WorldWideScience

Sample records for asteroid terminal defense

  1. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    Science.gov (United States)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022''. However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission?s preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  2. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    Science.gov (United States)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022". However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission's preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  3. ASTEROIDS

    Directory of Open Access Journals (Sweden)

    Željko Andreić

    2016-02-01

    Full Text Available Asteroids are the largest minor bodies in the Solar System. Nowadays they are in the research focus due to several facts about them: first, a subclass of asteroids can collide with Earth, and consequences of such a collision are dramatic. Second, they are now seen as source of materials that are becoming scarce on Earth, and they will be needed in future space constructions anyway. Third, they are holding clues about the origin and evolution of the Solar System. In this article, a short overview of current knowledge about asteroids is presented. Last, but not least, as several Croatian scientists were recently honored by naming an asteroid after them, a short overview of the naming process is given.

  4. ASTEROIDS

    OpenAIRE

    Željko Andreić

    2016-01-01

    Asteroids are the largest minor bodies in the Solar System. Nowadays they are in the research focus due to several facts about them: first, a subclass of asteroids can collide with Earth, and consequences of such a collision are dramatic. Second, they are now seen as source of materials that are becoming scarce on Earth, and they will be needed in future space constructions anyway. Third, they are holding clues about the origin and evolution of the Solar System. In this article, a short overv...

  5. WAR TERMINATION IN SOMALIA AND KENYA DEFENSE FORCES’ (KDF ROLE

    Directory of Open Access Journals (Sweden)

    E.O.S. ODHIAMBO

    2013-01-01

    Full Text Available War causes and conduct have fascinated war planners, war executors and scholars for a long time because little attention has been given to how wars are ended. This oversight is apparent not only in historical accounts of warfare but, more importantly, in contemporary analyses and doctrinal formulations of deterrence and overall defense policies. Just as historians have focused on how wars begin and are fought, military analysts and planners have concentrated on influencing the initiation and conduct of warfare rather than on analyzing the process and requirements for terminating warfare on acceptable terms and at acceptable costs. Conflict termination is the formal end of fighting, not the end of conflict. Despite the volumes of research and literature on the subject, belligerents mismanage war termination. The major objective of wartime strategy is defeating enemy arms as quickly as possible with the least cost in friendly casualties. As long as hostilities endure, diplomacy is subordinated to military requirements. War termination planning, as it is currently accomplished, takes the form of civil affair planning on the details of how the vanquished will be managed following the capitulation of the enemy and cessation of hostilities. We argue that Kenya Defence Forces (KDF prudently terminated its war with the terrorists group Al-Shabaab that merged with Al-Qaeda when they agreed to be integrated into the African Union Mission for Somalia (AMISOM which is backed up by the United Nations.

  6. 77 FR 8837 - Termination of the Department of Defense Web-Based TRICARE Assistance Program Demonstration

    Science.gov (United States)

    2012-02-15

    ... family difficulties and pressures, crisis intervention, anxiety, self-esteem, loneliness, and critical... Demonstration AGENCY: Department of Defense, DoD. ACTION: Notice of demonstration termination. SUMMARY:...

  7. Finite-time control for asteroid hovering and landing via terminal sliding-mode guidance

    Science.gov (United States)

    Yang, Hongwei; Bai, Xiaoli; Baoyin, Hexi

    2017-03-01

    This paper proposes a new nonlinear guidance algorithm applicable for asteroid both hovering and landing. With the new guidance, a spacecraft achieves its target position and velocity in finite-time without the requirement of reference trajectories. The global stability is proven for the controlled system. A parametric analysis is conducted to illustrate the parameters' effects on the guidance algorithm. Simulations of straight landing, hovering to hovering and landing with a prior hovering phase of the highly irregular asteroid 2063 Bacchus are presented and the effectiveness of the proposed method is demonstrated.

  8. Mortality salience increases defensive distancing from people with terminal cancer.

    Science.gov (United States)

    Smith, Lauren M; Kasser, Tim

    2014-01-01

    Based on principles of terror management theory, the authors hypothesized that participants would distance more from a target person with terminal cancer than from a target with arthritis, and that this effect would be stronger following mortality salience. In Study 1, adults rated how similar their personalities were to a target person; in Study 2, participants arranged two chairs in preparation for meeting the target person. Both studies found that distancing from the person with terminal cancer increased after participants wrote about their own death (vs. giving a speech). Thus, death anxiety may explain why people avoid close contact with terminally ill people; further analyses suggest that gender and self-esteem may also influence such distancing from the terminally ill.

  9. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  10. Finite-Time Spacecraft’s Soft Landing on Asteroids Using PD and Nonsingular Terminal Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Keping Liu

    2015-01-01

    Full Text Available This paper presents a continuous control law of probe, which consists of PD (proportional-derivative controller and nonsingular terminal sliding mode controller for probe descending and landing phases, respectively, in the case of the asteroid irregular shape and low gravity. The probe dynamic model is deduced in the landing site coordinate system firstly. Then the reference trajectory based on optimal polynomial in open-loop state is designed, with the suboptimal fuel consumption. Taking into account different characteristics of phases, PD controller and nonsingular terminal sliding mode controller can be employed in the descending phase and the landing phase, respectively, to track the designed reference trajectory. The controller which used the corresponding control methods can meet the motion characteristics and requirements of each stage. Finally simulation experiments are carried out to demonstrate the effectiveness of the proposed method, which can ensure the safe landing of probe and achieve continuous control.

  11. NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting

  12. The Asteroid Impact Mission

    Science.gov (United States)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  13. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  14. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    Science.gov (United States)

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  15. Asteroid mining

    Science.gov (United States)

    Gertsch, Richard E.

    1992-01-01

    The earliest studies of asteroid mining proposed retrieving a main belt asteroid. Because of the very long travel times to the main asteroid belt, attention has shifted to the asteroids whose orbits bring them fairly close to the Earth. In these schemes, the asteroids would be bagged and then processed during the return trip, with the asteroid itself providing the reaction mass to propel the mission homeward. A mission to one of these near-Earth asteroids would be shorter, involve less weight, and require a somewhat lower change in velocity. Since these asteroids apparently contain a wide range of potentially useful materials, our study group considered only them. The topics covered include asteroid materials and properties, asteroid mission selection, manned versus automated missions, mining in zero gravity, and a conceptual mining method.

  16. Asteroid Redirect

    OpenAIRE

    De Aquino, Fran

    2017-01-01

    Asteroids are a great threat to mankind. Here we will show that it is possible to redirect them from their trajectories by means of a strong gravitational repulsion, produced by the gravitational interaction between the asteroid and a Gravitational Spacecraft positioned close to the asteroid.

  17. Second Line of Defense, Port of Buenos Aires and Exolgan Container Terminal Operational Testing and Evaluation Plan, Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Bryan W.

    2012-08-23

    The Office of the Second Line of Defense (SLD) Megaports project team for Argentina will conduct operational testing and evaluation (OT&E) at Exolgan Container Terminal at the Port of Dock Sud from July 16-20, 2012; and at the Port of Buenos Aires from September 3-7, 2012. SLD is installing radiation detection equipment to screen export, import, and transshipment containers at these locations. The purpose of OT&E is to validate and baseline an operable system that meets the SLD mission and to ensure the system continues to perform as expected in an operational environment with Argentina Customs effectively adjudicating alarms.

  18. Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Deforest, Thomas J.; VanDyke, Damon S.

    2012-03-01

    Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica was written for the Second Line of Defense Megaports Initiative. The purpose of the Operational Testing and Evaluation (OT&E) phase of the project is to prepare for turnover of the Megaports system supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) located at the Kingston Container Terminal (KCT) of the Port of Kingston, Jamaica to the Government of Jamaica (GOJ). Activities conducted during the OT&E phase must demonstrate that the Megaports system can be operated effectively in real time by Jamaica Customs and KCT personnel to the satisfaction of the DOE/NNSA. These activities will also determine if the Megaports system, as installed and accepted, is performing according to the Megaports Program objectives such that the system is capable of executing the mission of the Second Line of Defense Megaports Initiative. The OT&E phase of the project also provides an opportunity to consider potential improvements to the system and to take remedial action if performance deficiencies are identified during the course of evaluation. Changes to the system should be considered under an appropriate change-control process. DOE/NNSA will determine that OT&E is complete by examining whether the Megaports system is performing as intended and that the GOJ is fully capable of operating the system independently without continued onsite support from the U.S. team.

  19. Asteroid Photometry

    CERN Document Server

    Li, Jian-Yang; Buratti, Bonnie J; Takir, Driss; Clark, Beth Ellen

    2015-01-01

    Asteroid photometry has three major applications: providing clues about asteroid surface physical properties and compositions, facilitating photometric corrections, and helping design and plan ground-based and spacecraft observations. The most significant advances in asteroid photometry in the past decade were driven by spacecraft observations that collected spatially resolved imaging and spectroscopy data. In the mean time, laboratory measurements and theoretical developments are revealing controversies regarding the physical interpretations of models and model parameter values. We will review the new developments in asteroid photometry that have occurred over the past decade in the three complementary areas of observations, laboratory work, and theory. Finally we will summarize and discuss the implications of recent findings.

  20. Asteroid taxonomy

    Science.gov (United States)

    Tholen, David J.; Barucci, M. Antonietta

    1989-01-01

    The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 micron can be used to classify these objects into several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11, or 14 different clases, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population.

  1. Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan Colon Container Terminal (CCT) Panama

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Robert N.

    2010-01-01

    Report on the Operational Testing and Evaluation to validate and baseline an operable system that meets the Second Line of Defense (SLD) mission requirements. An SLD system is defined as the detection technology and associated equipment, the system operators from the host country, the standard operating procedures (SOPs), and other elements such as training and maintenance which support long-term system sustainment. To this end, the activities conducted during the OT&E phase must demonstrate that the Megaports System can be operated effectively in real-time by Panama Direccion General de Aduanas (DGA Panama Customs) personnel to the standards of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

  2. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  3. Asteroid structure

    Science.gov (United States)

    Asphaug, E.

    2014-07-01

    Even before the first space missions to asteroids, in the mid-1990s, it was known that asteroids have weird structures. Photometry indicated complicated shapes, and the pioneering radar investigations by Ostro and colleagues followed by adaptive optics campaigns and flybys showed odd binary forms, and confirmed the common presence of satellites, and indications of highly varying surface roughness. Some asteroids turned out to be dominated by a single major cratering event, while others showed no evidence of a major crater, or perhaps for global crater erasure. The first space mission to orbit an asteroid, NEAR, found a mixture of heavily cratered terrains and geomorphically active 'ponds', and indicated evidence for global seismicity from impact. The next mission to orbit an asteroid, Hayabusa, found what most agree is a rubble pile, with no major craters and an absence of fines. There is to date no direct evidence of asteroid interior geology, other than measurements of bulk density, and inferences made for mass distribution asymmetry based on dynamics, and inferences based on surface lineaments. Interpolating from the surface to the interior is always risky and usually wrong, but of course the answer is important since we are someday destined to require this knowledge in order to divert a hazardous asteroid from impact with the Earth. Even considering the near-subsurface, here we remain as ignorant as we were about the Moon in the early 1960s, whether the surface will swallow us up in dust, or will provide secure landing and anchoring points. Laboratory experimentation in close to zero-G is still in its early stages. Adventures such as mining and colonization will surely have to wait until we better know these things. How do we get from here to there? I will focus on 3 areas of progress: (1) asteroid cratering seismology, where we use the surface craters to understand what is going on inside; (2) numerical modeling of collisions, which predicts the internal

  4. Small asteroid system evolution

    OpenAIRE

    Jacobson, Seth A.

    2014-01-01

    Observations with radar, photometric and direct imaging techniques have discovered that multiple asteroid systems can be divided clearly into a handful of different morphologies, and recently, the discovery of small unbound asteroid systems called asteroid pairs have revolutionized the study of small asteroid systems. Simultaneously, new theoretical advances have demonstrated that solar radiation dictates the evolution of small asteroids with strong implications for asteroid internal structur...

  5. Small asteroid system evolution

    OpenAIRE

    Jacobson, Seth A.

    2014-01-01

    Observations with radar, photometric and direct imaging techniques have discovered that multiple asteroid systems can be divided clearly into a handful of different morphologies, and recently, the discovery of small unbound asteroid systems called asteroid pairs have revolutionized the study of small asteroid systems. Simultaneously, new theoretical advances have demonstrated that solar radiation dictates the evolution of small asteroids with strong implications for asteroid internal structur...

  6. On the Astrid asteroid family

    CERN Document Server

    Carruba, V

    2016-01-01

    Among asteroid families, the Astrid family is peculiar because of its unusual inclination distribution. Objects at $a\\simeq$~2.764 au are quite dispersed in this orbital element, giving the family a "crab-like" appearance. Recent works showed that this feature is caused by the interaction of the family with the $s-s_C$ nodal secular resonance with Ceres, that spreads the inclination of asteroids near its separatrix. As a consequence, the currently observed distribution of the $v_W$ component of terminal ejection velocities obtained from inverting Gauss equation is quite leptokurtic, since this parameter mostly depends on the asteroids inclination. The peculiar orbital configuration of the Astrid family can be used to set constraints on key parameters describing the strength of the Yarkovsky force, such as the bulk and surface density and the thermal conductivity of surface material. By simulating various fictitious families with different values of these parameters, and by demanding that the current value of ...

  7. Search for Asteroid-Asteroid Encounters

    Directory of Open Access Journals (Sweden)

    Luis A. Mammana

    2001-01-01

    Full Text Available Earlier studies about asteroids did not consider mutual interactions since they assume a negligible asteroid mass. In 1966 Hertz took into account for the first time the gravitational effects produced by an asteroid on another for mass determination. This gravitational action becomes relevant for enough effective encounters. The most efficient gravitational interaction is that produced in a large time interval and for small distances. For each particular caseful it is relevant to perform a care analysis in order to determinate the feasibility in the mass determination and improved orbital elements. In the present paper we performed a search of asteroid-asteroid encounters occurred in the twenty century for the first 3000 numbered asteroids . Of all encounters we have selected only those asteroid pairs in which one of the asteroids has a diameter larger than 200 km and the other one (the smaller an observational interval of at least ten years.

  8. Asteroid Redirect Mission Proximity Operations for Reference Target Asteroid 2008 EV5

    Science.gov (United States)

    Reeves, David M.; Mazanek, Daniel D.; Cichy, Benjamin D.; Broschart, Steve B.; Deweese, Keith D.

    2016-01-01

    NASA's Asteroid Redirect Mission (ARM) is composed of two segments, the Asteroid Redirect Robotic Mission (ARRM), and the Asteroid Redirect Crewed Mission (ARCM). In March of 2015, NASA selected the Robotic Boulder Capture Option1 as the baseline for the ARRM. This option will capture a multi-ton boulder, (typically 2-4 meters in size) from the surface of a large (greater than approx.100 m diameter) Near-Earth Asteroid (NEA) and return it to cis-lunar space for subsequent human exploration during the ARCM. Further human and robotic missions to the asteroidal material would also be facilitated by its return to cis-lunar space. In addition, prior to departing the asteroid, the Asteroid Redirect Vehicle (ARV) will perform a demonstration of the Enhanced Gravity Tractor (EGT) planetary defense technique2. This paper will discuss the proximity operations which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration. Each of these phases has been analyzed for the ARRM reference target, 2008 EV5, and a detailed baseline operations concept has been developed.

  9. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  10. Asteroid Mining and Prospecting

    OpenAIRE

    Esty, Thomas

    2013-01-01

    There has been a recent increase in interest in the idea of mining asteroids, as seen from the founding of multiple companies who seek to make this science fiction idea science fact. We analyzed a number of prior papers on asteroids to make an estimate as to whether mining asteroids is within the realm of possibility. Existing information on asteroid number, composition, and orbit from past research was synthesized with a new analysis using binomial statistics of the number of probes that wou...

  11. Asteroid-Generated Tsunami and Impact Risk

    Science.gov (United States)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  12. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near Earth Asteroid Disruption

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent W.

    2015-01-01

    Currently, no planetary defense demonstration mission has ever been flown. While Nuclear Explosive Devices (NEDs) have significantly more energy than a kinetic impactor launched directly from Earth, they present safety and political complications, and therefore may only be used when absolutely necessary. The Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System (BILLIARDS) is a demonstration mission for planetary defense, which is capable of delivering comparable energy to the lower range of NED capabilities in the form of a safer kinetic impactor. A small asteroid (disrupt the larger asteroid. To reduce the cost and complexity, an asteroid pair which has a natural close approach is selected.

  13. Asteroid thermophysical modeling

    CERN Document Server

    Delbo, Marco; Emery, Joshua P; Rozitis, Ben; Capria, Maria Teresa

    2015-01-01

    The field of asteroid thermophysical modeling has experienced an extraordinary growth in the last ten years, as new thermal infrared data became available for hundreds of thousands of asteroids. The infrared emission of asteroids depends on the body's size, shape, albedo, thermal inertia, roughness and rotational properties. These parameters can therefore be derived by thermophysical modeling of infrared data. Thermophysical modeling led to asteroid size estimates that were confirmed at the few-percent level by later spacecraft visits. We discuss how instrumentation advances now allow mid-infrared interferometric observations as well as high-accuracy spectro-photometry, posing their own set of thermal-modeling challenges.We present major breakthroughs achieved in studies of the thermal inertia, a sensitive indicator for the nature of asteroids soils, allowing us, for instance, to determine the grain size of asteroidal regoliths. Thermal inertia also governs non-gravitational effects on asteroid orbits, requir...

  14. Thermal Tomography of Asteroid Surface Structure

    Science.gov (United States)

    Harris, Alan W.; Drube, Line

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  15. Asteroid exploration and utilization

    Science.gov (United States)

    Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar

    1992-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.

  16. NASA's Asteroid Redirect Mission: Overview and Status

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    A major element of the National Aeronautics and Space Administration’s (NASA) new Asteroid Initiative is the Asteroid Redirect Mission (ARM). This concept was first proposed in 2011 during a feasibility study at the Keck Institute for Space Studies (KISS)[1] and is under consideration for implementation by NASA. The ARM involves sending a high-efficiency (ISP 3000 s), high-power (40 kW) solar electric propulsion (SEP) robotic vehicle that leverages technology developed by NASA’s Space Technology Mission Directorate (STMD) to rendezvous with a near-Earth asteroid (NEA) and return asteroidal material to a stable lunar distant retrograde orbit (LDRO)[2]. There are two mission concepts currently under study, one that captures an entire 7 - 10 meter mean diameter NEA[3], and another that retrieves a 1 - 10 meter mean diameter boulder from a 100+ meter class NEA[4]. Once the retrieved asteroidal material is placed into the LDRO, a two person crew would launch aboard an Orion capsule to rendezvous and dock with the robotic SEP vehicle. After docking, the crew would conduct two extra-vehicular activities (EVA) to collect asteroid samples and deploy instruments prior to Earth return. The crewed portion of the mission is expected to last approximately 25 days and would represent the first human exploration mission beyond low-Earth orbit (LEO) since the Apollo program. The ARM concept leverages NASA’s activities in Human Exploration, Space Technology, and Planetary Defense to accomplish three primary objectives and several secondary objectives. The primary objective relevant to Human Exploration is to gain operational experience with vehicles, systems, and components that will be utilized for future deep space exploration. In regard to Space Technology, the ARM utilizes advanced SEP technology that has high power and long duration capabilities that enable future missions to deep space destinations, such as the Martian system. With respect to Planetary Defense, the ARM

  17. Enhanced Gravity Tractor Derived from the Asteroid Redirect Mission for Deflecting Hypothetical Asteroid 2017 PDC

    Science.gov (United States)

    Mazanek, Daniel D.; Reeves, David M.; Abell, Paul A.; Shen, Haijun; Qu, Min

    2017-01-01

    The Asteroid Redirect Mission (ARM) concept would robotically visit a hazardous-size near-Earth asteroid (NEA) with a rendezvous spacecraft, collect a multi-ton boulder and regolith samples from its surface, demonstrate an innovative planetary defense technique known as the Enhanced Gravity Tractor (EGT), and return the asteroidal material to a stable orbit around the Moon, allowing astronauts to explore the returned material in the mid-2020s. Launch of the robotic vehicle to rendezvous with the ARM reference target, NEA (341843) 2008 EV5, would occur in late 2021 [1,2]. The robotic segment of the ARM concept uses a 40 kW Solar Electric Propulsion (SEP) system with a specific impulse (Isp) of 2600 s, and would provide the first ever demonstration of the EGT technique on a hazardous-size asteroid and validate one method of collecting mass in-situ. The power, propellant, and thrust capability of the ARM robotic spacecraft can be scaled from a 40 kW system to 150 kW and 300 kW, which represent a likely future power level progression. The gravity tractor technique uses the gravitational attraction of a station-keeping spacecraft with the asteroid to provide a velocity change and gradually alter the trajectory of the asteroid. EGT utilizes a spacecraft with a high-efficiency propulsion system, such as Solar Electric Propulsion (SEP), along with mass collected in-situ to augment the mass of the spacecraft, thereby increasing the gravitational force between the objects [3]. As long as the spacecraft has sufficient thrust and propellant capability, the EGT force is only limited by the amount of in-situ mass collected and can be increased several orders of magnitude compared to the traditional gravity tractor technique in which only the spacecraft mass is used to generate the gravitational attraction force. This increase in available force greatly reduces the required deflection time. The collected material can be a single boulder, multiple boulders, regolith, or a

  18. Asteroid Risk Assessment: A Probabilistic Approach.

    Science.gov (United States)

    Reinhardt, Jason C; Chen, Xi; Liu, Wenhao; Manchev, Petar; Paté-Cornell, M Elisabeth

    2016-02-01

    Following the 2013 Chelyabinsk event, the risks posed by asteroids attracted renewed interest, from both the scientific and policy-making communities. It reminded the world that impacts from near-Earth objects (NEOs), while rare, have the potential to cause great damage to cities and populations. Point estimates of the risk (such as mean numbers of casualties) have been proposed, but because of the low-probability, high-consequence nature of asteroid impacts, these averages provide limited actionable information. While more work is needed to further refine its input distributions (e.g., NEO diameters), the probabilistic model presented in this article allows a more complete evaluation of the risk of NEO impacts because the results are distributions that cover the range of potential casualties. This model is based on a modularized simulation that uses probabilistic inputs to estimate probabilistic risk metrics, including those of rare asteroid impacts. Illustrative results of this analysis are presented for a period of 100 years. As part of this demonstration, we assess the effectiveness of civil defense measures in mitigating the risk of human casualties. We find that they are likely to be beneficial but not a panacea. We also compute the probability-but not the consequences-of an impact with global effects ("cataclysm"). We conclude that there is a continued need for NEO observation, and for analyses of the feasibility and risk-reduction effectiveness of space missions designed to deflect or destroy asteroids that threaten the Earth. © 2015 Society for Risk Analysis.

  19. Applied Astronomy: Asteroid Prospecting

    Science.gov (United States)

    Elvis, M.

    2013-09-01

    In the age of asteroid mining the ability to find promising ore-bearing bodies will be valuable. This will give rise to a new discipline- "Applied Astronomy". Just as most geologists work in industry, not in academia, the same will be true of astronomers. Just how rare or common ore-rich asteroids are likely to be, and the skills needed to assay their value, are discussed here, with an emphasis on remote - telescopic - methods. Also considered are the resources needed to conduct extensive surveys of asteroids for prospecting purposes, and the cost and timescale involved. The longer-term need for applied astronomers is also covered.

  20. Near-Sun asteroids

    Science.gov (United States)

    Emel'yanenko, V. V.

    2017-01-01

    As follows from dynamical studies, in the course of evolution, most near-Earth objects reach orbits with small perihelion distances. Changes of the asteroids in the vicinity of the Sun should play a key role in forming the physical properties, size distribution, and dynamical features of the near-Earth objects. Only seven of the discovered asteroids are currently moving along orbits with perihelion distances q orbits farther from the Sun. In this study, we found asteroids that have been recently orbiting with perihelion distances q orbits for hundreds to tens of thousands of years. To carry out astrophysical observations of such objects is a high priority.

  1. Space weathering of asteroids

    CERN Document Server

    Shestopalov, D I; Cloutis, E A

    2012-01-01

    Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope of an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual r...

  2. Near Earth Asteroid Characterization for Threat Assessment

    Science.gov (United States)

    Dotson, Jessie; Mathias, Donovan; Wheeler, Lorien; Wooden, Diane; Bryson, Kathryn; Ostrowski, Daniel

    2017-01-01

    Physical characteristics of NEAs are an essential input to modeling behavior during atmospheric entry and to assess the risk of impact but determining these properties requires a non-trivial investment of time and resources. The characteristics relevant to these models include size, density, strength and ablation coefficient. Some of these characteristics cannot be directly measured, but rather must be inferred from related measurements of asteroids and/or meteorites. Furthermore, for the majority of NEAs, only the basic measurements exist so often properties must be inferred from statistics of the population of more completely characterized objects. The Asteroid Threat Assessment Project at NASA Ames Research Center has developed a probabilistic asteroid impact risk (PAIR) model in order to assess the risk of asteroid impact. Our PAIR model and its use to develop probability distributions of impact risk are discussed in other contributions to PDC 2017 (e.g., Mathias et al.). Here we utilize PAIR to investigate which NEA characteristics are important for assessing the impact threat by investigating how changes in these characteristics alter the damage predicted by PAIR. We will also provide an assessment of the current state of knowledge of the NEA characteristics of importance for asteroid threat assessment. The relative importance of different properties as identified using PAIR will be combined with our assessment of the current state of knowledge to identify potential high impact investigations. In addition, we will discuss an ongoing effort to collate the existing measurements of NEA properties of interest to the planetary defense community into a readily accessible database.

  3. Asteroids - NeoWs API

    Data.gov (United States)

    National Aeronautics and Space Administration — NeoWs (Near Earth Object Web Service) is a RESTful web service for near earth Asteroid information. With NeoWs a user can: search for Asteroids based on their...

  4. 2015 Barcelona Asteroid Day

    CERN Document Server

    Gritsevich, Maria; Palme, Herbert

    2017-01-01

    This volume is a compilation of the research presented at the International Asteroid Day workshop which was celebrated at Barcelona on June 30th, 2015. The proceedings discuss the beginning of a new era in the study and exploration of the solar system’s minor bodies. International Asteroid Day commemorates the Tunguska event of June 30th, 1908. The workshop’s goal was to promote the importance of dealing proactively with impact hazards from space. Multidisciplinary experts contributed to this discussion by describing the nature of comets and asteroids along with their offspring, meteoroids. New missions to return material samples of asteroids back to Earth such as Osiris-REx and Hayabusa 2, as well as projects like AIM and DART which will test impact deflection techniques for Potentially Hazardous Asteroids encounters were also covered. The proceedings include both an outreach level to popularize impact hazards and a scientific character which covers the latest knowledge on these topics, as well as offeri...

  5. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  6. The Active Asteroids

    CERN Document Server

    Jewitt, Dave

    2011-01-01

    Some asteroids eject dust, unexpectedly producing transient, comet-like comae and tails. First ascribed to the sublimation of near-surface water ice, mass losing asteroids (also called "main-belt comets") can in fact be driven by a surprising diversity of mechanisms. In this paper, we consider eleven dynamical asteroids losing mass, in nine of which the ejected material is spatially resolved. We address mechanisms for producing mass loss including rotational instability, impact ejection, electrostatic repulsion, radiation pressure sweeping, dehydration stresses and thermal fracture, in addition to the sublimation of ice. In two objects (133P and 238P) the repetitive nature of the observed activity leaves ice sublimation as the only reasonable explanation while, in a third ((596) Scheila), a recent impact is the cause. Another impact may account for activity in P/2010 A2 but this tiny object can also be explained as having shed mass after reaching rotational instability. Mass loss from (3200) Phaethon is proba...

  7. The Danish Supreme Court rules on State action defense and refusal to supply under Danish competition law (Copenhagen Airport Terminal A)

    DEFF Research Database (Denmark)

    Bergqvist, Christian; Christensen, Laurits Peder Schmidt

    2015-01-01

    for the purpose of building a new terminal A. Terminal A would compete with the airport in the supply of services to airlines. Copenhagen airport rejected the request which in turn lead the group of investors to complain to the Danish Competition and Consumer Authority ("DCCA"). In its draft decision the DCCA...

  8. The Danish Supreme Court rules on State action defense and refusal to supply under Danish competition law (Copenhagen Airport Terminal A)

    DEFF Research Database (Denmark)

    Bergqvist, Christian; Christensen, Laurits Peder Schmidt

    2015-01-01

    for the purpose of building a new terminal A. Terminal A would compete with the airport in the supply of services to airlines. Copenhagen airport rejected the request which in turn lead the group of investors to complain to the Danish Competition and Consumer Authority ("DCCA"). In its draft decision the DCCA...

  9. Manuel's asteroid disruption technique.

    Science.gov (United States)

    John, Manuel; Ipe, Abraham; Jacob, Ivan

    2015-06-01

    A seventy-year-old male presented with dense asteroid hyalosis in both eyes. He had undergone cataract extraction in one eye 3 years ago, and the other eye had immature cataract. Both the autorefractor and dilated streak retinoscopy did not give readings and subjective visual improvement could not be achieved. Immediately following YAG posterior capsulotomy and anterior vitreous asteroid disruption, the vision improved to 20/20 with recordable auto refractor and streak retinoscopy values. Our initial experience indicates that the treatment is simple, safe and effective but needs controlled and prospective studies to confirm its long-term safety.

  10. Asteroid science by Gaia

    Science.gov (United States)

    Muinonen, Karri; Cellino, Alberto; Dell Oro, Aldo; Tanga, Paolo; Delbo, Marco; Mignard, Francois; Thuillot, William; Berthier, Jerome; Carry, Benoit; Hestroffer, Daniel; Granvik, Mikael; Fedorets, Grigori

    2016-07-01

    Since the start of its regular observing program in summer 2014, the Gaia mission has carried out systematic photometric, spectrometric, and astrometric observations of asteroids. In total, the unique capabilities of Gaia allow for the collection of an extensive and homogeneous data set of some 350,000 asteroids down to the limiting magnitude of G = 20.7 mag. The Gaia performance remains excellent over the entire available brightness range. Starting from 2003, a working group of European asteroid scientists has explored the main capabilities of the mission, defining the expected scientific impact on Solar System science. These results have served as a basis for developing the Gaia data reduction pipeline, within the framework of the Data Processing and Analysis Consortium (DPAC). We describe the distribution of the existing and forecoming Gaia observations in space and time for different categories of objects. We illustrate the peculiar properties of each single observation, as these properties will affect the subsequent exploitation of the mission data. We will review the expected performances of Gaia, basically as a function of magnitude and proper motion of the sources. We will further focus on the areas that will benefit from complementary observational campaigns to improve the scientific return of the mission, and on the involvement of the planetary science community as a whole in the exploitation of the Gaia survey. We will thus describe the current and future opportunities for ground-based observers and forthcoming changes brought by Gaia in some observational approaches, such as stellar occultations by transneptunian objects and asteroids. We will show first results from the daily, short-term processing of Gaia data, all the way from the onboard data acquisition to the ground-based processing. We illustrate the tools developed to compute predictions of asteroid observations, we discuss the procedures implemented by the daily processing, and we illustrate

  11. Asteroid Control and Resource Utilization

    Science.gov (United States)

    Paterson, G.; Radice, G.; Sanchez, J.-P.

    Asteroids are materials rich small solar system bodies which are prime candidates for rendezvous and mining. Up until now much attention has been focused on methods of destroying or deflecting potentially hazardous asteroids from colliding with the Earth. Recently however the concept of asteroid capture has been suggested whereby the asteroid is returned to an orbit close to the Earth before mining can begin. This paper aims to provide a comprehensive introduction to the field for new researchers and to put forward a number of novel strategies for asteroid control.

  12. NASA's Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2017-01-01

    Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.

  13. Directed Energy Missions for Planetary Defense

    OpenAIRE

    Lubin, P.; Hughes, GB; Eskenazi, M; Kosmo, K.; Johansson, IE; Griswold, J., Ian,;Zhou, Hongjun,;Matison, Mikenzie,;Swanson, V., Ronald,;McIntosh, P., Lawrence,;Simon, I., Melvin,;Dahlquist, W., Frederick,; Pryor, M; O'Neill, H.; Meinhold, P.; Suen, J; J; Riley; Zhang, Q.; Walsh, K.; Melis, C.; Kangas, M

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-of...

  14. Threat Mitigation: The Asteroid Tugboat

    CERN Document Server

    Schweickart, R; Durda, D; Hut, P; Chapman, Clark; Durda, Dan; Hut, Piet; Schweickart, Russell

    2006-01-01

    The Asteroid Tugboat (AT) is a fully controlled asteroid deflection concept using a robotic spacecraft powered by a high efficiency, electric propulsion system (ion or plasma) which docks with and attaches to the asteroid, conducts preliminary operations, and then thrusts continuously parallel to the asteroid velocity vector until the desired velocity change is achieved. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. On completion of the initial rendezvous with the near-Earth object (NEO) the AT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while it is station keeping with the asteroid. If on analysis of tracking data a deflection is required the AT would execute a reconnaissance phase collecting and processing information about the physical characteristics of the asteroid to support subsequent operations. The AT would then dock at the appropriate pole (i....

  15. The Asteroid Frontier

    Science.gov (United States)

    Mcfadden, Lucyann A.

    2012-01-01

    There are many ways of studying the Asteroid Frontier as a scientist. In my career, I have used large telescopes atop a 14,000 ft mountain top observatory in Hawaii, used the Hubble Space Telescope in orbit around the Earth, traveled to Antarctica to collect meteorites sitting on the ice waiting for them to be recovered by scientists for scientific investigation, walked the desert with 50 students from University of Khartoum searching for fragments of an asteroid that collided with earth, exploded in the upper atmosphere and rained fragments on the desert floor. Most recently, I have looked at one of the largest Main Belt Asteroids named (4) Vesta through the eyes of a robotic spacecraft named Dawn, exploring the asteroid frontier. I will share my adventures, place the thrill of scientific exploration through NASA's solar system exploration program in context and provide opportunities for students to engage in NASA's exciting missions to expand scientific understanding of Earth and the Universe in which we live

  16. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  17. Consequences of Predicted or Actual Asteroid Impacts

    Science.gov (United States)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  18. Capture of Asteroids and Transport of Asteroid Materials to Earth

    Science.gov (United States)

    Chiu, Hong-Yee; no Team

    2014-01-01

    Recently there has been much discussion on the capture of asteroids or mining the asteroids. While the technology might be years away, in this paper we will discuss an energy efficient method to transport either a small asteroid or materials gathered from asteroids to the Earth. In particular, I will concentrate on a large and nearby asteroid, 8 Flora in the Flora Family. Generally, asteroids are located between 2 to 3 AU (astronomical unit) from the Earth, and in transporting materials from asteroids to the Earth, an energy equivalent of the gravitational potential energy difference between the Earth and the asteroids to the Sun. This amount of potential energy is a sizable fraction of the orbital kinetic energy of the Earth around the Sun. This amount of energy is considerable. In this paper I propose to use the planet Mars as a medium to remove much of the gravitational energy difference. In the case of the asteroid 8 Flora, it is only necessary to decelerate the asteroid mate- rials by a small decrement, of the order of 3 km/sec. This decrement could even be achieved (pending on the availability of technology) by mechanical devices such as catapults on 8 Flora. It is also proposed to separate a pair of contact asteroid binaries by using impulse propulsion, and to propel one component of the separated asteroids to pass by Mars to be decelerated to reach the Earth orbit and captured by the Earth or the Moon. The plausibility of this ambitious project will be discussed. The author is NASA-GSFC Astrophysicist, Retired.

  19. EURONEAR - Data Mining of Asteroids and Near Earth Asteroids

    OpenAIRE

    Vaduvescu, O.; Curelaru, L.; Birlan, M.; Bocsa, G.; Serbanescu, L.; Tudorica, A.; Berthier, J.

    2009-01-01

    Besides new observations, mining old photographic plates and CCD image archives represents an opportunity to recover and secure newly discovered asteroids, also to improve the orbits of Near Earth Asteroids (NEAs), Potentially Hazardous Asteroids (PHAs) and Virtual Impactors (VIs). These are the main research aims of the EURONEAR network. As stated by the IAU, the vast collection of image archives stored worldwide is still insufficiently explored, and could be mined for known NEAs and other a...

