WorldWideScience

Sample records for aster microtubule dynamics

  1. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    Science.gov (United States)

    Athale, Chaitanya A.; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-02-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions.

  2. Aging of dynamically stabilized microtubules

    CERN Document Server

    Ebbinghaus, M

    2009-01-01

    The microtubule network, an important part of the cytoskeleton, is constantly remodeled by alternating phases of growth and shrinkage of individual filaments. Plus-end tracking proteins (+TIPs) interact with the microtubule and in many cases alter its dynamics. While it is established that the prototypal CLIP-170 enhances microtubule stability by increasing rescues, the plus-end tracking mechanism is still under debate. We present a model for microtubule dynamics in which a rescue factor is dynamically added to the filament while growing. As a consequence, the filament shows aging behavior which should be experimentally accessible and thus allow one to exclude some hypothesized models of the inclusion of rescue factors at the microtubule plus end. Additionally, we show the strong influence of the cell geometry on the quantitative results.

  3. Geometric features of microtubule dynamics

    Science.gov (United States)

    Ponce-Dawson, Silvina; Pearson, John E.; Reynolds, William N.

    Microtubules are long and stiff polymers that form the cytoskeleton of eucaryotic cells. They perform a series of tasks, such as determining the cell shape and providing a network of “rails” along which molecular motors transport organelles to different parts of the cell. They are particularly important during the process of cell division, since they provide the forces by which replicated chromosomes are segregated into what will be the two daughter cells. Microtubules are formed from a protein called tubulin and undergo a process called dynamic instability. In this paper we study, via numerical simulations of some simplified models, how the interaction between microtubules and the diffusion of free tubulin affects their spatial organization.

  4. Stochastic Model of Microtubule Dynamics

    Science.gov (United States)

    Hryniv, Ostap; Martínez Esteban, Antonio

    2017-10-01

    We introduce a continuous time stochastic process on strings made of two types of particle, whose dynamics mimics that of microtubules in a living cell. The long term behaviour of the system is described in terms of the velocity v of the string end. We show that v is an analytic function of its parameters and study its monotonicity properties. We give a complete characterisation of the phase diagram of the model and derive several criteria of the growth (v>0) and the shrinking (v<0) regimes of the dynamics.

  5. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    and probability distributions relating to available experimental data are derived. Caps are found to be short and the total rate of hydrolysis at a microtubule end is found to be dynamically coupled to growth. The so-called catastrophe rate is a simple function of the microtubule growth rare and fits experimental...... data. A constant nonzero catastrophe rare, identical for both microtubule ends, is predicted at large growth rates. The delay time for dilution-induced catastrophes is stochastic with a simple distribution that fits the experimental one and, like the experimental one, does not depend on the rate...... description of several apparently contradictory experimental data. Experimental results for the catastrophe rate at different concentrations of magnesium ions and of microtubule associated proteins are discussed in terms of the model. Feasible experiments are suggested that can provide decisive tests...

  6. Mmb1p binds mitochondria to dynamic microtubules

    Science.gov (United States)

    Fu, Chuanhai; Jain, Deeptee; Costa, Judite; Velve-Casquillas, Guilhem; Tran, Phong T.

    2015-01-01

    Summary Background Mitochondria form a dynamics tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants? Results Fission yeast also relies on microtubules for mitochondria distribution. We report here a new microtubule-dependent but motor-independent mechanism for proper mitochondria positioning in fission yeast. We identify the protein mmb1p, which binds to mitochondria and microtubules. Mmb1p attaches the tubular mitochondria to the microtubule lattice at multiple discrete interaction sites. Mmb1 deletion causes mitochondria to aggregate, with the long-term consequence of defective mitochondria distribution and cell death. Mmb1p decreases microtubule dynamicity. Conclusion Mmb1p is a new microtubule-mitochondria binding protein. We propose that mmb1p act to couple long-term mitochondria distribution to short-term microtubule dynamics by attenuating microtubule dynamics, thus enhancing the mitochondria-microtubule interaction time. PMID:21856157

  7. Progesterone modulates microtubule dynamics and epiboly progression during zebrafish gastrulation.

    Science.gov (United States)

    Eckerle, Stephanie; Ringler, Mario; Lecaudey, Virginie; Nitschke, Roland; Driever, Wolfgang

    2017-12-26

    Control of microtubule dynamics is crucial for cell migration. We analyzed regulation of microtubule network dynamics in the zebrafish yolk cell during epiboly, the earliest coordinated gastrulation movement. We labeled microtubules with EMTB-3GFP and EB3-mCherry to visualize and measure microtubule dynamics by TIRF microscopy live imaging. Yolk cell microtubules dynamics is temporally modulated during epiboly progression. We used maternal zygotic Pou5f3 mutant (MZspg) embryos, which develop strong distortions of microtubule network organization and epiboly retardation, to investigate genetic control of microtubule dynamics. In MZspg embryos, microtubule plus-end growth tracks move slower and are less straight compared to wild-type. MZspg embryos have altered steroidogenic enzyme expression, resulting in increased pregnenolone and reduced progesterone levels. We show that progesterone positively affects microtubule plus-end growth and track straightness. Progesterone may thus act as a non-cell-autonomous regulator of microtubule dynamics across the large yolk cell, and may adjust differing demands on microtubule dynamics and stability during initiation and progression phases of epiboly. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dynamics of microtubules: highlights of recent computational and experimental investigations

    Science.gov (United States)

    Barsegov, Valeri; Ross, Jennifer L.; Dima, Ruxandra I.

    2017-11-01

    Microtubules are found in most eukaryotic cells, with homologs in eubacteria and archea, and they have functional roles in mitosis, cell motility, intracellular transport, and the maintenance of cell shape. Numerous efforts have been expended over the last two decades to characterize the interactions between microtubules and the wide variety of microtubule associated proteins that control their dynamic behavior in cells resulting in microtubules being assembled and disassembled where and when they are required by the cell. We present the main findings regarding microtubule polymerization and depolymerization and review recent work about the molecular motors that modulate microtubule dynamics by inducing either microtubule depolymerization or severing. We also discuss the main experimental and computational approaches used to quantify the thermodynamics and mechanics of microtubule filaments.

  9. Neurodegeneration and microtubule dynamics: Death by a thousand cuts

    Directory of Open Access Journals (Sweden)

    Jyoti eDubey

    2015-09-01

    Full Text Available Microtubules form important cytoskeletal structures that play a role in establishing and maintaining neuronal polarity, regulating neuronal morphology, transporting cargo and scaffolding signaling molecules to form signaling hubs. Within a neuronal cell, microtubules are found to have variable lengths and can be both stable and dynamic. Microtubule associated proteins, post-translational modifications of tubulin subunits, microtubule severing enzymes, and signaling molecules are all known to influence both stable and dynamic pools of microtubules. Microtubule dynamics, the process of interconversion between stable and dynamic pools, and the proportions of these two pools have the potential to influence a wide variety of cellular processes. Reduced microtubule stability has been observed in several neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and tauopathies like Progressive Supranuclear Palsy. Hyperstable microtubules, as seen in Hereditary Spastic Paraplegia, also lead to neurodegeneration. Therefore, the ratio of stable and dynamic microtubules is likely to be important for neuronal function and perturbation in microtubule dynamics might contribute to disease progression.

  10. Microtubules Modulate F-actin Dynamics during Neuronal Polarization.

    Science.gov (United States)

    Zhao, Bing; Meka, Durga Praveen; Scharrenberg, Robin; König, Theresa; Schwanke, Birgit; Kobler, Oliver; Windhorst, Sabine; Kreutz, Michael R; Mikhaylova, Marina; Calderon de Anda, Froylan

    2017-08-29

    Neuronal polarization is reflected by different dynamics of microtubule and filamentous actin (F-actin). Axonal microtubules are more stable than those in the remaining neurites, while dynamics of F-actin in axonal growth cones clearly exceed those in their dendritic counterparts. However, whether a functional interplay exists between the microtubule network and F-actin dynamics in growing axons and whether this interplay is instrumental for breaking cellular symmetry is currently unknown. Here, we show that an increment on microtubule stability or number of microtubules is associated with increased F-actin dynamics. Moreover, we show that Drebrin E, an F-actin and microtubule plus-end binding protein, mediates this cross talk. Drebrin E segregates preferentially to growth cones with a higher F-actin treadmilling rate, where more microtubule plus-ends are found. Interruption of the interaction of Drebrin E with microtubules decreases F-actin dynamics and arrests neuronal polarization. Collectively the data show that microtubules modulate F-actin dynamics for initial axon extension during neuronal development.

  11. Tubulin Post-Translational Modifications and Microtubule Dynamics

    Directory of Open Access Journals (Sweden)

    Dorota Wloga

    2017-10-01

    Full Text Available Microtubules are hollow tube-like polymeric structures composed of α,β-tubulin heterodimers. They play an important role in numerous cellular processes, including intracellular transport, cell motility and segregation of the chromosomes during cell division. Moreover, microtubule doublets or triplets form a scaffold of a cilium, centriole and basal body, respectively. To perform such diverse functions microtubules have to differ in their properties. Post-translational modifications are one of the factors that affect the properties of the tubulin polymer. Here we focus on the direct and indirect effects of post-translational modifications of tubulin on microtubule dynamics.

  12. Shaping the tracks : Regulation of microtubule dynamics by kinesins KIF21A and KIF21B

    NARCIS (Netherlands)

    van Riel, W.E.

    2016-01-01

    Control of microtubule dynamics is important for cell morphogenesis. Kinesins, motor proteins known to function in cargo transport, were recently also implicated in altering the microtubule network. Several kinesins are described to cause microtubule network reorganization or stabilization, either

  13. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    Directory of Open Access Journals (Sweden)

    Kristen M. Bartoli

    2011-01-01

    Full Text Available Stress granules (SGs are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

  14. Nonlinear dynamics of C–terminal tails in cellular microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Sekulic, Dalibor L., E-mail: dalsek@uns.ac.rs; Sataric, Bogdan M.; Sataric, Miljko V. [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia); Zdravkovic, Slobodan [University of Belgrade, Institute of Nuclear Sciences Vinca, Belgrade (Serbia); Bugay, Aleksandr N. [Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-07-15

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  15. Altered microtubule dynamics in Mecp2-deficient astrocytes.

    Science.gov (United States)

    Nectoux, Juliette; Florian, Cedrick; Delepine, Chloe; Bahi-Buisson, Nadia; Khelfaoui, Malik; Reibel, Sophie; Chelly, Jamel; Bienvenu, Thierry

    2012-05-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the gene MECP2 encoding the methyl-CpG binding protein 2. This genetic disease affects predominantly girls and is characterized by a period of normal development that lasts for 8-18 months, followed by neurologic regression affecting both motor and mental abilities. Previous studies performed on brains from RTT subjects and Mecp2-deficient mice showed striking changes in neuronal maturation and dendritic arborization. Recently, we showed that expression of stathmin-like 2 (STMN2) was significantly reduced in fibroblasts from RTT patients, and similar results were obtained in the cerebellum of Mecp2-deficient mice. Because assembly and dynamics of microtubules are known to be modulated by STMN2, we studied microtubule dynamics in brain cells from Mecp2-deficient mice. We observed that Mecp2 deficiency affects microtubule dynamics in astrocytes from Mecp2-deficient mice. Our data reinforce the fact that the loss of Mecp2 in astrocytes may influence the onset and progression of RTT. These results imply that Mecp2 has a stabilizing role in microtubule dynamics and that Mecp2 deficiency, which is associated with STMN2 down-regulation, could lead to impaired microtubule stability, hence explaining the dendritic abnormalities observed in RTT brains. Copyright © 2012 Wiley Periodicals, Inc.

  16. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  17. ASTER Tibet

    Science.gov (United States)

    2000-01-01

    capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  18. ASTER Mexicali

    Science.gov (United States)

    2000-01-01

    's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

  19. Microtubule dynamics at the cell cortex probed by TIRF microscopy.

    Science.gov (United States)

    Grigoriev, Ilya; Akhmanova, Anna

    2010-01-01

    Total internal reflection fluorescence (TIRF) microscopy is a technique that allows selective excitation of fluorescence at a liquid/solid interface within a short distance from the boundary. The penetration depth of TIRF microscopy depends on the angle of illumination resulting in a range of depths, which typically vary from approximately similar 70-200 nm up to reverse approximately 500 nm. The advantages of TIRF microscopy include excellent signal-to-noise ratio, high sensitivity, low photobleaching, and low photodamage. TIRF microscopy is widely used for studying cell adhesion, exo- and endocytosis, and the dynamics of plasma membrane-associated molecules. TIRF microscopy can also be applied for selective visualization of any other cellular processes that occur near the basal membrane even if their localization is not restricted to this part of the cell. For example, microtubules are distributed throughout the cytoplasm, but the use of TIRF microscopy makes it possible to visualize specifically the microtubule subpopulation in the vicinity of the basal cortex and thus study cortical microtubule attachment and stabilization, interactions between microtubules and matrix adhesion structures, and the behavior of specific molecules involved in these processes. In this chapter we describe the application of a commercially available setup to analyze microtubule behavior in live mammalian cells using TIRF microscopy. 2010 Elsevier Inc. All rights reserved.

  20. ASTER Dunes

    Science.gov (United States)

    2000-01-01

    This image of Saudi Arabia shows a great sea of linear dunes in part of the Rub' al Khali, or the Empty Quarter. Acquired on June 25, 2000, the image covers an area 37 kilometers (23 miles) wide and 28 kilometers (17 miles) long in three bands of the reflected visible and infrared wavelength region. The dunes are yellow due to the presence of iron oxide minerals. The inter-dune area is made up of clays and silt and appears blue due to its high reflectance in band 1. The Rub' al Khali is the world's largest continuous sand desert. It covers about 650,000 square kilometers (250,966 square miles) and lies mainly in southern Saudi Arabia, though it does extend into the United Arab Emirates, Oman, and Yemen. One of the world's driest areas, it is uninhabited except for the Bedouin nomads who cross it. The first European to travel through the desert was Bertram Thomas in 1930.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of

  1. ASTER Andes

    Science.gov (United States)

    2000-01-01

    In this image of the Andes along the Chile-Bolivia border, the visible and infrared data have been computer enhanced to exaggerate the color differences of the different materials. The scene is dominated by the Pampa Luxsar lava complex, occupying the upper right two-thirds of the scene. Lava flows are distributed around remnants of large dissected cones, the largest of which is Cerro Luxsar. On the middle left edge of the image are the Olca and Parumastrato volcanoes, which appear in blue due to a lack of vegetation (colored red in this composite). This image covers an area 60 kilometers (37 miles) wide and 60 kilometers (37 miles) long in three bands of the reflected visible and infrared wavelength region. It was acquired on April 7, 2000.The image is located at 21 degrees south latitude, 68.3 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats

  2. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  3. Force fluctuations and polymerization dynamics of intracellular microtubules

    Science.gov (United States)

    Brangwynne, Clifford

    2008-03-01

    Microtubules are dynamic biopolymers within the cytoskeleton of living cells. They play a central role in many biological processes including cell division, migration, and cargo transport. Microtubules are significantly more rigid than other cytoskeletal biopolymers, such as actin filaments, and are insensitive to thermal fluctuations on cellular length scales. However, we show that intracellular microtubules exhibit bending amplitudes with a surprisingly thermal-like wavevector dependence, but with an apparent persistence length about 100 times smaller than that measured in vitro. By studying the time-dependent bending fluctuations of individual filaments, we find that the thermal-like bends are fluctuating significantly only on short length scales, while they are frozen-in on longer length scales [1], reminiscent of non-ergodic behavior seen in systems far from equilibrium. Long wavelength bends are suppressed by the surrounding elastic cytoskeleton, which confines bending to short length scales on the order of a few microns [2]. These short wavelength bending fluctuations naturally cause fluctuations in the orientation of the microtubule tip. Tip fluctuations result in a persistent random walk trajectory of microtubule growth, but with a small non-equilibrium persistence length, explaining the origin of quenched thermal-like bends. These results suggest that intracellular motor activity has a highly fluctuating character that dominates over thermal fluctuations, with important consequences for fundamental biological processes. [1] CP Brangwynne, FC MacKintosh, DA Weitz, PNAS, 104:16128 (2007). [2] CP Brangwynne, FC MacKintosh, S Kumar, NA Geisse, J Talbot, L. Mahadevan, KK Parker, DE Ingber, DA Weitz, JCB, 173:733 (2006).

  4. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2017-11-22

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler which stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain, and is modulated by its projection domain. Site-specific pseudo-phosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phospho-dependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations which may have a deleterious impact during neurodegeneration. © 2017 by The American Society for Cell Biology.

  5. Signatures of a macroscopic switching transition for a dynamic microtubule

    Science.gov (United States)

    Aparna, J. S.; Padinhateeri, Ranjith; Das, Dibyendu

    2017-04-01

    Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values.

  6. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.

    Science.gov (United States)

    Dawson, Scott C; Sagolla, Meredith S; Mancuso, Joel J; Woessner, David J; House, Susan A; Fritz-Laylin, Lillian; Cande, W Zacheus

    2007-12-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle.

  7. Dynamic instabilities in the kinetics of growth and disassembly of microtubules

    OpenAIRE

    Katrukha, Eugene

    2016-01-01

    Dynamic instability of microtubules is considered using frameworks of non-linear thermodynamics and non-equilibrium reaction-diffusion systems. Stochastic assembly/disassembly phases in the polymerization dynamics of microtubules are treated as a result of collective clusterization of microdefects (holes in structure). The model explains experimentally observed power law dependence of catastrophe frequency from the microtubule growth rate. Additional reaction-diffusion-precipitation model is ...

  8. Control of microtubule dynamics using an optogenetic microtubule plus end-F-actin cross-linker.

    Science.gov (United States)

    Adikes, Rebecca C; Hallett, Ryan A; Saway, Brian F; Kuhlman, Brian; Slep, Kevin C

    2017-12-19

    We developed a novel optogenetic tool, SxIP-improved light-inducible dimer (iLID), to facilitate the reversible recruitment of factors to microtubule (MT) plus ends in an end-binding protein-dependent manner using blue light. We show that SxIP-iLID can track MT plus ends and recruit tgRFP-SspB upon blue light activation. We used this system to investigate the effects of cross-linking MT plus ends and F-actin in Drosophila melanogaster S2 cells to gain insight into spectraplakin function and mechanism. We show that SxIP-iLID can be used to temporally recruit an F-actin binding domain to MT plus ends and cross-link the MT and F-actin networks. Cross-linking decreases MT growth velocities and generates a peripheral MT exclusion zone. SxIP-iLID facilitates the general recruitment of specific factors to MT plus ends with temporal control enabling researchers to systematically regulate MT plus end dynamics and probe MT plus end function in many biological processes. © 2018 Adikes et al.

  9. Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ-Expansion Method Implementation

    Directory of Open Access Journals (Sweden)

    Nur Alam

    2016-02-01

    Full Text Available In this research article, we present exact solutions with parameters for two nonlinear model partial differential equations(PDEs describing microtubules, by implementing the exp(−Φ(ξ-Expansion Method. The considered models, describing highly nonlinear dynamics of microtubules, can be reduced to nonlinear ordinary differential equations. While the first PDE describes the longitudinal model of nonlinear dynamics of microtubules, the second one describes the nonlinear model of dynamics of radial dislocations in microtubules. The acquired solutions are then graphically presented, and their distinct properties are enumerated in respect to the corresponding dynamic behavior of the microtubules they model. Various patterns, including but not limited to regular, singular kink-like, as well as periodicity exhibiting ones, are detected. Being the method of choice herein, the exp(−Φ(ξ-Expansion Method not disappointing in the least, is found and declared highly efficient.

  10. Dynamic properties of nucleated microtubules: GTP utilisation in the subcritical concentration regime.

    Science.gov (United States)

    Symmons, M F; Martin, S R; Bayley, P M

    1996-11-01

    Microtubule assembly kinetics have been studied quantitatively under solution conditions supporting microtubule dynamic instability. Purified GTP-tubulin (Tu-GTP) and covalently cross-linked short microtubule seeds (EGS-seeds; Koshland et al. (1988) Nature 331, 499) were used with and without biotinylation. Under sub-critical concentration conditions ([Tu-GTP] assembly, that was found to abolish the GDP release. The variation of the GDP release with tubulin concentration (Jh(c) plot) was determined below the critical concentration (Cc). The GDP production observed was consistent with the elongation of the observed seeded microtubules with an apparent rate constant of 1.5 x 10(6) M-1 second-1 above a threshold of approximately 1 microM tubulin. The form of this Jh(c) plot for elongation below Cc is reproduced by the Lateral Cap model for microtubule dynamic instability adapted for seeded assembly. The behaviour of the system is contrasted with that previously studied in the absence of detectable microtubule elongation (Caplow and Shanks (1990) J. Biol. Chem. 265, 8935-8941). The approach provides a means of monitoring microtubule dynamics at concentrations inaccessible to optical microscopy, and shows that essentially the same dynamic mechanisms apply at all concentrations. Numerical simulation of the subcritical concentration regime shows dynamic growth features applicable to the initiation of microtubule growth in vivo.

  11. A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease

    Directory of Open Access Journals (Sweden)

    Jayden A Clark

    2016-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an aggressive multifactorial disease converging on a common pathology: the degeneration of motor neurons, their axons and neuromuscular synapses. This vulnerability and dysfunction of motor neurons highlights the dependency of these large cells on their intracellular machinery. Neuronal microtubules are an intracellular structure that facilitates a myriad of vital neuronal functions, including activity dependent axonal transport. In ALS it is becoming increasingly apparent that microtubules are likely to be a critical component of this disease. Not only are disruptions in this intracellular machinery present in the vast majority of seemingly sporadic cases, recent research has revealed that mutation to a microtubule protein, the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease. In both sporadic and familial disease, studies have provided evidence that microtubule mediated deficits in axonal transport are the tipping point for motor neuron survivability. Axonal transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle and mRNA transport and limited signalling of key survival factors from the neurons peripheral synapses, causing the characteristic peripheral ‘die back’. This disruption to microtubule dependant transport in ALS has been shown to result from alterations in the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage of microtubule polymers. This is accomplished primarily due to aberrant alterations to microtubule associated proteins (MAPS that regulate microtubule stability. Indeed, the current literature would argue that microtubule stability, particularly alterations in their dynamics, may be the initial driving force behind many familial and sporadic insults in ALS. Pharmacological stabilisation of the microtubule network offers an attractive therapeutic strategy in ALS; indeed it has shown promise in

  12. Studies of spindle fibre function and organization using the UV microbeam: The effect of ultraviolet light in blocking myofibril contraction and chromosome movement and an investigation of spindle microtubule dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.J.

    1989-01-01

    The ultraviolet (UV) microbeam was used to investigate spindle organization and function. The first part of this study tested the hypothesis that the 270 and 290 nm peaks in the action spectra for stopping chromosome motion and myofibril contraction are due to effects on actin and myosin, respectively, using myofibrils as a model actomyosin system. The results suggest that both wavelengths affect myosin. It was also determined that phalloidin protects actin in vitro but not in myofibrils from depolymerization by UV light. Failure to protect actin in myofibrils is likely due to its failure to bind uniformly to the thin filaments. A second group of experiments studied the poleward motion of areas of reduced birefringence (ARBs) which are produced by UV microbeam irradiation on chromosomal fibres. The author tested the hypothesis that the poleward motion of the ARB is due to microtubule treadmilling. Studies showed that microtubules are depolymerized in the ARB and that the edges of the ARB move at different rates 50% of the time. Further, two ARBs on a single fibre do not move poleward but rather the birefringent portion in between depolymerizes. These results suggest that the ARBs do not move poleward due to microtubule treadmilling. Experiments with an antibody specific to acetylated atubulin show that kinetochore fibres in crane-fly spermatocytes contain acetylated microtubules and suggest that ARB movement is not due to microtubule polymerization at the edge of the ARB but may be due to polymerization at the kinetochore. Studies of ARBs in asters provide evidence for two populations of microtubules in asters, a dynamic and a stable one. ARBs in PtK spindles result in spindle destruction in metaphase, but generally move poleward in anaphase.

  13. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy

    NARCIS (Netherlands)

    Flex, E.; Niceta, M.; Cecchetti, S.; Thiffault, I.; Au, M.G.; Capuano, A.; Piermarini, E.; Ivanova, A.A.; Francis, J.W.; Chillemi, G.; Chandramouli, B.; Carpentieri, G.; Haaxma, C.A.; Ciolfi, A.; Pizzi, S.; Douglas, G.V.; Levine, K.; Sferra, A.; Dentici, M.L.; Pfundt, R.R.; Pichon, J.B. Le; Farrow, E.; Baas, F.; Piemonte, F.; Dallapiccola, B.; Graham, J.M.; Saunders, C.J.; Bertini, E.; Kahn, R.A.; Koolen, D.A.; Tartaglia, M.

    2016-01-01

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause

  14. Mathematical modeling of the microtubule dynamic instability: a new approch of GTP-tubulin hydrolysis

    Directory of Open Access Journals (Sweden)

    Barlukova Ayuna

    2015-01-01

    Full Text Available Microtubules, components of the cytosqueleton, play an important role in cell division, cell migration and thus in the cancer proccess through dynamic instability. Therefore they are an important target for anti-cancer treatment. Proper modelling of dynamic instability is a crucial tool to understand the mechanism of action of microtubule targeting agents. In this paper, we propose a new concept for GTP-tubulin hydrolysis which allow the model to accurately reproduce microtubule dynamics observed in vitro or in cells. This approach will be more appropriate to take study the effects of drugs.

  15. Kinesin-13 Regulates Flagellar, Interphase, and Mitotic Microtubule Dynamics in Giardia intestinalis▿ †

    OpenAIRE

    Dawson, Scott C.; Sagolla, Meredith S.; Mancuso, Joel J.; Woessner, David J.; House, Susan A.; Fritz-Laylin, Lillian; Cande, W. Zacheus

    2007-01-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of m...

  16. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion.

    Science.gov (United States)

    McIntosh, J Richard; Grishchuk, Ekaterina L; Morphew, Mary K; Efremov, Artem K; Zhudenkov, Kirill; Volkov, Vladimir A; Cheeseman, Iain M; Desai, Arshad; Mastronarde, David N; Ataullakhanov, Fazly I

    2008-10-17

    Kinetochores of mitotic chromosomes are coupled to spindle microtubules in ways that allow the energy from tubulin dynamics to drive chromosome motion. Most kinetochore-associated microtubule ends display curving "protofilaments," strands of tubulin dimers that bend away from the microtubule axis. Both a kinetochore "plate" and an encircling, ring-shaped protein complex have been proposed to link protofilament bending to poleward chromosome motion. Here we show by electron tomography that slender fibrils connect curved protofilaments directly to the inner kinetochore. Fibril-protofilament associations correlate with a local straightening of the flared protofilaments. Theoretical analysis reveals that protofilament-fibril connections would be efficient couplers for chromosome motion, and experimental work on two very different kinetochore components suggests that filamentous proteins can couple shortening microtubules to cargo movements. These analyses define a ring-independent mechanism for harnessing microtubule dynamics directly to chromosome movement.

  17. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis.

    Science.gov (United States)

    Niwa, Shinsuke

    2015-01-01

    Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors that serve as sources of force for intracellular transport and cell division. Recent studies have revealed new roles of KIFs as microtubule stabilizers and depolymerizers, and these activities are fundamental to cellular morphogenesis and mammalian development. KIF2A and KIF19A have microtubule-depolymerizing activities and regulate the neuronal morphology and cilia length, respectively. KIF21A and KIF26A work as microtubule stabilizers that regulate axonal morphology. Morphological defects that are similar to human diseases are observed in mice in which these KIF genes have been deleted. Actually, KIF2A and KIF21A have been identified as causes of human neuronal diseases. In this review, the functions of these atypical KIFs that regulate microtubule dynamics are discussed. Moreover, some interesting unanswered questions and hypothetical answers to them are discussed.

  18. Non-linear dynamics in biological microtubules: solitons and dissipation-free energy transfer

    Science.gov (United States)

    Mavromatos, Nick E.

    2017-08-01

    I review some recent developments concerning soliton solutions in biological microtubules and their significance in transferring energy without dissipation. I discuss various types of soliton solutions, as well as ‘spikes’, of the associated non-linear Lagrange equations describing the dynamics of a ‘pseudo-spin non-linear σ-model’ that models the dynamics of a microtubule system with dipole-dipole interactions. These results will hopefully contribute to a better understanding of the functional properties of microtubules, including the motor protein dynamics and the information transfer processes. With regards to the latter we also speculate on the use of microtubules as ‘logical’ gates. Our considerations are classical, but the soliton solutions may have a microscopic quantum origin, which we briefly touch upon.

  19. Reconstitution and quantification of dynamic microtubule end tracking in vitro using TIRF microscopy.

    Science.gov (United States)

    Telley, Ivo A; Bieling, Peter; Surrey, Thomas

    2011-01-01

    Several microtubule-associated proteins localize in living cells selectively to an extended region at the growing microtubule plus ends. Over the last years, these plus-end-tracking proteins, also called +TIPs, have attracted considerable interest because they are involved in a large variety of essential intracellular processes. GFP-labeled versions of EB proteins are also often used as markers for intracellular microtubule organization and dynamics. The mechanism of selective +TIP binding to the end region of growing microtubule was unknown. Recently, the phenomenon of end tracking was reconstituted in vitro from purified proteins, which allowed the identification of EB proteins as the minimal core of the plus-end-tracking system and the dissection of the molecular mechanism of end tracking by these proteins. This in vitro reconstitution has started to be widely used for several +TIPs and promises to provide mechanistic insight into the functioning of the dynamic +TIP network at growing microtubule ends. Here, we describe the purification of EB1 and CLIP-170, the total internal reflection fluorescence microscopy assay to observe dynamic end tracking in vitro, and the quantitative analysis of fluorescent +TIP comet shape and of single +TIP molecule turnover at growing microtubule ends.

  20. Microtubule dynamics in the peripheral nervous system: A matter of balance.

    Science.gov (United States)

    Almeida-Souza, Leonardo; Timmerman, Vincent; Janssens, Sophie

    2011-11-01

    The special architecture of neurons in the peripheral nervous system, with axons extending for long distances, represents a major challenge for the intracellular transport system. Two recent studies show that mutations in the small heat shock protein HSPB1, which cause an axonal type of Charcot-Marie-Tooth (CMT) neuropathy, affect microtubule dynamics and impede axonal transport. Intriguingly, while at presymptomatic age the neurons in the mutant HSPB1 mouse show a hyperstable microtubule network, at postsymptomatic age, the microtubule network completely lost its stability as reflected by a marked decrease in tubulin acetylation levels. We here propose a model explaining the role of microtubule stabilization and tubulin acetylation in the pathogenesis of HSPB1 mutations.

  1. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Philipp Niethammer

    2007-02-01

    Full Text Available The cytoplasm of eukaryotic cells is thought to adopt discrete "states" corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin-dependent kinase 1 (CDK1 that phosphorylates many proteins leading to a reorganization of the nucleus and assembly of the mitotic spindle. Among these changes, the large array of stable microtubules that exists in interphase is replaced by short, highly dynamic microtubules in metaphase. Using a new visual immunoprecipitation assay that quantifies pairwise protein interactions in a non-perturbing manner in Xenopus egg extracts, we reveal the existence of a network of interactions between a series of microtubule-associated proteins (MAPs. In interphase, tubulin interacts with XMAP215, which is itself interacting with XKCM1, which connects to APC, EB1, and CLIP170. In mitosis, tubulin interacts with XMAP215, which is connected to EB1. We show that in interphase, microtubules are stable because the catastrophe-promoting activity of XKCM1 is inhibited by its interactions with the other MAPs. In mitosis, microtubules are short and dynamic because XKCM1 is free and has a strong destabilizing activity. In this case, the interaction of XMAP215 with EB1 is required to counteract the strong activity of XKCM1. This provides the beginning of a biochemical description of the notion of "cytoplasmic states" regarding the microtubule system.

  2. Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe

    Science.gov (United States)

    Bowne-Anderson, Hugo; Zanic, Marija; Kauer, Monika; Howard, Jonathon

    2013-01-01

    A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single-protofilament models can explain many features of dynamics, they do not describe catastrophe as a multistep process. Finally, we present a new combined (coupled plus random hydrolysis) multiple-protofilament model that is a simple, analytically solvable generalization of a single-protofilament model. This model accounts for the observed lifetimes of growing microtubules, the delay to catastrophe following dilution and describes catastrophe as a multistep process. PMID:23532586

  3. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M.; Burke, Ryan C.; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2017-01-01

    High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules. PMID:28117459

  4. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    dependence on initial conditions-except it is known to be impossible for equilibrium reactions. This article presents a case study of a far-from-equilibrium reaction: it presents a systematic phenomenological analysis of experimental time series for the amount of final product, a biopolymer, formed from...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  5. Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics.

    Science.gov (United States)

    Carranza, Gerardo; Castaño, Raquel; Fanarraga, Mónica L; Villegas, Juan Carlos; Gonçalves, João; Soares, Helena; Avila, Jesus; Marenchino, Marco; Campos-Olivas, Ramón; Montoya, Guillermo; Zabala, Juan Carlos

    2013-01-01

    Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO(-) present in TBCB, which is similar to the EEY/F-COO(-) element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE-TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.

  6. A polarised population of dynamic microtubules mediates homeostatic length control in animal cells.

    Directory of Open Access Journals (Sweden)

    Remigio Picone

    2010-11-01

    Full Text Available Because physical form and function are intimately linked, mechanisms that maintain cell shape and size within strict limits are likely to be important for a wide variety of biological processes. However, while intrinsic controls have been found to contribute to the relatively well-defined shape of bacteria and yeast cells, the extent to which individual cells from a multicellular animal control their plastic form remains unclear. Here, using micropatterned lines to limit cell extension to one dimension, we show that cells spread to a characteristic steady-state length that is independent of cell size, pattern width, and cortical actin. Instead, homeostatic length control on lines depends on a population of dynamic microtubules that lead during cell extension, and that are aligned along the long cell axis as the result of interactions of microtubule plus ends with the lateral cell cortex. Similarly, during the development of the zebrafish neural tube, elongated neuroepithelial cells maintain a relatively well-defined length that is independent of cell size but dependent upon oriented microtubules. A simple, quantitative model of cellular extension driven by microtubules recapitulates cell elongation on lines, the steady-state distribution of microtubules, and cell length homeostasis, and predicts the effects of microtubule inhibitors on cell length. Together this experimental and theoretical analysis suggests that microtubule dynamics impose unexpected limits on cell geometry that enable cells to regulate their length. Since cells are the building blocks and architects of tissue morphogenesis, such intrinsically defined limits may be important for development and homeostasis in multicellular organisms.

  7. Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics.

    Science.gov (United States)

    Solowska, Joanna M; D'Rozario, Mitchell; Jean, Daphney C; Davidson, Michael W; Marenda, Daniel R; Baas, Peter W

    2014-01-29

    Mutations to the SPG4 gene encoding the microtubule-severing protein spastin are the most common cause of hereditary spastic paraplegia. Haploinsufficiency, the prevalent model for the disease, cannot readily explain many of its key aspects, such as its adult onset or its specificity for the corticospinal tracts. Treatment strategies based solely on haploinsufficiency are therefore likely to fail. Toward developing effective therapies, here we investigated potential gain-of-function effects of mutant spastins. The full-length human spastin isoform called M1 or a slightly shorter isoform called M87, both carrying the same pathogenic mutation C448Y, were expressed in three model systems: primary rat cortical neurons, fibroblasts, and transgenic Drosophila. Although both isoforms had ill effects on motor function in transgenic flies and decreased neurite outgrowth from primary cortical neurons, mutant M1 was notably more toxic than mutant M87. The observed phenotypes did not result from dominant-negative effects of mutated spastins. Studies in cultured cells revealed that microtubules can be heavily decorated by mutant M1 but not mutant M87. Microtubule-bound mutant M1 decreased microtubule dynamics, whereas unbound M1 or M87 mutant spastins increased microtubule dynamics. The alterations in microtubule dynamics observed in the presence of mutated spastins are not consistent with haploinsufficiency and are better explained by a gain-of-function mechanism. Our results fortify a model wherein toxicity of mutant spastin proteins, especially mutant M1, contributes to axonal degeneration in the corticospinal tracts. Furthermore, our results provide details on the mechanism of the toxicity that may chart a course toward more effective treatment regimens.

  8. A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    KAUST Repository

    Chakrabortty, Bandan

    2018-02-02

    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.

  9. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.

    Science.gov (United States)

    Kandel, Mikhail E; Teng, Kai Wen; Selvin, Paul R; Popescu, Gabriel

    2017-01-24

    Due to their diameter, of only 24 nm, single microtubules are extremely challenging to image without the use of extrinsic contrast agents. As a result, fluorescence tagging is the common method to visualize their motility. However, such investigation is limited by photobleaching and phototoxicity. We experimentally demonstrate the capability of combining label-free spatial light interference microscopy (SLIM) with numerical processing for imaging single microtubules in a gliding assay. SLIM combines four different intensity images to obtain the optical path length map associated with the sample. Because of the use of broadband fields, the sensitivity to path length is better than 1 nm without (temporal) averaging and better than 0.1 nm upon averaging. Our results indicate that SLIM can image the dynamics of microtubules in a full field of view, of 200 × 200 μm(2), over many hours. Modeling the microtubule transport via the diffusion-advection equation, we found that the dispersion relation yields the standard deviation of the velocity distribution, without the need for tracking individual tubes. Interestingly, during a 2 h window, the microtubules begin to decelerate, at 100 pm/s(2) over a 20 min period. Thus, SLIM is likely to serve as a useful tool for understanding molecular motor activity, especially over large time scales, where fluorescence methods are of limited utility.

