a detuned optical cavity mode has been recently demonstrated by various groups in different experimental configurations. Here, we consider the effect of a second mechanical mode with a close but different resonance frequency. We show that the nearby mechanical resonance is simultaneously cooled by the cavity field, provided that the difference between the two mechanical frequencies is not too small. When this frequency difference becomes smaller than the effective mechanical damping of the secondary mode, the two cooling processes interfere destructively similarly to what happens in electromagnetically induced transparency, and cavity cooling is suppressed in the limit of identical mechanical frequencies. We show that also the entanglement properties of the steady state of the tripartite system crucially depend upon the difference between the two mechanical frequencies. If the latter is larger than the effective damping of the second mechanical mode, the state shows fully tripartite entanglement and each mechanical mode is entangled with the cavity mode. If instead, the frequency difference is smaller, the steady state is a two-mode biseparable state, inseparable only when one splits the cavity mode from the two mechanical modes. In this latter case, the entanglement of each mechanical mode with the cavity mode is extremely fragile with respect to temperature.

  11. Fibre Optic Sensors Using Adiabatically Tapered Single Mode Fibres

    Science.gov (United States)

    1994-02-01

    molecules were then coupled hack into the fundamental guided mode of the taper. The level of these emissions was characterised by using a monochromati’r...y y y Pae Ps4 Pase4 Pasc4_ Pase4jPase4 _Pasc4 I pase Plate 3: Can be the bof~tom of Plate 1 after it has been read. P7 28 29 3 31 1 32 PB I PG PG G2 P

  12. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  13. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    Science.gov (United States)

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  14. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    Science.gov (United States)

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators.

  15. The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect

    Science.gov (United States)

    Ning, Yu; Xu, Zhongjie; Li, Dun; Chen, Zilun; Cheng, Xiangai; Zhong, Hairong

    2017-08-01

    Military academies have two distinctive characteristics on talent training: Firstly, we must teach facing actual combat and connecting with academic frontier. Secondly, the bachelor's degree education and the military education should be balanced. The teaching mode of basic curriculum in military academies must be reformed and optimized on the basis of the traditional teaching mode, so as to ensure the high quality of teaching and provide enough guidance and help for students to support their academic burden. In this paper, our main work on "Applied Optics" teaching mode reform is introduced: First of all, we research extensively and learn fully from advanced teaching modes of the well-known universities at home and abroad, a whole design is made for the teaching mode of the core curriculum of optical engineering in our school "Applied Optics", building a new teaching mode which takes the methods of teaching basic parts as details, teaching application parts as emphases, teaching frontier parts as topics and teaching actual combat parts on site. Then combining with the questionnaire survey of students and opinions proposed by relevant experts in the teaching seminar, teaching effect and generalizability of the new teaching mode are analyzed and evaluated.

  16. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  17. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  18. Allocation of spectral and spatial modes in multidimensional metro-access optical networks

    Science.gov (United States)

    Gao, Wenbo; Cvijetic, Milorad

    2018-04-01

    Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.

  19. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  20. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  1. A novel nomogram for the treatment of astigmatism with femtosecond-laser arcuate incisions at the time of cataract surgery

    Directory of Open Access Journals (Sweden)

    Baharozian CJ

    2017-10-01

    Full Text Available Connor J Baharozian,1 Christian Song,2,3 Kathryn M Hatch,2,3 Jonathan H Talamo2,3 1Boston University School of Medicine, 2Massachusetts Eye and Ear Infirmary, 3Department of Ophthalmology, Harvard Medical School, Boston, MA, USA Purpose: The purpose of this study was to determine an arcuate incision (AI nomogram to treat astigmatism during femtosecond laser-assisted cataract surgery. Methods: This is a retrospective, cohort study. Femtosecond laser (FSL-assisted transepithelial AIs were created at a 9.0 mm optical zone, 80% depth, centered on the limbus. We modified the manual Donnenfeld limbal relaxing incision nomogram to 70% for with-the-rule (WTR, 80% for oblique (OBL, and 100% for against-the-rule (ATR astigmatism. The correction index (CI equaled AI-induced astigmatism/target-induced astigmatism. Measures included preoperative keratometric corneal cylinder (Pre Kcyl, postoperative Kcyl (Post Kcyl, and postoperative residual refractive astigmatism (Post RRA. Results: Mean Pre Kcyl and 1–2 months Post RRA in 161 eyes of 116 patients were 0.626±0.417 diopters (D (range 0.5–2 D, and 0.495±0.400 D (range 0–1.5 D, respectively. Mean absolute astigmatic changes (Pre Kcyl–Post Kcyl without accounting for axis change in the WTR, ATR, and OBL groups were 0.165±0.383 D (P<0.001, 0.374±0.536 D (P<0.001, and 0.253±0.416 D (P=0.02, respectively. Mean absolute astigmatic changes using RRA as the postoperative measurement (Pre Kcyl–Post RRA without accounting for axis change were 0.440±0.461 D (P<0.001, 0.238±0.571 D (P<0.05, 0.154±0.450 (P=0.111 in WTR, ATR, and OBL groups, respectively. CIs for WTR, ATR, and OBL were 0.53, 1.01, and 0.95, respectively. There were no intraoperative or postoperative complications related to the AIs.Conclusion: Transepithelial FSL-AIs using the modified Donnenfeld nomogram show potential for management of mild to moderate corneal astigmatism. An increase in the magnitude or reduction of the optical zone

  2. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling

    Directory of Open Access Journals (Sweden)

    Georg H. Hoffstaetter

    2007-04-01

    Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very

  3. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  4. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges.

    Science.gov (United States)

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-12-10

    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

  5. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    Science.gov (United States)

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  6. Single Mode Optical Fiber based Refractive Index Sensor using Etched Cladding

    OpenAIRE

    Kumar, Ajay; Gupta, Geeta; Mallik, Arun; Bhatnagar, Anuj

    2011-01-01

    The use of optical fiber for sensor applications is a topic of current interest. We report the fabrication of etched single mode optical fiber based refractive index sensor. Experiments are performed to determine the etch rate of fiber in buffered hydrofluoric acid, which can be high or low depending upon the temperature at which etching is carried out. Controlled wet etching of fiber cladding is performed using these measurements and etched fiber region is tested for refractive index sensing...

  7. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  8. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  9. Spherical aberrations of human astigmatic corneas.

    Science.gov (United States)

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  10. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  11. Correlation of major components of ocular astigmatism in myopic patients.

    Science.gov (United States)

    Mohammadpour, Mehrdad; Heidari, Zahra; Khabazkhoob, Mehdi; Amouzegar, Afsaneh; Hashemi, Hassan

    2016-02-01

    To investigate the correlation of major components of ocular astigmatism in myopic patients in an academic hospital. This cross-sectional study was conducted on 376 eyes of 188 patients who were referred to Farabi Eye Hospital for refractive surgery. Preoperative examinations including refraction and corneal topography were performed for all candidates to measure refractive and corneal astigmatism. Ocular residual astigmatism was calculated using vector analysis. Pearson's correlation and ANOVA analysis were used to evaluate the strength of the association between different types of astigmatism. Both eyes were defined as cluster and the Generalized Estimating Equations (GEE) analysis were performed. Mean age of 119 women (63.3%) and 69 men (36.7%) was 27.8 ± 5.7 years. Mean refractive error based on spherical equivalent was -3.59 ± 1.95D (range, -0.54 to -10.22D). Mean refractive and corneal astigmatism was 1.97 ± 1.3D and 1.85 ± 1.01D, respectively. Mean amount of ORA was 0.65 ± 0.36D.There was a significant correlation between ORA and refractive astigmatism(r=0.23, pcorrelation between ORA and corneal astigmatism (r=0.13, p=0.014). There was a significant correlation between J0 and J45 values of ORA and corneal astigmatism (pcorrelation between ORA and refractive astigmatism, refractive and corneal astigmatism and a weak correlation between ORA and corneal astigmatism in refractive surgery candidates. Identifying the type of astigmatism and preoperative measurement of ocular residual astigmatism is highly recommended prior to any refractive surgery, especially in cases with significant astigmatism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  13. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  14. Single mode operation of a hybrid optically pumped D2O far infrared laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Siegrist, M.R.

    1990-04-01

    We have achieved single mode operation in a hybrid optically pumped D 2 O far infrared laser. The active volume of the resonator was divided into two sections separated by a thin plastic foil. The larger section served as the main gain medium and the shorter section as mode selective element. The vapor pressure in the smaller volume was either very low or alternatively about 3 times higher than the pressure in the main part. In both cases single mode operation was achieved without any reduction of the total output energy. (author) 13 refs., 7 figs

  15. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  16. Analysis of Few-Mode Multi-Core Fiber Splice Behavior Using an Optical Vector Network Analyzer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, Jose Manuel Delgado; Klaus, Werner

    2017-01-01

    The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively and negativ......The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively...

  17. Enhancement of oscillation characteristics of a gyrotron by a built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Hayashi, Kenichi; Mitsunaka, Yoshika; Komuro, Mitsuo

    1994-01-01

    Oscillation characteristics are analyzed experimentally and numerically by using two gyrotrons with a power level of 500 kW, a conventional tube and a tube with a built-in quasi-optical mode converter. Both tubes have a 120 GHz, TE 12,2 cavity of the same geometry and a single disk alumina window. The quasi-optical mode converter consists of an α-cut launcher and five mirrors. In the conventional tube, reflection of the competing mode at the output window prevents the main mode from oscillating stably in the operation region predicted by the design. Mode selectivity of the quasi-optical mode converter removes the influence of the reflection on the oscillation. Consequently, the experimental results in the tube with the quasi-optical mode converter are in good agreement with the design values. (author)

  18. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  19. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  20. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...

  1. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  2. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  3. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  4. Study of optical phonon modes of CdS nanoparticles using Raman

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  5. Development of IR single mode optical fibers for DARWIN-nulling interferometry

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Cheng, L.K.; Bosch, B. van den; Dijkhuizen, N.; Nieuwland, R.A.; Gielesen, W.L.M.; Lucas, J.; Boussard-Plédel, C.; Conseil, C.; Bureau, B.; Carmo, J.P. do

    2014-01-01

    The DARWIN mission aims to detect weak infra-red emission lines from distant orbiting earth-like planets using nulling interferometry. This requires filtering of wavefront errors using single mode waveguides operating at a wavelength range of 6.5-20 μm. This article describes the optical design of

  6. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    NARCIS (Netherlands)

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of

  7. Optical property of few-mode fiber with non-uniform refractive index for cylindrical vector beam generation

    Science.gov (United States)

    Li, Hongye; Wan, Hongdan; Zhang, Zuxing; Sun, Bing; Zhang, Lin

    2016-10-01

    This paper investigates optical properties of few-mode fiber with non-uniform refractive index, namely: the few mode fiber with U-shape refractive index and the two-mode and four-mode few-mode fiber with bent radius. Finite element method is used to analyze the mode distributions based on their non-uniform refractive index. Effective mode control can be achieved through these few mode fibers to achieve vector beam generation. Finally, reflection spectra of a few-mode fiber Bragg grating are calculated theoretically and then measured under different bending conditions. Experimental results are in good accordance with the theoretical ones. These few mode fibers show potential applications in generation of cylindrical vector beam both for optical lasing and sensing systems.

  8. Lower- and higher-order aberrations predicted by an optomechanical model of arcuate keratotomy for astigmatism.

    Science.gov (United States)

    Navarro, Rafael; Palos, Fernando; Lanchares, Elena; Calvo, Begoña; Cristóbal, José A

    2009-01-01

    To develop a realistic model of the optomechanical behavior of the cornea after curved relaxing incisions to simulate the induced astigmatic change and predict the optical aberrations produced by the incisions. ICMA Consejo Superior de Investigaciones Científicas and Universidad de Zaragoza, Zaragoza, Spain. A 3-dimensional finite element model of the anterior hemisphere of the ocular surface was used. The corneal tissue was modeled as a quasi-incompressible, anisotropic hyperelastic constitutive behavior strongly dependent on the physiological collagen fibril distribution. Similar behaviors were assigned to the limbus and sclera. With this model, some corneal incisions were computer simulated after the Lindstrom nomogram. The resulting geometry of the biomechanical simulation was analyzed in the optical zone, and finite ray tracing was performed to compute refractive power and higher-order aberrations (HOAs). The finite-element simulation provided new geometry of the corneal surfaces, from which elevation topographies were obtained. The surgically induced astigmatism (SIA) of the simulated incisions according to the Lindstrom nomogram was computed by finite ray tracing. However, paraxial computations would yield slightly different results (undercorrection of astigmatism). In addition, arcuate incisions would induce significant amounts of HOAs. Finite-element models, together with finite ray-tracing computations, yielded realistic simulations of the biomechanical and optical changes induced by relaxing incisions. The model reproduced the SIA indicated by the Lindstrom nomogram for the simulated incisions and predicted a significant increase in optical aberrations induced by arcuate keratotomy.

  9. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  10. External modes in quantum dot light emitting diode with filtered optical feedback

    International Nuclear Information System (INIS)

    Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.

    2016-01-01

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.

  11. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  12. Mode analysis and structure parameter optimization of a novel SiGe-OI rib optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Feng Song; Gao Yong; Yang Yuan [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Feng Yuchun, E-mail: vonfs@yahoo.com.c [Key Laboratories of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060 (China)

    2009-08-15

    The mode of a novel SiGe-OI optical waveguide is analyzed, and its single-mode conditions are derived. The Ge content and structure parameters of SiGe-OI optical waveguides are respectively optimized. Under an operation wavelength of 1300 nm, the structures of SiGe-OI rib optical waveguides are built and analyzed with Optiwave software, and the optical field and transmission losses of the SiGe-OI rib optical waveguides are analyzed. The optimization results show that when the structure parameters H, h, W are respectively 500 nm, 250 nm, 500 nm and the Ge content is 5%, the total power loss of SiGe-OI rib waveguides is 0.3683 dB/cm considering the loss of radiation outside the waveguides and materials, which is less than the traditional value of 0.5 dB/cm. The analytical technique for SiGe-OI optical waveguides and structure parameters computed by this paper are proved to be accurate and computationally efficient compared with the beam propagation method (BPM) and the experimental results. (semiconductor devices)

  13. Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber

    Directory of Open Access Journals (Sweden)

    V. V. G. Krishna Inavalli

    2012-01-01

    Full Text Available We present here an experimental demonstration of the wavelength dependence of the polarization singularities due to linear combination of the vector modes excited directly in a two-mode optical fiber. The coherent superposition of the vector modes excited by linearly polarized Gaussian beam as offset skew rays propagated in a helical path inside the fiber results in the generation of phase singular beams with edge dislocation in the fiber output. The polarization character of these beams is found to change dramatically with wavelength—from left-handed elliptically polarized edge dislocation to right-handed elliptically polarized edge-dislocation through disclinations. The measured behaviour is understood as being due to intermodal dispersion of the polarization corrections to the propagating vector modes, as the wavelength of the input beam is scanned.

  14. A novel nomogram for the treatment of astigmatism with femtosecond-laser arcuate incisions at the time of cataract surgery.

    Science.gov (United States)

    Baharozian, Connor J; Song, Christian; Hatch, Kathryn M; Talamo, Jonathan H

    2017-01-01

    The purpose of this study was to determine an arcuate incision (AI) nomogram to treat astigmatism during femtosecond laser-assisted cataract surgery. This is a retrospective, cohort study. Femtosecond laser (FSL)-assisted transepithelial AIs were created at a 9.0 mm optical zone, 80% depth, centered on the limbus. We modified the manual Donnenfeld limbal relaxing incision nomogram to 70% for with-the-rule (WTR), 80% for oblique (OBL), and 100% for against-the-rule (ATR) astigmatism. The correction index (CI) equaled AI-induced astigmatism/target-induced astigmatism. Measures included preoperative keratometric corneal cylinder (Pre Kcyl), postoperative Kcyl (Post Kcyl), and postoperative residual refractive astigmatism (Post RRA). Mean Pre Kcyl and 1-2 months Post RRA in 161 eyes of 116 patients were 0.626±0.417 diopters (D) (range 0.5-2 D), and 0.495±0.400 D (range 0-1.5 D), respectively. Mean absolute astigmatic changes (Pre Kcyl-Post Kcyl) without accounting for axis change in the WTR, ATR, and OBL groups were 0.165±0.383 D ( P <0.001), 0.374±0.536 D ( P <0.001), and 0.253±0.416 D ( P =0.02), respectively. Mean absolute astigmatic changes using RRA as the postoperative measurement (Pre Kcyl-Post RRA) without accounting for axis change were 0.440±0.461 D ( P <0.001), 0.238±0.571 D ( P <0.05), 0.154±0.450 ( P =0.111) in WTR, ATR, and OBL groups, respectively. CIs for WTR, ATR, and OBL were 0.53, 1.01, and 0.95, respectively. There were no intraoperative or postoperative complications related to the AIs. Transepithelial FSL-AIs using the modified Donnenfeld nomogram show potential for management of mild to moderate corneal astigmatism. An increase in the magnitude or reduction of the optical zone size for the treatment of WTR and ATR astigmatism for this nomogram may further improve refractive accuracy.

  15. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  16. Assessment and statistics of surgically induced astigmatism.

    Science.gov (United States)

    Naeser, Kristian

    2008-05-01

    The aim of the thesis was to develop methods for assessment of surgically induced astigmatism (SIA) in individual eyes, and in groups of eyes. The thesis is based on 12 peer-reviewed publications, published over a period of 16 years. In these publications older and contemporary literature was reviewed(1). A new method (the polar system) for analysis of SIA was developed. Multivariate statistical analysis of refractive data was described(2-4). Clinical validation studies were performed. The description of a cylinder surface with polar values and differential geometry was compared. The main results were: refractive data in the form of sphere, cylinder and axis may define an individual patient or data set, but are unsuited for mathematical and statistical analyses(1). The polar value system converts net astigmatisms to orthonormal components in dioptric space. A polar value is the difference in meridional power between two orthogonal meridians(5,6). Any pair of polar values, separated by an arch of 45 degrees, characterizes a net astigmatism completely(7). The two polar values represent the net curvital and net torsional power over the chosen meridian(8). The spherical component is described by the spherical equivalent power. Several clinical studies demonstrated the efficiency of multivariate statistical analysis of refractive data(4,9-11). Polar values and formal differential geometry describe astigmatic surfaces with similar concepts and mathematical functions(8). Other contemporary methods, such as Long's power matrix, Holladay's and Alpins' methods, Zernike(12) and Fourier analyses(8), are correlated to the polar value system. In conclusion, analysis of SIA should be performed with polar values or other contemporary component systems. The study was supported by Statens Sundhedsvidenskabeligt Forskningsråd, Cykelhandler P. Th. Rasmussen og Hustrus Mindelegat, Hotelejer Carl Larsen og Hustru Nicoline Larsens Mindelegat, Landsforeningen til Vaern om Synet

  17. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.

    Science.gov (United States)

    Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin

    2018-03-16

    Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.

  18. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  19. PREPARATION OF THE SINGLE MODE PLANAR OPTICAL SPLITTER MODULES AND THEIR CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    Vu Doan Mien

    2017-11-01

    Full Text Available Optical splitter modules have been prepared based on 1x8 single mode silica planar waveguide optical splitter chips with 250 µm spacing and v-groove fiber arrays for applications in fiber optic communications. We report the technology of precise optical coupling and packaging of the splitter modules and the measurements of the insertion loss (< 11 dB,  uniformity (< 0.80 dB and polarization dependence loss (PLD < 0.10 dB as well as the lateral profile and the image of the input and output lights for the wavelengths of 1310 nm and 1550 nm. The main characteristics of the prepared splitter modules are about the same for the commercial available products. The prepared modules have been tested for operation in the conditions of wide temperature range (5–80°C and humidity range (50–98% and no changes in the main characteristics were observed.

  20. Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

    International Nuclear Information System (INIS)

    Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro

    2010-01-01

    In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM 10 mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational

  1. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  2. Exploring in teaching mode of Optical Fiber Sensing Technology outcomes-based education (OBE)

    Science.gov (United States)

    Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Bi, Weihong

    2017-08-01

    Combining with the characteristics of disciplines and OBE mode, also aiming at the phenomena of low learning enthusiasm for the major required courses for senior students, the course of optical fiber sensing was chosen as the demonstration for the teaching mode reform. In the light of "theory as the base, focus on the application, highlighting the practice" principle, we emphasis on the introduction of the latest scientific research achievements and current development trends, highlight the practicability and practicality. By observation learning and course project, enables students to carry out innovative project design and implementation means related to the practical problems in science and engineering of this course.

  3. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  4. Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty.

    Science.gov (United States)

    St Clair, Ryan M; Sharma, Anushree; Huang, David; Yu, Fei; Goldich, Yakov; Rootman, David; Yoo, Sonia; Cabot, Florence; Jun, Jason; Zhang, Lijun; Aldave, Anthony J

    2016-04-01

    To develop a nomogram for femtosecond laser astigmatic keratotomy (AK) to treat post-keratoplasty astigmatism. Three academic medical centers. Retrospective interventional case series. A review of post-keratoplasty femtosecond laser AK was performed. Uncorrected (UDVA) and corrected (CDVA) distance visual acuities, manifest refraction, and keratometry were recorded preoperatively and 1, 3, 6, and 12 months postoperatively. The location, length, depth, and diameter of the AK incisions were recorded, and the surgically induced astigmatic correction was related to these variables using regression analysis. One hundred forty femtosecond laser AK procedures were performed after penetrating keratoplasty (PKP) (n = 129) or deep anterior lamellar keratoplasty (DALK) (n =11), with 89 procedures (80 PKP, 9 DALK) included in the analysis. The mean CDVA improved from 20/59 (0.47 logMAR ± 0.38 [SD]) preoperatively to 20/45 (0.35 ± 0.31 logMAR) postoperatively (P = .013) (n = 46). The mean keratometric astigmatism decreased from 8.26 ± 2.90 diopters (D) preoperatively to 3.62 ± 2.59 D postoperatively (P AK to treat post-keratoplasty astigmatism was generated using regression analysis. Femtosecond laser AK significantly improved UDVA and CDVA and significantly reduced keratometric astigmatism and refractive cylinder after keratoplasty. The nomogram generated should improve the accuracy of post-keratoplasty femtosecond laser AK. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. The Impact of Pterygium Excision on Corneal Astigmatism

    International Nuclear Information System (INIS)

    Khan, F. A.; Niazi, S. P. K.; Khan, D. A.