  20. Active Asteroids: Main-Belt Comets and Disrupted Asteroids

    CERN Document Server

    Hsieh, Henry H

    2015-01-01

    The study of active asteroids has attracted a great deal of interest in recent years since the recognition of main-belt comets (which orbit in the main asteroid belt, but exhibit comet-like activity due to the sublimation of volatile ices) as a new class of comets in 2006, and the discovery of the first disrupted asteroids (which, unlike MBCs, exhibit comet-like activity due to a physical disruption such as an impact or rotational destabilization, not sublimation) in 2010. In this paper, I will briefly discuss key areas of interest in the study of active asteroids.

  1. Asteroid family ages

    CERN Document Server

    Spoto, Federica; Knezevic, Zoran

    2015-01-01

    A new family classification, based on a catalog of proper elements with $\\sim 384,000$ numbered asteroids and on new methods is available. For the $45$ dynamical families with $>250$ members identified in this classification, we present an attempt to obtain statistically significant ages: we succeeded in computing ages for $37$ collisional families. We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are pro...

  2. Asteroid Impact Monitoring

    Science.gov (United States)

    Milani, A.

    2006-06-01

    Some asteroids and comets with Earth-crossing orbit may impact our planet, thus we need to be able to identify the cases which could have a dangerous close approach within a century. This must be done as soon as such an asteroid is discovered, allowing for follow up observations which might contradict the impact possibility, and in the worst case to organize mitigation, possibly including deflection. The mathematical problem of predicting possible impacts, even with very low probabilities, has been solved by our group in the last few years. This paper presents the basic theory of these impact prediction, and discusses how they are practically used in the impact monitoring systems now operational, in particular the CLOMON2 robot of the Universities of Pisa and Valladolid.

  3. Asteroid impact monitoring

    Directory of Open Access Journals (Sweden)

    Milani A.

    2006-01-01

    Full Text Available Some asteroids and comets with Earth-crossing orbit may impact our planet, thus we need to be able to identify the cases which could have a dangerous close approach within a century. This must be done as soon as such an asteroid is discovered, allowing for follow up observations which might contradict the impact possibility, and in the worst case to organize mitigation, possibly including deflection. The mathematical problem of predicting possible impacts, even with very low probabilities, has been solved by our group in the last few years. This paper presents the basic theory of these impact prediction, and discusses how they are practically used in the impact monitoring systems now operational, in particular the CLOMON2 robot of the Universities of Pisa and Valladolid.

  4. Asteroid Surface Geophysics

    CERN Document Server

    Murdoch, Naomi; Schwartz, Stephen R; Miyamoto, Hideaki

    2015-01-01

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that...

  5. Multiple origins of asteroid pairs

    CERN Document Server

    Jacobson, Seth A

    2015-01-01

    Rotationally fissioned asteroids produce unbound daughter asteroids that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have high mass ratios with possibly fast rotating primaries. However, secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  6. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  7. The Rafita asteroid family

    Science.gov (United States)

    Aljbaae, S.; Carruba, V.; Masiero, J. R.; Domingos, R. C.; Huaman, M.

    2017-01-01

    The Rafita asteroid family is an S-type group located in the middle main belt, on the right side of the 3J:-1A mean-motion resonance. The proximity of this resonance to the family left side in semi-major axis caused many former family members to be lost. As a consequence, the family shape in the (a, 1/D) domain is quite asymmetrical, with a preponderance of objects on the right side of the distribution. The Rafita family is also characterized by a leptokurtic distribution in inclination, which allows the use of methods of family age estimation recently introduced for other leptokurtic families such as Astrid, Hansa, Gallia, and Barcelona. In this work we propose a new method based on the behavior of an asymmetry coefficient function of the distribution in the (a, 1/D) plane to date incomplete asteroid families such as Rafita. By monitoring the time behavior of this coefficient for asteroids simulating the initial conditions at the time of the family formation, we were able to estimate that the Rafita family should have an age of 490 ± 200 Myr, in good agreement with results from independent methods such as Monte Carlo simulations of Yarkovsky and Yorp dynamical induced evolution and the time behaviour of the kurtosis of the sin (i) distribution. Asteroids from the Rafita family can reach orbits similar to 8% of the currently known near Earth objects. ≃1% of the simulated objects are present in NEO-space during the final 10 Myr of the simulation, and thus would be comparable to objects in the present-day NEO population.

  8. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  9. Modeling of Fragmentation of Asteroids

    Science.gov (United States)

    Agrawal, Parul; Prabhu, Dinesh K.; Carlozzi, Alexander; Hart, Kenneth; Bryson, Katie; Sears, Derek

    2015-01-01

    The objective of this study is to understand fragmentation and fracture of a given asteroid and mechanisms of break-up. The focus of the present work is to develop modeling techniques for stony asteroids in 10m-100m range to answer two questions: 1) What is the role of material makeup of an asteroid in the stress distribution? 2)How is stress distribution altered in the presence of pre-existing defects?

  10. 32 CFR 33.44 - Termination for convenience.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Termination for convenience. 33.44 Section 33.44 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT... convenience. Except as provided in § 33.43 awards may be terminated in whole or in part only as follows:...

  11. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war

  12. Directed energy missions for planetary defense

    Science.gov (United States)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  13. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  14. Navy Multiband Terminal (NMT)

    Science.gov (United States)

    2013-12-01

    Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network Econ - Economic Eng...Memo Note for Shore (for MTBF and MTBCF): Represents IOT &E and Verification of Correction of Deficiencies testing results; mission impact deemed...insignificant due to multiple terminals at Shore site. Note for Sub (for MTBF, MTBCF and MTTR): Represents IOT &E hours; test duration limit for

  15. EURONEAR - Data Mining of Asteroids and Near Earth Asteroids

    CERN Document Server

    Vaduvescu, O; Birlan, M; Bocsa, G; Serbanescu, L; Tudorica, A; Berthier, J

    2009-01-01

    Besides new observations, mining old photographic plates and CCD image archives represents an opportunity to recover and secure newly discovered asteroids, also to improve the orbits of Near Earth Asteroids (NEAs), Potentially Hazardous Asteroids (PHAs) and Virtual Impactors (VIs). These are the main research aims of the EURONEAR network. As stated by the IAU, the vast collection of image archives stored worldwide is still insufficiently explored, and could be mined for known NEAs and other asteroids appearing occasionally in their fields. This data mining could be eased using a server to search and classify findings based on the asteroid class and the discovery date as "precoveries" or "recoveries". We built PRECOVERY, a public facility which uses the Virtual Observatory SkyBoT webservice of IMCCE to search for all known Solar System objects in a given observation. To datamine an entire archive, PRECOVERY requires the observing log in a standard format and outputs a database listing the sorted encounters of ...

  16. Photometric Study of Selected Asteroids

    Science.gov (United States)

    Shevchenko, Vasilij G.; Velichko, Feodor P.; Checha, Vitaly A.; Krugly, Yurij N.

    2014-07-01

    We performed photometric observations for eleven asteroids. New rotation periods were determined for five asteroids: 2812 Scaltriti (7.596 h), 4716 Urey (6.2 h), 7446 Hadrianus (3.402 h), (26657) 2000 SX293 (2.8 - 3.8 h), and (54063) 2000 GC136 (5.154 h).

  17. Radar Observations of Asteroids

    Science.gov (United States)

    Ostro, S. J.

    2003-05-01

    During the past 25 years, radar investigations have provided otherwise unavailable information about the physical and dynamical properties of more than 200 asteroids. Measurements of the distribution of echo power in time delay and Doppler frequency provide two-dimensional images with spatial resolution as fine as a decameter. Sequences of delay-Doppler images can be used to produce geologically detailed three-dimensional models, to define the rotation state precisely, to constrain the internal density distribution, and to estimate the trajectory of the object's center of mass. Radar wavelengths (4 to 13 cm) and the observer's control of transmitted and received polarizations make the observations sensitive to near-surface bulk density and macroscopic structure. Since delay-Doppler positional measurements are orthogonal to optical angle measurements and typically have much finer fractional precision, they are powerful for refining orbits and prediction ephemerides. Radar astrometry can add decades or centuries to the interval over which an asteroid's close Earth approaches can accurately be predicted and can significantly refine collision probability estimates based on optical astrometry alone. In the highly unlikely case that a small body is on course for an Earth collision in this century, radar reconnaissance would almost immediately distinguish between an impact trajectory and a near miss and would dramatically reduce the difficulty and cost of any effort to prevent the collision. The sizes and rotation periods of radar-detected asteroids span more than four orders of magnitude. These observations have revealed both stony and metallic objects, elongated and nonconvex shapes as well as nearly featureless spheroids, small-scale morphology ranging from smoother than the lunar regolith to rougher than the rockiest terrain on Mars, craters and diverse linear structures, non-principal-axis spin states, contact binaries, and binary systems.

  18. Radar Investigations of Asteroids

    Science.gov (United States)

    Ostro, S.

    2004-05-01

    Radar investigations have provided otherwise unavailable information about the physical and dynamical properties of about 230 asteroids. Measurements of the distribution of echo power in time delay (range) and Doppler frequency (line-of-sight velocity) provide two-dimensional images with spatial resolution as fine as a decameter. Sequences of delay-Doppler images can be used to produce geologically detailed three-dimensional models, to define the rotation state precisely, to constrain the internal density distribution, and to estimate the trajectory of the object's center of mass. Radar wavelengths (4 to 13 cm) and the observer's control of transmitted and received polarizations make the observations sensitive to near-surface bulk density and macroscopic structure. Since delay-Doppler measurements are orthogonal to optical angle measurements and typically have much finer fractional precision, they are powerful for refining orbits and prediction ephemerides. Such astrometric measurements can add decades or centuries to the interval over which an asteroid's close Earth approaches can accurately be predicted and can significantly refine collision probability estimates based on optical astrometry alone. In the highly unlikely case that a small body is on course for an Earth collision in this century, radar reconnaissance would almost immediately distinguish between an impact trajectory and a near miss and would dramatically reduce the difficulty and cost of any effort to prevent the collision. The sizes and rotation periods of radar-detected asteroids span more than four orders of magnitude. The observations have revealed both stony and metallic objects, elongated and nonconvex shapes as well as nearly featureless spheroids, small-scale morphology ranging from smoother than the lunar regolith to rougher than the rockiest terrain on Mars, craters and diverse linear structures, non-principal-axis spin states, contact binaries, and binary systems.

  19. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Science.gov (United States)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    maneuvers needed for hitting the target object. As additional option of planetary defense system construction the idea to redirect small near Earth asteroids onto the orbits resonance with the Earth orbit is explored. It is shown that it is possible to reach it by the use gravity assist maneuvers as it was described above by applying small velocity impulses to the asteroids. At least 11 asteroids were found demanded small enough delta-V for transferring them on such trajectories. After executing these maneuvers one can receive the system of asteroids approaching to the Earth practically each month with a possibility to use them as projectiles or for the purposes of delivering to the Earth their soil samples.

  20. Asteroids and Comets

    CERN Document Server

    Fernandez, Yanga R; Howell, Ellen S; Woodney, Laura M

    2015-01-01

    Asteroids and comets are remnants from the era of Solar System formation over 4.5 billion years ago, and therefore allow us to address two fundamental questions in astronomy: what was the nature of our protoplanetary disk, and how did the process of planetary accretion occur? The objects we see today have suffered many geophysically-relevant processes in the intervening eons that have altered their surfaces, interiors, and compositions. In this chapter we review our understanding of the origins and evolution of these bodies, discuss the wealth of science returned from spacecraft missions, and motivate important questions to be addressed in the future.

  1. Overview and Updated Status of the Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Mazanek, Daniel D.; Reeves, David M.; Chodas, Paul; Gates, Michele; Johnson, Lindley N.; Ticker, Ronald

    2016-10-01

    The National Aeronautics and Space Administration (NASA) is developing a mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder and regolith samples from its surface, demonstrate a planetary defense technique known as the enhanced gravity tractor, and return the asteroidal material to a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s and other destinations, as well as provide other broader benefits. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. Current plans are for the robotic mission to be launched in late 2021 with the crewed mission segment conducted using an Orion capsule via a Space Launch System rocket in 2026. In order to maximize the knowledge return from the mission, NASA is providing accommodations for payloads to be carried on the robotic segment of the mission and also organizing an ARM Investigation Team. The Investigation Team will be comprised of scientists, technologists, and other qualified and interested individuals from US industry, government, academia, and international institutions to help plan the implementation and execution of ARM. The presentation will provide a mission overview and the most recent update concerning the robotic and crewed segments of ARM, including the mission requirements, and potential

  2. New Paradigms For Asteroid Formation

    CERN Document Server

    Johansen, Anders; Cuzzi, Jeffrey N; Morbidelli, Alessandro; Gounelle, Matthieu

    2015-01-01

    Asteroids and meteorites provide key evidence on the formation of planetesimals in the Solar System. Asteroids are traditionally thought to form in a bottom-up process by coagulation within a population of initially km-scale planetesimals. However, new models challenge this idea by demonstrating that asteroids of sizes from 100 to 1000 km can form directly from the gravitational collapse of small particles which have organised themselves in dense filaments and clusters in the turbulent gas. Particles concentrate passively between eddies down to the smallest scales of the turbulent gas flow and inside large-scale pressure bumps and vortices. The streaming instability causes particles to take an active role in the concentration, by piling up in dense filaments whose friction on the gas reduces the radial drift compared to that of isolated particles. In this chapter we review new paradigms for asteroid formation and compare critically against the observed properties of asteroids as well as constraints from meteo...

  3. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin.

    Science.gov (United States)

    Brophy, Megan Brunjes; Nakashige, Toshiki G; Gaillard, Aleth; Nolan, Elizabeth M

    2013-11-27

    Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.

  4. NASA's asteroid redirect mission: Robotic boulder capture option

    Science.gov (United States)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  5. Discovery of Spin-Rate-Dependent Asteroid Thermal Inertia

    Science.gov (United States)

    Harris, Alan; Drube, Line

    2016-10-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. Using WISE/NEOWISE data and our new asteroid thermal-inertia estimator we show that the thermal inertia of main-belt asteroids (MBAs) appears to increase with spin period. Similar behavior is found in the case of thermophysically-modeled thermal inertia values of near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. On the basis of a picture of depth-dependent thermal inertia our results suggest that, in general, thermal inertia values representative of solid rock are reached some tens of centimeters to meters below the surface in the case of MBAs (the median diameter in our dataset = 24 km). In the case of the much smaller (km-sized) NEOs a thinner porous surface layer is indicated, with large pieces of solid rock possibly existing just a meter or less below the surface. These conclusions are consistent with our understanding from in-situ measurements of the surfaces of the Moon, and a few asteroids, and suggest a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids. Our results have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.

  6. Active Near Earth Asteroids

    Science.gov (United States)

    Jenniskens, Peter

    2015-08-01

    Past activity from Near Earth Asteroids is recorded in the meteoroid streams that cause our meteor showers. Automated meteoroid orbit surveys by photographic, low-light video, specular radar, and head-echo radar reflections are providing the first maps of meteor shower activity at different particle sizes. There are distinct differences in particle size distributions among streams. The underlaying mechanisms that created these streams are illuminated: fragmentation from spin-up or thermal stresses, meteoroid ejection by water vapor drag, and ejection of icy particles by CO and CO2 sublimation. The distribution of the meteoroid orbital elements probe the subsequent evolution by planetary perturbations and sample the range of dynamical processes to which Near Earth Asteroids are exposed. The non-stream "sporadic" meteors probe early stages in the evolution from meteoroid streams into the zodiacal dust cloud. We see that the lifetime of large meteoroids is generally not limited by collisions. Results obtained by the CAMS video survey of meteoroid orbits are compared to those from other orbit surveys. Since October 2010, over 200,000 meteoroid orbits have been measured. First results from an expansion into the southern hemisphere are also presented, as are first results from the measurement of main element compositions. Among the many streams detected so far, the Geminid and Sextantid showers stand out by having a relatively high particle density and derive from parent bodies that appear to have originated in the main belt.

  7. Asteroids Were Born Big

    CERN Document Server

    Morbidelli, Alessandro; Nesvorny, David; Levison, Harold F

    2009-01-01

    How big were the first planetesimals? We attempt to answer this question by conducting coagulation simulations in which the planetesimals grow by mutual collisions and form larger bodies and planetary embryos. The size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and we search for the one that produces at the end objects with a SFD that is consistent with asteroid belt constraints. We find that, if the initial planetesimals were small (e.g. km-sized), the final SFD fails to fulfill these constraints. In particular, reproducing the bump observed at diameter D~100km in the current SFD of the asteroids requires that the minimal size of the initial planetesimals was also ~100km. This supports the idea that planetesimals formed big, namely that the size of solids in the proto-planetary disk ``jumped'' from sub-meter scale to multi-kilometer scale, without passing through intermediate values. Moreover, we find evidence that the initial planetesimals ...

  8. Ion Beam Shepherd for Asteroid Deflection

    CERN Document Server

    Bombardelli, C

    2011-01-01

    We present a novel concept to impart a continuous thrust to an Earth threatening asteroid from a hovering spacecraft without need for physical attachment nor gravitational interaction with the asteroid. The concept involves an ion thruster placed at a distance of a few asteroid diameters directing a stream of quasi-neutral plasma against the asteroid surface resulting into a net transferred momentum. As the transmitted force is independent of the asteroid mass and size the method allows deflecting subkilometer asteroids with a spacecraft much lighter when compared to a gravity tractor spacecraft of equal deflection capability. The finding could make low-cost asteroid deflection missions possible in the coming years.

  9. Design study for asteroidal exploitation

    Science.gov (United States)

    Adams, Carl; Blissit, Jim; Jarrett, Dave; Sanner, Rob; Yanagawa, Koji

    1985-08-01

    A systematic approach to asteroidal exploitation for the 1990 to 2010 time frame is presented as an initial step toward expanding the use of space beyond the space station by providing a source of lower cost materials. With only a limited amount of information known about the asteroids, reconnaissance and exploration phases to determine the exact locations and compositions of several earth-approaching asteroids are required. Earth-based telescopes are used to locate and study the asteroids, while unmanned probes will return samples of asteroidal material to earth for analysis. After these phases are completed, the retrieval of a 35,000 metric ton piece of the asteroid Anteros is undertaken. A cargo transporter uses magnetoplasmadynamic (MPD) arcjets outbound and a mass-driver using asteroidal material inbound. A crew ship uses ion engines. Low thrust trajectories are used for both spacecraft. A materials processing facility will manufacture propellant pellets and retrieve non-propellant materials for spacecraft use. The cost is 1/10th that to transport the same materials from earth to high earth orbit. The project will cost 25 percent less if done in conjunction with a lunar and Martian base.

  10. Mine Planning for Asteroid Orebodies

    Science.gov (United States)

    Gertsch, L. S.; Gertsch, R. E.

    2000-01-01

    Given that an asteroid (or comet) has been determined to contain sufficient material of value to be potentially economic to exploit, a mining method must be selected and implemented. This paper discusses the engineering necessary to bring a mine online, and the opportunities and challenges inherent in asteroid mineral prospects. The very important step of orebody characterization is discussed elsewhere. The mining methods discussed here are based on enclosing the asteroid within a bag in some fashion, whether completely or partially. In general, asteroid mining methods based on bags will consist of the following steps. Not all will be required in every case, nor necessarily in this particular sequence. Some steps will be performed simultaneously. Their purpose is to extract the valuable material from the body of the asteroid in the most efficient, cost-effective manner possible. In approximate order of initiation, if not of conclusion, the steps are: 1. Tether anchoring to the asteroid. 2. Asteroid motion control. 3. Body/fragment restraint system placement. 4. Operations platform construction. 5. Bag construction. 6. Auxiliary and support equipment placement. 7. Mining operations. 8. Processing operations. 9. Product transport to markets.

  11. Double Asteroid Redirection Test (DART)

    Science.gov (United States)

    Cheng, A. F.

    2016-12-01

    The Asteroid Impact Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, consisting of the NASA Double Asteroid Redirection Test (DART) kinetic impactor mission and the ESA Asteroid Impact Mission (AIM) which is the rendezvous spacecraft. The AIDA target is the near-Earth binary asteroid 65803 Didymos. During the Didymos close approach to Earth in October, 2022, the DART spacecraft will impact the Didymos secondary at 6 km/s and deflect its trajectory, changing the orbital period of the binary. This change can be measured by Earth-based optical and radar observations. The primary goals of AIDA are to (1) perform a full-scale demonstration of asteroid deflection by kinetic impact; (2) measure the resulting deflection; and (3) validate and improve models for momentum transfer in high-speed impacts on an asteroid. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency from a kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. In addition to a measurable change in the binary orbit period, the DART kinetic impact is predicted to induce forced librations of the Didymos secondary of up to several degrees amplitude. It will furthermore make a crater that will be studied in detail by the AIM spacecraft, and it will release a volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes. Updates will be given on DART status and study results.

  12. Near-Earth object intercept trajectory design for planetary defense

    Science.gov (United States)

    Vardaxis, George; Wie, Bong

    2014-08-01

    Tracking the orbit of asteroids and planning for asteroid missions have ceased to be a simple exercise, and become more of a necessity, as the number of identified potentially hazardous near-Earth asteroids increases. Several software tools such as Mystic, MALTO, Copernicus, SNAP, OTIS, and GMAT have been developed by NASA for spacecraft trajectory optimization and mission design. However, this paper further expands upon the development and validation of an Asteroid Mission Design Software Tool (AMiDST), through the use of approach and post-encounter orbital variations and analytic keyhole theory. Combining these new capabilities with that of a high-precision orbit propagator, this paper describes fictional mission trajectory design examples of using AMiDST as applied to a fictitious asteroid 2013 PDC-E. During the 2013 IAA Planetary Defense Conference, the asteroid 2013 PDC-E was used for an exercise where participants simulated the decision-making process for developing deflection and civil defense responses to a hypothetical asteroid threat.

  13. Images of an Activated Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    In late April of this year, asteroid P/2016 G1 (PANSTARRS) was discovered streaking through space, a tail of dust extending behind it. What caused this asteroids dust activity?Asteroid or Comet?Images of asteroid P/2016 G1 at three different times: late April, late May, and mid June. The arrow in the center panel points out an asymmetric feature that can be explained if the asteroid initially ejected material in a single direction, perhaps due to an impact. [Moreno et al. 2016]Asteroid P/2016 G1 is an interesting case: though it has the orbital elements of a main-belt asteroid it orbits at just under three times the EarthSun distance, with an eccentricity of e ~ 0.21 its appearance is closer to that of a comet, with a dust tail extending 20 behind it.To better understand the nature and cause of this unusual asteroids activity, a team led by Fernando Moreno (Institute of Astrophysics of Andalusia, in Spain) performed deep observations of P/2016 G1 shortly after its discovery. The team used the 10.4-meter Great Canary Telescope to image the asteroid over the span of roughly a month and a half.A Closer Look at P/2016 G1P/2016 G1 lies in the inner region of the main asteroid belt, so it is unlikely to have any ices that suddenly sublimated, causing the outburst. Instead, Moreno and collaborators suggest that the asteroids tail may have been caused by an impact that disrupted the parent body.To test this idea, the team used computer simulations to model their observations of P/2016 G1s dust tail. Based on their models, they demonstrate that the asteroid was likely activated on February 10 2016 roughly 350 days before it reached perihelion in its orbit and its activity was a short-duration event, lasting only ~24 days. The teams models indicate that over these 24 days, the asteroid lost around 20 million kilograms of dust, and at its maximum activity level, it was ejecting around 8 kg/s!Comparison of the observation from late May (panel a) and two models: one in which

  14. Structural Stability of Asteroids

    Science.gov (United States)

    Hirabayashi, Toshi

    This thesis develops a technique for analyzing the internal structure of an irregularly shaped asteroid. This research focuses on asteroid (216) Kleopatra, a few-hundred-kilometer-sized main belt asteroid spinning about its maximum moment of inertia axis with a rotation period of 5.385 hours, to motivate the techniques. While Ostro et al. [117] reported its dog bone-like shape, estimation of its size has been actively discussed. There are at least three different size estimates: Ostro et al., Descamps et al., and Marchis et al. Descamps et al. reported that (216) Kleopatra has satellites and obtained the mass of this object. This research consists of determination of possible failure modes of (216) Kleopatra and its subsequent detailed stress analysis, with each part including an estimation of the internal structure. The first part of this thesis considers the failure mode of Kleopatra and evaluates the size from it. Possible failure modes are modeled as either material shedding from the surface or plastic failure of the internal structure. The surface shedding condition is met when a zero-velocity curve with the same energy level as one of the dynamical equilibrium points attaches to the surface at the slowest spin period, while the plastic failure condition is characterized by extending the theorem by Holsapple (2008) that the yield condition of the averaged stress over the whole volume is identical to an upper bound for global failure. The prime result shows that while surface shedding does not occur at the current spin period and thus cannot result in the formation of the satellites, the neck may be situated near its plastic deformation state. From the failure condition, we also find that the size estimated by Descamps et al. (2011) is the most structurally stable. The second part of this thesis discusses finite element analyses with an assumption of an elastic-perfectly plastic material and a non-associated flow rule. The yield condition is modeled as the

  15. Near Earth Asteroid Scout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In considering targets for human asteroid missions, there are several major factors that will make a significant difference in assessment of mission risks that...

  16. Solar wind tans young asteroids

    Science.gov (United States)

    2009-04-01

    A new study published in Nature this week reveals that asteroid surfaces age and redden much faster than previously thought -- in less than a million years, the blink of an eye for an asteroid. This study has finally confirmed that the solar wind is the most likely cause of very rapid space weathering in asteroids. This fundamental result will help astronomers relate the appearance of an asteroid to its actual history and identify any after effects of a catastrophic impact with another asteroid. ESO PR Photo 16a/09 Young Asteroids Look Old "Asteroids seem to get a ‘sun tan' very quickly," says lead author Pierre Vernazza. "But not, as for people, from an overdose of the Sun's ultraviolet radiation, but from the effects of its powerful wind." It has long been known that asteroid surfaces alter in appearance with time -- the observed asteroids are much redder than the interior of meteorites found on Earth [1] -- but the actual processes of this "space weathering" and the timescales involved were controversial. Thanks to observations of different families of asteroids [2] using ESO's New Technology Telescope at La Silla and the Very Large Telescope at Paranal, as well as telescopes in Spain and Hawaii, Vernazza's team have now solved the puzzle. When two asteroids collide, they create a family of fragments with "fresh" surfaces. The astronomers found that these newly exposed surfaces are quickly altered and change colour in less than a million years -- a very short time compared to the age of the Solar System. "The charged, fast moving particles in the solar wind damage the asteroid's surface at an amazing rate [3]", says Vernazza. Unlike human skin, which is damaged and aged by repeated overexposure to sunlight, it is, perhaps rather surprisingly, the first moments of exposure (on the timescale considered) -- the first million years -- that causes most of the aging in asteroids. By studying different families of asteroids, the team has also shown that an asteroid

  17. Asteroid named after CAS scientist

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ An asteroid has been named after CAS astronomy historian XI Zezong with the approval of the International Minor Planet Nomenclature Committee (IMPNC), announced China's National Astronomical Observatories at CAS (NAOC) on 17 August.

  18. Solar Radiation and Asteroidal Motion

    CERN Document Server

    Klacka, J

    2000-01-01

    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  19. Anatomy of an Asteroid Breakup

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    A team of scientists has observed the breakup of an asteroid as it orbits the Sun. In a new study, they reveal what theyve learned from their ground- and space-based observations of this disintegration.These Hubble images show the fragments of R3 in higher resolution over the span of October 2013 to February 2014. [Jewitt et al. 2017]Observations of DisintegrationActive asteroids are objects that move on asteroid-like orbits while displaying comet-like behavior. The cause of their activity can vary ranging from outgassing as the asteroid heats up in its solar approach, to expelled debris from a collision, to the entire asteroid flying apart because its spinning too fast.Led by David Jewitt (University of California at Los Angeles), a team of scientists has analyzed observations of the disintegrating asteroid P/2013 R3. The observations span two years and were made by a number of telescopes, including Hubble, Keck (in Hawaii), Magellan (in Chile), and the Very Large Telescope (in Chile).A schematic diagram of the different fragments of R3 and how they relate to each other. Black numbers estimate the fragment separation velocities; red numbers estimate the separation date. [Jewitt et al. 2017]Jewitt and collaborators then used these observations and a bit of modeling to understand what asteroid R3 was like originally, what its pieces are doing now, and what caused it to break up.Cause of the BreakupThe team found that P/2013 R3 broke up into at least 13 pieces, the biggest of which was likely no more than 100-200 meters in size. The original asteroid was probably less than 400 m in radius.By measuring the velocities of the fragments in the various observations, Jewitt and collaborators were able to work backward to determine when each piece broke off. They found that the fragmentation process was spread out over the span of roughly 5 months suggesting that the asteroids breakup wasnt impact-related (otherwise the fragmentation would likely have been all at once

  20. 电力移动智能终端安全技术研究%Attack and Defense Research on Mobile Intelligent Terminals Used in Electrical Systems

    Institute of Scientific and Technical Information of China (English)

    王春新; 李信; 于然; 易平

    2014-01-01

    电力移动智能终端中存储的用户身份、电力运维数据、电网管理数据等大量重要信息使其具有巨大的攻击价值。Android作为目前全球最广泛使用的移动终端操作系统,也为相当规模的电力移动智能终端所应用,然而,其开放性(第三方开发)等特征在增强其功能和提升应用灵活性的同时也为系统漏洞、恶意应用等多种类型的攻击提供了渠道。文章通过对Android系统安全模型和安全威胁的研究,总结了针对Android平台上的电力移动智能终端的远程和本地攻击、隐私窃取、通信劫持和远程控制技术及方法。最后,提出了在基于Android系统的电力移动智能终端上加载恶意代码检测模块和操作系统加固的建议方案。%Mobile intelligent terminals used in electrical systems store much information,including user identity,operation data of electricity, management information,and etc, which makes them have a great value of being attacked. . As the world's most widely used mobile operating system, Android is applied in a large number of applications within the area of power grid. However, the openness (third-party developers) has provided the possibility to vulnerabilities, malicious behaviors and other types of attacks along with the powerful functionality and flexibility. This paper,based on the Android system security model and existing security threats research, summarizez security threats in Android security, including remote and local attacks, privacy theft, hijacking and remote control techniques. And then this paper provides a corresponding solution by adding malicious code detection module and operating system reinforcement which can help us improve the security of grid management system.

  1. Refining the asteroid taxonomy by polarimetric observations

    Science.gov (United States)

    Belskaya, I. N.; Fornasier, S.; Tozzi, G. P.; Gil-Hutton, R.; Cellino, A.; Antonyuk, K.; Krugly, Yu. N.; Dovgopol, A. N.; Faggi, S.

    2017-03-01

    We present new results of polarimetric observations of 15 main belt asteroids of different composition. By merging new and published data we determined polarimetric parameters characterizing individual asteroids and mean values of the same parameters characterizing different taxonomic classes. The majority of asteroids show polarimetric phase curves close to the average curve of the corresponding class. We show that using polarimetric data it is possible to refine asteroid taxonomy and derive a polarimetric classification for 283 main belt asteroids. Polarimetric observations of asteroid (21) Lutetia are found to exhibit possible variations of the position angle of the polarization plane over the surface.

  2. NASA’s Asteroid Redirect Mission: The Boulder Capture Option

    Science.gov (United States)

    Abell, Paul; Nuth, Joseph A.; Mazanek, Dan D.; Merrill, Raymond G.; Reeves, David M.; Naasz, Bo J.

    2014-11-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (˜1-5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa’s target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA’s OSIRIS REx and JAXA’s Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA’s ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA

  3. Excluding interlopers from asteroid families

    Science.gov (United States)

    Novakovic, B.; Radovic, V.

    2014-07-01

    Introduction: Asteroid families are believed to have originated from catastrophic collisions among asteroids. They are a very important subject of Solar System investigation, because practically any research topic carried out in asteroid-related science sooner or later encounters problems pertaining to asteroid families. One basic problem encountered when dealing with families is to determine reliably the list of its members, i.e. to reduce the number of interlopers as much as possible. This is an important problem, because many conclusions derived from analyses of the physical properties of family members must be necessarily based on firm and well established membership. However, as the number of known asteroids increases fast it becomes more and more difficult to obtain robust list of members of an asteroid family. To cope with these challenges we are proposing a new approach that may help to significantly reduce presence of interlopers among the family members. This method should be particularly useful once additional information become available, including primarily spectro-photometric data. This is exactly the kind of information that will be provided by Gaia. Metodology: Families (and their members) have been commonly identified by analysing the distribution of asteroids in the space of proper orbital elements, using the Hierarchical Clustering Method (HCM) [1]. A well-known drawback of the HCM based on the single linkage rule is the so-called chaining phenomenon: first concentrations naturally tend to incorporate nearby groups, forming a kind of 'chain'. Thus, any family membership obtained by the pure HCM must unavoidably include some interlopers. The method we are proposing here could be used to identify these interlopers, with its main advantage being an ability to significantly reduce the chaining effect. The method consists of three main steps. First we determine an asteroid family members by applying the HCM to the catalogue of proper elements obtained

  4. Asteroid airburst altitude vs. strength

    Science.gov (United States)

    Robertson, Darrel; Wheeler, Lorien; Mathias, Donovan

    2016-10-01

    Small NEO asteroids (<Ø140m) may not be a threat on a national or global level but can still cause a significant amount of local damage as demonstrated by the Chelyabinsk event where there was over $33 million worth of damage (1 billion roubles) and 1500 were injured, mostly due to broken glass. The ground damage from a small asteroid depends strongly on the altitude at which they "burst" where most of the energy is deposited in the atmosphere. The ability to accurately predict ground damage is useful in determining appropriate evacuation or shelter plans and emergency management.Strong asteroids, such as a monolithic boulder, fail and create peak energy deposition close to the altitude at which ram dynamic pressure exceeds the material cohesive strength. Weaker asteroids, such as a rubble pile, structurally fail at higher altitude, but it requires the increased aerodynamic pressure at lower altitude to disrupt and disperse the rubble. Consequently the resulting airbursts have a peak energy deposition at similar altitudes.In this study hydrocode simulations of the entry and break-up of small asteroids were performed to examine the effect of strength, size, composition, entry angle, and speed on the resulting airburst. This presentation will show movies of the simulations, the results of peak burst height, and the comparison to semi-analytical models.

  5. Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat

    Science.gov (United States)

    Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Josh; Chodas, Paul W.; Englander, Jacob A.

    2017-01-01

    This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https:cneos.jpl.nasa.govpdcspdc17. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or low-thrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft, asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth-spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection.

  6. A Gravitational Tractor for Towing Asteroids

    CERN Document Server

    Lu, E T; Lu, Edward T.; Categories, Stanley G. Love

    2005-01-01

    We present a concept for a spacecraft that can controllably alter the trajectory of an Earth threatening asteroid using gravity as a towline. The spacecraft hovers near the asteroid with thrusters angled outward so the exhaust does not impinge on the surface. This deflection method is insensitive to the structure, surface properties, and rotation state of the asteroid.

  7. Benchmarking Asteroid-Deflection Experiment

    Science.gov (United States)

    Remington, Tane; Bruck Syal, Megan; Owen, John Michael; Miller, Paul L.

    2016-10-01

    An asteroid impacting Earth could have devastating consequences. In preparation to deflect or disrupt one before it reaches Earth, it is imperative to have modeling capabilities that adequately simulate the deflection actions. Code validation is key to ensuring full confidence in simulation results used in an asteroid-mitigation plan. We are benchmarking well-known impact experiments using Spheral, an adaptive smoothed-particle hydrodynamics code, to validate our modeling of asteroid deflection. We describe our simulation results, compare them with experimental data, and discuss what we have learned from our work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-695540

  8. Dynamics of Rotationally Fissioned Asteroids

    Science.gov (United States)

    Jacobson, Seth A.; Scheeres, D. J.

    2010-10-01

    We present a model for near-Earth asteroid (NEA) rotational fission that results in the evolution of all observed types of NEA systems: synchronous binaries, asteroid pairs, doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. The model consists of "rubble pile” asteroid geophysics, the YORP and binary YORP effects, and mutual gravitational interactions. An NEA can be modeled as a ``rubble pile"--a collection of gravitationally bound boulders with a distribution of size scales and very little tensile strength between them. The YORP effect torques a "rubble pile” asteroid until the asteroid reaches its disruption spin limit, and then two collections of boulders will enter into orbit about each other determined by the largest distance between mass centers. This binary system dynamically evolves under the effects of non-spherical gravitational potentials, solar gravitational perturbations, and mutual body tides. The coupling between the spin states and orbit state chaotically drives the system into the observed asteroid classes with mass ratio, q, distinguishing two evolutionary tracks. High mass ratio systems, q>0.2, evolve tidally into doubly synchronous binaries and then continued to be evolved by BYORP. Low mass ratio systems, qfission, creating a chaotic ternary system. We call this new process secondary fission. The resulting triple system may eject one body or, more often, send one into a slow speed impact with the primary. These processes tend to stabilize the initially chaotic binaries to create synchronous binaries. These results emphasize the importance of the initial component size distribution and configuration within the parent body. This work is supported by NASA's PGG and OPR programs through grants: NNX08AL51G and NNX09AU23G.