  10. Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination.

    Science.gov (United States)

    Kasioulis, Ioannis; Das, Raman M; Storey, Kate G

    2017-10-23

    Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.

  11. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells.

    Directory of Open Access Journals (Sweden)

    Mónica López Fanarraga

    Full Text Available Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.

  12. Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells

    Science.gov (United States)

    Kollu, Swapna; Bakhoum, Samuel F.; Compton, Duane A.

    2009-01-01

    Summary Accurate chromosome segregation during mitosis relies on the organization of microtubules into a bipolar spindle. Kinesin-5 proteins play an evolutionarily conserved role in establishing spindle bipolarity [1, 2] and clinical trials are currently evaluating inhibitors of human kinesin-5 (i.e. Eg5) for chemotherapeutic potential. However, in mammalian somatic cells Eg5 activity is dispensable for maintenance of bipolar spindles once they are formed [3, 4], suggesting distinct requirements for establishment versus maintenance of spindle bipolarity. By combining Eg5 inhibition with RNA interference of other spindle proteins, we show that mitotic cells deficient in MCAK fail to maintain spindle bipolarity in the absence of Eg5 activity. Collapse of bipolar spindles in MCAK-deficient cells is driven by pole focusing activities and is independent of MCAK function at centromeres, implicating hyperstabilized non-kinetochore microtubules in spindle collapse. Conversely, destabilizing non-kinetochore microtubules in early mitosis reduces the reliance on Eg5 for establishment of spindle bipolarity and renders cells partially resistant to Eg5 inhibitors. Thus, the temporal requirement for microtubule sliding generated by Eg5 activity during bipolar spindle assembly in mammalian cells is regulated by changes in the dynamic behavior of microtubules during mitosis. PMID:19931454

  13. Modelling Vegetation Cover Dynamics of the Niger Floodplain in Mali, Westafrica, Using Multitemporal MERIS Full Resolution and TERRA -ASTER Data

    Science.gov (United States)

    Seiler, Ralf

    This presentation aims at showing the potential of a combined use of multi-temporal data from two different sensors (MERIS and TERRA ASTER) for an analysis of vegetation cover changes in semi-arid environments. While MERIS data mainly provide information about the vegetation cover density, ASTER data were used to analyse soil properties -especially soil brightness and soil wetness. An algorithm is proposed that uses atmospherically corrected surface reflectance values from MERIS and ASTER measurements. These values are subsequently splitted into a signal component that is caused by the vegetation cover and the background component (triggered by soil properties) using a linear spectral unmixing approach. Vegetation cover then is described by Vegetation Indices (MGVI, NDVI / SAVI) that were calculated from the vegetation signal component. Finally, these vegetation parameter were classified for all multi-temporal MERIS data using the EM algorithm to derive the temporal behaviour of vegetation pattern at the Inland Delta. The algorithm provides, as results, a fractional vegetation cover, a vegetation density value and information on the soil type. A detailed mapping of the spatio-temporal vegetation cover patterns for the Niger Inland Delta during the period of 2002 -2005 is another outcome of this study in addition to an in-depth evaluation of the applicability of the used VIs for environments with sparse vegetation covers. Located in the western Sahel of Africa, (1330' N -17 N and 230' W -530' W), the Niger Inland Delta is one of the largest floodplains in the world. The geographic term "Niger Inland Delta" represents a vast, extremely flat area of around 40.000 km extend, which is annually inundated by water of the Niger -Bani riversystem. In contrast to its semi -arid surrounding, the delta's ecology can be described as a mosaic of permanent, periodical and episodically flooded areas. Their extend varies both in scale and time due to irregularities of amount as

  14. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility.

    Directory of Open Access Journals (Sweden)

    Lee B Smith

    Full Text Available Spermatogenesis is a complex process reliant upon interactions between germ cells (GC and supporting somatic cells. Testicular Sertoli cells (SC support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1. We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC from 15.5 days post-coitum (dpc and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

  15. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics

    Science.gov (United States)

    Mao, Zhilei; Xu, Bo; Ji, Xiaoli; Zhou, Kun; Zhang, Xuemei; Chen, Minjian; Han, Xiumei; Tang, Qiusha; Wang, Xinru; Xia, Yankai

    2015-04-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder

  16. Erucin, the major isothiocyanate in arugula (Eruca sativa, inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Olga Azarenko

    Full Text Available Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthiobutane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill., kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM in parallel with cell cycle arrest at mitosis (IC50 = 13 µM and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  17. The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin.

    Science.gov (United States)

    Woodruff, Jeffrey B; Ferreira Gomes, Beatriz; Widlund, Per O; Mahamid, Julia; Honigmann, Alf; Hyman, Anthony A

    2017-06-01

    Centrosomes are non-membrane-bound compartments that nucleate microtubule arrays. They consist of nanometer-scale centrioles surrounded by a micron-scale, dynamic assembly of protein called the pericentriolar material (PCM). To study how PCM forms a spherical compartment that nucleates microtubules, we reconstituted PCM-dependent microtubule nucleation in vitro using recombinant C. elegans proteins. We found that macromolecular crowding drives assembly of the key PCM scaffold protein SPD-5 into spherical condensates that morphologically and dynamically resemble in vivo PCM. These SPD-5 condensates recruited the microtubule polymerase ZYG-9 (XMAP215 homolog) and the microtubule-stabilizing protein TPXL-1 (TPX2 homolog). Together, these three proteins concentrated tubulin ∼4-fold over background, which was sufficient to reconstitute nucleation of microtubule asters in vitro. Our results suggest that in vivo PCM is a selective phase that organizes microtubule arrays through localized concentration of tubulin by microtubule effector proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Plasma membrane factor XIIIA transglutaminase activity regulates osteoblast matrix secretion and deposition by affecting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Hadil F Al-Jallad

    Full Text Available Transglutaminase activity, arising potentially from transglutaminase 2 (TG2 and Factor XIIIA (FXIIIA, has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.

  19. ASTER Flyby of San Francisco

    Science.gov (United States)

    2002-01-01

    The Advanced Spaceborne Thermal Emission and Reflection radiometer, ASTER, is an international project: the instrument was supplied by Japan's Ministry of International Trade and Industry. A joint US/Japan science team developed algorithms for science data products, and is validating instrument performance. With its 14 spectral bands, extremely high spatial resolution, and 15 meter along-track stereo capability, ASTER is the zoom lens of the Terra satellite. The primary mission goals are to characterize the Earth's surface; and to monitor dynamic events and processes that influence habitability at human scales. ASTER's monitoring and mapping capabilities are illustrated by this series of images of the San Francisco area. The visible and near infrared image reveals suspended sediment in the bays, vegetation health, and details of the urban environment. Flying over San Francisco (3.2MB) (high-res (18.3MB)), we see the downtown, and shadows of the large buildings. Past the Golden Gate Bridge and Alcatraz Island, we cross San Pablo Bay and enter Suisun Bay. Turning south, we fly over the Berkeley and Oakland Hills. Large salt evaporation ponds come into view at the south end of San Francisco Bay. We turn northward, and approach San Francisco Airport. Rather than landing and ending our flight, we see this is as only the beginning of a 6 year mission to better understand the habitability of the world on which we live. For more information: ASTER images through Visible Earth ASTER Web Site Image courtesy of MITI, ERSDAC, JAROS, and the U.S./Japan ASTER Science Team

  20. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress

    CERN Document Server

    Muratov, Alexander

    2015-01-01

    Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubules arrays direct the growth and orientatio...

  1. Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Arabidopsis thaliana Revealed by Advanced Live-Cell Imaging

    Directory of Open Access Journals (Sweden)

    George Komis

    2017-05-01

    Full Text Available Katanin is the only microtubule severing protein identified in plants so far. Previous studies have documented its role in regulating cortical microtubule organization during cell growth and morphogenesis. Although, some cell division defects are reported in KATANIN mutants, it is not clear whether or how katanin activity may affect microtubule dynamics in interphase cells, as well as the progression of mitosis and cytokinesis and the orientation of cell division plane (CDP. For this reason, we characterized microtubule organization and dynamics in growing and dividing cotyledon cells of Arabidopsis ktn1-2 mutant devoid of KATANIN 1 activity. In interphase epidermal cells of ktn1-2 cortical microtubules exhibited aberrant and largely isotropic organization, reduced bundling and showed excessive branched microtubule formation. End-wise microtubule dynamics were not much affected, although a significantly slower rate of microtubule growth was measured in the ktn1-2 mutant where microtubule severing was completely abolished. KATANIN 1 depletion also brought about significant changes in preprophase microtubule band (PPB organization and dynamics. In this case, many PPBs exhibited unisided organization and splayed appearance while in most cases they were broader than those of wild type cells. By recording PPB maturation, it was observed that PPBs in the mutant narrowed at a much slower pace compared to those in Col-0. The form of the mitotic spindle and the phragmoplast was not much affected in ktn1-2, however, the dynamics of both processes showed significant differences compared to wild type. In general, both mitosis and cytokinesis were considerably delayed in the mutant. Additionally, the mitotic spindle and the phragmoplast exhibited extensive rotational motions with the equatorial plane of the spindle being essentially uncoupled from the division plane set by the PPB. However, at the onset of its formation the phragmoplast undergoes rotational

  2. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Science.gov (United States)

    Stubenvoll, Michael D; Medley, Jeffrey C; Irwin, Miranda; Song, Mi Hye

    2016-09-01

    Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.

  3. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics.

    Directory of Open Access Journals (Sweden)

    Michael D Stubenvoll

    2016-09-01

    Full Text Available Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin, increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.

  4. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis

    Science.gov (United States)

    Žigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B.

    2014-01-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo. PMID:24449840

  5. Regulation of Kif15 localization and motility by the C-terminus of TPX2 and microtubule dynamics.

    Science.gov (United States)

    Mann, Barbara J; Balchand, Sai K; Wadsworth, Patricia

    2017-01-01

    Mitotic motor proteins generate force to establish and maintain spindle bipolarity, but how they are temporally and spatially regulated in vivo is unclear. Prior work demonstrated that a microtubule-associated protein, TPX2, targets kinesin-5 and kinesin-12 motors to spindle microtubules. The C-terminal domain of TPX2 contributes to the localization and motility of the kinesin-5, Eg5, but it is not known whether this domain regulates kinesin-12, Kif15. We found that the C-terminal domain of TPX2 contributes to the localization of Kif15 to spindle microtubules in cells and suppresses motor walking in vitro. Kif15 and Eg5 are partially redundant motors, and overexpressed Kif15 can drive spindle formation in the absence of Eg5 activity. Kif15-dependent bipolar spindle formation in vivo requires the C-terminal domain of TPX2. In the spindle, fluorescent puncta of GFP-Kif15 move toward the equatorial region at a rate equivalent to microtubule growth. Reduction of microtubule growth with paclitaxel suppresses GFP-Kif15 motility, demonstrating that dynamic microtubules contribute to Kif15 behavior. Our results show that the C-terminal region of TPX2 regulates Kif15 in vitro, contributes to motor localization in cells, and is required for Kif15 force generation in vivo and further reveal that dynamic microtubules contribute to Kif15 behavior in vivo. © 2017 Mann, Balchand, and Wadsworth. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Megias, Diego; Epifano, Carolina

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT...... plus end-binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell-cell contacts and altered AJ dynamics...... and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting...

  7. Dissecting EB1-microtubule interactions from every direction: using single-molecule visualization and static and dynamic binding measurements

    Science.gov (United States)

    Lopez, Benjamin

    2015-03-01

    EB1 is an important microtubule associating protein (MAP) that acts as a master coordinator of protein activity at the growing plus-end of the microtubule. We can recapitulate the plus-end binding behavior of EB1 along the entire length of a static microtubule using microtubules polymerized in the presence of the nonhydrolyzable GTP analogs GMPCPP and GTP γS instead of GTP. Through the use of single-molecule TIRF imaging we find that EB1 is highly dynamic (with a sub-second characteristic binding lifetime) and continuously diffusive while bound to the microtubule. We measure the diffusion coefficient, D, through linear fitting to mean-squared displacement of individually labeled proteins, and the binding lifetime, τ, by fitting a single exponential decay to the probability distribution of trajectory lifetimes. In agreement with measurements of other diffusive MAPs, we find that D increases and τ decreases with increasing ionic strength. We also find that D is sensitive to the choice of GTP analog: EB1 proteins bound to GTP γS polymerized microtubules have a D half of that found with GMPCPP polymerized microtubules. To compare these single-molecule measurements to the bulk binding behavior of EB1, we use TIRF imaging to measure the intensity of microtubules coated with EB1-GFP as a function of EB1 concentration. We find that EB1 binding is cooperative and both the quantity of EB1 bound and the dissociation constant are sensitive to GTP analog and ionic concentration. The correlation between binding affinity and D and the cooperative nature of EB1-microtubule binding leads to a decrease in D with increasing EB1 concentration. Interestingly, we also find an increase in τ at high EB1 concentrations, consistent with attractive EB1-microtubule interactions driving the cooperativity. To further understand the nature of the cooperativity we estimate the interaction energy by measuring the association and dissociation rates (kon and koff respectively) at different

  8. AsTeRICS.

    Science.gov (United States)

    Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice

    2013-01-01

    AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.

  9. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  10. Microtubule's conformational cap

    DEFF Research Database (Denmark)

    Chretien, D.; Janosi, I.; Taveau, J.C.

    1999-01-01

    The molecular mechanisms that allow elongation of the unstable microtubule lattice remain unclear. It is usually thought that the GDP-liganded tubulin lattice is capped by a small layer of GTP- or GDP-P(i)-liganded molecules, the so called "GTP-cap". Here, we point-out that the elastic properties...... of the microtubule lattice cause a difference in stability between the elongating tubulin sheet and the completed microtubule wall. The implications of our observations for microtubule structure and dynamics are discussed....

  11. Connecting macroscopic dynamics with microscopic properties in active microtubule network contraction

    Science.gov (United States)

    Foster, Peter J.; Yan, Wen; Fürthauer, Sebastian; Shelley, Michael J.; Needleman, Daniel J.

    2017-12-01

    The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bulk contraction driven by the motor protein dynein, and investigate the effects of varying the initial microtubule density and length distribution. We find that networks contract to a similar final density, irrespective of the length of microtubules or their initial density, but that the contraction timescale varies with the average microtubule length. To gain insight into why this microscopic property influences the macroscopic network contraction time, we developed simulations where microtubules and motors are explicitly represented. The simulations qualitatively recapitulate the variation of contraction timescale with microtubule length, and allowed stress contributions from different sources to be estimated and decoupled.

  12. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine.

    Science.gov (United States)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-05-19

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the alphabeta intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  13. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Directory of Open Access Journals (Sweden)

    Balaji Petety V

    2010-05-01

    Full Text Available Abstract Background Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. Methods The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Results Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies

  14. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Science.gov (United States)

    2010-01-01

    Background Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. Methods The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Results Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were

  15. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  16. Microtubule alignment and manipulation using AC electrokinetics.

    Science.gov (United States)

    Uppalapati, Maruti; Huang, Ying-Ming; Jackson, Thomas N; Hancock, William O

    2008-09-01

    The kinesin-microtubule system plays an important role in intracellular transport and is a model system for integrating biomotor-driven transport into microengineered devices. AC electrokinetics provides a novel tool for manipulating and organizing microtubules in solution, enabling new experimental geometries for investigating and controlling the interactions of microtubules and microtubule motors in vitro. By fabricating microelectrodes on glass substrates and generating AC electric fields across solutions of microtubules in low-ionic-strength buffers, bundles of microtubules are collected and aligned and the electrical properties of microtubules in solution are measured. The AC electric fields result in electro-osmotic flow, electrothermal flow, and dielectrophoresis of microtubules, which can be controlled by varying the solution conductivity, AC frequency, and electrode geometry. By mapping the solution conductivity and AC frequency over which positive dielectrophoresis occurs, the apparent conductivity of taxol-stabilized bovine-brain microtubules in PIPES buffer is measured to be 250 mS m(-1). By maximizing dielectrophoretic forces and minimizing electro-osmotic and electrothermal flow, microtubules are assembled into opposed asters. These experiments demonstrate that AC electrokinetics provides a powerful new tool for kinesin-driven transport applications and for investigating the role of microtubule motors in development and maintenance of the mitotic spindle.

  17. ASTER Images Mt. Usu Volcano

    Science.gov (United States)

    2000-01-01

    ) from the volcano.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

  18. Highly dynamic microtubules improve the effectiveness of early stages of human influenza A/NWS/33 virus infection in LLC-MK2 cells.

    Science.gov (United States)

    De Conto, Flora; Di Lonardo, Enrica; Arcangeletti, Maria Cristina; Chezzi, Carlo; Medici, Maria Cristina; Calderaro, Adriana

    2012-01-01

    This study aims to investigate the role of microtubule dynamics in the initiation of NWS/33 human influenza A (NWS) virus infection in MDCK and LLC-MK2 mammalian kidney cells. We previously demonstrated a host-dependent role of the actin cytoskeleton in inducing restriction during the early phases of NWS infection. Furthermore, we showed the differential infectious entry of NWS virus in the above mentioned cell models. By first employing a panel of microtubule-modulators, we evidenced that microtubule-stabilization negatively interferes with NWS replication in LLC-MK2 but not in MDCK cells. Conversely, microtubule-depolymerization improves NWS growth in LLC-MK2 but not in the MDCK model. By using immunofluorescence labelling and Western blotting analyses upon NWS infection in mammalian kidney cells, it was observed that the occurrence of alpha-tubulin hyperacetylation--a post-translational modified form suggestive of stable microtubules--was significantly delayed in LLC-MK2 when compared to MDCK cells. Furthermore, mock-infected LLC-MK2 cells were shown to have higher levels of both acetylated alpha-tubulin and microtubule-associated protein 4 (MAP4), the latter being essential for the maintenance of normal microtubule polymer levels in interphase epithelial cells. Finally, to obtain highly dynamic microtubules in LLC-MK2 cells, we knocked down the expression of MAP4 by using a RNA-mediated RNA interference approach. The results evidenced that MAP4 silencing improves NWS growth in LLC-MK2 cells. By evidencing the cell type-dependent regulatory role of microtubule dynamics on NWS replication in mammalian kidney cells, we demonstrated that microtubule-stabilization represents a restriction factor for the initiation of NWS infection in LLC-MK2 but not in MDCK cells.

  19. Highly dynamic microtubules improve the effectiveness of early stages of human influenza A/NWS/33 virus infection in LLC-MK2 cells.

    Directory of Open Access Journals (Sweden)

    Flora De Conto

    Full Text Available BACKGROUND: This study aims to investigate the role of microtubule dynamics in the initiation of NWS/33 human influenza A (NWS virus infection in MDCK and LLC-MK2 mammalian kidney cells. We previously demonstrated a host-dependent role of the actin cytoskeleton in inducing restriction during the early phases of NWS infection. Furthermore, we showed the differential infectious entry of NWS virus in the above mentioned cell models. METHODOLOGY/PRINCIPAL FINDINGS: By first employing a panel of microtubule-modulators, we evidenced that microtubule-stabilization negatively interferes with NWS replication in LLC-MK2 but not in MDCK cells. Conversely, microtubule-depolymerization improves NWS growth in LLC-MK2 but not in the MDCK model. By using immunofluorescence labelling and Western blotting analyses upon NWS infection in mammalian kidney cells, it was observed that the occurrence of alpha-tubulin hyperacetylation--a post-translational modified form suggestive of stable microtubules--was significantly delayed in LLC-MK2 when compared to MDCK cells. Furthermore, mock-infected LLC-MK2 cells were shown to have higher levels of both acetylated alpha-tubulin and microtubule-associated protein 4 (MAP4, the latter being essential for the maintenance of normal microtubule polymer levels in interphase epithelial cells. Finally, to obtain highly dynamic microtubules in LLC-MK2 cells, we knocked down the expression of MAP4 by using a RNA-mediated RNA interference approach. The results evidenced that MAP4 silencing improves NWS growth in LLC-MK2 cells. CONCLUSION: By evidencing the cell type-dependent regulatory role of microtubule dynamics on NWS replication in mammalian kidney cells, we demonstrated that microtubule-stabilization represents a restriction factor for the initiation of NWS infection in LLC-MK2 but not in MDCK cells.

  20. Highly Dynamic Microtubules Improve the Effectiveness of Early Stages of Human Influenza A/NWS/33 Virus Infection in LLC-MK2 Cells

    Science.gov (United States)

    De Conto, Flora; Di Lonardo, Enrica; Arcangeletti, Maria Cristina; Chezzi, Carlo; Medici, Maria Cristina; Calderaro, Adriana

    2012-01-01

    Background This study aims to investigate the role of microtubule dynamics in the initiation of NWS/33 human influenza A (NWS) virus infection in MDCK and LLC-MK2 mammalian kidney cells. We previously demonstrated a host-dependent role of the actin cytoskeleton in inducing restriction during the early phases of NWS infection. Furthermore, we showed the differential infectious entry of NWS virus in the above mentioned cell models. Methodology/Principal Findings By first employing a panel of microtubule-modulators, we evidenced that microtubule-stabilization negatively interferes with NWS replication in LLC-MK2 but not in MDCK cells. Conversely, microtubule-depolymerization improves NWS growth in LLC-MK2 but not in the MDCK model. By using immunofluorescence labelling and Western blotting analyses upon NWS infection in mammalian kidney cells, it was observed that the occurrence of alpha-tubulin hyperacetylation - a post-translational modified form suggestive of stable microtubules - was significantly delayed in LLC-MK2 when compared to MDCK cells. Furthermore, mock-infected LLC-MK2 cells were shown to have higher levels of both acetylated alpha-tubulin and microtubule-associated protein 4 (MAP4), the latter being essential for the maintenance of normal microtubule polymer levels in interphase epithelial cells. Finally, to obtain highly dynamic microtubules in LLC-MK2 cells, we knocked down the expression of MAP4 by using a RNA-mediated RNA interference approach. The results evidenced that MAP4 silencing improves NWS growth in LLC-MK2 cells. Conclusion By evidencing the cell type-dependent regulatory role of microtubule dynamics on NWS replication in mammalian kidney cells, we demonstrated that microtubule-stabilization represents a restriction factor for the initiation of NWS infection in LLC-MK2 but not in MDCK cells. PMID:22911759

  1. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways

    Directory of Open Access Journals (Sweden)

    Anna Melkov

    2015-12-01

    Full Text Available The microtubule (MT plus-end motor kinesin heavy chain (Khc is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc. Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1, it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc.

  2. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics.

    Science.gov (United States)

    Dafinger, Claudia; Liebau, Max Christoph; Elsayed, Solaf Mohamed; Hellenbroich, Yorck; Boltshauser, Eugen; Korenke, Georg Christoph; Fabretti, Francesca; Janecke, Andreas Robert; Ebermann, Inga; Nürnberg, Gudrun; Nürnberg, Peter; Zentgraf, Hanswalter; Koerber, Friederike; Addicks, Klaus; Elsobky, Ezzat; Benzing, Thomas; Schermer, Bernhard; Bolz, Hanno Jörn

    2011-07-01

    Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.

  3. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  4. A Dynamic Microtubule Cytoskeleton Directs Medial Actomyosin Function during Tube Formation

    Science.gov (United States)

    Booth, Alexander J.R.; Blanchard, Guy B.; Adams, Richard J.; Röper, Katja

    2014-01-01

    Summary The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction. PMID:24914560

  5. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis

    Directory of Open Access Journals (Sweden)

    Zhao Yue

    2012-07-01

    Full Text Available Abstract Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.

  6. Proteasomes raise the microtubule dynamics in influenza A (H1N1) virus-infected LLC-MK2 cells.

    Science.gov (United States)

    De Conto, Flora; Chezzi, Carlo; Fazzi, Alessandra; Razin, Sergey V; Arcangeletti, Maria Cristina; Medici, Maria Cristina; Gatti, Rita; Calderaro, Adriana

    2015-12-01

    The dynamics of microtubule networks are known to have an impact on replication of influenza A virus in some cellular models. Here we present evidence suggesting that at late stages of LLC-MK2 cell infection by influenza A (H1N1) virus the ubiquitin-proteasome protein degradation system participates in destabilization of microtubules, and favours virus replication. Chemical inhibition of proteasome activity partially suppresses influenza A virus replication, while stimulation of proteasome activity favours influenza A virus replication. Conversely, in another cellular model, A549 cells, inhibitors and activators of proteasomes have a small effect on influenza A virus replication. These data suggest that influenza A virus might take selective advantage of proteasome functions in order to set up a favourable cytoskeletal "environment" for its replication and spread. Furthermore, the relationship between influenza virus and the host cell is likely to depend on both the cellular model and the virus strain.

  7. Specific In Vivo Labeling of Tyrosinated α-Tubulin and Measurement of Microtubule Dynamics Using a GFP Tagged, Cytoplasmically Expressed Recombinant Antibody

    Science.gov (United States)

    Cassimeris, Lynne; Guglielmi, Laurence; Denis, Vincent; Larroque, Christian; Martineau, Pierre

    2013-01-01

    GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its

  8. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner

    Science.gov (United States)

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-01-01

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast. PMID:26046468

  9. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino.

    Science.gov (United States)

    Rosales-Nieves, Alicia E; Johndrow, James E; Keller, Lani C; Magie, Craig R; Pinto-Santini, Delia M; Parkhurst, Susan M

    2006-04-01

    The actin-nucleation factors Spire and Cappuccino (Capu) regulate the onset of ooplasmic streaming in Drosophila melanogaster. Although this streaming event is microtubule-based, actin assembly is required for its timing. It is not understood how the interaction of microtubules and microfilaments is mediated in this context. Here, we demonstrate that Capu and Spire have microtubule and microfilament crosslinking activity. The spire locus encodes several distinct protein isoforms (SpireA, SpireC and SpireD). SpireD was recently shown to nucleate actin, but the activity of the other isoforms has not been addressed. We find that SpireD does not have crosslinking activity, whereas SpireC is a potent crosslinker. We show that SpireD binds to Capu and inhibits F-actin/microtubule crosslinking, and activated Rho1 abolishes this inhibition, establishing a mechanistic basis for the regulation of Capu and Spire activity. We propose that Rho1, cappuccino and spire are elements of a conserved developmental cassette that is capable of directly mediating crosstalk between microtubules and microfilaments.

  10. Magnetic manipulation of self-assembled colloidal asters.

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, A.; Aranson, I. S. (Materials Science Division)

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  11. ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics.

    Science.gov (United States)

    Molina, Angie; Velot, Lauriane; Ghouinem, Lydia; Abdelkarim, Mohamed; Bouchet, Benjamin Pierre; Luissint, Anny-Claude; Bouhlel, Imène; Morel, Marina; Sapharikas, Elène; Di Tommaso, Anne; Honoré, Stéphane; Braguer, Diane; Gruel, Nadège; Vincent-Salomon, Anne; Delattre, Olivier; Sigal-Zafrani, Brigitte; André, Fabrice; Terris, Benoit; Akhmanova, Anna; Di Benedetto, Mélanie; Nahmias, Clara; Rodrigues-Ferreira, Sylvie

    2013-05-01

    Metastasis, a fatal complication of breast cancer, does not fully benefit from available therapies. In this study, we investigated whether ATIP3, the major product of 8p22 MTUS1 gene, may be a novel biomarker and therapeutic target for metastatic breast tumors. We show that ATIP3 is a prognostic marker for overall survival among patients with breast cancer. Notably, among metastatic tumors, low ATIP3 levels associate with decreased survival of the patients. By using a well-defined experimental mouse model of cancer metastasis, we show that ATIP3 expression delays the time-course of metastatic progression and limits the number and size of metastases in vivo. In functional studies, ATIP3 silencing increases breast cancer cell migration, whereas ATIP3 expression significantly reduces cell motility and directionality. We report here that ATIP3 is a potent microtubule-stabilizing protein whose depletion increases microtubule dynamics. Our data support the notion that by decreasing microtubule dynamics, ATIP3 controls the ability of microtubule tips to reach the cell cortex during migration, a mechanism that may account for reduced cancer cell motility and metastasis. Of interest, we identify a functional ATIP3 domain that associates with microtubules and recapitulates the effects of ATIP3 on microtubule dynamics, cell proliferation, and migration. Our study is a major step toward the development of new personalized treatments against metastatic breast tumors that have lost ATIP3 expression.

  12. Formation of orthopoxvirus cytoplasmic A-type inclusion bodies and embedding of virions are dynamic processes requiring microtubules.

    Science.gov (United States)

    Howard, Amanda R; Moss, Bernard

    2012-05-01

    In cells infected with some orthopoxviruses, numerous mature virions (MVs) become embedded within large, cytoplasmic A-type inclusions (ATIs) that can protect infectivity after cell lysis. ATIs are composed of an abundant viral protein called ATIp, which is truncated in orthopoxviruses such as vaccinia virus (VACV) that do not form ATIs. To study ATI formation and occlusion of MVs within ATIs, we used recombinant VACVs that express the cowpox full-length ATIp or we transfected plasmids encoding ATIp into cells infected with VACV, enabling ATI formation. ATI enlargement and MV embedment required continued protein synthesis and an intact microtubular network. For live imaging of ATIs and MVs, plasmids expressing mCherry fluorescent protein fused to ATIp were transfected into cells infected with VACV expressing the viral core protein A4 fused to yellow fluorescent protein. ATIs appeared as dynamic, mobile bodies that enlarged by multiple coalescence events, which could be prevented by disrupting microtubules. Coalescence of ATIs was confirmed in cells infected with cowpox virus. MVs were predominantly at the periphery of ATIs early in infection. We determined that coalescence contributed to the distribution of MVs within ATIs and that microtubule-disrupting drugs abrogated coalescence-mediated MV embedment. In addition, MVs were shown to move from viral factories at speeds consistent with microtubular transport to the peripheries of ATIs, whereas disruption of microtubules prevented such trafficking. The data indicate an important role for microtubules in the coalescence of ATIs into larger structures, transport of MVs to ATIs, and embedment of MVs within the ATI matrix.

  13. Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe.

    Science.gov (United States)

    George, Anuja A; Walworth, Nancy C

    2015-12-01

    Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted. Copyright © 2015 by the Genetics Society of America.

  14. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends.

    NARCIS (Netherlands)

    K.A. Drägestein (Katharina Asja); W.A. van Cappellen (Gert); J.A.J. van Haren (Jeffrey); G.D. Tsibidis (George); A.S. Akhmanova (Anna); T.A. Knoch (Tobias); F.G. Grosveld (Frank); N.J. Galjart (Niels)

    2008-01-01

    textabstractMicrotubule (MT) plus end – tracking proteins (+TIPs) specifi cally recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms

  15. In vitro reconstitution of dynamic microtubules interacting with actin filament networks

    NARCIS (Netherlands)

    Preciado Lopez, M.; Huber, F.; Grigoriev, Ilya; Steinmetz, M.O.; Akhmanova, Anna; Dogterom, M.; Koenderink, G.H.

    2014-01-01

    Interactions between microtubules and actin filaments (F-actin) are essential for eukaryotic cell migration, polarization, growth, and division. Although the importance of these interactions has been long recognized, the inherent complexity of the cell interior hampers a detailed mechanistic study

  16. The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes.

    Science.gov (United States)

    Xu, Xiao-Ling; Ma, Wei; Zhu, Yu-Bo; Wang, Chao; Wang, Bing-Yuan; An, Na; An, Lei; Liu, Yan; Wu, Zhong-Hong; Tian, Jian-Hui

    2012-01-01

    The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.

  17. The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Xu

    Full Text Available The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI and metaphase II (MII, colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin. In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.

  18. Regulation of microtubule dynamics by Ca2+/calmodulin-dependent kinase IV/Gr-dependent phosphorylation of oncoprotein 18.

    OpenAIRE

    Melander Gradin, H; Marklund, U; Larsson, N; Chatila, T A; Gullberg, M.

    1997-01-01

    Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr...

  19. Induction of centrosome injury, multipolar spindles and multipolar division in cultured V79 cells exposed to dimethylarsinic acid: role for microtubules in centrosome dynamics.

    Science.gov (United States)

    Ochi, T

    2000-11-06

    Role for microtubules in the induction of multiple microtubule organizing centers (MTOCs) and multipolar spindles by dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, was investigated with respect to the effects of microtubule disruption and reorganization. DMAA induced multiple signals of gamma-tubulin, a well-characterized component of MTOCs in the centrosome, in a manner specific to mitotic cells. The multiple signals of gamma-tubulin were co-localized with multipolar spindles caused by DMAA. Disruption of microtubules by nocodazole (NOZ) suppressed the appearance of centrosome injury caused by DMAA while disorganization of actin microfilaments by cytochalasin D did not. Post-treatment incubation of cells in which multiple signals of gamma-tubulin caused by DMAA had been coalesced to one or two dots by NOZ caused the reappearance of mitotic cells with multiple signals of gamma-tubulin, in conjunction with reorganization of the microtubules. These results suggest a role for microtubules in the dynamic behavior of the mitotic centrosome. DMAA induced aberrant cytokinesis, such as tripolar and quadripolar division, in a concentration-dependent manner. These results, together with the findings of earlier studies, suggest that the centrosome is the primary target for the induction of multipolar spindles by DMAA and the resultant induction of multinucleation and multipolar division.

  20. Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Richard Francis

    Full Text Available Knockout mice deficient in the gap junction gene connexin43 exhibit developmental anomalies associated with abnormal neural crest, primordial germ cell, and proepicardial cell migration. These migration defects are due to a loss of directional cell movement, and are associated with abnormal actin stress fiber organization and a loss of polarized cell morphology. To elucidate the mechanism by which Cx43 regulates cell polarity, we used a wound closure assays with mouse embryonic fibroblasts (MEFs to examine polarized cell morphology and directional cell movement. Studies using embryonic fibroblasts from Cx43 knockout (Cx43KO mice showed Cx43 deficiency caused cell polarity defects as characterized by a failure of the Golgi apparatus and the microtubule organizing center to reorient with the direction of wound closure. Actin stress fibers at the wound edge also failed to appropriately align, and stabilized microtubule (Glu-tubulin levels were markedly reduced. Forced expression of Cx43 with deletion of its tubulin-binding domain (Cx43dT in both wildtype MEFs and neural crest cell explants recapitulated the cell migration defects seen in Cx43KO cells. However, forced expression of Cx43 with point mutation causing gap junction channel closure had no effect on cell motility. TIRF imaging revealed increased microtubule instability in Cx43KO cells, and microtubule targeting of membrane localized Cx43 was reduced with expression of Cx43dT construct in wildtype cells. Together, these findings suggest the essential role of Cx43 gap junctions in development is mediated by regulation of the tubulin cytoskeleton and cell polarity by Cx43 via a nonchannel function.

  1. Toward Discovery of Novel Microtubule Targeting Agents: A SNAP-tag-Based High-Content Screening Assay for the Analysis of Microtubule Dynamics and Cell Cycle Progression.

    Science.gov (United States)

    Berges, Nina; Arens, Katharina; Kreusch, Verena; Fischer, Rainer; Di Fiore, Stefano

    2017-04-01

    Microtubule targeting agents (MTAs) are used for the treatment of cancer. Novel MTAs could provide additional and beneficial therapeutic options. To improve the sensitivity and throughput of standard immunofluorescence assays for the characterization of MTAs, we used SNAP-tag technology to produce recombinant tubulin monomers. To visualize microtubule filaments, A549 cells transfected with SNAP-tubulin were stained with a membrane-permeable, SNAP-reactive dye. The treatment of SNAP-tubulin cells with stabilizing MTAs such as paclitaxel resulted in the formation of coarsely structured microtubule filaments, whereas depolymerizing MTAs such as nocodazole resulted in diffuse staining patterns in which the tubulin filaments were no longer distinguishable. By combining these components with automated microscopy and image analysis algorithms, we established a robust high-content screening assay for MTAs with a Z' factor of 0.7. Proof of principle was achieved by testing a panel of 10 substances, allowing us to identify MTAs and to distinguish between stabilizing and destabilizing modes of action. By extending the treatment of the cells from 2 to 20 h, our assay also detected abnormalities in cell cycle progression and in the formation of microtubule spindles, providing additional readouts for the discovery of new MTAs and facilitating their early identification during drug-screening campaigns.

  2. Theory of dynamic force spectroscopy for kinetochore-microtubule attachments: rupture force distribution

    CERN Document Server

    Ghanti, Dipanwita

    2016-01-01

    Application of pulling force, under force-clamp conditions, to kinetochore-microtubule attachments {\\it in-vitro} revealed a catch-bond-like behavior. In an earlier paper ({\\it Sharma et al. Phys. Biol. (2014)} the physical origin of this apparently counter-intuitive phenomenon was traced to the nature of the force-dependence of the (de-)polymerization kinetics of the microtubules. In this brief communication that work is extended to situations where the external forced is ramped up till the attachment gets ruptured. In spite of the fundamental differences in the underlying mechanisms, the trend of variation of the rupture force distribution observed in our model kinetochore-microtubule attachment with the increasing loading rate is qualitatively similar to that displayed by the catch bonds formed in some other ligand-receptor systems. Our theoretical predictions can be tested experimentally by a straightforward modification of the protocol for controlling the force in the optical trap set up that was used in...

  3. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends

    Energy Technology Data Exchange (ETDEWEB)

    Ti, Shih-Chieh; Pamula, Melissa C.; Howes, Stuart C.; Duellberg, Christian; Cade, Nicholas I.; Kleiner, Ralph E.; Forth, Scott; Surrey, Thomas; Nogales, Eva; Kapoor, Tarun M.