    2014-01-01

    Objective: To compare the corneal astigmatism before and after the excision of pterygium and also to determine the correlation of pterygium size with the postoperative corneal astigmatism. Study Design: Cross-sectional interventional study. Place and Duration of Study: Eye Department, Combined Military Hospital, Abbottabad, from May 2011 to March 2012. Methodology: Thirty patients underwent pterygium excision. Pre-operatively Snellen visual acuity, manifest refraction and slit lamp examination was done. The size of the pterygium was recorded in mm by projecting a horizontal slit lamp beam from the limbus to the apex. All the pterygium were equal to or greater than 2.5 mm. Keratometry was performed with an automated keratometer. Keratometric data was recorded pre-operatively and at 28 days postoperatively. Wilcoxon signed rank test was used for comparing the pre-operative and the postoperative corneal astigmatism. Spearman's rank order was calculated to observe correlation of pterygium size with the postoperative astigmatism. Results: The median (mean rank) pre-operative astigmatism of 2.25 (15.50) reduced to a median (mean rank) postoperative astigmatism of 1.30 (14.96). This decrease in the postoperative astigmatism was statistically significant (p < 0.001). There was a statistically non-significant correlation between the postoperative astigmatism and the pterygium size (rs = -0.29, p = 0.12). Conclusion: Pterygium excision caused significant reduction in corneal astigmatism. (author)

  6. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  7. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  8. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  9. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope

    OpenAIRE

    SHVETS, IGOR

    1997-01-01

    PUBLISHED It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in t...

  10. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    OpenAIRE

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in the topography...

  11. Research on Experiment-Guidance-Theory teaching mode in optics course

    Science.gov (United States)

    Lai, Jiancheng; Li, Zhenhua; Ji, Yunjing; Qi, Jing; Song, Yang

    2017-08-01

    Optical theories were all originating from the experimental phenomena, as a result, we can combine the theories and experiments organically in optics teaching that can make the teaching content more intuitive and vivid to stimulate the students' learning interests. In this paper, we proposed the "Experiment-Guidance-Theory" teaching mode in optics course by integrating the theory of optics courses with corresponding experiments. Before the theoretical learning, the students would do some basic experiments to observe the optical phenomena on themselves and answer the corresponding illuminating questions to put themselves into the role, and then the teachers explain the corresponding optical methods and theories, at last, the students must attend an expansive discussion and innovation experiment around the optical theme to expand their scientific view and innovation ability. This is a kind of inquiry-based teaching method, which can stimulate the students' studying interests and improve learning initiative. Meanwhile, the ideas of scientific research also be integrated into teaching, which is beneficial to cultivate students' ability to carry out innovative research.

  12. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  13. Astigmatism induced by conventional spherical ablation after PRK and LASIK in myopia with astigmatism < 1.00 D.

    Science.gov (United States)

    Christiansen, Steven M; Mifflin, Mark D; Edmonds, Jason N; Simpson, Rachel G; Moshirfar, Majid

    2012-01-01

    The purpose of this study was to evaluate surgically-induced astigmatism after spherical ablation in photorefractive keratectomy (PRK) and laser-assisted in situ keratomileusis (LASIK) for myopia with astigmatism PRK or LASIK for the correction of myopia with minimal astigmatism of PRK, average cylinder increased from 0.39 ± 0.25 (0.00-0.75) preoperatively to 0.55 ± 0.48 (0.00-1.75) postoperatively (P = 0.014), compared with an increase in LASIK eyes from 0.40 ± 0.27 (0.00-0.75) preoperatively to 0.52 ± 0.45 (0.00-2.00) postoperatively (P = 0.041). PRK eyes experienced an absolute value change in cylinder of 0.41 ± 0.32 (0.00-1.50) and LASIK eyes experienced a change of 0.41 ± 0.31 (0.00-1.50, P = 0.955). Mean surgically-induced astigmatism was 0.59 ± 0.35 (0.00-1.70) in PRK eyes, with an increase in surgically-induced astigmatism of 0.44 D for each additional 1.00 D of preoperative cylinder; in LASIK eyes, mean surgically-induced astigmatism was 0.55 ± 0.32 (0.00-1.80, P = 0.482), with an increase in surgically-induced astigmatism of 0.29 D for each 1.00 D of preoperative cylinder. Spherical ablation can induce substantial astigmatism even in eyes with less than one diopter of preoperative astigmatism in both PRK and LASIK. No significant difference in the magnitude of surgically-induced astigmatism was found between eyes treated with PRK and LASIK, although surgically-induced astigmatism was found to increase with greater levels of preoperative astigmatism in both PRK and LASIK.

  14. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile.

    Science.gov (United States)

    Miah, Md Jarez; Kalosha, Vladimir P; Bimberg, Dieter; Pohl, Johannes; Weyers, Markus

    2016-12-26

    1060 nm high-brightness vertical broad-area edge-emitting lasers providing anastigmatic high optical power into a narrow circular beam profile are demonstrated. Ridge-waveguide (RW) lasers yield record 2.2 W single-transverse mode power in the 1060-nm wavelength range under continuous-wave (cw) operation at room temperature with excellent beam quality factor M2 ≤ 2. Independent of operating current the astigmatism is only 2.5 µm. 3 mm long broad-area (BA) lasers produce a θvert as narrow as 9° full width at half maximum, which agrees well with our simulation results, being insensitive to drive current. 5 mm long BA lasers deliver highest ever reported cw 12 W multimode output power among lasers showing θvert <10° in the 1060-nm wavelength range. The emitted laser beams from both RW and BA lasers show a perfect circular shape with ≤10° divergence angle at record 2.1 W and 4.2 W cw-mode output power, respectively.

  15. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  16. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    International Nuclear Information System (INIS)

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.

    2010-01-01

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  17. Signal Processing using Nonlinear Optical Eects in Single- and Few-Mode Fibers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk

    noise, loss, and pump depletion on the noise properties of parametric frequency conversion and phase-insensitive and phase-sensitive parametric amplification. An important part of realizing space-division multiplexing is the ability of optical signal processing so the second part of this thesis......-wave mixing in two-mode fibers acvi counting for six simultaneous processes is derived, and the conversion efficiency from signal to idler in the four-wave mixing processes of phase conjugation and Bragg scattering in two two-mode fibers with different phase matching properties are experimentally investigated......The stagnating increase in data transmission capacity in optical communication systems combined with the ever growing demand of transmission bandwidth is leading to an impending capacity crunch, referring to the point in time after which the available bandwidth of the individual user starts...

  18. Advanced sensing with micro-optical whispering-gallery-mode resonators

    CERN Document Server

    Righini, Giancarlo C

    2017-01-01

    This Spotlight examines an increasingly popular class of optical sensors that comprises microresonators based on the propagation of whispering gallery modes (WGMs). Several 2D and 3D WGM microresonators have already proved their capabilities as general-purpose sensors (especially as biosensors), and they have potential applications outside of research laboratories. Topics include the fundamentals of WGM propagation, types and characterization of microresonators, microfabrication issues, categories of sensing (physical, chemical, and biological), and state of the art sensors.

  19. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  20. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    International Nuclear Information System (INIS)

    Ho Ngoc Phien; Nguyen Ba An

    2008-01-01

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful

  1. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  2. X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating

    Science.gov (United States)

    Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim

    We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.

  3. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    Science.gov (United States)

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-09

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.

  4. Optical Mode Converters Final Report CRADA No. TC-0838-94

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, Michael D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carey, Kent [Hewlett-Packard Company, Palo Alto, CA (United States). Agilent Technologies

    2017-11-09

    The information age was maturing, and photonics was emerging as a significant technology with important'national security and commercial implications at the time of the CRADA. This was largely due to the vast information carrying capacity of optical beams and the availability of cheap.and effective optical fiber waveguides to guide the light. However, a major limitation to the widespread deployment of photonic systems was the high-cost (in an economic and performance sense) associated with coupling optical power between optoelectronic waveguide devices or between a device and an optical fiber. The problem was critical in the case of single-mode waveguide devices. Mitigating these costs would be a significant and pervasive enabler of the technology for a wide variety of applications that would have crucial defense and economic impact. The partners worked together to develop optical mode size converters on silicon substrates. Silicon was chosen because of its compatibility with the required photolithographic and micromachining techniques. By choosing silicon, these techniques could enable the close coupling of high-speed, high density silicon electronic circuitry to efficient low-cost photonics. The efficient coupling of electronics and photonics technologies would be important for many information age technologies. The joint nature of this project was intended to allow HP to benefit from some unique LLNL capabilities, and LLNL would be in a position to learn from HP and enhance its value to fundamental DP missions. Although the CRADA began as a hardware development project to develop the mode converter, it evolved into a software development venture. LLNL and HP researchers examined literature, performed some preliminary calculations, and evaluated production trade-offs of several known techniques to determine the best candidates for an integrated system.

  5. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    Science.gov (United States)

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  6. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  7. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Miguel Hernaez

    2017-12-01

    Full Text Available The influence of graphene oxide (GO over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  8. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  9. Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.

    Science.gov (United States)

    Junker, André; Brenner, Karl-Heinz

    2018-03-01

    The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.

  10. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    Patino, A; Durand, P-E; Fogret, E; Pellat-Finet, P

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  11. Characteristics of astigmatism in Black South African high school ...

    African Journals Online (AJOL)

    Abstract. Background: Astigmatism impairs vision at various distances and causes symptoms of asthenopia which negatively impacts reading efficiency. Objective: The aim of conducting this study was to determine the prevalence and distribution of astigmatism and its relation- ship to gender, age, school grade levels and ...

  12. Pattern of astigmatism in a clinical setting in Maldives

    Directory of Open Access Journals (Sweden)

    Sanjay Marasini

    2016-01-01

    Conclusion: In conclusion, this study inferred that among patients with relatively higher magnitude of astigmatism attending to the clinics in Maldives, younger patients are affected more, which could possibly link to the environment, genetics and nutrition. The probable association between nutrition and astigmatism needs to be investigated to fill the gap in literature.

  13. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Science.gov (United States)

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  14. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  15. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  16. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  17. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    Directory of Open Access Journals (Sweden)

    Edward Davies

    2014-11-01

    Full Text Available A finite element analysis (FEA model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel.

  18. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  19. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  20. Entanglement indicators for quantum optical fields: three-mode multiport beamsplitters EPR interference experiments

    Science.gov (United States)

    Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek

    2018-04-01

    We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.

  1. Low-frequency fluctuation regime in a multimode semiconductor laser subject to a mode-selective optical feedback

    International Nuclear Information System (INIS)

    Rogister, F.; Sciamanna, M.; Deparis, O.; Megret, P.; Blondel, M.

    2002-01-01

    We study numerically the dynamics of a multimode laser diode subject to a mode-selective optical feedback by using a generalization of the Lang-Kobayashi equations. In this configuration, only one longitudinal mode of the laser is reinjected into the laser cavity; the other modes are free. When the laser operates in the low-frequency fluctuation regime, our model predicts intensity bursts in the free modes simultaneously with dropouts in the selected mode, in good agreement with recent experiments. In the frame of our model, intensity bursts and dropouts are associated with collisions of the system trajectory in phase space with saddle-type antimodes

  2. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  3. Analysis of dual-mode lasing characteristics in a 1310-nm optically injected quantum dot distributed feedback laser

    Science.gov (United States)

    Raghunathan, R.; Olinger, J.; Hurtado, A.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2015-03-01

    Recent work has shown the Quantum Dot (QD) material system to be well-suited to support dual-mode lasing. In particular, optical injection from a master laser (ML) into the residual Fabry-Perot (FP) modes of a 1310 nm Quantum Dot Distributed Feedback (QD-DFB) laser has been recently demonstrated to offer a highly reliable platform for stable dual-mode lasing operation. External controls on the ML, such as operating temperature and bias current, can be used to precisely adjust the spacing between the two lasing modes. This tunability of modeseparation is very promising for a range of applications requiring the generation of microwave, millimeter wave and terahertz signals. Considering the versatility and utility of such a scheme, it is imperative to acquire a deeper understanding of the factors that influence the dual-mode lasing process, in order to optimize performance. Toward this end, this paper seeks to further our understanding of the optically-injected dual-mode lasing mechanism. For fixed values of optical power injected into each FP residual mode and wavelength detuning, the dual-mode lasing characteristics are analyzed with regard to important system parameters such as the position and the intensity of the injected residual mode (relative to the Bragg and the other residual FP modes of the device) for two similarly-fabricated QD-DFBs. Results indicate that for dual mode lasing spaced less than 5 nm apart, the relative intensity of the injected FP mode and intracavity noise levels are critical factors in determining dual mode lasing behavior. Insight into the dual-mode lasing characteristics could provide an important design guideline for the master and QD-DFB slave laser cavities.

  4. The exploration and practice of integrated innovation teaching mode in the Applied Optics course

    Science.gov (United States)

    Liu, Dongmei; Zhao, Huifu; Fu, Xiuhua; Zhang, Jing

    2017-08-01

    In recent years, the Ministry of Education of China attaches great importance to the reform of higher education quality. As an important link in the reform of higher education, curriculum development is bound to promote the development of "quality-centered connotative education". Zhejiang University, Changchun University of Science and Technology, Southern Airlines University and other colleges and universities carried out a full range of close cooperation, proposed integrated innovation teaching mode of the course based on network technology. Based on this model, the course of "Applied Optics" has been practiced for two years. The results show that the integrated innovation teaching mode can fully realize the integration amplification effect among multiple colleges and universities and the depth sharing all types of resources. Based on the principle of co-building and sharing, mutual help, comprehensively improve the teaching quality of domestic related courses and promote the comprehensive development of the curriculum to meet the needs of learning society.

  5. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  6. Optical and acoustic phonon modes in strained InGaAs/GaAs rolled up tubes

    Science.gov (United States)

    Angelova, T.; Shtinkov, N.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Deneke, Ch.; Schmidt, O. G.; Cros, A.

    2012-05-01

    Rolled-up semiconductor tubes of various diameters made of alternating In0.215Ga0.785As/GaAs layers have been investigated by means of Raman scattering. The optical and acoustic phonon modes of individual tubes have been studied and compared with the characteristics of the surrounding material. After tube formation, the frequency of the phonon modes shifts with respect to the as-grown material and disorder activated modes are observed. The frequency shifts are related to the residual strain in the tubes through the deformation potential approximation. Good agreement with atomistic valence force field simulations and x-ray micro-diffraction measurements is found. By comparison with x-ray data, a Raman strain constant K = 0.65 is proposed for In0.215Ga0.785As. In the low frequency range, acoustic mode doublets are observed on the tubes that are absent in the surrounding material. They show clear evidence of the formation of periodic superlattices after the rolling-up process, and give insight into the quality of their interfaces.

  7. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  8. Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.

    2011-01-01

    Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.

  9. Numerical optimization of quasi-optical mode converter for frequency step-tunable gyrotron

    International Nuclear Information System (INIS)

    Drumm, O.

    2002-08-01

    This work concentrates on the design of a quasi-optical mode converter for a frequency step-tunable gyrotron. Special attention is paid to the optimization of the conversion and forming of the exited wave of different frequencies inside the resonator. The investigations were part of the HGF-strategy-fonds-project ''Optimization of Tokamak Operation with controlled ECRH-Deposition''. In the resonator of the gyrotron modes can be exited at frequencies between 105 and 140 GHz. With the designed converter the desired field distribution at the output window for all frequencies will be approximately obtained. The newly gained knowledge and invented synthesis methods are applied to this practical example and verified. In this work, the waveguide antenna and the mirror system of the quasi-optical mode converter are presented separately from each other. At the beginning the synthesis of the aperture antenna for a frequency step-tunable design of the Vlasov-type as well as the Denisov-type is considered. As a conclusion of the investigation, the important parameters for the design of all antennas are summarized and the frequency behavior is compared. In the second part of this work new broadband design methods for the synthesis of the mirror surface are presented. These mirrors make an optimal wave forming for all frequencies equally possible. Therefore new quality criteria are introduced for the broadband evaluation of the mirror. Afterwards the surface is varied until the criteria reach an optimum. For the numerical optimization, in this work the gradient method and the extended Katsenelenbaum-Semenov algorithm are invented and applied. The efficient realization of the described algorithms on a computer is the significant point. The theoretical background of the presented methods for the synthesis of a mirror system is based on the general solution of the Helmholtz equation. Due to this, these methods can be utilized in other fields outside the microwave applications in

  10. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  11. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  12. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  13. Optical sum-frequency generation in a whispering-gallery-mode resonator

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem

    2014-01-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)

  14. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    International Nuclear Information System (INIS)

    Gilardi, Giovanni; Beccherelli, Romeo

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift due to changes in the refractive index of the measurand fluid are studied for a set of different configurations by the finite element method and a high sensitivity versus fluid volume is found. The proposed device can be tailored to work with a minimum fluid volume of 1 pl and a sensitivity up of 2000 nm/(RIU·nl). We introduce a figure of merit which quantifies the amplifying effect on the sensitivity of high quality factor resonators and allows us to compare different devices. (paper)

  15. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2018-04-30

    We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.

  16. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  17. A long-baseline interferometer employing single-mode fiber optics

    Science.gov (United States)

    Shaklan, Stuart

    The idea of the Fiber-Linked Optical Array Telescope proposed by Connes (1987) is to mount several small optical telescopes around the perimeter of a radio dish or other large steerable structure, couple the light into single-mode (SM) fibers, and use the fibers to coherently combine the beams at the output. This paper examines the important properties of SM fibers and then discusses the whole system in general terms, starting with the telescopes and following the light through to the detectors, along with the results of laboratory experiments evaluating the performance of SM fibers. The imaging capabilities of the array were simulated, and it was found that, using 10 telescopes on a 440-m dish, the array obtains images with resolution of the order of 2 milliarc seconds in the visible range.

  18. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  19. Thermooptic two-mode interference device for reconfigurable quantum optic circuits

    Science.gov (United States)

    Sahu, Partha Pratim

    2018-06-01

    Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.

  20. A microcontroller-based compensated optical proximity detector employing the switching-mode synchronous detection technique

    International Nuclear Information System (INIS)

    Rakshit, Anjan; Chatterjee, Amitava

    2012-01-01

    This paper describes the development of a microcontroller-based optical proximity detector that can provide a low-cost yet powerful obstacle-sensing mechanism for mobile robots. The system is developed with the switching-mode synchronous detection technique to provide satisfactory performance over a wide range of operating conditions and is developed with the facility of externally setting a threshold, for reliable operation. The system is dynamically compensated against ambient illumination variations. Experimental studies demonstrate how the minimum distance of activation can be varied with different choices of thresholds. (paper)

  1. The effects of induced oblique astigmatism on symptoms and reading performance while viewing a computer screen.

    Science.gov (United States)

    Rosenfield, Mark; Hue, Jennifer E; Huang, Rae R; Bababekova, Yuliya

    2012-03-01

    Computer vision syndrome (CVS) is a complex of eye and vision problems related to computer use which has been reported in up to 90% of computer users. Ocular symptoms may include asthenopia, accommodative and vergence difficulties and dry eye. Previous studies have reported that uncorrected astigmatism may have a significant impact on symptoms of CVS. However, its effect on task performance is unclear. This study recorded symptoms after a 10 min period of reading from a computer monitor either through the habitual distance refractive correction or with a supplementary -1.00 or -2.00D oblique cylinder added over these lenses in 12 young, visually-normal subjects. Additionally, the distance correction condition was repeated to assess the repeatability of the symptom questionnaire. Subjects' reading speed and accuracy were monitored during the course of the 10 min trial. There was no significant difference in reading rate or the number of errors between the three astigmatic conditions. However, a significant change in symptoms was reported with the median total symptom scores for the 0, 1 and 2D astigmatic conditions being 2.0, 6.5 and 40.0, respectively (p computer operation. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  2. Treatment of corneal astigmatism with the new small-incision lenticule extraction (SMILE) laser technique: Is treatment of high degree astigmatism equally accurate, stable and safe as treatment of low degree astigmatism?

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    .6%) treated for low astigmatism and four eyes (3.2%) treated for high astigmatism (P=0.02) had lost two or more lines of BSCVA after three months. Conclusion: This study is the first of its kind, and our results indicate that SMILE treatment of high degree astigmatism is equally accurate and stable...... as treatment of low degree astigmatism. More eyes treated for high degree astigmatism lose two or more lines of BSCVA up to three months after surgery. Keywords Refractive surgery, astigmatism, SMILE......Field: Ophthalmology Introduction: SMILE has proven effective in treatment of myopia and low degrees of astigmatism (less than 2 dioptres (D)), but there are no studies on treatment of high degrees of astigmatism (2 or more D). The aim of this study was to compare results after SMILE treatment...

  3. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  4. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  5. Optical fibers with low nonlinearity and low polarization-mode dispersion for terabit communications

    Science.gov (United States)

    Baghdadi, J. A.; Safaai-Jazi, A.; Hattori, H. T.

    2001-07-01

    Refractive-index nonlinearities have negligible effect on the performance of short-haul fiber-optic communication links utilizing electronic repeaters. However, in long links, nonlinearities can cause severe signal degradations. To mitigate nonlinear effects, a new generation of fibers, referred to as large effective-area fibers, have been introduced in recent years. This paper reviews the latest research and development work on these fibers conducted by several research groups around the world. Attention is focused on a class of large effective-area fibers that are based on a depressed-core multiple-cladding design. Another important issue in long-haul and high capacity fiber optic systems is the polarization-mode dispersion (PMD) which has been recognized as a serious limiting factor. In this paper, an improved fiber design is proposed which, in addition to providing large effective-area and low bending loss, eliminates PMD due to elliptical deformation in the single-mode wavelength region. Furthermore, this design is allowed to provide a small chromatic dispersion about few ps/ nm km , in order to overcome four-wave mixing effects.