  9. Project RAMA: Reconstructing Asteroids Into Mechanical Automata

    Science.gov (United States)

    Dunn, Jason; Fagin, Max; Snyder, Michael; Joyce, Eric

    2017-01-01

    Many interesting ideas have been conceived for building space-based infrastructure in cislunar space. From O'Neill's space colonies, to solar power satellite farms, and even prospecting retrieved near earth asteroids. In all the scenarios, one thing remained fixed - the need for space resources at the outpost. To satisfy this need, O'Neill suggested an electromagnetic railgun to deliver resources from the lunar surface, while NASA's Asteroid Redirect Mission called for a solar electric tug to deliver asteroid materials from interplanetary space. At Made In Space, we propose an entirely new concept. One which is scalable, cost effective, and ensures that the abundant material wealth of the inner solar system becomes readily available to humankind in a nearly automated fashion. We propose the RAMA architecture, which turns asteroids into self-contained spacecraft capable of moving themselves back to cislunar space. The RAMA architecture is just as capable of transporting conventional-sized asteroids on the 10-meter length scale as transporting asteroids 100 meters or larger, making it the most versatile asteroid retrieval architecture in terms of retrieved-mass capability. This report describes the results of the Phase I study funded by the NASA NIAC program for Made In Space to establish the concept feasibility of using space manufacturing to convert asteroids into autonomous, mechanical spacecraft. Project RAMA, Reconstituting Asteroids into Mechanical Automata, is designed to leverage the future advances of additive manufacturing (AM), in-situ resource utilization (ISRU) and in-situ manufacturing (ISM) to realize enormous efficiencies in repeated asteroid redirect missions. A team of engineers at Made In Space performed the study work with consultation from the asteroid mining industry, academia, and NASA. Previous studies for asteroid retrieval have been constrained to studying only asteroids that are both large enough to be discovered, and small enough to be

  10. Flying Through Dust From Asteroids

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  11. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.

    2016-09-01

    With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).

  12. AsteroidZoo: A New Zooniverse project to detect asteroids and improve asteroid detection algorithms

    Science.gov (United States)

    Beasley, M.; Lewicki, C. A.; Smith, A.; Lintott, C.; Christensen, E.

    2013-12-01

    We present a new citizen science project: AsteroidZoo. A collaboration between Planetary Resources, Inc., the Zooniverse Team, and the Catalina Sky Survey, we will bring the science of asteroid identification to the citizen scientist. Volunteer astronomers have proved to be a critical asset in identification and characterization of asteroids, especially potentially hazardous objects. These contributions, to date, have required that the volunteer possess a moderate telescope and the ability and willingness to be responsive to observing requests. Our new project will use data collected by the Catalina Sky Survey (CSS), currently the most productive asteroid survey, to be used by anyone with sufficient interest and an internet connection. As previous work by the Zooniverse has demonstrated, the capability of the citizen scientist is superb at classification of objects. Even the best automated searches require human intervention to identify new objects. These searches are optimized to reduce false positive rates and to prevent a single operator from being overloaded with requests. With access to the large number of people in Zooniverse, we will be able to avoid that problem and instead work to produce a complete detection list. Each frame from CSS will be searched in detail, generating a large number of new detections. We will be able to evaluate the completeness of the CSS data set and potentially provide improvements to the automated pipeline. The data corpus produced by AsteroidZoo will be used as a training environment for machine learning challenges in the future. Our goals include a more complete asteroid detection algorithm and a minimum computation program that skims the cream of the data suitable for implemention on small spacecraft. Our goal is to have the site become live in the Fall 2013.

  13. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Science.gov (United States)

    Baer, James; Chesley, Steven R.

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia) should conduct a thorough search for possible gravitational couplings and account for their effects.

  14. Astronomical Observations of Volatiles on Asteroids

    CERN Document Server

    Rivkin, Andrew S; Emery, Joshua P; Howell, Ellen S; Licandro, Javier; Takir, Driss; Vilas, Faith

    2015-01-01

    We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume.

  15. Astronomical observations of volatiles on asteroids

    Science.gov (United States)

    Rivkin, Andrew S.; Campins, Humberto; Emery, Joshua P.; Howell, Ellen S.; Licandro, Javier; Takir, Driss; Vilas, Faith; Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    2015-01-01

    We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume.

  16. Asteroid taxonomic signatures from photometric phase curves

    CERN Document Server

    Oszkiewicz, D A; Wasserman, L H; Muinonen, K; Penttilä, A; Pieniluoma, T; Trilling, D E; Thomas, C A

    2012-01-01

    We explore the correlation between an asteroid's taxonomy and photometric phase curve using the H, G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X complex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaningful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families given the distribution of G12 in each family. For certain ast...

  17. The empty primordial asteroid belt.

    Science.gov (United States)

    Raymond, Sean N; Izidoro, Andre

    2017-09-01

    The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets' gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself.

  18. The Hoffmeister asteroid family

    Science.gov (United States)

    Carruba, V.; Novaković, B.; Aljbaae, S.

    2017-03-01

    The Hoffmeister family is a C-type group located in the central main belt. Dynamically, it is important because of its interaction with the ν1C nodal secular resonance with Ceres, which significantly increases the dispersion in inclination of family members at a lower semimajor axis. As an effect, the distribution of inclination values of the Hoffmeister family at a semimajor axis lower than its centre is significantly leptokurtic, and this can be used to set constraints on the terminal ejection velocity field of the family at the time it was produced. By performing an analysis of the time behaviour of the kurtosis of the vW component of the ejection velocity field [γ2(vW)], as obtained from Gauss' equations, for different fictitious Hoffmeister families with different values of the ejection velocity field, we were able to exclude that the Hoffmeister family should be older than 335 Myr. Constraints from the currently observed inclination distribution of the Hoffmeister family suggest that its terminal ejection velocity parameter VEJ should be lower than 25 m s-1. Results of a Yarko-YORP Monte Carlo method to family dating, combined with other constraints from inclinations and γ2(vW), indicate that the Hoffmeister family should be 220^{+60}_{-40} Myr old, with an ejection parameter VEJ = 20 ± 5 m s-1.

  19. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    Science.gov (United States)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  20. Asteroid Redirect Mission - Next Major stepping-stone to Human Exploration of NEOs and beyond

    Science.gov (United States)

    Sanchez, Natalia

    2016-07-01

    In response to NASA's Asteroid Initiative, an Asteroid Redirect and Robotic Mission (ARRM) is being studied by a NASA cohort, led by JPL, to enable the capture a multi-ton boulder from the surface of a Near-Earth Asteroid and return it to cislunar space for subsequent human and robotic exploration. The mission would boost our understanding of NEOs and develop technological capabilities for Planetary Defense, shall a NEO come up on a collision course. The benefits of this mission can extend our capabilities to explore farther into space, as well as create a new commercial sector in Space Mining, which would make materials in Space available for our use. ARRM would leverage and advance current knowledge of higher-efficiency propulsion systems with a new Solar Electric Propulsion demonstration (similar to that on the Dawn spacecraft) to be incorporated into future Mars Missions.

  1. Asteroid Detection Results Using the Space Surveillance Telescope

    Science.gov (United States)

    Ruprecht, Jessica D.; Ushomirsky, Gregory; Woods, Deborah F.; Viggh, Herbert E. M.; Varey, Jacob; Cornell, Mark E.; Stokes, Grant

    2015-11-01

    From 1998-2013, MIT Lincoln Laboratory operated a highly successful near-Earth asteroid search program using two 1-m optical telescopes located at the MIT Lincoln Laboratory Experimental Test Site (ETS) in Socorro, N.M. In 2014, the Lincoln Near-Earth Asteroid Research (LINEAR) program successfully transitioned operations from the two 1-m telescopes to the 3.5-m Space Surveillance Telescope (SST) located at Atom Site on White Sands Missile Range, N.M. This paper provides a summary of first-year performance and results for the LINEAR program with SST and provides an update on recent improvements to the moving-object pipeline architecture that increase utility of SST data for NEO discovery and improve sensitivity to fast-moving objects. Ruprecht et al. (2014) made predictions for SST NEO search productivity as a function of population model. This paper assesses the NEO search performance of SST in the first 1.5 years of operation and compares results to model predictions.This work is sponsored by the Defense Advanced Research Projects Agency and the National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. The views, opinions, and/or findings contained in this article/presentation are those of the authors / presenters and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Distribution Statement A: Approved for public release, distribution unlimited.

  2. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    Science.gov (United States)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  3. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  4. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  5. The Asteroid 1998 QE2

    Science.gov (United States)

    Vodniza, Alberto Q.; Pereira, M. R.; Arecibo Observatory Team; JPL Target Asteroids Team

    2013-10-01

    This big asteroid was at 5.8 millions of kilometers from the Earth on May 31 (2013) and it has a diameter of 2.7 km. The radar images obtained by JPL showed that the period of rotation around its axis is close to five hours. Hills. K (2013) reported that the period is of 5.281 +/- 0.002 hours. On June 4 the team of Goldstone-Arecibo found a period of 4.75 +/- 0.01 hours. We also contributed with the light and phase curves to estimate the period by means of the telescope (with red filter). The radar imagery (JPL and Arecibo) revealed that 1998 QE2 has a moon, and we captured a mutual event (eclipse). From our Observatory, located in Pasto-Colombia, we captured several pictures, videos and astrometry data during several days. Our data was published by the Minor Planet Center (MPC) and also appears at the web page of NEODyS. The pictures of the asteroid were captured with the following equipment: CGE PRO 1400 CELESTRON (f/11 Schmidt-Cassegrain Telescope) and STL-1001 SBIG camera. We obtained the light curve of the body. Astrometry was carried out, and we calculated the orbital elements. We obtained the following orbital parameters: eccentricity = 0.5692181, semi-major axis = 2.41104631 A.U, orbital inclination = 12.82771 deg, longitude of the ascending node = 250.16876 deg, argument of perihelion = 345.61328 deg, mean motion = 0.26326658 deg/d, perihelion distance = 1.03863508 A.U, aphelion distance = 3.78345755 A.U. The asteroid has an orbital period of 3.74 years The parameters were calculated based on 191 observations (2013 May: 17-24) with mean residual = 0.162 arcseconds. A video of the asteroid from our Observatory was published on the main page of the “SPACEWEATHER” web: http://www.spaceweather.com/archive.php?view=1&day=21&month=05&year=2013 Note: The autors would like to thank to: Dr. Alessondra Springmann (Arecibo Observatory), Dr. Petr Pravec (Czech Republic), Dr. Lance Benner (JPL), Dr. Carl Hergenrother (Target Asteroids Team), and Dr. Dolores Hill

  6. Regular Motions of Resonant Asteroids

    Science.gov (United States)

    Ferraz-Mello, S.

    1990-11-01

    RESUMEN. Se revisan resultados analiticos relativos a soluciones regulares del problema asteroidal eliptico promediados en la vecindad de una resonancia con jupiten Mencionamos Ia ley de estructura para libradores de alta excentricidad, la estabilidad de los centros de liberaci6n, las perturbaciones forzadas por la excentricidad de jupiter y las 6rbitas de corotaci6n. ABSTRAC This paper reviews analytical results concerning the regular solutions of the elliptic asteroidal problem averaged in the neighbourhood of a resonance with jupiter. We mention the law of structure for high-eccentricity librators, the stability of the libration centers, the perturbations forced by the eccentricity ofjupiter and the corotation orbits. Key words: ASThROIDS

  7. Families classification including multiopposition asteroids

    Science.gov (United States)

    Milani, Andrea; Spoto, Federica; Knežević, Zoran; Novaković, Bojan; Tsirvoulis, Georgios

    2016-01-01

    In this paper we present the results of our new classification of asteroid families, upgraded by using catalog with > 500,000 asteroids. We discuss the outcome of the most recent update of the family list and of their membership. We found enough evidence to perform 9 mergers of the previously independent families. By introducing an improved method of estimation of the expected family growth in the less populous regions (e.g. at high inclination) we were able to reliably decide on rejection of one tiny group as a probable statistical fluke. Thus we reduced our current list to 115 families. We also present newly determined ages for 6 families, including complex 135 and 221, improving also our understanding of the dynamical vs. collisional families relationship. We conclude with some recommendations for the future work and for the family name problem.

  8. Colorimetry and magnitudes of asteroids

    Science.gov (United States)

    Bowell, E.; Lumme, K.

    1979-01-01

    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  9. Comets and Asteroids with FIRST

    Science.gov (United States)

    Bockelée-Morvan, D.; Crovisier, J.

    2001-07-01

    The infrared and microwave domains have proved to be privileged tools to study the physical and chemical properties of small bodies of the Solar System. After a review of the recent results obtained on comets and asteroids in these wavelength ranges, we forecast the major outcomes that can be expected from their observations with the Herschel Space Observatory (hereafter referred as to FIRST, the former denomination). This prospect is focussed on: 1) observations of water rotational lines in comets to measure water outgassing and study water excitation in the coma and its kinematics; 2) observations of HDO in comets to constrain solar nebula models and formation scenarii of comets; 3) the study of surface properties of asteroids.

  10. A method to determine asteroid poles

    Science.gov (United States)

    Deangelis, G.

    1993-01-01

    The determination of spin axis and shape is well known to be of fundamental importance for studies about the rotational and physical properties of asteroids. In particular, knowledge that the pole coordinate distribution is random or not could indicate the probable non-Maxwellian distribution of asteroid spin axes, while the distribution in terms of size and shape could place important constraints on the theories about the collisional history of some individual asteroids, of asteroid families, and of the asteroid population as a whole. Many kinds of methods have been developed to determine pole coordinates. An EA method is presented, from which it is possible to obtain the solution with no trial poles, but with a simultaneous least square fit on both the E and A part. Results for rotational and shape parameters were obtained for 18 asteroids: the values of the obtained parameters are generally in close agreement with those of others.

  11. Selecting asteroids for a targeted spectroscopic survey

    CERN Document Server

    Oszkiewicz, D A; Tomov, T; Birlan, M; Geier, S; Penttilä, A; Polińska, M

    2014-01-01

    Asteroid spectroscopy reflects surface mineralogy. There are few thousand asteroids whose surfaces have been observed spectrally. Determining the surface properties of those objects is important for many practical and scientific applications, such as for example developing impact deflection strategies or studying history and evolution of the Solar System and planet formation. The aim of this study is to develop a pre-selection method that can be utilized in searching for asteroids of any taxonomic complex. The method could then be utilized im multiple applications such as searching for the missing V-types or looking for primitive asteroids. We used the Bayes Naive Classifier combined with observations obtained in the course of the Sloan Digital Sky Survey and the Wide-field Infrared Survey Explorer surveys as well as a database of asteroid phase curves for asteroids with known taxonomic type. Using the new classification method we have selected a number of possible V-type candidates. Some of the candidates we...

  12. Eccentricity distribution in the main asteroid belt

    CERN Document Server

    Malhotra, Renu

    2016-01-01

    The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64,000 (excluding collisional family members). We undertook an analysis of asteroids' eccentricities and their interpretation with simple physical models. We find that Plummer's (1916) conclusion that the asteroids' eccentricities follow a Rayleigh distribution holds for the osculating eccentricities of large asteroids, but the proper eccentricities deviate from a Rayleigh distribution: there is a deficit of eccentricities smaller than $\\sim0.1$ and an excess of larger eccentricities. We further find that the proper eccentricities do not depend significantly on asteroid size but have strong dependence on heliocentric distance: the outer asteroid belt follows a Rayleigh distribution, but the inner belt is strikingly different. Eccentricities in the inner belt can be modeled as a vector sum of a primordial eccentricity vector of random orientation and magnitude drawn from a Ra...

  13. Mining the Apollo and Amor asteroids

    Science.gov (United States)

    Oleary, B.

    1977-01-01

    Earth-approaching asteroids could provide raw materials for space manufacturing. For certain asteroids the total energy per unit mass for the transfer of asteroidal resources to a manufacturing site in high earth orbit is comparable to that for lunar materials. For logistical reasons the cost may be many times less. Optical studies suggest that these asteroids have compositions corresponding to those of carbonaceous and ordinary chondrites, with some containing large quantities of iron and nickel; other are thought to contain carbon, nitrogen, and hydrogen, elements that appear to be lacking on the moon. The prospect that several new candidate asteroids will be discovered over the next few years increases the likelihood that a variety of asteroidal resource materials can be retrieved on low-energy missions.

  14. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  15. Exospheres from Asteroids to Planets

    Science.gov (United States)

    Killen, Rosemary M.; Burger, Matthew H.; Farrell, William M.; DREAM2

    2016-10-01

    The study of exospheres can help us understand the long-term loss of volatiles from planetary bodies due to interactions of planets, satellites, and small bodies with the interplanetary medium (solar wind, meteors, and dust), solar radiation, internal forces including diffusion and outgassing, and surface effects like sticking and chemistry. Recent evidence for water and OH on the moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to asteroids including Vesta and Ceres, and ESA sent Rosetta to the asteroids Lutetia and Steins. OSIRIS-REX will return a sample from a primitive asteroid, Bennu, to Earth. It is possible that a Phobos-Deimos flyby will be a precursor to a manned mission to Mars. Exospheric particles are derived from the surface and to some extent from interplanetary dust and meteoroids. By comparing the exospheric compositions before and after major meteor shower events it may be possible to determine the extent to which the exosphere reflects the surface composition. Observation of an escaping exosphere, termed a corona, is challenging. We therefore have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, mass of the exospheric species, heliocentric distance, rotation rate of the primary, composition of the body (asteroid type or icy body). These parameters will be useful for mission planning as well as quick look data to determine the size and location of bodies likely to retain their exospheres and observability of exospheric species. We will also consider the sizes of small clusters that may be gravitationally bound to small bodies such as Phobos. In addition, it is of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements, and the effect on the measurements of outgassing in the

  16. BILLIARDS: A Demonstration Mission for Hundred-Meter Class Near-Earth Asteroid Disruption

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent William

    2015-01-01

    Collisions from near-Earth asteroids (NEAs) have the potential to cause widespread harm to life on Earth. The hypervelocity nature of these collisions means that a relatively small asteroid (about a quartermile in diameter) could cause a global disaster. Proposed strategies for deflecting or disrupting such a threatening asteroid include detonation of a nuclear explosive device (NED) in close proximity to the asteroid, as well as intercepting the asteroid with a hypervelocity kinetic impactor. NEDs allow for the delivery of large amounts of energy to a NEA for a given mass launched from the Earth, but have not yet been developed or tested for use in deep space. They also present safety and political complications, and therefore may only be used when absolutely necessary. Kinetic impactors require a relatively simple spacecraft compared to NEDs, but also deliver a much lower energy for a given launch mass. To date, no demonstration mission has been conducted for either case, and such a demonstration mission must be conducted prior to the need to utilize them during an actual scenario to ensure that an established, proven system is available for planetary defense when the need arises. One method that has been proposed to deliver a kinetic impactor with impact energy approaching that of an NED is the "billiard-ball" approach. This approach would involve capturing an asteroid approximately ten meters in diameter with a relatively small spacecraft (compared to the launch mass of an equivalent direct kinetic impactor), and redirecting it into the path of an Earth-threatening asteroid. This would cause an impact which would disrupt the Earth-threatening asteroid or deflect it from its Earth-crossing trajectory. The BILLIARDS Project seeks to perform a demonstration of this mission concept in order to establish a protocol that can be used in the event of an impending Earth/asteroid collision. In order to accomplish this objective, the mission must (1) rendezvous with a

  17. Termination Documentation

    Science.gov (United States)

    Duncan, Mike; Hill, Jillian

    2014-01-01

    In this study, we examined 11 workplaces to determine how they handle termination documentation, an empirically unexplored area in technical communication and rhetoric. We found that the use of termination documentation is context dependent while following a basic pattern of infraction, investigation, intervention, and termination. Furthermore,…

  18. Recovering and Mining Asteroids with a Gas-Sealed Enclosure

    Science.gov (United States)

    Jenniskens, P.; Damer, B.; Norkus, R.; Pilotz, S.; Grigsby, B.; Adams, C.; Blair, B. R.

    2015-01-01

    The internal structure of weakly consolidated rubble piles and primitive asteroids can be studied closer to home, and such asteroids can be mined, if it is possible to create a gas-sealed enclosure around the asteroid.

  19. Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters

    Science.gov (United States)

    1989-01-01

    Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.

  20. Anchoring a lander on an asteroid using foam stabilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has proposed several missions to land a craft on an asteroid and potentially to return samples from it. While large asteroids in the asteroid belt can exhibit a...

  1. Stabilities of asteroid orbits in resonances

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A map of the asteroid motion is studied carefully. An exponential diffusion law in the chaotic sea and an algebraic law in the mixed region are observed. The effects of perturbations on diffusion are also discussed. The fixed points, their stabilities and the diffusion properties of the map give qualitative explanations of the distribution of asteroids, i.e. the depletion and accumulation of asteroids in the outer main belt, particularly in the first order mean motion resonances with Jupiter.

  2. Asteroid families, dynamics and astrometry

    Science.gov (United States)

    Williams, J. G.; Gibson, J.

    1987-01-01

    The proper elements and family assignments for the 1227 Palomar-Leiden Survey asteroids of high quality were tabulated. In addition to the large table, there are also auxiliary tables of Mars crossers and commensurate objects, histograms of the proper element distributions, and a discussion. Probably the most important part of the discussion describes the Mars crossing boundary, how the closest distances of approach to Mars and Jupiter are calculated, and why the observed population of Mars crossers should bombard that planet episodically rather than uniformly. Analytical work was done to derive velocity distributions of family forming events from proper element distributions subject to assumptions which may be appropriate for cratering events. Software was developed for a microcomputer to permit plotting of the proper elements. Three orthogonal views are generated and stereo pairs can be printed when desired. This program was created for the study of asteroid families. The astrometry task is directed toward measuring and reducing positions on faint comets and the minor planets with less common orbits. The observational material is CCD frames taken with the Palomar 1.5 m telescope. Positions of 10 comets and 16 different asteroids were published on the Minor Planet Circulars.

  3. Near Earth Asteroid (NEA) Scout

    Science.gov (United States)

    Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared; McNutt, Leslie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission that will lay the groundwork for the future use of solar sails. The NEA Scout mission will use the sail as primary propulsion allowing it to survey and image one NEA's of interest for future human exploration. NEA Scout will launch on the first mission of the Space Launch System (SLS) in 2018. After its first encounter with the Moon, NEA Scout will enter the sail characterization phase by the 86 square meter sail deployment. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. The spacecraft will perform a series of lunar flybys to achieve optimum departure trajectory before beginning its two year-long cruise. About one month before the asteroid flyby, NEA Scout will start its approach phase using optical navigation on top of radio tracking. The solar sail will provide NEA Scout continuous low thrust to enable a relatively slow flyby of the target asteroid under lighting conditions favorable to geological imaging. Once complete, NASA will have demonstrated the capability to fly low-cost, high delta V CubeSats to perform interplanetary missions.

  4. Geotechnical Tests on Asteroid Simulant Orgueil

    Science.gov (United States)

    Garcia, Alexander D'marco

    2017-01-01

    In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill

  5. NPOESS Field Terminal Updates

    Science.gov (United States)

    Heckmann, G.; Route, G.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products (aka, Environmental Data Records or EDRs) to NOAA and DoD processing centers operated by the United States government. The IDPS will process EDRs beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. IDPS also provides the software and requirements for the Field Terminal Segment (FTS). NPOESS provides support to deployed field terminals by providing mission data in the Low Rate and High Rate downlinks (LRD/HRD), mission support data needed to generate EDRs and decryption keys needed to decrypt mission data during Selective data Encryption (SDE). Mission support data consists of globally relevant data, geographically constrained data, and two line element sets. NPOESS provides these mission support data via the Internet accessible Mission Support Data Server and HRD/LRD downlinks. This presentation will illustrate and describe the NPOESS capabilities in support of Field Terminal users. This discussion will include the mission support data available to Field Terminal users, content of the direct broadcast HRD and LRD

  6. Eccentricity distribution in the main asteroid belt

    Science.gov (United States)

    Malhotra, Renu; Wang, Xianyu

    2017-03-01

    The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64 000 (excluding collisional family members). We undertook an analysis of asteroids' eccentricities and their interpretation with simple physical models. We find that a century old conclusion that the asteroids' eccentricities follow a Rayleigh distribution holds for the osculating eccentricities of large asteroids, but the proper eccentricities deviate from a Rayleigh distribution; there is a deficit of eccentricities smaller than ∼0.1 and an excess of larger eccentricities. We further find that the proper eccentricities do not depend significantly on asteroid size but have strong dependence on heliocentric distance; the outer asteroid belt follows a Rayleigh distribution, but the inner belt is strikingly different. Eccentricities in the inner belt can be modelled as a vector sum of a primordial eccentricity vector of random orientation and magnitude drawn from a Rayleigh distribution of parameter ∼0.06, and an excitation of random phase and magnitude ∼0.13. These results imply that when a late dynamical excitation of the asteroids occurred, it was independent of asteroid size and was stronger in the inner belt than in the outer belt. We discuss implications for the primordial asteroid belt and suggest that the observationally complete sample size of main belt asteroids is large enough that more sophisticated model-fitting of the eccentricities is warranted and could serve to test alternative theoretical models of the dynamical excitation history of asteroids and its links to the migration history of the giant planets.

  7. 32 CFR Attachment 2 to Part 2800 - Security Termination Statement

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Security Termination Statement 2 Attachment 2 to Part 2800 National Defense Other Regulations Relating to National Defense OFFICE OF THE VICE PRESIDENT OF THE UNITED STATES SECURITY PROCEDURES Pt. 2800, Att. 2 Attachment 2 to Part...

  8. HUBBLE REVEALS HUGE CRATER ON THE SURFACE OF THE ASTEROID VESTA

    Science.gov (United States)

    2002-01-01

    [left] A NASA Hubble Space Telescope image of the asteroid Vesta, taken in May 1996 when the asteroid was 110 million miles from Earth. The asymmetry of the asteroid and 'nub' and the south pole is suggestive that it suffered a large impact event. The image was digitally restored to yield an effective scale of six miles per pixel (picture element). [center] A color-encoded elevation map of Vesta clearly shows the giant 285- mile diameter impact basin and 'bull's-eye' central peak. The map was constructed from 78 Wide Field Planetary Camera 2 pictures. Surface topography was estimated by noting irregularities along the limb and at the terminator (day/night boundary) where shadows are enhanced by the low Sun angle. [right] A 3-D computer model of the asteroid Vesta synthesized from Hubble topographic data. The crater's 8-mile high central peak can clearly be seen near the pole. The surface texture on the model is artificial, and is not representative of the true brightness variations on the asteroid. Elevation features have not been exaggerated. Photo Credit: Ben Zellner (Georgia Southern University), Peter Thomas (Cornell University), NASA

  9. Spitzer Survey of the Karin Cluster Asteroids

    NARCIS (Netherlands)

    Harris, Alan W.; Mueller, M.; Lisse, C.; Cheng, A.; Osip, D.

    2007-01-01

    The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8 Myr ago. Using the Spitzer Space Telescope we have sampled the thermal continua of 17 Karin cluster asteroids, down to the smallest members discovered so far, in order to deriv

  10. The Steward Observatory asteroid relational database

    Science.gov (United States)

    Sykes, Mark V.; Alvarezdelcastillo, Elizabeth M.

    1992-01-01

    The Steward Observatory Asteroid Relational Database (SOARD) was created as a flexible tool for undertaking studies of asteroid populations and sub-populations, to probe the biases intrinsic to asteroid databases, to ascertain the completeness of data pertaining to specific problems, to aid in the development of observational programs, and to develop pedagogical materials. To date SOARD has compiled an extensive list of data available on asteroids and made it accessible through a single menu-driven database program. Users may obtain tailored lists of asteroid properties for any subset of asteroids or output files which are suitable for plotting spectral data on individual asteroids. A browse capability allows the user to explore the contents of any data file. SOARD offers, also, an asteroid bibliography containing about 13,000 references. The program has online help as well as user and programmer documentation manuals. SOARD continues to provide data to fulfill requests by members of the astronomical community and will continue to grow as data is added to the database and new features are added to the program.

  11. Spitzer Survey of the Karin Cluster Asteroids

    NARCIS (Netherlands)

    Harris, Alan W.; Mueller, M.; Lisse, C.; Cheng, A.; Osip, D.

    2007-01-01

    The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8 Myr ago. Using the Spitzer Space Telescope we have sampled the thermal continua of 17 Karin cluster asteroids, down to the smallest members discovered so far, in order to

  12. [Asteroid hyalopathy (benson's disease): about a case].

    Science.gov (United States)

    Bienvenu, Yogolelo Asani; Angel, Musau Nkola; Leon, Kabamba Ngombe; Socrate, Kapalu Mwangala; Bruno, Iye Ombamba Kayimba; Gaby, Chenge Borasisi

    2017-01-01

    We here report a case of a 58 year-old diabetic male patient with asteroid hyalopathy, an affection rarely described in the literature. This study can help focus the attention of scientists on the pathologies of the vitreous disorders in diabetic patients as well as on other systemic diseases asteroid hyalopathy may be associated with.

  13. Periodic Motion near the Surface of Asteroids

    CERN Document Server

    Jiang, Yu; Li, Hengnian

    2015-01-01

    We are interested in the periodic motion and bifurcations near the surface of an asteroid. The gravity field of an irregular asteroid and the equation of motion of a particle near the surface of an asteroid are studied. The periodic motions around the major body of triple asteroid 216 Kleopatra and the OSIRIS REx mission target asteroid 101955 Bennu are discussed. We find that motion near the surface of an irregular asteroid is quite different from the motion near the surface of a homoplastically spheroidal celestial body. The periodic motions around the asteroid 101955 Bennu and 216 Kleopatra indicate that the geometrical shapes of the orbits are probably very sophisticated. There exist both stable periodic motions and unstable periodic motions near the surface of the same irregular asteroid. This periodic motion which is unstable can be resonant or non resonant. The period doubling bifurcation and pseudo period doubling bifurcation of periodic orbits coexist in the same gravity field of the primary of the t...

  14. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    Science.gov (United States)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system

  15. Origin of igneous meteorites and differentiated asteroids

    Science.gov (United States)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.

    2014-07-01

    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have

  16. The Compositional Structure of the Asteroid Belt

    CERN Document Server

    DeMeo, Francesca E; Walsh, Kevin J; Chapman, Clark R; Binzel, Richard P

    2015-01-01

    The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from "What was the original compositional gradient of the Asteroid Belt?" to "What was the original compositional gradient of small bodies across the entire Solar System?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of...

  17. Measurement of Cohesion in Asteroid Regolith Materials

    Science.gov (United States)

    Kleinhenz, Julie; Gaier, James; Waters, Deborah; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick

    2017-01-01

    There is increasing evidence that a large fraction of asteroids, and even Phobos, have such low densities (asteroids are thought to be made up of unconsolidated smaller particles of varying size referred to as rubble piles. Images of the asteroid Itokawa reinforce this hypothesis. What holds the rubble piles together? Gravitational forces alone are not strong enough to hold together rubble pile asteroids, at least not those that are rapidly spinning Van der Waals forces and or Electrostatic forces must therefore be responsible for holding them together. Previous work suggests that electrostatic forces, which are orders of magnitude stronger are far more likely. Charge build-up is a likely consequence of the interaction of airless bodies with the solar wind plasma, analogous to what has been proposed to occur on the moon. Objective: Experimentally measure cohesive forces relevant to those holding rubble pile asteroids together

  18. Asteroid spin-up fission systems

    Science.gov (United States)

    Pravec, P.

    2014-07-01

    Among asteroids smaller than about 15 km in diameter, there is a population of binary and multiple asteroid systems that show characteristics strongly suggesting their formation by spin-up fission. I will review the current observational data we have on the systems and compare them with predictions from theories of formation of asteroid systems. I will show that the best explanation of their observed properties is provided by the theory of fission of cohesionless (rubble-pile) asteroids spun up to the critical spin frequency by the YORP effect. Observed asteroid systems are of two kinds: bound and unbound. Bound asteroid systems typically consist of a larger primary and one or two smaller satellites. Unbound systems consist of two asteroids orbiting the Sun on highly similar orbits, again with one being typically larger (primary) and the other being smaller (secondary). These two groups are not exclusive; there exist systems with one or two bound and an unbound secondary. Our current sample consists of 133 bound asteroid systems (binaries or triples) with primary sizes between 0.12 and 13 km and of 178 asteroid pairs with similar primary sizes. Bound systems have been observed in heliocentric orbits from near the Earth to the outer main belt, while asteroid pairs are recognizable only in the main belt where their orbits are only slowly dispersed so the pairs can be identified for up to 2 Myr after formation. The leading observational techniques for discovery and characterization of asteroid systems are radar imagery (for near-Earth asteroid systems) and lightcurve photometry (for main-belt ones). The observed characteristics of asteroid systems suggesting their formation by rotational fission of parent rubble-pile asteroids after being spun up by the YORP effect are as follows. The angular momentum content of binary asteroids is close to critical. The orientations of satellite orbits are non-random; the orbital poles concentrate near the obliquities of 0 and 180

  19. NASA Double Asteroid Redirection Test (Dart) Trajectory Validation and Robustness

    Science.gov (United States)

    Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, flyby (138971) 2001 CB21 for impart rehearsal, and impact the secondary body of the (65803) Didymos system. This work focuses on the interplanetary trajectory design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.

  20. NASA Double Asteroid Redirection Test (DART) Trajectory Validation and Robutness

    Science.gov (United States)

    Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, fly by (138971) 2001 CB21 for impact rehearsal, and impact Didymos-B, the secondary body of the binary (65803) Didymos system. This work focuses on the heliocentric transfer design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.

  1. Reconstructing HST Images of Asteroids

    Science.gov (United States)

    Storrs, A. D.; Bank, S.; Gerhardt, H.; Makhoul, K.

    2003-12-01

    We present reconstructions of images of 22 large main belt asteroids that were observed by Hubble Space Telescope with the Wide-Field/Planetary cameras. All images were restored with the MISTRAL program (Mugnier, Fusco, and Conan 2003) at enhanced spatial resolution. This is possible thanks to the well-studied and stable point spread function (PSF) on HST. We present some modeling of this process and determine that the Strehl ratio for WF/PC (aberrated) images can be improved to 130 ratio of 80 We will report sizes, shapes, and albedos for these objects, as well as any surface features. Images taken with the WFPC-2 instrument were made in a variety of filters so that it should be possible to investigate changes in mineralogy across the surface of the larger asteroids in a manner similar to that done on 4 Vesta by Binzel et al. (1997). Of particular interest are a possible water of hydration feature on 1 Ceres, and the non-observation of a constriction or gap between the components of 216 Kleopatra. Reduction of this data was aided by grant HST-GO-08583.08A from the Space Telescope Science Institute. References: Mugnier, L.M., T. Fusco, and J.-M. Conan, 2003. JOSA A (submitted) Binzel, R.P., Gaffey, M.J., Thomas, P.C., Zellner, B.H., Storrs, A.D., and Wells, E.N. 1997. Icarus 128 pp. 95-103

  2. Olivine-dominated Asteroids: Mineralogy and Origin

    CERN Document Server

    Sanchez, Juan A; Kelley, Michael S; Cloutis, Edward A; Bottke, William F; Nesvorný, David; Lucas, Michael P; Hardersen, Paul S; Gaffey, Michael J; Abell, Paul A; Corre, Lucille Le

    2013-01-01

    Olivine-dominated asteroids are a rare type of objects formed either in nebular processes or through magmatic differentiation. The analysis of meteorite samples suggest that at least 100 parent bodies in the main belt experienced partial or complete melting and differentiation before being disrupted. However, only a few olivine-dominated asteroids, representative of the mantle of disrupted differentiated bodies, are known to exist. Due to the paucity of these objects in the main belt their origin and evolution have been a matter of great debate over the years. In this work we present a detailed mineralogical analysis of twelve olivine-dominated asteroids. Within our sample we distinguish two classes, one that we call pure-olivine asteroids and another referred to as olivine-rich asteroids. For the pure-olivine asteroids the olivine chemistry was found to range from ~ Fo49 to Fo70, consistent with the values measured for brachinites and R chondrites. In the case of the olivine-rich asteroids we determined thei...