    2016-04-01

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. In this research, we have purified and characterized tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.

  4. History-dependent catastrophes regulate axonal microtubule behavior

    NARCIS (Netherlands)

    T. Stepanova (Tatiana); I. Smal (Ihor); J.A.J. van Haren (Jeffrey); U. Akinci (Umut); Z. Liu (Zhe); M. Miedema (Marja); R. Limpens (Ronald); M. van Ham (Marco); M. van der Reijden (Michael); R.A. Poot (Raymond); F.G. Grosveld (Frank); M. Mommaas (Mieke); E. Meijering (Erik); N.J. Galjart (Niels)

    2010-01-01

    textabstractIn Chinese hamster ovary cells, microtubules originate at the microtubule organizing center (MTOC) and grow persistently toward the cell edge, where they undergo catastrophe [1]. In axons, microtubule dynamics must be regulated differently because microtubules grow parallel to the plasma

  5. ASTER Images the Island of Hawaii

    Science.gov (United States)

    2000-01-01

    December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

  6. ASTER Images San Francisco Bay Area

    Science.gov (United States)

    2000-01-01

    validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

  7. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules.

    Science.gov (United States)

    Gai, Marta; Bianchi, Federico T; Vagnoni, Cristiana; Vernì, Fiammetta; Bonaccorsi, Silvia; Pasquero, Selina; Berto, Gaia E; Sgrò, Francesco; Chiotto, Alessandra Ma; Annaratone, Laura; Sapino, Anna; Bergo, Anna; Landsberger, Nicoletta; Bond, Jacqueline; Huttner, Wieland B; Di Cunto, Ferdinando

    2016-10-01

    Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins. © 2016 The Authors.

  8. ASTER Digital Elevation Model V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER Digital Elevation Model (DEM) product is generated using bands 3N (nadir-viewing) and 3B (backward-viewing) of an ASTER Level-1A image acquired by the...

  9. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Cytoplasmic dynein complex is a large multi-subunit microtubule (MT-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP-tagged 74-kDa intermediate chain (IC74. IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs, suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE: These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein.

  10. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Science.gov (United States)

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, M.; Simon, C.

    2017-07-01

    Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.

  11. 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells.

    Science.gov (United States)

    Levrier, Claire; Sadowski, Martin C; Rockstroh, Anja; Gabrielli, Brian; Kavallaris, Maria; Lehman, Melanie; Davis, Rohan A; Nelson, Colleen C

    2017-01-01

    The lack of a cure for metastatic castrate-resistant prostate cancer (mCRPC) highlights the urgent need for more efficient drugs to fight this disease. Here, we report the mechanism of action of the natural product 6α-acetoxyanopterine (6-AA) in prostate cancer cells. At low nanomolar doses, this potent cytotoxic alkaloid from the Australian endemic tree Anopterus macleayanus induced a strong accumulation of LNCaP and PC-3 (prostate cancer) cells as well as HeLa (cervical cancer) cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. DNA microarray of 6-AA-treated LNCaP cells combined with pathway analysis identified very similar transcriptional changes when compared with the anticancer drug vinblastine, which included pathways involved in mitosis, microtubule spindle organization, and microtubule binding. Like vinblastine, 6-AA inhibited microtubule polymerization in a cell-free system and reduced cellular microtubule polymer mass. Yet, microtubule alterations that are associated with resistance to microtubule-destabilizing drugs like vinca alkaloids (vinblastine/vincristine) or 2-methoxyestradiol did not confer resistance to 6-AA, suggesting a different mechanism of microtubule interaction. 6-AA is a first-in-class microtubule inhibitor that features the unique anopterine scaffold. This study provides a strong rationale to further develop this novel structure class of microtubule inhibitor for the treatment of malignant disease. Mol Cancer Ther; 16(1); 3-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions.

    Directory of Open Access Journals (Sweden)

    Amine Bazaa

    Full Text Available Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1 in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.

  13. Kinetic suppression of microtubule dynamic instability by griseofulvin: Implications for its possible use in the treatment of cancer

    Science.gov (United States)

    Panda, Dulal; Rathinasamy, K.; Santra, Manas K.; Wilson, Leslie

    2005-01-01

    The antifungal drug griseofulvin inhibits mitosis strongly in fungal cells and weakly in mammalian cells by affecting mitotic spindle microtubule (MT) function. Griseofulvin also blocks cell-cycle progression at G2/M and induces apoptosis in human tumor cell lines. Despite extensive study, the mechanism by which the drug inhibits mitosis in human cells remains unclear. Here, we analyzed the ability of griseofulvin to inhibit cell proliferation and mitosis and to affect MT polymerization and organization in HeLa cells together with its ability to affect MT polymerization and dynamic instability in vitro. Griseofulvin inhibited cell-cycle progression at prometaphase/anaphase of mitosis in parallel with its ability to inhibit cell proliferation. At its mitotic IC50 of 20 μM, spindles in blocked cells displayed nearly normal quantities of MTs and MT organization similar to spindles blocked by more powerful MT-targeted drugs. Similar to previously published data, we found that very high concentrations of griseofulvin (>100 μM) were required to inhibit MT polymerization in vitro. However, much lower drug concentrations (1–20 μM) strongly suppressed the dynamic instability behavior of the MTs. We suggest that the primary mechanism by which griseofulvin inhibits mitosis in human cells is by suppressing spindle MT dynamics in a manner qualitatively similar to that of much more powerful antimitotic drugs, including the vinca alkaloids and the taxanes. In view of griseofulvin's lack of significant toxicity in humans, we further suggest that it could be useful as an adjuvant in combination with more powerful drugs for the treatment of cancer. PMID:15985553

  14. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations

    Science.gov (United States)

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  15. The Norovirus NS3 Protein Is a Dynamic Lipid- and Microtubule-Associated Protein Involved in Viral RNA Replication.

    Science.gov (United States)

    Cotton, Ben T; Hyde, Jennifer L; Sarvestani, Soroush T; Sosnovtsev, Stanislav V; Green, Kim Y; White, Peter A; Mackenzie, Jason M

    2017-02-01

    Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker β-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and ds

  16. Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont

    KAUST Repository

    Woods, Kerry L.

    2013-05-09

    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell\\'s astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. 2013 Woods et al.

  17. Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont.

    Directory of Open Access Journals (Sweden)

    Kerry L Woods

    2013-05-01

    Full Text Available The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability. Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1, a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

  18. External electric field effects on the mechanical properties of the αβ-tubulin dimer of microtubules: a molecular dynamics study.

    Science.gov (United States)

    Saeidi, H R; Lohrasebi, A; Mahnam, K

    2014-08-01

    The mechanical properties of the αβ-tubulin dimer of microtubules was modeled by using the molecular dynamics (MD) simulation method. The effect on the mechanical properties of the dimer of the existence and nonexistence of an applied electric field, either constant or periodic, was studied. Since there are charged or polar groups in the dimer structure, the electric field can interact with the dimer. The elastic constant and Young's modulus of the dimer were decreased when the dimer was exposed to a constant electric field of 0.03 V/nm. Furthermore, applying an oscillating electric field in the 1 GHz range to the dimer increased the elastic constant and Young's modulus of the dimer. These parameters were related to dimer rigidity and, consequently, in this frequency range, the application of electric fields may affect the function of microtubules.

  19. Recent developments in seismic analysis in the code Aster; Les developpements recents en analyse sismique dans le code aster

    Energy Technology Data Exchange (ETDEWEB)

    Guihot, P.; Devesa, G.; Dumond, A.; Panet, M.; Waeckel, F.

    1996-12-31

    Progress in the field of seismic qualification and design methods made these last few years allows physical phenomena actually in play to be better considered, while cutting down the conservatism associated with some simplified design methods. So following the change in methods and developing the most advantageous ones among them contributes to the process of the seismic margins assessment and the preparation of new design tools for future series. In this paper, the main developments and improvements in methods which have been made these last two years in the Code Aster, in order to improve seismic calculation methods and seismic margin assessment are presented. The first development relates to making the MISS3D soil structure interaction code available, thanks to an interface made with the Code Aster. The second relates to the possibility of making modal basis time calculations on multi-supported structures by considering local non linearities like impact, friction or squeeze fluid forces. Recent developments in random dynamics and postprocessing devoted to earthquake designs are then mentioned. Three applications of these developments are then ut forward. The first application relates to a test case for soil structure interaction design using MISS3D-Aster coupling. The second is a test case for a multi-supported structure. The last application, more for manufacturing, refers to seismic qualification of Main Live Steam stop valves. First results of the independent validation of the Code Aster seismic design functionalities, which provide and improve the quality of software, are also recalled. (authors). 11 refs.

  20. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes.

    Directory of Open Access Journals (Sweden)

    Elena Rebollo

    2004-01-01

    Full Text Available Previous data suggested that anastral spindles, morphologically similar to those found in oocytes, can assemble in a centrosome-independent manner in cells that contain centrosomes. It is assumed that the microtubules that build these acentrosomal spindles originate over the chromatin. However, the actual processes of centrosome-independent microtubule nucleation, polymerisation, and sorting have not been documented in centrosome-containing cells. We have identified two experimental conditions in which centrosomes are kept close to the plasma membrane, away from the nuclear region, throughout meiosis I in Drosophila spermatocytes. Time-lapse confocal microscopy of these cells labelled with fluorescent chimeras reveals centrosome-independent microtubule nucleation, growth, and sorting into a bipolar spindle array over the nuclear region, away from the asters. The onset of noncentrosomal microtubule nucleation is significantly delayed with respect to nuclear envelope breakdown and coincides with the end of chromosome condensation. It takes place in foci that are close to the membranes that ensheath the nuclear region, not over the condensed chromosomes. Metaphase plates are formed in these spindles, and, in a fraction of them, some degree of polewards chromosome segregation takes place. In these cells that contain both membrane-bound asters and an anastral spindle, the orientation of the cytokinesis furrow correlates with the position of the asters and is independent of the orientation of the spindle. We conclude that the fenestrated nuclear envelope may significantly contribute to the normal process of spindle assembly in Drosophila spermatocytes. We also conclude that the anastral spindles that we have observed are not likely to provide a robust back-up able to ensure successful cell division. We propose that these anastral microtubule arrays could be a constitutive component of wild-type spindles, normally masked by the abundance of centrosome

  1. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  2. Dynein dynamics at the microtubule plus-ends and cortex during division in the C. $\\textit{elegans}$ zygote

    OpenAIRE

    Garcia, Ruddi Rodriguez; Chesneau, Laurent; Pastezeur, Sylvain; Roul, Julien; Tramier, Marc; Pécréaux, Jacques

    2017-01-01

    During asymmetric cell division, dynein generates forces, which position the spindle to reflect polarity and ensure correct daughter cell fates. The transient cortical localization of dynein raises the question of its targeting. We found that it accumulates at the microtubule plus-ends like in budding yeast, indirectly hitch-hiking on $\\text{EBP-2}^{\\text{EB1}}$ likely via dynactin. Importantly, this mechanism, which modestly accounts for cortical forces, does not transport dynein, which disp...

  3. Modulating the microtubule-tau interactions in biomotility systems by altering the chemical environment.

    Science.gov (United States)

    Bhattacharyya, S; Kim, K; Nakazawa, H; Umetsu, M; Teizer, W

    2016-12-05

    Obstacles in microtubule mediated neuronal transport can trigger dementia. We use bio-motility assays, that simulate the neuron chemistry in axonopathy, to screen chemicals, that retain the microtubule dynamics in healthy neuronal activity. Tau protein inhibits microtubule activity and leads to oligomerization. Iron(iii) untangles, whereas mono-sodium-glutamate destabilizes the microtubule oligomer.

  4. SKI-178: A Multitargeted Inhibitor of Sphingosine Kinase and Microtubule Dynamics Demonstrating Therapeutic Efficacy in Acute Myeloid Leukemia Models.

    Science.gov (United States)

    Hengst, Jeremy A; Dick, Taryn E; Sharma, Arati; Doi, Kenichiro; Hegde, Shailaja; Tan, Su-Fern; Geffert, Laura M; Fox, Todd E; Sharma, Arun K; Desai, Dhimant; Amin, Shantu; Kester, Mark; Loughran, Thomas P; Paulson, Robert F; Claxton, David F; Wang, Hong-Gang; Yun, Jong K

    2017-01-01

    To further characterize the selectivity, mechanism-of-action and therapeutic efficacy of the novel small molecule inhibitor, SKI-178. Using the state-of-the-art Cellular Thermal Shift Assay (CETSA) technique to detect "direct target engagement" of proteins intact cells, in vitro and in vivo assays, pharmacological assays and multiple mouse models of acute myeloid leukemia (AML). Herein, we demonstrate that SKI-178 directly target engages both Sphingosine Kinase 1 and 2. We also present evidence that, in addition to its actions as a Sphingosine Kinase Inhibitor, SKI-178 functions as a microtubule network disrupting agent both in vitro and in intact cells. Interestingly, we separately demonstrate that simultaneous SphK inhibition and microtubule disruption synergistically induces apoptosis in AML cell lines. Furthermore, we demonstrate that SKI-178 is well tolerated in normal healthy mice. Most importantly, we demonstrate that SKI-178 has therapeutic efficacy in several mouse models of AML. SKI-178 is a multi-targeted agent that functions both as an inhibitor of the SphKs as well as a disruptor of the microtubule network. SKI-178 induced apoptosis arises from a synergistic interaction of these two activities. SKI-178 is safe and effective in mouse models of AML, supporting its further development as a multi-targeted anti-cancer therapeutic agent.

  5. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding.

    Science.gov (United States)

    Fink, Gero; Hajdo, Lukasz; Skowronek, Krzysztof J; Reuther, Cordula; Kasprzak, Andrzej A; Diez, Stefan

    2009-06-01

    During mitosis and meiosis, the bipolar spindle facilitates chromosome segregation through microtubule sliding as well as microtubule growth and shrinkage. Kinesin-14, one of the motors involved, causes spindle collapse in the absence of kinesin-5 (Refs 2, 3), participates in spindle assembly and modulates spindle length. However, the molecular mechanisms underlying these activities are not known. Here, we report that Drosophila melanogaster kinesin-14 (Ncd) alone causes sliding of anti-parallel microtubules but locks together (that is, statically crosslinks) those that are parallel. Using single molecule imaging we show that Ncd diffuses along microtubules in a tail-dependent manner and switches its orientation between sliding microtubules. Our results show that kinesin-14 causes sliding and expansion of an anti-parallel microtubule array by dynamic interactions through the motor domain on the one side and the tail domain on the other. This mechanism accounts for the roles of kinesin-14 in spindle organization.

  6. Novel Piperazine-based Compounds Inhibit Microtubule Dynamics and Sensitize Colon Cancer Cells to Tumor Necrosis Factor-induced Apoptosis*

    Science.gov (United States)

    Chopra, Avijeet; Anderson, Amy; Giardina, Charles

    2014-01-01

    We recently identified a series of mitotically acting piperazine-based compounds that potently increase the sensitivity of colon cancer cells to apoptotic ligands. Here we describe a structure-activity relationship study on this compound class and identify a highly active derivative ((4-(3-chlorophenyl)piperazin-1-yl)(2-ethoxyphenyl)methanone), referred to as AK301, the activity of which is governed by the positioning of functional groups on the phenyl and benzoyl rings. AK301 induced mitotic arrest in HT29 human colon cancer cells with an ED50 of ≈115 nm. Although AK301 inhibited growth of normal lung fibroblast cells, mitotic arrest was more pronounced in the colon cancer cells (50% versus 10%). Cells arrested by AK301 showed the formation of multiple microtubule organizing centers with Aurora kinase A and γ-tubulin. Employing in vitro and in vivo assays, tubulin polymerization was found to be slowed (but not abolished) by AK301. In silico molecular docking suggests that AK301 binds to the colchicine-binding domain on β-tubulin, but in a novel orientation. Cells arrested by AK301 expressed elevated levels of TNFR1 on their surface and more readily activated caspases-8, -9, and -3 in the presence of TNF. Relative to other microtubule destabilizers, AK301 was the most active TNF-sensitizing agent and also stimulated Fas- and TRAIL-induced apoptosis. In summary, we report a new class of mitosis-targeting agents that effectively sensitizes cancer cells to apoptotic ligands. These compounds should help illuminate the role of microtubules in regulating apoptotic ligand sensitivity and may ultimately be useful for developing agents that augment the anti-cancer activities of the immune response. PMID:24338023

  7. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Aminata P Nacoulma

    Full Text Available AIMS: Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS: We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS: The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.

  8. Effect of microtubule-associated protein tau in dynamics of single-headed motor proteins KIF1A

    CERN Document Server

    Sparacino, J; Lamberti, P W

    2013-01-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with non-motile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al. Science 319, 1086 (2008)] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduce experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  9. ASTER L2 Surface Emissivity V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Emissivity is an on-demand product generated using the five thermal infrared (TIR) bands (acquired either during the day or night time) between...

  10. ASTER L2 Surface Temperature V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Kinetic Temperature is an on-demand product generated using the five thermal infrared (TIR) bands (acquired either during the day or night time)...

  11. ASTER Global Digital Elevation Model V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the U.S. National...

  12. A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo.

    Science.gov (United States)

    Shinar, Tamar; Mana, Miyeko; Piano, Fabio; Shelley, Michael J

    2011-06-28

    We present a model of cytoplasmically driven microtubule-based pronuclear motion in the single-celled Caenorhabditis elegans embryo. In this model, a centrosome pair at the male pronucleus initiates stochastic microtubule (MT) growth. These MTs encounter motor proteins, distributed throughout the cytoplasm, that attach and exert a pulling force. The consequent MT-length-dependent pulling forces drag the pronucleus through the cytoplasm. On physical grounds, we assume that the motor proteins also exert equal and opposite forces on the surrounding viscous cytoplasm, here modeled as an incompressible Newtonian fluid constrained within an ellipsoidal eggshell. This naturally leads to streaming flows along the MTs. Our computational method is based on an immersed boundary formulation that allows for the simultaneous treatment of fluid flow and the dynamics of structures immersed within. Our simulations demonstrate that the balance of MT pulling forces and viscous nuclear drag is sufficient to move the pronucleus, while simultaneously generating minus-end directed flows along MTs that are similar to the observed movement of yolk granules toward the center of asters. Our simulations show pronuclear migration, and moreover, a robust pronuclear centration and rotation very similar to that observed in vivo. We find also that the confinement provided by the eggshell significantly affects the internal dynamics of the cytoplasm, increasing by an order of magnitude the forces necessary to translocate and center the pronucleus.

  13. Acentrosomal microtubule nucleation in higher plants.

    Science.gov (United States)

    Schmit, Anne-Catherine

    2002-01-01

    Higher plants have developed a unique pathway to control their cytoskeleton assembly and dynamics. In most other eukaryotes, microtubules are nucleated in vivo at the nucleation and organizing centers and are involved in the establishment of polarity. Although the major cytoskeletal components are common to plant and animal cells, which suggests conserved regulation mechanisms, plants do not possess centrosome-like organelles. Nevertheless, they are able to build spindles and have developed their own specific cytoskeletal arrays: the cortical arrays, the preprophase band, and the phragmoplast, which all participate in basic developmental processes, as shown by defective mutants. New approaches provide essential clues to understanding the fundamental mechanisms of microtubule nucleation. Gamma-tubulin, which is considered to be the universal nucleator, is the essential component of microtubule-nucleating complexes identified as gamma-tubulin ring complexes (gamma-TuRC) in centriolar cells. A gamma-tubulin small complex (gamma-TuSC) forms a minimal nucleating unit recruited at specific sites of activity. These components--gamma-tubulin, Spc98p, and Spc97p--are present in higher plants. They play a crucial role in microtubule nucleation at the nuclear surface, which is known as the main functional plant microtubule-organizing center, and also probably at the cell cortex and at the phragmoplast, where secondary nucleation sites may exist. Surprisingly, plant gamma-tubulin is distributed along the microtubule length. As it is not associated with Spc98p, it may not be involved in microtubule nucleation, but may preferably control microtubule dynamics. Understanding the mechanisms of microtubule nucleation is the major challenge of the current research.

  14. Regulatory functions of microtubules.

    Science.gov (United States)

    Vasiliev, J M; Samoylov, V I

    2013-01-01

    This mini-review summarizes literature and original data about the role of microtubules in interphase animal cells. Recent data have shown that functioning of microtubules is essential for such diverse phenomena as directional cell movements, distribution of organelles in the cytoplasm, and neuronal memory in the central nervous system. It is suggested that microtubules can act as an important regulatory system in eukaryotic cells. Possible mechanisms of these functions are discussed.

  15. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through

  16. Tao-1 is a negative regulator of microtubule plus-end growth.

    Science.gov (United States)

    Liu, Tao; Rohn, Jennifer L; Picone, Remigio; Kunda, Patricia; Baum, Buzz

    2010-08-15

    Microtubule dynamics are dominated by events at microtubule plus ends as they switch between discrete phases of growth and shrinkage. Through their ability to generate force and direct polar cell transport, microtubules help to organise global cell shape and polarity. Conversely, because plus-end binding proteins render the dynamic instability of individual microtubules sensitive to the local intracellular environment, cyto-architecture also affects the overall distribution of microtubules. Despite the importance of plus-end regulation for understanding microtubule cytoskeletal organisation and dynamics, little is known about the signalling mechanisms that trigger changes in their behaviour in space and time. Here, we identify a microtubule-associated kinase, Drosophila Tao-1, as an important regulator of microtubule stability, plus-end dynamics and cell shape. Active Tao-1 kinase leads to the destabilisation of microtubules. Conversely, when Tao-1 function is compromised, rates of cortical-induced microtubule catastrophe are reduced and microtubules contacting the actin cortex continue to elongate, leading to the formation of long microtubule-based protrusions. These data reveal a role for Tao-1 in controlling the dynamic interplay between microtubule plus ends and the actin cortex in the regulation of cell form.

  17. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, Makoto; Ozaki, Kanako [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Chikashige, Yuji [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Habu, Toshiyuki [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan); Hiraoka, Yasushi [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871 (Japan); Maki, Takahisa; Hayashi, Ikuko [Graduate School of Nanobioscience, Yokohama City University, Tsurumi, Yokohama, 230-0045 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Matsumoto, Tomohiro, E-mail: tmatsumo@house.rbc.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan)

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  18. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice.

    Science.gov (United States)

    Thomas, Geethu E; Bandopadhyay, K; Sutradhar, Sabyasachi; Renjith, M R; Singh, Puja; Gireesh, K K; Simon, Steny; Badarudeen, Binshad; Gupta, Hindol; Banerjee, Manidipa; Paul, Raja; Mitra, J; Manna, Tapas K

    2016-05-26

    Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1-3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures.

  19. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time.

    Science.gov (United States)

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T

    2014-06-13

    The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1(+), a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. © 2014. Published by The Company of Biologists Ltd.

  20. Microtubules in plants.

    Science.gov (United States)

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.

  1. ASTER L2 Surface Reflectance SWIR and ASTER L2 Surface Reflectance VNIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Reflectance is a multi-file product that contains atmospherically corrected data for both the Visible Near-Infrared (VNIR) and Shortwave...

  2. Microtubules: A network for solitary waves

    Directory of Open Access Journals (Sweden)

    Zdravković Slobodan

    2017-01-01

    Full Text Available In the present paper we deal with nonlinear dynamics of microtubules. The structure and role of microtubules in cells are explained as well as one of models explaining their dynamics. Solutions of the crucial nonlinear differential equation depend on used mathematical methods. Two commonly used procedures, continuum and semi-discrete approximations, are explained. These solutions are solitary waves usually called as kink solitons, breathers and bell-type solitons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45010

  3. Molecular characterization of an aster yellows phytoplasma ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-12

    Apr 12, 2010 ... restriction endonulease enzymes revealed identical patterns to phytoplasmas members of Aster yellows phytoplasma subgroup B. A phylogenetic tree based on 16S rDNA sequences, secA gene sequences and virtual RFLP revealed that the periwinkle proliferation phytoplasma is closely related to.

  4. Molecular characterization of an aster yellows phytoplasma ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... The virtual restriction fragment length polymorphism (RFLP) analysis with 10 restriction endonulease enzymes revealed identical patterns to phytoplasmas members of Aster yellows phytoplasma subgroup B. A phylogenetic tree based on 16S rDNA sequences, secA gene sequences and ...

  5. Basement Membrane Laminin α2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling.

    Science.gov (United States)

    Gao, Ying; Chen, Haiqi; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2017-04-01

    A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling. Copyright © 2017 Endocrine Society.

  6. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  7. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  8. Microtubule Self- Assembly

    Science.gov (United States)

    Jho, Yongseok; Choi, M. C.; Farago, O.; Kim, Mahnwon; Pincus, P. A.

    2008-03-01

    Microtubules are important structural elements for neurons. Microtubles are cylindrical pipes that are self-assembled from tubulin dimers, These structures are intimately related to the neuron transport system. Abnormal microtubule disintegration contributes to neuro-disease. For several decades, experimentalists investigated the structure of the microtubules using TEM and Cryo-EM. However, the detailed structure at a molecular level remain incompletely understood. . In this presentation, we report numerically studies of the self-assembly process using a toy model for tubulin dimers. We investigate the nature of the interactions which are essential to stabilize such the cylindrical assembly of protofilaments. We use Monte Carlo simulations to suggest the pathways for assembly and disassembly of the microtubules.

  9. Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination.

    Science.gov (United States)

    Sankaran, Satish; Starita, Lea M; Groen, Aaron C; Ko, Min Ji; Parvin, Jeffrey D

    2005-10-01

    In this study we find that the function of BRCA1 inhibits the microtubule nucleation function of centrosomes. In particular, cells in early S phase have quiescent centrosomes due to BRCA1 activity, which inhibits the association of gamma-tubulin with centrosomes. We find that modification of either of two specific lysine residues (Lys-48 and Lys-344) of gamma-tubulin, a known substrate for BRCA1-dependent ubiquitination activity, led to centrosome hyperactivity. Interestingly, mutation of gamma-tubulin lysine 344 had a minimal effect on centrosome number but a profound effect on microtubule nucleation function, indicating that the processes regulating centrosome duplication and microtubule nucleation are distinct. Using an in vitro aster formation assay, we found that BRCA1-dependent ubiquitination activity directly inhibits microtubule nucleation by centrosomes. Mutant BRCA1 protein that was inactive as a ubiquitin ligase did not inhibit aster formation by the centrosome. Further, a BRCA1 carboxy-terminal truncation mutant that was an active ubiquitin ligase lacked domains critical for the inhibition of centrosome function. These experiments reveal an important new functional assay regulated by the BRCA1-dependent ubiquitin ligase, and the results suggest that the loss of this BRCA1 activity could cause the centrosome hypertrophy and subsequent aneuploidy typically found in breast cancers.

  10. Assessing Mesoscale Volcanic Aviation Hazards using ASTER

    Science.gov (United States)

    Pieri, D.; Gubbels, T.; Hufford, G.; Olsson, P.; Realmuto, V.

    2006-12-01

    The Advanced Spaceborne Thermal Emission and Reflection (ASTER) imager onboard the NASA Terra Spacecraft is a joint project of the Japanese Ministry for Economy, Trade, and Industry (METI) and NASA. ASTER has acquired over one million multi-spectral 60km by 60 km images of the earth over the last six years. It consists of three sub-instruments: (a) a four channel VNIR (0.52-0.86um) imager with a spatial resolution of 15m/pixel, including three nadir-viewing bands (1N, 2N, 3N) and one repeated rear-viewing band (3B) for stereo-photogrammetric terrain reconstruction (8-12m vertical resolution); (b) a SWIR (1.6-2.43um) imager with six bands at 30m/pixel; and (c) a TIR (8.125-11.65um) instrument with five bands at 90m/pixel. Returned data are processed in Japan at the Earth Remote Sensing Data Analysis Center (ERSDAC) and at the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS Center for Earth Resource Observation and Science (EROS) in Sioux Falls, South Dakota. Within the ASTER Project, the JPL Volcano Data Acquisition and Analyses System (VDAAS) houses over 60,000 ASTER volcano images of 1542 volcanoes worldwide and will be accessible for downloads by the general public and on-line image analyses by researchers in early 2007. VDAAS multi-spectral thermal infrared (TIR) de-correlation stretch products are optimized for volcanic ash detection and have a spatial resolution of 90m/pixel. Digital elevation models (DEM) stereo-photogrammetrically derived from ASTER Band 3B/3N data are also available within VDAAS at 15 and 30m/pixel horizontal resolution. Thus, ASTER visible, IR, and DEM data at 15-100m/pixel resolution within VDAAS can be combined to provide useful boundary conditions on local volcanic eruption plume location, composition, and altitude, as well as on topography of underlying terrain. During and after eruptions, low- altitude winds and ash transport can be affected by topography, and other orographic thermal and water vapor

  11. The pLISA project in ASTERICS

    Directory of Open Access Journals (Sweden)

    De Bonis Giulia

    2017-01-01

    Full Text Available In the framework of Horizon 2020, the European Commission approved the ASTERICS initiative (ASTronomy ESFRI and Research Infrastructure CluSter to collect knowledge and experiences from astronomy, astrophysics and particle physics and foster synergies among existing research infrastructures and scientific communities, hence paving the way for future ones. ASTERICS aims at producing a common set of tools and strategies to be applied in Astronomy ESFRI facilities. In particular, it will target the so-called multi-messenger approach to combine information from optical and radio telescopes, photon counters and neutrino telescopes. pLISA is a software tool under development in ASTERICS to help and promote machine learning as a unified approach to multivariate analysis of astrophysical data and signals. The library will offer a collection of classification parameters, estimators, classes and methods to be linked and used in reconstruction programs (and possibly also extended, to characterize events in terms of particle identification and energy. The pLISA library aims at offering the software infras tructure for applications developed inside different experiments and has been designed with an effort to extrapolate general, physics-related estimators from the specific features of the data model related to each particular experiment. pLISA is oriented towards parallel computing architectures, with awareness of the opportunity of using GPUs as accelerators demanding specifically optimized algorithms and to reduce the costs of pro cessing hardware requested for the reconstruction tasks. Indeed, a fast (ideally, real-time reconstruction can open the way for the development or improvement of alert systems, typically required by multi-messenger search programmes among the different experi mental facilities involved in ASTERICS.

  12. The pLISA project in ASTERICS

    Science.gov (United States)

    De Bonis, Giulia; Bozza, Cristiano

    2017-03-01

    In the framework of Horizon 2020, the European Commission approved the ASTERICS initiative (ASTronomy ESFRI and Research Infrastructure CluSter) to collect knowledge and experiences from astronomy, astrophysics and particle physics and foster synergies among existing research infrastructures and scientific communities, hence paving the way for future ones. ASTERICS aims at producing a common set of tools and strategies to be applied in Astronomy ESFRI facilities. In particular, it will target the so-called multi-messenger approach to combine information from optical and radio telescopes, photon counters and neutrino telescopes. pLISA is a software tool under development in ASTERICS to help and promote machine learning as a unified approach to multivariate analysis of astrophysical data and signals. The library will offer a collection of classification parameters, estimators, classes and methods to be linked and used in reconstruction programs (and possibly also extended), to characterize events in terms of particle identification and energy. The pLISA library aims at offering the software infras tructure for applications developed inside different experiments and has been designed with an effort to extrapolate general, physics-related estimators from the specific features of the data model related to each particular experiment. pLISA is oriented towards parallel computing architectures, with awareness of the opportunity of using GPUs as accelerators demanding specifically optimized algorithms and to reduce the costs of pro cessing hardware requested for the reconstruction tasks. Indeed, a fast (ideally, real-time) reconstruction can open the way for the development or improvement of alert systems, typically required by multi-messenger search programmes among the different experi mental facilities involved in ASTERICS.

  13. The Interplay of the N- and C-Terminal Domains of MCAK Control Microtubule Depolymerization Activity and Spindle Assembly

    OpenAIRE

    Ems-McClung, Stephanie C.; Hertzer, Kathleen M.; Zhang, Xin; Miller, Mill W.; Walczak, Claire E.

    2007-01-01

    Spindle assembly and accurate chromosome segregation require the proper regulation of microtubule dynamics. MCAK, a Kinesin-13, catalytically depolymerizes microtubules, regulates physiological microtubule dynamics, and is the major catastrophe factor in egg extracts. Purified GFP-tagged MCAK domain mutants were assayed to address how the different MCAK domains contribute to in vitro microtubule depolymerization activity and physiological spindle assembly activity in egg extracts. Our biochem...

  14. ASTER Global Emissivity Dataset, 1 kilometer, HDF5 V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) land surface temperature and emissivity (LST&E) data...

  15. ASTER Global Emissivity Dataset, 100 meter, HDF5 V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) land surface temperature and emissivity (LST&E) data...

  16. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice.

    Directory of Open Access Journals (Sweden)

    Marija Zanic

    Full Text Available Plus-end-tracking proteins (+TIPs are localized at the fast-growing, or plus end, of microtubules, and link microtubule ends to cellular structures. One of the best studied +TIPs is EB1, which forms comet-like structures at the tips of growing microtubules. The molecular mechanisms by which EB1 recognizes and tracks growing microtubule ends are largely unknown. However, one clue is that EB1 can bind directly to a microtubule end in the absence of other proteins. Here we use an in vitro assay for dynamic microtubule growth with two-color total-internal-reflection-fluorescence imaging to investigate binding of mammalian EB1 to both stabilized and dynamic microtubules. We find that under conditions of microtubule growth, EB1 not only tip tracks, as previously shown, but also preferentially recognizes the GMPCPP microtubule lattice as opposed to the GDP lattice. The interaction of EB1 with the GMPCPP microtubule lattice depends on the E-hook of tubulin, as well as the amount of salt in solution. The ability to distinguish different nucleotide states of tubulin in microtubule lattice may contribute to the end-tracking mechanism of EB1.

  17. Image-based reflectance conversion of ASTER and IKONOS ...

    African Journals Online (AJOL)

    ... for ASTER and IKONOS imagery in this study area and for the purpose of forest structural assessment. This has important implications for the operational use of similar imagery types for forest inventory approaches. Keywords: ASTER; IKONOS; image-based atmospheric correction; plantation forests; surface reflectance

  18. The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis.

    NARCIS (Netherlands)

    A.S. Akhmanova (Anna); A.L. Mausset-Bonnefont (Anne-Laure); W.A. van Cappellen (Gert); N. Keijzer (Nanda); C.C. Hoogenraad (Casper); T. Stepanova (Tatiana); K. Drabek (Ksenija); J. van der Wees (Jacqueline); M. Mommaas (Mieke); J. Onderwater (Jos); H. van der Meulen (Hans); M.E. Tanenbaum (Marvin); R.H. Medema (Rene); J.W. Hoogerbrugge (Jos); J.T.M. Vreeburg (Jan); E.J. Uringa; J.A. Grootegoed (Anton); F.G. Grosveld (Frank); N.J. Galjart (Niels)

    2005-01-01

    textabstractCLIP-170 is a microtubule "plus-end-tracking protein" implicated in the control of microtubule dynamics, dynactin localization, and the linking of endosomes to microtubules. To investigate the function of mouse CLIP-170, we generated CLIP-170 knockout and GFP-CLIP-170 knock-in alleles.

  19. The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis

    NARCIS (Netherlands)

    Akhmanova, A.S.; Mausset-Bonnefont, A.-L.; Cappellen, W. van; Keijzer, N.; Hoogenraad, C.C.; Stepanova, T.; Drabek, K.; Wees, J. van der; Mommaas, M.; Onderwater, J.; Meulen, H. van der; Tanenbaum, M.E.; Medema, R.H.; Hoogerbrugge, J.; Vreeburg, J.; Uringa, E.-J.; Grootegoed, J.A.; Grosveld, F.; Galjart, N.

    2005-01-01

    CLIP-170 is a microtubule "plus-end-tracking protein" implicated in the control of microtubule dynamics, dynactin localization, and the linking of endosomes to microtubules. To investigate the function of mouse CLIP-170, we generated CLIP-170 knockout and GFP-CLIP-170 knock-in alleles. Residual

  20. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    CERN Document Server

    Kononova, Olga; Theisen, Kelly E; Marx, Kenneth A; Dima, Ruxandra I; Ataullakhanov, Fazly I; Grishchuk, Ekaterina L; Barsegov, Valeri

    2015-01-01

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversib...

  1. Dietary antioxidant curcumin inhibits microtubule assembly through tubulin binding.

    Science.gov (United States)

    Gupta, Kamlesh K; Bharne, Shubhada S; Rathinasamy, Krishnan; Naik, Nishigandha R; Panda, Dulal

    2006-12-01

    Curcumin, a component of turmeric, has potent antitumor activity against several tumor types. However, its molecular target and mechanism of antiproliferative activity are not clear. Here, we identified curcumin as a novel antimicrotubule agent. We have examined the effects of curcumin on cellular microtubules and on reconstituted microtubules in vitro. Curcumin inhibited HeLa and MCF-7 cell proliferation in a concentration-dependent manner with IC(50) of 13.8 +/- 0.7 microm and 12 +/- 0.6 microm, respectively. At higher inhibitory concentrations (> 10 microm), curcumin induced significant depolymerization of interphase microtubules and mitotic spindle microtubules of HeLa and MCF-7 cells. However, at low inhibitory concentrations there were minimal effects on cellular microtubules. It disrupted microtubule assembly in vitro, reduced GTPase activity, and induced tubulin aggregation. Curcumin bound to tubulin at a single site with a dissociation constant of 2.4 +/- 0.4 microm and the binding of curcumin to tubulin induced conformational changes in tubulin. Colchicine and podophyllotoxin partly inhibited the binding of curcumin to tubulin, while vinblastine had no effect on the curcumin-tubulin interactions. The data together suggested that curcumin may inhibit cancer cells proliferation by perturbing microtubule assembly dynamics and may be used to develop efficacious curcumin analogues for cancer chemotherapy.