  6. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  7. Tuning of optical mode magnetic resonance in CoZr/Ru/CoZr synthetic antiferromagnetic trilayers by oblique sputtering

    Science.gov (United States)

    Wang, Wenqiang; Wang, Fenglong; Cao, Cuimei; Li, Pingping; Yao, Jinli; Jiang, Changjun

    2018-04-01

    CoZr/Ru/CoZr synthetic antiferromagnetic trilayers with strong antiferromagnetic interlayer coupling were fabricated by an oblique sputtering method that induced in-plane uniaxial magnetic anisotropy. A microstrip method using a vector network analyzer was applied to investigate the magnetic resonance modes of the trilayers, including the acoustic modes (AMs) and the optical modes (OMs). At zero magnetic field, the CoZr/Ru/CoZr trilayers showed OMs with resonance frequencies of up to 7.1 GHz. By increasing the applied external magnetic field, the magnetic resonance mode can be tuned to various OMs, mixed modes, and AMs. Additionally, the magnetic resonance mode showed an angular dependence between the magnetization and the microwave field, which showed similar switching of the magnetic modes with variation of the angle. Our results provide important information that will be helpful in the design of multifunctional microwave devices.

  8. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    Science.gov (United States)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  9. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode.

    Science.gov (United States)

    Zhuo, Shuangmu; Chen, Jianxin; Luo, Tianshu; Zou, Dingsong

    2006-08-21

    A Multimode nonlinear optical imaging technique based on the combination of multichannel mode and Lambda mode is developed to investigate human dermis. Our findings show that this technique not only improves the image contrast of the structural proteins of extracellular matrix (ECM) but also provides an image-guided spectral analysis method to identify both cellular and ECM intrinsic components including collagen, elastin, NAD(P)H and flavin. By the combined use of multichannel mode and Lambda mode in tandem, the obtained in-depth two photon-excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging and TPEF/SHG signals depth-dependence decay can offer a sensitive tool for obtaining quantitative tissue structural and biochemical information. These results suggest that the technique has the potential to provide more accurate information for determining tissue physiological and pathological states.

  10. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru [Russian Academy of Science, Landau Institute for Theoretical Physics (Russian Federation); Semenov, S. V. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  11. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  12. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  13. The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors

    Directory of Open Access Journals (Sweden)

    Mark E. Anderson

    2015-08-01

    Full Text Available Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.

  14. Developmental changes in anterior corneal astigmatism in Tohono O'odham Native American infants and children.

    Science.gov (United States)

    Harvey, Erin M; Miller, Joseph M; Schwiegerling, Jim; Sherrill, Duane; Messer, Dawn H; Dobson, Velma

    2013-04-01

    ABSTRACT Purpose: To describe change in corneal astigmatism in infants and children of a Native American tribe with a high prevalence of astigmatism. Longitudinal measurements of corneal astigmatism were obtained in 960 Tohono O'odham children aged 6 months to <8 years. Change in corneal astigmatism (magnitude (clinical notation), J0, J45) across age in children with high astigmatism (≥2 diopter (D) corneal astigmatism) or low/no astigmatism (<2 D corneal astigmatism) at their baseline measurement was assessed. Regression analyses indicated that early in development (6 months to <3 years), astigmatism magnitude decreased in the high astigmatism group (0.37 D/year) and remained stable in the low/no astigmatism group. In later development (3 to <8 years), astigmatism decreased in the high (0.11 D/year) and low/no astigmatism groups (0.03 D/year). In 52 children who had data at all three of the youngest ages (6 months to <1 year, 1 to <2 years, 2 to <3 years) astigmatism decreased after infancy in those with high astigmatism (p = 0.021), and then remained stable from age 1-2 years, whereas astigmatism was stable from infancy through age 1 year and increased from age 1-2 years in the low/no astigmatism group (p = 0.026). J0 results were similar, but results on J45 yielded no significant effects. The greatest change occurred in highly astigmatic infants and toddlers (0.37 D/year). By age 3 years, change was minimal and not clinically significant. Changes observed were due primarily to change in the J0 component of astigmatism.

  15. The effects of lateral head tilt on ocular astigmatic axis

    Directory of Open Access Journals (Sweden)

    Hamid Fesharaki

    2014-01-01

    Conclusion: Any minimal angle of head tilt may cause erroneous measurement of astigmatic axis and should be avoided during refraction. One cannot rely on the compensatory function of ocular counter-torsion during the refraction.

  16. Epidemiological survey of astigmatism among 926 preschool children in a kindergarten in Enshi City

    Directory of Open Access Journals (Sweden)

    Mao-Ju Zhang

    2017-09-01

    Full Text Available AIM: To study the type, degree and axial distribution of low vision astigmatism in preschool children. METHODS: A group of 3-6 years old children were selected for astigmatism screening, and statistical analysis was performed on the detected 445 eyes of 308 people. RESULTS: With more than 0.50D astigmatism criteria, astigmatism examination of 308 people, accounting for 36.2%, of which 137 eyes astigmatism, astigmatism 171 monocular. The five types of astigmatism were compound hyperopia 40.7%, mixed 35.5%, compound myopia 8.5%, myopia 8.3%, simple hyperopia astigmatism degree 7.0%; 69.0% were mild, 16.6% moderate, 14.4% severe. Astigmatism axial distribution was with the rule for 54.9%, against the rule 28.8%, oblique 16.6%. In binocular astigmatism eyes, axial symmetry was in 35.8%, asymmetry in 64.2%. CONCLUSION: The main type of astigmatism in preschool children are compound hyperopia and mixed astigmatism. Astigmatism degree is mainly mild. With the increase of age, the detection rate of moderate and high astigmatism increased.

  17. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  18. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  19. Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements

    Science.gov (United States)

    Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.

  20. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    Science.gov (United States)

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  1. Single-mode propagation in optical waveguides and fibres: a critical review of its treatment in physics textbooks

    Energy Technology Data Exchange (ETDEWEB)

    Ruddock, Ivan S [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)], E-mail: i.s.ruddock@strath.ac.uk

    2009-03-15

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in an elementary treatment by a ray reflecting between opposite core and cladding boundaries.

  2. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  3. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  4. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel ...... in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.......This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel...... photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices...

  5. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  7. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Quan Haiyong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States); Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854 (United States)]. E-mail: guo@jove.rutgers.edu

    2005-06-15

    Finite element analyses are made of the shifts of resonance frequencies of whispering-gallery-mode (WGM) for a fiber-microsphere coupling miniature sensor. The time-domain Maxwell's equations were adopted to describe the near-field radiation transport and solved by the in-plane TE waves application mode of the FEMLAB. The electromagnetic fields as well as the radiation energy distributions can be easily obtained by the finite element analysis. The resonance intensity spectrum curves in the frequency range from 213 to 220THz were studied under different biosensing conditions. Emphasis was put on the analyses of resonance shift sensitivity influenced by changes of the effective size of the sensor resonator (i.e., microsphere) and/or the refractive index of the medium surrounding the resonator. It is estimated that the WGM biosensor can distinguish molecular size change to the level of 0.1nm and refractive index change in the magnitude of {approx}10{sup -3} even with the use of a general optical spectrum analyzer of one GHz linewidth. Finally, the potential of the WGM miniature biosensor for monitoring peptide growth is investigated and a linear sensor curve is obtained.

  8. Single-mode optical waveguides on native high-refractive-index substrates

    Directory of Open Access Journals (Sweden)

    Richard R. Grote

    2016-10-01

    Full Text Available High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs. However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  9. Optical design and suspension system of the KAGRA output mode-cleaner

    Science.gov (United States)

    Kasuya, Junko; Winterflood, John; Li, Ju; Somiya, Kentaro

    2018-02-01

    KAGRA is a Japanese large scale, underground, cryogenic gravitational telescope which is under construction in the Kamioka mine. For using cryogenic test masses, the sensitivity of KAGRA is limited mainly by quantum noise. In order to reduce quantum noise, KAGRA employs an output mode-cleaner (OMC) at the output port that filters out junk light but allows the gravitational wave signal to go through. The requirement of the KAGRA OMC is even more challenging than other telescopes in the world since KAGRA plans to tune the signal readout phase so that the signal-to-noise ratio for our primary target source can be maximized. A proper selection of optical parameters and anti-vibration devices is required for the robust operation of the OMC. In this proceeding, we show our final results of modal-model simulations, in which we downselected the cavity length, the round-trip Gouy phase shift, the finesse, and the seismic isolation ratio for the suspended optics.

  10. Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators.

    Science.gov (United States)

    Diallo, Souleymane; Lin, Guoping; Chembo, Yanne K

    2015-08-15

    In this Letter, we show that giant thermo-optical oscillations can be triggered in millimeter (mm)-size whispering gallery mode (WGM) disk resonators when they are pumped by a resonant continuous-wave laser. Our resonator is an ultrahigh-Q barium fluoride cavity that features a positive thermo-optic coefficient and a negative thermo-elastic coefficient. We demonstrate for the first time, to our knowledge, that the complex interplay between these two thermic coefficients and the intrinsic Kerr nonlinearity yields very sharp slow-fast relaxation oscillations with a slow timescale that can be exceptionally large, typically of the order of 1 s. We use a time-domain model to gain understanding into this instability, and we find that both the experimental and theoretical results are in excellent agreement. The understanding of these thermal effects is an essential requirement for every WGM-related application and our study demonstrates that even in the case of mm-size resonators, such effects can still be accurately analyzed using nonlinear time-domain models.

  11. Astigmatism induced by conventional spherical ablation after PRK and LASIK in myopia with astigmatism < 1.00 D

    Directory of Open Access Journals (Sweden)

    Christiansen SM

    2012-12-01

    Full Text Available Steven M Christiansen,1 Mark D Mifflin,1 Jason N Edmonds,1 Rachel G Simpson,2 Majid Moshirfar11John A Moran Eye Center, University of Utah, Salt Lake City, UT, 2The University of Arizona College of Medicine, Phoenix, AZ, USABackground: The purpose of this study was to evaluate surgically-induced astigmatism after spherical ablation in photorefractive keratectomy (PRK and laser-assisted in situ keratomileusis (LASIK for myopia with astigmatism < 1.00 D.Methods: The charts of patients undergoing spherical PRK or LASIK for the correction of myopia with minimal astigmatism of <1.00 D from 2002 to 2012 at the John A Moran Eye Center in Salt Lake City, UT, were retrospectively reviewed. Astigmatism was measured by manifest refraction. The final astigmatic refractive outcome at 6 months postoperatively was compared with the initial refraction by Alpins vector analysis.Results: For PRK, average cylinder increased from 0.39 ± 0.25 (0.00–0.75 preoperatively to 0.55 ± 0.48 (0.00–1.75 postoperatively (P = 0.014, compared with an increase in LASIK eyes from 0.40 ± 0.27 (0.00–0.75 preoperatively to 0.52 ± 0.45 (0.00–2.00 postoperatively (P = 0.041. PRK eyes experienced an absolute value change in cylinder of 0.41 ± 0.32 (0.00–1.50 and LASIK eyes experienced a change of 0.41 ± 0.31 (0.00–1.50, P = 0.955. Mean surgically-induced astigmatism was 0.59 ± 0.35 (0.00–1.70 in PRK eyes, with an increase in surgically-induced astigmatism of 0.44 D for each additional 1.00 D of preoperative cylinder; in LASIK eyes, mean surgically-induced astigmatism was 0.55 ± 0.32 (0.00–1.80, P = 0.482, with an increase in surgically-induced astigmatism of 0.29 D for each 1.00 D of preoperative cylinder.Conclusion: Spherical ablation can induce substantial astigmatism even in eyes with less than one diopter of preoperative astigmatism in both PRK and LASIK. No significant difference in the magnitude of surgically-induced astigmatism was found between eyes

  12. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  13. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  14. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    Science.gov (United States)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  15. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  16. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    Science.gov (United States)

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  17. Spherical equivalent refractive error in preschool children from a population with a high prevalence of astigmatism.

    Science.gov (United States)

    Dobson, Velma; Harvey, Erin M; Miller, Joseph M

    2007-02-01

    To describe spherical equivalent (sph eq) refractive errors in preschool members of a Native American tribe with a high prevalence of astigmatism. Cycloplegic autorefraction measurements were obtained for 819 three- and four-year-old Tohono O'odham children, with follow-up measurements in 146 after 4 to 8 years. Mean sph eq was significantly more hyperopic in the astigmatic group than in the non-astigmatic group (1.24 vs. 0.87 D). At follow-up, prevalence of hyperopic sph eq and hyperopic astigmatism had significantly decreased, and prevalence of emmetropic/myopic sph eq and myopic astigmatism had significantly increased. The decrease in mean sph eq was similar in astigmats and non-astigmats. Astigmatism did not change over time. Most preschool children in this highly astigmatic population are hyperopic, with astigmats showing higher mean hyperopic sph eq than non-astigmats. Astigmats and non-astigmats show a similar decrease in amount of hyperopic sph eq over follow-up of 4 to 8 years.

  18. Photorefractive keratectomy in the management of postradial keratotomy hyperopia and astigmatism

    Directory of Open Access Journals (Sweden)

    Mohammad Ghoreishi

    2017-01-01

    Full Text Available Background: The aim of this study is to evaluate the results of photorefractive keratectomy (PRK in the management of postoperative hyperopia and astigmatism in patients with history of radial keratotomy (RK. Materials and Methods: This prospective nonrandomized noncomparative interventional case series enrolled consecutive eyes treated with PRK after RK. In cases, in which (1 wavefront (WF scan was undetectable during primary examinations; and/or, (2 WF data were not transferable to the excimer laser device, patients were treated with the tissue-saving (TS mode. Patients with detectable/transferable WF were assigned to WF-guided advanced personalized treatment (APT. Results: Thirty-two and 47 eyes were managed by APT and TS modes, respectively. Pooled analysis of both APT and TS groups showed improvement in uncorrected distant visual acuity and corrected distant visual acuity. The amount of sphere, cylinder, corneal cylinder, spherical equivalent, defocus equivalent, and total aberration showed improvement as well. Conclusion: PRK seems to bring favorable outcome and safety profile in the management of post-RK hyperopia and astigmatism. It is crucial for practitioners to warn their patients about the fact that they may still have progressive refractive instability regardless of their choice on the laser method of vision correction.

  19. Degradation of Side-Mode Suppression Ratio in a DFB Laser Integrated With a Semiconductor Optical Amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Lestrade, Michel; Camel, Jérôme

    2004-01-01

    The degradation of the side-mode suppression ratio (SMSR) in a monolithically integrated distributed feedback laser and semiconductor optical amplifier (SOA) cavity is investigated. An expression is derived that gives the degradation of the SMSR in the case of a perfectly antireflection-coated SO...

  20. Correction of low corneal astigmatism in cataract surgery.

    Science.gov (United States)

    Leon, Pia; Pastore, Marco Rocco; Zanei, Andrea; Umari, Ingrid; Messai, Meriem; Negro, Corrado; Tognetto, Daniele

    2015-01-01

    To evaluate and compare aspheric toric intraocular lens (IOL) implantation and aspheric monofocal IOL implantation with limbal relaxing incisions (LRI) to manage low corneal astigmatism (1.0-2.0 D) in cataract surgery. A prospective randomized comparative clinical study was performed. There were randomly recruited 102 eyes (102 patients) with cataracts associated with corneal astigmatism and divided into two groups. The first group received toric IOL implantation and the second one monofocal IOL implantation with peripheral corneal relaxing incisions. Outcomes considered were: visual acuity, postoperative residual astigmatism, endothelial cell count, the need for spectacles, and patient satisfaction. To determine the postoperative toric axis, all patients who underwent the toric IOL implantation were further evaluated using an OPD Scan III (Nidek Co, Japan). Follow-up lasted 6mo. The mean uncorrected distance visual acuity (UCVA) and the best corrected visual acuity (BCVA) demonstrated statistically significant improvement after surgery in both groups. At the end of the follow-up the UCVA was statistically better in the patients with toric IOL implants compared to those patients who underwent implantation of monofocal IOL plus LRI. The mean residual refractive astigmatism was of 0.4 D for the toric IOL group and 1.1 D for the LRI group (P<0.01). No difference was observed in the postoperative endothelial cell count between the two groups. The two surgical procedures demonstrated a significant decrease in refractive astigmatism. Toric IOL implantation was more effective and predictable compared to the limbal relaxing incision.

  1. Effects of two different incision phacoemulsification on corneal astigmatism

    Directory of Open Access Journals (Sweden)

    Lu Huo

    2014-12-01

    Full Text Available AIM:To compare the effect of different incision in corneal astigmatism after phacoemulsification. METHODS: Totally 88 cases(122 eyeswith pure cataract were randomly divided into two groups. Forty cases(60 eyeswere clarity corneal incision in group A, and 48 cases(62 eyeswere sclera tunnel incision in group B. Mean corneal astigmatism, surgically induced astigmatism(SIA, uncorrected visual acuity(UCVAand best correct vision acuity(BCVAwere observed in pre- and post-operation at 1d; 1wk; 1mo.RESULTS: The mean astigmatism had statistically significant difference between two groups at 1d; 1wk; 1mo after operation(PPP>0.05. UCVA≥0.5 and BCVA≥0.8 had statistically significant difference at 1d; 1wk(PP>0.05.CONCLUSION: Phacoemulsification with scleral tunnel incision remove combined intraocular lens(IOLimplantation has small changes to corneal astigmatism. By selecting personalized corneal incision according to the corneal topography might be more beneficial.

  2. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  3. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  4. High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Steinvurzel, P. E.; Chen, Y.

    2012-01-01

    We demonstrate, for the first time, four-wave mixing, in the 1-μm spectral regime, in an LMA silica fiber. Pumping a 618-μm2 LP07 mode (λo = 1038.4 nm) with a 1064.6-nm Nd:YAG laser results in the generation of modulation instability, and multiple Stokes/anti-Stokes lines, opening up the prospect...

  5. The use of Lorentz group formalism in solving polarization effects of a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Brown, C.S.; Mensah, S.Y.; Bak, A.E.

    2000-07-01

    A theoretical analysis on the polarization effects of a light beam propagating in a birefringent single-mode fiber is presented. We derive a system of differential equations representing the evolution of Stokes parameters and illustrate their application to polarization effects in a straight birefringent single mode optical fiber. The solutions to the set of equations are obtained using specifically the methods of the unified formalism for polarization optics which adopt the use of the Stokes-Mueller equation and the Lorentz group to model polarization phenomena in media such as optical fibers. The analytical results presented using this approach are identical to results obtained from other conventional methods. We observe the characteristic exponential decrease in the total intensity of the input light due to attenuation by the fiber. (author)

  6. A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts

    Science.gov (United States)

    Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer

    2017-06-01

    In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal

  7. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  8. Single-step transepithelial photorefractive keratectomy in myopia and astigmatism: 18-month follow-up.

    Science.gov (United States)

    Adib-Moghaddam, Soheil; Soleyman-Jahi, Saeed; Salmanian, Bahram; Omidvari, Amir-Houshang; Adili-Aghdam, Fatemeh; Noorizadeh, Farsad; Eslani, Medi

    2016-11-01

    To evaluate the long-term quantitative and qualitative optical outcomes of 1-step transepithelial photorefractive keratectomy (PRK) to correct myopia and astigmatism. Bina Eye Hospital, Tehran, Iran. Prospective interventional case series. Eyes with myopia with or without astigmatism were evaluated. One-step transepithelial PRK was performed with an aberration-free aspheric optimized profile and the Amaris 500 laser. Eighteen-month follow-up results for refraction, visual acuities, vector analysis, higher-order aberrations, contrast sensitivity, postoperative pain, and haze grade were assessed. The study enrolled 146 eyes (74 patients). At the end of follow-up, 93.84% of eyes had an uncorrected distance visual acuity of 20/20 or better and 97.94% of eyes were within ±0.5 diopter of the targeted spherical refraction. On vector analysis, the mean correction index value was close to 1 and the mean index of success and magnitude of error values were close to 0. The achieved correction vector was on an axis counterclockwise to the axis of the intended correction. Photopic and mesopic contrast sensitivities and ocular and corneal spherical, cylindrical, and corneal coma aberrations significantly improved (all P < .001). A slight amount of trefoil aberration was induced (P < .001, ocular aberration; P < .01, corneal aberration). No eye lost more than 1 line of corrected distance visual acuity. No eye had a haze grade of 2+ degrees or higher throughout the follow-up. Eighteen-month results indicate the efficacy and safety of transepithelial PRK to correct myopia and astigmatism. It improved refraction and quality of vision. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Linear Transformation of the Polarization Modes in Coiled Optical Spun-Fibers with Strong Unperturbed Linear Birefringence. I. Nonresonant Transformation

    Science.gov (United States)

    Malykin, G. B.; Pozdnyakova, V. I.

    2018-03-01

    A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur

  10. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique

    Science.gov (United States)

    Kosiel, Kamil; Koba, Marcin; Masiewicz, Marcin; Śmietana, Mateusz

    2018-06-01

    The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 °C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double-layer overlay composed of two different materials - silicon nitride (SixNy) and TaxOy - is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques - PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties.

  11. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  12. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  13. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.

    2016-01-01

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  14. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  15. Analysis of Current-mode Detectors For Resonance Detection In Neutron Optics Time Reversal Symmetry Experiment

    Science.gov (United States)

    Forbes, Grant; Noptrex Collaboration

    2017-09-01

    One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.

  16. Does correcting astigmatism with toric lenses improve driving performance?

    Science.gov (United States)

    Cox, Daniel J; Banton, Thomas; Record, Steven; Grabman, Jesse H; Hawkins, Ronald J

    2015-04-01

    Driving is a vision-based activity of daily living that impacts safety. Because visual disruption can compromise driving safety, contact lens wearers with astigmatism may pose a driving safety risk if they experience residual blur from spherical lenses that do not correct their astigmatism or if they experience blur from toric lenses that rotate excessively. Given that toric lens stabilization systems are continually improving, this preliminary study tested the hypothesis that astigmats wearing toric contact lenses, compared with spherical lenses, would exhibit better overall driving performance and driving-specific visual abilities. A within-subject, single-blind, crossover, randomized design was used to evaluate driving performance in 11 young adults with astigmatism (-0.75 to -1.75 diopters cylinder). Each participant drove a highly immersive, virtual reality driving simulator (210 degrees field of view) with (1) no correction, (2) spherical contact lens correction (ACUVUE MOIST), and (3) toric contact lens correction (ACUVUE MOIST for Astigmatism). Tactical driving skills such as steering, speed management, and braking, as well as operational driving abilities such as visual acuity, contrast sensitivity, and foot and arm reaction time, were quantified. There was a main effect for type of correction on driving performance (p = 0.05). Correction with toric lenses resulted in significantly safer tactical driving performance than no correction (p driving safety from no correction (p = 0.118). Operational tests differentiated corrected from uncorrected performance for both spherical (p = 0.008) and toric (p = 0.011) lenses, but they were not sensitive enough to differentiate toric from spherical lens conditions. Given previous research showing that deficits in these tactical skills are predictive of future real-world collisions, these preliminary data suggest that correcting low to moderate astigmatism with toric lenses may be important to driving safety. Their

  17. Mixed-symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices

    International Nuclear Information System (INIS)

    Cruz, H. A.; Brazhnyi, V. A.; Konotop, V. V.; Alfimov, G. L.; Salerno, M.