  3. Rotational Study of Ambiguous Taxonomic Classified Asteroids

    Science.gov (United States)

    Linder, Tyler R.; Sanchez, Rick; Wuerker, Wolfgang; Clayson, Timothy; Giles, Tucker

    2017-01-01

    The Sloan Digital Sky Survey (SDSS) moving object catalog (MOC4) provided the largest ever catalog of asteroid spectrophotometry observations. Carvano et al. (2010), while analyzing MOC4, discovered that individual observations of asteroids which were observed multiple times did not classify into the same photometric-based taxonomic class. A small subset of those asteroids were classified as having both the presence and absence of a 1um silicate absorption feature. If these variations are linked to differences in surface mineralogy, the prevailing assumption that an asteroid’s surface composition is predominantly homogenous would need to be reexamined. Furthermore, our understanding of the evolution of the asteroid belt, as well as the linkage between certain asteroids and meteorite types may need to be modified.This research is an investigation to determine the rotational rates of these taxonomically ambiguous asteroids. Initial questions to be answered:Do these asteroids have unique or nonstandard rotational rates?Is there any evidence in their light curve to suggest an abnormality?Observations were taken using PROMPT6 a 0.41-m telescope apart of the SKYNET network at Cerro Tololo Inter-American Observatory (CTIO). Observations were calibrated and analyzed using Canopus software. Initial results will be presented at AAS.

  4. Target Asteroids! Observing Campaigns for April through June 2017

    Science.gov (United States)

    Hergenrother, Carl; Hill, Dolores

    2017-04-01

    Asteroid campaigns to be conducted by the Target Asteroids! program during the April-June 2017 quarter are described. In addition to asteroids on the original Target Asteroids! list of easily accessible spacecraft targets, an effort has been made to identify other asteroids that are 1) brighter and easier to observe for small telescope users and 2) analogous to (101955) Bennu and (162173) Ryugu, targets of the OSIRIS-REx and Hayabusa-2 sample return missions.

  5. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems

    CERN Document Server

    Jacobson, Seth A

    2014-01-01

    We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thu...

  6. Difficult cases in photometric studies of asteroids

    Science.gov (United States)

    Marciniak, Anna; Pilcher, Frederick; Oszkiewicz, Dagmara; Bartczak, Przemysław; Santana-Ros, Toni; Kamiński, Krzysztof; Urakawa, Seitaro; Ogłoza, Waldemar; Fauvaud, Stéphane; Kankiewicz, Paweł; Kudak, Viktor; Żejmo, Michał; Nishiyama, Kota; Okumura, Shin-ichiro; Nimura, Tokuhiro; Hirsch, Roman; Konstanciak, Izabella; Tychoniec, Łukasz; Figas, Michał

    2016-06-01

    We present a photometric campaign targeted at asteroids that display both long periods of rotation and small amplitudes of brightness variations. Our aim is to debias available sample of spin and shape modelled asteroids and to correct previous wrong period determinations. Our newest findings are corrected period determinations for asteroids (279) Thule (P=23.896h ± 0.005 h), (673) Edda (P=22.340h ± 0.004 h), and (737) Arequipa (P=7.0259h ± 0.0003 h). Supporting lightcurves are presented in this paper.

  7. Spectroscopy of near-Earth asteroids

    DEFF Research Database (Denmark)

    Michelsen, René; Nathues, Andreas; Lagerkvist, Claes-Ingvar

    2006-01-01

    We present spectra and taxonomic classifications of 12 Near-Earth Asteroids (NEAs) and 2 inner Main Belt asteroids. The observations were carried out with the ESO 3.5 m NTT and the Danish 1.54 m telescope at La Silla, Chile. Eleven of the investigated NEAs belong to the S class while only one C......-type has been identified. Two NEAs were observed at phase angles larger than 60 degrees introducing significant phase reddening. In order to allow for comparisons between spectra of asteroids observed at different phase angles we make attempts to correct for this effect. However, it turned out...

  8. Spectroscopy of near-Earth asteroids

    DEFF Research Database (Denmark)

    Michelsen, René; Nathues, Andreas; Lagerkvist, Claes-Ingvar

    2006-01-01

    We present spectra and taxonomic classifications of 12 Near-Earth Asteroids (NEAs) and 2 inner Main Belt asteroids. The observations were carried out with the ESO 3.5 m NTT and the Danish 1.54 m telescope at La Silla, Chile. Eleven of the investigated NEAs belong to the S class while only one C......-type has been identified. Two NEAs were observed at phase angles larger than 60 degrees introducing significant phase reddening. In order to allow for comparisons between spectra of asteroids observed at different phase angles we make attempts to correct for this effect. However, it turned out...

  9. On the vW leptokurtic asteroid families

    Science.gov (United States)

    Carruba, Valerio; Nesvorny, David; Cassia Domingos, Rita; Aljbaae, Safwan; Espinoza Huaman, Mariela

    2016-10-01

    vW leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field v W is characterized by a positive value of the γ2 Pearson kurtosis, i.e., they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have γ2(vW) > 0.25. This may be caused by the fact that i) the family did not alter significantly its originally leptokurtic inclination distribution since its formation, as it seems to be the case for the Koronis family or ii) some of the family members interacted with a strong node secular resonances, as it is the case for the Astrid (interaction with the s-sC resonance with Ceres) and Gallia (interaction with the s-sV resonance with Vesta) families.In this work, we investigate the families that were affected by strong secular resonances with massive asteroids. By obtaining the time evolution of γ2(vW) for simulated families under the gravitational influence of planets and the three most massive bodies in the main belt we were able to i) assess the dynamical importance (or lack of) node secular resonances with Ceres, Vesta, and Pallas for the considered families, ii) obtain independent constraints on the family ages, and iii) for the case of the Astrid family set limitations on values of key parameters of the Yarkovsky force such as the surface thermal conductivity and the mean density of members. Overall, the use of the γ2(vW) parameter could provide useful hints on the original ejection velocity field and dynamical evolution of leptokurtic vW asteroid families.

  10. Asteroids@home - A BOINC distributed computing project for asteroid shape reconstruction

    CERN Document Server

    Durech, Josef; Vanco, Radim

    2015-01-01

    We present the project Asteroids@home that uses distributed computing to solve the time-consuming inverse problem of shape reconstruction of asteroids. The project uses the Berkeley Open Infrastructure for Network Computing (BOINC) framework to distribute, collect, and validate small computational units that are solved independently at individual computers of volunteers connected to the project. Shapes, rotational periods, and orientations of the spin axes of asteroids are reconstructed from their disk-integrated photometry by the lightcurve inversion method.

  11. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems

    Science.gov (United States)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-07-01

    We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.

  12. 32 CFR 776.35 - Declining or terminating representation.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Declining or terminating representation. 776.35... ADVOCATE GENERAL Rules of Professional Conduct § 776.35 Declining or terminating representation. (a) Declining or terminating representation: (1) Except as stated in paragraph (a)(3) of this section, a covered...

  13. ASIME 2016 White Paper: In-Space Utilisation of Asteroids: "Answers to Questions from the Asteroid Miners"

    OpenAIRE

    Graps, Amara L.; Blondel, Philippe; Bonin, Grant; Britt, Daniel; Centuori, Simone; Delbo, Marco; Drube, Line; Duffard, Rene; Elvis, Martin; Faber, Daniel; Frank, Elizabeth; Galache, JL; Green, Simon F.; Grundmann, Jan Thimo; Hsieh, Henry

    2016-01-01

    The aim of the Asteroid Science Intersections with In-Space Mine Engineering (ASIME) 2016 conference on September 21-22, 2016 in Luxembourg City was to provide an environment for the detailed discussion of the specific properties of asteroids, with the engineering needs of space missions that utilize asteroids. The ASIME 2016 Conference produced a layered record of discussions from the asteroid scientists and the asteroid miners to understand each other's key concerns and to address key scien...

  14. Water in Asteroid 4 Vesta

    Science.gov (United States)

    Taylor, G. J.

    2015-01-01

    Eucrite meteorites come from asteroid 4 Vesta, which was recently studied from orbit by NASA's Dawn mission. Adam Sarafian (Woods Hole Oceanographic Institute) and colleagues at Woods Hole, the University of Bristol, England, and the University of New Mexico measured the hydrogen concentration and deuterium/hydrogen (D/H) ratio in crystals of the mineral apatite (calcium phosphate) in eucrites. They found that the D/H ratio is in the same range as in carbonaceous chondrites, most samples of the Earth's mantle, and in samples of basaltic meteorites from Mars. Combined with measurements of the isotopic compositions of nitrogen and carbon, the data suggest that these volatile elements were added to Earth early in its history, probably during its formation. Other studies conclude that water with D/H like that in carbonaceous chondrites, Earth, Mars, and Vesta were likely inherited from interstellar ice that predates formation of the solar system.

  15. On the highly inclined $v_W$ leptokurtic asteroid families

    CERN Document Server

    Carruba, V; Aljbaae, S; Huaman, M

    2016-01-01

    $v_W$ leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field $v_W$ is characterized by a positive value of the ${\\gamma}_2$ Pearson kurtosis, i.e., they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have ${\\gamma}_2(v_W) > 0.25$. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the $s-s_V$ resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of ${\\gamma}_2(v_W)$ for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the ...

  16. Mineralogy and Surface Composition of Asteroids

    CERN Document Server

    Reddy, Vishnu; Thomas, Cristina A; Moskovitz, Nicholas A; Burbine, Thomas H

    2015-01-01

    Methods to constrain the surface mineralogy of asteroids have seen considerable development during the last decade with advancement in laboratory spectral calibrations and validation of our interpretive methodologies by spacecraft rendezvous missions. This has enabled the accurate identification of several meteorite parent bodies in the main asteroid belt and helped constrain the mineral chemistries and abundances in ordinary chondrites and basaltic achondrites. With better quantification of spectral effects due to temperature, phase angle, and grain size, systematic discrepancies due to non-compositional factors can now be virtually eliminated for mafic silicate-bearing asteroids. Interpretation of spectrally featureless asteroids remains a challenge. This paper presents a review of all mineralogical interpretive tools currently in use and outlines procedures for their application.

  17. Chelyabinsk: Portrait of an asteroid airburst

    Energy Technology Data Exchange (ETDEWEB)

    Kring, David A.; Boslough, Mark

    2014-09-01

    Video and audio from hundreds of smartphones and dashboard cameras combined with seismic, acoustic, and satellite measurements provide the first precise documentation of a 10 000-ton asteroid explosion.

  18. Colors of Dynamically Associated Asteroid Pairs

    CERN Document Server

    Moskovitz, Nicholas

    2012-01-01

    Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colors or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalog. Colors or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colors within the uncertainties of this survey, and (2) the color distribution of asteroi...

  19. Origins for the near-earth asteroids

    Science.gov (United States)

    Binzel, Richard P.; Xu, Shui; Bus, Schelte J.; Bowell, Edward

    1992-01-01

    Because of their short dynamical lifetimes, the population of near-earth asteroids (NEAs) must be resupplied. Two sources have been hypothesized: main-belt asteroids and extinct comet nuclei. A new survey of physical properties for less than 5 kilometers diameter main-belt asteroids reveals that their spin rate and shape distributions are similar to those of NEAs, as is fully consistent with a main-belt origin for most NEAs. Physical data on comet nuclei are limited. If the existing sample is representative of the comet population, analysis of the asteroid and comet samples constrains the fraction of comet nuclei to between 0 and 40 percent of the total NEA population.

  20. The Cratering History of Asteroid (21) Lutetia

    CERN Document Server

    Marchi, S; Vincent, J -B; Morbidelli, A; Mottola, S; Marzari, F; Kueppers, M; Besse, S; Thomas, N; Barbieri, C; Naletto, G; Sierks, H

    2011-01-01

    The European Space Agency's Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetia's northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influe...

  1. Asteroid models from the Lowell photometric database

    Science.gov (United States)

    Ďurech, J.; Hanuš, J.; Oszkiewicz, D.; Vančo, R.

    2016-03-01

    Context. Information about shapes and spin states of individual asteroids is important for the study of the whole asteroid population. For asteroids from the main belt, most of the shape models available now have been reconstructed from disk-integrated photometry by the lightcurve inversion method. Aims: We want to significantly enlarge the current sample (~350) of available asteroid models. Methods: We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. Results: From the analysis of Lowell photometric data of the first 100 000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high

  2. An Early Warning System for Asteroid Impact

    Science.gov (United States)

    Tonry, John L.

    2011-01-01

    Earth is bombarded by meteors, occasionally by one large enough to cause a significant explosion and possible loss of life. It is not possible to detect all hazardous asteroids, and the efforts to detect them years before they strike are only advancing slowly. Similarly, ideas for mitigation of the danger from an impact by moving the asteroid are in their infancy. Although the odds of a deadly asteroid strike in the next century are low, the most likely impact is by a relatively small asteroid, and we suggest that the best mitigation strategy in the near term is simply to move people out of the way. With enough warning, a small asteroid impact should not cause loss of life, and even portable property might be preserved. We describe an early warning system that could provide a week’s notice of most sizeable asteroids or comets on track to hit the Earth. This may be all the mitigation needed or desired for small asteroids, and it can be implemented immediately for relatively low cost. This system, dubbed Asteroid Terrestrial-Impact Last Alert System (ATLAS), comprises two observatories separated by about 100 km that simultaneously scan the visible sky twice a night. Software automatically registers a comparison with the unchanging sky and identifies everything that has moved or changed. Communications between the observatories lock down the orbits of anything approaching the Earth, within one night if its arrival is less than a week. The sensitivity of the system permits detection of 140 m asteroids (100 Mton impact energy) three weeks before impact and 50 m asteroids a week before arrival. An ATLAS alarm, augmented by other observations, should result in a determination of impact location and time that is accurate to a few kilometers and a few seconds. In addition to detecting and warning of approaching asteroids, ATLAS will continuously monitor the changing universe around us: most of the variable stars in our Galaxy, many microlensing events from stellar

  3. Modelling asteroid brightness variations. I - Numerical methods

    Science.gov (United States)

    Karttunen, H.

    1989-01-01

    A method for generating lightcurves of asteroid models is presented. The effects of the shape of the asteroid and the scattering law of a surface element are distinctly separable, being described by chosen functions that can easily be changed. The shape is specified by means of two functions that yield the length of the radius vector and the normal vector of the surface at a given point. The general shape must be convex, but spherical concavities producing macroscopic shadowing can also be modeled.

  4. Olivine-dominated asteroids: Mineralogy and origin

    OpenAIRE

    Sanchez, Juan A.; Reddy, Vishnu; Kelley, Michael S.; Cloutis, Edward A.; Bottke, William F.; Nesvorný, David; Lucas, Michael P.; Hardersen, Paul S.; Gaffey, Michael J.; Abell, Paul A.; Corre, Lucille Le

    2013-01-01

    Olivine-dominated asteroids are a rare type of objects formed either in nebular processes or through magmatic differentiation. The analysis of meteorite samples suggest that at least 100 parent bodies in the main belt experienced partial or complete melting and differentiation before being disrupted. However, only a few olivine-dominated asteroids, representative of the mantle of disrupted differentiated bodies, are known to exist. Due to the paucity of these objects in the main belt their or...

  5. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  6. An ISU study of asteroid mining

    Science.gov (United States)

    Burke, J. D.

    1991-01-01

    During the 1990 summer session of the International Space University, 59 graduate students from 16 countries carried out a design project on using the resources of near-earth asteroids. The results of the project, whose full report is now available from ISU, are summarized. The student team included people in these fields: architecture, business and management, engineering, life sciences, physical sciences, policy and law, resources and manufacturing, and satellite applications. They designed a project for transporting equipment and personnel to a near-earth asteroid, setting up a mining base there, and hauling products back for use in cislunar space. In addition, they outlined the needed precursor steps, beginning with expansion of present ground-based programs for finding and characterizing near-earth asteroids and continuing with automated flight missions to candidate bodies. (To limit the summer project's scope the actual design of these flight-mission precursors was excluded.) The main conclusions were that asteroid mining may provide an important complement to the future use of lunar resources, with the potential to provide large amounts of water and carbonaceous materials for use off earth. However, the recovery of such materials from presently known asteroids did not show an economic gain under the study assumptions; therefore, asteroid mining cannot yet be considered a prospective business.

  7. Formation of asteroid pairs by rotational fission.

    Science.gov (United States)

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  8. Asteroid hyalosis--current state of knowledge.

    Science.gov (United States)

    Jabłońska, Anna; Ciszewska, Joanna; Kęcik, Dariusz

    2014-01-01

    The search query into the Cochrane Library, Medline, Web of Science, Embase, Scopus and ScienceDirect enabled selection of research papers addressing the issue of asteroid hyalosis published in English between 1963 and January 2014. Asteroid hyalosis is a degenerative condition of the vitreous in which small, creamy or white, spherical particles (asteroid bodies) are randomly diffused within the vitreous. They consist mainly of calcium and phosphorus and have a structure of hydroxy lapatite. In 80.2-92.0% of cases the condition affects one eye only and it occurs in 0.36-1.96% of population, mostly in patients over 50 years of age and in males. Hypercholesterolemia and hypertension are systemic risk factors, but asteroid hyalosis is postulated to occur more often in retinitis pigmentosa and Leber amaurosis caused by mutations in lecithin retinol acyltransferase gene. Asteroid hyalosis also causes calcification of some intraocular lenses--mostly silicone ones. Vitreous of patients with asteroid hyalosis shows reduced gel liquefaction and anomalous vitreoretinal adhesion.

  9. An Early Warning System for Asteroid Impact

    CERN Document Server

    Tonry, John L

    2010-01-01

    Earth is bombarded by meteors, occasionally by one large enough to cause a significant explosion and possible loss of life. Although the odds of a deadly asteroid strike in the next century are low, the most likely impact is by a relatively small asteroid, and we suggest that the best mitigation strategy in the near term is simply to move people out of the way. We describe an "early warning" system that could provide a week's notice of most sizable asteroids or comets on track to hit the Earth. This system, dubbed "Asteroid Terrestrial-impact Last Alert System" (ATLAS), comprises two observatories separated by about 100km that simultaneously scan the visible sky twice a night, and can be implemented immediately for relatively low cost. The sensitivity of ATLAS permits detection of 140m asteroids (100 Mton impact energy) three weeks before impact, and 50m asteroids a week before arrival. An ATLAS alarm, augmented by other observations, should result in a determination of impact location and time that is accura...

  10. Asteroid secular dynamics: Ceres' fingerprint identified

    CERN Document Server

    Novaković, Bojan; Tsirvoulis, Georgios; Knezević, Zoran

    2015-01-01

    Here we report on the significant role of a so far overlooked dynamical aspect, namely a secular resonance between the dwarf planet Ceres and other asteroids. We demonstrate that this type of secular resonance can be the dominant dynamical factor in certain regions of the main asteroid belt. Specifically, we performed a dynamical analysis of the asteroids belonging to the (1726) Hoffmeister family. To identify which dynamical mechanisms are actually at work in this part of the main asteroid belt, i.e. to isolate the main perturber(s), we study the evolution of this family in time. The study is accomplished using numerical integrations of test particles performed within different dynamical models. The obtained results reveal that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres. This leads us to the conclusion that similar effects must exist in other parts of the asteroid belt. In this respect, the obtained results shed light on an i...

  11. Asteroid Models from Multiple Data Sources

    CERN Document Server

    Durech, J; Delbo, M; Kaasalainen, M; Viikinkoski, M

    2015-01-01

    In the past decade, hundreds of asteroid shape models have been derived using the lightcurve inversion method. At the same time, a new framework of 3-D shape modeling based on the combined analysis of widely different data sources such as optical lightcurves, disk-resolved images, stellar occultation timings, mid-infrared thermal radiometry, optical interferometry, and radar delay-Doppler data, has been developed. This multi-data approach allows the determination of most of the physical and surface properties of asteroids in a single, coherent inversion, with spectacular results. We review the main results of asteroid lightcurve inversion and also recent advances in multi-data modeling. We show that models based on remote sensing data were confirmed by spacecraft encounters with asteroids, and we discuss how the multiplication of highly detailed 3-D models will help to refine our general knowledge of the asteroid population. The physical and surface properties of asteroids, i.e., their spin, 3-D shape, densit...

  12. Lightcurves for Two Near-Earth Asteroids by Asteroids Observers (OBAS) - MPPD: 2016 April-May

    Science.gov (United States)

    Martinez, Vicente Mas; Silva, Gonzalo Fornas; Martinez, Angel Flores; Garceran, Alfonso Carreno; Mansego, Enrique Arce; Rodriguez, Pedro Brines; de Haro, Juan Lozano; Silva, Alvaro Fornas; Chiner, Onofre Rodrigo; Porta, David Herrero

    2016-10-01

    We report on the results of photometric analysis of two near-Earth asteroids (NEA) by Asteroids Observers (OBAS). This work is part of the Minor Planet Photometric Database (MPPD) project initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  13. Sixteen Asteroids Lightcurves at Asteroids Observers (OBAS) - MPPD: 2016 June-November

    Science.gov (United States)

    Brines, Pedro; Lozano, Juan; Rodrigo, Onofre; Fornas, A.; Herrero, David; Mas, Vicente; Fornas, G.; Carreño, A.; Arce, Enrique

    2017-04-01

    We report on the photometric analysis result of sixteen main-belt asteroids (MBA) done by Asteroids Observers (OBAS). This work is part of the Minor Planet Photometric Database tasks, initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  14. Eighteen Asteroids Lightcurves at Asteroides Observers (OBAS) - MPPD: 2016 March-May

    Science.gov (United States)

    Mansego, Enrique Arce; Rodriguez, Pedro Brines; de Haro, Juan Lozano; Chiner, Onofre Rodrigo; Silva, Alvaro Fornas; Porta, David Herrero; Martinez, Vicente Mas; Silva, Gonzalo Fornas; Garceran, Alfonso Carreno

    2016-10-01

    We report on the analysis of photometric observations of 18 main-belt asteroids (MBA) done by Asteroides Observers (OBAS). This work is part of the Minor Planet Photometric Database program initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  15. Twenty-three Asteroids Lightcurves at Observadores de Asteroides (OBAS): 2015 October - December

    Science.gov (United States)

    Aznar Macias, Amadeo; Carreno Garcerain, Alfonso; Arce Mansego, Enrique; Brines Rodriguez, Pedro; Lozano de Haro, Juan; Fornas Silva, Alvaro; Fornas Silva, Gonzalo; Mas Martinez, Vicente; Rodrigo Chiner, Onofre

    2016-04-01

    We report on the photometric analysis results for 23 main-belt asteroids (MBA) done by Observadores de Asteroides (OBAS). This work is part of the Minor Planet Photometric Database that was initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate, complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  16. The Asteroid Redirect Mission (ARM): Exploration of a Former Binary NEA?

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). The current reference target for the ARM is NEA (341843) 2008 EV5, which may have been the primary body of a former binary system (Busch et al., 2011; Tardivel et al., 2016). The ARRM will perform several close proximity operations to investigate the NEA and map its surface. A detailed investigation of this object may allow a better understanding of binary NEA physical characteristics and the possible outcomes for their evolution. An overview of the ARM robotic and crewed segments, including mission operations, and a discussion of potential opportunities for participation with the ARM will be provided in this presentation.

  17. International CJMT-1 Workshop on Asteroidal Science

    Science.gov (United States)

    Ip, Wing-Huen

    2014-03-01

    An international workshop on asteroidal science was held between October 16 and 17, 2012, at the Macau University of Science and Technology gathering together experts on asteroidal study in China, Japan, Macao and Taiwan. For this reason, we have called it CJMT-1 Workshop. Though small in sizes, the asteroids orbiting mainly between the orbit of Mars and of Jupiter have important influence on the evolution of the planetary bodies. Topics ranging from killer asteroids to space resources are frequently mentioned in news reports with prominence similar to the search for water on Mars. This also means that the study of asteroids is very useful in exciting the imagination and interest in science of the general public. Several Asian countries have therefore developed long-term programs integrating ground-based observations and space exploration with Japan being the most advanced and ambitious as demonstrated by the very successful Hayabusa mission to asteroid 25143 Itokawa. In this volume we will find descriptions of the mission planning of Hayabusa II to the C-type near-Earth asteroid, 1999 JU3. Not to be outdone, China's Chang-E 2 spacecraft was re-routed to a flyby encounter with asteroid 4179 Toutatis in December 2012. It is planned that in the next CJMT workshop, we will have the opportunity to learn more about the in-depth data analysis of the Toutatis observations and the progress reports on the Hayabusa II mission which launch date is set to be July 2014. Last but not least, the presentations on the ground-based facilities as described in this volume will pave the way for coordinated observations of asteroidal families and Trojan asteroids - across Asia from Taiwan to Uzbekistan. Such international projects will serve as an important symbol of good will and peaceful cooperation among the key members of this group. Finally, I want to thank the Space Science Institute, Macao University of Science and Technology, for generous support, and its staff members

  18. Directed Energy Missions for Planetary Defense

    CERN Document Server

    Lubin, Philip; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathon; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional prop...

  19. Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)

    2016-10-01

    The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource

  20. Lightcurve Survey of V-type Asteroids in the Inner Asteroid Belt

    CERN Document Server

    Hasegawa, Sunao; Mito, Hiroyuki; Sarugaku, Yuki; Ozawa, Tomohiko; Kuroda, Daisuke; Nishihara, Setsuko; Harada, Akari; Yoshida, Michitoshi; Yanagisawa, Kenshi; Shimizu, Yasuhiro; Nagayama, Shogo; Toda, Hiroyuki; Okita, Kouji; Kawai, Nobuyuki; Mori, Machiko; Sekiguchi, Tomohiko; Ishiguro, Masateru; Abe, Takumi; Abe, Masanao

    2013-01-01

    We have observed the lightcurves of 13 V-type asteroids ((1933) Tinchen, (2011) Veteraniya, (2508) Alupka, (3657) Ermolova, (3900) Knezevic, (4005) Dyagilev, (4383) Suruga, (4434) Nikulin, (4796) Lewis, (6331) 1992 $\\mathrm{FZ_{1}}$, (8645) 1998 TN, (10285) Renemichelsen, and (10320) Reiland). Using these observations we determined the rotational rates of the asteroids, with the exception of Nikulin and Renemichelsen. The distribution of rotational rates of 59 V-type asteroids in the inner main belt, including 29 members of the Vesta family that are regarded as ejecta from the asteroid (4) Vesta, is inconsistent with the best-fit Maxwellian distribution. This inconsistency may be due to the effect of thermal radiation Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) torques, and implies that the collision event that formed V-type asteroids is sub-billion to several billion years in age.

  1. Mitigation of Hazardous Comets and Asteroids

    Science.gov (United States)

    Belton, Michael J. S.; Morgan, Thomas H.; Samarasinha, Nalin H.; Yeomans, Donald K.

    2011-03-01

    Preface; 1. Recent progress in interpreting the nature of the near-Earth object population W. Bottke, A. Morbidelli and R. Jedicke; 2. Earth impactors: orbital characteristics and warning times S. R. Chesley and T. B. Spahr; 3. The role of radar in predicting and preventing asteroid and comet collisions with Earth S. J. Ostro and J. D. Giorgini; 4. Interior structures for asteroids and cometary nuclei E. Asphaug; 5. What we know and don't know about surfaces of potentially hazardous small bodies C. R. Chapman; 6. About deflecting asteroids and comets K. A. Holsapple; 7. Scientific requirements for understanding the near-Earth asteroid population A. W. Harris; 8. Physical properties of comets and asteroids inferred from fireball observations M. D. Martino and A. Cellino; 9. Mitigation technologies and their requirements C. Gritzner and R. Kahle; 10. Peering inside near-Earth objects with radio tomography W. Kofman and A. Safaeinili; 11. Seismological imvestigation of asteroid and comet interiors J. D. Walker and W. F. Huebner; 12. Lander and penetrator science for near-Earth object mitigation studies A. J. Ball, P. Lognonne, K. Seiferlin, M. Patzold and T. Spohn; 13. Optimal interpretation and deflection of Earth-approaching asteroids using low-thrust electric propulsion B. A. Conway; 14. Close proximity operations at small bodies: orbiting, hovering, and hopping D. J. Scheeres; 15. Mission operations in low gravity regolith and dust D. Sears, M. Franzen, S. Moore, S. Nichols, M. Kareev and P. Benoit; 16. Impacts and the public: communicating the nature of the impact hazard D. Morrison, C. R. Chapman, D. Steel and R. P. Binzel; 17. Towards a program to remove the threat of hazardous NEOs M. J. S. Belton.

  2. Using Dust from Asteroids as Regolith Microsamples

    Science.gov (United States)

    Cohen, B. A.; Klima, Rachel; Chabot, N. L.; Rivkin, A. S.

    2015-01-01

    Meteorite science is rich with compositional indicators by which we classify parent bodies, but few sample groups are definitively linked with asteroid spectra. More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution. A major link can be sample analysis of the parent body material and comparison with meteorite data. Hayabusa, the first sample return mission of the Japanese Aerospace Exploration Agency (JAXA), was developed to rendezvous with and collect samples from asteroid Itokawa and return them to Earth. Thousands of sub-100 micron particles were recovered, apparently introduced during the spacecraft impact into the surface of the asteroid, linking the asteroid Itokawa to LL chondrites [1]. Upcoming missions Hayabusa 2 and OSIRIS-REx will collect more significant sample masses from asteroids. In all these cases, the samples are or will be a collection of regolith particles. Sample return to earth is not the only method for regolith particle analysis. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size-frequency distribution of dust particles can provide significant insight into the geological evolution of airless bodies [2]. For example, the Cassini Cosmic Dust Analyzer (CDA) detected salts in Enceladus' icy plume material, providing evidence for a subsurface ocean in contact with a silicate seafloor [3]. Similar instruments have flown on the Rosetta, LADEE, and Stardust missions. Such an instrument may be of great use in obtaining the elemental, isotopic and mineralogical composition measurement of dust particles originating from asteroids without returning the samples to terrestrial laboratories. We investigated the ability of a limited sample analysis capability using a dust instrument to forge links between asteroid

  3. Aqueous alteration on main-belt asteroids

    Science.gov (United States)

    Fornasier, S.; Lantz, C.; Barucci, M.; Lazzarin, M.

    2014-07-01

    The study of aqueous alteration is particularly important for unraveling the processes occurring during the earliest times in Solar System history, as it can give information both on the thermal processes and on the localization of water sources in the asteroid belt, and for the associated astrobiological implications. The aqueous alteration process produces the low temperature (< 320 K) chemical alteration of materials by liquid water which acts as a solvent and produces materials like phyllosilicates, sulphates, oxides, carbonates, and hydroxides. This means that liquid water was present in the primordial asteroids, produced by the melting of water ice by heating sources, very probably by ^{26}Al decay. Hydrated minerals have been found mainly on Mars surface, on primitive main-belt asteroids (C, G, B, F, and P-type, following the classification scheme by Tholen, 1984) and possibly also on few transneptunian objects. Reflectance spectroscopy of aqueous altered asteroids shows absorption features in the 0.6-0.9 and 2.5-3.5-micron regions, which are diagnostic of, or associated with, hydrated minerals. In this work, we investigate the aqueous alteration process on a large sample of 600 visible spectra of C-complex asteroids available in the literature. We analyzed all these spectra in a similar way to characterize the absorption-band parameters (band center, depth, and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo, and sizes. We find that 4.6 % of P, 7.7 % of F, 9.8 % of B, 50.5 % of C, and 100 % of the G-type asteroids have absorption bands in the visible region due to hydrated silicates. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the P → F → B → C → G asteroids, these last being widely aqueously altered, strengthening thus

  4. The future of planetary defense

    Science.gov (United States)

    Mainzer, A.

    2017-04-01

    Asteroids and comets have impacted Earth in the past and will do so in the future. While the frequency of impacts is reasonably well understood on geologic timescales, it is difficult to predict the next sizeable impact on human timescales by extrapolation from population statistics alone. Fortunately, by identifying and tracking individual objects, we can make precise predictions of any potential close encounters with Earth. As more advance notice is provided, the range of possible mitigation options expands. While the chance of an impact is very small, the potential consequences can be severe, meaning that sensible risk reduction measures should be undertaken. By implementing surveys, the risk of an unforeseen impact can be greatly reduced: the first step is finding the objects. Fortunately, the worldwide community of professional and amateur astronomers has made significant progress in discovering large near-Earth objects (NEOs). More than 95% of NEOs capable of causing global devastation (objects larger than 1 km in diameter) have been discovered, and none of these pose an impact hazard in the near future. Infrastructure is in place to link observations and compute close approaches in real time. Interagency and international collaborations have been undertaken to strengthen cooperative efforts to plan potential mitigation and civil defense campaigns. Yet much remains to be done. Approximately 70% of NEOs larger than 140 m (large enough to cause severe regional damage) remain undiscovered. With the existing surveys, it will take decades to identify the rest. Progress can be accelerated by undertaking new surveys with improved sensitivity.Plain Language SummaryAsteroids and comets have impacted Earth in the past and will do so in the future. Fortunately, by identifying and tracking them, we have the ability to predict any potential close encounters with Earth. By observing the sky repeatedly to search for near-Earth objects, the risk of an unforeseen impact can

  5. Finding and characterizing candidate targets for the Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Chodas, P.

    2014-07-01

    NASA's proposed Asteroid Redirect Mission (ARM) leverages key on-going activities in Human Exploration and Space Technology to advance NASA's goals in these areas. One primary objective of ARM would be to develop and demonstrate a high-power Solar Electric Propulsion (SEP) vehicle which would have the capability of moving significant amounts of mass around the solar system. SEP would be a key technology for robust future missions to deep space destinations, possibly including human missions to asteroids or to Mars. ARM would use the SEP vehicle to redirect up to hundreds of tons of material from a near-Earth asteroid into a stable lunar orbit, where a crew flying in an Orion vehicle would rendezvous and dock with it. The crew would perform an extra-vehicular activity (EVA), sample the material, and bring it back to the Earth; follow-on visits would also be possible. Two ARM mission concepts are being studied: one is to go to a small 4-10-meter-diameter asteroid, capture the entire asteroid and guide it into lunar orbit; the other is to go to a large 100-500 meter asteroid, remove a 1-10 meter boulder, and bring the boulder back into lunar orbit. A planetary defense demonstration could be included under either concept. Although some candidate targets are already known for both mission concepts, an observation campaign has been organized to identify more mission candidates. This campaign naturally leverages off of NASA's NEO Observations Program. Enhancements to asteroid search capabilities which will come online soon should increase the discovery rates for ARM candidates and hazardous asteroids alike. For the small-asteroid ARM concept, candidate targets must be smaller than about 12 meters, must follow Earth-like orbits and must naturally approach the Earth closely in the early 2020s, providing the opportunity for a low-velocity capture into the Earth/Moon system. About a dozen candidates are known with absolute magnitudes in the right range and with orbits

  6. A Fast Ellipsoid Model for Asteroids Inverted From Lightcurves

    CERN Document Server

    Lu, Xiaoping; You, Zhong

    2012-01-01

    The research about asteroids attracts more and more attention recently, especially focusing on their physical structures, such as the spin axis, the rotation period and the shape. The long distance between Earth observers and asteroids makes it impossible to get the shape and other parameters of asteroids directly with the exception of the NEAs (Near Earth Asteroids) and others passed by some spacecrafts. Generally photometric measurement is still the main way to obtain the research data for asteroids now, i.e. the lightcurves recording the brightness and positions of asteroids. Supposing that the shape of the asteroid is a triaxial ellipsoid with a stable spinning status, a new method is present in this article to reconstruct the shape models of asteroids from the lightcurves, with the other physical parameters together. By applying a special curvature function, the method calculates the brightness integration on a unit sphere and Lebedev Quadrature is employed for the discretization. At last the method sear...

  7. A Search for Asteroids, Moons, and Rings Orbiting White Dwarfs

    CERN Document Server

    Di Stefano, Rosanne; Kawaler, Steven D

    2009-01-01

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey ten times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and...

  8. Human Robotic Systems (HRS): Robotic Technologies for Asteroid Missions Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic Technologies for Asteroid Missions activity has four tasks:Asteroid Retrieval Capture Mechanism Development and Testbed;Mission Operations...