  2. A thermodynamic model of microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Bernard M A G Piette

    Full Text Available Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  3. Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules.

    Directory of Open Access Journals (Sweden)

    Jennine M Dawicki-McKenna

    Full Text Available In adipocytes, vesicles containing glucose transporter-4 (GLUT4 redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin, preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.

  4. Sites of Glucose Transporter-4 Vesicle Fusion with the Plasma Membrane Correlate Spatially with Microtubules

    Science.gov (United States)

    Dawicki-McKenna, Jennine M.; Goldman, Yale E.; Ostap, E. Michael

    2012-01-01

    In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion. PMID:22916292

  5. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles.

    Directory of Open Access Journals (Sweden)

    Shinya Ohta

    Full Text Available The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP targets polyglutamylated tubulin in mitotic microtubules (MTs. Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA, with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance.

  6. Dendrites differ from axons in patterns of microtubule stability and polymerization during development

    Directory of Open Access Journals (Sweden)

    Butts Matthew

    2009-07-01

    Full Text Available Abstract Background Dendrites differ from axons in patterns of growth and development, as well as in morphology. Given that microtubules are key structural elements in cells, we assessed patterns of microtubule stability and polymerization during hippocampal neuron development in vitro to determine if these aspects of microtubule organization could distinguish axons from dendrites. Results Quantitative ratiometric immunocytochemistry identified significant differences in microtubule stability between axons and dendrites. Most notably, regardless of developmental stage, there were high levels of dynamic microtubules throughout the dendritic arbor, whereas dynamic microtubules were predominantly concentrated in the distal end of axons. Analysis of microtubule polymerization using green fluorescent protein-tagged EB1 showed both developmental and regional differences in microtubule polymerization between axons and dendrites. Early in development (for example, 1 to 2 days in vitro, polymerization events were distributed equally in both the anterograde and retrograde directions throughout the length of both axons and dendrites. As development progressed, however, polymerization became biased, with a greater number of polymerization events in distal than in proximal and middle regions. While polymerization occurred almost exclusively in the anterograde direction for axons, both anterograde and retrograde polymerization was observed in dendrites. This is in agreement with predicted differences in microtubule polarity within these compartments, although fewer retrograde events were observed in dendrites than expected. Conclusion Both immunocytochemical and live imaging analyses showed that newly formed microtubules predominated at the distal end of axons and dendrites, suggesting a common mechanism that incorporates increased microtubule polymerization at growing process tips. Dendrites had more immature, dynamic microtubules throughout the entire arbor

  7. Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses*

    Science.gov (United States)

    Samuel, Marcus A.; Tang, Wenqiang; Jamshed, Muhammad; Northey, Julian; Patel, Darshan; Smith, Daryl; Siu, K. W. Michael; Muench, Douglas G.; Wang, Zhi-Yong; Goring, Daphne R.

    2011-01-01

    Mate selection and maintenance of genetic diversity is crucial to successful reproduction and species survival. Plants utilize self-incompatibility system as a genetic barrier to prevent self pollen from developing on the pistil, leading to hybrid vigor and diversity. In Brassica (canola, kale, and broccoli), an allele-specific interaction between the pollen SCR/SP11 (S-locus cysteine rich protein/S locus protein 11) and the pistil S Receptor Kinase, results in the activation of SRK which recruits the Arm Repeat Containing 1 (ARC1) E3 ligase to the proteasome. The targets of Arm Repeat Containing 1 are proposed to be compatibility factors, which when targeted for degradation by Arm Repeat Containing 1 results in pollen rejection. Despite the fact that protein degradation is predicted to be important for successful self-pollen rejection, the identity of the various proteins whose abundance is altered by the SI pathway has remained unknown. To identify potential candidate proteins regulated by the SI response, we have used the two-dimensional difference gel electrophoresis analysis, coupled with matrix-assisted laser desorption ionization/time of flight/MS. We identified 56 differential protein spots with 19 unique candidate proteins whose abundance is down-regulated following self-incompatible pollinations. The identified differentials are predicted to function in various pathways including biosynthetic pathways, signaling, cytoskeletal organization, and exocytosis. From the 19 unique proteins identified, we investigated the role of tubulin and the microtubule network during both self-incompatible and compatible pollen responses. Moderate changes in the microtubule network were observed with self-incompatible pollinations; however, a more distinct localized break-down of the microtubule network was observed during compatible pollinations, that is likely mediated by EXO70A1, leading to successful pollination. PMID:21890472

  8. Proteomic analysis of Brassica stigmatic proteins following the self-incompatibility reaction reveals a role for microtubule dynamics during pollen responses.

    Science.gov (United States)

    Samuel, Marcus A; Tang, Wenqiang; Jamshed, Muhammad; Northey, Julian; Patel, Darshan; Smith, Daryl; Siu, K W Michael; Muench, Douglas G; Wang, Zhi-Yong; Goring, Daphne R

    2011-12-01

    Mate selection and maintenance of genetic diversity is crucial to successful reproduction and species survival. Plants utilize self-incompatibility system as a genetic barrier to prevent self pollen from developing on the pistil, leading to hybrid vigor and diversity. In Brassica (canola, kale, and broccoli), an allele-specific interaction between the pollen SCR/SP11 (S-locus cysteine rich protein/S locus protein 11) and the pistil S Receptor Kinase, results in the activation of SRK which recruits the Arm Repeat Containing 1 (ARC1) E3 ligase to the proteasome. The targets of Arm Repeat Containing 1 are proposed to be compatibility factors, which when targeted for degradation by Arm Repeat Containing 1 results in pollen rejection. Despite the fact that protein degradation is predicted to be important for successful self-pollen rejection, the identity of the various proteins whose abundance is altered by the SI pathway has remained unknown. To identify potential candidate proteins regulated by the SI response, we have used the two-dimensional difference gel electrophoresis analysis, coupled with matrix-assisted laser desorption ionization/time of flight/MS. We identified 56 differential protein spots with 19 unique candidate proteins whose abundance is down-regulated following self-incompatible pollinations. The identified differentials are predicted to function in various pathways including biosynthetic pathways, signaling, cytoskeletal organization, and exocytosis. From the 19 unique proteins identified, we investigated the role of tubulin and the microtubule network during both self-incompatible and compatible pollen responses. Moderate changes in the microtubule network were observed with self-incompatible pollinations; however, a more distinct localized break-down of the microtubule network was observed during compatible pollinations, that is likely mediated by EXO70A1, leading to successful pollination.

  9. Comparison of ASTER Global Emissivity Database (ASTER-GED) With In-Situ Measurement In Italian Vulcanic Areas

    Science.gov (United States)

    Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Amici, S.; Piscini, A.

    2015-12-01

    LP DAAC released the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED) datasets on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivities derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. In this work we compare ground measurements of emissivity acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the ASTER emissivity map extract from ASTER-GED and the emissivity obtained by using single ASTER data. Through this analysis we want to investigate differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. In-situ emissivity measurements have been collected during dedicated fields campaign on Mt. Etna vulcano and Solfatara of Pozzuoli. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.

  10. Estimating Coastal Lagoon Tidal Flooding and Repletion with Multidate ASTER Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Thomas R. Allen

    2012-10-01

    Full Text Available Coastal lagoons mix inflowing freshwater and tidal marine waters in complex spatial patterns. This project sought to detect and measure temperature and spatial variability of flood tides for a constricted coastal lagoon using multitemporal remote sensing. Advanced Spaceborne Thermal Emission Radiometer (ASTER thermal infrared data provided estimates of surface temperature for delineation of repletion zones in portions of Chincoteague Bay, Virginia. ASTER high spatial resolution sea-surface temperature imagery in conjunction with in situ observations and tidal predictions helped determine the optimal seasonal data for analyses. The selected time series ASTER satellite data sets were analyzed at different tidal phases and seasons in 2004–2006. Skin surface temperatures of ocean and estuarine waters were differentiated by flood tidal penetration and ebb flows. Spatially variable tidal flood penetration was evaluated using discrete seed-pixel area analysis and time series Principal Components Analysis. Results from these techniques provide spatial extent and variability dynamics of tidal repletion, flushing, and mixing, important factors in eutrophication assessment, water quality and resource monitoring, and application of hydrodynamic modeling for coastal estuary science and management.

  11. [A zanhic acid based bisglycoside from Aster poliothamnus].

    Science.gov (United States)

    Zhang, Jia-min; Wang, Ming-kui; Li, Bo-gang

    2002-05-01

    To study the chemical constituents from the whole plant of Aster poliothamnus. Separating the chemical constituents by means of chromatography and identifying ther structures on basis of chemical and spectral tecnology. A new triterpene saponin was isolated and identified.

  12. ASTER Global Emissivity Dataset, 1 kilometer, Binary V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The AG1kmB.003 dataset was decommissioned as of December 14, 2016. Users are encouraged to use the ASTER Global Emissivity Dataset 1-kilometer (AG1km.003 -...

  13. ASTER Global Emissivity Dataset, 100 meter, Binary V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The AG100B.003 dataset was decommissioned as of December 14, 2016. Users are encouraged to use the ASTER Global Emissivity Dataset 100-meter (AG100.003 -...

  14. ASTER L2 Surface Radiance TIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Radiance TIR is an on-demand product generated using the five thermal infra-red (TIR) Bands (acquired either during the day or night time)...

  15. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy

    Science.gov (United States)

    Yajima, Hiroaki; Ogura, Toshihiko; Nitta, Ryo; Okada, Yasushi; Sato, Chikara

    2012-01-01

    Microtubules are dynamic polymers that stochastically switch between growing and shrinking phases. Microtubule dynamics are regulated by guanosine triphosphate (GTP) hydrolysis by β-tubulin, but the mechanism of this regulation remains elusive because high-resolution microtubule structures have only been revealed for the guanosine diphosphate (GDP) state. In this paper, we solved the cryoelectron microscopy (cryo-EM) structure of microtubule stabilized with a GTP analogue, guanylyl 5′-α,β-methylenediphosphonate (GMPCPP), at 8.8-Å resolution by developing a novel cryo-EM image reconstruction algorithm. In contrast to the crystal structures of GTP-bound tubulin relatives such as γ-tubulin and bacterial tubulins, significant changes were detected between GMPCPP and GDP-taxol microtubules at the contacts between tubulins both along the protofilament and between neighboring protofilaments, contributing to the stability of the microtubule. These findings are consistent with the structural plasticity or lattice model and suggest the structural basis not only for the regulatory mechanism of microtubule dynamics but also for the recognition of the nucleotide state of the microtubule by several microtubule-binding proteins, such as EB1 or kinesin. PMID:22851320

  16. Quantitative analysis of microtubule self-assembly kinetics and tip structure.

    Science.gov (United States)

    Prahl, Louis S; Castle, Brian T; Gardner, Melissa K; Odde, David J

    2014-01-01

    Microtubules are dynamic polymers of the cytoskeleton, which play important roles in cell division, polarization, and intracellular transport. Self-assembly of microtubule polymer from αβ-tubulin heterodimers is highly variable, with stochastic switching between alternate states of net growth and net shortening, a phenomenon known as dynamic instability. Microtubule tip structures are also variable and directly influence the kinetics of assembly and vice versa. TipTracker, a semiautomated, image processing-based tool, permits high spatial and temporal resolution measurements from fluorescence microscopy images (~10-40 nm, or 1-5 dimer lengths, at 1-10 Hz) with simultaneous tip structure estimation. We provide a walkthrough of the TipTracker code to demonstrate methods used to (1) fit the coordinates of the microtubule backbone; (2) track microtubule tip position; and (3) estimate tip structure from the spatial decay of the tip fluorescence distribution, discuss possible sources of error, and include an example protocol for nanometer-scale tip tracking in living cells. Additionally, we evaluate TipTracker's accuracy on simulated digital images and fixed microtubules to estimate accuracy under realistic imaging conditions. In summary, this chapter demonstrates the use of TipTracker in making robust, high-resolution measurements of microtubule tip dynamics and structures, facilitating quantitative investigations into nanoscale/molecular control of microtubule assembly. Although our primary focus is on microtubules, these methods are, in principle, suitable for other polymer structures, such as F-actin. © 2014 Elsevier Inc. All rights reserved.

  17. A TIRF microscopy assay to decode how tau regulates EB's tracking at microtubule ends.

    Science.gov (United States)

    Ramirez-Rios, Sacnicte; Serre, Laurence; Stoppin-Mellet, Virginie; Prezel, Elea; Vinit, Angélique; Courriol, Emilie; Fourest-Lieuvin, Anne; Delaroche, Julie; Denarier, Eric; Arnal, Isabelle

    2017-01-01

    Tau is a major microtubule-associated protein (MAP) mainly expressed in the brain. Tau binds the lattice of microtubules and favors their elongation and bundling. Recent studies have shown that tau is also a partner of end-binding proteins (EBs) in neurons. EBs belong to the protein family of the plus-end tracking proteins that preferentially associate with the growing plus-ends of microtubules and control microtubule end behavior and anchorage to intracellular organelles. Reconstituted cell-free systems using purified proteins are required to understand the precise mechanisms by which tau influences EB localization on microtubules and how the concerted activity of these two MAPs modulates microtubule dynamics. We developed an in vitro assay combining TIRF microscopy and site-directed mutagenesis to dissect the interaction of tau with EBs and to study how this interaction affects microtubule dynamics. Here, we describe the detailed procedures to purify proteins (tubulin, tau, and EBs), prepare the samples for TIRF microscopy, and analyze microtubule dynamics, and EB binding at microtubule ends in the presence of tau. © 2017 Elsevier Inc. All rights reserved.

  18. Fifteen Years of ASTER Data on NASA's Terra Platform

    Science.gov (United States)

    Abrams, M.; Tsu, H.

    2014-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five instruments operating on NASA's Terra platform. Launched in 1999, ASTER has been acquiring data for 15 years. ASTER is a joint project between Japan's Ministry of Economy, Trade and Industry; and US NASA. Data processing and distribution are done by both organizations; a joint science team helps to define mission priorities. ASTER acquires ~550 images per day, with a 60 km swath width. A daytime acquisition is three visible bands and a backward-looking stereo band with 15 m resolution, six SWIR bands with 30 m resolution, and 5 TIR bands with 90 m resolution. Nighttime TIR-only data are routinely collected. The stereo capability has allowed the ASTER project to produce a global Digital Elevation Model (GDEM) data set, covering the earth's land surfaces from 83 degrees north to 83 degrees south, with 30 m data postings. This is the only (near-) global DEM available to all users at no charge; to date, over 28 million 1-by-1 degree DEM tiles have been distributed. As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific disciplines, including: land use/land cover, urban monitoring, urban heat island studies, wetlands studies, agriculture monitoring, forestry, etc. Of particular emphasis has been the acquisition and analysis of data for natural hazard and disaster applications. We have been systematically acquiring images for 15,000 valley glaciers through the USGS Global Land Ice Monitoring from Space Project. The recently published Randolph Glacier Inventory, and the GLIMS book, both relied heavily on ASTER data as the basis for glaciological and climatological studies. The ASTER Volcano Archive is a unique on-line archive of thousands of daytime and nighttime ASTER images of ~1500 active glaciers, along with a growing archive of Landsat images. ASTER was scheduled to target active volcanoes at least 4 times per year, and more frequently for

  19. Viscoelastic properties of microtubule networks

    NARCIS (Netherlands)

    Lin, Y. C.; Koenderink, G.H.; Mac Kintosh, F.C.; Weitz, D. A.

    2007-01-01

    Microtubules are filamentous protein biopolymers found in eukaryotic cells. They form networks that guide active intracellular transport and support the overall cell structure. Microtubules are very rigid polymers, with persistence lengths as large as a millimeter. As such, they constitute an

  20. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis

    NARCIS (Netherlands)

    Sampathkumar, A.; Lindeboom, J.J.; Debolt, S.; Gutierrez, R.; Ehrhardt, D.W.; Ketelaar, T.; Persson, S.

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic

  1. Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment.

    Science.gov (United States)

    Sainsbury, Frank; Collings, David A; Mackun, Ken; Gardiner, John; Harper, John D I; Marc, Jan

    2008-10-01

    Transversely oriented cortical microtubules in elongating cells typically reorient themselves towards longitudinal directions at the end of cell elongation. We have investigated the reorientation mechanism along the outer epidermal wall in maturing leek (Allium porrum L.) leaves using a GFP-MBD microtubule reporter gene and fluorescence microscopy. Incubating leaf segments for 14-18 h with the anti-actin or anti-actomyosin agents, 20 microm cytochalasin D or 20 mM 2,3-butanedione monoxime, inhibited the normal developmental reorientation of microtubules to the longitudinal direction. Observation of living cells revealed a small subpopulation of microtubules with their free ends swinging into oblique or longitudinal directions, before continuing to assemble in the new direction. Electron microscopy confirmed that longitudinal microtubules are partly detached from the plasma membrane. Incubating leaf segments with 0.2% 1 degree-butanol, an activator of phospholipase D, which has been implicated in plasma membrane-microtubule anchoring, promoted the reorientation, presumably by promoting microtubule detachment from the membrane. Stabilizing microtubules with 10 microm taxol also promoted longitudinal orientation, even in the absence of cytoplasmic streaming. These results were consistent with confocal microscopy of live cells before and after drug treatments, which also revealed that the slow (days) global microtubule reorientation is superimposed over short-term (hours) regional cycling in a clockwise and an anti-clockwise direction. We propose that partial detachment of transverse microtubules from the plasma membrane in maturing cells exposes them to hydrodynamic forces of actomyosin-driven cytoplasmic streaming, which bends or shifts pivoting microtubules into longitudinal directions, and thus provides an impetus to push microtubule dynamics in the new direction.

  2. The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells

    Directory of Open Access Journals (Sweden)

    Mullen Robert T

    2005-11-01

    Full Text Available Abstract Background The plant peroxisomal multifunctional protein (MFP possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol. Results We demonstrate that MFP is an authentic microtubule-binding protein, as it localized to the cortical microtubule array in vivo, in addition to its expected targeting to the peroxisome matrix. MFP does not, however, interact with the three mitotic microtubule arrays. Microtubule co-sedimentation assays of truncated versions of MFP revealed that multiple microtubule-binding domains are present on the MFP polypeptide. This indicates that these regions function together to achieve high-affinity binding of the full-length protein. Real-time imaging of a transiently expressed green fluorescent protein-MFP chimera in living plant cells illustrated that a dynamic, spatial interaction exits between peroxisomes and cortical microtubules as peroxisomes move along actin filaments or oscillate at fixed locations. Conclusion Plant MFP is associated with the cortical microtubule array, in addition to its expected localization in the peroxisome. This observation, coupled with apparent interactions that frequently occur between microtubules and peroxisomes in the cell cortex, supports the hypothesis that MFP is concentrated on microtubules in order to facilitate the regulated import of MFP into peroxisomes.

  3. Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option?

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2015-01-01

    Full Text Available Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting agents can be divided into two groups: microtubule-stabilizing, and microtubule-destabilizing agents. The former bind to the tubulin polymer and stabilize microtubules, while the latter bind to the tubulin dimers and destabilize microtubules. Alteration of tubulin-microtubule equilibrium determines the disruption of the mitotic spindle, halting the cell cycle at the metaphase-anaphase transition and, eventually, resulting in cell death. Clinical application of earlier microtubule inhibitors, however, unfortunately showed several limits, such as neurological and bone marrow toxicity and the emergence of drug-resistant tumor cells. Here we review several natural and synthetic microtubule-targeting agents, which showed antitumor activity and increased efficacy in comparison to traditional drugs in various preclinical and clinical studies. Cryptophycins, combretastatins, ombrabulin, soblidotin, D-24851, epothilones and discodermolide were used in clinical trials. Some of them showed antiangiogenic and antivascular activity and others showed the ability to overcome multidrug resistance, supporting their possible use in chemotherapy.

  4. AVAL - The ASTER Volcanic Ash Library

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2016-12-01

    Volcanic ash is a rich data source for understanding the causal mechanisms behind volcanic eruptions. Petrologic and morphometric information can provide direct information on the characteristics of the parent magma. Understanding how erupted ash interacts with the atmosphere can help quantify the effect that explosive volcanism has on the local to regional climate, whereas a measure of the particle size distribution enables more accurate modeling of plume propagation. Remote sensing is regularly employed to monitor volcanic plumes using a suite of high temporal/low spatial resolution sensors. These methods employ radiative transfer modeling with assumptions of the transmissive properties of infrared energy through the plume to determine ash density, particle size and sulfur dioxide content. However, such approaches are limited to the optically-transparent regions, and the low spatial resolution data are only useful for large-scale trends. In a new approach, we are treating the infrared-opaque regions of the plume in a similar way to a solid emitting surface. This allows high spatial resolution orbital thermal infrared data from the dense proximal plume to be modeled using a linear deconvolution approach coupled with a spectral library to extract the particle size and petrology. The newly created ASTER Volcanic Ash Library (AVAL) provides the end member spectral suite, and is comprised of laboratory emission measurements of volcanic ash taken from a variety of different volcanic settings, to obtain a wide range of petrologies. These samples have been further subdivided into particle size fractions to account for spectral changes due to diffraction effects. Once mapped to the ASTER sensor's spectral resolution, this library is applied to image data and the plume deconvolved to estimate composition and particle size. We have analyzed eruptions at the Soufrière Hills Volcano, Montserrat, Chaitén and Puyehue-Cordón Caulle, both Chile, and Eyjafjallajökull, Iceland

  5. ASTER GLOBAL DEM VERSION 3, AND NEW ASTER WATER BODY DATASET

    Directory of Open Access Journals (Sweden)

    M. Abrams

    2016-06-01

    Full Text Available In 2016, the US/Japan ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer project released Version 3 of the Global DEM (GDEM. This 30 m DEM covers the earth’s surface from 82N to 82S, and improves on two earlier versions by correcting some artefacts and filling in areas of missing DEMs by the acquisition of additional data. The GDEM was produced by stereocorrelation of 2 million ASTER scenes and operation on a pixel-by-pixel basis: cloud screening; stacking data from overlapping scenes; removing outlier values, and averaging elevation values. As previously, the GDEM is packaged in ~ 23,000 1 x 1 degree tiles. Each tile has a DEM file, and a NUM file reporting the number of scenes used for each pixel, and identifying the source for fill-in data (where persistent clouds prevented computation of an elevation value. An additional data set was concurrently produced and released: the ASTER Water Body Dataset (AWBD. This is a 30 m raster product, which encodes every pixel as either lake, river, or ocean; thus providing a global inland and shore-line water body mask. Water was identified through spectral analysis algorithms and manual editing. This product was evaluated against the Shuttle Water Body Dataset (SWBD, and the Landsat-based Global Inland Water (GIW product. The SWBD only covers the earth between about 60 degrees north and south, so it is not a global product. The GIW only delineates inland water bodies, and does not deal with ocean coastlines. All products are at 30 m postings.

  6. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    Science.gov (United States)

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Polyamine sharing between tubulin dimers favours microtubule nucleation and elongation via facilitated diffusion.

    Directory of Open Access Journals (Sweden)

    Alain Mechulam

    2009-01-01

    Full Text Available We suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends. This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm. The mechanism of facilitated diffusion requires an attraction force between two tubulins, which can result from the sharing of multivalent counterions. Natural polyamines (putrescine, spermidine, and spermine are present in all living cells and are potent agents to trigger tubulin self-attraction. By using an analytical model, we analyze the implication of facilitated diffusion mediated by polyamines on nucleation and elongation of microtubules. In vitro experiments using pure tubulin indicate that the promotion of microtubule assembly by polyamines is typical of facilitated diffusion. The results presented here show that polyamines can be of particular importance for the regulation of the microtubule network in vivo and provide the basis for further investigations into the effects of facilitated diffusion on cytoskeleton dynamics.

  8. ASTER satellite observations for international disaster management

    Science.gov (United States)

    Duda, K.A.; Abrams, M.

    2012-01-01

    When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.

  9. Helicobacter pylori-induced changes in microtubule dynamics conferred by α-tubulin phosphorylation on Ser/Tyr mediate gastric mucosal secretion of matrix metalloproteinase-9 (MMP-9) and its modulation by ghrelin.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2016-10-01

    Regulation of matrix metalloproteinase-9 (MMP-9) secretion in response to proinflammatory challenge remains under a strict control of factors that affect the stability dynamics of the major cytoskeleton polymeric structures, microtubules (MTs). In this study, we report that H. pylori LPS-elicited induction gastric mucosal MMP-9 secretion is accompanied by the enhancement in MT stabilization as evidenced by the increase in α-tubulin acetylation and detyrosination while the modulatory influence of hormone, ghrelin, is associated with MT destabilization and reflected in a decrease in α-tubulin acetylation and detyrosination. Further, we reveal that the LPS-induced enhancement in MT stabilization and up-regulation in MMP-9 secretion as well as the modulatory influence of ghrelin occur with the involvement of PKCδ and SFK. The LPS effect is reflected in a marked increase in PKCδ-mediated α-tubulin phosphorylation on Ser, while the modulatory effect of ghrelin on MT dynamics and MMP-9 secretion is manifested by the SFK-dependent phosphorylation of α-tubulin on Tyr. Moreover, the changes in α-tubulin phosphorylation and MT stabilization dynamics occur in concert with the Golgi recruitment and activation of PKD2 and Arf-GEF. The findings demonstrate that the enhancement in gastric mucosal MMP-9 secretion in response to H. pylori and its modulation by ghrelin are the result of changes in MT dynamics conferred by PKCδ/SFK- mediated α-tubulin Ser/Tyr phosphorylation.

  10. Synthesis and biological evaluation of structurally simplified noscapine analogues as microtubule binding agents

    Czech Academy of Sciences Publication Activity Database

    Ghaly, P.E.; Churchill, C.D.M.; Abou El-Magd, R.M.; Hájková, Zuzana; Dráber, Pavel; West, F.G.; Tuszyński, J.A.

    2017-01-01

    Roč. 95, č. 6 (2017), s. 649-655 ISSN 0008-4042 R&D Projects: GA ČR GA15-22194S Institutional support: RVO:68378050 Keywords : noscapine * microtubule * tubulin * cytotoxicity * microtubule dynamics * docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.080, year: 2016

  11. Microtubule motor Ncd induces sliding of microtubules in vivo.

    Science.gov (United States)

    Oladipo, Abiola; Cowan, Ann; Rodionov, Vladimir

    2007-09-01

    The mitotic spindle is a microtubule (MT)-based molecular machine that serves for equal segregation of chromosomes during cell division. The formation of the mitotic spindle requires the activity of MT motors, including members of the kinesin-14 family. Although evidence suggests that kinesins-14 act by driving the sliding of MT bundles in different areas of the spindle, such sliding activity had never been demonstrated directly. To test the hypothesis that kinesins-14 can induce MT sliding in living cells, we developed an in vivo assay, which involves overexpression of the kinesin-14 family member Drosophila Ncd in interphase mammalian fibroblasts. We found that green fluorescent protein (GFP)-Ncd colocalized with cytoplasmic MTs, whose distribution was determined by microinjection of Cy3 tubulin into GFP-transfected cells. Ncd overexpression resulted in the formation of MT bundles that exhibited dynamic "looping" behavior never observed in control cells. Photobleaching studies and fluorescence speckle microscopy analysis demonstrated that neighboring MTs in bundles could slide against each other with velocities of 0.1 microm/s, corresponding to the velocities of movement of the recombinant Ncd in in vitro motility assays. Our data, for the first time, demonstrate generation of sliding forces between adjacent MTs by Ncd, and they confirm the proposed roles of kinesins-14 in the mitotic spindle morphogenesis.

  12. Chromophore-Assisted Light Inactivation and Self-Organization of Microtubules and Motors

    Science.gov (United States)

    Surrey, Thomas; Elowitz, Michael B.; Wolf, Pierre-Etienne; Yang, Feng; Nedelec, Francois; Shokat, Kevan; Leibler, Stanislas

    1998-04-01

    Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination. We then use fluorescein-labeled hemagglutinin antibody fragments, together with relatively low-power continuous-wave illumination to examine the effectiveness of CALI targeted to kinesin. We show that CALI can destroy kinesin activity in at least two ways: it can either result in the apparent loss of motor activity, or it can cause irreversible attachment of the kinesin enzyme to its microtubule substrate. Finally, we apply this implementation of CALI to an in vitro system of motor proteins and microtubules that is capable of self-organized aster formation. In this system, CALI can effectively perturb local structure formation by blocking or reducing the degree of aster formation in chosen regions of the sample, without influencing structure formation elsewhere.

  13. ASTER Expedited L1A Reconstructed Unprocessed Instrument Data V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER Expedited L1A Reconstructed Unprocessed Instrument Data is produced with the express purpose of providing the ASTER Science Team members and others, data...

  14. ASTER Expedited L1B Registered Radiance at the Sensor V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Expedited ASTER Level-1B Registered Radiance at the Sensor data set is produced with the express purpose of providing ASTER Science Team members data of their...

  15. Validation of the ASTER instrument level 1A scene geometry

    Science.gov (United States)

    Kieffer, H.H.; Mullins, K.F.; MacKinnon, D.J.

    2008-01-01

    An independent assessment of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument geometry was undertaken by the U.S. ASTER Team, to confirm the geometric correction parameters developed and applied to Level 1A (radiometrically and geometrically raw with correction parameters appended) ASTER data. The goal was to evaluate the geometric quality of the ASTER system and the stability of the Terra spacecraft. ASTER is a 15-band system containing optical instruments with resolutions from 15- to 90-meters; all geometrically registered products are ultimately tied to the 15-meter Visible and Near Infrared (VNIR) sub-system. Our evaluation process first involved establishing a large database of Ground Control Points (GCP) in the mid-western United States; an area with features of an appropriate size for spacecraft instrument resolutions. We used standard U.S. Geological Survey (USGS) Digital Orthophoto Quads (DOQS) of areas in the mid-west to locate accurate GCPs by systematically identifying road intersections and recording their coordinates. Elevations for these points were derived from USGS Digital Elevation Models (DEMS). Road intersections in a swath of nine contiguous ASTER scenes were then matched to the GCPs, including terrain correction. We found no significant distortion in the images; after a simple image offset to absolute position, the RMS residual of about 200 points per scene was less than one-half a VNIR pixel. Absolute locations were within 80 meters, with a slow drift of about 10 meters over the entire 530-kilometer swath. Using strictly simultaneous observations of scenes 370 kilometers apart, we determined a stereo angle correction of 0.00134 degree with an accuracy of one microradian. The mid-west GCP field and the techniques used here should be widely applicable in assessing other spacecraft instruments having resolutions from 5 to 50-meters. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  16. MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization.

    Science.gov (United States)

    Delphin, Christian; Bouvier, Denis; Seggio, Maxime; Couriol, Emilie; Saoudi, Yasmina; Denarier, Eric; Bosc, Christophe; Valiron, Odile; Bisbal, Mariano; Arnal, Isabelle; Andrieux, Annie

    2012-10-12

    Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.

  17. LGN Directs Interphase Endothelial Cell Behavior via the Microtubule Network.

    Directory of Open Access Journals (Sweden)

    Catherine E Wright

    Full Text Available Angiogenic sprouts require coordination of endothelial cell (EC behaviors as they extend and branch. Microtubules influence behaviors such as cell migration and cell-cell interactions via regulated growth and shrinkage. Here we investigated the role of the mitotic polarity protein LGN in EC behaviors and sprouting angiogenesis. Surprisingly, reduced levels of LGN did not affect oriented division of EC within a sprout, but knockdown perturbed overall sprouting. At the cell level, LGN knockdown compromised cell-cell adhesion and migration. EC with reduced LGN levels also showed enhanced growth and stabilization of microtubules that correlated with perturbed migration. These results fit a model whereby LGN influences interphase microtubule dynamics in endothelial cells to regulate migration, cell adhesion, and sprout extension, and reveal a novel non-mitotic role for LGN in sprouting angiogenesis.

  18. Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How.

    Science.gov (United States)

    Meunier, Sylvain; Vernos, Isabelle

    2016-02-01

    In mitosis the cell assembles the bipolar spindle, a microtubule (MT)-based apparatus that segregates the duplicated chromosomes into two daughter cells. Most animal cells enter mitosis with duplicated centrosomes that provide an active source of dynamic MTs. However, it is now established that spindle assembly relies on the nucleation of acentrosomal MTs occurring around the chromosomes after nuclear envelope breakdown, and on pre-existing microtubules. Where chromosome-dependent MT nucleation occurs, when MT amplification takes place and how the two pathways function are still key questions that generate some controversies. We reconcile the data and present an integrated model accounting for acentrosomal microtubule assembly in the dividing cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  20. CHROMITITE PROSPECTING USING LANDSAT TM AND ASTER REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available Studying the ophiolite complexes using multispectral remote sensing satellite data are interesting because of high diversity of minerals and the source of podiform chromitites. This research developed an approach to discriminate lithological units and detecting host rock of chromitite bodies within ophiolitic complexes using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER and Landsat Thematic Mapper (TM satellite data. Three main ophiolite complexes located in south of Iran have been selected for the study. Spectral transform techniques, including minimum noise fraction (MNF and specialized band ratio were employed to detect different rock units and the identification of high-potential areas of chromite ore deposits within ophiolitic complexes. A specialized band ratio (4/1, 4/5, 4/7 of ASTER, MNF components and Spectral Angle Mapper (SAM on ASTER and Landsat TM data were used to distinguish ophiolitic rock units. Results show that the specialized band ratio was able to identify different rock units and serpentinized dunite as host rock of chromitites within ophiolitic complexes, appropriately. MNF components of ASTER and Landsat TM data were suitable to distinguish ophiolitic rock complexes at a regional scale. The integration of SAM and Feature Level Fusion (FLF used in this investigation discriminated the ophiolitic rock units and prepared detailed geological map for the study area. Accordingly, high potential areas (serpentinite dunite were identified in the study area for chromite exploration targets.The approach used in this research offers the image processing techniques as a robust, reliable, fast and cost-effective method for detecting serpentinized dunite as host rock of chromitite bodies within vast ophiolite complexes using ASTER and Landsat TM satellite data.

  1. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  2. Shaping plant microtubule networks via overlap formation

    NARCIS (Netherlands)

    Keijzer, de Jeroen

    2017-01-01

    Microtubules are long filaments made up from protein building blocks and ubiquitously employed by eukaryotic cells for a wide range of often essential cellular processes. To perform these functions, microtubules are virtually always organized into higher order networks. Microtubule networks in cells

  3. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.

    Science.gov (United States)

    Braun, M; Wasteneys, G O

    1998-05-01

    The organization of the microtubule (MT) and actin microfilament (MF) cytoskeleton of tip-growing rhizoids and protonemata of characean green algae was examined by confocal laser scanning microscopy. This analysis included microinjection of fluorescent tubulin and phallotoxins into living cells, as well as immunofluorescence labeling of fixed material and fluorescent phallotoxin labeling of unfixed material. Although the morphologically very similar positively gravitropic (downward growing) rhizoids and negatively gravitropic (upward growing) protonemata show opposite gravitropic responses, no differences were detected in the extensive three-dimensional distribution of actin MFs and MTs in both cell types. Tubulin microinjection revealed that in contrast to internodal cells, fluorescent tubulin incorporated very slowly into the MT arrays of rhizoids, suggesting that MT dynamics are very different in tip-growing and diffusely expanding cells. Microtubules assembled from multiple sites at the plasma membrane in the basal zone, and a dense subapical array emerged from a diffuse nucleation centre on the basal side of the nuclear envelope. Immunofluorescence confirmed these distribution patterns but revealed more extensive MT arrays. In the basal zone, short branching clusters of MTs form two cortical hemicylinders. Subapical, axially oriented MTs are distributed in equal density throughout the peripheral and inner cytoplasm and are closely associated with subapical organelles. Microtubules, however, are completely absent from the apical zones of rhizoids and protonemata. Actin MFs were found in all zones of rhizoids and protonemata including the apex. Two files of axially oriented bundles of subcortical actin MFs and ring-like actin structures in the streaming endoplasm of rhizoids were detected in the basal zones by microinjection or rhodamine-phalloidin labeling. The subapical zone contains a dense array of mainly axially oriented actin MFs that co-distribute with

  4. Taking directions: the role of microtubule-bound nucleation in the self-organization of the plant cortical array

    Science.gov (United States)

    Deinum, Eva E.; Tindemans, Simon H.; Mulder, Bela M.

    2011-10-01

    The highly aligned cortical microtubule array of interphase plant cells is a key regulator of anisotropic cell expansion. Recent computational and analytical work has shown that the non-equilibrium self-organization of this structure can be understood on the basis of experimentally observed collisional interactions between dynamic microtubules attached to the plasma membrane. Most of these approaches assumed that new microtubules are homogeneously and isotropically nucleated on the cortical surface. Experimental evidence, however, shows that nucleation mostly occurs from other microtubules and under specific relative angles. Here, we investigate the impact of directed microtubule-bound nucleations on the alignment process using computer simulations. The results show that microtubule-bound nucleations can increase the degree of alignment achieved, decrease the timescale of the ordering process and widen the regime of dynamic parameters for which the system can self-organize. We establish that the major determinant of this effect is the degree of co-alignment of the nucleations with the parent microtubule. The specific role of sideways branching nucleations appears to allow stronger alignment while maintaining a measure of overall spatial homogeneity. Finally, we investigate the suggestion that observed persistent rotation of microtubule domains can be explained through a handedness bias in microtubule-bound nucleations, showing that this is possible only for an extreme bias and over a limited range of parameters.