    2007-01-01

    We study localized modes in binary mixtures of Bose-Einstein condensates embedded in one-dimensional optical lattices. We report a diversity of asymmetric modes and investigate their dynamics. We concentrate on the cases where one of the components is dominant, i.e., has a much larger number of atoms than the other one, and where both components have the numbers of atoms of the same order but different symmetries. In the first case we propose a method of systematically obtaining the modes, considering the ''small'' component as bifurcating from the continuum spectrum. A generalization of this approach combined with the use of the symmetry of the coupled Gross-Pitaevskii equations allows for obtaining breather modes, which are also presented

  18. Demonstrating optical aberrations in the laboratory

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2009-07-01

    Full Text Available THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE 2 POINTS OF FOCUS SAGITTAL PLANE TANGENTIAL PLANE TANGENTIAL IMAGE OPTICAL AXIS OBJECT POINT SAGITTAL IMAGE ASTIGMATISM © CSIR 2008 www....csir.co.za ASTIGMATISM ARISES WHEN THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE 2 POINTS OF FOCUS SAGITTAL PLANE TANGENTIAL PLANE TANGENTIAL IMAGE OPTICAL AXIS OBJECT POINT SAGITTAL IMAGE FOCAL PLANE COMA IMAGE A B θ COMA...

  19. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  20. Numerical Methods Are Feasible for Assessing Surgical Techniques: Application to Astigmatic Keratotomy

    Energy Technology Data Exchange (ETDEWEB)

    Ariza-Gracia, M.A.; Ortilles, A.; Cristobal, J.A.; Rodriguez, J.F.; Calvo, B.

    2016-07-01

    The present study proposes an experimental-numerical protocol whose novelty relies on using both the inflation and the indentation experiments simultaneously to obtain a set of material parameters which accounts for both deformation modes of the cornea: the physiological (biaxial tension) and the non-physiological (bending). The experimental protocol characterizes the corneal geometry and the mechanical response of the cornea when subjected to the experimental tests using an animal model (New Zealand rabbit's cornea). The numerical protocol reproduces the experimental tests by means of an inverse finite element methodology to obtain the set of material properties that minimizes both mechanical responses at the same time. To validate the methodology, an Astigmatic Keratotomy refractive surgery is performed on 4 New Zealand rabbit corneas. The pre and post-surgical topographies of the anterior corneal surface were measured using a MODI topographer (CSO, Italy) to control the total change in astigmatism. Afterwards, the surgery is numerically reproduced to predict the overall change of the cornea. Results showed an acceptable numerical prediction, close to the average experimental correction, validating the material parameters obtained with the proposed protocol. (Author)

  1. Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging

    Directory of Open Access Journals (Sweden)

    Zhou Q

    2015-03-01

    Full Text Available Qing Zhou,1,* Ketao Mu,2,* Lingyu Jiang,1 Hui Xie,3 Wei Liu,1 Zhengzheng Li,1 Hui Qi,1 Shuyan Liang,1 Huibi Xu,1 Yanhong Zhu,1 Wenzhen Zhu,2 Xiangliang Yang11National Engineering Research Center for Nanomedicine, College of Life Science and Technology, 2Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 3Department of Information Processing, China Patent Information Center, Wuhan, People’s Republic of China*These authors contributed equally to this workAbstract: Surgical resection is the primary mode for glioma treatment, while gross total resection is difficult to achieve, due to the invasiveness of the gliomas. Meanwhile, the tumor-resection region is closely related to survival rate and life quality. Therefore, we developed optical/magnetic resonance imaging (MRI bifunctional targeted micelles for glioma so as to delineate the glioma location before and during operation. The micelles were constructed through encapsulation of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs with polyethylene glycol-block-polycaprolactone (PEG-b-PCL by using a solvent-evaporation method, and modified with a near-infrared fluorescent probe, Cy5.5, in addition to the glioma-targeting ligand lactoferrin (Lf. Being encapsulated by PEG-b-PCL, the hydrophobic SPIONs dispersed well in phosphate-buffered saline over 4 weeks, and the relaxivity (r2 of micelles was 215.4 mM–1·s–1, with sustained satisfactory fluorescent imaging ability, which might have been due to the interval formed by PEG-b-PCL for avoiding the fluorescence quenching caused by SPIONs. The in vivo results indicated that the nanoparticles with Lf accumulated efficiently in glioma cells and prolonged the duration of hypointensity at the tumor site over 48 hours in the MR image compared to the nontarget group. Corresponding with the MRI results, the margin of the glioma was clearly demarcated in the fluorescence image

  2. Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes

    Science.gov (United States)

    Gu, Zhiyuan; Wang, Yang; Ju, Guohao; Yan, Changxiang

    2018-01-01

    Active optics usually uses the computation models based on numerical methods to correct misalignments and figure errors at present. These methods can hardly lead to any insight into the aberration field dependencies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C telescope based on this analytical alignment model. It is shown that in the absence of wavefront measurement errors, wavefront measurements at only two field points are enough, and the correction process can be completed with only one alignment action. In the presence of wavefront measurement errors, increasing the number of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo simulation shows that, when -2 mm ≤ linear misalignment ≤ 2 mm, -0.1 deg ≤ angular misalignment ≤ 0.1 deg, and -0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5 / C6, λ = 632.8 nm) ≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples after being corrected is linearly related to wavefront testing error.

  3. Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror

    Science.gov (United States)

    Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong

    2018-06-01

    Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.

  4. Cultivation mode research of practical application talents for optical engineering major

    Science.gov (United States)

    Liu, Zhiying

    2017-08-01

    The requirements on science and technology graduates are more and higher with modern science progress and society market economy development. Because optical engineering major is with very long practicality, practice should be paid more attention from analysis of optical engineering major and students' foundation. To play role of practice to a large amount, the practice need be systemic and correlation. It should be combination of foundation and profundity. Modern foundation professional knowledge is studied with traditional optical concept and technology at the same time. Systemic regularity and correlation should be embodied in the contents. Start from basic geometrical optics concept, the optical parameter of optical instrument is analyzed, the optical module is built and ray tracing is completed during geometrical optics practice. With foundation of primary aberration calculation, the optical system is further designed and evaluated during optical design practice course. With the optical model and given instrument functions and requirements, the optical-mechanism is matched. The accuracy is calculated, analyzed and distributed in every motion segment. And the mechanism should guarantee the alignment and adjustment. The optical mechanism is designed during the instrument and element design practice. When the optical and mechanism drawings are completed, the system is ready to be fabricated. Students can complete grinding, polishing and coating process by themselves through optical fabricating practice. With the optical and mechanical elements, the system can be assembled and aligned during the thesis practice. With a set of correlated and logical practices, the students can acquire the whole process knowledge about optical instrument. All details are contained in every practice process. These practical experiences provide students working ability. They do not need much adaption anymore when they go to work after graduation. It is favorable to both student

  5. Corneal and refractive astigmatism in a sample of 3- to 5-year-old children with a high prevalence of astigmatism.

    Science.gov (United States)

    Dobson, V; Miller, J M; Harvey, E M

    1999-12-01

    To examine the relation between corneal and refractive astigmatism in a sample of pre-school-age Native American children with a high prevalence of astigmatism. Subjects were 250 Tohono O'Odham children, 3 to 5 years of age. Each child had corneal astigmatism measured with the Marco Nidek KM-500 portable autokeratometer without pupil dilation, and with the Nikon Retinomax K-Plus portable autorefractor/autokeratometer without and with pupil dilation. Refractive astigmatism was measured using the Retinomax K-Plus, with cycloplegia, confirmed by retinoscopy. Corneal astigmatism exceeded refractive astigmatism, with a median vector dioptric difference of 0.88 D for the KM-500, 0.76 D for the Retinomax K-Plus without dilation, and 0.75 for the Retinomax K-Plus with dilation. The relation between corneal and refractive astigmatism was adequately described by the modification by Grosvenor et al. of Javal's rule, but not by laval's rule. The results are in agreement with data reported previously for older Native American and non-Native American populations. The modified laval's rule adequately describes the relation between corneal and refractive astigmatism in a population; however, this rule does not provide accurate prediction of refractive astigmatism in individual children or adults.

  6. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  7. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    Science.gov (United States)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  8. 18-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser

    Science.gov (United States)

    Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo

    2017-10-01

    We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.

  9. Optical manipulation of photonic defect-modes in cholesteric liquid crystals induced by direct laser-lithography

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Miura, Yusuke; Fujii, Akihiko; Ozaki, Masanori

    2008-01-01

    Manipulation of photonic defect-modes in cholesteric liquid crystals (ChLCs), which are one-dimensional pseudo photonic band-gap materials have been demonstrated by an external optical field. A structural defect in which the pitch length of the ChLC in the bulk and the defect are different was introduced by inducing local polymerization in a photo-polymerizable ChLC material by a direct laser-lithography process, and infiltrating a different ChLC material as the defect medium. When an azobenzene dye-doped ChLC was infiltrated in the defect, the trans-cis isomerization of the dye upon ultraviolet (UV) exposure caused the pitch to shorten, changing the contrast in the pitch lengths at the bulk and the defect, leading to a consequent shifting of the defect-mode. The all-optical manipulation was reversible and had high reproducibility

  10. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    Science.gov (United States)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  11. Characteristics of astigmatism in Black South African high school ...

    African Journals Online (AJOL)

    Keywords: Astigmatism prevalence, school children, South Africa. ... ception and symptoms.3 The high school population is of interest given that they ..... Malaysia. Asian. 7-15. 4634. ≤−0.75 15.7. Paudel te al45. Vietnam. Asian. 12-15. 2238.

  12. Defocus and twofold astigmatism correction in HAADF-STEM

    International Nuclear Information System (INIS)

    Rudnaya, M.E.; Van den Broek, W.; Doornbos, R.M.P.; Mattheij, R.M.M.; Maubach, J.M.L.

    2011-01-01

    A new simultaneous autofocus and twofold astigmatism correction method is proposed for High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). The method makes use of a modification of image variance, which has already been used before as an image quality measure for different types of microscopy, but its use is often justified on heuristic grounds. In this paper we show numerically that the variance reaches its maximum at Scherzer defocus and zero astigmatism. In order to find this maximum a simultaneous optimization of three parameters (focus, x- and y-stigmators) is necessary. This is implemented and tested on a FEI Tecnai F20. It successfully finds the optimal defocus and astigmatism with time and accuracy, compared to a human operator. -- Research highlights: → A new simultaneous defocus and astigmatism correction method is proposed. → The method does not depend on the image Fourier transform. → The method does not require amorphous area of the sample. → The method is tested numerically as well, as for the real-world application.

  13. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    been studied. Twisting the optical fibre and its influence on power loss also have been investigated. ... been employed, to investigate their effects on bending loss. A simple semi-empirical .... optical correction factor [10]). This model (equation) ...

  14. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  15. Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL

    NARCIS (Netherlands)

    Karppinen, M.; Salminen, N.; Korhonen, T.; Alajoki, T.; Petäjä, J.; Bosman, E.; Steenberge, G. van; Justice, J.; Khan, U.; Corbett, B.; Boersma, A.

    2015-01-01

    Polymer-based integrated optics is attractive for inter-chip optical interconnection applications, for instance, for coupling photonic devices to fibers in high density packaging. In such a hybrid integration scheme, a key challenge is to achieve efficient optical coupling between the photonic chips

  16. Correction of low corneal astigmatism in cataract surgery

    Directory of Open Access Journals (Sweden)

    Pia Leon

    2015-08-01

    Full Text Available AIM: To evaluate and compare aspheric toric intraocular lens (IOL implantation and aspheric monofocal IOL implantation with limbal relaxing incisions (LRI to manage low corneal astigmatism (1.0-2.0 D in cataract surgery.METHODS:A prospective randomized comparative clinical study was performed. There were randomly recruited 102 eyes (102 patients with cataracts associated with corneal astigmatism and divided into two groups. The first group received toric IOL implantation and the second one monofocal IOL implantation with peripheral corneal relaxing incisions. Outcomes considered were:visual acuity, postoperative residual astigmatism, endothelial cell count, the need for spectacles, and patient satisfaction. To determine the postoperative toric axis, all patients who underwent the toric IOL implantation were further evaluated using an OPD Scan III (Nidek Co, Japan. Follow-up lasted 6mo.RESULTS: The mean uncorrected distance visual acuity (UCVA and the best corrected visual acuity (BCVA demonstrated statistically significant improvement after surgery in both groups. At the end of the follow-up the UCVA was statistically better in the patients with toric IOL implants compared to those patients who underwent implantation of monofocal IOL plus LRI. The mean residual refractive astigmatism was of 0.4 D for the toric IOL group and 1.1 D for the LRI group (P<0.01. No difference was observed in the postoperative endothelial cell count between the two groups.CONCLUSION: The two surgical procedures demonstrated a significant decrease in refractive astigmatism. Toric IOL implantation was more effective and predictable compared to the limbal relaxing incision.

  17. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  18. 110GHz-500kW long-pulse gyrotron with built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Kariya, Tsuyoshi; Hayashi, Ken-ichi.

    1994-01-01

    We have designed, fabricated, and tested a 110 GHz-500 kW long-pulse gyrotron. The gyrotron incorporates a quasi-optical mode converter which transforms the oscillation mode, TE 22,2 , into a Gaussian radiation beam. The adoption of a built-in mode converter enabled us to design the electron beam collector so as to be capable of tolerating a 2 MW heat load. Attention was also paid to designing the gyrotron cavity and output window so as to permit long-pulse operations. In an experiment, we observed a maximum output power of 550 kW and achieved 1.3 s operation at a power level of 410 kW. (author)

  19. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    Science.gov (United States)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  20. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  1. Design and prototyping of self-centering optical single-mode fiber alignment structures

    International Nuclear Information System (INIS)

    Ebraert, Evert; Gao, Fei; Thienpont, Hugo; Van Erps, Jürgen; Beri, Stefano; Watté, Jan

    2016-01-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s −1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μ m. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μ m, which is no

  2. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    Science.gov (United States)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  3. Trenched raised cosine FMF for differential mode delay management in next generation optical networks

    Science.gov (United States)

    Chebaane, Saleh; Fathallah, Habib; Seleem, Hussein; Machhout, Mohsen

    2018-02-01

    Dispersion management in few mode fiber (FMF) technology is crucial to support the upcoming standard that reaches 400 Gbps and Terabit/s per wavelength. Recently in Chebaane et al. (2016), we defined two potential differential mode delay (DMD) management strategies, namely sawtooth and triangular. Moreover we proposed a novel parametric refractive index profile for FMF, referred as raised cosine (RC) profile. In this article, we improve and optimize the RC profile design by including additional shaping parameters, in order to obtain much more attractive dispersion characteristics. Our improved design enabled to obtain a zero DMD (z-DMD), strong positive DMD (p-DMD) and near-zero DMD (nz-DMD) for six-mode fiber, all appropriate for dispersion management in FMF system. In addition, we propose a positive DMD (p-DMD) fiber designs for both, four-mode fiber (4-FMF) and six-mode fiber (6-FMF), respectively, having particularly attractive dispersion characteristics.

  4. FIBER AND INTEGRATED OPTICS: Bandgap modes in a coupled waveguide array

    Science.gov (United States)

    Usievich, B. A.; Nurligareev, D. Kh; Svetikov, V. V.; Sychugov, V. A.

    2009-08-01

    This work examines a waveguide array that consists of ten Nb2O5/SiO2 double layers and supports a 0.63-μm surface wave. The deposition of a Nb2O5 capping layer on top of the waveguide array enables a marked increase in the wave field intensity on its surface. The efficiency of surface-wave excitation in the Kretschmann configuration can be optimised by adjusting the number of double layers. We analyse the behaviour of the Bragg mode in relation to the thickness of the layer exposed to air and the transition of this mode from the second allowed band to the first through the bandgap of the system. In addition, the conventional leaky mode converts to a surface mode and then to a guided mode.

  5. Prevalence rates and epidemiological risk factors for astigmatism in Singapore school children.

    Science.gov (United States)

    Tong, Louis; Saw, Seang-Mei; Carkeet, Andrew; Chan, Wai-Ying; Wu, Hui-Min; Tan, Donald

    2002-09-01

    This study examined the prevalence rate of astigmatism and its epidemiological risk factors in Singapore school children. In a study of school children aged 7 to 9 years old in two schools in Singapore in 1999, a detailed questionnaire was administered to parents regarding reading or close-work habits, past history of close-work, family history, and socioeconomic factors. Cycloplegic refraction was performed five times in each eye. Defining astigmatism as worse than or equal to 0.5, 0.75, and 1 D cylinder in the right eye, the prevalence of astigmatism was calculated. The study population consisted of 1028 children. The prevalence rate of astigmatism (worse than or equal to 1 D cylinder) was 19.2% (95% confidence interval, 16.8 to 21.6). This was not different between genders, ethnic groups, or age (p > 0.05). With-the-rule astigmatism was more common than against-the-rule astigmatism. The prevalence of astigmatism and myopia was 9.8% (95% confidence interval, 8.0 to 11.6). A high AC/A ratio was associated (p = 0.003) with astigmatism, even after exclusion of myopic children. On vectorial analysis, J0 and J45 were associated with the number of hours of playing video games, whereas J45 was also associated with computer use. Only J45 was associated to male gender, a high AC/A ratio, and a family history of myopia. The prevalence rate of astigmatism (> or = 1 D) was 19%. Playing video games and computer use may be associated with astigmatism severity, although the presence of astigmatism (> or = 1 D) was not associated with any nearwork factors. A family history of myopia was associated with oblique astigmatism severity. A high AC/A ratio is associated with astigmatism, and this requires further investigation.

  6. Extended wavelet transformation to digital holographic reconstruction: application to the elliptical, astigmatic Gaussian beams.

    Science.gov (United States)

    Remacha, Clément; Coëtmellec, Sébastien; Brunel, Marc; Lebrun, Denis

    2013-02-01

    Wavelet analysis provides an efficient tool in numerous signal processing problems and has been implemented in optical processing techniques, such as in-line holography. This paper proposes an improvement of this tool for the case of an elliptical, astigmatic Gaussian (AEG) beam. We show that this mathematical operator allows reconstructing an image of a spherical particle without compression of the reconstructed image, which increases the accuracy of the 3D location of particles and of their size measurement. To validate the performance of this operator we have studied the diffraction pattern produced by a particle illuminated by an AEG beam. This study used mutual intensity propagation, and the particle is defined as a chirped Gaussian sum. The proposed technique was applied and the experimental results are presented.

  7. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes

    Science.gov (United States)

    Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang

    2018-02-01

    We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.

  8. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    International Nuclear Information System (INIS)

    Perez, J; Llorente, R

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with −31 dBm WiMAX EVM. (paper)

  9. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    Science.gov (United States)

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  10. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  11. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development

    Directory of Open Access Journals (Sweden)

    Joaquin Ascorbe

    2018-06-01

    Full Text Available Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF. These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  12. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Del Villar, Ignacio; Matias, Ignacio R

    2018-06-07

    Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  13. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    Science.gov (United States)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  14. Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua

    2003-01-01

    A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.

  15. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    Science.gov (United States)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  16. Effect of Mitomycin C on Myopic versus Astigmatic Photorefractive Keratectomy

    Directory of Open Access Journals (Sweden)

    Ashwag A. Almosa

    2017-01-01

    Full Text Available Purpose. Long-term mitomycin C (MMC effects on photorefractive keratectomy (PRK were compared in simple myopic and astigmatic patients. Methods. In this observational cohort study, subjects were selected based on preoperative and postoperative data collected from medical records; they were divided into simple myopia with/without MMC and myopic astigmatism with/without MMC groups. Haze, uncorrected visual acuity (UCVA, best-corrected visual acuity (BCVA, subjective refraction, and K-reading were evaluated at 1-, 3-, 6-, and 12-month follow-ups. Results. One hundred fifty-nine eyes of 80 subjects (34 women and 46 men; mean age, 26.81 ± 7.74 years; range, 18–53 years; spherical powers, −0.50 to −8.00 DS; and cylindrical powers, −0.25 to −5.00 DC were enrolled. One year postoperatively, the simple myopia with/without MMC groups showed no difference in UCVA (P=0.187, BCVA (P=0.163, or spherical equivalent (P=0.163 and a significant difference (P=0.0495 in K-reading; the haze formation difference was nonsignificant (P=0.056. Astigmatic groups with/without MMC showed a significant difference in K-reading (P<0.0001. MMC groups had less haze formation (P<0.0001. Conclusion. PRK with intraoperative MMC application showed excellent visual outcomes. MMC’s effect on astigmatic patients was significantly better with acceptable safety and minimal side effects.

  17. LASIK versus photorefractive keratectomy for high myopic (> 3 diopter) astigmatism.

    Science.gov (United States)

    Katz, Toam; Wagenfeld, Lars; Galambos, Peter; Darrelmann, Benedikt Große; Richard, Gisbert; Linke, Stephan Johannes

    2013-12-01

    To compare the efficacy, safety, predictability, and vector analysis indices of LASIK and photorefractive keratectomy (PRK) for correction of high cylinder of greater than 3 diopters (D) in myopic eyes. The efficacy, safety, and predictability of LASIK or PRK performed in 114 consecutive randomly selected myopic eyes with an astigmatism of greater than 3 D were retrospectively analyzed at the 2- to 6-month follow-up visits. Vector analysis of the cylindrical correction was compared between the treatment groups. A total of 57 eyes receiving PRK and 57 eyes receiving LASIK of 114 refractive surgery candidates were enrolled in the study. No statistically significant difference in efficacy [efficacy index = 0.76 (±0.32) for PRK vs 0.74 (±0.19) for LASIK (P = .82)], safety [safety index = 1.10 (±0.26) for PRK vs 1.01 (±0.17) for LASIK (P = .121)], or predictability [achieved astigmatism PRK- and 54% of LASIK-treated eyes, and PRK- and 89% of LASIK-treated eyes (P = .218)] was demonstrated. Using Alpins vector analysis, the surgically induced astigmatism and difference vector were not significantly different between the surgery methods, whereas the correction index showed a slight and significant advantage of LASIK over PRK (1.25 for PRK and 1.06 for LASIK, P LASIK and PRK are comparably safe, effective, and predictable procedures for excimer laser correction of high astigmatism of greater than 3 D in myopic eyes. Predictability of the correction of the cylindrical component is lower than that of the spherical equivalent. Copyright 2013, SLACK Incorporated.