  9. Rotational properties of Maria asteroid family

    CERN Document Server

    Kim, Myung-Jin; Moon, Hong-Kyu; Byun, Yong-Ik; Brosch, Noah; Kaplan, Murat; Kaynar, Suleyman; Uysal, Omer; Guzel, Eda; Behrend, Raoul; Yoon, Joh-Na; Mottola, Stefano; Hellmich, Stephan; Hinse, Tobias C; Eker, Zeki; Park, Jang-Hyun

    2013-01-01

    Maria family is regarded as an old-type (~3 +/- 1 Gyr) asteroid family which has experienced substantial collisional and dynamical evolution in the Main-belt. It is located nearby the 3:1 Jupter mean motion resonance area that supplies Near-Earth asteroids (NEAs) to the inner Solar System. We carried out observations of Maria family asteroids during 134 nights from 2008 July to 2013 May, and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. We found that there is a significant excess of fast and slow rotators in observed rotation rate distribution. The two-sample Kolmogorov-Smirnov test confirms that the spin rate distribution is not consistent with a Maxwellian at a 92% confidence level. From correlations among rotational periods, amplitudes of lightcurves, and sizes, we conclude that the rotational properties of Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using a lightcurve inversion method (Kaa...

  10. The Dynamical Evolution of the Asteroid Belt

    CERN Document Server

    Morbidelli, Alessandro; O'Brien, David P; Minton, David A; Bottke, William F

    2015-01-01

    The asteroid belt is the leftover of the original planetesimal population in the inner solar system. However, currently the asteroids have orbits with all possible values of eccentricities and inclinations compatible with long-term dynamical stability, whereas the initial planetesimal orbits should have been quasi-circular and almost co-planar. The total mass in the asteroid population is a small fraction of that existing primordially. Also, asteroids with different chemical/mineralogical properties are not ranked in an orderly manner with mean heliocentric distance as one could expect from the existence of a radial gradient of the temperature in the proto-planetary disk, but they are partially mixed. These properties show that the asteroid belt has been severely sculpted by one or a series of processes during its lifetime. This paper reviews the processes that have been proposed so far, discussing the properties that they explain and the problems that they are confronted with. Emphasis is paid to the interpl...

  11. Tracking a Very Near Earth Asteroid

    Science.gov (United States)

    Bruck, R.; Rashid, S.; Peppard, T.

    2013-09-01

    The potential effects of an asteroid passing within close proximity to the Earth were recently realized. During the February 16, 2013 event, Asteroid 2012 DA14 passed within an estimated 27,700 kilometers of the earth, well within the geosynchronous (GEO) orbital belt. This was the closest known approach of a planetoid of this size, in modern history. The GEO belt is a region that is filled with critical communications satellites which provide relays for essential government, business and private datum. On the day of the event, optical instruments at Detachment 3, 21OG, Maui GEODSS were able to open in marginal atmospheric conditions, locate and collect metric and raw video data on the asteroid as it passed a point of near heliocentric orbital propinquity to the Earth. Prior to the event, the Joint Space Operations Center (JSpOC) used propagated trajectory data from NASA's Near Earth Object Program Office at the Jet Propulsion Laboratory to assess potential collisions with man-made objects in Earth orbit. However, the ability to actively track this asteroid through the populated satellite belt not only allowed surveillance for possible late orbital perturbations of the asteroid, but, afforded the ability to monitor possible strikes on all other orbiting bodies of anthropogenic origin either not in orbital catalogs or not recently updated in those catalogs. Although programmed only for tracking satellites in geocentric orbits, GEODSS was able to compensate and maintain track on DA14, collecting one hundred and fifty four metric observations during the event.

  12. Search for a Differentiated Asteroid Family

    Science.gov (United States)

    Thomas, Cristina A.; Lim, Lucy F.; Trilling, David E.; Moskovitz, Nicholas

    2014-08-01

    Dynamical asteroid families resulting from catastrophic disruptions represent the interiors of their former parent bodies. Differentiation of a large initially chondritic parent body is expected to produce an ``onion shell" object with a metal core, a thick olivine-rich mantle, and a thin basaltic crust. However, instead of the mineralogical diversity expected from the disruption of a differentiated parent body, most asteroid families tend to show similar spectra among the members. Moreover, spectra of metal-like materials and olivine-dominated assemblages have not been detected in asteroid families in the Main Belt and the expected mantle material is missing from the meteorite record. The deficit of olivine-rich mantle material in the meteorite record and in asteroid observations is known as the ``Missing Mantle" problem. For years the best explanation for the lack of mantle material has been the ``battered to bits" hypothesis that states that all differentiated parent bodies (aside from Vesta) were disrupted very early in the solar system and the resulting olivine-rich material was collisionally broken down until the object diameters fell below our observational limits. However, in a new, competing, hypothesis, Elkins-Tanton et al. (2013) has suggested that previous work has overestimated the amount of olivine produced by the differentiation of a chondritic parent body. We propose to obtain visible spectra of asteroids within the Massalia, Merxia, and Agnia S-type families to search for compositional variations that are indicators of differentiation and to quantitatively constrain the two competing ``Missing Mantle" hypotheses.

  13. Thermal Tomography of Asteroid Surface Structure

    CERN Document Server

    Harris, Alan

    2016-01-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Eviden...

  14. Terminal structure

    Science.gov (United States)

    Schmidt, Frank; Allais, Arnaud; Mirebeau, Pierre; Ganhungu, Francois; Lallouet, Nicolas

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  15. Space Rocks: A Series of Papers on Meteorites and Asteroids

    OpenAIRE

    Hooper, Nina Louise

    2016-01-01

    The subject of this work is the compositions of asteroids and meteorites. Studies of the composition of small Solar System bodies are fundamental to theories of planet formation. Meteorites, samples available for analysis in the lab, help constrain the timeline and conditions in the early Solar System. Asteroid reflectance spectra help define the links between asteroids and meteorites. Studies of the spectral types and sizes of asteroids test dynamical models. These studie...

  16. Characterization of the near-Earth Asteroid 2002NY40

    OpenAIRE

    Roberts, Jr., Lewis C.; Hall, Doyle T.; Lambert, John V.; Africano, John L.; Knox, Keith T.; Barros, Jacob K.; Hamada, Kris M.; Liang, Dennis; Sydney, Paul F.; Kervin, Paul

    2007-01-01

    In August 2002, the near-Earth asteroid 2002 NY40, made its closest approach to the Earth. This provided an opportunity to study a near-Earth asteroid with a variety of instruments. Several of the telescopes at the Maui Space Surveillance System were trained at the asteroid and collected adaptive optics images, photometry and spectroscopy. Analysis of the imagery reveals the asteroid is triangular shaped with significant self-shadowing. The photometry reveals a 20-hour period and the spectros...

  17. On the Discovery of the Asteroid 3784 Chopin

    Science.gov (United States)

    Elst, E. W.

    Le 31 octobre 1986 lords d'une campagne de recherche d'asteroides a l'observatoire de Haute Provence, un asteroide de septieme magnitude fut decouvert. A l'occasion de l'opposition consecutive en 1988, l'asteroide fut observe a nouveau a l'observatoire de Haute Provence, ce qui entraina la numerotation definitive. L'asteroide recoit le numero 3874 et le nom du grand compositeur polonais, Chopin.

  18. Asteroid Impact and Deflection Assessment mission: the Double Asteroid Redirection Test (DART)

    Science.gov (United States)

    Cheng, A.; Michel, P.

    2015-10-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, which includes the ESA Asteroid Impact Mission (AIM) rendezvous spacecraft and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The ~300-kg DART spacecraft is designed to impact the Didymos secondary at 6.5 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (i) to investigate the binary near-Earth asteroid (65803) Didymos, (ii) to demonstrate asteroid deflection by kinetic impact and to characterize the deflection. The primary DART objectives are to demonstrate a hypervelocity impact on the Didymos moon and to determine the resulting deflection from ground-based observatories. The DART impact on the Didymos secondary will cause a measurable change in the orbital period of the binary.

  19. Termination unit

    Energy Technology Data Exchange (ETDEWEB)

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  20. Stable Orbits in the Didymos Binary Asteroid System - Useful Platforms for Exploration

    Science.gov (United States)

    Damme, Friedrich; Hussmann, Hauke; Wickhusen, Kai; Enrico, Mai; Oberst, Jürgen

    2016-04-01

    We have analyzed particle motion in binary asteroid systems to search for stable orbits. In particular, we studied the motion of particles near the asteroid 1996 GT (Didymos), proposed as a target for the AIDA mission. The combined gravity fields of the odd-shaped rotating objects moving about each other are complex. In addition, orbiting spacecraft or dust particles are affected by radiation pressure, possibly exceeding the faint gravitational forces. For the numerical integrations, we adopt parameters for size, shape, and rotation from telescopic observations. To simulate the effect of radiation pressure during a spacecraft mission, we apply a spacecraft wing-box shape model. Integrations were carried out beginning in near-circular orbits over 11 days, during which the motion of the particles were examined. Most orbits are unstable with particles escaping quickly or colliding with the asteroid bodies. However, with carefully chosen initial positions, we found stable motion (in the orbiting plane of the secondary) associated with the Lagrangian points (L4 and L5), in addition to horseshoe orbits, where particles move from one of the Lagrangian point to the other. Finally, we examined orbits in 1:2 resonances with the motion of the orbital period of the secondary. Stable conditions depend strongly on season caused by the inclination of the mutual orbit plane with respect to Didymos solar orbit. At larger distance from the asteroid pair, we find the well-known terminator orbits where gravitational attraction is balanced against radiation pressure. Stable orbits and long motion arcs are useful for long tracking runs by radio or Laser instruments and are well-suited for modelling of the ephemerides of the asteroid pair and gravity field mapping. Furthermore, these orbits may be useful as observing posts or as platforms for approach. These orbits may also represent traps for dust particles, an opportunity for dust collection - or possibly a hazard to spacecraft

  1. Determination of pole orientations and shapes of asteroids

    Science.gov (United States)

    Magnusson, Per; Barucci, M. Antonietta; Drummond, Jack D.; Lumme, Kari; Ostro, Steven J.

    1989-01-01

    The principles of asteroid light-curve inversion are discussed together with basic principles involved in approaches for deriving asteroid pole and shape parameters from photometry data. The merits of various pole determination techniques are described and compared. Results obtained so far on the pole orientations and shapes of asteroids are presented.

  2. 78 FR 51750 - NASA Asteroid Initiative Idea Synthesis Workshop

    Science.gov (United States)

    2013-08-21

    ... SPACE ADMINISTRATION NASA Asteroid Initiative Idea Synthesis Workshop AGENCY: National Aeronautics and... for the agency's Asteroid Initiative. SUMMARY: The National Aeronautics and Space Administration announces a public conference to provide a status on the Agency's Asteroid Initiative planning and to enable...

  3. 78 FR 31977 - NASA Asteroid Initiative Call for Ideas

    Science.gov (United States)

    2013-05-28

    ... SPACE ADMINISTRATION NASA Asteroid Initiative Call for Ideas AGENCY: National Aeronautics and Space... announces a public forum to provide a status on the agency's asteroid initiative planning and to encourage...: This meeting will be streamed live online. Viewing options will be posted at www.nasa.gov/asteroid...

  4. 78 FR 64253 - NASA Asteroid Initiative Idea Synthesis Workshop

    Science.gov (United States)

    2013-10-28

    ... SPACE ADMINISTRATION NASA Asteroid Initiative Idea Synthesis Workshop AGENCY: National Aeronautics and... to the recent RFI for the agency's Asteroid Initiative. SUMMARY: The National Aeronautics and Space Administration announces that the agency will resume the NASA Asteroid Initiative Idea Synthesis public...

  5. Ivar asteroid rendezvous mission system scenario and trajectory design

    Institute of Scientific and Technical Information of China (English)

    崔平远; 李立涛; 崔祜涛; 栾恩杰; 吴伟仁; 田玉龙

    2003-01-01

    The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the transfer trajectory is designed using △VEGA technology for the asteroid rendezvous. The design resultssatisfied the energy requirements for small explorers.

  6. Close Approaches of Potentially Hazardous Asteroids during Two Centuries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Asteroids are the most important small bodies in the solar system and the near-earth asteroids (NEAs) are of especial concern to the world. The reasonis that they will make close approaches to the earth in the near future. We usea reasonable dynamical model and an efficient computing method to calculate the orbits of over 160 Potentially Hazardous Asteroids (PHAs) for two centuries.

  7. Dormant Comets in the Near-Earth Asteroid Population

    NARCIS (Netherlands)

    Mommert, Michael; Harris, Alan W.; Mueller, Michael; Hora, Joseph L.; Trilling, David E.; Knight, Matthew; Bottke, William F.; Thomas, Cristina; Delbo', Marco; Emery, Josh P.; Fazio, Giovanni; Smith, Howard A.

    2015-01-01

    The population of near-Earth objects comprises active comets and asteroids, covering a wide range of dynamical parameters and physical properties. Dormant (or extinct) comets, masquerading as asteroids, have long been suspected of supplementing the near-Earth asteroid (NEA) population. We present a

  8. Rock legends the asteroids and their discoverers

    CERN Document Server

    Murdin, Paul

    2016-01-01

    This book relates the history of asteroid discoveries and christenings, from those of the early pioneering giants of Hersehel and Piazzi to modern-day amateurs. Moving from history and anecdotal information to science, the book's structure is provided by the names of the asteroids, including one named after the author. Free from a need to conform to scientific naming conventions, the names evidence hero-worship, sycophancy, avarice, vanity, whimsy, erudition and wit, revealing the human side of astronomers, especially where controversy has followed the christening. Murdin draws from extensive historical records to explore the debate over these names. Each age reveals its own biases and preferences in the naming process. < Originally regarded as “vermin of the skies,” asteroids are minor planets, rocky scraps left over from the formation of the larger planets, or broken fragments of worlds that have collided. Their scientific classification as “minor” planets makes them seem unimportant, but over th...

  9. Defining a successful commercial asteroid mining program

    Science.gov (United States)

    Andrews, Dana G.; Bonner, K. D.; Butterworth, A. W.; Calvert, H. R.; Dagang, B. R. H.; Dimond, K. J.; Eckenroth, L. G.; Erickson, J. M.; Gilbertson, B. A.; Gompertz, N. R.; Igbinosun, O. J.; Ip, T. J.; Khan, B. H.; Marquez, S. L.; Neilson, N. M.; Parker, C. O.; Ransom, E. H.; Reeve, B. W.; Robinson, T. L.; Rogers, M.; Schuh, P. M.; Tom, C. J.; Wall, S. E.; Watanabe, N.; Yoo, C. J.

    2015-03-01

    This paper summarizes a commercial Asteroid Mining Architecture synthesized by the Senior Space Design Class at the University of Washington in Winter/Spring Quarters of 2013. The main author was the instructor for that class. These results use design-to-cost development methods and focused infrastructure advancements to identify and characterize a workable space industrialization architecture including space transportation elements, asteroid exploration and mining equipment, and the earth orbit infrastructure needed to make it all work. Cost analysis predicts that for an initial investment in time and money equivalent to that for the US North Slope Oil Field, the yearly world supply of Platinum Group Metals could be increased by 50%, roughly 1500 t of LOX/LH2 propellant/year would be available in LEO, and very low cost solar panels could be assembled at GEO using asteroidal materials. The investment also would have a discounted net present value return on investment of 22% over twenty years.

  10. AIDA: the Asteroid Impact & Deflection Assessment mission

    Science.gov (United States)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  11. The Potentially Dangerous Asteroid (101955 Bennu

    Directory of Open Access Journals (Sweden)

    I. Włodarczyk

    2014-01-01

    searching for close approaches with the earth, which can lead to possible impacts up to 2200. With the A2 nongravitational parameter in the motion of the asteroid (101955 Bennu we computed possible impact solutions using different JPL planetary and lunar ephemerides and different number of additional massive perturbed asteroids. The possible impact path of risk for 2175 is presented. Additionally, we computed possible impact solutions using the normal places method of the selection of Bennu’s astrometric observations. Moreover, we computed time evolution of the mean orbital elements and the orbital nodes of Bennu 5 kyr in the backwards and 1 kyr in the future using the Yarkovsky effects. We computed the mean motion and secular orbital resonances of the Bennu. We also computed the influence of the JPL planetary and lunar ephemerides DE403, DE405, DE406, DE414, and DE423 on the close approaches of the asteroid (101955 Bennu with the earth.

  12. Measurement of Cohesion in Asteroid Regolith Materials

    Science.gov (United States)

    Kleinhenz, Julie E.; Gaier, James R.; Waters, Deborah L.; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick

    2017-01-01

    A study has been initiated to examine cohesive forces in asteroid materials to contribute to a better understanding of low density bodies such as asteroids and Phobos, and assist in exploration missions involving interaction with their surface material. The test specimen used in this study was a lightly weathered CM2 meteorite which is spectroscopically similar to Type C (carbonaceous) asteroids, and thought to have representative surface chemistry. To account for sample heterogeneity, adhesion forces were measured between the CM2 sample and its five primary mineral phase components. These adhesive forces bound the range of cohesive force that can be expected for the bulk material. All materials were characterized using a variety of optical and spectroscopic methods. Adhesive forces on the order of 50 to 400 µN were measured using a torsion balance in an ultrahigh vacuum chamber. The mineral samples exhibited clearly different adhesive strengths in the following hierarchy: Serpentine > Siderite > Bronzite > Olivine ˜ Fe-Ni.

  13. SNC meteorites - Evidence against an asteroidal origin

    Science.gov (United States)

    Ashwal, L. D.; Warner, J. L.; Wood, C. A.

    1982-01-01

    About 1.3 billion years ago, on one or more distant planetary bodies, silicate melts formed and produced cumulate rocks which eventually made their way to earth. Nine of these rocks have been recovered. Three distinct groups are involved, including shergottites, nakhlites, and chassignites (abbreviated as SNC). The young crystallization ages and other chemical features of SNC meteorites have prompted several workers to suggest that the specimens may be samples of igneous rock, ejected from the surface of Mars during an impact event. Others have rejected the Martian origin of SNC meteorites in favor of a more traditional asteroidal parent body. The present investigation shows that the petrologic, geochemical, and isotopic evidence is inconsistent with an asteroidal origin for SNC meteorites. It is found that the characteristics of SNC meteorites argue convincingly against their origin in a planetary object as small as the largest asteroid. That these meteorites may be fragments of the Martian surface still remains the most likely possibility.

  14. Rotational properties of the Maria asteroid family

    Science.gov (United States)

    Kim, M.; Choi, Y.; Moon, H.; Byun, Y.; Brosch, N.; Kaplan, M.; Kaynar, S.; Uysal, O.; Guzel, E.; Behrend, R.; Yoon, J.; Mottola, S.; Hellmich, S.; Hinse, T.; Eker, Z.; Park, J.

    2014-07-01

    Introduction: The Maria family is regarded as an old-type (˜3 ± 1 Gyr) [1] asteroid family which has experienced substantial collisional and dynamical evolution in the main belt. It is located near the 3:1 Jupiter mean-motion resonance area that supplies near-Earth asteroids (NEAs) to the inner Solar System. Observations: We carried out observations of Maria family asteroids in 134 nights from July 2008 to May 2013 using 0.5-m to 2-m class telescopes at seven observatories in the northern hemisphere, and derived synodic rotational periods for 51 objects, including new periods for 34 asteroids [2]. Results: We found that there is a significant excess of fast and slow rotators in the observed rotation-rate distribution. From the correlations among rotational periods, the amplitudes of lightcurves, and the sizes, we conclude that the rotational properties of the Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using the lightcurve inversion method [3,4], we successfully determined pole orientations for 13 Maria members, and found an excess of prograde spins over retrograde spins with a ratio (N_p/N_r) of 3. This implies that the retrograde rotators could have been ejected by the 3:1 resonance into the inner Solar System since the formation of the Maria family. We estimate that approximately 37 to 75 Maria family asteroids larger than 1 km have entered the near-Earth space as per 100 Myr [2].

  15. A Proposed Unified Theory of Hydrated Asteroids

    Science.gov (United States)

    Rivkin, Andrew S.

    2016-10-01

    The last decade has seen tremendous growth in the study of hydrated and hydroxylated minerals (hereafter simply called "hydrated minerals") on asteroids. Several workers have used absorptions in the 3-µm region and a correlated absorption near 0.7 µm to determine not only the presence or absence of these minerals but gain insight into the compositions of asteroid surfaces. Spectra of hundreds of asteroids have been measured and published or presented at meetings, and we are in a position to use these newer datasets to globally assess the patterns and relationships we see, as previously done by Jones et al. (1990) and Takir et al. (2012). There are several points to be addressed by any such assessment. Several different band shapes are seen in the 3-µm region, only one of which is seen in the hydrated meteorites in our collections. However, each of the main 3-µm band shapes is represented among parent bodies of collisional families. There seems to be little correlation in general between asteroid spectral class and 3-µm band shape, save for the Ch meteorites which are overwhelmingly likely to share the same band shape as the CM meteorites. Ceres has an unusual but not unique band shape, which has thus far only been found on the largest asteroids. I will present an outline scenario for the formation and evolution of hydrated asteroids, where aqueous alteration serves to lithify some objects while other objects remain unlithified and still others differentiate and suffer collisional modification. While some details will no doubt be altered to account for better or new information, this scenario is offered as a starting point for discussion.

  16. Orbital Mechanics near a Rotating Asteroid

    Indian Academy of Sciences (India)

    Yu Jiang; Hexi Baoyin

    2014-03-01

    This study investigates the different novel forms of the dynamical equations of a particle orbiting a rotating asteroid and the effective potential, the Jacobi integral, etc. on different manifolds. Nine new forms of the dynamical equations of a particle orbiting a rotating asteroid are presented, and the classical form of the dynamical equations has also been found. The dynamical equations with the potential and the effective potential in scalar form in the arbitrary body-fixed frame and the special body-fixed frame are presented and discussed. Moreover, the simplified forms of the effective potential and the Jacobi integral have been derived. The dynamical equation in coefficient-matrix form has been derived. Other forms of the dynamical equations near the asteroid are presented and discussed, including the Lagrange form, the Hamilton form, the symplectic form, the Poisson form, the Poisson-bracket form, the cohomology form, and the dynamical equations on Kähler manifold and another complex manifold. Novel forms of the effective potential and the Jacobi integral are also presented. The dynamical equations in scalar form and coefficient-matrix form can aid in the study of the dynamical system, the bifurcation, and the chaotic motion of the orbital dynamics of a particle near a rotating asteroid. The dynamical equations of a particle near a rotating asteroid are presented on several manifolds, including the symplectic manifold, the Poisson manifold, and complex manifolds, which may lead to novel methods of studying the motion of a particle in the potential field of a rotating asteroid.

  17. Asteroidal Quadruples in non Rooted Path Graphs

    Directory of Open Access Journals (Sweden)

    Gutierrez Marisa

    2015-11-01

    Full Text Available A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.

  18. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  19. Asteroid families - Physical properties and evolution

    Science.gov (United States)

    Chapman, Clark R.; Paolicchi, Paolo; Zappala, Vincenzo; Binzel, Richard P.; Bell, Jeffrey F.

    1989-01-01

    Asteroid families are considered to be fragments from collisional destruction of precursor bodies. However, results available on the inferred mineralogy, size distributions, and spins of family members do not confirm the expectations of the traditional model. Only a handful of nearly 100 proposed families, most of them populous, have distributions of inferred mineralogies consistent with simple cosmochemical models for parent bodies. It is suggested that most catastrophic collisions may not result in observable families, but rather in a spray of smaller particles, thus accounting for the small number of confirmed and consistent families, despite evidence for extensive collisional evolution of asteroids.

  20. Collisional evolution of the early asteroid belt

    Science.gov (United States)

    Gil-Hutton, Ricardo; Brunini, Adrián

    1999-04-01

    We present numerical results obtained by a simulation of the collisional process between asteroids and scattered comets from the Uranus-Neptune zone. This mechanism allows the use of single exponent incremental size distributions for the initial belt reaching a final distribution that matches the observed population very well. Since the cometary bombardment was extremely efficient removing mass from the primordial asteroid belt in a very short time, we always obtained belts with total masses less than 0.001 M ⊕ after ≈ 2×10 7 yrs. This result allows processes with an important initial mass preserving Vestas basaltic crust.

  1. Gravitational Capture of Asteroids by Gas Drag

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2009-01-01

    captured by the planet got its velocity reduced and could been trapped as an irregular satellite. It is well known that, depending on the time scale of the gas envelope, an asteroid will spiral and collide with the planet. So, we simulate the passage of the asteroid in the gas envelope with its density decreasing along the time. Using this approach, we found effective captures, and have a better understanding of the whole process. Finally, we conclude that the origin of the irregular satellites cannot be attributed to the gas drag capture mechanism alone.

  2. Manuel′s asteroid disruption technique

    Directory of Open Access Journals (Sweden)

    Manuel John

    2015-01-01

    Full Text Available A seventy-year-old male presented with dense asteroid hyalosis in both eyes. He had undergone cataract extraction in one eye 3 years ago, and the other eye had immature cataract. Both the autorefractor and dilated streak retinoscopy did not give readings and subjective visual improvement could not be achieved. Immediately following YAG posterior capsulotomy and anterior vitreous asteroid disruption, the vision improved to 20/20 with recordable auto refractor and streak retinoscopy values. Our initial experience indicates that the treatment is simple, safe and effective but needs controlled and prospective studies to confirm its long-term safety.

  3. Failure mode diagram of rubble pile asteroids: Application to (25143) asteroid Itokawa

    Science.gov (United States)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.

    2016-01-01

    Proposing a diagram which shows the variation in asteroidal failure as a function of a spin period, later called the failure mode diagram, this paper considers the failure modes and conditions of asteroid (25143) Itokawa. This diagram is useful to describe when and where failure occurs in an asteroid. Assuming that Itokawa is homogeneous, we use a plastic finite element code to obtain the diagram for this object. The results show that if the bulk cohesive strength is less than 0.1 Pa, Itokawa experiences compressional failure on the neck surface at the current spin period 12.1 hours. At a spin period shorter than 4.5 hours, tension across the neck causes this asteroid to split into two components. It is also found that if the breakup spin period is longer than 5.2 hours, their motion is bounded. This implies that once Itokawa splits, the components may escape from one another.

  4. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several

  5. Sensitivity of the Asteroid Redirect Robotic Mission (ARRM) to Launch Date and Asteroid Stay Time

    Science.gov (United States)

    Mcguire, Melissa L.; Burke, Laura M.; McCarty, Steven L.; Strange, Nathan J.; Qu, Min; Shen, Haijun; Vavrina, Matthew A.

    2017-01-01

    National Aeronautics and Space Administrations (NASAs) proposed Asteroid Redirect Mission (ARM) is being designed to robotically capture and then redirect an asteroidal boulder mass into a stable orbit in the vicinity of the moon, where astronauts would be able to visit and study it. The current reference trajectory for the robotic portion, ARRM, assumes a launch on a Delta IV H in the end of the calendar year 2021, with a return for astronaut operations in cislunar space in 2026. The current baseline design allocates 245 days of stay time at the asteroid for operations and boulder collection. This paper outlines analysis completed by the ARRM mission design team to understand the sensitivity of the reference trajectory to launch date and asteroid stay time.

  6. Tidal stress and failure in the moon of binary asteroid systems: Application to asteroid (65803) Didymos

    Science.gov (United States)

    Sophal Pou, Laurent; Garcia, Raphael F.; Mimoun, David; Murdoch, Naomi; Karatekin, Ozgur

    2017-04-01

    Rocky remnants left over from the early formation of the Solar System, asteroids are a target of choice for planetary science since much about the history of planetary formation and small body evolution processes can be learnt by studying them. Here we consider the case of the binary asteroid (65803) Didymos, the target of several mission proposals e.g., AIM [1] and DART [2]. A mission to Didymos would be a great opportunity for in-situ geophysical investigation, providing information on the surface and interior of asteroids. Such studies would improve our knowledge of binary asteroid formation and subsequent evolution of asteroids, thus of the history of the Solar System. As Didymos is a binary asteroid [3] with the main 800-meter diameter asteroid named Didymain and a 150-meter sized moon named Didymoon, both are subject to tidal stress. Recent investigations suggest that Didymoon is tidally locked and moves in a retrograde motion around Didymain along an elliptic orbit with a 0.03 eccentricity at most. In the case of an eccentric orbit, the tidal stress varies periodically and may be strong enough to cause tidal quakes on Didymoon at some points of the orbit. For this study, we modelled Didymoon as a spherical, layered body with different internal structures: a homogeneous model, and two models with a 1-meter and 10-meter regolith layer on top of a stronger internal core. Simulations show that, for a cohesionless body with an internal friction angle of 30°, tidal stress is strong enough to cause failure at the surface of Didymoon. A maximal stress is reached around the poles and for a mean anomaly of 90°. These results would mean that if tidal quakes occur on Didymoon, then they are likely to happen at these locations. An extension of these results to an ellipsoidal model of Didymoon is also presented for comparison with the spherical case and for application to other bodies. [1]: P. Michel et al., Science case for the asteroid impact mission (aim): A

  7. On the highly inclined vW leptokurtic asteroid families

    Science.gov (United States)

    Carruba, V.; Domingos, R. C.; Aljbaae, S.; Huaman, M.

    2016-11-01

    vW leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field vW is characterized by a positive value of the γ2 Pearson kurtosis, i.e. they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have γ2(vW) > 0.25. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the s - sV resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of γ2(vW) for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the dynamical importance (or lack of) node secular resonances with Ceres, Vesta, and Pallas for the considered families, and to obtain independent constraints on the family ages. While secular resonances with massive bodies in the main belt do not significantly affect the dynamical evolution of the Barcelona family, they significantly increase the γ2(vW) values of the simulated Hansa and Gallia families. Current values of the γ2(vW) for the Gallia family are reached over the estimated family age only if secular resonances with Vesta are accounted for.

  8. Seven Near-Earth Asteroids at Asteroids Observers (OBAS) - MPPD: 2016 June-November

    Science.gov (United States)

    Lozano, Juan; Flores, Angel; Mas, Vicente; Fornas, Gonzalo; Rodrigo, Onofre; Brines, Pedro; Forna, Alvaro; Herrero, David; Carreño, Alfonso; Arce, Enrique

    2017-04-01

    We report on the results of photometric analysis on seven near-Earth asteroids (NEA) by Asteroides Observers (OBAS). This work is part of the Minor Planet Photometric Database effort that was initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  9. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  10. Twenty-one Asteroid Lightcurves at Group Observadores de Asteroides (OBAS): Late 2015 to Early 2016

    Science.gov (United States)

    Aznar Macias, Amadeo; Carreno Garcerain, Alfonso; Arce Masego, Enrique; Brines Rodriguez, Pedro; Lozano de Haro, Juan; Fornas Silva, Alvaro; Fornas Silva, Gonzalo; Mas Martinez, Vicente; Rodrigo Chiner, Onofre; Herrero Porta, David

    2016-07-01

    We report on the photometric analysis result of 21 mainbelt asteroids (MBA) done by Observadores de Asteroides (OBAS). This work is part of the Minor Planet Photometric Database task initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as additional incomplete lightcurves to help analysis at future oppositions. This is a compilation of lightcurves obtained during last quarter of 2015 and first quarter of 2016.

  11. Asteroid mass estimation using Markov-Chain Monte Carlo techniques

    Science.gov (United States)

    Siltala, Lauri; Granvik, Mikael

    2016-10-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid using astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations into the OpenOrb asteroid-orbit-computation software: the very rough 'marching' approximation, in which the asteroid orbits are fixed at a given epoch, reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-Chain Monte Carlo (MCMC) approach. We will introduce each of these algorithms with particular focus on the MCMC algorithm, and present example results for both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans, particularly in connection with ESA's Gaia mission.

  12. Asteroid modeling for testing spacecraft approach and landing.

    Science.gov (United States)

    Martin, Iain; Parkes, Steve; Dunstan, Martin; Rowell, Nick

    2014-01-01

    Spacecraft exploration of asteroids presents autonomous-navigation challenges that can be aided by virtual models to test and develop guidance and hazard-avoidance systems. Researchers have extended and applied graphics techniques to create high-resolution asteroid models to simulate cameras and other spacecraft sensors approaching and descending toward asteroids. A scalable model structure with evenly spaced vertices simplifies terrain modeling, avoids distortion at the poles, and enables triangle-strip definition for efficient rendering. To create the base asteroid models, this approach uses two-phase Poisson faulting and Perlin noise. It creates realistic asteroid surfaces by adding both crater models adapted from lunar terrain simulation and multiresolution boulders. The researchers evaluated the virtual asteroids by comparing them with real asteroid images, examining the slope distributions, and applying a surface-relative feature-tracking algorithm to the models.

  13. 32 CFR 219.123 - Early termination of research support: Evaluation of applications and proposals.

    Science.gov (United States)

    2010-07-01

    ....123 Early termination of research support: Evaluation of applications and proposals. (a) The... 32 National Defense 2 2010-07-01 2010-07-01 false Early termination of research support: Evaluation of applications and proposals. 219.123 Section 219.123 National Defense Department of...

  14. Asteroid models from the Lowell Photometric Database

    CERN Document Server

    Durech, J; Oszkiewicz, D; Vanco, R

    2016-01-01

    We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. From the analysis of Lowell photometric data of the first 100,000 numbered asteroids, we derived 328 new ...

  15. Spectroscopic Survey of X-type Asteroids

    CERN Document Server

    Fornasier, Sonia; Dotto, Elisabetta

    2011-01-01

    We present reflected light spectral observations from 0.4 to 2.5 micron of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths. The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested i...

  16. Comet nucleus and asteroid sample return missions

    Science.gov (United States)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  17. Rotation Properties of Small Jovian Trojan Asteroids

    Science.gov (United States)

    French, Linda M.; Stephens, Robert D.; James, David; Coley, Daniel R.; Warner, Brian D.; Rohl, Derrick

    2016-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right (we have no spectral analogs among meteorite samples) and as possible relics of Solar System formation. Asteroid lightcurves can give information about processes that have affected a group of asteroids; they can also give information about the density of the objects when enough lightcurves have been collected. We have been carrying out a survey of Trojan lightcurve properties for comparison with small asteroids and with comets. In a recent paper (French et al. 2015) we presented evidence that a significant number of Trojans have rotation periods greater than 24 hours. We will report our latest results and compare them with results of sparsely-sampled lightcurves from the Palomar Transient Factory (Waszczak et al. 2015). LF, RS, and DR were visiting astronomers at Cerro Tololo Interamerican Observatory, operated by AURA under contract with the NSF, and with the SMARTS Consortium at CTIO. This research was sponsored by NSF Planetary Astronomy grant 1212115.ReferencesFrench, L.M. et al. 2015. Icarus 254, pp. 1-17.Waszczak, A. et al. 2015. A.J. 150, Issue 3, I.D. 35.

  18. NASA hits back in asteroid spat

    Science.gov (United States)

    Cartlidge, Edwin

    2016-07-01

    Nathan Myhrvold, chief executive of the company Intellectual Ventures and a former chief technology officer of Microsoft, is at loggerheads with a group of NASA astrophysicists over the latter's ability to accurately measure the properties of tens of thousands of asteroids in the solar system.

  19. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  20. Spectroscopic survey of M--type asteroids

    CERN Document Server

    Fornasier, S; Dotto, E; Migliorini, A; Ockert-Bell, M; Barucci, M A

    2010-01-01

    M-type asteroids, as defined in the Tholen taxonomy (Tholen, 1984), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron-nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4-2.5 micron) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M -types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004-2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near-infrared, including the identification of weak absorption bands, mainly of the 0.9 micron band tentatively attributed to orthopyroxene, and of the 0.43 micron band that may b...

  1. Asteroid thermal modeling: recent developments and applications

    NARCIS (Netherlands)

    Harris, A. W.; Mueller, M.

    2006-01-01

    A variety of thermal models are used for the derivation of asteroid physical parameters from thermal-infrared observations Simple models based on spherical geometry are often adequate for obtaining sizes and albedos when very little information about an object is available However sophisticated ther

  2. A note on cement in asteroids

    Science.gov (United States)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  3. Asteroid thermal modeling: recent developments and applications

    NARCIS (Netherlands)

    Harris, A. W.; Mueller, M.

    2006-01-01

    A variety of thermal models are used for the derivation of asteroid physical parameters from thermal-infrared observations Simple models based on spherical geometry are often adequate for obtaining sizes and albedos when very little information about an object is available However sophisticated

  4. Early formation of evolved asteroidal crust.

    Science.gov (United States)

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-08

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.