  5. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  6. Griseofulvin-induced aggregation of microtubule protein.

    Science.gov (United States)

    Roobol, A; Gull, K; Pogson, C I

    1977-01-01

    Griseofulvin (7-chloro-2',4,6-trimethoxy-6'-methylspiro[benzofuran-2(3H),1'-[2]cyclohexene]-3,4'-dione) induces aggregation of microtubule protein at 0 degrees C. This aggregate contains approx. 90% of the microtubule-associated proteins originally present in the microtubule protein. The supernatant obtained after removal of the griseofulvin-induced aggregate does not form microtubules on warming at 37 degrees C. Addition of the griseofulvin-aggregated protein to this supernatant and warming to 37 degrees C gives rise to a limited amount of microtubule assembly. The possible involvement of griseofulvin-induced aggregation of microtubule protein at 0 degrees C in the inhibition by griseofulvin of microtubule assembly in vitro is discussed. Images PLATE 1 PLATE 2 PMID:588267

  7. Heterogeneous Tau-Tubulin Complexes Accelerate Microtubule Polymerization.

    Science.gov (United States)

    Li, Xiao-Han; Rhoades, Elizabeth

    2017-06-20

    Tau is an intrinsically disordered protein with a central role in the pathology of a number of neurodegenerative diseases. Tau normally functions to stabilize neuronal microtubules, although the mechanism underlying this function is not well understood. Of note is that the interaction between tau and soluble tubulin, which has implications both in understanding tau function as well as its role in disease, is underexplored. Here we investigate the relationship between heterogeneity in tau-tubulin complexes and tau function. Specifically, we created a series of truncated and scrambled tau constructs and characterized the size and heterogeneity of the tau-tubulin complexes formed under nonpolymerizing conditions. Function of the constructs was verified by tubulin polymerization assays. We find that, surprisingly, the pseudo-repeat region of tau, which flanks the core microtubule-binding domain of tau, contributes largely to the formation of large, heterogeneous tau tubulin complexes; additional independent tubulin binding sites exist in repeats two and three of the microtubule binding domain. Of particular interest is that we find positive correlation between the size and heterogeneity of the complexes and rate of tau-promoted microtubule polymerization. We propose that tau-tubulin can be described as a "fuzzy" complex, and our results demonstrate the importance of heterogeneous complex formation in tau function. This work provides fundamental insights into the functional mechanism of tau, and more broadly underscores the relevance of heterogeneous and dynamic complexes in the functions of intrinsically disordered proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Microtubule-associated proteins from Antarctic fishes.

    Science.gov (United States)

    Detrich, H W; Neighbors, B W; Sloboda, R D; Williams, R C

    1990-01-01

    Microtubules and presumptive microtubule-associated proteins (MAPs) were isolated from the brain tissues of four Antarctic fishes (Notothenia gibberifrons, N. coriiceps neglecta, Chaenocephalus aceratus, and a Chionodraco sp.) by means of a taxol-dependent, microtubule-affinity procedure (cf. Vallee: Journal of Cell Biology 92:435-442, 1982). MAPs from these fishes were similar to each other in electrophoretic pattern. Prominent in each preparation were proteins in the molecular weight ranges 410,000-430,000, 220,000-280,000, 140,000-155,000, 85,000-95,000, 40,000-45,000, and 32,000-34,000. The surfaces of MAP-rich microtubules were decorated by numerous filamentous projections. Exposure to elevated ionic strength released the MAPs from the microtubules and also removed the filamentous projections. Addition of fish MAPs to subcritical concentrations of fish tubulins at 0-5 degrees C induced the assembly of microtubules. Both the rate and the extent of this assembly increased with increasing concentrations of the MAPs. Sedimentation revealed that approximately six proteins, with apparent molecular weights between 60,000 and 300,000, became incorporated into the microtubule polymer. Bovine MAPs promoted microtubule formation by fish tubulin at 2-5 degrees C, and proteins corresponding to MAPs 1 and 2 co-sedimented with the polymer. MAPs from C. aceratus also enhanced the polymerization of bovine tubulin at 33 degrees C, but the microtubules depolymerized at 0 degrees C. We conclude that MAPs are part of the microtubules of Antarctic fishes, that these proteins promote microtubule assembly in much the same way as mammalian MAPs, and that they do not possess special capacities to promote microtubule assembly at low temperatures or to prevent cold-induced microtubule depolymerization.

  9. Kinetochore microtubules in PTK cells

    OpenAIRE

    1992-01-01

    We have analyzed the fine structure of 10 chromosomal fibers from mitotic spindles of PtK1 cells in metaphase and anaphase, using electron microscopy of serial thin sections and computer image processing to follow the trajectories of the component microtubules (MTs) in three dimensions. Most of the kinetochore MTs ran from their kinetochore to the vicinity of the pole, retaining a clustered arrangement over their entire length. This MT bundle was invaded by large numbers of other MTs that wer...

  10. Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1

    Science.gov (United States)

    Copeland, Sarah J.; Thurston, Susan F.; Copeland, John W.

    2016-01-01

    The Golgi apparatus is the central hub of intracellular trafficking and consists of tethered stacks of cis, medial, and trans cisternae. In mammalian cells, these cisternae are stitched together as a perinuclear Golgi ribbon, which is required for the establishment of cell polarity and normal subcellular organization. We previously identified FHDC1 (also known as INF1) as a unique microtubule-binding member of the formin family of cytoskeletal-remodeling proteins. We show here that endogenous FHDC1 regulates Golgi ribbon formation and has an apparent preferential association with the Golgi-derived microtubule network. Knockdown of FHDC1 expression results in defective Golgi assembly and suggests a role for FHDC1 in maintenance of the Golgi-derived microtubule network. Similarly, overexpression of FHDC1 induces dispersion of the Golgi ribbon into functional ministacks. This effect is independent of centrosome-derived microtubules and instead likely requires the interaction between the FHDC1 microtubule-binding domain and the Golgi-derived microtubule network. These effects also depend on the interaction between the FHDC1 FH2 domain and the actin cytoskeleton. Thus our results suggest that the coordination of actin and microtubule dynamics by FHDC1 is required for normal Golgi ribbon formation. PMID:26564798

  11. Cyclostreptin and microtubules: is a low-affinity binding site required?

    Science.gov (United States)

    Prussia, Andrew J; Yang, Yutao; Geballe, Matthew T; Snyder, James P

    2010-01-04

    Cyclostreptin (CS) is a recently discovered natural product with cytotoxic activity caused by microtubule stabilization. It is the only known microtubule-stabilizing agent (MSA) that covalently binds to tubulin. It also exhibits the fast-binding kinetics seen for other MSAs. Through careful peptide digestion and mass spectrometry analysis, Buey et al. found that two amino acids are labeled by CS: Asn228, near the known taxane-binding site, and Thr220, in the type I microtubule pore. This led Buey et al. to propose Thr220 resides at the site previously predicted to be a way station or low-affinity site. By using molecular dynamics simulations and structural considerations of the microtubule pore and tubulin dimer, we conclude that postulation of a low-affinity site is unnecessary to explain the available experimental data. An alternative explanation views the microtubule pore as a structural entity that presents a substantial kinetic barrier to ligand passage to the known taxane-binding site-an entry point to the microtubule lumen that becomes completely blocked if cyclostreptin is bound at Thr220. Simulations of the free dimer also suggest a common mechanism of microtubule stabilization for taxane site MSAs through their conformational effect on the M-loop. Such an effect explains the low tubulin polymerization caused by cyclostreptin in vitro despite its covalent attachment.

  12. Long astral microtubules and RACK-1 stabilize polarity domains during maintenance phase in Caenorhabditis elegans embryos.

    Directory of Open Access Journals (Sweden)

    Erkang Ai

    2011-04-01

    Full Text Available Cell polarity is a very well conserved process important for cell differentiation, cell migration, and embryonic development. After the establishment of distinct cortical domains, polarity cues have to be stabilized and maintained within a fluid and dynamic membrane to achieve proper cell asymmetry. Microtubules have long been thought to deliver the signals required to polarize a cell. While previous studies suggest that microtubules play a key role in the establishment of polarity, the requirement of microtubules during maintenance phase remains unclear. In this study, we show that depletion of Caenorhabditis elegans RACK-1, which leads to short astral microtubules during prometaphase, specifically affects maintenance of cortical PAR domains and Dynamin localization. We then investigated the consequence of knocking down other factors that also abolish astral microtubule elongation during polarity maintenance phase. We found a correlation between short astral microtubules and the instability of PAR-6 and PAR-2 domains during maintenance phase. Our data support a necessary role for astral microtubules in the maintenance phase of cell polarity.

  13. Laulimalide induces dose-dependent modulation of microtubule behaviour in the C. elegans embryo.

    Directory of Open Access Journals (Sweden)

    Megha Bajaj

    Full Text Available Laulimalide is a microtubule-binding drug that was originally isolated from marine sponges. High concentrations of laulimalide stabilize microtubules and inhibit cell division similarly to paclitaxel; however, there are important differences with respect to the nature of the specific cellular defects between these two drugs and their binding sites on the microtubule. In this study, we used Caenorhabditis elegans embryos to investigate the acute effects of laulimalide on microtubules in vivo, with a direct comparison to paclitaxel. We observed surprising dose-dependent effects for laulimalide, whereby microtubules were stabilized at concentrations above 100 nM, but destabilized at concentrations between 50 and 100 nM. Despite this behaviour at low concentrations, laulimalide acted synergistically with paclitaxel to stabilize microtubules when both drugs were used at sub-effective concentrations, consistent with observations of synergistic interactions between these two drugs in other systems. Our results indicate that laulimalide induces a concentration-dependent, biphasic change in microtubule polymer dynamics in the C. elegans embryo.

  14. Microtubules mediate germ-nuclear behavior after meiosis in conjugation of Paramecium caudatum.

    Science.gov (United States)

    Nakajima, Yuka; Ishida, Masaki; Mikami, Kazuyuki

    2002-01-01

    Microtubule dynamics in Paramecium caudatum were investigated with an anti-alpha-tubulin antibody and a microinjection technique to determine the function of microtubules on micronuclear behavior during conjugation. After meiosis, all four haploid micronuclei were connected by microtubular filaments to the paroral region and moved close to this region. This nuclear movement was micronucleus-specific, because some small macronuclear fragments transplanted from exconjugants never moved to the region. Only one of the four germ nuclei moved into the paroral cone and was covered by microtubule assembly (the so-called first assembly of microtubules, AM-I). This nucleus survived there, while the other three not in this region degenerated. The movement of germ nucleus was inhibited by the injection of the anti-alpha-tubulin antibody. The surviving germ nucleus divided once and produced a migratory pronucleus and a stationary pronucleus. Prior to the reciprocal exchange of the migratory nuclei, microtubules assembled around the migratory pronuclei again (the so-called second assembly of microtubules, AM-II). Then, the migratory pronucleus moved into the partner cell and fused with the stationary pronucleus. Thus, microtubules appear to be indispensable for nuclear behavior: they enable migration of postmeiotic nuclei to the paroral region and they permit the survival of the nucleus at the paroral cone.

  15. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Stuart C. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group; Geyer, Elisabeth A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; LaFrance, Benjamin [Univ. of California, Berkeley, CA (United States). Molecular and Cell Biology Graduate Program; Zhang, Rui [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Kellogg, Elizabeth H. [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Westermann, Stefan [Univ. of Duisburg-Essen, Essen (Germany). Dept. of Molecular Genetics, Center for Medical Biotechnology; Rice, Luke M. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biophysics; Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Nogales, Eva [Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Molecular Biology and California Inst. for Quantitative Biosciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division

    2017-06-26

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.

  16. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice

    Directory of Open Access Journals (Sweden)

    Coralie Fassier

    2013-01-01

    Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP, a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.

  17. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  18. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  19. Minus-end-directed motor Ncd exhibits processive movement that is enhanced by microtubule bundling in vitro.

    Science.gov (United States)

    Furuta, Ken'ya; Toyoshima, Yoko Yano

    2008-01-22

    Drosophila Ncd, a kinesin-14A family member, is essential for meiosis and mitosis. Ncd is a minus-end-directed motor protein that has an ATP-independent microtubule binding site in the tail region, which enables it to act as a dynamic crosslinker of microtubules to assemble and maintain the spindle. Although a tailless Ncd has been shown to be nonprocessive, the role of the Ncd tail in single-molecule motility is unknown. Here, we show that individual Ncd dimers containing the tail region can move processively along microtubules at very low ionic strength, which provides the first evidence of processivity for minus-end-directed kinesins. The movement of GFP-Ncd consists of both a unidirectional and a diffusive element, and it was sensitive to ionic strength. Motility of a truncation series of Ncd and removal of the tubulin tail suggested that the Ncd tail serves as an electrostatic tether to microtubules. Under higher ionic conditions, Ncd showed only a small bias in diffusion along "single" microtubules, whereas it exhibited processive movement along "bundled" microtubules. This property may allow Ncd to accumulate preferentially in the vicinity of focused microtubules and then to crosslink and slide microtubules, possibly contributing to dynamic spindle self-organization.

  20. Microtubule arrays and Arabidopsis stomatal development

    National Research Council Canada - National Science Library

    Jessica R. Lucas; Jeanette A. Nadeau; Fred D. Sack

    Microtubule arrays in living cells were analysed during Arabidopsis stomatal development in order to more closely define stages in the pathway and contexts where intercellular signalling might operate...

  1. NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana.

    Science.gov (United States)

    Motose, Hiroyasu; Hamada, Takahiro; Yoshimoto, Kaori; Murata, Takashi; Hasebe, Mitsuyasu; Watanabe, Yuichiro; Hashimoto, Takashi; Sakai, Tatsuya; Takahashi, Taku

    2011-09-01

    NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates β-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of β-tubulins. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  2. Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation in Silico

    Science.gov (United States)

    2015-01-01

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force–deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000–26,000 pN·nm2) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies. PMID:25389565

  3. Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes.

    Science.gov (United States)

    Luptovčiak, Ivan; Komis, George; Takáč, Tomáš; Ovečka, Miroslav; Šamaj, Jozef

    2017-01-01

    KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

  4. Katanin: A Sword Cutting Microtubules for Cellular, Developmental, and Physiological Purposes

    Directory of Open Access Journals (Sweden)

    Ivan Luptovčiak

    2017-11-01

    Full Text Available KATANIN is a well-studied microtubule severing protein affecting microtubule organization and dynamic properties in higher plants. By regulating mitotic and cytokinetic and cortical microtubule arrays it is involved in the progression of cell division and cell division plane orientation. KATANIN is also involved in cell elongation and morphogenesis during plant growth. In this way KATANIN plays critical roles in diverse plant developmental processes including the development of pollen, embryo, seed, meristem, root, hypocotyl, cotyledon, leaf, shoot, and silique. KATANIN-dependent microtubule regulation seems to be under the control of plant hormones. This minireview provides an overview on available KATANIN mutants and discusses advances in our understanding of KATANIN biological roles in plants.

  5. Assessment of Landscape Fragmentation Associated With Urban Centers Using ASTER Data

    Science.gov (United States)

    Stefanov, W. L.

    2002-12-01

    The role of humans as an integral part of the environment and ecosystem processes has only recently been accepted into mainstream ecological thought. The realization that virtually all ecosystems on Earth have experienced some degree of human alteration or impact has highlighted the need to incorporate humans (and their environmental effects) into ecosystem models. A logical starting point for investigation of human ecosystem dynamics is examination of the land cover characteristics of large urban centers. Land cover and land use changes associated with urbanization are important drivers of local geological, hydrological, ecological, and climatic change. Quantification and monitoring of urban land cover/land use change is part of the primary mission of the ASTER instrument on board the NASA Terra satellite, and comprises the fundamental research objective of the Urban Environmental Monitoring (UEM) Program at Arizona State University. The UEM program seeks to acquire day/night, visible through thermal infrared data twice per year for 100 global urban centers (with an emphasis on semi-arid cities) over the nominal six-year life of the Terra mission. Data have been acquired for the majority of the target urban centers and are used to compare landscape fragmentation patterns on the basis of land cover classifications. Land cover classifications of urban centers are obtained using visible through mid-infrared reflectance and emittance spectra together with calculated vegetation index and spatial variance texture information (all derived from raw ASTER data). This information is combined within a classification matrix, using an expert system framework, to obtain final pixel classifications. Landscape fragmentation is calculated using a pixel per unit area metric for comparison between 55 urban centers with varying geographic and climatic settings including North America, South America, Europe, central and eastern Asia, and Australia. Temporal variations in land cover

  6. C-terminal region of MAP7 domain containing protein 3 (MAP7D3 promotes microtubule polymerization by binding at the C-terminal tail of tubulin.

    Directory of Open Access Journals (Sweden)

    Saroj Yadav

    Full Text Available MAP7 domain containing protein 3 (MAP7D3, a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7 family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD with the C-terminal tail (CT of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0 ± 0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.

  7. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex.

    Science.gov (United States)

    Jiang, Kai; Rezabkova, Lenka; Hua, Shasha; Liu, Qingyang; Capitani, Guido; Altelaar, A F Maarten; Heck, Albert J R; Kammerer, Richard A; Steinmetz, Michel O; Akhmanova, Anna

    2017-05-01

    ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.

  8. TIRF microscopy evanescent field calibration using tilted fluorescent microtubules.

    Science.gov (United States)

    Gell, C; Berndt, M; Enderlein, J; Diez, S

    2009-04-01

    Total internal reflection fluorescence microscopy has become a powerful tool to study the dynamics of sub-cellular structures and single molecules near substrate surfaces. However, the penetration depth of the evanescent field, that is, the distance at which the excitation intensity has exponentially decayed to 1/e, is often left undetermined. This presents a limit on the spatial information about the imaged structures. Here, we present a novel method to quantitatively characterize the illumination in total internal reflection fluorescence microscopy using tilted, fluorescently labelled, microtubules. We find that the evanescent field is well described by a single exponential function, with a penetration depth close to theoretically predicted values. The use of in vitro reconstituted microtubules as nanoscale probes results in a minimal perturbation of the evanescent field; excitation light scattering is eliminated and the refractive index of the sample environment is unchanged. The presented method has the potential to provide a generic tool for in situ calibration of the evanescent field.

  9. Movement of chromosomes with severed kinetochore microtubules.

    Science.gov (United States)

    Forer, Arthur; Johansen, Kristen M; Johansen, Jørgen

    2015-05-01

    Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore 'stub' of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules.

  10. Validation of MODIS Active Fire Products With Coincident ASTER Data

    Science.gov (United States)

    Csiszar, I. A.; Morisette, J. T.; Giglio, L.; Justice, C. O.

    2002-12-01

    Satellites provide valuable information for the large-scale monitoring of biomass burning over the globe. However, the accuracy of the satellite-derived fire products needs to be determined. An active fire product from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the polar orbiter Terra satellite has been available since 2000. A unique feature of the Terra satellite is the availability of coincident high resolution data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). In this study we used the elevated signal in the 30 m resolution ASTER channel 9 at 2.4 micron to characterize fires within the 1-km MODIS pixels. The probability of MODIS detection was determined by logistic regression as a function of sub-pixel fractional fire coverage and spatial heterogeneity. Examples of individual fires and summarized statistics will be presented for various regions of the globe. The effects of algorithm changes on product accuracy will also be discussed. This work is being undertaken in the framework of the international GOFC/GOLD-Fire program. Involvement of regional scientists in validation of satellite data products is encouraged and will help build a user community informed on the capabilities and limitations of a given product for subsequent application.

  11. Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the Drosophila syncytial embryo.

    Science.gov (United States)

    Webb, Rebecca L; Rozov, Orr; Watkins, Simon C; McCartney, Brooke M

    2009-10-01

    The Drosophila syncytial embryo is a powerful developmental model system for studying dynamic coordinated cytoskeletal rearrangements. Confocal microscopy has begun to reveal more about the cytoskeletal changes that occur during embryogenesis. Total internal reflection fluorescence (TIRF) microscopy provides a promising new approach for the visualization of cortical events with heightened axial resolution. We have applied TIRF microscopy to the Drosophila embryo to visualize cortical microtubule and actin dynamics in the syncytial blastoderm. Here, we describe the details of this technique, and report qualitative assessments of cortical microtubules and actin in the Drosophila syncytial embryo. In addition, we identified a peak of cortical microtubules during anaphase of each nuclear cycle in the syncytial blastoderm, and using images generated by TIRF microscopy, we quantitatively analyzed microtubule dynamics during this time.

  12. SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays.

    Science.gov (United States)

    Nakamura, Masayoshi; Lindeboom, Jelmer J; Saltini, Marco; Mulder, Bela M; Ehrhardt, David W

    2018-01-16

    The cortical microtubule arrays of higher plants are organized without centrosomes and feature treadmilling polymers that are dynamic at both ends. The control of polymer end stability is fundamental for the assembly and organization of cytoskeletal arrays, yet relatively little is understood about how microtubule minus ends are controlled in acentrosomal microtubule arrays, and no factors have been identified that act at the treadmilling minus ends in higher plants. Here, we identify Arabidopsis thaliana SPIRAL2 (SPR2) as a protein that tracks minus ends and protects them against subunit loss. SPR2 function is required to facilitate the rapid reorientation of plant cortical arrays as stimulated by light perception, a process that is driven by microtubule severing to create a new population of microtubules. Quantitative live-cell imaging and computer simulations reveal that minus protection by SPR2 acts by an unexpected mechanism to promote the lifetime of potential SPR2 severing sites, increasing the likelihood of severing and thus the rapid amplification of the new microtubule array. © 2018 Nakamura et al.

  13. Targeting microtubules by natural agents for cancer therapy.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Mukhtar, Hasan

    2014-02-01

    Natural compounds that target microtubules and disrupt the normal function of the mitotic spindle have proven to be one of the best classes of cancer chemotherapeutic drugs available in clinics to date. There is increasing evidence showing that even minor alteration of microtubule dynamics can engage the spindle checkpoint, arresting cell-cycle progression at mitosis and subsequently leading to cell death. Our improved understanding of tumor biology and our continued appreciation for what the microtubule targeting agents (MTAs) can do have helped pave the way for a new era in the treatment of cancer. The effectiveness of these agents for cancer therapy has been impaired, however, by various side effects and drug resistance. Several new MTAs have shown potent activity against the proliferation of various cancer cells, including resistance to the existing MTAs. Sustained investigation of the mechanisms of action of MTAs, development and discovery of new drugs, and exploring new treatment strategies that reduce side effects and circumvent drug resistance could provide more effective therapeutic options for patients with cancer. This review focuses on the successful cancer chemotherapy from natural compounds in clinical settings and the challenges that may abort their usefulness.

  14. INTEGRATION OF PALSAR AND ASTER SATELLITE DATA FOR GEOLOGICAL MAPPING IN TROPICS

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This research investigates the integration of the Phased Array type L-band Synthetic Aperture Radar (PALSAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER satellite data for geological mapping applications in tropical environments. The eastern part of the central belt of peninsular Malaysia has been investigated to identify structural features and mineral mapping using PALSAR and ASTER data. Adaptive local sigma and directional filters were applied to PALSAR data for detecting geological structure elements in the study area. The vegetation, mineralogic and lithologic indices for ASTER bands were tested in tropical climate. Lineaments (fault and fractures and curvilinear (anticline or syncline were detected using PALSAR fused image of directional filters (N-S, NE-SW, and NW-SE.Vegetation index image map show vegetation cover by fusing ASTER VNIR bands. High concentration of clay minerals zone was detected using fused image map derived from ASTER SWIR bands. Fusion of ASTER TIR bands produced image map of the lithological units. Results indicate that data integration and data fusion from PALSAR and ASTER sources enhanced information extraction for geological mapping in tropical environments.

  15. Actin filaments connected with the microtubules of lipotubuloids, cytoplasmic domains rich in lipid bodies and microtubules.

    Science.gov (United States)

    Kwiatkowska, M; Popłońska, K; Stepiński, D

    2005-12-01

    Lipotubuloids, i.e., cytoplasmic domains containing an agglomeration of lipid bodies surrounded by half-unit membrane, entwined and held together by a system of microtubules, have been found in the ovary epidermis of Ornithogalum umbellatum. Ultrastructural studies demonstrated thin filaments in lipotubuloids that are probably actin filaments arranged parallel to microtubules. It is suggested that interaction of actin filaments with the microtubules determines the driving force for the rotary motion characteristic of lipotubuloids, as this movement is sensitive to cytochalasin B.

  16. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  17. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  18. An essential role for katanin p80 and microtubule severing in male gamete production.

    Directory of Open Access Journals (Sweden)

    Liza O'Donnell

    Full Text Available Katanin is an evolutionarily conserved microtubule-severing complex implicated in multiple aspects of microtubule dynamics. Katanin consists of a p60 severing enzyme and a p80 regulatory subunit. The p80 subunit is thought to regulate complex targeting and severing activity, but its precise role remains elusive. In lower-order species, the katanin complex has been shown to modulate mitotic and female meiotic spindle dynamics and flagella development. The in vivo function of katanin p80 in mammals is unknown. Here we show that katanin p80 is essential for male fertility. Specifically, through an analysis of a mouse loss-of-function allele (the Taily line, we demonstrate that katanin p80, most likely in association with p60, has an essential role in male meiotic spindle assembly and dissolution and the removal of midbody microtubules and, thus, cytokinesis. Katanin p80 also controls the formation, function, and dissolution of a microtubule structure intimately involved in defining sperm head shaping and sperm tail formation, the manchette, and plays a role in the formation of axoneme microtubules. Perturbed katanin p80 function, as evidenced in the Taily mouse, results in male sterility characterized by decreased sperm production, sperm with abnormal head shape, and a virtual absence of progressive motility. Collectively these data demonstrate that katanin p80 serves an essential and evolutionarily conserved role in several aspects of male germ cell development.

  19. TIPsy tour guides: How microtubule plus-end tracking proteins (+TIPs facilitate axon guidance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bearce

    2015-06-01

    Full Text Available The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules in growth cone navigation. Here, we focus on the role of singular pioneer microtubules, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs. These +TIPs accumulate at the dynamic ends of microtubules, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.

  20. Three-dimensional tracking of plus-tips by lattice light-sheet microscopy permits the quantification of microtubule growth trajectories within the mitotic apparatus

    Science.gov (United States)

    Yamashita, Norio; Morita, Masahiko; Legant, Wesley R.; Chen, Bi-Chang; Betzig, Eric; Yokota, Hideo; Mimori-Kiyosue, Yuko

    2015-10-01

    Mitotic apparatus, which comprises hundreds of microtubules, plays an essential role in cell division, ensuring the correct segregation of chromosomes into each daughter cell. To gain insight into its regulatory mechanisms, it is essential to detect and analyze the behavior of individual microtubule filaments. However, the discrimination of discrete microtubule filaments within the mitotic apparatus is beyond the capabilities of conventional light microscopic technologies. Recently, we detected three-dimensional (3-D) microtubule growth dynamics within the cellular cytoplasmic space using lattice light-sheet microscopy in conjunction with microtubule growth marker protein end-binding 1, a microtubule plus-end-tracking protein, which was fused to green fluorescent protein (EB1-GFP). This technique enables high-resolution 3-D imaging at subsecond intervals. We adapted mathematical computing and geometric representation techniques to analyze spatial variations in microtubule growth dynamics within the mitotic spindle apparatus. Our analytical approach enabled the different dynamic properties of individual microtubules to be determined, including the direction and speed of their growth, and their growth duration within a 3-D spatial map. Our analysis framework provides an important step toward a more comprehensive understanding of the mechanisms driving cellular machinery at the whole-cell level.

  1. Biological Information Processing in Single Microtubules

    Science.gov (United States)

    2014-03-05

    replaced x and y spatial co- ordinates of a fractal space with frequency (x,y~f1,f2). Their microtubule research showed that the resonance frequency...human technologies Lecture 2: Topological insulators, semiconductors, metals: the physics of new generation materials Lecture 3: Revolutionary...bottom we have rectangular close packing. Scale bar 8 nm. The lattice switching is found to occur naturally, reversibly in microtubule. c. Three

  2. Comparing Landsat-7 ETM+ and ASTER Imageries to Estimate Daily Evapotranspiration Within a Mediterranean Vineyard Watershed

    Science.gov (United States)

    Montes, Carlo; Jacob, Frederic

    2017-01-01

    We compared the capabilities of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imageries for mapping daily evapotranspiration (ET) within a Mediterranean vineyard watershed. We used Landsat and ASTER data simultaneously collected on four dates in 2007 and 2008, along with the simplified surface energy balance index (S-SEBI) model. We used previously ground-validated good quality ASTER estimates as reference, and we analyzed the differences with Landsat retrievals in light of the instrumental factors and methodology. Although Landsat and ASTER retrievals of S-SEBI inputs were different, estimates of daily ET from the two imageries were similar. This is ascribed to the S-SEBI spatial differencing in temperature, and opens the path for using historical Landsat time series over vineyards.

  3. ASTER L2 Surface Reflectance VNIR and Crosstalk Corrected SWIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Reflectance is a multi-file product that contains atmospherically corrected data for both the Visible Near-Infrared (VNIR) and Shortwave...

  4. LBA-ECO LC-23 ASTER and MODIS Fire Data Comparison for Brazil: 2003-2004

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains data associated with MODIS fire maps generated using two different algorithms and compared against fire maps produced by ASTER....

  5. SAFARI 2000 ASTER and MODIS Fire Data Comparison, Dry Season 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — These data relate to a paper (Morisette et al., 2005) that describes the use of high spatial resolution ASTER data to determine the accuracy of the moderate...

  6. LBA-ECO LC-23 ASTER and MODIS Fire Data Comparison for Brazil: 2003-2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains data associated with MODIS fire maps generated using two different algorithms and compared against fire maps produced by ASTER. These data...

  7. ASTER Global Emissivity Dataset 1-kilometer Binary V003 - AG1KMB

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Advanced Spaceborne Thermal Emission and Reflection radiometer Global Emissivity Database (ASTER GED) was developed by the National Aeronautics and Space...

  8. ASTER Global Emissivity Dataset 100-meter Binary V003 - AG100B

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Advanced Spaceborne Thermal Emission and Reflection radiometer Global Emissivity Database (ASTER GED) was developed by the National Aeronautics and Space...

  9. ASTER Global Emissivity Dataset Monthly 0.05 degree NetCDF4

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) is a collection of monthly files (see known issues for gaps)...

  10. ASTER L1B Registered Radiance at the Sensor V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER Level-1B Registered Radiance at the Sensor product contains radiometrically calibrated and geometrically co-registered data for the acquired channels of...

  11. High-resolution gulf water skin temperature estimation using TIR/ASTER

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; ManiMurali, R.; Mahender, K.

    Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) is the highest-resolution multi-spectral thermal infrared (TIR) sensor currently available on a polar-orbiting spacecraft which allows surface temperature estimation, at a...

  12. ASTER Global Emissivity Data Set Monthly 0.05 degree V041 - AG5KMMOH

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) is a collection of monthly files (see known issues for gaps)...

  13. ASTER Global Emissivity Dataset, Monthly, 0.05 deg, HDF5 V041

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Dataset (GED) is a collection of monthly files (see known issues for gaps)...

  14. ASTER Global Emissivity Dataset, Monthly, 0.05 deg, netCDF4 V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The AG5KMMOH.004 dataset was decommissioned as of December 14, 2016. Users are encouraged to use Version 4.1 of ASTER Global Emissivity Dataset, Monthly, 0.05...

  15. ASTER Global Emissivity Dataset, Monthly, 0.05 deg, HDF5 V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The AG5KMMOH.004 dataset was decommissioned as of December 14, 2016. Users are encouraged to use Version 4.1 of ASTER Global Emissivity Dataset, Monthly, 0.05...

  16. Activation of tubulin assembly into microtubules upon a series of repeated femtosecond laser impulses

    NARCIS (Netherlands)

    Tulub, AA; Stefanov, VE

    2004-01-01

    Tubulin, a globular protein, mostly distributed in nature in the dimeric alpha, beta form, can polymerize in vivo and in vitro into microtubules-longitudinal dynamic assemblies, involved in numerous cellular functions, including cell division and signaling. Tubulin polymerization starts upon binding

  17. On-Orbit Spatial Characterization of MODIS with ASTER Aboard the Terra Spacecraft

    Science.gov (United States)

    Xie, Yong; Xiong, Xiaoxiong

    2011-01-01

    This letter presents a novel approach for on-orbit characterization of MODerate resolution Imaging Spectroradiometer (MODIS) band-to-band registration (BBR) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra spacecraft. The spatial resolution of ASTER spectral bands is much higher than that of MODIS, making it feasible to characterize MODIS on-orbit BBR using their simultaneous observations. The ground target selected for on-orbit MODIS BBR characterization in this letter is a water body, which is a uniform scene with high signal contrast relative to its neighbor areas. A key step of this approach is to accurately localize the measurements of each MODIS band in an ASTER measurement plane coordinate (AMPC). The ASTER measurements are first interpolated and aggregated to simulate the measurements of each MODIS band. The best measurement match between ASTER and each MODIS band is obtained when the measurement difference reaches its weighted minimum. The position of each MODIS band in the AMPC is then used to calculate the BBR. The results are compared with those derived from MODIS onboard Spectro-Radiometric Calibration Assembly. They are in good agreement, generally less than 0.1 MODIS pixel. This approach is useful for other sensors without onboard spatial characterization capability. Index Terms Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), band-to-band registration (BBR), MODerate resolution Imaging Spectroradiometer (MODIS), spatial characterization.

  18. Possible link between guanosine 5|IH triphosphate hydrolysis and solitary waves in microtubules

    Science.gov (United States)

    Trpisováand, B.; Tuszyński, J. A.

    1997-03-01

    The cytoskeleton of eucaryotic cells is composed of several classes of protein polymers among which microtubules (MTs) are the most prominent. Microtubules are important in a variety of cellular activities but the physical reasons underlying their behavior are largely unknown. Inside the cell they usually exist in an unstable dynamic state characterized by a continuous addition and dissociation of the molecules of tubulin. The addition of each tubulin is accompanied by the hydrolysis of guanosine 5|IH triphosphate bound to the Β monomer of the molecule. Experiments show that an amount of energy comparable to 6.25×10-21 J is freed in this reaction. A few researchers have put forward a hypothesis that this energy can travel along MTs as a kinklike solitary wave. In this paper two models are analyzed whose special solutions are traveling kinks that arise as a result of coupling between dielectric and elastic degrees of freedom of tubulin. By means of these models a collision of the kink wave with an impurity in the microtubule is studied. The impurity may represent a protein attached to the microtubule or a structural discontinuity in the arrangement of the tubulin molecules. We conjecture that the collisions of the quanta of energy propagating in the form of kinks with such defects may explain some features of the microtubule behavior.

  19. The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons.

    Science.gov (United States)

    Chang, Jufang; Baloh, Robert H; Milbrandt, Jeffrey

    2009-07-01

    NIMA-related kinases (Neks) belong to a large family of Ser/Thr kinases that have critical roles in coordinating microtubule dynamics during ciliogenesis and mitotic progression. The Nek kinases are also expressed in neurons, whose axonal projections are, similarly to cilia, microtubule-abundant structures that extend from the cell body. We therefore investigated whether Nek kinases have additional, non-mitotic roles in neurons. We found that Nek3 influences neuronal morphogenesis and polarity through effects on microtubules. Nek3 is expressed in the cytoplasm and axons of neurons and is phosphorylated at Thr475 located in the C-terminal PEST domain, which regulates its catalytic activity. Although exogenous expression of wild-type or phosphomimic (T475D) Nek3 in cultured neurons has no discernible impact, expression of a phospho-defective mutant (T475A) or PEST-truncated Nek3 leads to distorted neuronal morphology with disturbed polarity and deacetylation of microtubules via HDAC6 in its kinase-dependent manner. Thus, the phosphorylation at Thr475 serves as a regulatory switch that alters Nek3 function. The deacetylation of microtubules in neurons by unphosphorylated Nek3 raises the possibility that it could have a role in disorders where axonal degeneration is an important component.

  20. Ringing the changes: emerging roles for DASH at the kinetochore-microtubule Interface.

    Science.gov (United States)

    Buttrick, Graham J; Millar, Jonathan B A

    2011-04-01

    Regulated interaction between kinetochores and the mitotic spindle is essential for the fidelity of chromosome segregation. Potentially deleterious attachments are corrected during prometaphase and metaphase. Correct attachments must persist during anaphase, when spindle-generated forces separate chromosomes to opposite poles. In yeast, the heterodecameric DASH complex plays a vital pole in maintaining this link. In vitro DASH forms both oligomeric patches and rings that can form load-bearing attachments with the tips of polymerising and depolymerising microtubules. In vivo, DASH localises primarily at the kinetochore, and has a role maintaining correct attachment between spindles and chromosomes in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Recent work has begun to describe how DASH acts alongside other components of the outer kinetochore to create a dynamic, regulated kinetochore-microtubule interface. Here, we review some of the key experiments into DASH function and discuss their implications for the nature of kinetochore-microtubule attachments in yeast and other organisms.