  18. Photorefractive keratectomy for post-penetrating keratoplasty myopia and astigmatism.

    Science.gov (United States)

    Bilgihan, K; Ozdek, S C; Akata, F; Hasanreisoğlu, B

    2000-11-01

    To determine the safety, effectiveness, and predictability of photorefractive keratectomy (PRK) for the correction of myopia and astigmatism after penetrating keratoplasty. Gazi University, Medical School, Department of Ophthalmology, Ankara, Turkey. Photorefractive keratectomy was performed in 16 eyes of 16 patients with postkeratoplasty myopia and astigmatism who were unable to wear glasses due to anisometropia and were contact lens intolerant. They were examined for uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), and corneal transplant integrity before and after surgery. The mean follow-up after PRK was 26.0 months +/- 15.7 (SD) (range 12 to 63 months). The mean preoperative spherical equivalent refraction of -4.47 +/- 1.39 diopters (D) was -3.39 +/- 1.84 D (P >.05) at the last postoperative visit and the mean preoperative cylinder of -5.62 +/- 2.88 D was -3.23 +/- 1.70 D (P <.05); refractive regression correlated with the amount of ablation performed. The BSCVA decreased in 3 eyes (18.8%), and the UCVA decreased in 2 (12.5%). Six eyes (37.5%) had grade 2 to 3 haze, which resolved spontaneously in 4 eyes within a relatively long time but caused a decrease in BSCVA in 2 (12.5%). Two of the eyes (12.5%) had a rejection episode after PRK and were successfully treated with topical steroids. Photorefractive keratectomy to correct postkeratoplasty myopia and astigmatism appears to be less effective and less predictable than PRK for naturally occurring myopia and astigmatism. Corneal haze and refractive regression are more prevalent, and patient satisfaction is not good.

  19. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  20. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals.

    Science.gov (United States)

    Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng

    2017-08-01

    An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01  nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.

  1. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    Directory of Open Access Journals (Sweden)

    Zhenmin Chen

    2017-09-01

    Full Text Available In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs. To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  2. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode.

    Science.gov (United States)

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-09-30

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  3. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    International Nuclear Information System (INIS)

    Ge, Wenchao; Bhattacharya, M

    2016-01-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity. (paper)

  4. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    Science.gov (United States)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  5. Response of the Higgs amplitude mode of superfluid Bose gases in a three-dimensional optical lattice

    Science.gov (United States)

    Nagao, Kazuma; Takahashi, Yoshiro; Danshita, Ippei

    2018-04-01

    We study the Higgs mode of superfluid Bose gases in a three-dimensional optical lattice, which emerges near the quantum phase transition to the Mott insulator at commensurate fillings. Specifically, we consider responses of the Higgs mode to temporal modulations of the onsite interaction and the hopping energy. In order to calculate the response functions including the effects of quantum and thermal fluctuations, we map the Bose-Hubbard model onto an effective pseudospin-1 model and use a perturbative expansion based on the imaginary-time Green's function theory. We also include the effects of an inhomogeneous trapping potential by means of a local density approximation. We find that the response function for the hopping modulation is equal to that for the interaction modulation within our approximation. At the unit filling rate and in the absence of a trapping potential, we show that the Higgs mode can exist as a sharp resonance peak in the dynamical susceptibilities at typical temperatures. However, the resonance peak is significantly broadened due to the trapping potential when the modulations are applied globally to the entire system. We suggest that the Higgs mode can be detected as a sharp resonance peak by partial modulations around the trap center.

  6. Anisometropia prevalence in a highly astigmatic school-aged population.

    Science.gov (United States)

    Dobson, Velma; Harvey, Erin M; Miller, Joseph M; Clifford-Donaldson, Candice E

    2008-07-01

    To describe prevalence of anisometropia, defined in terms of both sphere and cylinder, examined cross-sectionally, in school-aged members of a Native American tribe with a high prevalence of astigmatism. Cycloplegic autorefraction measurements, confirmed by retinoscopy and, when possible, by subjective refraction were obtained from 1041 Tohono O'odham children, 4 to 13 years of age. Astigmatism > or =1.00 diopter (D) was present in one or both eyes of 462 children (44.4%). Anisometropia > or =1.00 D spherical equivalent (SE) was found in 70 children (6.7%), and anisometropia > or =1.00 D cylinder was found in 156 children (15.0%). Prevalence of anisometropia did not vary significantly with age or gender. Overall prevalence of significant anisometropia was 18.1% for a difference between eyes > or =1.00 D SE or cylinder. Vector analysis of between-eye differences showed a prevalence of significant anisometropia of 25.3% for one type of vector notation (difference between eyes > or =1.00 D for M and/or > or =0.50 D for J0 or J45), and 16.2% for a second type of vector notation (between-eye vector dioptric difference > or =1.41). Prevalence of SE anisometropia is similar to that reported for other school-aged populations. However, prevalence of astigmatic anisometropia is higher than that reported for other school-aged populations.

  7. [Interlamellar sectoral keratoplasty in the surgical correction of astigmatism].

    Science.gov (United States)

    Frolov, M A; Beliaev, V S; Dushin, N V; Kravchinina, V V; Barashkov, V I; Gonchar, P A

    1996-01-01

    A new original method of interlamellar sectorial keratoplasty is proposed for surgical correction of astigmatism. Eleven operations were carried out in 8 patients (11 eyes) with astigmatism of 4 to 7.0 diopters. Vision acuity without correction was 0.6 to 1.0 in 5 patients (7 eyes, 63.6%). In 2 patients (2 eyes, 18.2%) vision acuity without correction was 0.3 to 0.5 diopters, and in 2 more patients (2 eyes, 18.2%) it was from 0.1 to 0.3 diopters, that is, equal to the maximal vision acuity with the optimal correction. The refraction effect stabilized in 3-4 months. The highest refraction effect attained was 7.0 diopters. The patients were followed up for 3 months to 4 years. Clinical analysis of the operations confirmed the efficacy and reliability of the method and stability of refraction. Interlamellar sectorial keratoplasty is recommended for surgical correction of astigmatism.

  8. NASA Laser Communications with Adaptive Optics and Linear Mode Photon Counting, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this effort, the Optical Sciences Company (tOSC) and Raytheon Vision Systems (RVS) will team to provide NASA with a long range laser communications system for...

  9. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  10. Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors

    Science.gov (United States)

    Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel

    1998-06-01

    Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.

  11. Cylindrical integrated optical microresonators: modeling by 3-D vectorial coupled mode theory

    Czech Academy of Sciences Publication Activity Database

    Stoffer, R.; Hiremath, K. R.; Hammer, M.; Prkna, Ladislav; Čtyroký, Jiří

    2005-01-01

    Roč. 256, 1/3 (2005), s. 46-67 ISSN 0030-4018 R&D Projects: GA ČR(CZ) GA102/05/0987 Grant - others:European Commission(XE) IST-2000-28018 NAIS Institutional research plan: CEZ:AV0Z20670512 Keywords : integrated optics * optical waveguide theory * modelling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.456, year: 2005

  12. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    Science.gov (United States)

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  13. Ring resonator optical modes in InGaN/GaN structures grown on micro-cone-patterned sapphire substrates

    Science.gov (United States)

    Kazanov, D. R.; Pozina, G.; Jmerik, V. N.; Shubina, T. V.

    2018-03-01

    Molecular beam epitaxy (MBE) of III-nitride compounds on specially prepared cone-shaped patterned substrates is being actively developed nowadays, especially for nanophotonic applications. This type of substrates enables the successful growth of hexagonal nanorods (NRs). The insertion of an active quantum-sized region of InGaN inside a GaN NR allows us to enhance the rate of optical transitions by coupling them with resonant optical modes in the NR. However, we have observed the enhancement of emission not only from the NR but also around the circumference region of the cone-shaped base. We have studied this specific feature and demonstrated its impact on the output signal.

  14. Multi-mode optical fibers for simultaneous 13-position measurements Thomson scattering apparatus in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nakazawa, Ichiro; Matoba, Tohru; Ogura, Yoshiaki.

    1987-11-01

    The characteristics of fiber bundles for Thomson scattering optics are studied, whose fibers are made of multi-mode optical fibers. The variety of output patterns were observed by weighting on the fiber as well as by bending it after passing a He-Ne laser through a fiber bundle. This variety influenced the matching loss considerably. Then, the effect of former is larger than the latter, which is caused by the micro bending. And also, the spread of pulse width by weighting is connected with the spread of output pattern. The spread of pulse width was about 3ns at the most in a 2.3 m length of fiber bundle. (author)

  15. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-01-01

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  16. THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator

    Science.gov (United States)

    Cosci, Alessandro; Cerminara, Matteo; Nunzi Conti, Gualtiero; Soria, Silvia; Righini, Giancarlo C.; Pelli, Stefano

    2017-01-01

    This study analyzes the capabilities of a LiNbO3 whispering gallery mode microdisc resonator as a potential bolometer detector in the THz range. The resonator is theoretically characterized in the stationary regime by its thermo-optic and thermal coefficients. Considering a Q-factor of 107, a minimum detectable power of 20 μW was evaluated, three orders of magnitude above its noise equivalent power. This value opens up the feasibility of exploiting LiNbO3 disc resonators as sensitive room-temperature detectors in the THz range. PMID:28134857

  17. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    OpenAIRE

    Zhenmin Chen; Xiang Wu; Liying Liu; Lei Xu

    2017-01-01

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the...

  18. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  19. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  20. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    Science.gov (United States)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  1. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    Science.gov (United States)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  2. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes

    Science.gov (United States)

    Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.

    Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  3. Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics.

    Science.gov (United States)

    Fini, John M; Nicholson, Jeffrey W

    2013-08-12

    Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

  4. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  5. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated....... The fabrication was based on electron beam lithography and lift-off processes. The measurements were performed with scattering scanning near-field microscope and allowed the retrieval of both amplitude and phase of the propagating plasmon. The obtained values agree very well with the theoretically predicted ones...

  6. Mode-Locked 1.5 um Semiconductor Optical Fiber Ring

    DEFF Research Database (Denmark)

    Pedersen, Niels Vagn; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product = 0.7) 1.5 um 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental r...

  7. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  8. Time Reversal of Arbitrary Photonic Temporal Modes via Nonlinear Optical Frequency Conversion

    OpenAIRE

    Raymer, Michael G; Reddy, Dileep V; van Enk, Steven J; McKinstrie, Colin J

    2017-01-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is blind reversal of a photon's temporal wave-packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. This scheme allows for quantum operations such as a...

  9. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Science.gov (United States)

    Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger

    2018-01-01

    Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600

  10. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sebastian Schlangen

    2018-04-01

    Full Text Available Long-period fiber gratings (LPGs are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge-doped fused silica fiber cores are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application.

  11. Analysis of the Ocular Refractive State in Fighting Bulls: Astigmatism Prevalence

    Directory of Open Access Journals (Sweden)

    Juan M. Bueno

    2017-01-01

    Full Text Available The purpose of this study was to describe the ocular refractive state (ORS of fighting bulls. The study consisted of 90 ophthalmological healthy animals (85 in post-mortem and 5 in living conditions, resp.. The ORS of the eyes (2 per animal was determined using streak retinoscopy. In vivo animals were assessed at a fighting bull farm facility. Post-mortem measurements were carried out at a local arena. The ORS along the horizontal meridian ranged between −1.00 and +2.50 diopters (D, with a mean of +0.66±0.85 D in post-mortem animals. Values for in vivo conditions were similar (+0.75±0.46 D. Left and right eyes were highly correlated in both sets (p<0.001. A fairly good correlation was also observed when comparing living and post-mortem eyes in the same animals. Anisometropia ≥ 1.00 D was diagnosed in 3 animals. Astigmatism (≥+0.5 D was detected in 93% of the eyes. To our knowledge, the ORS of the fighting bull has been reported for the first time. Although values vary among individuals, all eyes presented a marked astigmatism. Whereas the horizontal meridian was slightly hyperopic, the vertical meridian was always closer to emmetropia. These results represent a starting point to understand the ocular optics of this kind of animals, which might benefit the selection of animals at the farm before being sent to the bullfighting arena.

  12. Study of optical phonon modes of CdS nanoparticles using Raman ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. The reduction in the grain size to nanometer range can bring about radical changes in almost all of the properties of semiconductors. CdS nanoparticles have attracted considerable scientific interest because they exhibit strongly size-dependent optical and electrical properties. In the case of nanostructured ...

  13. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing

    Czech Academy of Sciences Publication Activity Database

    Chen, H.; Tian, F.; Chi, J.; Kaňka, Jiří; Du, H.

    2014-01-01

    Roč. 39, č. 20 (2014), 5822-5825 ISSN 0146-9592 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Fiber optics sensors * Backscattering * Nanomaterials Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  14. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing

    Czech Academy of Sciences Publication Activity Database

    Chen, H.; Tian, F.; Chi, J.; Kaňka, Jiří; Du, H.

    2014-01-01

    Roč. 39, č. 20 (2014), 5822-5825 ISSN 0146-9592 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Fiber optic s sensors * Backscattering * Nanomaterials Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  15. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    Science.gov (United States)

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  16. The quantum dynamics of two qubits inside two distant microcavities connected via a single-mode optical fiber

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Duong, Hai Trieu

    2010-01-01

    For application to studying the transmission of quantum information, also called quantum communication, between two identical qubits placed inside two identical single-mode microcavities connected via a single-mode optical fiber, the time evolution of this system is investigated. In the Markovian approximation, the von Neumann equation for its reduced density matrix contains a completely positive linear operator called the Liouvillian operator describing the decoherence of this system due to its interaction with the environment. By using the Linblad formula for the Liouvillian operator, a system of rate equations can be derived. In the special case of resonance between the energy difference of two states in each qubit and the energy of the fiber mode, the rate equations for the system excited up to the first level are solved in first order approximation with respect to the decoherence constants. It is shown that when there is no decoherence, the perfect quantum state transmission between two qubits can take place if the physical parameters of the system satisfy definite conditions. A possible extension to studying the system excited to high energy states is also discussed

  17. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

    International Nuclear Information System (INIS)

    Ma, Ying; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H.-S.; Wang, Xiaoqian

    2016-01-01

    In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, which can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.

  18. Optical and mode-locking properties of InGaN/GaN based hetero-structures

    International Nuclear Information System (INIS)

    Irshad, A.

    2011-01-01

    Short wavelength pulsed lasers are indispensable for high density and high speed optical data acquisition, storage and transfer applications. Passively mode-locked blue lasers are an attractive alternative for blue laser sources achieved by non-linear frequency conversion techniques. Although over the recent years it has been shown that InGaN/GaN based hetero-structures can be used as potential material for the fabrication of saturable absorbers, passive mode-locking in the blue spectral range has not been realized yet. The main reason for that is the complicated microscopic nature of InGaN/GaN materials and the difficulty to control the dynamics of photo-induced carriers which determine mode-locking properties of the material. In this work, we have characterized different InGaN based hetero-structures as potential saturable absorbers. Three different groups of the samples have been investigated: i) quantum well samples with different numbers of quantum wells grown under optimal conditions; ii)quantum well samples with modified optical properties due to different buffer layer thickness and postgrowth treatment; iii) a multilayered quantum dot sample. The characterized quantum well samples exhibit relatively high optical quality and sufficiently high saturable losses (which can be controlled by alternating a number of the quantum wells). Nevertheless, they have two major disadvantages as saturable absorbers, namely, a very long absorption recovery time (in the order of a few nanoseconds) and a rather high saturation fluence. The long recovery times are not desirable for achieving a stable and self-starting mode-locking without Q-switching. In order to understand the relaxation processes of photo-induced carriers that determine the absorption recovery times of the saturable absorbers, optical properties of the hetero-structures have been extensively studied by using the frequency and time resolved photo-luminescence technique. The obtained data reveal that, directly

  19. Dual-mode optical microscope based on single-pixel imaging

    OpenAIRE

    Rodríguez Jiménez, Angel David; Clemente Pesudo, Pedro Javier; Tajahuerce, Enrique; Lancis Sáez, Jesús

    2016-01-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD...

  20. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    Science.gov (United States)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  1. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    Science.gov (United States)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  2. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    International Nuclear Information System (INIS)

    Palima, D; Tauro, S; Glückstad, J; Lindballe, T B; Kristensen, M V; Stapelfeldt, H; Keiding, S R

    2011-01-01

    Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter-propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show that deviating from using perfectly counter-propagating beams to use oblique beams can improve the axial stability of the traps and improve the axial trapping stiffness. These alternative geometries can be particularly useful for handling larger particles. These results hint at a rich potential for light shaping for optical trapping and manipulation using patterned counter-propagating beams, which still remains to be fully tapped

  3. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  4. Application of semiclassical and geometrical optics theories to resonant modes of a coated sphere.

    Science.gov (United States)

    Bambino, Túlio M; Breitschaft, Ana Maria S; Barbosa, Valmar C; Guimarães, Luiz G

    2003-03-01

    This work deals with some aspects of the resonant scattering of electromagnetic waves by a metallic sphere covered by a dielectric layer, in the weak-absorption approximation. We carry out a geometrical optics treatment of the scattering and develop semiclassical formulas to determine the positions and widths of the system resonances. In addition, we show that the mean lifetime of broad resonances is strongly dependent on the polarization of the incident light.

  5. Multiple mode x-ray ptychography using a lens and a fixed diffuser optic

    International Nuclear Information System (INIS)

    Li, Peng; Batey, Darren J; Rodenburg, John M; Edo, Tega B; Parsons, Aaron D; Rau, Christoph

    2016-01-01

    We employ a novel combination of a Fresnel lens and a diffuser for x-ray ptychography. The setup uses increased flux by enlarging the width of the coherence-defining slits upstream of the experimental station. In the reconstruction algorithm, modal decomposition is used to account for the resulting partial coherence in the beam. We show that if the object has sparse feactures and large areas of flat contrast, the diffuser facilitates a better reconstruction and the extra diversity in the data also allows cleaner separation of the constituent modes in the illumination. The setup also allows a quick, real-time measure of the beam coherence. (paper)

  6. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    DEFF Research Database (Denmark)

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...... results agree well with the simulation results obtained using a transmission line laser model (TLLM) model, Both experiments and numerical simulations show how the RF power and the detuning affect the pulsewidth...

  7. Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field

    Science.gov (United States)

    Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke

    2018-01-01

    We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.

  8. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  9. Comparison of PAM and CAP modulations robustness against mode partition noise in optical links

    Science.gov (United States)

    Stepniak, Grzegorz

    2017-08-01

    Mode partition noise (MPN) of the laser employed at the transmitter can significantly degrade the transmission performance. In the paper, we introduce a simulation model of MPN in vertical cavity surface emitting laser (VCSEL) and simulate transmission of pulse amplitude modulation (PAM) and carrierless amplitude phase (CAP) signals in multimode fiber (MMF) link. By turning off other effects, like relative intensity noise (RIN), we focus solely on the influence of MPN on transmission performance degradation. Robustness of modulation and equalization type against MPN is studied.

  10. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  11. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution

    Science.gov (United States)

    Cea, T.; Castellani, C.; Benfatto, L.

    2016-05-01

    The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude (Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice symmetry, which can be tested in systems such as, e.g., cuprate superconductors.

  12. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Science.gov (United States)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  13. Adaptive Electronic Dispersion Compensator for Chromatic and Polarization-Mode Dispersions in Optical Communication Systems

    OpenAIRE

    Koc Ut-Va

    2005-01-01

    The widely-used LMS algorithm for coefficient updates in adaptive (feedforward/decision-feedback) equalizers is found to be suboptimal for ASE-dominant systems but various coefficient-dithering approaches suffer from slow adaptation rate without guarantee of convergence. In view of the non-Gaussian nature of optical noise after the square-law optoelectronic conversion, we propose to apply the higher-order least-mean 2 th-order (LMN) algorithms resulting in OSNR penalty which is 1.5–2 d...

  14. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    Science.gov (United States)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  15. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    Science.gov (United States)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  16. Strain tuneable whispering gallery mode resonators in the estimation of the elasto-optic parameters of soft materials

    Science.gov (United States)

    Pissadakis, Stavros; Milenko, Karolina; Aluculesei, Alina; Fytas, George

    2016-04-01

    In this manuscript we present the fabrication and characterization of a novel, polymer whispering gallery modes (WGMs) spherical micro-resonator, formed around the waist of an optical fiber taper. Fiber taper with well attached spheroid works as a cord, fixed on two ends enabling strain application to the resonator body. Controllable elastic elongation of the encapsulated fiber taper causes a change in the shape of the spheroid, which modifies the diameter and directional refractive index of the cavity. These changes influence the wavelength position of the WGMs resonances with a linear blue shift up to 0.6 nm, with corresponding strains up to 700Μɛ. The strain induced WGMs shift with respect to resonator diameter and annealing process is presented and analyzed.

  17. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    Science.gov (United States)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  18. Association between anterior corneal astigmatism and posterior corneal astigmatism across age groups: a cross-sectional analysis

    Directory of Open Access Journals (Sweden)

    Vijay Shetty

    2017-11-01

    Full Text Available AIM: To assess the anterior corneal astigmatism(ACAand posterior corneal astigmatism(PCApatterns across various age groups. We also evaluated the association between magnitudes and axes of the ACA and PCA across these age groups. METHODS: The present study was a cross-sectional analysis of clinical data of 381 eyes. We converted the clinical astigmatic notation to vector notation for analysis of ACA and PCA. We estimated the correlation between magnitude and axes of the ACA and PCA in the whole population and in four age groups(5-19, 20-39, 40-59, and ≥ 60y. We used random effects linear regression models for estimating the association between the magnitudes of ACA and PCA.RESULTS: The mean of the magnitude of the ACA(3.59Dand the PCA(0.50Dwas highest in children(5 to 9y. Overall, the magnitude of the ACA ranged from 0D to 10.0 Diopters(Dand the magnitude of the PCA ranged from 0 to 3.5 D. There was a significant correlation between the ACA and the PCA in the younger age group(r=0.85, PP=0.03with each unit increase in the ACA, the increase was the smallest in this age group.CONCLUSION: It will be prudent to measure the both the magnitude and axis of the PCA, particularly in those above 60y rather than rely on rule-of-thumb calculations based on ACA parameters for IOL power calculation.