  5. Asteroids Lightcurves Analysis: 2015 October-December

    Science.gov (United States)

    Carbognani, Albino; Buzzi, Luca

    2016-04-01

    Eight asteroids, main-belt (MBA) and near-Earth (NEA), were observed in 2015 Oct-Dec: 6853 Silvanomassaglia, (112985) 2002 RS28, (155110) 2005 TB, (163899) 2003 SD220, (253106) 2002 UR3, (337866) 2001 WL15, 2015 XC, and 2015 WG9.

  6. Collisional Excavation of Asteroid (596) Scheila

    CERN Document Server

    Bodewits, D; Li, J -Y; Landsman, W B; Besse, S; A'Hearn, M F

    2011-01-01

    We observed asteroid (596) Scheila and its ejecta cloud using the Swift UV-optical telescope. We obtained photometry of the nucleus and the ejecta, and for the first time measured the asteroid's reflection spectrum between 290 - 500 nm. Our measurements indicate significant reddening at UV wavelengths (13% per 1000 {\\AA}) and a possible broad, unidentified absorption feature around 380 nm. Our measurements indicate that the outburst has not permanently increased the asteroid's brightness. We did not detect any of the gases that are typically associated with either hypervolatile activity thought responsible for cometary outbursts (CO+, CO2+), or for any volatiles excavated with the dust (OH, NH, CN, C2, C3). We estimate that 6 x 10^8 kg of dust was released with a high ejection velocity of 57 m/s (assuming 1 {\\mu}m sized particles). While the asteroid is red in color and the ejecta have the same color as the Sun, we suggest that the dust does not contain any ice. Based on our observations, we conclude that (59...

  7. The Advanced Jovian Asteroid Explorer (AJAX)

    Science.gov (United States)

    Murchie, S. L.; Adams, E. Y.; Mustard, J. F.; Rivkin, A.; Peplowski, P. N.

    2015-12-01

    The Advanced Jovian Asteroid eXplorer (AJAX) is the first mission to characterize the geology, morphology, geophysical properties, and chemistry of a Trojan asteroid. The Decadal Survey outlined a notional New Frontiers class Trojan asteroid rendezvous mission to conduct geological, elemental composition, mineralogical, and geophysical investigations. AJAX, our Discovery mission proposal, addresses the Decadal Survey science goals by using a focused payload and an innovative mission design. By responding to the most important questions about the Trojan asteroids, AJAX advances our understanding of all of the Solar System. Are these objects a remnant population of the local primordial material from which the outer planets and their satellites formed, or did they originate in the Kuiper Belt? Landed measurements of major and minor elements test hypotheses for the Trojan asteroid origin, revealing the outer Solar System dynamical history. How and when were prebiotic materials delivered to the terrestrial planets? AJAX's landed measurements include C and H concentrations, necessary to determine their inventories of volatiles and organic compounds, material delivered to the inner Solar System during the Late Heavy Bombardment. What chemical and geological processes shaped the small bodies that merged to form the planets in our Solar System? AJAX investigates the asteroid internal structure, geology, and regolith by using global high-resolution stereo and multispectral imaging, determining density and estimating interior porosity by measuring gravity, and measuring regolith mechanical properties by landing. AJAX's science phase starts with search for natural satellites and dust lifted by possible cometary activity and shape and pole position determination. AJAX descends to lower altitudes for global mapping, and conducts a low flyover for high-resolution surface characterization and measurement of hydrogen abundance. Finally, it deploys a small landed package, which

  8. Reducing the Asteroid and Comet Impact Hazard

    Science.gov (United States)

    Crawford, David

    1998-10-01

    Of the 140 impact craters known on the surface of Earth, the most famous was created about 65 million years ago when a 10 km asteroid or comet came down in shallow water near the present day town of Chicxulub, Mexico. With a kinetic energy equivalent to 100 trillion tons of TNT, the impact event lofted enough debris onto globe-straddling trajectories to flash heat much of the surface of the Earth and then darken the skies for several years. Numerous investigations have demonstrated that such an event, which happens, on average, every 100 million years, caused extreme stress on Earth's climate and most likely led to the extinction of many species. Computational simulations demonstrate that more numerous asteroids or comets as small as 1 km in diameter, impacting, on average, every 300,000 years may be globally catastrophic. Indeed, the odds of an individual dying from a relatively frequent 1 km impacting object (about 1 in 10,000) are substantially greater than from the impact of an infrequent dinosaur killer (1 in 1,000,000). What can we do to reduce the hazard from impacting comets and asteroids? First, we should find what's out there with our name on it. Only about 10 percent of the potential Earth-crossing asteroids have been found. Even at the greatly increased detection rate of recent years, it will be several decades before we've found 90 percent of the Earth-crossers. Second, we should learn everything we can about the physical, compositional and mechanical properties of asteroids and comets. A recent computational study demonstrated that weakly bound asteroids (little more than rubble piles) are easier to break than deflect(E. Asphaug, S. J. Ostro, R. S. Hudson, D. J. Scheeres and W. Benz (1998), Nature, Vol. 393, pp. 437-440.). Is this an advantage or disadvantage? Third, we should study potential means of mitigating the hazard by deflecting the object while still in space or evacuating affected regions (such as coastlines) of the Earth. Because the

  9. 3-µm Spectroscopy of Asteroid 16 Psyche

    Science.gov (United States)

    Takir, Driss; Reddy, Vishnu; Sanchez, Juan; Shepard, Michael K.

    2016-10-01

    Asteroid 16 Psyche, an M-type asteroid, is thought to be one of the most massive exposed iron metal object in the asteroid belt. The high radar albedos of Psyche suggest that this differentiated asteroid is dominantly composed of metal. Psyche was previously found to be featureless in the 3-µm spectral region. However, in our study we found that this asteroid exhibits a 3-µm absorption feature, possibly indicating the presence of hydrated silicates.We have observed Psyche in the 3-µm spectral region, using the long-wavelength cross-dispersed (LXD:1.9-4.2 µm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). For data reduction, we used the IDL (Interactive Data Language)-based spectral reduction tool Spextool (v4.1). Psyche was observed over the course of three nights with an apparent visual magnitude of ~9.50: 8 December 2015 (3 sets), 9 December 2015 (1 set), and 10 March 2016 (1 set). These observations have revealed that Psyche may exhibit a 3-µm absorption feature, similar to the sharp group in the 2.9-3.3-µm spectral range. Psyche also exhibits an absorption feature similar to the one in Ceres and Ceres-like group in the spectral 3.3-4.0-µm range. These 3-µm observational results revealed that Psyche may not be as featureless as once thought in the 3-µm spectral region.Evidence for the 3-µm band was found on the surfaces of many M-type asteroids and a number of plausible alternative interpretations for the presence of this 3-µm band were previously suggested. These interpretations include the presence of anhydrous silicates containing structural OH, the presence of fluid inclusions, the presence of xenolithic hydrous meteorite components on asteroid surfaces from impacts, solar wind-implanted H, or the presence of troilite. The detection of the Ceres-like feature in the 3.3-4.0-µm spectral range, however, would rule out some of these alternative interpretations, especially the solar wind-implanted H.

  10. The partial fission of fast spinning asteroids

    Science.gov (United States)

    Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.

    2016-10-01

    The spin rates of asteroids systematically change over time due the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in simulations with

  11. Massive identification of asteroids in three-body resonances

    Science.gov (United States)

    Smirnov, Evgeny A.; Shevchenko, Ivan I.

    2013-01-01

    An essential role in the asteroidal dynamics is played by the mean motion resonances. Two-body planet-asteroid resonances are widely known, due to the Kirkwood gaps. Besides, so-called three-body mean motion resonances exist, in which an asteroid and two planets participate. Identification of asteroids in three-body (namely, Jupiter-Saturn-asteroid) resonances was initially accomplished by Nesvorný and Morbidelli (Nesvorný D., Morbidelli, A. [1998]. Astron. J. 116, 3029-3037), who, by means of visual analysis of the time behaviour of resonant arguments, found 255 asteroids to reside in such resonances. We develop specialized algorithms and software for massive automatic identification of asteroids in the three-body, as well as two-body, resonances of arbitrary order, by means of automatic analysis of the time behaviour of resonant arguments. In the computation of orbits, all essential perturbations are taken into account. We integrate the asteroidal orbits on the time interval of 100,000 yr and identify main-belt asteroids in the three-body Jupiter-Saturn-asteroid resonances up to the 6th order inclusive, and in the two-body Jupiter-asteroid resonances up to the 9th order inclusive, in the set of ˜250,000 objects from the "Asteroids - Dynamic Site" (AstDyS) database. The percentages of resonant objects, including extrapolations for higher-order resonances, are determined. In particular, the observed fraction of pure-resonant asteroids (those exhibiting resonant libration on the whole interval of integration) in the three-body resonances up to the 6th order inclusive is ≈0.9% of the whole set; and, using a higher-order extrapolation, the actual total fraction of pure-resonant asteroids in the three-body resonances of all orders is estimated as ≈1.1% of the whole set.

  12. OSIRIS-REx, Returning the Asteroid Sample

    Science.gov (United States)

    Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua

    2015-01-01

    This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful

  13. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  14. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    Science.gov (United States)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  15. Geologic History of Asteroid 4 Vesta

    Science.gov (United States)

    Mittlefehldt, David W.

    2014-01-01

    Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (=50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions

  16. Education and Outreach for Volunteer Planetary Defense

    Science.gov (United States)

    Burke, J. D.

    2016-12-01

    When a large meteor exploded over Chelyabinsk in 2013, people saw the bright flash and rushed to windows. Then the blast wave hit and many were injured by flying glass fragments. Education about airbursts might have reduced the casualties. Education and Public Outreach (EPO) can also be important in broadening public involvement in preparations for dealing with cosmic hazards. Amateur astronomers have an important role in discovering potentially hazardous asteroids and comets, and also in making follow-up observations after discovery. This is especially important for Southern Hemisphere observing sites where professional observers are relatively few. The Planetary Society makes small Shoemaker grants to aid amateur astronomers in this work. Much more could be done if educators, students and the general public were aware of the opportunity and the need. Beyond this, public engagement is essential to raise and maintain support for active agencies, including the UN-sponsored International Asteroid Warning Network (IAWN) and Space Mission Planning Advisory Group (SMPAG). This paper will describe and advocate EPO efforts in support of these and other Volunteer Planetary Defense activities.

  17. Thermal infrared observations of near-Earth asteroid 2002 NY40

    CERN Document Server

    Müller, T G; Schuetz, O; Pravec, P; Siebenmorgen, R

    2004-01-01

    We obtained N-band observations of the Apollo asteroid 2002 NY40 during its close Earth fly-by in August 2002 with TIMMI2 at the ESO 3.6 m telescope. The photometric measurement allowed us to derive a radiometric diameter of 0.28+/-0.03 km and an albedo of 0.34+/-0.06 through the near-Earth asteroid thermal model (NEATM) and a thermophysical model (TPM). The values are in agreement with results from radar data, visual and near-IR observations. In this first comparison between these two model approaches we found that the empirical NEATM beaming parameter $\\eta$=1.0 corresponds to a thermal inertia values of about 100 $\\mathrm{J m^{-2} s^{-0.5} K^{-1}}$ for a typical range of surface roughness, assuming an equator-on viewing angle. Our TPM analysis indicated that the surface of 2002 NY40 consists of rocky material with a thin or no dust regolith. The asteroid very likely has a prograde sense of rotation with a cold terminator at the time of our observations. Although both model approaches can fit the thermal sp...

  18. Handbook of cosmic hazards and planetary defense

    CERN Document Server

    Allahdadi, Firooz

    2015-01-01

    Covers in a comprehensive fashion all aspects of cosmic hazards and possible strategies for contending with these threats through a comprehensive planetary defense strategy. This handbook brings together in a single reference work a rich blend of information about the various types of cosmic threats that are posed to human civilization by asteroids, comets, bolides, meteors, solar flares and coronal mass ejections, cosmic radiation and other types of threats that are only recently beginning to be understood and studied, such as investigation of the “cracks” in the protective shield provided by the Van Allen belts and the geomagnetosphere, of matter-antimatter collisions, orbital debris and radiological or biological contamination. Some areas that are addressed involve areas about which there is a good deal of information that has been collected for many decades by multiple space missions run by many different space agencies, observatories and scientific researchers. Other areas involving research and ...

  19. Regolith Levitation on Small Fast Rotating Asteroids

    Science.gov (United States)

    Campo Bagatin, Adriano; Moreno, Fernando; Molina, Antonio

    2014-11-01

    A number of NEAs larger than few hundred meters are found with relatively high spin rates (from ~2.2 to less than 4 hr, depending on composition). On those bodies, local acceleration near their equator may be directed outwards, as in the case of the primaries of binary asteroids Didymos and 1996 FG3. They both are potential targets of future space missions. What are the effects of high spin states on regolith material at low asteroidal latitudes?NEAs come from the asteroid belt and are believed to be mostly gravitational aggregates at D > 0.5 - 1 km due to their former collisional evolution history (Campo Bagatin et al, 2001). Once in the inner Solar System, NEAs may undergo spin up evolution through YORP causing their components to disperse, shed mass or fission and eventually form binary, multiple systems or asteroid pairs (Walsh et al, 2008, Jacobson and Scheers, 2010, Pravec et al, 2009 and 2010). The end state of those events is often an object spinning above any Chandrasekhar stability limit, kept together by friction (Holsapple, 2007) and sometimes characterized by an equatorial “bulge”, as shown by radar images (Ostro et al, 2006).The centrifugal force acting on surface particles at equatorial latitudes may overcome the gravitational pull of the asteroid itself, and particles may leave its suface. Centrifugal is an apparent contact force, and as soon as particles lift off they mainly move under the gravitational field of the asteroid and the satellite, they may levitate for some time, land on the surface and repeat this cycle over and over. We are studying the motion of particles in the 1 μm to 10 cm range in the non-inertial reference frame of the rotating primary, accounting for centrifugal and Coriolis apparent forces as well as the gravitational fields of the primary, the secondary, the Sun and the radiation forces by the Sun itself. The main features of this effect are presented in the case of Didymos and 1996 FG3.

  20. Recognizing plant defense priming

    NARCIS (Netherlands)

    Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; Van Dam, N.M.; Conrath, U.

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plant

  1. Reverse Asteroids: Searching for an Effective Tool to Combat Asteroid Belt Misconceptions

    Science.gov (United States)

    Summers, F.; Eisenhamer, B.

    2014-12-01

    The public 'knows' that asteroid belts are densely packed and dangerous for spaceships to cross. Visuals from "Star Wars" to, unfortunately, the recent "Cosmos" TV series have firmly established this astronomical misconception. However, even scientifically correct graphics, such as the Minor Planet Center's plot of the inner solar system, reinforces that view. Each pixel in the image is more than a million kilometers in width, making an accurate representation of the object density impossible.To address this widespread misconception, we are investigating an educational exercise built around a computer interactive that we call "Reverse Asteroids". In the arcade classic video game, the asteroids came to the player's spaceship. For our reverse implementation, we consider an inquiry-based activity in which the spaceship must go hunting for the asteroids, using a database of real objects in our solar system. Both 3D data visualization and basic statistical analysis play crucial roles in bringing out the true space density within the asteroid belt, and perhaps a reconciliation between imagination and reality. We also emphasize that a partnership of scientists and educators is fundamental to the success of such projects.

  2. Asteroids - the modern challenge of celestial dynamics

    Science.gov (United States)

    Dikova, Smiliana

    2002-11-01

    Among the most powerful statements in Science are those that mark absolute limits to knowledge. For example, Relativity and Quantum Theory touched the limits of speed and accuracy. Deterministic Chaos - the new scientific paradigma of our days, also falls in this class theories. Chaos means complexity in space and unpredictability in time. It shows the limit of our basic counting system and leads to a limited predictability of the long time dynamical evolution. Perhaps for that reason, in 1986 Sir James Lighthill remarked for all physicists: "We collectively wish to apologize for having misled the general educated public by spreading ideas about the determinism of systems satisfying Newton's laws of motion that, after 1960, were proved incorrect." Our main thesis is that Asteroid Dynamics is the arena where the drama Chaos versus predictability is initiated and developed. The aim of the present research is to show the way in which Deterministic Chaos restricts the long term dynamical predictability of asteroid motions.

  3. Computation of Asteroid Proper Elements: Recent Advances

    Science.gov (United States)

    Knežević, Z.

    2017-06-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  4. The Bering small vehicle asteroid mission concept

    DEFF Research Database (Denmark)

    Michelsen, Rene; Andersen, Anja; Haack, Henning

    2004-01-01

    targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus......The study of asteroids is traditionally performed by means of large Earth based telescopes, by means of which orbital elements and spectral properties are acquired. Space borne research, has so far been limited to a few occasional flybys and a couple of dedicated flights to a single selected target....... Although the telescope based research offers precise orbital information, it is limited to the brighter, larger objects, and taxonomy as well as morphology resolution is limited. Conversely, dedicated missions offer detailed surface mapping in radar, visual, and prompt gamma, but only for a few selected...

  5. Is 1220 Crocus a precessing, binary asteroid?

    Science.gov (United States)

    Binzel, R. P.

    1985-01-01

    Photoelectric data of the asteroid 1220 Crocus over a 13 night period in 1984 revealed the presence of two separate periods. The light curves were indicative of a precessing body, but not one in free precession due to motions induced by a collision. Closer examinations revealed periods of 30.7 and 7.9 hr with amplitudes of 0.87 and 0.15 mag, respectively. An analysis of the source of an external torque which could be causing a forced precession led to the hypothesis that 1220 Crocus has a satellite. Verification of the binary asteroid configuration will depend on more detailed light curves, the possible modulation of the shorter period by the longer, and possible use of the Space Telescope.

  6. Is 1220 Crocus a precessing, binary asteroid?

    Science.gov (United States)

    Binzel, R. P.

    1985-07-01

    Photoelectric data of the asteroid 1220 Crocus over a 13 night period in 1984 revealed the presence of two separate periods. The light curves were indicative of a precessing body, but not one in free precession due to motions induced by a collision. Closer examinations revealed periods of 30.7 and 7.9 hr with amplitudes of 0.87 and 0.15 mag, respectively. An analysis of the source of an external torque which could be causing a forced precession led to the hypothesis that 1220 Crocus has a satellite. Verification of the binary asteroid configuration will depend on more detailed light curves, the possible modulation of the shorter period by the longer, and possible use of the Space Telescope.

  7. Asteroid absolute magnitudes and slope parameters

    Science.gov (United States)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  8. New CCD photometry of asteroid (1028) Lydina

    Institute of Scientific and Technical Information of China (English)

    Yi-Bo Wang; Xiao-Bin Wang

    2012-01-01

    New CCD photometric observations for asteroid (1028) Lydina,carried out with the 1-m and 2.4-m telescopes at Yunnan Observatory from 2011 December 19 to 2012 February 3,are presented.Using the new light curves,the rotation period of 11.680±0.001 hours is derived with the Phase Dispersion Minimization (PDM) method.In addition,using the Amplitude-Aspect method,the elementary results of the pole orientation of asteroid (1028) Lydina are obtained:λp= 111°+4°-4°,βp= 31°+4°-5°.Meanwhile,the axial ratios of the tri-axial ellipsoid are estimated:a/b = 1.77+0.10-0.08and b/c = 1.17+0.07-0.09.

  9. Equilibrium figures of inhomogeneous synchronous binary asteroids

    Science.gov (United States)

    Descamps, P.

    2010-06-01

    The present paper deals with the application of the classical theory of equilibrium figures of two rotating liquid masses to the case where bodies exhibit a radially stratified internal density distribution so that they can be considered as inhomogeneous bodies. The derived ellipsoidal shape solutions are applied to five real systems of equal-sized synchronous asteroids. Furthermore, internal inhomogeneity puts strong constraints on the surface grain density. A satisfactory model fit is achieved with internal densities of asteroids steadily increasing outwards. In particular, from such an approach we derived grain densities of the considered systems in agreement with their mineralogical composition inferred from reflectance spectroscopy. According to this new approach, 4492 Debussy, presently of unknown spectral type, is predicted to appear as a C-type object with a grain density on the order of 2 g/cm 3.

  10. Effective stability of the Trojan asteroids

    CERN Document Server

    Skokos, C; Skokos, Ch.

    2001-01-01

    We study the spatial circular restricted problem of three bodies in the light of Nekhoroshev theory of stability over large time intervals. We consider in particular the Sun-Jupiter model and the Trojan asteroids in the neighborhood of the Lagrangian point $L_4$. We find a region of effective stability around the point $L_4$ such that if the initial point of an orbit is inside this region the orbit is confined in a slightly larger neighborhood of the equilibrium (in phase space) for a very long time interval. By combining analytical methods and numerical approximations we are able to prove that stability over the age of the universe is guaranteed on a realistic region, big enough to include one real asteroid. By comparing this result with the one obtained for the planar problem we see that the regions of stability in the two cases are of the same magnitude.

  11. Catalogue of ISO LWS observations of asteroids

    CERN Document Server

    Hormuth, Felix

    2009-01-01

    (Abridged) The Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO) observed the four large main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (10) Hygiea multiple times. The photometric and spectroscopic data cover the wavelength range between 43 and 197 um, and are a unique dataset for future investigations and detailed characterisations of these bodies. The standard ISO archive products, produced through the last post-mission LWS pipeline, were still affected by instrument artefacts. Our goal was to provide the best possible data products to exploit the full scientific potential of these observations. We performed a refined reduction of all measurements, corrected for various instrumental effects, and re-calibrated the data. We outline the data reduction process and give an overview of the available data and the quality of the observations. We apply a thermophysical model to the flux measurements to derive far-IR based diameter and albedo values of the asteroids. The measu...

  12. Chang'e-2 spacecraft observations of asteroid 4179 Toutatis

    Science.gov (United States)

    Ji, Jianghui; Jiang, Yun; Zhao, Yuhui; Wang, Su; Yu, Liangliang

    2016-01-01

    On 13 December 2012, Chang'e-2 completed a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 meters from the asteroid's surface. The observations show that Toutatis has an irregular surface and its shape resembles a ginger-root of a smaller lobe (head) and a larger lobe (body). Such bilobate shape is indicative of a contact binary origin for Toutatis. In addition, the high-resolution images better than 3 meters provide a number of new discoveries about this asteroid, such as an 800-meter depression at the end of the large lobe, a sharply perpendicular silhouette near the neck region, boulders, indicating that Toutatis is probably a rubble-pile asteroid. Chang'e-2 observations have significantly revealed new insights into the geological features and the formation and evolution of this asteroid. In final, we brief the future Chinese asteroid mission concept.

  13. Chang'e-2 spacecraft observations of asteroid 4179 Toutatis

    CERN Document Server

    Ji, Jianghui; Zhao, Yuhui; Wang, Su; Yu, Liangliang

    2015-01-01

    On 13 December 2012, Chang'e-2 completed a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 meters from the asteroid's surface. The observations show that Toutatis has an irregular surface and its shape resembles a ginger-root of a smaller lobe (head) and a larger lobe (body). Such bilobate shape is indicative of a contact binary origin for Toutatis. In addition, the high-resolution images better than 3 meters provide a number of new discoveries about this asteroid, such as an 800-meter depression at the end of the large lobe, a sharply perpendicular silhouette near the neck region, boulders, indicating that Toutatis is probably a rubble-pile asteroid. Chang'e-2 observations have significantly revealed new insights into the geological features and the formation and evolution of this asteroid. In final, we brief the future Chinese asteroid mission concept.

  14. Asteroid Deflection Using a Spacecraft in Restricted Keplerian Motion

    CERN Document Server

    Ketema, Yohannes

    2016-01-01

    A method for asteroid deflection that makes use of a spacecraft moving back and forth on a segment of an appropriate Keplerian orbit about the asteroid is described and evaluated. It is shown that, on average, the spacecraft describing such a trajectory can exert a significantly larger force on the asteroid than e.g. a stationary gravity tractor, thereby reducing the time needed to effect a desired velocity change for the asteroid. Furthermore, the current method does not require canted thrusters on the spacecraft (unlike a stationary gravity tractor), markedly reducing the amount of fuel needed to create a given change in the asteroid velocity. In addition, the method allows for the simultaneous use of several spacecraft, further strengthening the overall tugging effect on the asteroid, and distributing the thrust requirement among the spacecraft.

  15. Radar observations of the asteroid 2011 UW158

    Science.gov (United States)

    Ipatov, A. V.; Bondarenko, Yu. S.; Medvedev, Yu. D.; Mishina, N. A.; Marshalov, D. A.; Benner, L. A.

    2016-12-01

    In July 2015 intercontinental bistatic radar observations of the potentially dangerous asteroid 2011 UW158 during its close approach to the Earth were carried out. The asteroid was illuminated at a frequency of 8.4 GHz with the 70-m DSS-14 antenna of the Goldstone Deep Space Communications Complex, while the signal reflected from the asteroid was received with the 32-m radio telescopes of the Quasar VLBI network at the Zelenchukskaya and Badary Observatories. The spectra of the reflected radio signals were obtained. The sizes and rotation period of the asteroid consistent with photometric observations and the ratio of the powers of the reflected signals with left- and right-hand circular polarizations were determined. The derived values suggest that the asteroid has an inhomogeneous surface and a prolate shape. The observations of the Doppler shift of the reflected signal frequency were obtained, which allowed the orbital parameters of the asteroid to be improved.

  16. 3382 Cassidy: A Short Period Asteroid

    Science.gov (United States)

    Risley, Ethan

    2013-04-01

    The asteroid 3382 Cassidy was observed from the Etscorn Campus Observatory (ECO, 2012) at New Mexico Institute of Mining and Technology in Socorro, NM, on nine nights over a span of 43 days in 2012 September-November. A bimodal synodic period of 4.254 ± 0.002 h and an amplitude of 0.15 ± 0.02 mag were obtained.

  17. Polarimetry of M-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.

    2007-03-01

    Aims:Results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina are presented. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the X taxonomic class. In this paper results of the campaign for M-type objects are presented. Methods: The data have been obtained with Casprof and Torino polarimeters at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation and the Torino polarimeter is an instrument that allows simultaneous measurement of polarization in the U-, B-, V-, R-, and I-bands. Results: The campaign began in 2000, and data on a sample of 26 M-type asteroids were obtained. Most of these objects were polarimetricaly observed for the first time. Combining these data with those available in the literature, an estimate of the polarimetric parameters and albedo for 12 objects is presented. Furthermore, the data show that asteroids 21 Lutetia and 77 Frigga have a large inversion angle and 441 Bathilde a deep polarization minimum, implying a controversial taxonomic classification as M-type for these objects. Also, the polarimetric parameters estimated for the M-type asteroids showing in their spectra the 3 μm band and classified as W-type by Rivkin et al. (1995, Icarus, 117, 90; 2000, ApJ, 145, 351) could be different from those without that feature. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, and the National Universities of La Plata, Córdoba and San Juan.

  18. Simulations of asteroid impacts on water

    Science.gov (United States)

    Gisler, G. R.; Weaver, R. P.; Gittings, M. L.

    2002-05-01

    We have performed a series of two-dimensional and three-dimensional simulations of asteroid impacts into an ocean using the SAGE code from Los Alamos National Laboratory and Science Applications International Corporation. The SAGE code is a compressible Eulerian hydrodynamics code using continuous adaptive mesh refinement for following discontinuities with a fine grid while treating the bulk of the simulation more coarsely. We have used realistic equations of state for the atmosphere, sea water, the oceanic crust and mantle. In two dimensions, we threw asteroid impactors at 20 km/s vertically through an exponential atmosphere into a 5 km deep ocean. The impactors were composed of mantle material (3.32 g/cc) with diameters of 250m, 500m, and 1000m, chosen to compare with the previous work of Crawford and Mader. We also performed some runs with asteroids composed of iron (7.8 g/cc). Because some of the iron asteroids produced craters that penetrated the basalt crust, we included a layer of mantle material in all simulations. A vertical impact produces a large underwater cavity with nearly vertical walls followed by a collapse starting from the bottom and subsequent vertical jetting. Tsunamis up to a kilometer in initial height were generated and followed out to 100 km from the point of impact. In the three-dimensional run, an impactor of iron was thrown at 20 km/s at an angle of 45 degrees. Differences between this run and the vertical two-dimensional runs will be discussed.

  19. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  20. CCD Photometry of Asteroid (147) Protogeneia

    Institute of Scientific and Technical Information of China (English)

    Xi-Liang Zhang; Xiao-Bin Wang; Li-Yun Zhang

    2006-01-01

    We measured the light-curve of the asteroid (147) Protogeneia in November 2004, with a CCD detector attached to the 1-meter telescope at the Yunnan Observatory, China. The synodic period and maximum amplitude of (147) at this apparition are 7.852 hours and 0.25 mag, respectively. The value of a/b for (147), from a preliminary estimation, is not less than 1.26:1.

  1. Asteroids in the service of humanity

    CERN Document Server

    Crawford, Ian A

    2013-01-01

    There are at least three compelling reasons for the human race to initiate a major programme to explore and better understand the 'minor planets' of the Solar System: (1) Enhancing scientific knowledge; (2) Mitigating the impact hazard; and (3) Utilizing extraterrestrial resources. Strong synergies exist between all three. Moreover, all these activities would benefit from greater international cooperation in space exploration by the World's space agencies, and the recognition that asteroids are important targets for human and robotic exploration.

  2. Curation of Osiris-REx Asteroid Samples

    Science.gov (United States)

    Righter, K.; Nakamura-Messenger, K.; Lauretta, D. S.

    2013-01-01

    The New Frontiers mission, OSIRIS-REx, will encounter carbonaceous asteroid 101955 Bennu (1999 RQ36; [1]) in 2018, collect a sample and return it to Earth and deliver it to NASA-JSC for curation in 2023. The mission curation plan is being developed and an overview will be given, including the main elements of contamination control, sample recovery, cleanroom construction, and curation support once the sample is returned to Earth.

  3. International Asteroid Search Campaign: An Educational Outreach Program in Astronomy for High Schools and Colleges

    Science.gov (United States)

    Miller, J. P.; Juliano, D.; Davis, J. W.; Holmes, R. E.; Devore, H.; Raab, H.; Pennypacker, C. R.; White, G. L.; Gould, A.

    2008-03-01

    The International Asteroid Search Campaign is an Internet-based program for high schools and colleges. Schools receive images, analyzed by students searching for asteroids and NEOs. Students have 71 asteroid discoveries and 1376 NEO observations.

  4. Example Solar Electric Propulsion System asteroid tours using variational calculus

    Science.gov (United States)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  5. Asteroid Detection Results Using the Space Surveillance Telescope

    Science.gov (United States)

    2015-10-18

    Distribution Statement A: Approved for public release, distribution unlimited. Asteroid Detection Results Using the Space Surveillance Telescope...USA ABSTRACT From 1998-2013, MIT Lincoln Laboratory operated a highly successful near-Earth asteroid search program using...two 1-m optical telescopes located at the MIT Lincoln Laboratory Experimental Test Site (ETS) in Socorro, N.M. In 2014, the Lincoln Near-Earth Asteroid

  6. Design of MGA trajectories for main belt asteroid

    Institute of Scientific and Technical Information of China (English)

    崔祜涛; 乔栋; 崔平远; 栾恩杰

    2003-01-01

    Asteroid exploration is one of the most sophisticated missions currently being investigated. Gravityassist trajectories have proven valuable in interplanetary missions such as the Pioneer, Voyager and Galileo. In this paper, we design interplanetary trajectory for main belt asteroid exploration mission with the Mars gravityassist (MGA) using "pork chop" plots and patched-conic theory and give some initial valuable trajectory parameters on main belt asteroid exploration mission with MGA.

  7. Solar System evolution from compositional mapping of the asteroid belt.

    Science.gov (United States)

    DeMeo, F E; Carry, B

    2014-01-30

    Advances in the discovery and characterization of asteroids over the past decade have revealed an unanticipated underlying structure that points to a dramatic early history of the inner Solar System. The asteroids in the main asteroid belt have been discovered to be more compositionally diverse with size and distance from the Sun than had previously been known. This implies substantial mixing through processes such as planetary migration and the subsequent dynamical processes.

  8. The small binary asteroid (939) Isberga

    CERN Document Server

    Carry, B; Scheirich, P; Pravec, P; Molnar, L; Mottola, S; Carbognani, A; Jehin, E; Marciniak, A; Binzel, R P; DeMeo, F E; Birlan, M; Delbo, M; Barbotin, E; Behrend, R; Bonnardeau, M; Colas, F; Farissier, P; Fauvaud, M; Fauvaud, S; Gillier, C; Gillon, M; Hellmich, S; Hirsch, R; Leroy, A; Manfroid, J; Montier, J; Morelle, E; Richard, F; Sobkowiak, K; Strajnic, J; Vachier, F

    2014-01-01

    In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary asteroid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14$^{+0.09}_{-0.06}$ (all uncertainties are reported as 3-$\\sigma$ range) we determine (average albedo of S-types is 0.197 $\\pm$ 0.153, Pravec et al., 2012, Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 $\\pm$ 0.0001 h, is close to circular, and has pole coordinates within 7 deg...

  9. Spacewatch discovery of near-Earth asteroids

    Science.gov (United States)

    Gehrels, Tom

    1992-01-01

    Our overall scientific goal is to survey the solar system to completion - that is, to find the various populations and to study their statistics, interrelations, and origins. The practical benefit to SERC is that we are finding Earth-approaching asteroids that are accessible for mining. Our system can detect Earth-approachers in the 1-km size range even when they are far away, and can detect smaller objects when they are moving rapidly past Earth. Until Spacewatch, the size range of 6-300 meters in diameter for the near-Earth asteroids was unexplored. This important region represents the transition between the meteorites and the larger observed near-Earth asteroids. One of our Spacewatch discoveries, 1991 VG, may be representative of a new orbital class of object. If it is really a natural object, and not man-made, its orbital parameters are closer to those of the Earth than we have seen before; its delta V is the lowest of all objects known thus far. We may expect new discoveries as we continue our surveying, with fine-tuning of the techniques.

  10. The preventive destruction of a hazardous asteroid

    Science.gov (United States)

    Aleksandrova, A. G.; Galushina, T. Yu.; Prishchepenko, A. B.; Kholshevnikov, K. V.; Chechetkin, V. M.

    2016-06-01

    One means of countering a hazardous asteroid is discussed: destruction of the object using a nuclear charge. Explosion of such an asteroid shortly before its predicted collision would have catastrophic consequences, with numerous highly radioactive fragments falling onto the Earth. The possibility of exploding the asteroid several years before its impact is also considered. Such an approach is made feasible because the vast majority of hazardous objects pass by the Earth several times before colliding with it. Computations show that, in the 10 years following the explosion, only a negligible number of fragments fall onto the Earth, whose radioactivity has substantially reduced during this time. In most cases, none of these fragments collides with the Earth. Thus, this proposed method for eliminating a threat from space is reasonable in at least two cases: when it is not possible to undergo a soft removal of the object from the collisional path, and to destroy objects that are continually returning to near-Earth space and require multiple removals from hazardous orbits.

  11. A Probabilistic Asteroid Impact Risk Model

    Science.gov (United States)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2016-01-01

    Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.

  12. Dynamical evolution of the Cybele asteroids

    CERN Document Server

    Carruba, Valerio; Aljbaae, Safwan; Huaman, Mariela Espinoza

    2015-01-01

    The Cybele region, located between the 2J:-1A and 5J:-3A mean-motion resonances, is adjacent and exterior to the asteroid main belt. An increasing density of three-body resonances makes the region between the Cybele and Hilda populations dynamically unstable, so that the Cybele zone could be considered the last outpost of an extended main belt. The presence of binary asteroids with large primaries and small secondaries suggested that asteroid families should be found in this region, but only relatively recently the first dynamical groups were identified in this area. Among these, the Sylvia group has been proposed to be one of the oldest families in the extended main belt. In this work we identify families in the Cybele region in the context of the local dynamics and non-gravitational forces such as the Yarkovsky and stochastic YORP effects. We confirm the detection of the new Helga group at $\\simeq$3.65~AU, that could extend the outer boundary of the Cybele region up to the 5J:-3A mean-motion resonance. We o...

  13. How to find metal-rich asteroids

    CERN Document Server

    Harris, Alan W

    2014-01-01

    The metal content of asteroids is of great interest, not only for theories of their origins and the evolution of the solar system but, in the case of near-Earth objects (NEOs), also for impact mitigation planning and endeavors in the field of planetary resources. However, since the reflection spectra of metallic asteroids are largely featureless, it is difficult to identify them and relatively few are known. We show how data from the Wide-field Infrared Survey Explorer (WISE)/NEOWISE thermal-infrared survey and similar surveys, fitted with a simple thermal model, can reveal objects likely to be metal rich. We provide a list of candidate metal-rich NEOs. Our results imply that future infrared surveys with the appropriate instrumentation could discover many more metal-rich asteroids, providing valuable data for assessment of the impact hazard and the potential of NEOs as reservoirs of vital materials for future interplanetary space activities and, eventually perhaps, for use on Earth.