  1. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism

    Science.gov (United States)

    Li, Xuan; Thome, Sarah; Ma, Xiaodan; Amrute-Nayak, Mamta; Finigan, Alison; Kitt, Lauren; Masters, Leanne; James, John R.; Shi, Yuguang; Meng, Guoyu; Mallat, Ziad

    2017-01-01

    Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including cardiovascular and Alzheimer’s disease. Here we show that microtubule-affinity regulating kinase 4 (MARK4) binds to NLRP3 and drives it to the microtubule-organizing centre, enabling the formation of one large inflammasome speck complex within a single cell. MARK4 knockdown or knockout, or disruption of MARK4-NLRP3 interaction, impairs NLRP3 spatial arrangement and limits inflammasome activation. Our results demonstrate how an evolutionarily conserved protein involved in the regulation of microtubule dynamics orchestrates NLRP3 inflammasome activation by controlling its transport to optimal activation sites, and identify a targetable function for MARK4 in the control of innate immunity. PMID:28656979

  2. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation.

    Science.gov (United States)

    Takatani, Shogo; Otani, Kento; Kanazawa, Mai; Takahashi, Taku; Motose, Hiroyasu

    2015-11-01

    Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.

  3. A study of microtubule dipole lattices

    Science.gov (United States)

    Nandi, Shubhendu

    Microtubules are cytoskeletal protein polymers orchestrating a host of important cellular functions including, but not limited to, cell support, cell division, cell motility and cell transport. In this thesis, we construct a toy-model of the microtubule lattice composed of vector Ising spins representing tubulin molecules, the building block of microtubules. Nearest-neighbor and next-to-nearest neighbor interactions are considered within an anisotropic dielectric medium. As a consequence of the helical topology, we observe that certain spin orientations render the lattice frustrated with nearest neighbor ferroelectric and next-to-nearest neighbor antiferroelectric bonds. Under these conditions, the lattice displays the remarkable property of stabilizing certain spin patterns that are robust to thermal fluctuations. We model this behavior in the framework of a generalized Ising model known as the J1 - J2 model and theoretically determine the set of stable patterns. Employing Monte-Carlo methods, we demonstrate the stability of such patterns in the microtubule lattice at human physiological temperatures. This suggests a novel biological mechanism for storing information in living organisms, whereby the tubulin spin (dipole moment) states become information bits and information gets stored in microtubules in a way that is robust to thermal fluctuations.

  4. Thermal remote sensing of ice-debris landforms using ASTER

    Science.gov (United States)

    Brenning, A.; Peña, M. A.; Long, S.; Soliman, A.

    2011-10-01

    Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potentials of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions

  5. Neuroprotective effects of butterbur and rough aster against kainic Acid-induced oxidative stress in mice.

    Science.gov (United States)

    Oh, Sang Hee; Sok, Dai-Eun; Kim, Mee Ree

    2005-01-01

    The separate and combined neuroprotective effects of rough aster (Aster scaber) and butterbur (Petasite japonicus) extracts against oxidative damage in the brain of mice challenged with kainic acid were examined by comparing behavioral changes and biochemical parameters of oxidative stress. Rough aster butanol extract (400 mg/kg) and/or butterbur butanol extract (150 or 400 mg/kg) were administered to male ICR mice, 6-8 weeks old, through a gavage for 4 days consecutively, and on day 4, kainic acid (50 mg/kg) was administered intraperitoneally. Compared with the vehicle-treated control, no significant changes in body and brain weight were observed in mice administered rough aster or butterbur butanol extract. Administration of kainic acid only, causing a lethality of approximately 54%, resulted in a significant decrease of total glutathione level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. The administration of butterbur or rough aster extract (400 mg/kg) decreased the lethality (50%) of kainic acid to 25%, alleviated the behavioral signs of neurotoxicity, restored the cytosolic glutathione level of brain homogenate to approximately 80% (P butterbur extract at a low dose (150 mg/kg), the combination of rough aster extract and butterbur extract reduced the lethality to 12.5%. Moreover, the combination delayed the onset time of behavioral signs by twofold, and significantly preserved the level of cytosolic glutathione peroxidase and glutathione reductase activities. However, the other biochemical parameters were not altered significantly by the combination. Thus, the combination of two vegetable extracts significantly increased the neuroprotective action against kainic acid-induced neurotoxicity. Based on these findings, the combination of butterbur extract and rough aster extract contains a functional agent or agents that protect against oxidative stress in the brain of mice.

  6. Dynamics and regulation at the tip : a high resolution view on microtubele assembly

    NARCIS (Netherlands)

    Munteanu, Laura

    2008-01-01

    Microtubules are highly dynamic protein polymers that and are essential for intracellular organization and fundamental processes like transport and cell division. In cells, a wide family of microtubule-associated proteins (MAPs) tightly regulates microtubule dynamics. The work presented in this

  7. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    Science.gov (United States)

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30–45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the

  8. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Liangliang Chen

    2016-10-01

    Full Text Available How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1 mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.

  9. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy.

    Science.gov (United States)

    Ayoub, Ahmed Taha; Staelens, Michael; Prunotto, Alessio; Deriu, Marco A; Danani, Andrea; Klobukowski, Mariusz; Tuszynski, Jack Adam

    2017-09-22

    Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)-tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole-dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by - 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  10. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  11. Tubulin dimers oligomerize before their incorporation into microtubules.

    Directory of Open Access Journals (Sweden)

    Julien Mozziconacci

    Full Text Available In the presence of GTP, purified dimers of alpha- and beta-tubulin will interact longitudinally and laterally to self-assemble into microtubules (MTs. This property provides a powerful in vitro experimental system to describe MT dynamic behavior at the micrometer scale and to study effects and functioning of a large variety of microtubule associated proteins (MAPs. Despite the plethora of such data produced, the molecular mechanisms of MT assembly remain disputed. Electron microscopy (EM studies suggested that tubulin dimers interact longitudinally to form short oligomers which form a tube by lateral interaction and which contribute to MT elongation. This idea is however challenged: Based on estimated association constants it was proposed that single dimers represent the major fraction of free tubulin. This view was recently supported by measurements suggesting that MTs elongate by addition of single tubulin dimers. To solve this discrepancy, we performed a direct measurement of the longitudinal interaction energy for tubulin dimers. We quantified the size distribution of tubulin oligomers using EM and fluorescence correlation spectroscopy (FCS. From the distribution we derived the longitudinal interaction energy in the presence of GDP and the non-hydrolysable GTP analog GMPCPP. Our data suggest that MT elongation and nucleation involves interactions of short tubulin oligomers rather than dimers. Our approach provides a solid experimental framework to better understand the role of MAPs in MT nucleation and growth.

  12. Localization of a microtubule organizing center by kinesin motors

    Science.gov (United States)

    Arita, Chikashi; Bosche, Jonas; Lück, Alexander; Santen, Ludger

    2017-12-01

    Molecular motors are proteins which bind to a polarized cytoskeletal filament and move steadily along it. Molecular motors of the kinesin family move along microtubules (MTs), which are a component of the cytoskeleton. A very processive kinesin motor Kip3p, is known to promote catastrophes and pausing of MT, in particular on cortical contact. These properties play an important role in positioning the mitotic spindle in budding yeast. We present a theoretical approach to positioning of MT networks under confinement. In order to explore a localization mechanism of a microtubule organizing center (MTOC), we introduce an idealized system of two MTs connected by a MTOC. The dynamics of Kip3p is modeled by interacting stochastic particles, which allows us to study the effects of motor-induced depolymerization in a finite volume. We find that localization in the middle of the cavity is realized in a parameter regime where the motor densities on the MTs are increasing with the distance from the MTOC. Localization at an asymmetric position is also possible by tuning model parameters.

  13. Microtubule nucleation by γ-tubulin complexes.

    Science.gov (United States)

    Kollman, Justin M; Merdes, Andreas; Mourey, Lionel; Agard, David A

    2011-10-12

    Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.

  14. Microtubules guide root hair tip growth

    NARCIS (Netherlands)

    Sieberer, B.; Ketelaar, M.J.; Esseling, J.J.; Emons, A.M.C.

    2005-01-01

    The ability to establish cell polarity is crucial to form and function of an individual cell. Polarity underlies critical processes during cell development, such as cell growth, cell division, cell differentiation and cell signalling. Interphase cytoplasmic microtubules in tip-growing fission yeast

  15. Microtubule Initiation from the Nuclear Surface Controls Cortical Microtubule Growth Polarity and Orientation in Arabidopsis thaliana

    Science.gov (United States)

    Ambrose, Chris; Wasteneys, Geoffrey O.

    2014-01-01

    The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions. We found that microtubules initiate from nuclei and enter the cortex in two directions along the long axis of the cell, creating bipolar longitudinal CMT arrays. Such arrays were observed in all cell types showing nuclear MTOC activity, including root hairs, recently divided cells in root tips, and the leaf epidermis. In order to confirm the causal nature of nuclei in bipolar array formation, we displaced nuclei by centrifugation, which generated a corresponding shift in the bipolarity split point. We also found that bipolar CMT arrays were associated with bidirectional trafficking of vesicular components to cell ends. Together, these findings reveal a conserved function of plant nuclear MTOCs and centrosomes/spindle pole bodies in animals and fungi, wherein all structures serve to establish polarities in microtubule growth. PMID:25008974

  16. Microtubule initiation from the nuclear surface controls cortical microtubule growth polarity and orientation in Arabidopsis thaliana.

    Science.gov (United States)

    Ambrose, Chris; Wasteneys, Geoffrey O

    2014-09-01

    The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions. We found that microtubules initiate from nuclei and enter the cortex in two directions along the long axis of the cell, creating bipolar longitudinal CMT arrays. Such arrays were observed in all cell types showing nuclear MTOC activity, including root hairs, recently divided cells in root tips, and the leaf epidermis. In order to confirm the causal nature of nuclei in bipolar array formation, we displaced nuclei by centrifugation, which generated a corresponding shift in the bipolarity split point. We also found that bipolar CMT arrays were associated with bidirectional trafficking of vesicular components to cell ends. Together, these findings reveal a conserved function of plant nuclear MTOCs and centrosomes/spindle pole bodies in animals and fungi, wherein all structures serve to establish polarities in microtubule growth. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Microtubules search for chromosomes by pivoting around the spindle pole

    Science.gov (United States)

    Tolic-Norrelykke, Iva

    2014-03-01

    During cell division, proper segregation of genetic material between the two daughter cells requires that the spindle microtubules attach to the chromosomes via kinetochores, protein complexes on the chromosome. The central question, how microtubules find kinetochores, is still under debate. We observed in fission yeast that kinetochores are captured by microtubules pivoting around the spindle pole body, instead of growing towards the kinetochores. By introducing a theoretical model, we show that the observed angular movement of microtubules is sufficient to explain the process of kinetochore capture. Our theory predicts that the speed of the capture process depends mainly on how fast microtubules pivot. We confirmed this prediction experimentally by speeding up and slowing down microtubule pivoting. Thus, microtubules explore space by pivoting, as they search for intracellular targets such as kinetochores.

  18. Dual effect of procaine in sea urchin eggs. Inducer and inhibitor of microtubule assembly.

    Science.gov (United States)

    Coffe, G; Foucault, G; Raymond, M N; Pudles, J

    1985-01-01

    An increase in the amount of cytoplasmic filamentous structures (cytoplasmic matrix and aster) which were recovered after hexylene glycol/Triton X-100 treatment of sea urchin eggs (Paracentrotus lividus) activated by 0.2-2.5 mM procaine was observed. At higher activator concentrations, an opposite effect was observed and formation of these cytoplasmic structures was inhibited in the presence of 10 mM procaine. This inhibitory effect was reversed by diluting the drug in the incubation medium. DNase I inhibition assays on egg homogenates which were performed at different time points of the activation process, show that the same amount of actin was induced to polymerize in eggs activated either by 2.5 or 10 mM procaine. However, colchicine-binding assays on the 100 000 g particulate fractions of these homogenates show that in eggs activated by 10 mM procaine, in contrast to those activated by 2.5 mM, tubulin polymerization was inhibited and microtubules were disassembled. These results show that the dual effect of procaine in the organization of the egg cytoskeleton appears to be related to its effect on the state of tubulin.

  19. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  20. Characterizing and engineering microtubule properties for use in hybrid nanodevices

    Science.gov (United States)

    Jeune-Smith, Yolaine

    The emergence of nanotechnology in materials science research has had a major impact in biotechnology. Nature provides novel materials and structures that can be redesigned and reassembled for engineering purposes. One system in particular is the intracellular transport system consisting of the kinesin motor protein and microtubule. For synthetic devices, either the bead geometry (kinesin motors walking along a microtubule coated surface) or the gliding geometry (microtubules gliding over a kinesin-coated surface) is used. Molecular shuttles, utilizing the gliding geometry, have the potential for use in hybrid nanodevices such as biosensors. The kinesin-powered molecular shuttle has been extensively studied. Advances have been made in controlling activation of the kinesin motors, guiding movement of kinesin motors and cargo loading onto the molecular shuttles. In this dissertation the interest in molecular shuttle development is extended with a research focus on the microtubule filament. The microtubule is a central element in the molecular shuttle. The sensing capabilities and limitations of molecular shuttles are tied to the microtubules. It would be desired to have nanodevices with molecular shuttles of predictable size, speed and lifetime. Three materials properties of the microtubules are examined. First, the microtubule length distribution is measured and compared to the length distribution of synthetic polymers. Post polymerization processing techniques, shearing and annealing, are utilized to try to reduce the polydispersity index of the microtubule length distribution. Second, the effect of kinesin activity on the lifetime of the microtubules is observed and quantified. Degradation of microtubules is monitored as a function of kinesin activity and time. Lastly, the effect of cargo loading on microtubule gliding speed is measured to gain insight on the mechanism of cargo attachment. These property behaviors will play a role in the final development of

  1. Reducing the Discrepancy Between ASTER and MODIS Land Surface Temperature Products

    Directory of Open Access Journals (Sweden)

    Changqing Ke

    2007-12-01

    Full Text Available Human-induced global warming has significantly increased the importance ofsatellite monitoring of land surface temperature (LST on a global scale. The MODerate-resolution Imaging Spectroradiometer (MODIS provides a 1-km resolution LST productwith almost daily coverage of the Earth, invaluable to both local and global change studies.The Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER provides aLST product with a high spatial resolution of 90-m and a 16-day recurrent cycle,simultaneously acquired at the same height and nadir view as MODIS. ASTER andMODIS are complementary in resolution, offering a unique opportunity for scale-relatedstudies. ASTER and MODIS LST have been widely used but the errors in LST were mostlydisregarded. Correction of ASTER-to-MODIS LST discrepancies is essential for studiesreliant upon the joint use of these sensors. In this study, we compared three correctionapproaches: the Wan et al.’s approach, the refined Wan et al.’s approach, and thegeneralized split window (GSW algorithm based approach. The Wan et al.’s approachcorrects the MODIS 1-km LST using MODIS 5-km LST. The refined approach modifiesthe Wan et al.’s approach through incorporating ASTER emissivity and MODIS 5-km data.The GSW algorithm approach does not use MODIS 5-km but only ASTER emissivity data. We examined the case over a semi-arid terrain area for the part of the Loess Plateau of China. All the approaches reduced the ASTER-to-MODIS LST discrepancy effectively. With terrain correction, the original ASTER-to-MODIS LST difference reduced from 2.7±1.28 K to -0.1±1.87 K for the Wan et al.’s approach, 0.2±1.57 K for the refined approach, and 0.1±1.33 K for the GSW algorithm based approach. Among all the approaches, the GSW algorithm based approach performed best in terms of mean, standard deviation, root mean square root, and correlation coefficient.

  2. An integrated model of microtubule-based pronuclear motion in the single-celled C. elegans embryo

    Science.gov (United States)

    Shinar, Tamar; Shelley, Michael

    2010-11-01

    We present an integrated computational model of microtubule-based pronuclear motion in the single-celled C. elegans embryo. In this model, centrosomes initiate stochastic microtubule growth and these microtubules interact with motor proteins distributed in the cytoplasm. Consequent pulling forces drag the pronucleus through the cytoplasm, here modeled as an incompressible, Newtonian fluid whose motions are constrained by contact with the cell periphery. The cell periphery also limits microtubule growth. Our computational method is based on an immersed boundary formulation which allows for the simultaneous treatment of fluid flow and the dynamics of structures immersed within. Our simulations show pronuclear migration, and moreover, a geometry-dependent pronuclear centration and rotation very similar to that observed in vivo. We study the dynamic interaction of motor proteins embedded in the fluid with microtubule filaments, allowing for relative motion of fluid along MT tracks as has been observed experimentally. We demonstrate numerically that this is sufficient to propel the pronucleus while causing a counterflow of the cytoplasm.

  3. Microtubule-dependent ribosome localization in C. elegans neurons

    Science.gov (United States)

    Noma, Kentaro; Goncharov, Alexandr; Ellisman, Mark H

    2017-01-01

    Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in Caenorhabditis elegans. Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes in vivo, and provide insight into the mechanisms of active regulation of ribosome localization in neurons. PMID:28767038

  4. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    centrosomal MT array and abnormally long centriole-associated rootlet filaments. Cells lacking EB1 also had stumpy cilia and a disorganized centrosomal MT array, but rootlet filaments appeared normal. Further, live imaging revealed increased release frequency of MTs from the centrosome upon EB1 or EB3......EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends. EB1 plays a role in regulating MT dynamics, localizing other MT-associated proteins to the plus end, and in regulating interactions of MTs with the cell cortex, mitotic kinetochores and different......, are required for assembly of primary cilia in cultured human cells. The EB3 - siRNA ciliary phenotype could be rescued by GFP-EB1 expression, and GFP-EB3 over expression resulted in elongated cilia. Transmission electron microscopy (TEM) revealed that EB3-depleted cells possess stumpy cilia, a disorganized...

  5. Motor protein accumulation on antiparallel microtubule overlaps

    CERN Document Server

    Kuan, Hui-Shun

    2015-01-01

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. The center region, far from the overlap ends, has a constant motor density as one would na\\"ively expect. However, rather than following a simple binding equilibrium, the center ...

  6. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Czech Academy of Sciences Publication Activity Database

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, Michal; Simon, C.

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012404. ISSN 2470-0045 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Vibrational modes * Microtubule * Resonance frequencies Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.366, year: 2016

  7. Organization of spindle microtubules in Ochromonas danica

    OpenAIRE

    1980-01-01

    The entire framework of microtubules (MTs) in the mitotic apparatus of Ochromonas danica is reconstructed (except at the spindle poles) from transverse serial sections. Eleven spindles were sectioned and used for numerical data, but only four were reconstructed: a metaphase, an early anaphase, a late anaphase, and telophase. Four major classes of MTs are observed: (a) free MTs (MTs not attached to either pole); (b) interdigitated MTs (MTs attached to one pole which laterally associate with MT...

  8. Differential turnover of tyrosinated and detyrosinated microtubules.

    OpenAIRE

    Webster, D. R.; Gundersen, G G; Bulinski, J C; Borisy, G G

    1987-01-01

    Turnover of tyrosinated and detyrosinated microtubules ([Tyr]MTs and [Glu]MTs, respectively) was analyzed by the combined use of hapten-mediated immunocytochemistry and peptide-specific antibodies. Cells were microinjected with hapten-labeled tubulin and then processed for triple-label immunofluorescence to determine the pattern of incorporation of the injected subunits into [Tyr]- and [Glu]-MTs. Within 2 min of microinjection, hapten-labeled domains were present at the ends of virtually all ...

  9. Interpolar spindle microtubules in PTK cells

    OpenAIRE

    1993-01-01

    Spindle microtubules (MTs) in PtK1 cells, fixed at stages from metaphase to telophase, have been reconstructed using serial sections, electron microscopy, and computer image processing. We have studied the class of MTs that form an interdigitating system connecting the two spindle poles (interpolar MTs or ipMTs) and their relationship to the spindle MTs that attach to kinetochores (kMTs). Viewed in cross section, the ipMTs cluster with antiparallel near neighbors throughout mitosis; this bund...

  10. Anti-cancer activity of Aster tataricus on SCC-9 human oral ...

    African Journals Online (AJOL)

    Background: Oral squamous carcinoma is a head and neck cancer, which is one of the types of malignant cancers. Present study evaluates the anticancer activity of Aster tataricus (AT) on SCC-9 human oral squamous carcinoma. Materials and Methods: Ethanol extract of AT was prepared by a standard procedure of ...

  11. Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data

    Science.gov (United States)

    Vaughan, R.G.; Keszthelyi, L.P.; Davies, A.G.; Schneider, D.J.; Jaworowski, C.; Heasler, H.

    2010-01-01

    Understanding the characteristics of volcanic thermal emissions and how they change with time is important for forecasting and monitoring volcanic activity and potential hazards. Satellite instruments view volcanic thermal features across the globe at various temporal and spatial resolutions. Thermal features that may be a precursor to a major eruption, or indicative of important changes in an on-going eruption can be subtle, making them challenging to reliably identify with satellite instruments. The goal of this study was to explore the limits of the types and magnitudes of thermal anomalies that could be detected using satellite thermal infrared (TIR) data. Specifically, the characterization of sub-pixel thermal features with a wide range of temperatures is considered using ASTER multispectral TIR data. First, theoretical calculations were made to define a "thermal mixing detection threshold" for ASTER, which quantifies the limits of ASTER's ability to resolve sub-pixel thermal mixing over a range of hot target temperatures and % pixel areas. Then, ASTER TIR data were used to model sub-pixel thermal features at the Yellowstone National Park geothermal area (hot spring pools with temperatures from 40 to 90 ??C) and at Mount Erebus Volcano, Antarctica (an active lava lake with temperatures from 200 to 800 ??C). Finally, various sources of uncertainty in sub-pixel thermal calculations were quantified for these empirical measurements, including pixel resampling, atmospheric correction, and background temperature and emissivity assumptions.

  12. First detection of Aster Yellows caused by phytoplasma on Camelina sativa L. in South Dakota

    Science.gov (United States)

    Camelina is an oilseed crop that has been introduced to South Dakota primarily for biofuel production. Camelina plants (cv. ‘S0-40’) exhibiting symptoms typical of aster yellows infection were observed in a 10-acre demonstration plot at the Dakota Lakes Research Farm in Hughes County, South Dakota ...

  13. Cyanodermella asteris sp. nov. (Ostropales) from the inflorescence axis of Aster tataricus

    DEFF Research Database (Denmark)

    Jahn, Linda; Schafhauser, Thomas; Pan, Stefan

    2017-01-01

    An endophytic fungus isolated from the inflorescence axis of Aster tataricus is proposed as a new species. Phylogenetic analyses based on sequences from the ribosomal DNA cluster (the ITS1+5.8S+ITS2, 18S, and 28S regions) and the RPB2 gene revealed a relationship between the unknown fungus...

  14. Improvement of dem Generation from Aster Images Using Satellite Jitter Estimation and Open Source Implementation

    Science.gov (United States)

    Girod, L.; Nuth, C.; Kääb, A.

    2015-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.

  15. Ecosystem engineering effects of Aster tripolium and Salicornia procumbens saltmarsh on macrofaunal community structure

    NARCIS (Netherlands)

    Van der Wal, D.; Herman, P.M.J.

    2012-01-01

    This paper examines how perennial Aster tripolium and annual Salicornia procumbens salt marshes alter the biomass, density, taxon diversity, and community structure of benthic macrofauna, and also examines the role of elevation, sediment grain size, plant cover, and marsh age. Core samples were

  16. Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER

    Science.gov (United States)

    McCorkel, J.

    2014-01-01

    The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.

  17. The ecotope influence on anatomo-morphological features of Aster amellus L.

    Directory of Open Access Journals (Sweden)

    Natalia A. Leonova

    2013-04-01

    Full Text Available The article regarded to Aster amellus– rare species within floristic complex of the Penza region. It is listed in the Red Book of the Penza region. The correlation was revealed between the anatomical and morphological plant structure and the environmental conditions of its habitat.

  18. Mechanism of microtubule stabilization by taccalonolide AJ.

    Science.gov (United States)

    Wang, Yuxi; Yu, Yamei; Li, Guo-Bo; Li, Shu-Ang; Wu, Chengyong; Gigant, Benoît; Qin, Wenming; Chen, Hao; Wu, Yangping; Chen, Qiang; Yang, Jinliang

    2017-06-06

    As a major component of the cytoskeleton, microtubules consist of αβ-tubulin heterodimers and have been recognized as attractive targets for cancer chemotherapy. Microtubule-stabilizing agents (MSAs) promote polymerization of tubulin and stabilize the polymer, preventing depolymerization. The molecular mechanisms by which MSAs stabilize microtubules remain elusive. Here we report a 2.05 Å crystal structure of tubulin complexed with taccalonolide AJ, a newly identified taxane-site MSA. Taccalonolide AJ covalently binds to β-tubulin D226. On AJ binding, the M-loop undergoes a conformational shift to facilitate tubulin polymerization. In this tubulin-AJ complex, the E-site of tubulin is occupied by GTP rather than GDP. Biochemical analyses confirm that AJ inhibits the hydrolysis of the E-site GTP. Thus, we propose that the β-tubulin E-site is locked into a GTP-preferred status by AJ binding. Our results provide experimental evidence for the connection between MSA binding and tubulin nucleotide state, and will help design new MSAs to overcome taxane resistance.

  19. GLACIER VOLUME CHANGE ESTIMATION USING TIME SERIES OF IMPROVED ASTER DEMS

    Directory of Open Access Journals (Sweden)

    L. Girod

    2016-06-01

    Full Text Available Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER system embarked on the Terra (EOS AM-1 satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter

  20. Electric field generated by axial longitudinal vibration modes of microtubule.

    Science.gov (United States)

    Cifra, M; Pokorný, J; Havelka, D; Kucera, O

    2010-05-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. We calculated electric field generated by axial longitudinal vibration modes of microtubules for random, and coherent excitation. In case of coherent excitation of vibrations, the electric field intensity is highest at the end of microtubule. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of microtubule polymerization via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play an important role in biological self-organization. 2010 Elsevier Ireland Ltd. All rights reserved.

  1. [Cross comparison of ASTER and Landsat ETM+ multispectral measurements for NDVI and SAVI vegetation indices].

    Science.gov (United States)

    Xu, Han-qiu; Zhang, Tie-jun

    2011-07-01

    The present paper investigates the quantitative relationship between the NDVI and SAVI vegetation indices of Landsat and ASTER sensors based on three tandem image pairs. The study examines how well ASTER sensor vegetation observations replicate ETM+ vegetation observations, and more importantly, the difference in the vegetation observations between the two sensors. The DN values of the three image pairs were first converted to at-sensor reflectance to reduce radiometric differences between two sensors, images. The NDVI and SAVI vegetation indices of the two sensors were then calculated using the converted reflectance. The quantitative relationship was revealed through regression analysis on the scatter plots of the vegetation index values of the two sensors. The models for the conversion between the two sensors, vegetation indices were also obtained from the regression. The results show that the difference does exist between the two sensors, vegetation indices though they have a very strong positive linear relationship. The study found that the red and near infrared measurements differ between the two sensors, with ASTER generally producing higher reflectance in the red band and lower reflectance in the near infrared band than the ETM+ sensor. This results in the ASTER sensor producing lower spectral vegetation index measurements, for the same target, than ETM+. The relative spectral response function differences in the red and near infrared bands between the two sensors are believed to be the main factor contributing to their differences in vegetation index measurements, because the red and near infrared relative spectral response features of the ASTER sensor overlap the vegetation "red edge" spectral region. The obtained conversion models have high accuracy with a RMSE less than 0.04 for both sensors' inter-conversion between corresponding vegetation indices.

  2. Microtubules are organized independently of the centrosome in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Nguyen Michelle M

    2011-12-01

    Full Text Available Abstract Background The best-studied arrangement of microtubules is that organized by the centrosome, a cloud of microtubule nucleating and anchoring proteins is clustered around centrioles. However, noncentrosomal microtubule arrays are common in many differentiated cells, including neurons. Although microtubules are not anchored at neuronal centrosomes, it remains unclear whether the centrosome plays a role in organizing neuronal microtubules. We use Drosophila as a model system to determine whether centrosomal microtubule nucleation is important in mature neurons. Results In developing and mature neurons, centrioles were not surrounded by the core nucleation protein γ-tubulin. This suggests that the centrioles do not organize functional centrosomes in Drosophila neurons in vivo. Consistent with this idea, centriole position was not correlated with a specific region of the cell body in neurons, and growing microtubules did not cluster around the centriole, even after axon severing when the number of growing plus ends is dramatically increased. To determine whether the centrosome was required for microtubule organization in mature neurons, we used two approaches. First, we used DSas-4 centriole duplication mutants. In these mutants, centrioles were present in many larval sensory neurons, but they were not fully functional. Despite reduced centriole function, microtubule orientation was normal in axons and dendrites. Second, we used laser ablation to eliminate the centriole, and again found that microtubule polarity in axons and dendrites was normal, even 3 days after treatment. Conclusion We conclude that the centrosome is not a major site of microtubule nucleation in Drosophila neurons, and is not required for maintenance of neuronal microtubule organization in these cells.

  3. Molecular Pathway of Microtubule Organization at the Golgi Apparatus.

    Science.gov (United States)

    Wu, Jingchao; de Heus, Cecilia; Liu, Qingyang; Bouchet, Benjamin P; Noordstra, Ivar; Jiang, Kai; Hua, Shasha; Martin, Maud; Yang, Chao; Grigoriev, Ilya; Katrukha, Eugene A; Altelaar, A F Maarten; Hoogenraad, Casper C; Qi, Robert Z; Klumperman, Judith; Akhmanova, Anna

    2016-10-10

    The Golgi apparatus controls the formation of non-centrosomal microtubule arrays important for Golgi organization, polarized transport, cell motility, and cell differentiation. Here, we show that CAMSAP2 stabilizes and attaches microtubule minus ends to the Golgi through a complex of AKAP450 and myomegalin. CLASPs stabilize CAMSAP2-decorated microtubules but are not required for their Golgi tethering. AKAP450 is also essential for Golgi microtubule nucleation, and myomegalin and CDK5RAP2 but not CAMSAP2 contribute to this function. In the absence of centrosomes, AKAP450- and CAMSAP2-dependent pathways of microtubule minus-end organization become dominant, and the presence of at least one of them is needed to maintain microtubule density. Strikingly, a compact Golgi can be assembled in the absence of both centrosomal and Golgi microtubules. However, CAMSAP2- and AKAP450-dependent Golgi microtubules facilitate Golgi reorientation and cell invasion in a 3D matrix. We propose that Golgi-anchored microtubules are important for polarized cell movement but not for coalescence of Golgi membranes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Calculation of the Electromagnetic Field Around a Microtubule

    Directory of Open Access Journals (Sweden)

    D. Havelka

    2009-01-01

    Full Text Available Microtubules are important structures in the cytoskeleton which organizes the cell. A single microtubule is composed of electrically polar structures, tubulin heterodimers, which have a strong electric dipole moment. Vibrations are expected to be generated in microtubules, thus tubulin heterodimers oscillate as electric dipoles. This gives rise to an electromagnetic field which is detected around the cells. We calculate here the electromagnetic field of microtubules if they are excited at 1 GHz. This paper includes work done for the bachelor thesis of the first author. 

  5. Producing Conditional Mutants for Studying Plant Microtubule Function

    Energy Technology Data Exchange (ETDEWEB)

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  6. In vivo FRET imaging revealed a regulatory role of RanGTP in kinetochore-microtubule attachments via Aurora B kinase.

    Directory of Open Access Journals (Sweden)

    Yoke-Peng Lee

    Full Text Available Under the fluctuating circumstances provided by the innate dynamics of microtubules and opposing tensions resulted from microtubule-associated motors, it is vital to ensure stable kinetochore-microtubule attachments for accurate segregation. However, a comprehensive understanding of how this regulation is mechanistically achieved remains elusive. Using our newly designed live cell FRET time-lapse imaging, we found that post-metaphase RanGTP is crucial in the maintenance of stable kinetochore-microtubule attachments by regulating Aurora B kinase via the NES-bearing Mst1. More importantly, our study demonstrates that by ensuring stable alignment of metaphase chromosomes prior to segregation, RanGTP is indispensible in governing the genomic integrity and the fidelity of cell cycle progression. Our findings suggest an additional role of RanGTP beyond its known function in mitotic spindle assembly during the prometaphase-metaphase transition.

  7. Alteramide B is a microtubule antagonist of inhibiting Candida albicans.

    Science.gov (United States)

    Ding, Yanjiao; Li, Yaoyao; Li, Zhenyu; Zhang, Juanli; Lu, Chunhua; Wang, Haoxin; Shen, Yuemao; Du, Liangcheng

    2016-10-01

    Alteramide B (ATB), isolated from Lysobacter enzymogenes C3, was a new polycyclic tetramate macrolactam (PTM). ATB exhibited potent inhibitory activity against several yeasts, particularly Candida albicans SC5314, but its antifungal mechanism is unknown. The structure of ATB was established by extensive spectroscopic analyses, including high-resolution mass spectrometry, 1D- and 2D-NMR, and CD spectra. Flow cytometry, fluorescence microscope, transmission electron microscope, molecular modeling, overexpression and site-directed mutation studies were employed to delineate the anti-Candida molecular mechanism of ATB. ATB induced apoptosis in C. albicans through inducing reactive oxygen species (ROS) production by disrupting microtubules. Molecular dynamics studies revealed the binding patterns of ATB to the β-tubulin subunit. Overexpression of the wild type and site-directed mutants of the β-tubulin gene (TUBB) changed the sensitivity of C. albicans to ATB, confirming the binding of ATB to β-tubulin, and indicating that the binding sites are L215, L217, L273, L274 and R282. In vivo, ATB significantly improved the survival of the candidiasis mice and reduced fungal burden. The molecular mechanism underlying the ATB-induced apoptosis in C. albicans is through inhibiting tubulin polymerization that leads to cell cycle arrest at the G2/M phase. The identification of ATB and the study of its activity provide novel mechanistic insights into the mode of action of PTMs against the human pathogen. This study shows that ATB is a new microtubule inhibitor and a promising anti-Candida lead compound. The results also support β-tubulin as a potential target for anti-Candida drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Emerging microtubule targets in glioma therapy

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Reginato, M.J.; Baas, P.W.; D'Agostino, L.; Legido, A.; Tuszynski, J. A.; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 22, č. 1 (2015), s. 49-72 ISSN 1071-9091 R&D Projects: GA MŠk LH12050; GA MZd NT14467 Grant - others:GA AV ČR M200521203PIPP; NIH(US) R01 NS028785; Philadelphia Health Education Corporation (PHEC)–St. Christopher’s Hospital for Children Reunified Endowment (C.D.K.)(US) 323256 Institutional support: RVO:68378050 Keywords : glioma tumorigenesis * glioblastoma * tubulin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.303, year: 2015

  9. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging.

    Science.gov (United States)

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Holzinger, Andreas; Wasteneys, Geoffrey O

    2016-01-01

    Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high-pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography.

  10. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule

    Science.gov (United States)

    Yang, Jianhong; Wang, Yuxi; Wang, Taijing; Jiang, Jian; Botting, Catherine H.; Liu, Huanting; Chen, Qiang; Yang, Jinliang; Naismith, James H.; Zhu, Xiaofeng; Chen, Lijuan

    2016-06-01

    Molecules that alter the normal dynamics of microtubule assembly and disassembly include many anticancer drugs in clinical use. So far all such therapeutics target β-tubulin, and structural biology has explained the basis of their action and permitted design of new drugs. However, by shifting the profile of β-tubulin isoforms, cancer cells become resistant to treatment. Compounds that bind to α-tubulin are less well characterized and unexploited. The natural product pironetin is known to bind to α-tubulin and is a potent inhibitor of microtubule polymerization. Previous reports had identified that pironetin reacts with lysine-352 residue however analogues designed on this model had much lower potency, which was difficult to explain, hindering further development. We report crystallographic and mass spectrometric data that reveal that pironetin forms a covalent bond to cysteine-316 in α-tubulin via a Michael addition reaction. These data provide a basis for the rational design of α-tubulin targeting chemotherapeutics.

  11. Role of the Number of Microtubules in Chromosome Segregation during Cell Division

    CERN Document Server

    Bertalan, Zsolt; La Porta, Caterina A M; Zapperi, Stefano

    2015-01-01

    Faithful segregation of genetic material during cell division requires alignment of chromosomes between two spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated so that coherent chromosome motion emerges from a large collection of random and deterministic processes. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation during mitosis. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compa...

  12. The role of γ-tubulin in centrosomal microtubule organization.

    Directory of Open Access Journals (Sweden)

    Eileen O'Toole

    Full Text Available As part of a multi-subunit ring complex, γ-tubulin has been shown to promote microtubule nucleation both in vitro and in vivo, and the structural properties of the complex suggest that it also seals the minus ends of the polymers with a conical cap. Cells depleted of γ-tubulin, however, still display many microtubules that participate in mitotic spindle assembly, suggesting that γ-tubulin is not absolutely required for microtubule nucleation in vivo, and raising questions about the function of the minus end cap. Here, we assessed the role of γ-tubulin in centrosomal microtubule organisation using three-dimensional reconstructions of γ-tubulin-depleted C. elegans embryos. We found that microtubule minus-end capping and the PCM component SPD-5 are both essential for the proper placement of microtubules in the centrosome. Our results further suggest that γ-tubulin and SPD-5 limit microtubule polymerization within the centrosome core, and we propose a model for how abnormal microtubule organization at the centrosome could indirectly affect centriole structure and daughter centriole replication.

  13. CLIP-170 facilitates the formation of kinetochore-microtubule attachments

    NARCIS (Netherlands)

    Tanenbaum, M.E.; Galjart, N.; Vugt, M.A.T.M. van; Medema, R.H.