  19. Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    International Nuclear Information System (INIS)

    Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M; Kuznetsov, Sergei A; Pivtsov, V S

    2005-01-01

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width (∼3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is ∼3.7 THz. (control of laser radiation parameters)

  20. EBT-S 28-GHz, 200-kW, CW, mixed-mode, quasi-optical plasma heating system

    International Nuclear Information System (INIS)

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.; Bates, D.D.; Eason, H.O.

    1984-07-01

    The ELMO Bumpy Torus-Scale (EBT-S) 28-GHz, 200-kW, cw, plasma heating system consists of a gyrotron oscillator, an oversized waveguide two-bend transmission system, and a quasi-optical mixed-mode microwave distribution manifold that feeds microwave power to the 24 plasma loads of the EBT-S fusion experiment. Balancing power to the 24 loads of the EBT-S fusion experiment. Balancing power to the 24 loads was achieved by adjusting the areas at 24 coupling irises. System performance is easily measured using system calorimetry. The distribution manifold mixed-mode power transmission, reflection, and loss coefficients are 89%, 6%, and 5%, respectively. The overall system efficiency (plasma power/gyrotron power) is 80%, but with some modifications to the distribution manifold we believe the ultimate efficiency can approach 90%. The system reliability is outstanding with a world's record 1 x 10 5 kW h of 28-GHz energy delivered to the EBT-S device with well over 1 x 10 3 operating hours

  1. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    Science.gov (United States)

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  2. Adaptive Electronic Dispersion Compensator for Chromatic and Polarization-Mode Dispersions in Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Koc Ut-Va

    2005-01-01

    Full Text Available The widely-used LMS algorithm for coefficient updates in adaptive (feedforward/decision-feedback equalizers is found to be suboptimal for ASE-dominant systems but various coefficient-dithering approaches suffer from slow adaptation rate without guarantee of convergence. In view of the non-Gaussian nature of optical noise after the square-law optoelectronic conversion, we propose to apply the higher-order least-mean 2 th-order (LMN algorithms resulting in OSNR penalty which is 1.5–2 dB less than that of LMS. Furthermore, combined with adjustable slicer threshold control, the proposed equalizer structures are demonstrated through extensive Monte Carlo simulations to achieve better performance.

  3. Design and fabrication of a piezoelectric mode 2 sensor based on optical modulated liquid crystal and spiropyran

    International Nuclear Information System (INIS)

    Chen, Kuan-Ting; Lee, Chih-Kung; Chang, Chin-Kai; Kuo, Hui-Lung

    2011-01-01

    In this paper, we propose an innovative photoelectric material made of a mixture of liquid crystal and spiropyran which can be used to tailor the performance of piezoelectric sensors. The impedance variation of this photoelectric material can be controlled using different ultraviolet (UV) irradiation times. We found that the impedance of the liquid crystal–spiropyran mixture remains stable after the UV irradiation. Results showed that UV irradiation at 180 s resulted in the lowest mixture impedance. It appears that the electrical properties of the mixture have great potential to modulate a piezoelectric system since UV irradiation can be used to tailor the impedance of a photosensitive electrode made of a liquid crystal–spiropyran sensor for PZT (i.e. lead zirconate titanate) modal actuator/sensor applications. The main innovation of this paper is the demonstration of a new approach towards producing a positive and negative bias voltage in different regions of a sensor by using UV illumination for different time periods. A one-dimensional mode 2 sensor for a cantilever beam was designed and tested to verify the validity of this innovative approach. Since UV illumination can be changed in situ or in real time, this research also represents the creation of an optically defined/tailored modal sensor. In the future, a two-dimensional optical modal control could also be obtained using the method demonstrated

  4. Single application on iris localization technology in excimer laser for astigmatism

    Directory of Open Access Journals (Sweden)

    Jun-Hua Hao

    2014-06-01

    Full Text Available AIM:To discuss the single application on iris localization technology in excimer laser for the treatment of astigmatism. METHODS:Totally 203 cases(406 eyesof laser in situ keratomileusis(LASIKin the treatment of compound myopic astigmatism patients were operated from November 2011 to November 2012 in our hospital. They were divided into two groups. One was observation group using iris localization and the other was control group using routine operation. Patients in the observation group of 100 cases(200 eyes, aged 18-43 years old, spherical diopter was -1.25 to -8.75D, astigmatism was -1.0 to -3.25D. In control group, 103 patients(206 eyes, aged 19-44 years old, spherical diopter was -1.75-9.50D, astigmatism was -1.0 to -3.25D. The patients in the observation group before the application of WaveScan aberrometer check for iris image, spherical lens, cylindrical lens and astigmatism axis data operation, only single application of iris location, without using wavefront aberration guided technology, laser cutting patterns for conventional LASIK model, spherical, cylindrical mirror and astigmatism axis data source to preoperative wavefront aberration results. The control group received routine LASIK. It was applicated comprehensive optometry optometry respectively to examine astigmatism and axial, based on the computer analysis during the preoperative, 1wk after the operation, and 6mo. Analysis of using SPSS 17 statistical software, it was independent-sample t test between the two groups of residual astigmatism and astigmatism axis. RESULTS:Postoperative residual astigmatism, the observation group was significantly better than the control group. Astigmatism axial measurement after operation, the observation group was significantly less than that of the control group. Postoperative visual acuity at 6mo, the observation group was better than that of the control group. The difference was statistically significant. CONCLUSION: For patients who cannot

  5. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks

    Directory of Open Access Journals (Sweden)

    Hala Ghali

    2016-05-01

    Full Text Available Whispering Gallery Mode (WGM microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme.

  6. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  7. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  8. Non-geometrical optics investigation of mode conversion in weakly relativistic inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Imre, K.

    1985-06-01

    Electron cyclotron resonance heating of plasmas by waves incident to the fundamental and second harmonic layer is investigated. When the wave propagation is nearly perpendicular to the equilibrium field in a weakly inhomogeneous plasma the standard geometrical optics breaks down and the relativistic corrections become significant at the resonance layer. Unlike the previous studies of this problem, the governing equations are derived from the linearized relativistic Vlasov equation coupled with Maxwell's equations, rather than using the uniform field dispersion relation to construct equations by replacing the refractive index by some spatial differential operations. We employ a boundary layer analysis at the resonance region and match the inner and outer solutions in the usual manner. We obtain not only the full wave solution of the problem, but also the set of physical parameters and their ranges in which the analysis is valid. Although we obtain analytic results for the asymptotic solutions, our analysis usually requires a numerical procedure when the relativistic and/or nonzero parallel refractive index are included

  9. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  10. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  11. Accuracy of the Spot and Plusoptix photoscreeners for detection of astigmatism.

    Science.gov (United States)

    Crescioni, Mabel; Miller, Joseph M; Harvey, Erin M

    2015-10-01

    To evaluate the accuracy of the Spot (V2.0.16) and Plusoptix S12 (ROC4, V6.1.4.0) photoscreeners in detecting astigmatism meeting AAPOS referral criteria in students from a population with high prevalence of astigmatism. Students attending grades 3-8 on the Tohono O'odham reservation were examined. Screening was attempted with both the Spot and Plusoptix photoscreeners. Results were compared to cycloplegic refraction. Screening attempts providing no estimate of refractive error were considered fail/refer. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for detection of refractive errors were determined using AAPOS referral criteria and receiver operating characteristic area under the curve (ROC AUC) analysis was conducted for measures of astigmatism. Agreement between screening and cycloplegic refraction measurements of astigmatism, spherical equivalent, and anisometropia were assessed using t tests and correlation analyses. A total of 209 students were included. Of the total, 116 (55%) met examination-positive criteria based on cycloplegic refraction, with 105 of those (90%) meeting the criterion for astigmatism. Measurements success rates were 97% for Spot and 54% for Plusoptix. Comparing the Spot and the Plusoptix, sensitivity was 96% versus 100%, specificity was 87% versus 61%, PPV was 90% versus 76%, and NPV was 94% versus 100% for detection of refractive error. Both screeners overestimated astigmatism by 1/3 D to 2/3 D. AUC for astigmatism was 0.97 for Spot and 0.83 for Plusoptix. In this highly astigmatic population, the Spot and the Plusoptix had similar sensitivity, but the Spot had better specificity and measurement success rates. Compared with results from study samples with lower rates of astigmatism, our results highlight the need to assess the ability of screening instruments to detect individual types of refractive errors. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus

  12. A genome-wide association study of corneal astigmatism: The CREAM Consortium

    OpenAIRE

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.

    2018-01-01

    Purpose To identify genes and genetic markers associated with corneal astigmatism. Methods: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts we...

  13. A genome-wide association study of corneal astigmatism: The CREAM Consortium

    OpenAIRE

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.

    2018-01-01

    Purpose To identify genes and genetic markers associated with corneal astigmatism. Methods A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts wer...

  14. A genome-wide association study of corneal astigmatism: The CREAM Consortium.

    OpenAIRE

    Shah, Rupal L; Li, Qing; Zhao, Wanting; Tedja, Milly S; Tideman, J Willem L; Khawaja, Anthony P; Fan, Qiao; Yazar, Seyhan; Williams, Katie M; Verhoeven, Virginie J M; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J

    2018-01-01

    Purpose To identify genes and genetic markers associated with corneal astigmatism. Methods A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry...

  15. A genome-wide association study of corneal astigmatism : The CREAM Consortium

    OpenAIRE

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.

    2018-01-01

    Purpose: To identify genes and genetic markers associated with corneal astigmatism. Methods: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohor...

  16. A genome-wide association study of corneal astigmatism:The CREAM consortium

    OpenAIRE

    Shah, Rupal L.; Li, Qing; Zhao, Wanting; Tedja, Milly S.; Tideman, J. Willem L.; Khawaja, Anthony P.; Fan, Qiao; Yazar, Seyhan; Williams, Katie M.; Verhoeven, Virginie J.M.; Xie, Jing; Wang, Ya Xing; Hess, Moritz; Nickels, Stefan; Lackner, Karl J.

    2018-01-01

    Purpose: To identify genes and genetic markers associated with corneal astigmatism. Methods: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohort...

  17. A STUDY ON CORNEAL ASTIGMATISM IN PTERYGIUM CASES BEFORE AND AFTER SURGERY

    Directory of Open Access Journals (Sweden)

    Kalanchiarani S

    2018-02-01

    Full Text Available BACKGROUND Pterygium is a common degenerative condition seen in the Indian subcontinent. One of the indications for pterygium excision is visual impairment due to astigmatism. Several mechanisms have been suggested to explain the induced astigmatism – a pooling of the tear film at the leading edge of the pterygium, b mechanical traction exerted by the pterygium on cornea. Hence this study was done retrospectively to assess the effect of pterygium excision on the induced astigmatism. MATERIALS AND METHODS Records of patients operated for primary ocular pterygium by pterygium excision with primary conjunctival closure/ conjunctival autograft in the age group 18 - 70 years over a 1-year period were analysed retrospectively. Pre-operative and post-operative follow up records of day 1 and 1 st month were analysed for changes in corneal curvature and astigmatism using the recorded Automated Refractometry and Keratometry readings. RESULTS Out of the 44 cases analysed retrospectively as 2 groups – pterygium excision with primary conjunctival closure and pterygium excision with conjunctival autograft, majority of them were found to be females (70%, and between 40 - 50 years (90%. Most of the pterygium cases were found to be nasal, and commonly in the right eye and also that the amount of astigmatism increased with the grading of pterygium (p<.000. The most common type of astigmatism noted was “with the rule” astigmatism (75%. The percentage of “against the rule” and oblique astigmatism were 9% & 15% respectively. The decrease in the mean astigmatism after surgery was found to be statistically significant. The difference in t value between the preoperative and one-month postoperative corneal astigmatism was 2.5 D (p<.018. Steepening of both horizontal and vertical meridian was found in conjunctival autograft cases, but in simple closure cases steepening was found only in the vertical meridian. CONCLUSION To conclude, pterygium leads to a

  18. Changes in falling risk depending on induced axis directions of astigmatism on static posture

    OpenAIRE

    Kim, Sang-Yeob; Moon, Byeong-Yeon; Cho, Hyun Gug

    2015-01-01

    [Purpose] To assess the changes in falling risk depending on the induced axis direction of astigmatism using cylindrical lenses in a static posture. [Subjects and Methods] Twenty subjects (10 males, 10 females; mean age, 23.4 ? 2.70?years) fully corrected by subjective refraction participated. To induce myopic simple astigmatism conditions, cylindrical lenses of +0.50, +1.00, +1.50, +2.00, +3.00, +4.00, and +5.00 D were used. The direction of astigmatic axes were induced under five conditions...

  19. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  20. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  1. Assessment of magneto-optic Faraday effect-based drift on interferometric single-mode fiber optic gyroscope (IFOG) as a function of variable degree of polarization (DOP)

    International Nuclear Information System (INIS)

    Çelikel, Oğuz; Sametoğlu, Ferhat

    2012-01-01

    In this study, a novel interferometric fiber optic gyroscope (IFOG), which has a different depolarizer structure, is designed in TUBITAK UME (National Metrology Institute of Turkey) to experimentally and relatively evaluate the effect of the degree of polarization on the Faraday effect-based drift of the light waves injected into both arms of a Sagnac interferometer. In order to observe whether or not any change occurs in the Faraday-based drift, depending on the variations in degree of polarization (DOP), a triple structure-depolarizer IFOG possessing adjustable DOP is firstly designed and prototyped. The minimum DOP achieved with triple structure-depolarizers is typically 0.15% for both clockwise (CW) and counterclockwise (CCW) light waves at both arms of the Sagnac interferometer. The experimental evaluations about the drift are given for DOP changes extending from 78.00% to 0.15% together with two main and different theoretical approaches in the literature. According to the experimental evaluations given herein, it is experimentally proved that the Faraday-based drift does not change depending on DOP values of both CW and CCW light waves injected into the single-mode (SM) sensing coil and it is impossible to state a concept of a depolarized IFOG by considering the polarization state at the entrance arms of the SM sensing coil. (paper)

  2. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.

    Science.gov (United States)

    Al-Zeraid, Ferial M; Osuagwu, Uchechukwu L

    2016-03-22

    Wavefront-guided Laser-assisted in situ keratomileusis (LASIK) is a widespread and effective surgical treatment for myopia and astigmatic correction but whether it induces higher-order aberrations remains controversial. The study was designed to evaluate the changes in higher-order aberrations after wavefront-guided ablation with IntraLase femtosecond laser in moderate to high astigmatism. Twenty-three eyes of 15 patients with moderate to high astigmatism (mean cylinder, -3.22 ± 0.59 dioptres) aged between 19 and 35 years (mean age, 25.6 ± 4.9 years) were included in this prospective study. Subjects with cylinder ≥ 1.5 and ≤2.75 D were classified as moderate astigmatism while high astigmatism was ≥3.00 D. All patients underwent a femtosecond laser-enabled (150-kHz IntraLase iFS; Abbott Medical Optics Inc) wavefront-guided ablation. Uncorrected (UDVA), corrected (CDVA) distance visual acuity in logMAR, keratometry, central corneal thickness (CCT) and higher-order aberrations (HOAs) over a 6 mm pupil, were assessed before and 6 months, postoperatively. The relationship between postoperative change in HOA and preoperative mean spherical equivalent refraction, mean astigmatism, and postoperative CCT were tested. At the last follow-up, the mean UDVA was increased (P < 0.0001) but CDVA remained unchanged (P = 0.48) and no eyes lost ≥2 lines of CDVA. Mean spherical equivalent refraction was reduced (P < 0.0001) and was within ±0.50 D range in 61% of eyes. The average corneal curvature was flatter by 4 D and CCT was reduced by 83 μm (P < 0.0001, for all), postoperatively. Coma aberrations remained unchanged (P = 0.07) while the change in trefoil (P = 0.047) postoperatively, was not clinically significant. The 4th order HOAs (spherical aberration and secondary astigmatism) and the HOA root mean square (RMS) increased from -0.18 ± 0.07 μm, 0.04 ± 0.03 μm and 0.47 ± 0.11 μm, preoperatively, to 0.33 ± 0

  3. LASIK and PRK in hyperopic astigmatic eyes: is early retreatment advisable?

    Science.gov (United States)

    Frings, Andreas; Richard, Gisbert; Steinberg, Johannes; Druchkiv, Vasyl; Linke, Stephan Johannes; Katz, Toam

    2016-01-01

    To analyze the refractive and keratometric stability in hyperopic astigmatic laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) during the first 6 months after surgery. This retrospective cross-sectional study included 97 hyperopic eyes; 55 were treated with LASIK and 42 with PRK. Excimer ablation for all eyes was performed using the ALLEGRETTO excimer laser platform using a mitomycin C for PRK and a mechanical microkeratome for LASIK. Keratometric and refractive data were analyzed during three consecutive follow-up intervals (6 weeks, 3 months, and 6 months). The corneal topography was obtained using Scheimpflug topography, and subjective refractions were acquired by expert optometrists according to a standardized protocol. After 3 months, mean keratometry and spherical equivalent were stable after LASIK, whereas PRK-treated eyes presented statistically significant (P1 D occurred. The optical zone diameter did not correlate with the development of regression. After corneal laser refractive surgery, keratometric changes are followed by refractive changes and they occur up to 6 months after LASIK and for at least 6 months after PRK, and therefore, caution should be applied when retreatment is planned during the 1st year after surgery because hyperopic refractive regression can lead to suboptimal visual outcome. Keratometric and refractive stability is earlier achieved after LASIK, and therefore, retreatment may be independent of late regression.

  4. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    Directory of Open Access Journals (Sweden)

    Sang-In Baek

    2015-09-01

    Full Text Available Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  5. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    Science.gov (United States)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  6. Excimer laser correction of hyperopia, hyperopic and mixed astigmatism: past, present, and future.

    Science.gov (United States)

    Lukenda, Adrian; Martinović, Zeljka Karaman; Kalauz, Miro

    2012-06-01

    The broad acceptance of "spot scanning" or "flying spot" excimer lasers in the last decade has enabled the domination of corneal ablative laser surgery over other refractive surgical procedures for the correction of hyperopia, hyperopic and mixed astigmatism. This review outlines the most important reasons why the ablative laser correction of hyperopia, hyperopic and mixed astigmatism for many years lagged behind that of myopia. Most of today's scanning laser systems, used in the LASIK and PRK procedures, can safely and effectively perform low, moderate and high hyperopic and hyperopic astigmatic corrections. The introduction of these laser platforms has also significantly improved the long term refractive stability of hyperopic treatments. In the future, further improvements in femtosecond and nanosecond technology, eye-tracker systems, and the development of new customized algorithms, such as the ray-tracing method, could additionally increase the upper limit for the safe and predictable corneal ablative laser correction ofhyperopia, hyperopic and mixed astigmatism.

  7. Transverse stress induced LP 02-LP 21 modal interference of stimulated Raman scattered light in a few-mode optical fiber

    Science.gov (United States)

    Sharma, A.; Posey, R.

    1996-02-01

    Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.

  8. Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam.

    Science.gov (United States)

    Nicolas, F; Coëtmellec, S; Brunel, M; Allano, D; Lebrun, D; Janssen, A J E M

    2005-11-01

    The authors have studied the diffraction pattern produced by a particle field illuminated by an elliptic and astigmatic Gaussian beam. They demonstrate that the bidimensional fractional Fourier transformation is a mathematically suitable tool to analyse the diffraction pattern generated not only by a collimated plane wave [J. Opt. Soc. Am A 19, 1537 (2002)], but also by an elliptic and astigmatic Gaussian beam when two different fractional orders are considered. Simulations and experimental results are presented.

  9. Two-year results of femtosecond assisted LASIK versus PRK for different severity of astigmatism

    OpenAIRE

    Mohammad Miraftab; Hassan Hashemi; Soheila Asgari

    2018-01-01

    Purpose: To compare two-year results of femtosecond laser assisted LASIK (femto-LASIK) and photorefractive keratectomy (PRK) in terms of astigmatism correction in patients with less than 2.0 diopters (D) of spherical error and more than 2.0 D of cylinder error. Methods: In this retrospective study, data were extracted from 100 patient charts. The two study groups were matched by age, gender, and baseline uncorrected distance visual acuity (UDVA) and refractive astigmatism (RA). Preoperativ...

  10. Prevalence of high astigmatism, eyeglass wear, and poor visual acuity among Native American grade school children.

    Science.gov (United States)

    Harvey, Erin M; Dobson, Velma; Miller, Joseph M

    2006-04-01

    The purpose of this study was to examine the prevalence of astigmatism and poor visual acuity and rate of eyeglass wear in grade school children who are members of a Native American tribe reported to have a high prevalence of large amounts of astigmatism. Vision screening was conducted on 1,327 first through eighth grade children attending school on the Tohono O'odham Reservation. Noncycloplegic autorefraction was conducted on the right and left eye of each child using the Nikon Retinomax K+ autorefractor, and monocular recognition acuity was tested using ETDRS logarithm of the minimum angle of resolution (logMAR) letter charts. Tohono O'odham children had a high prevalence of high astigmatism (42% had > or = 1.00 D in the right or left eye) and the axis of astigmatism was uniformly with-the-rule. However, only a small percentage of children arrived at the vision screening wearing glasses, and the prevalence of poor visual acuity (20/40 or worse in either eye) was high (35%). There was a significant relation between amount of astigmatism and uncorrected visual acuity with each additional diopter of astigmatism resulting in an additional 1 logMAR line reduction in visual acuity. Uncorrected astigmatism and poor visual acuity are prevalent among Tohono O'odham children. The results highlight the importance of improving glasses-wearing compliance, determining barriers to receiving eye care, and initiating public education programs regarding the importance of early identification and correction of astigmatism in Tohono O'odham children.