  14. Formation and Evolution of Binary Asteroids

    CERN Document Server

    Walsh, Kevin J

    2015-01-01

    Satellites of asteroids have been discovered in nearly every known small body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of Solar System history and their dynamical environment over the next 4.5 Gyr. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by: 1) the growing catalog of known systems, increasing from 33 to nearly 250 between the Merline et al. (2002) Asteroids III chapter and now, 2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, 3...

  15. Naming asteroids for the popularisation of astronomy

    Science.gov (United States)

    Naranjo, O. A.

    2008-06-01

    We give a detailed description of how the naming of asteroids was used as a prize in competitions run by educational institutions and museums. There were two events, one in Venezuela and one in Brazil, which used this as an attractive alternative method for the popularisation of astronomy. The first competition, named Bautizo Espacial (Space Baptism), consisted of scientific stories written by high school students. The second, called Grande Desafio (Big Challenge), was a competition where teams of students were challenged to design and build prototype equipment to fight forest fires. Nationally, both events received wide publicity through newspapers, radio, TV and web pages, reaching many people in both countries. As part of both the events, several activities promoting the public knowledge of astronomy were held. The asteroids that were named in these competitions are just some of the many discovered in a search programme developed by the Group of Theoretical Astrophysics of University of Los Andes in Mérida, Venezuela (Grupo de Astrofisica Teórica de la Universidad de Los Andes) as a mainstream research programme. Finally, Asteroids for the Popularisation of Astronomy has been formally proposed to the IAU as a worldwide programme during the celebration of the International Year of Astronomy in 2009 (IYA2009).

  16. Progress in clinical research of asteroid hyalosis

    Directory of Open Access Journals (Sweden)

    Xiao-Xue Liu

    2017-08-01

    Full Text Available Asteroid Hyalosis(AHis a common clinical disease, which has been considered a benign disorder as it rarely impairs visual acuity. It was often discovered when the patient was treated for other eye diseases. The mechanism was unclear. Its characteristic B-ultrasound property makes the B-ultrasound a very helpful diagnostic technique. In the case of the patients with other fundus diseases associated with AH, optical coherence tomography(OCTand fluorescein angiography(FAmay be used to reduce the interference from asteroid bodies, therefore improve the fundus visibility. Recent studies have shown that AH can incorporate with many other eye diseases. For example, in patients with cataracts, asteroid hyalosis can cause surface calcification of silicone plate intraocular lenses, which in most cases may lead to the need for explantation of the calcified intraocular lenses. The efficacy of pars plana vitrectomy(PPV, the removal of some, or all, of the eye's vitreous humor for AH remains controversial. In this paper, we provide a review of the recent literature on AH disease: the etiology, diagnosis and treatment. We hope to thus improve the awareness and outcomes of AH disease.

  17. How Many Ore-Bearing Asteroids?

    CERN Document Server

    Elvis, Martin

    2013-01-01

    A simple formalism is presented to assess how many asteroids contain ore, i.e. commercially profitable material, and not merely a high concentration of a resource. I apply this formalism to two resource cases: platinum group metals (PGMs) and water. Assuming for now that only Ni-Fe asteroids are of interest for PGMs, then 1% of NEOs are rich in PGMs. The dearth of ultra-low delta-v (= US$1 B and the population of near-Earth objects (NEOs) larger than 100 m diameter is ~20,000 (Mainzer et al. 2011) the total population of PGM ore-bearing NEOs is roughly 10. I stress that this is a conservative and highly uncertain value. For example, an order of magnitude increase in PGM ore-bearing NEOs occurs if delta-v can as large as 5.7 km s-1. Water ore for utilization in space is likely to be found in ~1/1100 NEOs. NEOs as small as 18 m diameter can be water-ore-bodies because of the high richness of water (~20%) expected in ~25% of carbonaceous asteroids, bringing the number of water-ore-bearing NEOs to ~9000 out of th...

  18. The Cratering History of Asteroid (2867) Steins

    CERN Document Server

    Marchi, S; Kueppers, M; Marzari, F; Davidsson, B; Keller, H U; Besse, S; Lamy, P; Mottola, S; Massironi, M; Cremonese, G

    2010-01-01

    The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins' cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors -like bulk structure and crater erasing- on the estimated age, which spans from a few hundred Myrs to more than 1Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1km ...

  19. Photometry and models of selected main belt asteroids: IX. Introducing interactive service for asteroid models (ISAM)

    DEFF Research Database (Denmark)

    Marciniak, A.; Bartczak, P.; Santana-Ros, T.

    2012-01-01

    from other observing/modelling techniques, we created an on-line service where we allow the inversion models to be orientated interactively. Results. Our sample of objects is quite representative, containing both relatively fast and slow rotators with highly and lowly inclined spin axes. With this work...... occultations, or space probe imaging. Aims. During our ongoing work to increase the set of asteroids with known spin and shape parameters, there appeared a need for displaying the model plane-of-sky orientations for specific epochs to compare models from different techniques. It would also be instructive...... to be able to track how the complex lightcurves are produced by various asteroid shapes. Methods. Basing our analysis on an extensive photometric observational dataset, we obtained eight asteroid models with the convex lightcurve inversion method. To enable comparison of the photometric models with those...

  20. Polarization of asteroid (387) Aquitania: the newest member of a class of large inversion angle asteroids

    CERN Document Server

    Masiero, Joseph

    2008-01-01

    We present new imaging polarimetric observations of two Main Belt asteroids, (234) Barbara and (387) Aquitania, taken in the first half of 2008 using the Dual-Beam Imaging Polarimeter on the University of Hawaii 2.2 meter telescope, located on Mauna Kea, Hawaii. Barbara had been previously shown to exhibit a very unusual polarization-phase curve by Cellino, et al. (2006). Our observations confirm this result and add Aquitania to the growing class of large inversion angle objects. Interestingly, these asteroids show spinel features in their IR spectra suggesting a mineralogical origin to the phase angle-dependent polarimetric features. As spinel is associated with calcium-aluminum-rich inclusions and carbonaceous chondrites, these large inversion angle asteroids may represent some of the oldest surfaces in the solar system. Circular as well as linear polarization measurements were obtained but circular polarization was not detected.

  1. Planetary Defense From Space: Part 1-Keplerian Theory

    Science.gov (United States)

    Maccone, Claudio

    A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth-Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to: Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3; add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth-Moon system or from the surface of the Moon itself; encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see "which asteroids could be diverted by which missiles", even in the very simplified scheme outlined here. Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could

  2. A fast ellipsoid model for asteroids inverted from lightcurves

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Lu; Hai-Bin Zhao; Zhong You

    2013-01-01

    Research about asteroids has recently attracted more and more attention,especially focusing on their physical structures,such as their spin axis,rotation period and shape.The long distance between observers on Earth and asteroids makes it impossible to directly calculate the shape and other parameters of asteroids,with the exception of Near Earth Asteroids and others that have passed by some spacecrafts.Photometric measurements are still generally the main way to obtain research data on asteroids,i.e.the lightcurves recording the brightness and positions of asteroids.Supposing that the shape of the asteroid is a triaxial ellipsoid with a stable spin,a new method is presented in this article to reconstruct the shape models of asteroids from the lightcurves,together with other physical parameters.By applying a special curvature function,the method calculates the brightness integration on a unit sphere and Lebedev quadrature is employed for the discretization.Finally,the method searches for the optimal solution by the Levenberg-Marquardt algorithm to minimize the residual of the brightness.By adopting this method,not only can related physical parameters of asteroids be obtained at a reasonable accuracy,but also a simple shape model of an ellipsoid can be generated for reconstructing a more sophisticated shape model.

  3. The Nature of C Asteroid Regolith from Meteorite Observations

    Science.gov (United States)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  4. Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return

    Science.gov (United States)

    Springmann, Alessondra; Lauretta, Dante S.

    2016-10-01

    The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past

  5. Rotation Induced Disruption of Cohesive Asteroids

    Science.gov (United States)

    Sanchez Lana, Diego; Scheeres, D. J.

    2013-10-01

    We use a Soft-Sphere Discrete Element Method (SSDEM) code to study the evolution of self-gravitating cohesive granular aggregates that are spun to disruption as a proxy to "rubble-pile" asteroids. Calculations have shown that the fine regolith in asteroids and molecular Van der Waals forces together may act as a cohesive matrix that provides enough structural strength to hold small NEAs together even at the observed high spin rates. With this in mind we have implemented cohesive forces between the large 10 m) particles that form our aggregates; its strength being controlled by the mean particle size of the matrix. The addition of rolling friction also has allowed us to obtain cohesionless aggregates with friction angles of at least 35° as measured by the Drucker-Prager yield criterion. A series of experiments were run with the code, keeping the size, density and number of grains constant while increasing the cohesive strength of the matrix holding the grains in place. It can be shown, through a scaling analysis, that when the cohesive strength between rubble pile components is increased by a factor of f, that the effective size of the asteroid being modeled will decrease by a factor of 1/√f. To evaluate this we ran a series of 12 cases with increasing cohesive strength, effectively modeling rubble piles of size from 0.1 km up to 100 km with a constant cohesive strength of 25 Pa. Some of our main results are as follows: 1. results from simulations are compatible with a simple model of asteroid strength that predicts, in the cohesion dominated case, that the spin rate for fission is inversely proportional to the size of the asteroid; 2. aggregates may disrupt by shedding or fission, depending on the cohesive strength and the size of the aggregate (shape and heterogeneity factors have not yet been considered); 3. disruption by fission is more likely for small aggregates than for larger aggregates with the same cohesive strength. Further results with spherical and a

  6. Aging, Terminal Decline, and Terminal Drop

    Science.gov (United States)

    Palmore, Erdman; Cleveland, William

    1976-01-01

    Data from a 20-year longitudinal study of persons over 60 were analyzed by step-wise multiple regression to test for declines in function with age, for terminal decline (linear relationship to time before death), and for terminal drop (curvilinear relationship to time before death). There were no substantial terminal drop effects. (Author)

  7. Radar observations of the asteroid's structure from deep interior to regolith

    Science.gov (United States)

    Ciarletti, Valerie; Herique, Alain

    2016-04-01

    Our knowledge of the internal structure of asteroids entirely relies on inferences from remote sensing observations of the surface and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, how high is the porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? The body is covered by a regolith whose properties remain largely unknown in term of depth, size distribution and spatial variability. Is it resulting from fine particles re-accretion or from thermal fracturing? After several asteroid orbiting missions, theses crucial and yet basic questions remain open. Direct measurements of asteroid deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution and to provide answers that will directly improve our ability to understand the formation and evolution of the Near Earth Asteroids (NEA), that will allow us to model the mechanisms driving NEA deflection and other risk mitigation techniques. Radars operating at distance from a spacecraft are the only instruments capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defense or exploration. The AIM mission will have two complementary radars on-board, operating at different frequencies in order to meet the objectives requirements. The deep interior structure tomography requires a low-frequency radar (LFR) in order to propagate throughout the complete body (this LFR will be a direct heritage of the CONSERT radar designed for the Rosetta mission). Ihe characterization of the first ten meters of the subsurface with a metric resolution to identify layering and to reconnect surface measurements to internal structure will be achieved with a higher frequency radar(HFR), the design of which is based on the WISDOM radar developed for the ExoMars mission. Both radars are

  8. Deflection by kinetic impact: Sensitivity to asteroid properties

    Science.gov (United States)

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. Here we numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1-30 km/s were investigated, yielding, for a particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. The kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. These results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection strategy.

  9. BAOBAB (Big And Outrageously Bold Asteroid Belt) Project

    Science.gov (United States)

    Mcfadden, L. A.; Thomas, C. A; Englander, J. A.; Ruesch, O.; Hosseini, S.; Goossens, S. J.; Mazarico, E. M.; Schmerr, N.

    2017-01-01

    One of the intriguing results of NASA's Dawn mission is the composition and structure of the Main Asteroid Belt's only known dwarf planet, Ceres [1]. It has a top layer of dehydrated clays and salts [2] and an icy-rocky mantle [3,4]. It is widely known that the asteroid belt failed to accrete as a planet by resonances between the Sun and Jupiter. About 20-30 asteroids >100 km diameter are probably differentiated protoplanets [5]. 1) how many more and which ones are fragments of protoplanets? 2) How many and which ones are primordial rubble piles left over from condensation of the solar nebula? 3) How would we go about gaining better and more complete characterization of the mass, interior structure and composition of the Main Belt asteroid population? 4) What is the relationship between asteroids and ocean worlds? Bulk parameters such as the mass, density, and porosity, are important to characterize the structure of any celestial body, and for asteroids in particular, they can shed light on the conditions in the early solar system. Asteroid density estimates exist but currently they are often based on assumed properties of taxonomic classes, or through astronomical survey data where interactions with asteroids are weak at best resulting in large measurement uncertainty. We only have direct density estimates from spacecraft encounters for a few asteroids at this time. Knowledge of the asteroids is significant not only to understand their role in solar system workings, but also to assess their potential as space resources, as impact hazards on Earth, or even as harboring life forms. And for the distant future, we want to know if the idea put forth in a contest sponsored by Physics Today, to surface the asteroids into highly reflecting, polished surfaces and use them as a massively segmented mirror for astrophysical exploration [6], is feasible.

  10. Establishing a Department of Defense Program Management Body of Knowledge

    Science.gov (United States)

    1991-09-01

    Initiation, Implementation, and Termination (19:10-11). Another definition can be gained from Dr David Cleland, in his text Project Management Strategies...The Defense Systems Management College (DSMC) was established in 1971 under the direction of Deputy Secretary of Defense David Packard (5:5).. The...intelligence activities, cryptological activities, omand and control, equipment that is an integral part of a weapon or weapon system, equipment critical

  11. Asteroid Redirect Crewed Mission Nominal Design and Performance

    Science.gov (United States)

    Condon, Gerald; williams, Jacob

    2014-01-01

    In 2010, the President announced that, in 2025, the U.S. intended to launch a human mission to an asteroid [1]. This announcement was followed by the idea of a Capability Driven Framework (CDF) [2], which is based on the idea of evolving capabilities from less demanding to more demanding missions to multiple possible destinations and with increased flexibility, cost effectiveness and sustainability. Focused missions, such as a NASA inter-Center study that examined the viability and implications of sending a crew to a Near Earth Asteroid (NEA) [3], provided a way to better understand and evaluate the utility of these CDF capabilities when applied to an actual mission. The long duration of the NEA missions were contrasted with a concept described in a study prepared for the Keck Institute of Space Studies (KISS) [4] where a robotic spacecraft would redirect an asteroid to the Earth-Moon vicinity, where a relatively short duration crewed mission could be conducted to the captured asteroid. This mission concept was included in the National Aeronautics and Space Administration (NASA) fiscal year 2014 budget request, as submitted by the NASA Administrator [5]. NASA studies continued to examine the idea of a crewed mission to a captured asteroid in the Earth-Moon vicinity. During this time was an announcement of NASA's Asteroid Grand Challenge [6]. Key goals for the Asteroid Grand Challenge are to locate, redirect, and explore an asteroid, as well as find and plan for asteroid threats. An Asteroid Redirect Mission (ARM) study was being conducted, which supports this Grand Challenge by providing understanding in how to execute an asteroid rendezvous, capture it, and redirect it to Earth-Moon space, and, in particular, to a distant retrograde orbit (DRO). Subsequent to the returning of the asteroid to a DRO, would be the launch of a crewed mission to rendezvous with the redirected asteroid. This report examines that crewed mission by assessing the Asteroid Redirect Crewed

  12. Albedo and Diameter Distributions of Asteroid Families Using the Spitzer Asteroid Catalog

    NARCIS (Netherlands)

    Enga, Marie-Therese; Trilling, D.; Mueller, M.; Wasserman, L.; Sykes, M.; Blaylock, M.; Stansberry, J.; Bhattacharya, B.; Spahr, T.

    2009-01-01

    The Spitzer Asteroid Catalog contains flux measurements of asteroidsserendipitously observed in publicly available Spitzer data. At present,this catalog contains some 10,000 measurements at 24 microns only, andwill ultimately contain 100,000 measurements or more. These measurements, along with with

  13. Albedo and Diameter Distributions of Asteroid Families Using the Spitzer Asteroid Catalog

    NARCIS (Netherlands)

    Enga, Marie-Therese; Trilling, D.; Mueller, M.; Wasserman, L.; Sykes, M.; Blaylock, M.; Stansberry, J.; Bhattacharya, B.; Spahr, T.

    2009-01-01

    The Spitzer Asteroid Catalog contains flux measurements of asteroidsserendipitously observed in publicly available Spitzer data. At present,this catalog contains some 10,000 measurements at 24 microns only, andwill ultimately contain 100,000 measurements or more. These measurements, along with with

  14. Photometry and models of selected main belt asteroids. IX. Introducing interactive service for asteroid models (ISAM)

    NARCIS (Netherlands)

    Marciniak, A.; Bartczak, P.; Santana-Ros, T.; Michalowski, T.; Antonini, P.; Behrend, R.; Bembrick, C.; Bernasconi, L.; Borczyk, W.; Colas, F.; Coloma, J.; Crippa, R.; Esseiva, N.; Fagas, M.; Fauvaud, M.; Fauvaud, S.; Ferreira, D. D. M.; Hein - Bertelsen, R.P.; Higgins, D.; Hirsch, R.; Kajava, J. J. E.; Kaminski, K.; Kryszczynska, A.; Kwiatkowski, T.; Manzini, F.; Michalowski, J.; Michalowski, M. J.; Paschke, A.; Polinska, M.; Poncy, R.; Roy, R.; Santacana, G.; Sobkowiak, K.; Stasik, M.; Starczewski, S.; Velichko, F.; Wucher, H.; Zafar, T.

    Context. The shapes and spin states of asteroids observed with photometric techniques can be reconstructed using the lightcurve inversion method. The resultant models can then be confirmed or exploited further by other techniques, such as adaptive optics, radar, thermal infrared, stellar

  15. Investigating the origin of the asteroids and early findings on Vesta historical studies in asteroid research

    CERN Document Server

    Cunningham, Clifford J

    2017-01-01

    This book assesses the origin of asteroids by analyzing the discovery of Vesta in 1807. Wilhelm Olbers, who discovered Vesta, suggested that the asteroids were the result of a primordial planet’s explosion. Cunningham studies that idea in detail through the writings of Sir David Brewster in Scotland, the era's most prolific writer about the asteroids. He also examines the link between meteorites and asteroids, revealing a synergy between Ernst Chladni, Romantic symbolism, and the music of the spheres. Vesta was a lightning rod for controversy throughout the nineteenth century with observers arguing over its size and color, and the astounding notion that it was self-luminous. It was also a major force for change, as new methods in the field of celestial mechanics were developed to study the orbital perturbations it is subject to. A large selection of private correspondence and scientific papers complete the first comprehensive historical study of Vesta ever published. With a synoptic look at the four astero...

  16. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations

    Science.gov (United States)

    Pravec, Petr; Harris, Alan W.; Kušnirák, Peter; Galád, Adrián; Hornoch, Kamil

    2012-09-01

    We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ondřejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68-89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156-172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25-300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6-200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the mean albedos are 0.002 and 0.006, respectively; systematic observational or modeling errors can predominate over the quoted formal errors. There is apparent only a small, marginally significant difference of 0.031 ± 0.011 between the mean albedos of sub-samples of large and small (divided at diameter 25 km) S/A/L asteroids, with the smaller ones having a higher albedo. The difference will have to be confirmed and explained; we speculate that it may be either a real size dependence of surface properties of S type asteroids or a small size-dependent bias in the data (e.g., a bias towards higher albedos in the optically-selected sample of asteroids). A trend of the mean of the preliminary WISE albedo estimates increasing with asteroid size decreasing from D ∼ 30 down to ∼5 km (for S types) showed in Mainzer et al. (Mainzer, A. et al. [2011a]. Astrophys. J. 741, 90-114) appears to be mainly due to the systematic bias in the MPCORB absolute magnitudes that progressively increases with H in the corresponding range H = 10-14.

  17. Moving Target Defense

    CERN Document Server

    Jajodia, Sushil; Swarup, Vipin; Wang, Cliff; Wang, X Sean

    2011-01-01

    Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instr

  18. A Targeted Search for Trojan Asteroids in Kepler Lightcurves

    Science.gov (United States)

    Bordenave, David; Ballard, Sarah

    2015-01-01

    'Trojan' asteroids, or asteroids trapped in stable gravitational positions preceding and trailing a planet in its orbit, accompany almost every planet of our Solar System. They were captured into their current locations in the early stages of our solar system's formation, and their presence hints at the dynamical history of bodies orbiting the Sun. However, we have no reason to assume that our own planets are alone in possessing Trojan asteroids. NASA's Kepler mission, launched in 2009, has been instrumental in the recent search for exoplanets. It has identified thousands of new worlds to date. However, exo-Trojan asteroids have as-yet eluded detection. If asteroids are captured at both Lagrangian points, their folded transit signature is not strictly periodic (since transits occur 1/6th of the planetary period before and after transit), and may be missed by traditional search algorithms. Our targeted search, at the predicted times of transit, is best suited for identifying candidate Trojans. Moreover, we have focused our investigation upon the set of Kepler Objects of Interest (KOIs) that we predict will be most fruitful for Trojan detection. However, if we are unable to detect these Trojan asteroids, we will be able to set limiting constraints on the presence of asteroids in exoplanetary systems. Observations of these Trojan asteroids, or the lack thereof, would give insight to the evolution and migration models of these systems.

  19. Compositional differences between meteorites and near-Earth asteroids.

    Science.gov (United States)

    Vernazza, P; Binzel, R P; Thomas, C A; DeMeo, F E; Bus, S J; Rivkin, A S; Tokunaga, A T

    2008-08-14

    Understanding the nature and origin of the asteroid population in Earth's vicinity (near-Earth asteroids, and its subset of potentially hazardous asteroids) is a matter of both scientific interest and practical importance. It is generally expected that the compositions of the asteroids that are most likely to hit Earth should reflect those of the most common meteorites. Here we report that most near-Earth asteroids (including the potentially hazardous subset) have spectral properties quantitatively similar to the class of meteorites known as LL chondrites. The prominent Flora family in the inner part of the asteroid belt shares the same spectral properties, suggesting that it is a dominant source of near-Earth asteroids. The observed similarity of near-Earth asteroids to LL chondrites is, however, surprising, as this meteorite class is relatively rare ( approximately 8 per cent of all meteorite falls). One possible explanation is the role of a size-dependent process, such as the Yarkovsky effect, in transporting material from the main belt.

  20. Density and Macroporosity Distribution of Near Earth Asteroids

    Science.gov (United States)

    Dotson, Jessie L.; Mathias, Donovan

    2017-01-01

    The density of near earth asteroids is a fundamental property which can illuminate the structure of the asteroid, provide clues about it’s collisional history and is key in assessing the hazard of an impact of an NEA with Earth. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or a higher metal content. Unfortunately, measuring the density of asteroids is extremely difficult, has only been attempted for a tiny fraction of NEAs and usually results in measurements with large uncertainties. In the absence of density measurements for a specific object, understanding the range and distribution of likely densities can allow for probabilistic assessments of the population and facilitate estimates of the range of reasonable masses for a specific object. We have developed a candidate macroporosity distribution for near earth asteroids based on measurements of meteorite densities and asteroid densities. The macroporosity of an asteroid can be used to aid extrapolation from meteorite physical properties to asteroid physical properties. In addition, we discuss estimating an asteroid density distribution from the macroporosity distribution.

  1. Independent sets in asteroidal triple-free graphs

    NARCIS (Netherlands)

    Broersma, Haitze J.; Kloks, Ton; Kloks, A.J.J.; Kratsch, Dieter; Müller, Haiko

    1997-01-01

    An asteroidal triple is a set of three vertices such that there is a path between any pair of them avoiding the closed neighborhood of the third. A graph is called AT-free if it does not have an asteroidal triple. We show that there is an O(n 2 · (¯m+1)) time algorithm to compute the maximum

  2. Taxonomic Classification of Asteroids via Broadband Near-Infrared Photometry

    NARCIS (Netherlands)

    Petersen, Eric; Thomas, C.; Trilling, D.; Emery, J.; Delbo, M.; Mueller, M.; Dave, R.

    2010-01-01

    For faint asteroids, it is not practical to obtain near-infrared spectra. However, it may be possible to use broadband photometry to infer spectral classifications and study composition. As a test of this, we processed SpeX near-infrared asteroid spectral data to simulate colors that would be obtain

  3. Modeling Asteroid Dynamics using AMUSE: First Test Cases

    NARCIS (Netherlands)

    Frantseva, Kateryna; Mueller, Michael; van der Tak, Floris; Helmich, Frank P.

    2015-01-01

    We are creating a dynamic model of the current asteroid population. The goal is to reproduce measured impact rates in the current Solar System, from which we'll derive delivery rates of water and organic material by tracing low-albedo C-class asteroids (using the measured albedo distribution from WI

  4. Physical Properties of Near-Earth Asteroid 2011 MD

    NARCIS (Netherlands)

    Mommert, M.; Farnocchia, D.; Hora, J. L.; Chesley, S. R.; Trilling, D. E.; Chodas, P. W.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.

    2014-01-01

    We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {\\mu}m) of the Infrared Array Camera and detected the target within the 2{\\sigma} positional uncertainty ellipse. Using an asteroid thermophysical mod

  5. Optimised low-thrust mission to the Atira asteroids

    Science.gov (United States)

    Di Carlo, Marilena; Romero Martin, Juan Manuel; Ortiz Gomez, Natalia; Vasile, Massimiliano

    2017-04-01

    Atira asteroids are recently-discovered celestial bodies characterised by orbits lying completely inside the heliocentric orbit of the Earth. The study of these objects is difficult due to the limitations of ground-based observations: objects can only be detected when the Sun is not in the field of view of the telescope. However, many asteroids are expected to exist in the inner region of the Solar System, many of which could pose a significant threat to our planet. In this paper, a small, low-cost, mission to visit the known Atira asteroids and to discover new Near Earth Asteroids (NEA) is proposed. The mission is realised using electric propulsion. The trajectory is optimised to maximise the number of visited asteroids of the Atira group using the minimum propellant consumption. During the tour of the Atira asteroids an opportunistic NEA discovery campaign is proposed to increase our knowledge of the asteroid population. The mission ends with a transfer to an orbit with perihelion equal to Venus's orbit radius. This orbit represents a vantage point to monitor and detect asteroids in the inner part of the Solar System and provide early warning in the case of a potential impact.

  6. Earth-approaching asteroids: Populations, origin, and compositional types

    Science.gov (United States)

    Shoemaker, E. M.; Helin, E. F.

    1978-01-01

    Origin, physical properties, and discovery history of smaller asteroids are reviewed. They appear to link the main belt objects, namely the comets and meteorites. Physical observations suggest that a wide variety of compositional types are represented among the near-earth asteroids; the apparent rarity of carbonaceous objects is stated.

  7. Modeling Asteroid Dynamics using AMUSE: First Test Cases

    NARCIS (Netherlands)

    Frantseva, Kateryna; Mueller, Michael; van der Tak, Floris; Helmich, Frank P.

    2015-01-01

    We are creating a dynamic model of the current asteroid population. The goal is to reproduce measured impact rates in the current Solar System, from which we'll derive delivery rates of water and organic material by tracing low-albedo C-class asteroids (using the measured albedo distribution from

  8. Physical Properties of Near-Earth Asteroid 2011 MD

    NARCIS (Netherlands)

    Mommert, M.; Farnocchia, D.; Hora, J. L.; Chesley, S. R.; Trilling, D. E.; Chodas, P. W.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.

    2014-01-01

    We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {\\mu}m) of the Infrared Array Camera and detected the target within the 2{\\sigma} positional uncertainty ellipse. Using an asteroid thermophysical

  9. Modeling Asteroid Dynamics using AMUSE: First Test Cases

    NARCIS (Netherlands)

    Frantseva, Kateryna; Mueller, Michael; van der Tak, Floris; Helmich, Frank P.

    2015-01-01

    We are creating a dynamic model of the current asteroid population. The goal is to reproduce measured impact rates in the current Solar System, from which we'll derive delivery rates of water and organic material by tracing low-albedo C-class asteroids (using the measured albedo distribution from WI

  10. Near Earth Asteroids: A Classification System According to Their Shapes

    Science.gov (United States)

    Acevedo, R. D.; Rocca, M.; Rabassa, J.; Ponce, J. F.; Stinco, S.

    2012-09-01

    A new way to classify Near Earth Asteroids (NEAs) according to their shapes is proposed. This classification is based on the asteroid roundness and sphericity in the same way that it is used in geological sciences to describe clasts in mechanical sedimentary rocks.

  11. Lightcurve Analysis of the Near-Earth Asteroid 6063 Jason

    Science.gov (United States)

    Warner, Brian D.; Aznar Macias, Amadeo; Benishek, Vladimir; Oey, Julian; Gross, Roger

    2017-10-01

    CCD photometric observations of the near-Earth asteroid 6063 Jason were made in 2017 June. A collaboration of five observers at widely-separated longitudes proved critical in finding a synodic period of 48.6 h, nearly commensurate with an Earth day, and confirming that the asteroid is most likely tumbling.

  12. Volcanic processes on early-forming asteroids.

    Science.gov (United States)

    Wilson, L.; Keil, K.

    2011-12-01

    A variety of meteorite groups represent samples of asteroids that formed while 26Al was still the dominant heat source in Solar System materials. These bodies differentiated to varying degrees beyond the temperature of FeNi-FeS melting, with sufficient silicate melting to allow metal core formation. The silicate melts segregated upward from the interiors to suffer various fates: intrusion at shallow levels, eruption onto the surface, or ejection into space in explosive eruptions in which the eruption speed exceeded the escape speed. These three styles of plutonic/volcanic activity were not mutually exclusive; their relative importance was a function of asteroid size and composition, with the major compositional factor being the total available volatile inventory. Much research has been concerned with whether silicate melts were extracted from the mantle during the period of mantle heating or while the mantle was cooling after reaching its peak temperature and degree of partial melting (a "magma ocean" stage). Traditionally, the relevant arguments have been based on the petrology and geochemistry of the meteorites sampling these bodies. Instead, we focus on the fluid dynamic aspects of eruption and intrusion processes and show how these impose additional limitations on various aspects of the igneous activity. For example, 40% melting of bodies the size of 4 Vesta (~250 km radius) and the Ureilite Parent Body (UPB, ~100 km radius) over the course of a 0.5 Ma heating period represent melt volume production rates of ~350 and 20 cubic meters per second, respectively, in each of what we demonstrate should have been ~4 volcanic provinces on each body. All differentiated asteroids must of necessity have had a surface layer ~10 km thick at sub-solidus temperatures controlled by conductive cooling. To erupt magma at the surface (or intrude magma at very shallow depth) through such a crust would have required the propagation of dikes within which the combination of dike width

  13. Why we need asteroid sample return mission?

    Science.gov (United States)

    Barucci, Maria Antonietta

    2016-07-01

    Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material

  14. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  15. The Micro-mechanics of Asteroid Dust

    Science.gov (United States)

    Sanchez Lana, Diego Paul; Scheeres, Daniel J.

    2016-10-01

    Current understanding is that small asteroids in the Solar System are gravitational aggregates that are held together by gravitational, cohesive and adhesive forces. Though the mechanics of how gravitational forces work is very well understood, the same cannot be said about the other two.In our earlier research we used a Discrete-Element-Method simulation code to calculate the tensile strength of an assemblage of cohesive particles and found that the main geometrical factor controlling bulk strength was the average size of the particles (Sanchez and Scheeres 2014, MAPS). Specifically, the smaller the average size, the greater the tensile strength as r^-1, as though the magnitude of the van der Waals force applied decrease with the radius of the grains (r), the number of contacts per unit area increases with r^-2. This dependency has been corroborated by some observational evidence of the global strength of granular asteroids; however, our simulations were carried out with spherical particles and therefore in these simulations it is impossible to consider more than one contact per pair of particles. Other parameters such as different chemical composition and wider size distribution of the grains, changes in porosity and number of contacts per particle (coordination number) were not taken into direct account either. The study of each one of these parameters is of interest, and our research has started to explore the effect of these on the net cohesive force found in an asteroid's regolith and interior.Our initial study will simulate the effect of a wider size distribution in the granular material, comparing this with theoretical predictions. This parameter can cause a change in porosity and coordination number of the grains. This will have a measurable effect in the tensile strength of the aggregate and will provide a first look into the strength of a more realistic cohesive granular media. The results of this research will be shown at the conference.

  16. New active asteroid 313P/Gibbs

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David; Hui, Man-To; Li, Jing [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Peixinho, Nuno [Unidad de Astronomía, Fac. de Ciencias Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: jewitt@ucla.edu [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson AZ 85721-0092 (United States)

    2015-02-01

    We present initial observations of the newly discovered active asteroid 313P/Gibbs (formerly P/2014 S4), taken to characterize its nucleus and comet-like activity. The central object has a radius ∼0.5 km (geometric albedo 0.05 assumed). We find no evidence for secondary nuclei and set (with qualifications) an upper limit to the radii of such objects near 20 m, assuming the same albedo. Both aperture photometry and a morphological analysis of the ejected dust show that mass-loss is continuous at rates ∼0.2–0.4 kg s{sup −1}, inconsistent with an impact origin. Large dust particles, with radii ∼50–100 μm, dominate the optical appearance. At 2.4 AU from the Sun, the surface equilibrium temperatures are too low for thermal or desiccation stresses to be responsible for the ejection of dust. No gas is spectroscopically detected (limiting the gas mass-loss rate to <1.8 kg s{sup −1}). However, the protracted emission of dust seen in our data and the detection of another episode of dust release near perihelion, in archival observations from 2003, are highly suggestive of an origin by the sublimation of ice. Coincidentally, the orbit of 313P/Gibbs is similar to those of several active asteroids independently suspected to be ice sublimators, including P/2012 T1, 238P/Read, and 133P/Elst–Pizarro, suggesting that ice is abundant in the outer asteroid belt.

  17. Period Determination of Six Main Belt Asteroids

    Science.gov (United States)

    Ferrero, Andrea

    2014-07-01

    Observations of six main-belt asteroids (MBA) produced lightcurve parameters of: 487 Venetia, P = 13.34 ± 0.01 h, A = 0.20 mag; 684 Hildburg, P = 15.89 ± 0.01 h, A = 0.22 mag; 772 Tanete, P = 8.629 ± 0.001 h, A = 0.18 mag.; 1181 Lilith, P = 15.04 ± 0.01 h, A = 0.11 mag.; 1246 Chaka, P = 25.44 ± 0.01 h, A = 0.25 mag.; and 2834 Christy Carol, P = 12.79 ± 0.01 h, A = 0.39 mag.

  18. NASA's Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide

  19. Impulsive orbit control for spacecraft around asteroid

    Institute of Scientific and Technical Information of China (English)

    崔祜涛; 崔平远; 栾恩杰

    2003-01-01

    An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time.Then, the feedback control law based on Gauss' s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.

  20. Microspine Gripping Mechanism for Asteroid Capture

    Science.gov (United States)

    Merriam, Ezekiel G.; Berg, Andrew B.; Willig, Andrew; Parness, Aaron; Frey, Tim; Howell, Larry L.

    2016-01-01

    This paper details the development and early testing of a compliant suspension for a microspine gripper device for asteroid capture or micro-gravity percussive drilling. The microspine gripper architecture is reviewed, and a proposed microspine suspension design is presented and discussed. Prototyping methods are discussed, as well as testing methods and results. A path forward is identified from the results of the testing completed thus far. Key findings include: the microspine concept has been established as a valid architecture and the compliant suspension exhibits the desired stiffness characteristics for good gripping behavior. These developments will aid in developing the capability to grasp irregularly shaped boulders in micro-gravity.

  1. The Nearest of the Near Earth Asteroids

    Science.gov (United States)

    Kortenkamp, Stephen J.