    2006-01-01

    CLIP-170 is a microtubule 'plus end tracking' protein involved in several microtubule-dependent processes in interphase. At the onset of mitosis, CLIP-170 localizes to kinetochores, but at metaphase, it is no longer detectable at kinetochores. Although RNA interference (RNAi) experiments have

  14. Structural microtubule cap: Stability, catastrophe, rescue, and third state

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Chretien, D.; Janosi, I.M.

    2002-01-01

    Microtubules polymerize from GTP-liganded tubulin dinners, but are essentially made of GDP-liganded tubulin. We investigate the tug-of-war resulting from the fact that GDP-liganded tubulin favors a curved configuration, but is forced to remain in a straight one when part of a microtubule. We poin...

  15. Structural basis for CRMP2-induced axonal microtubule formation.

    Science.gov (United States)

    Niwa, Shinsuke; Nakamura, Fumio; Tomabechi, Yuri; Aoki, Mari; Shigematsu, Hideki; Matsumoto, Takashi; Yamagata, Atsushi; Fukai, Shuya; Hirokawa, Nobutaka; Goshima, Yoshio; Shirouzu, Mikako; Nitta, Ryo

    2017-09-06

    Microtubule associated protein Collapsin response mediator protein 2 (CRMP2) regulates neuronal polarity in developing neurons through interactions with tubulins or microtubules. However, how CRMP2 promotes axonal formation by affecting microtubule behavior remains unknown. This study aimed to obtain the structural basis for CRMP2-tubulin/microtubule interaction in the course of axonogenesis. The X-ray structural studies indicated that the main interface to the soluble tubulin-dimer is the last helix H19 of CRMP2 that is distinct from the known C-terminal tail-mediated interaction with assembled microtubules. In vitro structural and functional studies also suggested that the H19-mediated interaction promoted the rapid formation of GTP-state microtubules directly, which is an important feature of the axon. Consistently, the H19 mutants disturbed axon elongation in chick neurons, and failed to authorize the structural features for axonal microtubules in Caenorhabditis elegans. Thus, CRMP2 induces effective axonal microtubule formation through H19-mediated interactions with a soluble tubulin-dimer allowing axonogenesis to proceed.

  16. Molecular Pathway of Microtubule Organization at the Golgi Apparatus

    NARCIS (Netherlands)

    Wu, Jingchao; de Heus, Cecilia; Liu, Qingyang|info:eu-repo/dai/nl/375265147; Bouchet, Benjamin P|info:eu-repo/dai/nl/371636019; Noordstra, Ivar; Jiang, Kai|info:eu-repo/dai/nl/374338094; Hua, Shasha|info:eu-repo/dai/nl/377295698; Martin, Maud; Yang, Chao; Grigoriev, Ilya; Katrukha, Eugene A; Altelaar, A F Maarten|info:eu-repo/dai/nl/304833517; Hoogenraad, Casper C|info:eu-repo/dai/nl/227263502; Qi, Robert Z; Klumperman, Judith; Akhmanova, Anna|info:eu-repo/dai/nl/156410591

    2016-01-01

    The Golgi apparatus controls the formation of non-centrosomal microtubule arrays important for Golgi organization, polarized transport, cell motility, and cell differentiation. Here, we show that CAMSAP2 stabilizes and attaches microtubule minus ends to the Golgi through a complex of AKAP450 and

  17. KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Garry L Coles

    2015-10-01

    Full Text Available The cell cycle must be tightly coordinated for proper control of embryonic development and for the long-term maintenance of organs such as the lung. There is emerging evidence that Kinesin family member 7 (Kif7 promotes Hedgehog (Hh signaling during embryonic development, and its misregulation contributes to diseases such as ciliopathies and cancer. Kif7 encodes a microtubule interacting protein that controls Hh signaling through regulation of microtubule dynamics within the primary cilium. However, whether Kif7 has a function in nonciliated cells remains largely unknown. The role Kif7 plays in basic cell biological processes like cell proliferation or cell cycle progression also remains to be elucidated. Here, we show that Kif7 is required for coordination of the cell cycle, and inactivation of this gene leads to increased cell proliferation in vivo and in vitro. Immunostaining and transmission electron microscopy experiments show that Kif7dda/dda mutant lungs are hyperproliferative and exhibit reduced alveolar epithelial cell differentiation. KIF7 depleted C3H10T1/2 fibroblasts and Kif7dda/dda mutant mouse embryonic fibroblasts have increased growth rates at high cellular densities, suggesting that Kif7 may function as a general regulator of cellular proliferation. We ascertained that in G1, Kif7 and microtubule dynamics regulate the expression and activity of several components of the cell cycle machinery known to control entry into S phase. Our data suggest that Kif7 may function to regulate the maintenance of the respiratory airway architecture by controlling cellular density, cell proliferation, and cycle exit through its role as a microtubule associated protein.

  18. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.

    Science.gov (United States)

    Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2015-01-01

    Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.

  19. Microtubules are an intracellular target of the plant terpene citral.

    Science.gov (United States)

    Chaimovitsh, David; Abu-Abied, Mohamad; Belausov, Eduard; Rubin, Baruch; Dudai, Nativ; Sadot, Einat

    2010-02-01

    Citral is a component of plant essential oils that possesses several biological activities. It has known medicinal traits, and is used as a food additive and in cosmetics. Citral has been suggested to have potential in weed management, but its precise mode of action at the cellular level is unknown. Here we investigated the immediate response of plant cells to citral at micromolar concentrations. It was found that microtubules of Arabidopsis seedlings were disrupted within minutes after exposure to citral in the gaseous phase, whereas actin filaments remained intact. The effect of citral on plant microtubules was both time- and dose-dependent, and recovery only occurred many hours after a short exposure of several minutes to citral. Citral was also able to disrupt animal microtubules, albeit less efficiently. In addition, polymerization of microtubules in vitro was inhibited in the presence of citral. Taken together, our results suggest that citral is a potent, volatile, anti-microtubule compound.

  20. Composition of essential oil and allelopathic activity of aromatic water of Aster lanceolatus Willd: (Asteraceae

    Directory of Open Access Journals (Sweden)

    Josiane de Fátima Gaspari Dias

    2009-09-01

    Full Text Available The essential oil obtained from flowers of Aster lanceolatus was submitted the CG-MS and presented as result thirteen substances with largest concentration; among them, the caryophyllene oxide with the larger one. The aromatic water obtained during the extraction process of this essential oil was forwarded to allelopathic test, and demonstrated to be capable to inhibit the germination and growth of Lactuca sativa.O óleo essencial obtido das flores de Aster lanceolatus foi submetido a CG-EM e apresentou como resultado treze substâncias, entre elas o óxido de cariofileno com a maior concentração. A água aromática obtida durante o processo de extração do óleo essencial foi encaminhada para teste alelopático, a qual demonstrou ser capaz de inibir a germinação e crescimento de Lactuca sativa.

  1. Visual interpretation of ASTER satellite data, Part II: Land use mapping in Mpumalanga,South Africa

    Directory of Open Access Journals (Sweden)

    Elna van Niekerk

    2007-09-01

    Full Text Available Since the initiation in 1960 of the era of satellite remote sensing to detect the different characteristics of the earth, a powerful tool was created to aid researchers. Many land-use studies were undertaken using Landsat MSS, Landsat TM and ETM, as well as SPOT satellite data. The application of these data to the mapping of land use and land cover at smaller scales was constrained by the limited spectral and/or spatial resolution of the data provided by these satellite sensors. In view of the relatively high cost of SPOT data, and uncertainty regarding the future continuation of the Landsat series, alternative data sources need to be investigated. In the absence of published previous research on this issue in South Africa, the purpose of this article is to investigate the value of visual interpretation of ASTER satellite images for the identification and mapping of land-use in an area in South Africa. The study area is situated in Mpumalanga, in the area of Witbank, around the Witbank and Doorndraai dams. This area is characterised by a variety of urban, rural and industrial land uses. Digital image processing of one Landsat 5 TM, one Landsat 7 ETM and one ASTER satellite image was undertaken, including atmospheric correction and georeferencing, natural colour composites, photo infrared colour composites (or false colour satellite images, band ratios, Normalised Difference Indices, as well as the Brightness, Greenness and Wetness Indices. The efficacy with which land use could be identified through the visual interpretation of the processed Landsat 5 TM, Landsat 7 TM and ASTER satellite images was compared. The published 1:50 000 topographical maps of the area were used for the purpose of initial verification. Findings of the visual interpretation process were verified by field visits to the study area. The study found that the ASTER satellite data produced clearer results and therefore have a higher mapping ability and capacity than the

  2. Estimation of Tree Size Diversity Using Object Oriented Texture Analysis and Aster Imagery

    Directory of Open Access Journals (Sweden)

    Ozdemir Senturk

    2008-08-01

    Full Text Available This study investigates the potential of object-based texture parameters extracted from 15m spatial resolution ASTER imagery for estimating tree size diversity in a Mediterranean forested landscape in Turkey. Tree size diversity based on tree basal area was determined using the Shannon index and Gini Coefficient at the sampling plot level. Image texture parameters were calculated based on the grey level co-occurrence matrix (GLCM for various image segmentation levels. Analyses of relationships between tree size diversity and texture parameters found that relationships between the Gini Coefficient and the GLCM values were the most statistically significant, with the highest correlation (r=0.69 being with GLCM Homogeneity values. In contrast, Shannon Index values were weakly correlated with image derived texture parameters. The results suggest that 15m resolution Aster imagery has considerable potential in estimating tree size diversity based on the Gini Coefficient for heterogeneous Mediterranean forests.

  3. Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection

    Science.gov (United States)

    Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin

    2010-01-01

    Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.

  4. Evaluation of the acute and subchronic toxicity of Aster tataricus L.F. ...

    African Journals Online (AJOL)

    ... on the liver; much less on the heart. The LD50 was 15.74 g/kg BW in mice, and the subchronic toxicity study, used a dosage of 0.34 g/kg/d.BW, showed that the toxic components of Aster tataricus L. f. were mainly concentrated in the petroleum ether fraction, followed by the ethyl acetate fraction, the n-butyl alcohol fraction, ...

  5. Google Earth's derived digital elevation model: A comparative assessment with Aster and SRTM data

    Science.gov (United States)

    Rusli, N.; Majid, M. R.; Din, A. H. M.

    2014-02-01

    This paper presents a statistical analysis showing additional evidence that Digital Elevation Model (DEM) derived from Google Earth is commendable and has a good correlation with ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) and SRTM (Shuttle Radar Topography Mission) elevation data. The accuracy of DEM elevation points from Google Earth was compared against that of DEMs from ASTER and SRTM for flat, hilly and mountainous sections of a pre-selected rural watershed. For each section, a total of 5,000 DEM elevation points were extracted as samples from each type of DEM data. The DEM data from Google Earth and SRTM for flat and hilly sections are strongly correlated with the R2 of 0.791 and 0.891 respectively. Even stronger correlation is shown for the mountainous section where the R2 values between Google Earth's DEM and ASTER's and between Google Earth's DEM and SRTM's DEMs are respectively 0.917 and 0.865. Further accuracy testing was carried out by utilising the DEM dataset to delineate Muar River's watershed boundary using ArcSWAT2009, a hydrological modelling software. The result shows that the percentage differences of the watershed size delineated from Google Earth's DEM compared to those derived from Department of Irrigation and Drainage's data (using 20m-contour topographic map), ASTER and SRTM data are 9.6%, 10.6%, and 7.6% respectively. It is therefore justified to conclude that the DEM derived from Google Earth is relatively as acceptable as DEMs from other sources.

  6. EXTRACTION OF FOREST STANDS PARAMETERS FROM ASTER DATA IN OPEN FOREST

    OpenAIRE

    Abbasi, M.; Riyahi Bakhtyarib, H. R.

    2012-01-01

    Tree crown size (CS) and stem number per hectare (SN) has become increasingly important for forest management and ecosystem monitoring. Tree crown size is also strongly related to other canopy structural parameters, such as diameter at breast height, tree height and biomass. For both issues, remote sensing data are attractive for their large-area and up-to-date mapping capacities. The QuickBird and ASTER imagery used in this study was acquired over Zagros Forests in southern Zagros region, Fa...

  7. TIRF assays for real-time observation of microtubules and actin coassembly: Deciphering tau effects on microtubule/actin interplay.

    Science.gov (United States)

    Prezel, Eléa; Stoppin-Mellet, Virginie; Elie, Auréliane; Zala, Ninon; Denarier, Eric; Serre, Laurence; Arnal, Isabelle

    2017-01-01

    Microtubule and actin cytoskeletons are key players in vital processes in cells. Although the importance of microtubule-actin interaction for cell development and function has been highlighted for years, the properties of these two cytoskeletons have been mostly studied separately. Thus we now need procedures to simultaneously assess actin and microtubule properties to decipher the basic mechanisms underlying microtubule-actin crosstalk. Here we describe an in vitro assay that allows the coassembly of both filaments and the real-time observation of their interaction by TIRF microscopy. We show how this assay can be used to demonstrate that tau, a neuronal microtubule-associated protein, is a bona fide actin-microtubule cross-linker. The procedure relies on the use of highly purified proteins and chemically passivated perfusion chambers. We present a step-by-step protocol to obtain actin and microtubule coassembly and discuss the major pitfalls. An ImageJ macro to quantify actin and microtubule interaction is also provided. © 2017 Elsevier Inc. All rights reserved.

  8. Accuracy Enhancement of ASTER Global Digital Elevation Models Using ICESat Data

    Directory of Open Access Journals (Sweden)

    Peter Reinartz

    2011-07-01

    Full Text Available Global Digital Elevation Models (GDEM are considered very attractive for current research and application areas due to their free and wide range accessibility. The ASTER Global Digital Elevation Model exhibits the highest spatial resolution data of all global DEMs and it is generated for almost the whole globe. Unfortunately, ASTERGDEM data include many artifacts and height errors that decrease the quality and elevation accuracy significantly. This study provides a method for quality improvement of the ASTER GDEM data by correcting systematic height errors using ICESat laser altimetry data and removing artifacts and anomalies based on a segment-based outlier detection and elimination algorithm. Additionally, elevation errors within water bodies are corrected using a water mask produced from a high-resolution shoreline data set. Results indicate that the accuracy of the corrected ASTER GDEM is significantly improved and most artifacts are appropriately eliminated. Nevertheless, artifacts containing lower height values with respect to the neighboring ground pixels are not entirely eliminated due to confusion with some real non-terrain 3D objects. The proposed method is particularly useful for areas where other high quality DEMs such as SRTM are not available.

  9. Detection of Alteration Induced by Onshore Gas Seeps from ASTER and WorldView-2 Data

    Directory of Open Access Journals (Sweden)

    Sanaz Salati

    2014-04-01

    Full Text Available Hydrocarbon seeps cause chemical and mineralogical changes at the surface, which can be detected by remote sensing. This paper aims at the detection of mineral alteration induced by gas seeps in a marly limestone formation, SW Iran. For this purpose, the multispectral Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER and the high spatial resolution WorldView-2 (WV-2 data were utilized for mapping surficial rock alteration. In addition, the potential of Visible Near Infrared (VNIR bands of the WV-2 and its high spatial resolution for mapping alterations was determined. Band ratioing, principal component analysis (PCA, data fusion and the boosted regression trees (BRT were applied to enhance and classify the altered and unaltered marly limestone formation. The alteration zones were identified and mapped by remote sensing analyses. Integrating the WV-2 into the ASTER data improved the spatial accuracy of the BRT classifications. The results showed that the BRT classification of the multiple band imagery (created from ASTER and WV-2 using regions of interest (ROIs around field data provides the best discrimination between altered and unaltered areas. It is suggested that the WV-2 dataset can provide a potential tool along higher spectral resolution data for mapping alteration minerals related to hydrocarbon seeps in arid and semi-arid areas.

  10. Detection of High Local Groundwater Inflow to Rock Tunnels using ASTER Satellite Images

    Directory of Open Access Journals (Sweden)

    M. Sharafi

    2013-09-01

    Full Text Available High local groundwater flow into rock tunnels may lead to a potential hazard and is an important factor influencing construction time and costs. Geological features such as fault zones and open fractures can be the source of very high local groundwater inflows. Having a reliable estimation of location groundwater inflows is essential before excavation of tunnels. To reduce the costs and time of field works, remote sensing investigations can be a good solution. The main aim of the present study is to propose a methodology for detecting the geomorphic markers of cuesta in the high local groundwater inflow to Nosoud tunnel using the satellite imagery data. For this purpose, a reflectance image from the ASTER satellite sensor was used. Our Experiments show that cuesta springs, caused by hydraulic fracturing, can be detected using the normalized difference vegetation index (NDVI map, computed on the ASTER image, and analyzing the topographic and morphometric features of the area. Moreover, observations in tunnel excavation stage showed that crossing through open fractures in hard and thick layers is the major cause of water inflow into the tunnel, which corresponds to the surface hydrogeological evidences obtained from the ASTER image.

  11. PEMETAAN SUHU PERMUKAAN LAUT (SPL MENGGUNAKAN CITRA SATELIT ASTER DI PERAIRAN LAUT JAWA BAGIAN BARAT MADURA

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Sulistyo Rini

    2010-10-01

    Full Text Available Oceanographical temperature in Java Sea is very important to be considered. This research was combines in-site observation technique, Geographical Information System (GLS and remote sensing in order to get accurate, present and updateable data. The aim of this research is to determine the distribution of sea-surface temperature and accuration-test value in Java Sea especially on western coast of Madura using ASTER satellite imagery. This research were used software of ENVI 4.5, ILWIS 3.3, and ArcGIS 9.3 and also changed the radian value until °C. Result showed that using ASTER satellite imagery within band 10 range between 32 "C-35 "C. Band 11,between 24.9"C 25,2"C. Band 12 between 16,7"C to 17"C. Band while band 13 abd 14 between 30.7, band 28. Band 11 is more accurate compared to Band 10, 12, 13. 14, the RMS Error on band 11 showed lower value compared to the other band.Keywords: Sea-surface Temperature. ASTER satellite imagery. Java Sea, Western coast of Madura

  12. Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome.

    Science.gov (United States)

    Moynihan, Katherine L; Pooley, Ryan; Miller, Paul M; Kaverina, Irina; Bader, David M

    2009-11-01

    The microtubule (MT) network is essential in a broad spectrum of cellular functions. Many studies have linked CENP-F to MT-based activities as disruption of this protein leads to major changes in MT structure and function. Still, the basis of CENP-F regulation of the MT network remains elusive. Here, our studies reveal a novel and critical localization and role for CENP-F at the centrosome, the major MT organizing center (MTOC) of the cell. Using a yeast two-hybrid screen, we identify Hook2, a linker protein that is essential for regulation of the MT network at the centrosome, as a binding partner of CENP-F. With recently developed immunochemical reagents, we confirm this interaction and reveal the novel localization of CENP-F at the centrosome. Importantly, in this first report of CENP-F(-/-) cells, we demonstrate that ablation of CENP-F protein function eliminates MT repolymerization after standard nocodazole treatment. This inhibition of MT regrowth is centrosome specific because MT repolymerization is readily observed from the Golgi in CENP-F(-/-) cells. The centrosome-specific function of CENP-F in the regulation of MT growth is confirmed by expression of truncated CENP-F containing only the Hook2-binding domain. Furthermore, analysis of partially reconstituted MTOC asters in cells that escape complete repolymerization block shows that disruption of CENP-F function impacts MT nucleation and anchoring rather than promoting catastrophe. Our study reveals a major new localization and function of CENP-F at the centrosome that is likely to impact a broad array of MT-based actions in the cell.

  13. Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages.

    Science.gov (United States)

    Li, Di; Liu, Yao; Yang, Ya; Chen, Jian-hong; Yang, Jie; Zou, Lin-yun; Tian, Zhi-qiang; Lv, Jun; Xia, Pei-yuan

    2013-06-15

    The looped host defense peptide CLP-19 is derived from a highly functional core region of the Limulus anti-LPS factor and exerts robust anti-LPS activity by directly interacting with LPS in the extracellular space. We previously showed that prophylactic administration of CLP-19 even 20 h prior to LPS challenge might significantly increase the survival rate in a lethal endotoxin shock mouse model. Such an effect may be associated with immune regulation of CLP-19. To investigate the underlying mechanisms, peptide affinity chromatography, immunofluorescence, and Western blotting procedures were used to identify α- and β-tubulin as direct and specific binding partners of CLP-19 in the mouse macrophage cell line RAW 264.7. Bioinformatic analysis using the AutoDock Vina molecular docking and PyMOL molecular graphics system predicted that CLP-19 would bind to the functional residues of both α- and β-tubulin and would be located within the groove of microtubules. Tubulin polymerization assay revealed that CLP-19 might induce polymerization of microtubules and prevent depolymerization. The immunoregulatory effect of CLP-19 involving microtubules was investigated by flow cytometry, immunofluorescence, and Western blotting, which showed that CLP-19 prophylactic treatment of RAW 264.7 cells significantly inhibited LPS-induced surface expression of TLR4. Taken together, these results suggest that CLP-19 binding to microtubules disrupts the dynamic equilibrium of microtubules, reducing the efficacy of microtubule-dependent vesicular transport that would otherwise translocate TLR4 from the endoplasmic reticulum to the cell surface.

  14. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.

    Science.gov (United States)

    Robert, Amélie; Herrmann, Harald; Davidson, Michael W; Gelfand, Vladimir I

    2014-07-01

    Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥ 5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.-Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. © FASEB.

  15. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  16. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  17. Decoration of microtubules in solution by the kinesin-14, Ncd.

    Science.gov (United States)

    Hjelm, Rex P; Stone, Deborah Bennett; Fletterick, Robert J; Mendelson, Robert A

    2010-11-01

    The kinesin-14, Ncd, is a cellular motor involved in microtubule spindle assembly and contraction during mitosis and meiosis. Like other members of the kinesin superfamily, Ncd consists of two motor heads connected by a linker and a long cargo-carrying stalk. The motor heads hydrolyze ATP to ADP to provide the power stroke that moves them and the cargo along the microtubule. Whereas conventional kinesins move processively along the sense of the microtubule right-handed helix, Ncd moves in the opposite direction, apparently using a different motive mechanism. According to the current model, the microtubule-binding state of Ncd is bound by one head and then released during the motive cycle. This is distinguished from the binding states of conventional kinesins, in which the motor heads are always bound in the motive cycle with alternating one-head and two-head binding. The objective was to determine the extent of binding, the binding states of Ncd in the presence of an ATP analogue, AMPPNP, and whether the binding is cooperative. Small-angle neutron scattering (SANS) of microtubules decorated with a deuterated Ncd construct, Ncd281, in solution containing 42% D(2)O was used. These conditions render the microtubule `invisible' to SANS, while amplifying the SANS from the Ncd constructs. In the presence of AMPPNP, 75% of Ncd281 was not bound. The remainder was bound cooperatively by one of its motor heads to the microtubule.

  18. Curcumin alters the cytoskeleton and microtubule organization on trophozoites of Giardia lamblia.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Filiberto; Palomo-Ligas, Lissethe; Hernández-Hernández, José Manuel; Pérez-Rangel, Armando; Aguayo-Ortiz, Rodrigo; Hernández-Campos, Alicia; Castillo, Rafael; González-Pozos, Sirenia; Cortés-Zárate, Rafael; Ramírez-Herrera, Mario Alberto; Mendoza-Magaña, María Luisa; Castillo-Romero, Araceli

    2017-08-01

    Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15μM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules. Copyright © 2017. Published by Elsevier B.V.

  19. Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells.

    Science.gov (United States)

    Lee, Jen-Yi; Harland, Richard M

    2007-11-01

    Cell shape changes are critical for morphogenetic events such as gastrulation, neurulation, and organogenesis. However, the cell biology driving cell shape changes is poorly understood, especially in vertebrates. The beginning of Xenopus laevis gastrulation is marked by the apical constriction of bottle cells in the dorsal marginal zone, which bends the tissue and creates a crevice at the blastopore lip. We found that bottle cells contribute significantly to gastrulation, as their shape change can generate the force required for initial blastopore formation. As actin and myosin are often implicated in contraction, we examined their localization and function in bottle cells. F-actin and activated myosin accumulate apically in bottle cells, and actin and myosin inhibitors either prevent or severely perturb bottle cell formation, showing that actomyosin contractility is required for apical constriction. Microtubules were localized in apicobasally directed arrays in bottle cells, emanating from the apical surface. Surprisingly, apical constriction was inhibited in the presence of nocodazole but not taxol, suggesting that intact, but not dynamic, microtubules are required for apical constriction. Our results indicate that actomyosin contractility is required for bottle cell morphogenesis and further suggest a novel and unpredicted role for microtubules during apical constriction.

  20. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast.

    Science.gov (United States)

    Rincon, Sergio A; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D; Tran, Phong T

    2017-05-17

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.

  1. Microtubule-associated proteins and tubulin interaction by isothermal titration calorimetry.

    Science.gov (United States)

    Tsvetkov, P O; Barbier, P; Breuzard, G; Peyrot, V; Devred, F

    2013-01-01

    Microtubules play an important role in a number of vital cell processes such as cell division, intracellular transport, and cell architecture. The highly dynamic structure of microtubules is tightly regulated by a number of stabilizing and destabilizing microtubule-associated proteins (MAPs), such as tau and stathmin. Because of their importance, tubulin-MAPs interactions have been extensively studied using various methods that provide researchers with complementary but sometimes contradictory thermodynamic data. Isothermal titration calorimetry (ITC) is the only direct thermodynamic method that enables a full thermodynamic characterization (stoichiometry, enthalpy, entropy of binding, and association constant) of the interaction after a single titration experiment. This method has been recently applied to study tubulin-MAPs interactions in order to bring new insights into molecular mechanisms of tubulin regulation. In this chapter, we review the technical specificity of this method and then focus on the use of ITC in the investigation of tubulin-MAPs binding. We describe technical issues which could arise during planning and carrying out the ITC experiments, in particular with fragile proteins such as tubulin. Using examples of stathmin and tau, we demonstrate how ITC can be used to gain major insights into tubulin-MAP interaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

    Science.gov (United States)

    Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.

    2017-05-01

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.

  3. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    Science.gov (United States)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  4. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  5. Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy.

    Science.gov (United States)

    King, Matthew; Petry, Sabine

    2016-01-01

    Mitotic and meiotic spindles consist primarily of microtubules, which originate from centrosomes and within the vicinity of chromatin. Indirect evidence suggested that microtubules also originate throughout the spindle, but the high microtubule density within the spindle precludes the direct observation of this phenomenon. By using meiotic Xenopus laevis egg extract and employing total internal reflection (TIRF) microscopy, microtubule nucleation from preexisting microtubules could be demonstrated and analyzed. Branching microtubule nucleation is an ideal mechanism to assemble and maintain a mitotic spindle, because microtubule numbers are amplified while preserving their polarity. Here, we describe the assays that made these findings possible and the experiments that helped identify the key molecular players involved.

  6. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Directory of Open Access Journals (Sweden)

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  7. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Science.gov (United States)

    Govindaraghavan, Meera; McGuire Anglin, Sarah Lea; Shen, Kuo-Fang; Shukla, Nandini; De Souza, Colin P; Osmani, Stephen A

    2014-03-01

    The Never in Mitosis A (NIMA) kinase (the founding member of the Nek family of kinases) has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP) which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell cycle progression

  8. PASK (proline-alanine-rich Ste20-related kinase) binds to tubulin and microtubules and is involved in microtubule stabilization.

    Science.gov (United States)

    Tsutsumi, Tomonari; Kosaka, Takamitsu; Ushiro, Hiroshi; Kimura, Kazushi; Honda, Tomoyuki; Kayahara, Tetsuro; Mizoguchi, Akira

    2008-09-15

    Proline-alanine-rich Ste20-related kinase (PASK, also referred to as SPAK) has been linked to ion transport regulation. Here, we report two novel activities of PASK: binding to tubulin and microtubules and the promotion of microtubule assembly. Tubulin binding assay showed that full-length PASK and its kinase domain bound to purified tubulin whereas the N-terminal or C-terminal non-catalytic domains of PASK did not. The full-length PASK and its kinase domain were sedimented with paclitaxel-stabilized microtubules by ultracentrifugation. These results indicate that the kinase domain of PASK can interact directly with both microtubules and soluble tubulin in vitro. Truncated PASK lacking the N-terminal non-catalytic domain promoted microtubule assembly at a subcritical concentration of purified tubulin. FLAG-PASK expressed in COS-7 cells translocated to the cytoskeleton when the cells were stimulated with hypertonic sodium chloride, and stabilized microtubules against depolymerization by nocodazole. Our findings suggest that PASK may regulate the cytoskeleton by modulating microtubule stability.

  9. Mechanisms to Avoid and Correct Erroneous Kinetochore-Microtubule Attachments

    Directory of Open Access Journals (Sweden)

    Michael A. Lampson

    2017-01-01

    Full Text Available In dividing vertebrate cells multiple microtubules must connect to mitotic kinetochores in a highly stereotypical manner, with each sister kinetochore forming microtubule attachments to only one spindle pole. The exact sequence of events by which this goal is achieved varies considerably from cell to cell because of the variable locations of kinetochores and spindle poles, and randomness of initial microtubule attachments. These chance encounters with the kinetochores nonetheless ultimately lead to the desired outcome with high fidelity and in a limited time frame, providing one of the most startling examples of biological self-organization. This chapter discusses mechanisms that contribute to accurate chromosome segregation by helping dividing cells to avoid and resolve improper microtubule attachments.

  10. Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation.

    Science.gov (United States)

    Maciejowski, John; Drechsler, Hauke; Grundner-Culemann, Kathrin; Ballister, Edward R; Rodriguez-Rodriguez, Jose-Antonio; Rodriguez-Bravo, Veronica; Jones, Mathew J K; Foley, Emily; Lampson, Michael A; Daub, Henrik; McAinsh, Andrew D; Jallepalli, Prasad V

    2017-04-24

    The spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase. Through quantitative proteomics, we identify multiple sites of Mps1-regulated phosphorylation at the outer kinetochore. Substrate modification was microtubule sensitive and opposed by PP2A-B56 phosphatases that stabilize chromosome-spindle attachment. Consistently, Mps1 inhibition rescued K-fiber stability after depleting PP2A-B56. We also identify the Ska complex as a key effector of Mps1 at the kinetochore-microtubule interface, as mutations that mimic constitutive phosphorylation destabilized K fibers in vivo and reduced the efficiency of the Ska complex's conversion from lattice diffusion to end-coupled microtubule binding in vitro. Our results reveal how Mps1 dynamically modifies kinetochores to correct improper attachments and ensure faithful chromosome segregation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    Science.gov (United States)

    Mars, John C.; Rowan, Lawrence C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that

  12. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    Science.gov (United States)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  13. Extraction of Forest Stands Parameters from Aster Data in Open Forest

    Science.gov (United States)

    Abbasi, M.; Riyahi Bakhtyarib, H. R.

    2012-07-01

    Tree crown size (CS) and stem number per hectare (SN) has become increasingly important for forest management and ecosystem monitoring. Tree crown size is also strongly related to other canopy structural parameters, such as diameter at breast height, tree height and biomass. For both issues, remote sensing data are attractive for their large-area and up-to-date mapping capacities. The QuickBird and ASTER imagery used in this study was acquired over Zagros Forests in southern Zagros region, Fars province of Iran on 1 August 2005 and 1 July 2005, respectively. For the forest site investigated in this study, we concentrated on stands of Quercus Persica which is the dominant species in Zagros region. This study was conducted to investigate the capabilities of ASTER-L1B data to estimate some of forest parameters at individual tree and stand level in dry area. The forest stand parameters are crown area, crown density, average crown area. Obtaining the accuracy of classification the ground truth map was prepared by tree crown delineation using the panchromatic band of QuickBird data. Individual tree crowns were automatically delineated by color segmentation of QuickBird imagery. Simple linear regression procedure was used to show the relationships between spectral variables and the individual trees and forest stand parameters. With decreasing the crown density the effects of background will increase. Our results indicated that crown size could be accurately extracted from panchromatic band of QuickBird images especially for open forest stands. This paper demonstrates that using high-resolution satellite imagery in the open forest offers a unique opportunity for deriving single tree attributes and allowing reliable ground truth map to estimate stand structure. ASTER data and its indices showed good capability to estimate crown area in this study.

  14. EXTRACTION OF FOREST STANDS PARAMETERS FROM ASTER DATA IN OPEN FOREST

    Directory of Open Access Journals (Sweden)

    M. Abbasi

    2012-07-01

    Full Text Available Tree crown size (CS and stem number per hectare (SN has become increasingly important for forest management and ecosystem monitoring. Tree crown size is also strongly related to other canopy structural parameters, such as diameter at breast height, tree height and biomass. For both issues, remote sensing data are attractive for their large-area and up-to-date mapping capacities. The QuickBird and ASTER imagery used in this study was acquired over Zagros Forests in southern Zagros region, Fars province of Iran on 1 August 2005 and 1 July 2005, respectively. For the forest site investigated in this study, we concentrated on stands of Quercus Persica which is the dominant species in Zagros region. This study was conducted to investigate the capabilities of ASTER-L1B data to estimate some of forest parameters at individual tree and stand level in dry area. The forest stand parameters are crown area, crown density, average crown area. Obtaining the accuracy of classification the ground truth map was prepared by tree crown delineation using the panchromatic band of QuickBird data. Individual tree crowns were automatically delineated by color segmentation of QuickBird imagery. Simple linear regression procedure was used to show the relationships between spectral variables and the individual trees and forest stand parameters. With decreasing the crown density the effects of background will increase. Our results indicated that crown size could be accurately extracted from panchromatic band of QuickBird images especially for open forest stands. This paper demonstrates that using high-resolution satellite imagery in the open forest offers a unique opportunity for deriving single tree attributes and allowing reliable ground truth map to estimate stand structure. ASTER data and its indices showed good capability to estimate crown area in this study.

  15. Equilibria of idealized confined astral microtubules and coupled spindle poles.

    Directory of Open Access Journals (Sweden)

    Ivan V Maly

    Full Text Available Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue of their confinement within the cell boundary. It is found that depending on parameters, the symmetric position of the spindle can be stable or unstable. Asymmetric stable equilibria also exist, and two or more stable positions can exist simultaneously. The theory poses new types of questions for experimental research. Regarding the cases of symmetric spindle positioning, it is necessary to ask whether the microtubule parameters are controlled by the cell so that the bending mechanics favors symmetry. If they are not, then it is necessary to ask what forces external to the microtubule cytoskeleton counteract the bending effects sufficiently to actively establish symmetry. Conversely, regarding the cases with asymmetry, it is now necessary to investigate whether the cell controls the microtubule parameters so that the bending favors asymmetry apart from any forces that are external to the microtubule cytoskeleton.

  16. Mapping of crop calendar events by object-based analysis of MODIS and ASTER images

    Directory of Open Access Journals (Sweden)

    A.I. De Castro

    2014-06-01

    Full Text Available A method to generate crop calendar and phenology-related maps at a parcel level of four major irrigated crops (rice, maize, sunflower and tomato is shown. The method combines images from the ASTER and MODIS sensors in an object-based image analysis framework, as well as testing of three different fitting curves by using the TIMESAT software. Averaged estimation of calendar dates were 85%, from 92% in the estimation of emergence and harvest dates in rice to 69% in the case of harvest date in tomato.

  17. An application of the Self Organizing Map Algorithm to computer aided classification of ASTER multispectral data

    Directory of Open Access Journals (Sweden)

    Ferdinando Giacco

    2008-01-01

    Full Text Available In this paper we employ the Kohonen’s Self Organizing Map (SOM as a strategy for an unsupervised analysis of ASTER multispectral (MS images. In order to obtain an accurate clusterization we introduce as input for the network, in addition to spectral data, some texture measures extracted from IKONOS images, which gives a contribution to the classification of manmade structures. After clustering of SOM outcomes, we associated each cluster with a major land cover and compared them with prior knowledge of the scene analyzed.

  18. Technoscientific Diplomacy: The Practice of International Politics in the ASTER Collaboration

    Science.gov (United States)

    Plafcan, Dan

    Most chapters in this volume focus on the scientific and technical aspects of the design, performance, operations, and applications of the MODIS and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments. In contrast, this final chapter focuses on politics - specifically, the politics of technical decision making and scientific judgment. When scientific objectives, engineering design decisions, and familiar forms of scientific and technical authority are uncertain or otherwise unsettled, how do they become certain and settled? What facilitates collective judgment and the exercise of power in efforts to advance and achieve common scientific goals, especially in the international arena?