  11. Astigmatism and Amblyopia among Native American Children (AANAC): design and methods.

    Science.gov (United States)

    Miller, J M; Dobson, V M; Harvey, E M; Sherrill, D L

    2000-09-01

    The overall goal of the AANAC study is to improve detection of astigmatism and prevention of amblyopia in populations with a high prevalence of astigmatism. To meet this goal, the study will evaluate four methods of screening for astigmatism in preschool children and will assess both the short-term and long-term benefits of early correction of astigmatism in improving acuity and preventing amblyopia. This paper presents an overview of the design and methodology of the AANAC study. Subjects are members of the Tohono O'Odham Nation, a Native American tribe with a high prevalence of astigmatism. Preschool-age children who attend Head Start are screened with four tools: the Marco Nidek KM-500 autokeratometer, the MTI photoscreener, the Nikon Retinomax K-Plus autorefractor, and the Lea Symbols acuity chart. Sensitivity and specificity for detection of significant astigmatism, as measured by a technique that uses both cycloplegic retinoscopy and cycloplegic autorefraction, is determined for each of the four screening tools. Presence of amblyopia is evaluated by measurement of best-corrected recognition acuity and acuity for orthogonal gratings. Spectacles are provided to all 3-year-old children with > or =2.00 diopters (D) of astigmatism and all 4- and 5-year-old children with > or =1.50 D of astigmatism. Persistence of amblyopia after glasses wearing is evaluated by follow-up measurement of best-corrected recognition acuity and acuity for orthogonal gratings, conducted 2-5 months after glasses are prescribed. Long-term effectiveness of early screening and glasses prescription is evaluated through measurement of recognition acuity in two groups of first-grade children: one group who participated in the Head Start program before the intensive vision screening program was initiated, and a second group who participated in the study's Head Start vision screening program.

  12. Catastrophic optical bulk degradation in high-power single- and multi-mode InGaAs-AlGaAs strained QW lasers: part II

    Science.gov (United States)

    Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary

    2018-03-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor

  13. Correction of High Astigmatism after Penetrating Keratoplasty with Toric Multifocal Intraocular Lens Implantation

    Directory of Open Access Journals (Sweden)

    Raffaele Nuzzi

    2017-07-01

    Full Text Available After penetrating keratoplasty (PK, high astigmatism is often induced, being frequently about 4–6 dpt. According to the entity and typology of astigmatism, different methods of correction can be used. Selective suture removal, relaxing incisions, wedge resections, compression sutures, photorefractive keratectomy, and laser-assisted in situ keratomileusis can reduce corneal astigmatism and ametropia, but meanwhile they can cause a reduction in the corneal integrity and cause an over- or undercorrection. In case of moderate-to-high regular astigmatisms, the authors propose a toric multifocal intraocular lens (IOL implantation to preserve the corneal integrity (especially in PK after herpetic corneal leukoma keratitis. We evaluated a 45-year-old patient who at the age of 30 was subjected to PK in his left eye due to corneal leukoma herpetic keratitis, which led to high astigmatism (7.50 dpt cyl. 5°. The patient was subjected to phacoemulsification and customized toric multifocal IOL implantation in his left eye. The correction of PK-induced residual astigmatism with a toric IOL implantation is an excellent choice but has to be evaluated in relation to patient age, corneal integrity, longevity graft, and surgical risk. It seems to be a well-tolerated therapeutic choice and with good results.

  14. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    Science.gov (United States)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  15. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    Science.gov (United States)

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  16. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    Science.gov (United States)

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-03-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements.

  17. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  18. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  19. Prevalence of corneal astigmatism in Tohono O'odham Native American children 6 months to 8 years of age.

    Science.gov (United States)

    Harvey, Erin M; Dobson, Velma; Miller, Joseph M; Schwiegerling, Jim; Clifford-Donaldson, Candice E; Green, Tina K; Messer, Dawn H

    2011-06-21

    To describe the prevalence of corneal astigmatism in infants and young children who are members of a Native American tribe with a high prevalence of refractive astigmatism. The prevalence of corneal astigmatism was assessed by obtaining infant keratometer (IK4) measurements from 1235 Tohono O'odham children, aged 6 months to 8 years. The prevalence of corneal astigmatism >2.00 D was lower in the 1- to <2-year-old age group when compared with all other age groups, except the 6- to <7-year-old group. The magnitude of mean corneal astigmatism was significantly lower in the 1- to <2-year age group than in the 5- to <6-, 6- to <7-, and 7- to <8-year age groups. Corneal astigmatism was with-the-rule (WTR) in 91.4% of astigmatic children (≥1.00 D). The prevalence and mean amount of corneal astigmatism were higher than reported in non-Native American populations. Mean astigmatism increased from 1.43 D in 1-year-olds to nearly 2.00 D by school age.

  20. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p 3P0 in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 109 (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 106 (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p 3P0 is achieved to be 2.24 parts per 1012 (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min-1; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower

  1. Actinic keratosis in the en-face and slice imaging mode of high-definition optical coherence tomography and comparison with histology.

    Science.gov (United States)

    Maier, T; Braun-Falco, M; Laubender, R P; Ruzicka, T; Berking, C

    2013-01-01

    Optical coherence tomography (OCT) allows real-time, in vivo examination of nonmelanoma skin cancer. An innovative high-definition (HD)-OCT with a horizontal (en-face) and vertical (slice) imaging mode offers additional information in the diagnosis of actinic keratosis (AK) and may potentially replace invasive diagnostic biopsies.  To define the characteristic morphological features of AK by using HD-OCT in the two imaging modes compared with histopathology as gold standard.  In total, 20 AKs were examined by HD-OCT in the en-face and slice imaging modes and characteristic features were described and evaluated in comparison with the histopathological findings. Furthermore, the HD-OCT images of a subgroup of AKs were compared with those of the clinically normal adjacent skin.  The preoperative in vivo diagnostics showed the following features in the en-face imaging mode of HD-OCT: disruption of stratum corneum, architectural disarray, cellular/nuclear polymorphism in the stratum granulosum/stratum spinosum, and bright irregular bundles in the superficial dermis. In the vertical slice imaging mode the following characteristics were found: irregular entrance signal, destruction of layering, white streaks and dots, and grey areas. In contrast, the clinically healthy adjacent skin showed mainly a regular epidermal 'honeycomb' pattern in the en-face mode and distinct layering of the skin in the slice mode.  HD-OCT with both the en-face and slice imaging modes offers additional information in the diagnosis of AK compared with conventional OCT and might enhance the possibility of the noninvasive diagnosis of AK prior to treatment procedures and possibly in the monitoring of noninvasive treatment strategies. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  2. Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking

    International Nuclear Information System (INIS)

    Rosa, Henrique Guimaraes; De Souza, Eunézio A Thoroh; Gomes, José Carlos Viana

    2015-01-01

    This paper presents, for the first time, the successful transfer of exfoliated monolayer graphene flake to the optical fiber end face and alignment to its core. By fabricating and optimizing a polymeric poly(methyl methacrylate) (PMMA) and polyvinyl alcohol (PVA) substrate, it is possible to obtain a contrast of up to 11% for green light illumination, allowing the identification of monolayer graphene flakes that were transferred to optical fiber samples and aligned to its core. With Raman spectroscopy, it is demonstrated that graphene flake completely covers the optical fiber core, and its quality remains unaltered after the transfer. The generation of mode-locked erbium-doped fiber laser pulses, with a duration of 672 fs, with a single-monolayer graphene flake as a saturable absorber, is demonstrated for the first time. This transfer technique is of general applicability and can be used for other two-dimensional (2D) exfoliated materials. (letter)

  3. Thomas Young's contributions to geometrical optics.

    Science.gov (United States)

    Atchison, David A; Charman, W Neil

    2011-07-01

    In addition to his work on physical optics, Thomas Young (1773-1829) made several contributions to geometrical optics, most of which received little recognition in his time or since. We describe and assess some of these contributions: Young's construction (the basis for much of his geometric work), paraxial refraction equations, oblique astigmatism and field curvature, and gradient-index optics. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  4. Preoperative corneal astigmatism among adult patients with cataract in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    Mohammed Isyaku

    2014-01-01

    Full Text Available The prevalence and nature of corneal astigmatism among patients with cataract has not been well-documented in the resident African population. This retrospective study was undertaken to investigate preexisting corneal astigmatism in adult patients with cataract. We analyzed keratometric readings acquired by manual Javal-Schiotz keratometry before surgery between January 1, 2011 and December 31, 2011. There were 3,169 patients (3286 eyes aged between 16 and 110 years involved with a Male to female ratio of 1.4:1. Mean keratometry in diopters was K1 = 43.99 and K2 = 43.80. Mean corneal astigmatism was 1.16 diopter and a majority (45.92% of eyes had astigmatism between 1.00 and 1.99 diopters. Two-thirds of the eyes (66.9% in this study had preoperative corneal astigmatism equal to or above 1.00 diopter. Findings will help local cataract surgeons to estimate the potential demand for toric intraocular lenses.

  5. Comparative study of Epi-LASIK and LASIK for myopic astigmatism

    Directory of Open Access Journals (Sweden)

    Jiao Chen

    2013-11-01

    Full Text Available AIM: To analyze the effects of epipolis laser in situ keratomileusis(Epi-LASIKand laser in situ keratomileusis(LASIKfor treatment of myopic astigmatism. METHODS: For treatment of myopic astigmatism, 32 patients(64 eyestreated by Epi-LASIK and 63 patients(126 eyesreceived LASIK. By their degree of astigmatism, the eyes were divided into Group Ⅰ(-0.25~-2.75DC and Group Ⅱ(-3.0~-5.0DC. During the 6-month follow-up, the early effects of the two operations were observed and compared in terms of uncorrected visual acuity(UCVA, best corrected visual acuity(BCVA, residual astigmatism, corneal healing, intraocular pressure(IOP, corneal topography. RESULTS: In Group Ⅱ, UCVA better than 20/20 was achieved in 87.5% of the eyes subjected to Epi-LASIK and in 63.3% of the eyes subjected to LASIK, with significant difference between them(χ2=4.055, Pt=2.672, Pt=2.234, PCONCLUSION: For treatment of high astigmatism(≥-3.00D, Epi-LASIK is more effective and predictive than LASIK.

  6. Convergence Insufficiency, Accommodative Insufficiency, Visual Symptoms, and Astigmatism in Tohono O'odham Students.

    Science.gov (United States)

    Davis, Amy L; Harvey, Erin M; Twelker, J Daniel; Miller, Joseph M; Leonard-Green, Tina; Campus, Irene

    2016-01-01

    Purpose. To determine rate of convergence insufficiency (CI) and accommodative insufficiency (AI) and assess the relation between CI, AI, visual symptoms, and astigmatism in school-age children. Methods. 3rd-8th-grade students completed the Convergence Insufficiency Symptom Survey (CISS) and binocular vision testing with correction if prescribed. Students were categorized by astigmatism magnitude (no/low: <1.00 D, moderate: 1.00 D to <3.00 D, and high: ≥3.00 D), presence/absence of clinical signs of CI and AI, and presence of symptoms. Analyses determine rate of clinical CI and AI and symptomatic CI and AI and assessed the relation between CI, AI, visual symptoms, and astigmatism. Results. In the sample of 484 students (11.67 ± 1.81 years of age), rate of symptomatic CI was 6.2% and symptomatic AI 18.2%. AI was more common in students with CI than without CI. Students with AI only (p = 0.02) and with CI and AI (p = 0.001) had higher symptom scores than students with neither CI nor AI. Moderate and high astigmats were not at increased risk for CI or AI. Conclusions. With-the-rule astigmats are not at increased risk for CI or AI. High comorbidity rates of CI and AI and higher symptoms scores with AI suggest that research is needed to determine symptomatology specific to CI.

  7. Applicability of supervised discriminant analysis models to analyze astigmatism clinical trial data.

    Science.gov (United States)

    Sedghipour, Mohammad Reza; Sadeghi-Bazargani, Homayoun

    2012-01-01

    In astigmatism clinical trials where more complex measurements are common, especially in nonrandomized small sized clinical trials, there is a demand for the development and application of newer statistical methods. The source data belonged to a project on astigmatism treatment. Data were used regarding a total of 296 eyes undergoing different astigmatism treatment modalities: wavefront-guided photorefractive keratectomy, cross-cylinder photorefractive keratectomy, and monotoric (single) photorefractive keratectomy. Astigmatism analysis was primarily done using the Alpins method. Prior to fitting partial least squares regression discriminant analysis, a preliminary principal component analysis was done for data overview. Through fitting the partial least squares regression discriminant analysis statistical method, various model validity and predictability measures were assessed. The model found the patients treated by the wavefront method to be different from the two other treatments both in baseline and outcome measures. Also, the model found that patients treated with the cross-cylinder method versus the single method didn't appear to be different from each other. This analysis provided an opportunity to compare the three methods while including a substantial number of baseline and outcome variables. Partial least squares regression discriminant analysis had applicability for the statistical analysis of astigmatism clinical trials and it may be used as an adjunct or alternative analysis method in small sized clinical trials.

  8. Influence of different phacoemulsification incision on postoperative corneal astigmatism for cataract patients

    Directory of Open Access Journals (Sweden)

    Zhao-Rong Zeng

    2014-05-01

    Full Text Available AIM: To compare the effect of different phacoemulsification incision on postoperative corneal astigmatism for cataract patients. METHODS: The cataract patients were selected in our hospital. The patients were divided into control group(corneal limbus opposite curved scleral tunnel incision groupand observation group(above the top of cornea or temporal transparent corneal incision grouprandomly. At 1wk; 1 and 3mo after surgery, the change of corneal astigmatism and vision of the patients in two groups were compared and analyzed. RESULTS:Compared with control group, 1wk; 1 and 3mo after surgery, the average corneal astigmatism and surgically induced corneal astigmatism of the patients in observation group were decreased significantly. The visual acuity and corrected visual acuity were increased significantly. There was statistically significant(PPCONCLUSION: Center distance and small incision corneal phacoemulsification can reduce postoperative astigmatism and improve postoperative visual acuity for cataract patients. It provides guarantee for further strengthen the clinical treated effect for cataract patients.

  9. Model for a Torsional-Mode Ultrasonic Transducer for an Acousto-Optic In-Fiber Isolator

    Directory of Open Access Journals (Sweden)

    Gerald T. Moore

    2010-01-01

    torsional modes in a cylindrical fiber. This model predicts that almost all of the power applied to the transducer is radiated into the desired mode. The paper also discusses effects produced by acoustic absorption and the dependence of the acoustic velocity on temperature.

  10. Active optics: off axis aspherics generation for high contrast imaging

    Science.gov (United States)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism

  11. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  12. Application of the device based on chirping of optical impulses for management of software-defined networks in dynamic mode

    Science.gov (United States)

    Vinogradova, Irina L.; Khasansin, Vadim R.; Andrianova, Anna V.; Yantilina, Liliya Z.; Vinogradov, Sergey L.

    2016-03-01

    The analysis of the influence of the physical layer concepts in optical networks on the performance of the whole network. It is concluded that the relevance of the search for new means of transmitting information on a physical level. It is proposed to use an optical chirp overhead transmission between controllers SDN. This article is devoted to research of a creation opportunity of optical neural switchboards controlled in addition by submitted optical radiation. It is supposed, that the managing radiation changes a parameter of refraction of optical environment of the device, and with it and length of a wave of information radiation. For the control by last is used multibeam interferometer. The brief estimation of technical aspects of construction of the device is carried out. The principle of using the device to an extensive network. Simulation of network performance parameters.

  13. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    Science.gov (United States)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  14. Clinical research on keratoconus and subclinical keratoconus in patients with astigmatism examined by Pentacam

    Directory of Open Access Journals (Sweden)

    Yang An

    2016-03-01

    Full Text Available AIM: To study the keratoconus(KCNand subclinical KCN in patients with astigmatism ≥2D by Pentacam anterior segment analyzer. METHODS: Two hundred and one eyes in 107 patients with astigmatism ≥2D were included in this study. All patients underwent optometry, visual acuity, corrected visual acuity, slit lamp biomicroscopy, fundus examination, traditional corneal topography and examination with Pentacam. Changes of several parameters were observed including K1(horizontal central curvature within the scope with diameter of 3mm, K2(vertical central curvature within the scope with diameter of 3mm; Kmax(the maximum anterior corneal refractive power, corneal astigmatism(CYL, MinPachy(the thickness at the thinnest area of cornea, index of surface variation(ISV, index of vertical asymmetry(IVA, keratoconus index(KI, height of anterior corneal surface(AEand height of posterior corneal surface(PE, etc. ROC curve was made. Cutoff value and the sensitive index of each group were compared. Mann-Whitney U test was used for analysis of several parameters obtained from Pentacam. ROC curve was analyzed to determine the best diagnosis cutoff value. RESULTS: Mean age of the study population was 25.7±6.6 years old. Kmax, IVA, KI, AE and PE of the clinical and subclinical group were significantly higher than those of the astigmatism group, while the thickness at the thinnest area of cornea in clinical and subclinical group was lower than that of the astigmatism group(PCONCLUSION: The current study shows that subjects with 2D or more of astigmatism, even some of them have normal vision, should undergo corneal topography screening. Pentacam may provide more accurate information about anterior and posterior corneal anatomy especially for the height of posterior corneal surface, which plays an important role in screening of subclinical KCN.

  15. Astigmatism and myopia in Tohono O'odham Native American children.

    Science.gov (United States)

    Twelker, J Daniel; Miller, Joseph M; Sherrill, Duane L; Harvey, Erin M

    2013-11-01

    To describe change in spherical equivalent (M) in a longitudinal sample of Tohono O'odham students ages 3 to 18 years and to test the hypothesis that astigmatism creates complex cues to emmetropization, resulting in increased change in M in the direction of increasing myopia and increased occurrence of myopia. Subjects were 777 Tohono O'odham Native American children on whom cycloplegic right eye autorefraction was measured on at least two study encounters between ages 3 and 18 years (first encounter prior to age 5.5 years, final encounter ≥3 years later). Regression lines were fit to individual subjects' longitudinal M data to estimate rate of change in M (regression slope, D/yr). Regression was also used to predict if a subject would be myopic (≤-0.75 D M) by age 18 years. Analysis of covariance was used to assess the relation between M slope and magnitude of baseline M and astigmatism. Chi-square analyses were used to assess the relation between predicted myopia onset and magnitude of baseline M and astigmatism. Mean M slope was significantly more negative for hyperopes (M ≥ +2.00) than for myopes (M ≤ -0.75) or for subjects neither hyperopic nor myopic (NHM, M > -0.75 and < +2.00), but there was no significant difference between the myopic and NHM groups. Chi-square analysis indicated that final myopia status varied across level of baseline astigmatism. Subjects with high astigmatism were more likely to be predicted to have significant myopia by age 18 years. The association between greater shift in M towards myopia with age in subjects who were hyperopic at baseline is consistent with continued emmetropization in the school years. Results regarding predicted myopia development imply that degradation of image quality due to refractive astigmatism creates complex cues to emmetropization, resulting in increased occurrence of myopia.

  16. Applicability of supervised discriminant analysis models to analyze astigmatism clinical trial data

    Directory of Open Access Journals (Sweden)

    Sedghipour MR

    2012-09-01

    Full Text Available Mohammad Reza Sedghipour,1 Homayoun Sadeghi-Bazargani2,31Nikoukari Ophthalmology University Hospital, Tabriz, Iran; 2Department of Statistics and Epidemiology, Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 3Department of Public Health Sciences, Karolinska Institute, Stockholm, SwedenBackground: In astigmatism clinical trials where more complex measurements are common, especially in nonrandomized small sized clinical trials, there is a demand for the development and application of newer statistical methods.Methods: The source data belonged to a project on astigmatism treatment. Data were used regarding a total of 296 eyes undergoing different astigmatism treatment modalities: wavefront-guided photorefractive keratectomy, cross-cylinder photorefractive keratectomy, and monotoric (single photorefractive keratectomy. Astigmatism analysis was primarily done using the Alpins method. Prior to fitting partial least squares regression discriminant analysis, a preliminary principal component analysis was done for data overview. Through fitting the partial least squares regression discriminant analysis statistical method, various model validity and predictability measures were assessed.Results: The model found the patients treated by the wavefront method to be different from the two other treatments both in baseline and outcome measures. Also, the model found that patients treated with the cross-cylinder method versus the single method didn't appear to be different from each other. This analysis provided an opportunity to compare the three methods while including a substantial number of baseline and outcome variables.Conclusion: Partial least squares regression discriminant analysis had applicability for the statistical analysis of astigmatism clinical trials and it may be used as an adjunct or alternative analysis method in small sized clinical trials.Keywords: astigmatism, regression, partial least squares regression

  17. Sequential selective same-day suture removal in the management of post-keratoplasty astigmatism.

    Science.gov (United States)

    Fares, U; Mokashi, A A; Elalfy, M S; Dua, H S

    2013-09-01

    In a previous study, we proposed that corneal topography performed 30-40 min after the initial suture removal can identify the next set of sutures requiring removal, for the treatment of post-keratoplasty astigmatism. The aim of this study was to evaluate the effect of removing subsequent sets of sutures at the same sitting. 10/0 nylon interrupted sutures were placed, to secure the graft-host junction, at the time of keratoplasty. Topography was performed using Pentacam (Oculus) before suture removal. The sutures to be removed in the steep semi-meridians were identified and removed at the slit-lamp biomicroscope. Topography was repeated 30-40 min post suture removal, the new steep semi-meridians determined, and the next set of sutures to be removed were identified and removed accordingly. Topography was repeated 4-6 weeks later and the magnitude of topographic astigmatism was recorded. A paired-samples t-test was used to evaluate the impact of selective suture removal on reducing the magnitude of topographic and refractive astigmatism. Twenty eyes of 20 patients underwent sequential selective same-day suture removal (SSSS) after corneal transplantation. This study showed that the topographic astigmatism decreased by about 46.7% (3.68 D) and the refractive astigmatism decreased by about 37.7% (2.61 D) following SSSS. Vector calculations also show a significant reduction of both topographic and refractive astigmatism (P<0.001). SSSS may help patients to achieve satisfactory vision more quickly and reduce the number of follow-up visits required post keratoplasty.

  18. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  19. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    Science.gov (United States)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  20. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  1. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  2. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  3. 2-μm optical time domain reflectometry measurements from novel Al-, Ge-, CaAlSi- doped and standard single-mode fibers

    Science.gov (United States)

    Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.

    2017-08-01

    The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.

  4. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  5. [Clinical analysis of real-time iris recognition guided LASIK with femtosecond laser flap creation for myopic astigmatism].