    2014-11-01

    While the orbits of many known near-Earth objects (NEOs) may cross that of Earth, very few NEOs actually approach near to Earth itself. In fact, the majority of NEOs spend most of their orbital periods in the asteroid belt beyond Mars. However, there is a subset of NEOs on orbits which allow for repeated close-encounters with Earth. These objects are locked in a co-orbital resonance with Earth, orbiting the sun in exactly one year. This unusual one-to-one resonance causes the NEOs to appear to be orbiting Earth and gives them their name; quasi-satellites.Despite their close proximity to Earth, only recently have the first quasi-satellites of Earth been detected. These are the asteroids 2003 YN107, 2004 GU9, and 2006 FV35. We carried out N-body computer simulations of these asteroids as well as a larger theoretical population. We demonstrate that quasi-satellite asteroids always remain exceptionally close to Earth, typically just 20-60 times farther than the moon, and undergo two close-encounters with Earth each year. Furthermore, quasi-satellites that eventually escape the resonance can have extremely deep low-velocity close-encounters with Earth as they leave the resonance, some coming well inside the orbit of the moon.When weak drag forces are included in the simulations quasi-satellite objects evolve onto more Earth-like orbits and spiral closer and closer to Earth. This dramatically reduces the relative velocity and distance of closest approach between Earth and the quasi-satellite object. Under the influence of weak drag quasi-satellites objects can develop effective encounter velocities of just a few hundred meters per second, often much less. These low encounter velocities lead to a strong enhancement in Earth’s gravitationally enhanced impact cross-section compared to close-encounters of non-resonant objects with similar initial orbital elements.This research is supported by NASA grant NNX14AN23G.

  2. Space Weathering Trends Among Carbonaceous Asteroids

    CERN Document Server

    Kaluna, Heather M; Meech, Karen J

    2015-01-01

    We present visible spectroscopic and albedo data of the 2.3 Gyr old Themis family and the 15 km) and small (< 15 km) Themis members suggest these phyllosilicate feature and albedo trends result from regolith variations as a function of diameter. Observations of the Beagle asteroids show a small, but notable fraction of members with phyllosilicate features. The presence of phyllosilicates and the dynamical association of the main-belt comet 133P/Elst-Pizarro with the Beagle family imply the Beagle parent body was a heterogenous mixture of ice and aqueously altered minerals.

  3. Two new basaltic asteroids in the Outer Main Belt

    CERN Document Server

    Duffard, R

    2007-01-01

    The identification of other basaltic objects in the asteroid belt is mandatory to explain the diversity in the collection of basaltic meteorites. This diversity requires more than one differentiated parent body, a fact that is consistent with the diversity of differentiated parent bodies implied by the iron meteorites. Based on a list of previously identified candidate basaltic (V-type) asteroids, two asteroids in the outer main belt, (7472) Kumakiri and (10537) 1991 RY16, were spectroscopically observed during an observational run in Calar Alto Observatory, Spain. We confirm the V-type character of these two asteroids that, together with (1459) Magnya, become the only known traces of basaltic found in the outer main belt up to now. We also demonstrate that the searching for candidate V-type asteroids using a photometric survey, like the Sloan Digital Sky Survey, produces reliable results.

  4. Asteroid fission, binaries and the small main belt population

    Science.gov (United States)

    Rossi, A.; Jacobson, S.; Marzari, F.; Scheeres, D.

    2011-10-01

    Using a Monte Carlo method we model the spin evolution of small Main Belt asteroids under the joint effects of YORP and collisions. Our simulations allow us to estimate the fraction of asteroids undergoing rotational fission in different size ranges. When an asteroid reaches its disruption spin limit we determine the outcome of its subsequent evolution based on accumulated statistics on their evolution based on numerical integrations (i.e., binary or ternary formation, binary disruption, etc..). Our aim is to predict the percentage of binary asteroids and their properties in the Belt, the number of objects like P/2010 A2 per year and the effects of YORP-induced fission on the overall asteroid size distribution at the small size end.

  5. Mining the CFHT Legacy Survey for known Near Earth Asteroids

    CERN Document Server

    Vaduvescu, O; Birlan, M; Toma, R; Badea, M; Dumitru, D; Opriseanu, C; Vidican, D; 10.1002/asna.201011550

    2011-01-01

    The Canada-France-Hawaii Legacy Survey (CFHTLS) comprising about 25 000 MegaCam images was data mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 143 asteroids (109 NEAs and 34 PHAs) were found on 508 candidate images which were field corrected and measured carefully, and their astrometry was reported to Minor Planet Centre. Both recoveries and precoveries (apparitions before discovery) were reported, including data for 27 precovered asteroids (20 NEAs and 7 PHAs) and 116 recovered asteroids (89 NEAs and 27 PHAs). Our data prolonged arcs for 41 orbits at first or last opposition, refined 35 orbits by fitting data taken at one new opposition, recovered 6 NEAs at their second opposition and allowed us to ameliorate most orbits and their Minimal Orbital Intersection Distance (MOID), an important parameter to monitor for potential Earth impact hazard in the future.

  6. The Asteroid Catalog Using AKARI IRC Slow-Scan Observations

    CERN Document Server

    Hasegawa, Sunao; Kuroda, Daisuke; Takita, Satoshi; Usui, Fumihiko

    2012-01-01

    We present an asteroidal catalog from the mid-infrared wavelength region using the slow-scan observation mode obtained by the Infrared Camera (IRC) on-board the Japanese infrared satellite AKARI. An archive of IRC slow-scan observations comprising about 1000 images was used to search for serendipitous encounters of known asteroids. We have determined the geometric albedos and diameters for 88 main-belt asteroids, including two asteroids in the Hilda region, and compared these, where possible, with previously published values. Approximately one-third of the acquired data reflects new asteroidal information. Some bodies classified as C or D-type with high albedo were also identified in the catalog.

  7. Jovian Early Bombardment: planetesimal erosion in the inner asteroid belt

    CERN Document Server

    Turrini, Diego; Magni, Gianfranco

    2012-01-01

    The asteroid belt is an open window on the history of the Solar System, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions. In this work we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depen...

  8. An automatic approach to exclude interlopers from asteroid families

    Science.gov (United States)

    Radović, Viktor; Novaković, Bojan; Carruba, Valerio; Marčeta, Dušan

    2017-09-01

    Asteroid families are a valuable source of information to many asteroid-related researches, assuming a reliable list of their members could be obtained. However, as the number of known asteroids increases fast it becomes more and more difficult to obtain a robust list of members of an asteroid family. Here, we are proposing a new approach to deal with the problem, based on the well-known hierarchical clustering method. An additional step in the whole procedure is introduced in order to reduce a so-called chaining effect. The main idea is to prevent chaining through an already identified interloper. We show that in this way a number of potential interlopers among family members is significantly reduced. Moreover, we developed an automatic online-based portal to apply this procedure, i.e. to generate a list of family members as well as a list of potential interlopers. The Asteroid Families Portal is freely available to all interested researchers.

  9. 5m Main Belt Asteroid Population Estimation Using Vesta Imagery

    Science.gov (United States)

    Rynders, Michael; Trilling, David E.

    2016-10-01

    The Main Belt is the largest source of Near-Earth asteroids, but objects 2 pixels in diameter that were counted in a 33km 2 region to give a crater density. By knowing the crater density and making some reasonable assumptions about the orbital distribution of asteroids and the age of Vesta's surface, an estimate of the population of small asteroids in the inner main belt was made. It was found that the inner region of the main asteroid belt contains approximately 20 billion asteroids larger than 5 m. These results agree well with the measured inner Main Belt Size distribution derived by the Wide-field Infrared Survey Explorer, WISE (Masiero et al. 2011).

  10. Asteroid spin-axis longitudes from the Lowell Observatory database

    CERN Document Server

    Bowell, E; Wasserman, L H; Muinonen, K; Penttilä, A; Trilling, D E

    2013-01-01

    By analyzing brightness variation with ecliptic longitude and using the Lowell Observatory photometric database, we estimate spin-axis longitudes for more than 350 000 asteroids. Hitherto, spin-axis longitude estimates have been made for fewer than 200 asteroids. We investigate longitude distributions in different dynamical groups and asteroid families. We show that asteroid spin-axis longitudes are not isotropically distributed as previously considered. We find that the spin-axis longitude distribution for main-belt asteroids is clearly non-random, with an excess of longitudes from the interval 30{\\deg}-110{\\deg} and a paucity between 120{\\deg}-180{\\deg}. The explanation of the non-isotropic distribution is unknown at this point. Further studies have to be conducted to determine if the shape of the distribution can be explained by observational bias, selection effects, a real physical process or other mechanism.

  11. Visual and near-IR spectrophotometry of asteroids

    Science.gov (United States)

    Lebofsky, Larry A.

    1991-01-01

    We have been continuing our studies of the spectral properties of dark asteroids in the solar system. From these studies we expect to learn about the distribution of volatile materials, such as water in clay materials (water of hydration) and how the asteroids may relate to the comets. Our most recent work has been concentrating on simultaneous visual and near infrared photometry near Earth, main belt, and trojan asteroids. We have made observations of some unusual asteroids such as Chiron, which has recently shown cometary activity, and 944 Hidalgo, which has a comet-like orbit. We have also begun studies of the small, dark satellites of Mars and Jupiter in order to understand better how they may relate to the steroids. Could they actually be captured asteroids or comets?

  12. Landslides and Mass Shedding on Spinning Spheroidal Asteroids

    CERN Document Server

    Scheeres, D J

    2014-01-01

    Conditions for regolith landslides to occur on spinning, gravitating spheroidal asteroids and their aftermath are studied. These conditions are developed by application of classical granular mechanics stability analysis to the asteroid environment. As part of our study we determine how slopes evolve across the surface of these bodies as a function of spin rate, the dynamical fate of material that exceeds the angle of repose, and an analysis of how the shape of the body may be modified based on these results. We find specific characteristics for body surfaces and shapes when spun near the surface disruption limit and develop what their observable implications are. The small, oblate and rapidly spinning asteroids such as 1999 KW4 Alpha and 2008 EV5 exhibit some of these observable traits. The detailed mechanisms outlined here can also provide insight and constraints on the recently observed active asteroids such as P/2013 P5, and the creation of asteroidal meteor streams.

  13. Scaling forces to asteroid surfaces: The role of cohesion

    CERN Document Server

    Scheeres, D J; Sanchez, P; Swift, M

    2010-01-01

    The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together b...

  14. Numerical Investigation of the Consequences of Land Impacts, Water Impacts, or Air Bursts of Asteroids

    Science.gov (United States)

    Ezzedine, S. M.; Dearborn, D. S.; Miller, P. L.

    2015-12-01

    The annual probability of an asteroid impact is low, but over time, such catastrophic events are inevitable. Interest in assessing the impact consequences has led us to develop a physics-based framework to seamlessly simulate the event from entry to impact, including air and water shock propagation and wave generation. The non-linear effects are simulated using the hydrodynamics code GEODYN. As effects propagate outward, they become a wave source for the linear-elastic-wave propagation code, WPP/WWP. The GEODYN-WPP/WWP coupling is based on the structured adaptive-mesh-refinement infrastructure, SAMRAI, and has been used in FEMA table-top exercises conducted in 2013 and 2014, and more recently, the 2015 Planetary Defense Conference exercise. Results from these simulations provide an estimate of onshore effects and can inform more sophisticated inundation models. The capabilities of this methodology are illustrated by providing results for different impact locations, and an exploration of asteroid size on the waves arriving at the shoreline of area cities. We constructed the maximum and minimum envelops of water-wave heights given the size of the asteroid and the location of the impact along the risk corridor. Such profiles can inform emergency response and disaster-mitigation efforts, and may be used for design of maritime protection or assessment of risk to shoreline structures of interest. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675390-DRAFT.

  15. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  16. Avian host defense peptides

    NARCIS (Netherlands)

    Cuperus, Tryntsje; Coorens, M.; van Dijk, A.; Haagsman, H.P.

    2013-01-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense

  17. Defense Mechanisms: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  18. Asteroid Regolith Simulants: Development, Characteristics, and Testing

    Science.gov (United States)

    Britt, D. T.

    2015-12-01

    As part of a NASA Small Business Innovation Research (SBIR) award to the University of Central Florida and Deep Space Industries, we are developing a family of asteroid regolith simulants based on meteorite mineralogies but using terrestrial materials, to support NASAs exploration goals for asteroids. We are planning on developing five types of simulant based on the following meteorite types: CI-carbonaceous chondrite, CM-carbonaceous chondrite, Tagish Lake, L-ordinary chondrite, and iron. To the greatest extent reasonable (based on input costs and health/safety) we will duplicate the mineralogy, chemistry, oxidation state, hydration state, and particle size distribution found in regolith meteorites of each type. The major limitations on the fidelity of simulant will be health and safety issues for the users of the simulants. For example, much of the organic component of volatile-rich carbonaceous chondrites are in the form of Polycyclic Aromatic Hydrocarbons (PAHs). These are essentially combustion residues, possibly of complex regolith processing, with more carbon atoms than hydrogen. However, many PAHs are toxic, carcinogenic, and/or mutagenic. Several are banned in the European Union and California. This sort of material would endanger users, be impossible to distribute, and not make a useable regolith simulant. There are several reasonable, no-toxic alternatives to PAHs. We will report on the status of simulant development and the progress of our validation experiments.

  19. The Albedo Distribution of Near Earth Asteroids

    CERN Document Server

    Wright, Edward L; Masiero, Joseph; Grav, Tommy; Bauer, James

    2016-01-01

    The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x \\exp[-x^2/(2\\sigma^2)]/\\sigma^2$ for positive x. The peak value is at x=\\sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by...

  20. Galileo photometry of asteroid 243 Ida

    Science.gov (United States)

    Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Klaasen, K.; Johnson, T.V.; Fanale, F.; Granahan, J.; McEwen, A.S.; Belton, M.; Chapman, C.

    1996-01-01

    Galileo imaging observations over phase angles 19.5?? to 109.8?? are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at ?? = 0.55 ??m by Hapke parameters ????0 = 0.22, h = 0.020, B0 = 1.5, g = -0.33, and ?? = 18?? with corresponding geometric albedo p = 0.21??0.030.01 and Bond albedo AB = 0.081??0.0170.008. Ida's photometric properties are more similar to those of "average S-asteroids" (P. Helfenstein and J. Veverka 1989, Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-??m absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-??m absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ????0 (0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5?? to 47.6?? suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21). ?? 1990 Academic Press, Inc.

  1. Distant retrograde orbits and the asteroid hazard

    Science.gov (United States)

    Perozzi, Ettore; Ceccaroni, Marta; Valsecchi, Giovanni B.; Rossi, Alessandro

    2017-08-01

    Distant Retrograde Orbits (DROs) gained a novel wave of fame in space mission design because of their numerous advantages within the framework of the US plans for bringing a large asteroid sample in the vicinity of the Earth as the next target for human exploration. DROs are stable solutions of the three-body problem that can be used whenever an object, whether of natural or artificial nature, is required to remain in the neighborhood of a celestial body without being gravitationally captured by it. As such, they represent an alternative option to Halo orbits around the collinear Lagrangian points L1 and L2. Also known under other names ( e.g., quasi-satellite orbits, cis-lunar orbits, family- f orbits) these orbital configurations found interesting applications in several mission profiles, like that of a spacecraft orbiting around the small irregularly shaped satellite of Mars Phobos or the large Jovian moon Europa. In this paper a basic explanation of the DRO dynamics is presented in order to clarify some geometrical properties that characterize them. Their accessibility is then discussed from the point of view of mission analysis under different assumptions. Finally, their relevance within the framework of the present asteroid hazard protection programs is shown, stressing the significant increase in warning time they would provide in the prediction of impactors coming from the direction of the Sun.

  2. Can Asteroid Airbursts Cause Dangerous Tsunami?.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    I have performed a series of high-resolution hydrocode simulations to generate “source functions” for tsunami simulations as part of a proof-of-principle effort to determine whether or not the downward momentum from an asteroid airburst can couple energy into a dangerous tsunami in deep water. My new CTH simulations show enhanced momentum multiplication relative to a nuclear explosion of the same yield. Extensive sensitivity and convergence analyses demonstrate that results are robust and repeatable for simulations with sufficiently high resolution using adaptive mesh refinement. I have provided surface overpressure and wind velocity fields to tsunami modelers to use as time-dependent boundary conditions and to test the hypothesis that this mechanism can enhance the strength of the resulting shallow-water wave. The enhanced momentum result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast alone, but not necessarily due to the originally-proposed mechanism. This result has significant implications for asteroid impact risk assessment and airburst-generated tsunami will be the focus of a NASA-sponsored workshop at the Ames Research Center next summer, with follow-on funding expected.

  3. Formation and Dynamical Evolution of the Asteroid Belt

    Science.gov (United States)

    Bottke, William F.

    2015-08-01

    Asteroids are critical to our desire to unravel the origin of the Solar System because they supply unique, relatively pristine snapshots of the environment in which the Earth formed and evolved. This is due to the fact that, although the asteroids and Earth have followed very different evolutionary pathways, they all formed from the same set of physical processes and share a common ancestry. The asteroid belt presents a particular challenge to understanding terrestrial planet formation because of its small mass. Models of the protoplanetary disk suggest the region between 2-3 AU should contain roughly 3 Earth masses, while less than 0.001 of an Earth mass is actually found there.A long-standing explanation for the asteroid belt's small mass is that it is due to the gravitational influence of Jupiter and Saturn. Some have suggested protoplanets grew there before they were dynamically removed from the asteroid belt by resonances with the gas giants. This left the asteroid belt dynamically excited (which is observed) and heavily depleted in mass. More recently, however, detailed models have shown that this process produces an asteroid belt that is inconsistent with observations.Two recent models propose new ways to match asteroid belt constraints. The first, the so-called ‘Grand Tack’ scenario, uses the results of hydrodynamic simulations to show that Jupiter (and Saturn) migrated both inward and outward across the asteroid belt while interacting with the protoplanetary gas disk. The Grand Tack not only reproduces the mass and mixture of spectral types in the asteroid belt, but it also truncates the planetesimal disk from which the terrestrial planets form, potentially explaining why Mars is less massive than Earth. In a second scenario, planetesimals that form directly from cm- to meter-sized objects, known as “pebbles”, are rapidly converted to 100 to 1000 km asteroid-like object that subsequently grow by accreting even more pebbles. Pebble accretion models

  4. Defense Industry Clusters in Turkey

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan Demir

    2016-06-01

    Full Text Available All countries strive for a capable national defense supported by a strong national defense industry. Supporting national defense with imported defense systems has many limitations and risks because the terms of arms trade agreements between countries may easily be influenced by the political climate of the signatories. As a result, establishing an independent national defense requires a strong national defense industry. Furthermore, exporting defense systems may be an important source of national income. National defense industries mostly consist of large-scale defense firms that have the resources required for big defense contracts. However, small to medium enterprises (SMEs do not have the necessary resources, therefore they are at a disadvantage. To overcome this handicap and be part of the business, defense industry clusters mostly consisting of SMEs are being established. Provided that there is good national planning and support in this area, defense clusters consisting of SMEs may play a significant role in industry. SMEs have a chance to offer specialized services, special or customized products when needed. As a result, large defense firms subcontract certain portions of defense projects to SMEs. Since 2010, Turkey has shown signs of continuous improvement in defense industry clustering. In parallel with these developments, this study discusses the importance of clustering in the defense industry, briefly presents the state of the Turkish defense industry as highlighted by national statistics, and presents the current status of defense clusters in Turkey. The novelty of this article consists in its assessment of Turkish defense clusters.

  5. Self-organizing control strategy for asteroid intelligent detection swarm based on attraction and repulsion

    Science.gov (United States)

    An, Meiyan; Wang, Zhaokui; Zhang, Yulin

    2017-01-01

    The self-organizing control strategy for asteroid intelligent detection swarm, which is considered as a space application instance of intelligent swarm, is developed. The leader-follower model for the asteroid intelligent detection swarm is established, and the further analysis is conducted for massive asteroid and small asteroid. For a massive asteroid, the leader spacecraft flies under the gravity field of the asteroid. For a small asteroid, the asteroid gravity is negligible, and a trajectory planning method is proposed based on elliptic cavity virtual potential field. The self-organizing control strategy for the follower spacecraft is developed based on a mechanism of velocity planning and velocity tracking. The simulation results show that the self-organizing control strategy is valid for both massive asteroid and small asteroid, and the exploration swarm forms a stable configuration.

  6. Multiple-hopping trajectories near a rotating asteroid

    Science.gov (United States)

    Shen, Hong-Xin; Zhang, Tian-Jiao; Li, Zhao; Li, Heng-Nian

    2017-03-01

    We present a study of the transfer orbits connecting landing points of irregular-shaped asteroids. The landing points do not touch the surface of the asteroids and are chosen several meters above the surface. The ant colony optimization technique is used to calculate the multiple-hopping trajectories near an arbitrary irregular asteroid. This new method has three steps which are as follows: (1) the search of the maximal clique of candidate target landing points; (2) leg optimization connecting all landing point pairs; and (3) the hopping sequence optimization. In particular this method is applied to asteroids 433 Eros and 216 Kleopatra. We impose a critical constraint on the target landing points to allow for extensive exploration of the asteroid: the relative distance between all the arrived target positions should be larger than a minimum allowed value. Ant colony optimization is applied to find the set and sequence of targets, and the differential evolution algorithm is used to solve for the hopping orbits. The minimum-velocity increment tours of hopping trajectories connecting all the landing positions are obtained by ant colony optimization. The results from different size asteroids indicate that the cost of the minimum velocity-increment tour depends on the size of the asteroids.

  7. Asteroid detection using a single multi-wavelength CCD scan

    Science.gov (United States)

    Melton, Jonathan

    2016-09-01

    Asteroid detection is a topic of great interest due to the possibility of diverting possibly dangerous asteroids or mining potentially lucrative ones. Currently, asteroid detection is generally performed by taking multiple images of the same patch of sky separated by 10-15 minutes, then subtracting the images to find movement. However, this is time consuming because of the need to revisit the same area multiple times per night. This paper describes an algorithm that can detect asteroids using a single CCD camera scan, thus cutting down on the time and cost of an asteroid survey. The algorithm is based on the fact that some telescopes scan the sky at multiple wavelengths with a small time separation between the wavelength components. As a result, an object moving with sufficient speed will appear in different places in different wavelength components of the same image. Using image processing techniques we detect the centroids of points of light in the first component and compare these positions to the centroids in the other components using a nearest neighbor algorithm. The algorithm was used on a test set of 49 images obtained from the Sloan telescope in New Mexico and found 100% of known asteroids with only 3 false positives. This algorithm has the advantage of decreasing the amount of time required to perform an asteroid scan, thus allowing more sky to be scanned in the same amount of time or freeing a telescope for other pursuits.

  8. THE ORIGIN OF ASTEROID 162173 (1999 JU{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Campins, Humberto [Physics Department, University of Central Florida, P.O. Box 162385, Orlando, FL 32816-2385 (United States); De Leon, Julia [Department of Edaphology and Geology, University of La Laguna, E-38071 Tenerife (Spain); Morbidelli, Alessandro; Gayon-Markt, Julie; Delbo, Marco; Michel, Patrick [Observatoire de la Cote d' Azur, Universite de Nice Sophia Antipolis (UNS), CNRS UMR7293, F-06108 Nice Cedex 2 (France); Licandro, Javier [Instituto de Astrofisica de Canarias (IAC), C/Via Lactea s/n, E-38205 La Laguna (Spain)

    2013-08-01

    Near-Earth asteroid (162173) 1999 JU{sub 3} (henceforth JU{sub 3}) is a potentially hazardous asteroid and the target of the Japanese Aerospace Exploration Agency's Hayabusa-2 sample return mission. JU{sub 3} is also a backup target for two other sample return missions: NASA's OSIRIS-REx and the European Space Agency's Marco Polo-R. We use dynamical information to identify an inner-belt, low-inclination origin through the {nu}{sub 6} resonance, more specifically, the region with 2.15 AU < a < 2.5 AU and i < 8 Degree-Sign . The geometric albedo of JU{sub 3} is 0.07 {+-} 0.01, and this inner-belt region contains four well-defined low-albedo asteroid families (Clarissa, Erigone, Polana, and Sulamitis), plus a recently identified background population of low-albedo asteroids outside these families. Only two of these five groups, the background and the Polana family, deliver JU{sub 3}-sized asteroids to the {nu}{sub 6} resonance, and the background delivers significantly more JU{sub 3}-sized asteroids. The available spectral evidence is also diagnostic; the visible and near-infrared spectra of JU{sub 3} indicate it is a C-type asteroid, which is compatible with members of the background, but not with the Polana family because it contains primarily B-type asteroids. Hence, this background population of low-albedo asteroids is the most likely source of JU{sub 3}.

  9. Momentum transfer in asteroid impacts. I. Theory and scaling

    Science.gov (United States)

    Holsapple, Keith A.; Housen, Kevin R.

    2012-11-01

    When an asteroid experiences an impact, its path is changed. How much it changes is important to know for both asteroid evolution studies and for attempts to prevent an asteroid from impacting the Earth. In an impact process the total momentum of the material is conserved. However, not all of the material is of interest, but only that remaining with the asteroid. The ratio of the change of momentum of the remaining asteroid to that of the impactor is called the momentum multiplication factor; and is commonly given the symbol β. It has been known for some time that β can be greater than unity, and in some cases far greater. That could be a significant factor in attempts to deflect an asteroid with an impact, and can also be important in the stirring of objects in the asteroid belt due to mutual impacts. The escaping crater ejecta are the source of the momentum multiplication. Housen and Holsapple (Housen, K.R., Holsapple, K.A. [2011a]. Icarus 211, 856-875) have given a recent summary of ejecta characteristics and scaling. Here we use those ejecta results to determine how β depends on the impactor properties, on the asteroid size and composition, and establish the paths and time of flight of all of the ejecta particles. The approach is to add the contribution of each element of ejected mass accounting for its initial velocity, its trajectory and whether it escapes the asteroid. The goal in this paper is to provide a theoretical framework of the fundamental results which can be used as a test of the veracity of experiments and detailed numerical calculations of impacts. A subsequent paper will present direct laboratory results and numerical simulations of momentum multiplication in various geological materials.

  10. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  11. A Spectroscopically Unique Main Belt Asteroid: 10537 (1991 RY16)

    CERN Document Server

    Moskovitz, Nicholas A; Jedicke, Robert; Willman, Mark; Haghighipour, Nader; Bus, Schelte J; Gaidos, Eric

    2008-01-01

    We present visible and near-infrared reflectance spectra and interpreted surface mineralogy for asteroid 10537 (1991 RY16). The spectrum of this object is without precedent amongst the Main Belt asteroids. A unique absorption band centered at 0.63 microns could be attributed to one of several mineralogies. Pronounced 1- and 2-micron absorption bands suggest that the composition of 10537 is a mixture of pyroxenes and olivine and that it originated from a parent body that was partially or fully differentiated. The closest available analog is the large Main Belt asteroid 349 Dembowska but 10537 may be an isolated fragment from a completely eroded parent body.

  12. Granular convection and its application to asteroidal resurfacing timescale

    Science.gov (United States)

    Yamada, Tomoya; Ando, Kosuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    2016-04-01

    A model for the asteroid resurfacing resulting from regolith convection is built to estimate its timescale. The regolith convection by impact-induced global seismic shaking could be a possible reason for regolith migration and resultant segregated terrain which were found on the asteroids Itokawa [1]. Some recent studies [2, 3] experimentally investigated the convective velocity of the vibrated granular bed to discuss the feasibility of regolith convection under the microgravity condition such as small asteroids. These studies found that the granular convective velocity is almost proportional to the gravitational acceleration [2, 3]. Namely, the granular (regolith) convective velocity would be very low under the microgravity condition. Therefore, the timescale of resurfacing by regolith convection would become very long. In order to examine the feasibility of the resurfacing by regolith convection on asteroids, its timescale have to be compared with the surface age or the lifetime of asteroids. In this study, we aim at developing a model of asteroid resurfacing process induced by regolith convection. The model allows us to estimate the resurfacing timescale for various-sized asteroids covered with regolith. In the model, regolith convection is driven by the impact-induced global seismic shaking. The model consists of three phases, (i) Impact phase: An impactor intermittently collides with a target asteroid [4], (ii) Vibration phase: The collision results in a global seismic shaking [5], (iii) Convection phase: The global seismic shaking induces the regolith convection on the asteroid [3]. For the feasibility assessment of the resurfacing process driven by regolith convection, we estimate the regolith-convection-based resurfacing timescale T as a function of the size of a target asteroid Da. According to the estimated result, the resurfacing time scale is 40 Myr for the Itokawa-sized asteroid, and this value is shorter than the mean collisional lifetime of Itokawa

  13. Asteroid Sufaces/Regoliths Deduced by Remote Sensing

    Science.gov (United States)

    Price, S.

    Resolved imagery on a small number of asteroids provides information about the size, density and surface relief from which inferences may be made regarding their regoliths; Eros Eros is the best studied asteroid in this regard However, remote sensing is necessary to deduce properties for the large majority of objects. These techniques include: spectroscopy and multi-spectral band photometry, which provide clues as to the chemical composition of the surface, infrared (plus visible) radiometry, from which physical bulk and surface properties may be inferred through the derived albedo and thermal inertia, and radar, which permits one to deduce the near surface bulk density. This article reviews what these techniques have revealed about the surface characteristics of asteroids. Asteroids have been classified by the broad emissive properties of the surface as indicated by filter band photometry. Recently, observations from large scale surveys - 2MASS (Denis to a lesser extent) and the Sloan Digital Sky Survey - provided taxonomic classifications for thousands of asteroids. The mineralogy is more secure at higher spectral resolution. Silicates on the surface of asteroids have been inferred from IRAS, ISO and Kuiper Airborne infrared spectra. Infrared radiometry has been used to derive the albedos and diameters of ~2300 asteroids observed by IRAS and MSX. The simplified Standard Thermal Model (STM) works well for main belt asteroids. The model assumes that the asteroid does not rotate and is in instantaneous thermal equilibrium between absorbed sunlight and emitted radiation. Empirical factors for flux enhancement (beaming) and phase function are adopted. There is a dichotomy between large and small asteroids in this database. About 20% of the asteroids with diameters inertia, rotation rate, orientation of the rotation pole, surface roughness and degree of cratering. A complex model is required to account for all the variables. Such a model was developed using full

  14. NEOWISE REACTIVATION MISSION YEAR ONE: PRELIMINARY ASTEROID DIAMETERS AND ALBEDOS

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R.; Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S.; Stevenson, R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States); Wright, E. L., E-mail: cnugent@ipac.caltech.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2015-12-01

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  15. Photometry and shape modeling of Mars crosser asteroid (1011 Laodamia

    Directory of Open Access Journals (Sweden)

    Apostolovska G.

    2014-01-01

    Full Text Available An analysis of photometric observations of Mars crosser asteroid 1011 Laodamia conducted at Bulgarian National Astronomical Observatory Rozhen over a twelve year interval (2002, 2003, 2004, 2006, 2007, 2008, 2011, 2012 and 2013 is made. Based on the obtained lightcurves the spin vector, sense of rotation, and preliminary shape model of (1011 Laodamia have been determined using the lightcurve inversion method. The aim of this investigation is to increase the set of asteroids with known spin and shape parameters and to contribute in improving the model in combination with other techniques and sparse data produced by photometric asteroid surveys such as Pan-STARRS or GAIA.

  16. Redox effects in ordinary chondrites and implications for asteroid spectrophotometry

    Science.gov (United States)

    Mcsween, Harry Y., Jr.

    1992-01-01

    The sensitivity of reflectance spectra to mean ferrous iron content and olivine and pyroxene proportion enhancements in the course of metamorphic oxidation is presently used to examine whether metamorphically-induced ranges in mineralogy, and corresponding spectral parameters, may explain the observed variations in S-asteroid rotational spectra. The predicted spectral variations within any one chondrite class are, however, insufficient to account for S-asteroid rotational spectra, and predicted spectral-range slopes have a sign opposite to the rotational measurements. Metamorphic oxidation is found unable to account for S-asteroid rotational spectra.

  17. Defense and the Economy

    Science.gov (United States)

    1993-01-01

    AD A 66 28 o’py 9of 27 copiesII AD-A266 288-co, .o,,,, I IDA PAPER P-28 10I * DEFENSE AND THE ECONOMY David R. Graham An-Jen Tai Barbara A...TYPE AND DATES COVERED January 1993 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Defense and the Economy C-MDA 903 89C 0003i...Fomr 298 (Rev 2-4g) 3Preserked by ANSI Sid, Z39- 2I0 I I I IDA PAPER P-2810() 3 DEFENSE AND THE ECONOMY I I David R. Graham An-Jen Tai Barbara A

  18. Target acquisition probability at hand-off from midcourse to terminal guidance of a BVR air defense missile%超视距防空导弹中末制导交接班时的目标捕获概率研究

    Institute of Scientific and Technical Information of China (English)

    刘少波; 赵良玉

    2016-01-01

    中末制导交接班时的目标捕获概率是超视距防空导弹作战过程中的一个重要指标。为了快速计算中末制导交接班时的目标捕获概率,通过将导弹和目标的三维空间散布转换为视线坐标系下弹目相对位置向量的均值和方差,建立了一种红外导引头中末制导交接班时的目标捕获概率解析计算模型,并利用蒙特卡洛方法验证了其有效性。以此模型为基础,采用正交试验方法完成了目标捕获概率的灵敏度分析,极差和方差分析结果均表明,导引头视场角对目标捕获概率的影响最显著,弹目相对位置向量在视线坐标系OyL 轴和OzL 轴上投影的方差次之。%The target acquisition probability is an important parameter at hand⁃off from midcourse to terminal guidance of a be⁃yond visual range ( BVR) air defense missile. In order to calculate the target acquisition probability with low computational cost, the distributions of the missile and the target in three⁃dimensional space were transformed to the mean and variance of relative range vector in line⁃of⁃sight coordinate firstly, and then an analytical model was established to calculate the target acquisition probability of a kind of missile with an infrared seeker. After the analytical model was verified by the Monte Carlo method, it was employed to investigate the sensitivity of the target acquisition probability by means of orthogonal experiments. The results of range analysis and variance analysis both prove that the influence of seeker field angle on the target acquisition probability is dominated, and influences of variances of projections of relative range vector along OyL and OzL direction in line⁃of⁃sight coordinate are the second.

  19. New study reveals twice as many asteroids as previously believed

    Science.gov (United States)

    2002-05-01

    The ISO satellite Credits: ESA ISO An artist's impression of the ISO spacecraft. The ISO Deep Asteroid Search indicates that there are between 1.1 million and 1.9 million 'space rocks' larger than 1 kilometre in diameter in the so-called 'main asteroid belt', about twice as many as previously believed. However, astronomers think it is premature to revise current assessments of the risk of the Earth being hit by an asteroid. Despite being in our own Solar System, asteroids can be more difficult to study than very distant galaxies. With sizes of up to one thousand kilometres in diameter, the brightness of these rocky objects may vary considerably in just a few minutes. They move very quickly with respect to the stars - they have been dubbed 'vermin of the sky' because they often appear as trails on long exposure images. This elusiveness explains why their actual number and size distribution remains uncertain. Most of the almost 40,000 asteroids catalogued so far (1) orbit the Sun forming the 'main asteroid belt', between Mars and Jupiter, too far to pose any threat to Earth. However, space-watchers do keep a closer eye on another category of asteroids, the 'Near Earth Asteroids' or 'NEAs', which are those whose orbits cross, or are likely to cross, that of our planet. The ISO Deep Asteroid Search (IDAS), the first systematic search for these objects performed in infrared light, focused on main belt asteroids. Because it is impossible to simply point the telescope at the whole main belt and count, astronomers choose selected regions of the belt and then use a theoretical model to extrapolate the data to the whole belt. Edward Tedesco (TerraSystems, Inc., New Hampshire, United States) and François-Xavier Desert (Observatoire de Grenoble, France) observed their main belt selected areas in 1996 and 1997 with ESA's ISO. They found that in the middle region of the belt the density of asteroids was 160 asteroids larger than 1 kilometre per square degree - an area of the

  20. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. krdu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kiwd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. krbl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kssf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ksaw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgck Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kcvg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kcrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ksun Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kpia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. krow Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kbtv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kbke Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbpt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kact Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. klnd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kbis Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kteb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kely Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kfat Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. phny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kbos Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kpdx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. tjsj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kpae Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kalb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kjax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kfwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. khts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kpbf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kslc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. ksns Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. krwf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. ksua Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. klan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kcgi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kbyi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kgcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kryy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kvtn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kdhn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kcll Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktmb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. khvr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kara Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kinw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kism Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kues Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kida Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. khut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. keug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kazo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kbvi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ksjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kbrl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kgon Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. ksdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kofk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kbbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kcon Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. ktyr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kgfk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kbna Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. krap Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ktlh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kagc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kelm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. khln Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...