    Science.gov (United States)

    Jie, Li-ming; Wang, Qian; Zheng, Lin

    2013-08-01

    To assess the safety, efficacy, stability and changes in cylindrical degree and axis after real-time iris recognition guided LASIK with femtosecond laser flap creation for the correction of myopic astigmatism. Retrospective case series. This observational case study comprised 136 patients (249 eyes) with myopic astigmatism in a 6-month trial. Patients were divided into 3 groups according to the pre-operative cylindrical degree: Group 1, -0.75 to -1.25 D, 106 eyes;Group 2, -1.50 to -2.25 D, 89 eyes and Group 3, -2.50 to -5.00 D, 54 eyes. They were also grouped by pre-operative astigmatism axis:Group A, with the rule astigmatism (WTRA), 156 eyes; Group B, against the rule astigmatism (ATRA), 64 eyes;Group C, oblique axis astigmatism, 29 eyes. After femtosecond laser flap created, real-time iris recognized excimer ablation was performed. The naked visual acuity, the best-corrected visual acuity, the degree and axis of astigmatism were analyzed and compared at 1, 3 and 6 months postoperatively. Static iris recognition detected that eye cyclotorsional misalignment was 2.37° ± 2.16°, dynamic iris recognition detected that the intraoperative cyclotorsional misalignment range was 0-4.3°. Six months after operation, the naked visual acuity was 0.5 or better in 100% cases. No eye lost ≥ 1 line of best spectacle-corrected visual acuity (BSCVA). Six months after operation, the naked vision of 227 eyes surpassed the BSCVA, and 87 eyes gained 1 line of BSCVA. The degree of astigmatism decreased from (-1.72 ± 0.77) D (pre-operation) to (-0.29 ± 0.25) D (post-operation). Six months after operation, WTRA from 157 eyes (pre-operation) decreased to 43 eyes (post-operation), ATRA from 63 eyes (pre-operation) decreased to 28 eyes (post-operation), oblique astigmatism increased from 29 eyes to 34 eyes and 144 eyes became non-astigmatism. The real-time iris recognition guided LASIK with femtosecond laser flap creation can compensate deviation from eye cyclotorsion, decrease

  6. Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010

    Directory of Open Access Journals (Sweden)

    S. Itahashi

    2012-03-01

    Full Text Available Anthropogenic SO2 emissions increased alongside economic development in China at a rate of 12.7% yr−1 from 2000 to 2005. However, under new Chinese government policy, SO2 emissions declined by 3.9% yr−1 between 2005 and 2009. Between 2000 and 2010, we found that the variability in the fine-mode (submicron aerosol optical depth (AOD over the oceans adjacent to East Asia increased by 3–8% yr−1 to a peak around 2005–2006 and subsequently decreased by 2–7% yr−1, based on observations by the Moderate Resolution Imaging Spectroradiometer (MODIS on board NASA's Terra satellite and simulations by a chemical transport model. This trend is consistent with ground-based observations of aerosol particles at a mountainous background observation site in central Japan. These fluctuations in SO2 emission intensity and fine-mode AOD are thought to reflect the widespread installation of fuel-gas desulfurization (FGD devices in power plants in China, because aerosol sulfate is a major determinant of the fine-mode AOD in East Asia. Using a chemical transport model, we confirmed that the contribution of particulate sulfate to the fine-mode AOD is more than 70% of the annual mean and that the abovementioned fluctuation in fine-mode AOD is caused mainly by changes in SO2 emission rather than by other factors such as varying meteorological conditions in East Asia. A strong correlation was also found between satellite-retrieved SO2 vertical column density and bottom-up SO2 emissions, both of which were also consistent with observed fine-mode AOD trends. We propose a simplified approach for evaluating changes in SO2 emissions in China, combining the use of modeled sensitivity coefficients that describe the variation of fine-mode AOD with changes in SO2 emissions and satellite retrieval. Satellite measurements of fine-mode AOD

  7. Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser

    Science.gov (United States)

    Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.

    2018-03-01

    Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.

  8. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  9. Two-year results of femtosecond assisted LASIK versus PRK for different severity of astigmatism

    Directory of Open Access Journals (Sweden)

    Mohammad Miraftab

    2018-03-01

    Conclusions: Our results pointed to better two-year results with femto-LASIK in the treatment of different degrees of astigmatism. UDVA improvement was superior with femto-LASIK, but the two methods did not significantly differ in terms of CDVA improvement.

  10. Vision of low astigmats through thick and thin lathe-cut soft contact lenses.

    Science.gov (United States)

    Cho, P; Woo, G C

    2001-01-01

    Distance and near visual acuity of 13 low astigmats were determined in a double-masked experiment through thick and thin (centre thickness 0.12 mm and 0.06 mm, respectively) spherical lathe-cut soft lenses. For each lens type, distance and near LogMAR VA and over-refraction were assessed with different logMAR VA charts. For 70% of the subjects, the residual astigmatism was significantly lower than the refractive astigmatism with thicker lenses. No statistically significant differences in the distance and near logMAR VA was found between the two lens types using any of the charts used, though, in general, logMAR VA obtained through the thicker lens was better than logMAR VA through the thinner lens. The variabilities in distance and near logMAR VA between the two lens types increased with decreased contrast. The variabilities in distance logMAR VA were greater with Chinese charts than with English charts, and LogMAR VA with Chinese charts were significantly worse for both lens types. Based on the results of this study, we concluded that thicker spherical lathe-cut soft lenses provide better vision in low astigmats. The Snellen acuity test is inadequate for vision assessment of soft contact lens wearers. When a patient wearing thin soft contact lenses complains of poor vision in spite of 6/6 or 6/5 Snellen acuity, changing to thicker lenses may be considered.

  11. Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam

    NARCIS (Netherlands)

    Nicolas, F.; Coëtmellec, S.; Brunel, M.; Allano, D.; Lebrun, D.; Janssen, A.J.E.M.

    2005-01-01

    The authors have studied the diffraction pattern produced by a particle field illuminated by an elliptic and astigmatic Gaussian beam. They demonstrate that the bidimensional fractional Fourier transformation is a mathematically suitable tool to analyse the diffraction pattern generated not only by

  12. Astigmatism treatment during phacoemulsification: a review of current surgical strategies and their rationale

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-12-01

    Full Text Available Preexisting corneal astigmatism, present at the time of cataract surgery, is reviewed in detail throughout this article on its most important aspects such as occurrence rates, clinical relevance and current treatment options. Special emphasis is given to the latter aspect. Each method's rationale, advantage and limitation ishigh lightened. Comparisons between treatment options, whenever possible, are also provided.

  13. Unilateral Posterior Polymorphous Corneal Dystrophy Presented as Anisometropic Astigmatism: 3 Case Reports

    Directory of Open Access Journals (Sweden)

    Hyun Sun Jeon

    2017-04-01

    Full Text Available Background: Posterior polymorphous corneal dystrophy (PPCD is typically considered bilateral and asymptomatic. However, few case reports on patients with unilateral PPCD with asymmetric refractive error have mentioned anisometropic amblyopia development. In support of this, we report 3 cases of unilateral PPCD that presented as anisometropic astigmatism. Visual prognosis related to amblyopia development is discussed. Case Presentation: All 3 patients had a band lesion in the affected eye and a difference of at least 1.5 diopters in cylindrical refractive error between their eyes. The affected eye had a greater amount of astigmatism in all cases. Two patients (Cases 1 and 2 also had amblyopia in the affected eye. Case 1 was a 25-year-old male with a unilateral PPCD diagnosis and a band lesion involving the visual axis. Case 2 was an 11-year-old boy diagnosed with unilateral PPCD. The boy was treated with occlusion and atropine therapy over a 2-year period. Case 3 was a 4-year-old girl diagnosed with unilateral PPCD. The girl had a 30-month history of corrective spectacle use and had no amblyopia. In all cases, the corneal endothelial cell count was lower in the affected eye than in the unaffected contralateral eye. Conclusions: Practitioners should closely monitor patients with unilateral PPCD for astigmatic anisometropia and amblyopia development. Visual prognosis for patients with unilateral PPCD may be related to lesion position, age at diagnosis, astigmatism severity, and early-childhood corrective spectacle use.

  14. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    Science.gov (United States)

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  15. Demonstration of Single-Mode Multicore Fiber Transport Network with Crosstalk-Aware In-Service Optical Path Control

    DEFF Research Database (Denmark)

    Tanaka, Takafumi; Pulverer, Klaus; Häbel, Ulrich

    2017-01-01

    transport network testbed and demonstrate an XT-aware traffic engineering scenario. With the help of a software-defined network (SDN) controller, the modulation format and optical path route are adaptively changed based on the monitored XT values by using programmable devices such as a real-time transponder......-capacity transmission, because inter-core crosstalk (XT) could be the main limiting factor for MCF transmission. In a real MCF network, the inter-core XT in a particular core is likely to change continuously as the optical paths in the adjacent cores are dynamically assigned to match the dynamic nature of the data...

  16. Optical Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in Ge2Sb2Te5 Bridged Metallodielectric Dimers

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Karabiyik, Mustafa; Pala, Nezih

    2017-02-01

    Capacitive coupling and direct shuttling of charges in nanoscale plasmonic components across a dielectric spacer and through a conductive junction lead to excitation of significantly different dipolar and charge transfer plasmon (CTP) resonances, respectively. Here, we demonstrate the excitation of dipolar and CTP resonant modes in metallic nanodimers bridged by phase-change material (PCM) sections, material and electrical characteristics of which can be controlled by external stimuli. Ultrafast switching (in the range of a few nanoseconds) between amorphous and crystalline phases of the PCM section (here Ge2Sb2Te5 (GST)) allows for designing a tunable plasmonic switch for optical communication applications with significant modulation depth (up to 88%). Judiciously selecting the geometrical parameters and taking advantage of the electrical properties of the amorphous phase of the GST section we adjusted the extinction peak of the dipolar mode at the telecommunication band (λ~1.55 μm), which is considered as the OFF state. Changing the GST phase to crystalline via optical heating allows for direct transfer of charges through the junction between nanodisks and formation of a distinct CTP peak at longer wavelengths (λ~1.85 μm) far from the telecommunication wavelength, which constitutes the ON state.

  17. Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(1 1 1) trilayers

    International Nuclear Information System (INIS)

    Clavero, C.; Cebollada, A.; Armelles, G.; Fruchart, O.

    2010-01-01

    The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(1 1 1) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(1 1 0) buffer layer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(1 1 1) interface, a close-to layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower (≤5mT). The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior.

  18. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  19. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  20. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  1. ANALYSIS OF CORNEAL ASTIGMATISM BEFORE AND AFTER PTERYGIUM SURGERY- A PROSPECTIVE STUDY IN PATIENTS ATTENDING KIMS, HUBLI

    Directory of Open Access Journals (Sweden)

    Y. B. Bajantri

    2017-10-01

    Full Text Available BACKGROUND Pterygium is a very common degenerative condition seen in Indian subcontinent. It is a wing-shaped fibrovascular encroaching up on the cornea from either sides. The prevalence rate is 5.2%. Pterygium is known to affect refractive astigmatism. The induced astigmatism may become significant to cause visual distortion, even though the pterygium remains distant from visual axis induced astigmatism maybe either “with-the-rule” or “against-the-rule.” The aim of the study is to- 1. Compare preoperative with postoperative astigmatism in case of pterygium. 2. Assess the amount of astigmatism in case of pterygia of different lengths measured from the limbus over the cornea. MATERIALS AND METHODS The study included 70 eyes of 70 patients with primary pterygium. Preoperative evaluation included pterygium size, visual acuity, keratometry and refraction with subjective correction. Patients included in the study were divided into three groups based on length of pterygium encroaching on cornea (1 to 2 mm, 2 to 3 mm, >3 mm. Each eye underwent bare sclera pterygium excision. Postoperative visual acuity, keratometry and refraction were evaluated on 1st day, at the end of 1st week, 4 th week and 9th week. The pre and postoperative results were compared and analysed. RESULTS An average of all 70 cases with mean pterygium length 3.2 mm had a mean keratometry astigmatism of 1.84 ± 0.89D preoperatively and 0.514 ± 0.52D postoperatively indicating a reduction of pterygium-induced corneal astigmatism by 1.45 ± 0.77D (p value <0.0001, which was statistically significant. CONCLUSION Pterygium-induced corneal astigmatism is directly proportional to the size of the pterygium. Thus, early surgical excision reduces the corneal astigmatism, and hence, improves the visual acuity.

  2. Intrastromal Corneal Ring Segments for Astigmatism Correction after Deep Anterior Lamellar Keratoplasty

    Directory of Open Access Journals (Sweden)

    Júlio C. D. Arantes

    2017-01-01

    Full Text Available Background. To evaluate the change in corneal astigmatism after intrastromal corneal ring segment (ICRS implantation in keratoconus patients with previous deep anterior lamellar keratoplasty (DALK. Design was a longitudinal, retrospective, interventional study. The study included 25 eyes of 24 patients with keratoconus who had DALK performed at least two years prior to ICRS implantation. All patients had a clear corneal graft with up to 8.00 D of corneal astigmatism and intolerance to contact lenses. The studied parameters were age, sex, corrected distance visual acuity (CDVA, maximum keratometry (K1, minimum keratometry (K2, spherical equivalent, and astigmatism. There was a statistically significant decrease in the postintervention analysis as follows: 3.5 D reduction in K1 (p<0.001; 1.53 D in K2 (p=0.005; and 2.52 D (p<0.001 in the average K. The spherical equivalent reduced from −3.67 D (±2.74 to −0.71 D (±2.35 (p<0.001. The topographic astigmatism reduced from 3.87 D preoperatively to 1.90 D postoperatively (p<0.001. The CDVA improved from 0.33 (±0.10 to 0.20 (±0.09, p<0.001. ICRS implantation is a useful option for the correction of astigmatism after DALK as it yields significant visual, topographic, and refractive results.

  3. Design, fabrication and characterisation of nano-imprinted single mode waveguide structures for intra-chip optical communications

    NARCIS (Netherlands)

    Justice, J.; Khan, U.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    In the Information and Communications Technology (ICT) sector, the demands on bandwidth continually grow due to increased microprocessor performance and the need to access ever increasing amounts of stored data. The introduction of optical data transmission (e.g. glass fiber) to replace electronic

  4. A 250-Mbit/s ring local computer network using 1.3-microns single-mode optical fibers

    Science.gov (United States)

    Eng, S. T.; Tell, R.; Andersson, T.; Eng, B.

    1985-01-01

    A 250-Mbit/s three-station fiber-optic ring local computer network was built and successfully demonstrated. A conventional token protocol was employed for bus arbitration to maximize the bus efficiency under high loading conditions, and a non-return-to-zero (NRS) data encoding format was selected for simplicity and maximum utilization of the ECL-circuit bandwidth.

  5. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    Science.gov (United States)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  6. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign

    Directory of Open Access Journals (Sweden)

    C. L. Ryder

    2013-01-01

    Full Text Available New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff > 12 μm, or dvc > 25 μm were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration.

    Single Scattering Albed (SSA values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have

  7. Submicrosecond electro-optic switching in the liquid-crystal smectic A phase: The soft-mode ferroelectric effect

    Science.gov (United States)

    Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.

    1987-08-01

    A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.

  8. Topography-guided treatment of irregular astigmatism with the wavelight excimer laser.

    Science.gov (United States)

    Jankov, Mirko R; Panagopoulou, Sophia I; Tsiklis, Nikolaos S; Hajitanasis, Georgos C; Aslanides, loannis M; Pallikaris, loannis G

    2006-04-01

    To evaluate the feasibility, safety, and predictability of correcting high irregular astigmatism in symptomatic eyes with the use of topography-guided photoablation. In a prospective, non-comparative case series, 16 consecutive symptomatic eyes of 11 patients with small hyperopic and myopic excimer laser optical zones, decentered and irregular ablation after corneal graft, and corneal scars were operated. Uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest and cycloplegic refraction, and corneal topography, with asphericity and regularity, were analyzed. LASIK (n = 10) and photorefractive keratectomy (n = 6) were performed using the ALLEGRETTO WAVE excimer laser and T-CAT software (Topography-guided Customized Ablation Treatment; WaveLight Laser Technologie AG, Erlangen, Germany). In the LASIK group, UCVA improved from 0.81 +/- 0.68 IogMAR (20/130) (range: 0.2 to 2.0) to 0.29 +/- 0.21 logMAR (20/39) (range: 0.1 to 0.7) at 6 months. In the PRK group, mean UCVA improved from 0.89 +/- 0.87 IogMAR (20/157) (range: 0.1 to 2.0) to 0.42 +/- 0.35 logMAR (20/53) (range: 0.1 to 1.0) at 6 months. Best spectacle-corrected visual acuity did not change significantly in either group. One PRK patient lost one line of BSCVA. Refractive cylinder for the LASIK group improved from -2.53 +/- 1.71 diopters (D) (range: -0.75 to -5.75 D) to -1.28 +/- 0.99 D (range: 0 to -2.50 D) at 6 months. Refractive cylinder in the PRK group improved from -2.21 +/- 2.11 D (range: -0.25 to -5.50 D) to -1.10 +/- 0.42 D (range: -0.50 to -1.50 D). Index of surface irregularity showed a decrease from 60 +/- 12 (range: 46 to 89) to 50 +/- 9 (range: 32 to 63) at 6 months in the LASIK group whereas no significant change was noted in the PRK group. Subjective symptoms, such as glare, halos, ghost images, starbursts, and monocular diplopia, were not present postoperatively. Topography-guided LASIK and PRK resulted in a significant reduction of refractive cylinder and

  9. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing

    Directory of Open Access Journals (Sweden)

    Fanyongjing Wang

    2015-07-01

    Full Text Available Whispering Gallery Mode (WGM optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol (PEG can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.

  10. The effect of irradiation temperature on the optical attenuation recovery in heavily Ge-doped single mode silica core fibers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Mabrouk, M.A.; Ferrari, A.; Serra, A.; Viezzoli, G.

    1992-01-01

    The behaviour under irradiation of a single mode fiber heavily doped with germanium has been investigated at 0.85 μm and 1.3 μm under different irradiation temperatures in the range from -65degC to 60degC. The time behaviour of the recovery of the induced attenuation has been described using empirical equations, for different temperatures. An nth order kinetics seems appropriate to describe the results and the order of kinetics has been determined at different temperatures. (orig.)

  11. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Science.gov (United States)

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  12. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    Science.gov (United States)

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  13. Analysis of Corneal Astigmatism with NIDEK Axial Length Scan in ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... AL‑scan optical biometric device in healthy cataract patients. Patients and Methods. In this retrospective study, patient datasets were acquired between March 1, 2014 and April 15, 2016, at the. Department of Ophthalmology, Afyon Kocatepe University. The Bursa Yüksek Ihtisas Hospital's Ethics Committee.

  14. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...... is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz...... topologies that can be used for the implementation of photonic integrated sub-THz CW generation....

  15. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  16. Accounting for the Complex Surface Structure in Ellipsometric Studies of the Effects of Magnetron Sputtering Modes on the Growth and Optical Properties of In2O3 Films

    Science.gov (United States)

    Tikhii, A. A.; Nikolaenko, Yu. M.; Gritskih, V. A.; Svyrydova, K. A.; Murga, V. V.; Zhikhareva, Yu. I.; Zhikharev, I. V.

    2018-03-01

    The efficiency of invoking additional information on optical transmission in solving the inverse problem of ellipsometry by a minimization method is demonstrated in practice for In2O3 fi doped and nondoped with Sn on Al2O3 (012) substrates. This approach allows the thickness and refractive index of thin films with rough surfaces to be uniquely determined. Solutions of the inverse problem in the framework of one-, two-, and multilayer models are compared. The last provides the best description of the experimental data and the correct parameters of the samples. The dependences of the investigated properties of films produced with different magnetron sputtering modes are found using the above methods and models and do not contradict general concepts about the film formation by this material.

  17. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  18. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-01-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz −1 and −6.98 pm με −1 , respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers. (paper)

  19. Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber

    International Nuclear Information System (INIS)

    Tortech, B.; Ouerdane, Y.; Boukenter, A.; Meunier, J. P.; Girard, S.; Van Uffelen, M.; Berghmans, F.; Regnier, E.; Berghmans, F.; Thienpont, H.

    2009-01-01

    Near UV-visible absorption coefficients of an erbium-doped optical fiber were investigated through an original technique based on a transverse cw UV-laser irradiation operating at 244 nm. Such irradiation leads to the generation of a quite intense guided luminescence signal in near UV spectral range. This photoluminescence probe source combined with a longitudinal translation of the fiber sample (at a constant velocity) along the UV-laser irradiation, presents several major advantages: (i) we bypass and avoid the procedures classically used to study the radiation induced attenuation which are not adapted to our case mainly because the samples present a very strong absorption with significant difficulties due to the injection of adequate UV-light levels in a small fiber diameter: (ii) the influence of the laser irradiation on the host matrix of the optical fiber is directly correlated to the evolution of the generated photoluminescence signal and (iii) in our experimental conditions, short fiber sample lengths (typically 20-30 cm) suffice to determine the associated absorption coefficients over the entire studied spectral domain. The generated photoluminescence signal is also used to characterize the absorption of the erbium ions in the same wavelength range with no cut-back method needed. (authors)

  20. Comparison of the Keratometric Corneal Astigmatic Power after Phacoemulsification: Clear Temporal Corneal Incision versus Superior Scleral Tunnel Incision

    Directory of Open Access Journals (Sweden)

    Yongqi He

    2009-01-01

    Full Text Available Objective. This is prospective randomized control trial to compare the mean keratometric corneal astigmatism diopter power (not surgical induced astigmatism among preop and one-month and three-month postop phacoemulcification of either a clear temporal corneal incision or a superior scleral tunnel Incision, using only keratometric astigmatic power reading to evaluate the difference between the two cataract surgery incisions. Methods. 120 patients (134 eyes underwent phacoemulcification were randomly assigned to two groups: Group A, the clear temporal corneal incision group, and Group B, the superior scleral tunnel incision group. SPSS11.5 Software was used for statistical analysis to compare the postsurgical changes of cornea astigmatism on keratometry. Results. The changes of corneal astigmatic diopter in Groups A and B after 3 month postop from keratometric reading were 1.04 + 0.76 and 0.94 + 0.27, respectively (=.84>.05, which showed no statistic significance difference. Conclusion. The incision through either temporal clear cornea or superior scleral tunnel in phacoemulcification shows no statistic difference in astigmatism change on keratometry 3-month postop.