  19. Microtubules mediate changes in membrane cortical elasticity during contractile activation.

    Science.gov (United States)

    Al-Rekabi, Zeinab; Haase, Kristina; Pelling, Andrew E

    2014-03-10

    The mechanical properties of living cells are highly regulated by remodeling dynamics of the cytoarchitecture, and are linked to a wide variety of physiological and pathological processes. Microtubules (MT) and actomyosin contractility are both involved in regulating focal adhesion (FA) size and cortical elasticity in living cells. Although several studies have examined the effects of MT depolymerization or actomyosin activation on biological processes, very few have investigated the influence of both on the mechanical properties, FA assembly, and spreading of fibroblast cells. Here, we examine how activation of both processes modulates cortical elasticity as a function of time. Enhancement of contractility (calyculin A treatment) or the depolymerization of MTs (nocodazole treatment) individually caused a time-dependent increase in FA size, decrease in cell height and an increase in cortical elasticity. Surprisingly, sequentially stimulating both processes led to a decrease in cortical elasticity, loss of intact FAs and a concomitant increase in cell height. Our results demonstrate that loss of MTs disables the ability of fibroblast cells to maintain increased contractility and cortical elasticity upon activation of myosin-II. We speculate that in the absence of an intact MT network, a large amount of contractile tension is transmitted directly to FA sites resulting in their disassembly. This implies that tension-mediated FA growth may have an upper bound, beyond which disassembly takes place. The interplay between cytoskeletal remodeling and actomyosin contractility modulates FA size and cell height, leading to dynamic time-dependent changes in the cortical elasticity of fibroblast cells. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  20. The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions

    Science.gov (United States)

    Garnham, Christopher P.; Roll-Mecak, Antonina

    2012-01-01

    Cellular microtubules are marked by abundant and evolutionarily conserved post-translational modifications that have the potential to tune their functions. This review focuses on the astonishing chemical complexity introduced in the tubulin heterodimer at the post-translational level and summarizes the recent advances in identifying the enzymes responsible for these modifications and deciphering the consequences of tubulin’s chemical diversity on the function of molecular motors and microtubule associated proteins. PMID:22422711

  1. Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9

    Directory of Open Access Journals (Sweden)

    Giorgi Dominique

    2008-09-01

    tissues rich in microtubules. ASAP associates to the mitotic spindle and cytoplasmic microtubules, and represents a key factor of mitosis with possible involvement in other cell cycle processes. It may have a role in spermatogenesis and also represents a potential new target for antitumoral drugs. Possible involvement in neuron dynamics also highlights ASAP as a candidate target in neurodegenerative diseases.

  2. Regional Lithological Mapping Using ASTER-TIR Data: Case Study for the Tibetan Plateau and the Surrounding Area

    Directory of Open Access Journals (Sweden)

    Yoshiki Ninomiya

    2016-09-01

    Full Text Available The mineralogical indices the Quartz Index (QI, Carbonate Index (CI and Mafic Index (MI for ASTER multispectral thermal infrared (TIR data were applied to various geological materials for regional lithological mapping on the Tibetan Plateau. Many lithological and structural features are not currently well understood in the central Tibetan Plateau, including the distribution of mafic-ultramafic rocks related to the suture zones, the quartzose and carbonate sedimentary rocks accreted to the Eurasian continent, and sulfate layers related to the Tethys and neo-Tethys geological setting. These rock types can now be mapped with the interpretation of the processed ASTER TIR images described in this paper. A methodology is described for the processing of ASTER TIR data applied to a very wide region of the Tibetan Plateau. The geometrical and radiometric performance of the processed images is discussed, and the advantages of using ortho-rectified data are shown. The challenges of using ASTER data with a small footprint in addition to selecting an appropriate subset of scenes are also examined. ASTER scenes possess a narrow swath width when compared to LANDSAT data (60 km vs. 185 km, respectively. Furthermore, the ASTER data archive is vast, consisting of approximately three million images. These details can present an added level of complexity during an image processing workflow. Finally, geological interpretations made on the maps of the indices are compared with prior geological field studies. The results from the investigations suggest that the indices perform well in the classification of quartzose rocks based on the carbonate and mafic mineral content, in addition to the granitic rocks based on the feldspar content.

  3. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Isma Mian

    Full Text Available BACKGROUND: Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified. FINDINGS: We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK and microtubule affinity regulating kinases (MARKs. LKB1 overexpression accelerated differentiation, whereas RNAi impaired it. CONCLUSIONS: Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.

  4. Association between microtubules and Golgi vesicles isolated from rat parotid glands.

    Science.gov (United States)

    Coffe, G; Raymond, M N

    1990-01-01

    We report an isolation procedure of trans-Golgi vesicles (GVs) from rat parotid glands. Various organelle markers were used, particularly galactosyl transferase as a trans-Golgi marker, to test the purity of the GV fraction. A quantitative in vitro binding assay between microtubules and GVs is described. The vesicles were incubated with taxol-induced microtubules, layered between 50% and 43% sucrose cushions and subjected to centrifugation. Unlike free microtubules which were sedimented, the GV-bound microtubules co-migrated upward with GVs. Quantification of these bound microtubules was carried out by densitometric scanning of Coomassie blue-stained gels. The association between microtubules and GVs followed a saturation curve, with a plateau value of 20 micrograms of microtubule protein bound to 500 micrograms of GV fraction. The half-saturation of the GV sites was obtained with a microtubule concentration of 20 micrograms/ml. Electron microscopy of negatively stained re-floated material showed numerous microtubule-vesicle complexes. Coating of microtubules with an excess of brain microtubule-associated proteins (MAPs) abolished binding. In the absence of exogenous microtubules, we showed that the GV fraction was already interacting with a class of endogenous rat parotid microtubules. This class of colcemid and cold-stable microtubules represents 10-20% of the total tubulin content of the parotid cell.

  5. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    Full Text Available Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can

  6. Microtubules, polarity and vertebrate neural tube morphogenesis.

    Science.gov (United States)

    Cearns, Michael D; Escuin, Sarah; Alexandre, Paula; Greene, Nicholas D E; Copp, Andrew J

    2016-07-01

    Microtubules (MTs) are key cellular components, long known to participate in morphogenetic events that shape the developing embryo. However, the links between the cellular functions of MTs, their effects on cell shape and polarity, and their role in large-scale morphogenesis remain poorly understood. Here, these relationships were examined with respect to two strategies for generating the vertebrate neural tube: bending and closure of the mammalian neural plate; and cavitation of the teleost neural rod. The latter process has been compared with 'secondary' neurulation that generates the caudal spinal cord in mammals. MTs align along the apico-basal axis of the mammalian neuroepithelium early in neural tube closure, participating functionally in interkinetic nuclear migration, which indirectly impacts on cell shape. Whether MTs play other functional roles in mammalian neurulation remains unclear. In the zebrafish, MTs are important for defining the neural rod midline prior to its cavitation, both by localizing apical proteins at the tissue midline and by orienting cell division through a mirror-symmetric MT apparatus that helps to further define the medial localization of apical polarity proteins. Par proteins have been implicated in centrosome positioning in neuroepithelia as well as in the control of polarized morphogenetic movements in the neural rod. Understanding of MT functions during early nervous system development has so far been limited, partly by techniques that fail to distinguish 'cause' from 'effect'. Future developments will likely rely on novel ways to selectively impair MT function in order to investigate the roles they play. © 2016 Anatomical Society.

  7. Association of TCTP with Centrosome and Microtubules

    Directory of Open Access Journals (Sweden)

    Mariusz K. Jaglarz

    2012-01-01

    Full Text Available Translationally Controlled Tumour Protein (TCTP associates with microtubules (MT, however, the details of this association are unknown. Here we analyze the relationship of TCTP with MTs and centrosomes in Xenopus laevis and mammalian cells using immunofluorescence, tagged TCTP expression and immunoelectron microscopy. We show that TCTP associates both with MTs and centrosomes at spindle poles when detected by species-specific antibodies and by Myc-XlTCTP expression in Xenopus and mammalian cells. However, when the antibodies against XlTCTP were used in mammalian cells, TCTP was detected exclusively in the centrosomes. These results suggest that a distinct pool of TCTP may be specific for, and associate with, the centrosomes. Double labelling for TCTP and γ-tubulin with immuno-gold electron microscopy in Xenopus laevis oogonia shows localization of TCTP at the periphery of the γ-tubulin-containing pericentriolar material (PCM enveloping the centriole. TCTP localizes in the close vicinity of, but not directly on the MTs in Xenopus ovary suggesting that this association requires unidentified linker proteins. Thus, we show for the first time: (1 the association of TCTP with centrosomes, (2 peripheral localization of TCTP in relation to the centriole and the γ-tubulin-containing PCM within the centrosome, and (3 the indirect association of TCTP with MTs.

  8. Xenopus cytoplasmic linker–associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules

    Science.gov (United States)

    Marx, Astrid; Godinez, William J.; Tsimashchuk, Vasil; Bankhead, Peter; Rohr, Karl; Engel, Ulrike

    2013-01-01

    Dynamic microtubules (MTs) are required for neuronal guidance, in which axons extend directionally toward their target tissues. We found that depletion of the MT-binding protein Xenopus cytoplasmic linker–associated protein 1 (XCLASP1) or treatment with the MT drug Taxol reduced axon outgrowth in spinal cord neurons. To quantify the dynamic distribution of MTs in axons, we developed an automated algorithm to detect and track MT plus ends that have been fluorescently labeled by end-binding protein 3 (EB3). XCLASP1 depletion reduced MT advance rates in neuronal growth cones, very much like treatment with Taxol, demonstrating a potential link between MT dynamics in the growth cone and axon extension. Automatic tracking of EB3 comets in different compartments revealed that MTs increasingly slowed as they passed from the axon shaft into the growth cone and filopodia. We used speckle microscopy to demonstrate that MTs experience retrograde flow at the leading edge. Microtubule advance in growth cone and filopodia was strongly reduced in XCLASP1-depleted axons as compared with control axons, but actin retrograde flow remained unchanged. Instead, we found that XCLASP1-depleted growth cones lacked lamellipodial actin organization characteristic of protrusion. Lamellipodial architecture depended on XCLASP1 and its capacity to associate with MTs, highlighting the importance of XCLASP1 in actin–microtubule interactions. PMID:23515224

  9. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    Science.gov (United States)

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  10. Utility of ASTER and Landsat for quantifying hydrochemical concentrations in abandoned gold mining.

    Science.gov (United States)

    Tesfamichael, Solomon G; Ndlovu, Aros

    2017-10-21

    The effect of mining on water resources is severe and requires careful monitoring and management. Remote sensing has been used to characterize water quality indicators in efforts to fight mine-induced contamination. Much focus has however been placed on producing a qualitative classification of water qualities. Moreover, the number of variables considered in most studies is relatively small for a large number of hydrochemical constituents common in water bodies associated with gold mining activities. This study is aimed at quantifying a comprehensive list of field- and laboratory-measured chemical constituents of water samples from abandoned mines using remotely-sensed data. Akaike's Information Criterion was used to estimate each of the constituents using statistical values derived from individual bands of ASTER and Landsat data as predictors. Fairly good accuracies were obtained for constituents such as redox potential (Eh), major anions and cations. In contrast, trace elements correlated poorly with ASTER and Landsat bands, due mainly to a sampling anomaly. The performances of the two images in estimating the constituents were comparable. These findings suggest the potential of multispectral, moderate spatial resolution remote sensing for quantifying different hydrochemical properties of water bodies in mining environments. Further studies are however encouraged to enhance accuracies and reliability using a greater number of samples than was used in this study to capture the variability present in the population. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Qifeng Zhuang

    2015-11-01

    Full Text Available Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER images from an improved two-source energy balance (TSEB model. The original TSEB approach may overestimate latent heat flux under vegetative stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor equation used in the original TSEB model with one that uses plant moisture and temperature constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model solving. The collected ASTER data and field observations employed in this study are over corn fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER area, China. The results were validated by measurements from eddy covariance (EC systems, and the surface energy flux estimates of the improved TSEB model are similar to the ground truth. A comparison of the results from the original and improved TSEB models indicates that the improved method more accurately estimates the sensible and latent heat fluxes, generating more precise daily evapotranspiration (ET estimate under vegetative stress conditions.

  12. Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM

    Directory of Open Access Journals (Sweden)

    Evangelin Ramani Sujatha

    2015-05-01

    Full Text Available Morphometric analysis is a key to understand the hydrological process and hence is a prerequisite for the assessment of hydrological characteristics of surface water basin. Morphometric analysis to determine the drainage characteristics of Palar sub-watershed, a part of Shanmukha watershed in the Amaravati sub-catchment is done using Advanced Space-borne Thermal Emission and Reflection Global Digital Elevation Model (ASTER GDEM data, and is supplemented with topographical maps in geographical information systems platform. This study uses ASTER GDEM data to extract morphometric features of a mountain stream at micro-watershed level. The sub-watershed is divided into six micro-watersheds. The sub-watershed includes a sixth-order stream. Lower stream orders, in particular first-order streams, dominate the sub-watershed. Development of stream segments is controlled by slope and local relief. Drainage pattern of the sub-watershed and micro-watersheds is dendritic in general. The mean bifurcation ratio of the sub-watershed is 3.69 but its variation between the various stream orders suggests structural control in the development of stream network. The shape factors reveal the elongation of the sub-watershed and micro-watersheds.The relief ratio reveals the high discharge capability of the sub-watershed and meagre groundwater potential. This study is a useful tool for planning strategies in control of soil erosion and soil conservation.

  13. Air pollution monitoring through the application of atmospheric correction for ASTER imagery

    Science.gov (United States)

    Themistocleous, Kyriacos; Diofantos, Hadjimitsis G.

    2009-09-01

    This paper presents the results obtained through the application of atmospheric correction on ASTER images for deriving the aerosol optical thickness (AOT). The literature shows that there is a gap in correlating the determined or measured AOT through the visible and near-infrared spectrum with the air-pollutants such as PM10, PM2.5, CO2, etc. This research investigates such aspects by acquiring sun-photometer measurements, image data, and air-pollutants measurements during the satellite overpass of the urban areas in Paphos and Limassol District in Cyprus. AOT values delivered from MODIS satellite images are regressed against the sun-photometer ground-based measurements. The determined AOT values from both sources are compared with the AOT values retrieved from ASTER and/or LANDSAT TM /ETM+ images. Preliminary results show that the AOT retrieved after applying an atmospheric correction from the images was very near to those found from the sun-photometers acquired simultaneous during the satellite overpass.

  14. ASTER Global Digital Elevation Model Version 2 - summary of validation results

    Science.gov (United States)

    Tachikawa, Tetushi; Kaku, Manabu; Iwasaki, Akira; Gesch, Dean B.; Oimoen, Michael J.; Zhang, Z.; Danielson, Jeffrey J.; Krieger, Tabatha; Curtis, Bill; Haase, Jeff; Abrams, Michael; Carabajal, C.; Meyer, Dave

    2011-01-01

    On June 29, 2009, NASA and the Ministry of Economy, Trade and Industry (METI) of Japan released a Global Digital Elevation Model (GDEM) to users worldwide at no charge as a contribution to the Global Earth Observing System of Systems (GEOSS). This “version 1” ASTER GDEM (GDEM1) was compiled from over 1.2 million scenebased DEMs covering land surfaces between 83°N and 83°S latitudes. A joint U.S.-Japan validation team assessed the accuracy of the GDEM1, augmented by a team of 20 cooperators. The GDEM1 was found to have an overall accuracy of around 20 meters at the 95% confidence level. The team also noted several artifacts associated with poor stereo coverage at high latitudes, cloud contamination, water masking issues and the stacking process used to produce the GDEM1 from individual scene-based DEMs (ASTER GDEM Validation Team, 2009). Two independent horizontal resolution studies estimated the effective spatial resolution of the GDEM1 to be on the order of 120 meters.

  15. Aster spathulifolius Maxim extract reduces body weight and fat mass in obese humans.

    Science.gov (United States)

    Cho, In-Jin; Choung, Se Young; Hwang, You-Cheol; Ahn, Kyu Jeung; Chung, Ho Yeon; Jeong, In-Kyung

    2016-07-01

    Aster spathulifolius Maxim (AS), a perennial herb of the genus Aster within the family Asteraceae, induced weight loss in a rat model of diet-induced obesity. We hypothesized that AS could also reduce body weight in obese humans. Therefore, we performed a randomized, double-blind, placebo-controlled clinical trial in Korea to evaluate the effect of AS extract (ASE) on body weight and fat mass and its safety in obese humans. Forty-four obese participants (body mass index [BMI], 25-30 kg/m(2)) aged ≥20 years were randomly assigned to the placebo or ASE group (700 mg/d of ASE) and were instructed to take a once-daily pill for 12 weeks. Weight, BMI, waist circumference, fat mass (measured using bioimpedance, dual-energy X-ray absorptiometry, and computed tomography), and laboratory tests were assessed at baseline and at 12 weeks. Body weight significantly decreased after 12 weeks of treatment in the ASE group (placebo vs ASE: -0.08 ± 2.11 kg vs -3.30 ± 3.15 kg, P weight and fat mass in obese humans, suggesting that ASE may be a potential therapeutic candidate for reducing obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. ASTER L1B satellite data applied to geothermal in Cuba

    Directory of Open Access Journals (Sweden)

    V. González-Acosta

    2015-12-01

    Full Text Available The 83 ASTER L1B thermal channels of Cuban territorial scenes, from 2000 to 2008 years, selected and processed with geothermal aims showed almost 50% of cloudy coverage. The vortex coordinated as well as other data from such metadata facilitated completing the designed database. From a preliminary mosaic with the images existent these were subsequently processed in order to obtain temperature images. Such images were then integrated into another mosaic with a suitable reclassification resulting in 11 classes with 3°C each. This allowed delimitating those anomalous zones where the greater distribution of pixels oscillated from 25°C to 37°C, and the cloudy coverage temperature aroused up to 20°C approximately. In the resulting temperature map, 69 polygons were a priori delimitated and categorized, as for their perspective and the temperature value above 40°C. These polygons were later overlapped to Google Earth images with the aim to identify those from anthropogenic origins. Finally it was obtained an estimation of the temperature value of the surface coverage of the national territory as well as the understanding of that the eastern zone is the most perspective. This is an experimental application, using satellite images ASTER L1B with geothermic purpose.

  17. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    Science.gov (United States)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  18. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  19. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute  towards a fundamental understanding of the  molecular basis of

  20. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    Science.gov (United States)

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  1. Microtubule guiding in a multi-walled carbon nanotube circuit.

    Science.gov (United States)

    Sikora, Aurélien; Ramón-Azcón, Javier; Sen, Mustafa; Kim, Kyongwan; Nakazawa, Hikaru; Umetsu, Mitsuo; Kumagai, Izumi; Shiku, Hitoshi; Matsue, Tomokazu; Teizer, Winfried

    2015-08-01

    In nanotechnological devices, mass transport can be initiated by pressure driven flow, diffusion or by employing molecular motors. As the scale decreases, molecular motors can be helpful as they are not limited by increased viscous resistance. Moreover, molecular motors can move against diffusion gradients and are naturally fitted for nanoscale transportation. Among motor proteins, kinesin has particular potential for lab-on-a-chip applications. It can be used for sorting, concentrating or as a mechanical sensor. When bound to a surface, kinesin motors propel microtubules in random directions, depending on their landing orientation. In order to circumvent this complication, the microtubule motion should be confined or guided. To this end, dielectrophoretically aligned multi-walled-carbon nanotubes (MWCNT) can be employed as nanotracks. In order to control more precisely the spatial repartition of the MWCNTs, a screening method has been implemented and tested. Polygonal patterns have been fabricated with the aim of studying the guiding and the microtubule displacement between MWCNT segments. Microtubules are observed to transfer between MWCNT segments, a prerequisite for the guiding of microtubules in MWCNT circuit-based biodevices. The effect of the MWCNT organization (crenellated or hexagonal) on the MT travel distance has been investigated as well.

  2. Intracellular spatial localization regulated by the microtubule network.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a "structured cytoplasm", in contrast to a free and fluid environment.

  3. The feasibility of coherent energy transfer in microtubules.

    Science.gov (United States)

    Craddock, Travis John Adrian; Friesen, Douglas; Mane, Jonathan; Hameroff, Stuart; Tuszynski, Jack A

    2014-11-06

    It was once purported that biological systems were far too 'warm and wet' to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the 'dry' hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The 'tubulin' subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    Directory of Open Access Journals (Sweden)

    Isabelle L. Di Maïo

    2014-08-01

    Full Text Available The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.

  5. The free energy profile of tubulin straight-bent conformational changes, with implications for microtubule assembly and drug discovery.

    Directory of Open Access Journals (Sweden)

    Lili X Peng

    2014-02-01

    Full Text Available αβ-tubulin dimers need to convert between a 'bent' conformation observed for free dimers in solution and a 'straight' conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated.

  6. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation

    Science.gov (United States)

    Winans, Amy M; Collins, Sean R; Meyer, Tobias

    2016-01-01

    Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI: http://dx.doi.org/10.7554/eLife.12387.001 PMID:26836307

  7. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery

    Directory of Open Access Journals (Sweden)

    W. Ma

    2011-05-01

    Full Text Available Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER data. Field observations and estimates from SEBS were compared in terms of net radiation flux (Rn, soil heat flux (G0, sensible heat flux (H and latent heat flux (λE over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results. So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future

  8. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    Directory of Open Access Journals (Sweden)

    Christopher Arnette

    Full Text Available The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.

  9. Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Vázquez de Aldana Carlos R

    2008-10-01

    Full Text Available Abstract Background In Saccharomyces cerevisiae, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane. Results Here, we demonstrate that nutrient limitation triggers a change in the localization of at least two vegetative septins (Cdc10 and Cdc11 from the bud neck to the microtubules. The association of Cdc10 and Cdc11 with microtubules persists into meiosis, and they are found associated with the meiotic spindle until the end of meiosis II. In addition, the meiosis-specific septin Spr28 displays similar behavior, suggesting that this is a common feature of septins. Septin association to microtubules is a consequence of the nutrient limitation signal, since it is also observed when haploid cells are incubated in sporulation medium and when haploid or diploid cells are grown in medium containing non-fermentable carbon sources. Moreover, during meiosis II, when the nascent prospore membrane is formed, septins moved from the microtubules to this membrane. Proper organization of the septins on the membrane requires the sporulation-specific septins Spr3 and Spr28. Conclusion Nutrient limitation in S. cerevisiae triggers the sporulation process, but it also induces the disassembly of the septin bud neck ring and relocalization of the septin subunits to the nucleus. Septins remain associated with microtubules during the meiotic divisions and later, during spore morphogenesis, they are detected associated to the nascent prospore membranes surrounding each nuclear lobe. Septin association to microtubules also occurs during growth in non-fermentable carbon sources.

  10. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping

    Science.gov (United States)

    Masoumi, Feizollah; Eslamkish, Taymour; Abkar, Ali Akbar; Honarmand, Mehdi; Harris, Jeff R.

    2017-05-01

    The ensemble classifier, Random Forests (RF), is assessed for mapping lithology using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery over an area in southern Iran. The study area in the northern part of Rabor in the Kerman's Cenozoic magmatic arc (KCMA) is well exposed and contains some copper mineralization occurrences. In this research, the following six groups of ASTER datasets were used for RF classification: nine spectral bands in the VNIR and SWIR, five thermal bands in TIR, all 14 bands (including VNIR, SWIR, and TIR), band ratios, texture features, and principal components (PCs). The results showed that band ratios and all ASTER bands were able to more efficiently discriminate rock units than PC and texture images. The overall classification accuracies achieved were 62.58%, 55.40%, 65.04%, 67.12%, 54.54%, and 53.99% for the nine VNIR/SWIR bands, five TIR bands, all ASTER bands, band ratios, textural, and PCs datasets, respectively. Four datasets including all ASTER bands, band ratios, textural, and PCs datasets (37 bands) were combined as one group and applied in second RF classification which led to increase overall accuracy (up to 81.52%). Based on the four classified maps, an uncertainty map was produced to identify areas of variable (uncertain) classification results, which revealed that approximately 21.43% of all pixels on the classified map were highly uncertain. The RF algorithm found that 12 of the predictors were more important in the classification process. These predictors were used in a third RF classification, which resulted in an overall classification accuracy of 77.21%. Thus, the third RF classification decreases the accuracy. Field observations were used to validate our classification results.

  11. Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression.

    Directory of Open Access Journals (Sweden)

    Stefanie Jeruschke

    Full Text Available Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far.To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury.Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B and doublecortin domain containing 2 (DCDC2, both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm's tumour 1, Podocin, Nephrin and Synaptopodin.Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of

  12. Cell Microtubules as Cavities Quantum Coherence and Energy Transfer?

    CERN Document Server

    Mavromatos, Nikolaos E

    2000-01-01

    A model is presented for dissipationless energy transfer in cell microtubules due to quantum coherent states. The model is based on conjectured (hydrated) ferroelectric properties of microtubular arrangements. Ferroelectricity is essential in providing the necessary isolation against thermal losses in thin interior regions, full of ordered water, near the tubulin dimer walls of the microtubule. These play the role of cavity regions, which are similar to electromagnetic cavities of quantum optics. As a result, the formation of (macroscopic) quantum coherent states of electric dipoles on the tubulin dimers may occur. Some experiments, inspired by quantum optics, are suggested for the falsification of this scenario.

  13. ASTER GDEM validation using LiDAR data over coastal regions of Greenland

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Sørensen, Louise Sandberg; Forsberg, René

    2011-01-01

    by a high spatial resolution of about 1 m and elevation accuracy of 20–30 cm root mean square error (RMSE). The LiDAR data sets used were acquired during ice-monitoring campaigns carried out from 2003 to 2008. The study areas include ice-free regions, local ice caps and the ice sheet margin. A linear error...... of 15–65 m was derived, which is far greater than the 20-m product specification. This estimation is biased by both the seasonal and the climatic changes in local ice caps because the ASTER GDEM was computed from imagery acquired in the period 2000–2009. High sloping areas along the coastal regions...

  14. The ARM Domain of ARMADILLO-REPEAT KINESIN 1 is Not Required for Microtubule Catastrophe But Can Negatively Regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana.

    Science.gov (United States)

    Eng, Ryan C; Halat, Laryssa S; Livingston, Samuel J; Sakai, Tatsuya; Motose, Hiroyasu; Wasteneys, Geoffrey O

    2017-08-01

    Microtubules are dynamic filaments, the assembly and disassembly of which are under precise control of various associated proteins, including motor proteins and regulatory enzymes. In Arabidopsis thaliana, two such proteins are the ARMADILLO-REPEAT KINESIN 1 (ARK1), which promotes microtubule disassembly, and the NIMA-RELATED KINASE 6 (NEK6), which has a role in organizing microtubule arrays. Previous yeast two-hybrid and in vitro pull-down assays determined that NEK6 can interact with ARK1 through the latter protein's Armadillo-repeat (ARM) cargo domain. To explore the function of the ARM domain, we generated fluorescent reporter fusion proteins to ARK1 lacking the ARM domain (ARK1ΔARM-GFP) and to the ARM domain alone (ARM-GFP). Both of these constructs strongly associated with the growing plus ends of microtubules, but only ARK1ΔARM-GFP was capable of inducing microtubule catastrophe and rescuing the ark1-1 root hair phenotype. These results indicate that neither the ARM domain nor NEK6's putative interaction with it is required for ARK1 to induce microtubule catastrophe. In further exploration of the ARK1-NEK6 relationship, we demonstrated that, despite evidence that NEK6 can phosphorylate ARK1 in vitro, the in vivo distribution and function of ARK1 were not affected by the loss of NEK6, and vice versa. Moreover, NEK6 and ARK1 were found to have overlapping but non-identical distribution on microtubules, and hormone treatments known to affect NEK6 activity did not stimulate interaction. These findings suggest that ARK1 and NEK6 function independently in microtubule dynamics and cell morphogenesis. Despite the results of this functional analysis, we found that overexpression of the ARM domain led to complete loss of NEK6 transcription, suggesting that the ARM domain might have a regulatory role in NEK6 expression. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions

  15. VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 2 OVER THE CONTERMINOUS UNITED STATES

    Directory of Open Access Journals (Sweden)

    D. Gesch

    2012-07-01

    Full Text Available The ASTER Global Digital Elevation Model Version 2 (GDEM v2 was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1 in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of –0.20 meters is a significant improvement over the GDEM v1 mean error of –3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height, GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  16. Mycorrhizal symbiosis and local adaptation in Aster amellus: a field transplant experiment.

    Science.gov (United States)

    Pánková, Hana; Raabová, Jana; Münzbergová, Zuzana

    2014-01-01

    Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies

  17. Mycorrhizal symbiosis and local adaptation in Aster amellus: a field transplant experiment.

    Directory of Open Access Journals (Sweden)

    Hana Pánková

    Full Text Available Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K and Ceske Stredohori (region S. Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local

  18. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.

    Science.gov (United States)

    Kolobova, Elena; Roland, Joseph T; Lapierre, Lynne A; Williams, Janice A; Mason, Twila A; Goldenring, James R

    2017-12-15

    Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.

  19. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members.

    Directory of Open Access Journals (Sweden)

    Andrew W Hwang

    Full Text Available Lysine acetylation has emerged as a dominant post-translational modification (PTM regulating tau proteins in Alzheimer's disease (AD and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR, a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules.

  20. Microtubule depolymerization induces traction force increase through two distinct pathways

    Science.gov (United States)

    Rape, Andrew; Guo, Wei-hui; Wang, Yu-li

    2011-01-01

    Traction forces increase after microtubule depolymerization; however, the signaling mechanisms underlying this, in particular the dependence upon myosin II, remain unclear. We investigated the mechanism of traction force increase after nocodazole-induced microtubule depolymerization by applying traction force microscopy to cells cultured on micropatterned polyacrylamide hydrogels to obtain samples of homogeneous shape and size. Control cells and cells treated with a focal adhesion kinase (FAK) inhibitor showed similar increases in traction forces, indicating that the response is independent of FAK. Surprisingly, pharmacological inhibition of myosin II did not prevent the increase of residual traction forces upon nocodazole treatment. This increase was abolished upon pharmacological inhibition of FAK. These results suggest two distinct pathways for the regulation of traction forces. First, microtubule depolymerization activates a myosin-II-dependent mechanism through a FAK-independent pathway. Second, microtubule depolymerization also enhances traction forces through a myosin-II-independent, FAK-regulated pathway. Traction forces are therefore regulated by a complex network of complementary signals and force-generating mechanisms. PMID:22193960

  1. Fission yeast Scp3 potentially maintains microtubule orientation through bundling.

    Directory of Open Access Journals (Sweden)

    Kanako Ozaki

    Full Text Available Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC, a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.

  2. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles

    Directory of Open Access Journals (Sweden)

    Charles L. Asbury

    2017-02-01

    Full Text Available The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through ‘flux’, where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.

  3. Microtubule organization : from the centrosome to the Golgi apparatus

    NARCIS (Netherlands)

    Wu, J.

    2017-01-01

    Similar to the skeleton of a human body, every cell possesses the so-called cytoskeleton, a system of filaments that support cell shape and enable cells to divide and move. One of the major types of cytoskeletal fibers are microtubules, microscopic tubes that cells use as rails to transport their

  4. Lamin A and microtubules collaborate to maintain nuclear morphology.

    Science.gov (United States)

    Tariq, Zeshan; Zhang, Haoyue; Chia-Liu, Alexander; Shen, Yang; Gete, Yantenew; Xiong, Zheng-Mei; Tocheny, Claire; Campanello, Leonard; Wu, Di; Losert, Wolfgang; Cao, Kan

    2017-07-04

    Lamin A (LA) is a critical structural component of the nuclear lamina. Mutations within the LA gene (LMNA) lead to several human disorders, most striking of which is Hutchinson-Gilford Progeria Syndrome (HGPS), a premature aging disorder. HGPS cells are best characterized by an abnormal nuclear morphology known as nuclear blebbing, which arises due to the accumulation of progerin, a dominant mutant form of LA. The microtubule (MT) network is known to mediate changes in nuclear morphology in the context of specific events such as mitosis, cell polarization, nucleus positioning and cellular migration. What is less understood is the role of the microtubule network in determining nuclear morphology during interphase. In this study, we elucidate the role of the cytoskeleton in regulation and misregulation of nuclear morphology through perturbations of both the lamina and the microtubule network. We found that LA knockout cells exhibit a crescent shape morphology associated with the microtubule-organizing center. Furthermore, this crescent shape ameliorates upon treatment with MT drugs, Nocodazole or Taxol. Expression of progerin, in LA knockout cells also rescues the crescent shape, although the response to Nocodazole or Taxol treatment is altered in comparison to cells expressing LA. Together these results describe a collaborative effort between LA and the MT network to maintain nuclear morphology.

  5. The phospholipase A inhibitor, aristolochic acid, disrupts cortical microtubule arrays and root growth in Arabidopsis.

    Science.gov (United States)

    Gardiner, J; Andreeva, Z; Barton, D; Ritchie, A; Overall, R; Marc, J

    2008-11-01

    The role of phospholipase A(2) in Arabidopsis root growth and microtubule organisation was investigated using a specific inhibitor, aristolochic acid. At 0.5-1.5 microm concentrations, this inhibitor reduced root elongation and caused radial swelling of the root tip. The normally transverse cortical microtubules in root tip cells became progressively more disorganised with increasing concentrations of the inhibitor. Microtubule disorganisation also occurred in leaf epidermal cells of Allium porrum. We propose that phospholipase A(2) is involved in microtubule organisation and anisotropic growth in a manner similar to that reported previously for phospholipase D, thus broadening the significance of phospholipid signalling in microtubule organisation in plants.

  6. Hydrothermal Alteration Maps of the Central and Southern Basin and Range Province of the United States Compiled From Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map...

  7. High-resolution 3D reconstruction of microtubule structures by quantitative multi-angle total internal reflection fluorescence microscopy

    Science.gov (United States)

    Jin, Luhong; Wu, Jian; Xiu, Peng; Fan, Jiannan; Hu, Miao; Kuang, Cuifang; Xu, Yingke; Zheng, Xiaoxiang; Liu, Xu

    2017-07-01

    Total internal reflection fluorescence microscopy (TIRFM) has been widely used in biomedical research to visualize cellular processes near the cell surface. In this study, a novel multi-angle ring-illuminated TIRFM system, equipped with two galvo mirrors that are on conjugate plan of a 4f optical system was developed. Multi-angle TIRFM generates images with different penetration depths through the controlled variation of the incident angle of illuminating laser. We presented a method to perform three-dimensional (3-D) reconstruction of microtubules from multi-angle TIRFM images. The performance of our method was validated in simulated microtubules with variable signal-to-noise ratios (SNR) and the axial resolution and accuracy of reconstruction were evaluated in selecting different numbers of illumination angles or in different SNR conditions. In U373 cells, we reconstructed the 3-D localization of microtubules near the cell surface with high resolution using over a hundred different angles. Theoretically, the presented TIRFM setup and 3-D reconstruction method can achieve 40 nm axial resolution in experimental conditions where SNR is as low as 2, with 35 different illumination angles. Moreover, our system and reconstruction method have the potential to be used in live cells to track membrane dynamics in 3-D.

  8. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chris Ambrose

    Full Text Available Microtubules emanate from distinct organizing centers in fungal and animal cells. In plant cells, by contrast, microtubules initiate from dispersed sites in the cell cortex, where they then self-organize into parallel arrays. Previous ultrastructural evidence suggested that cell edges participate in microtubule nucleation but so far there has been no direct evidence for this. Here we use live imaging to show that components of the gamma tubulin nucleation complex (GCP2 and GCP3 localize at distinct sites along the outer periclinal edge of newly formed crosswalls, and that microtubules grow predominantly away from these edges. These data confirm a role for cell edges in microtubule nucleation, and suggest that an asymmetric distribution of microtubule nucleation factors contributes to cortical microtubule organization in plants, in a manner more similar to other kingdoms than previously thought.

  9. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2008-07-01

    Full Text Available Abstract Background During HIV-1 infection, the Tat protein plays a key role by transactivating the transcription of the HIV-1 proviral DNA. In addition, Tat induces apoptosis of non-infected T lymphocytes, leading to a massive loss of immune competence. This apoptosis is notably mediated by the interaction of Tat with microtubules, which are dynamic components essential for cell structure and division. Tat binds two Zn2+ ions through its conserved cysteine-rich region in vitro, but the role of zinc in the structure and properties of Tat is still controversial. Results To investigate the role of zinc, we first characterized Tat apo- and holo-forms by fluorescence correlation spectroscopy and time-resolved fluorescence spectroscopy. Both of the Tat forms are monomeric and poorly folded but differ by local conformational changes in the vicinity of the cysteine-rich region. The interaction of the two Tat forms with tubulin dimers and microtubules was monitored by analytical ultracentrifugation, turbidity measurements and electron microscopy. At 20°C, both of the Tat forms bind tubulin dimers, but only the holo-Tat was found to form discrete complexes. At 37°C, both forms promoted the nucleation and increased the elongation rates of tubulin assembly. However, only the holo-Tat increased the amount of microtubules, decreased the tubulin critical concentration, and stabilized the microtubules. In contrast, apo-Tat induced a large amount of tubulin aggregates. Conclusion Our data suggest that holo-Tat corresponds to the active form, responsible for the Tat-mediated apoptosis.

  10. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Directory of Open Access Journals (Sweden)

    Luís Korrodi-Gregório

    2013-03-01

    Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs. In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4 that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier.

  11. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure.

    Directory of Open Access Journals (Sweden)

    Fioranna Renda

    2017-05-01

    Full Text Available INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV, and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6 results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC. Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.

  12. Vacuolar Na+/H+ NHX-Type Antiporters Are Required for Cellular K+ Homeostasis, Microtubule Organization and Directional Root Growth

    Directory of Open Access Journals (Sweden)

    Tyler McCubbin

    2014-08-01

    Full Text Available Na+/H+ antiporters (NHXs are integral membrane transporters that catalyze the electroneutral exchange of K+ or Na+ for H+ and are implicated in cell expansion, development, pH and ion homeostasis and salt tolerance. Arabidopsis contains four vacuolar NHX isoforms (NHX1–NHX4, but only the functional roles for NHX1 and NHX2 have been assessed thus far. Colocalization studies indicated that NHX3 and NHX4 colocalize to the tonoplast. To investigate the role of all vacuolar NHX isoforms, a quadruple knockout nhx1nhx2nhx3nhx4, lacking all vacuolar NHXs, was generated. Seedlings of nhx1nhx2nhx3nhx4 displayed significantly reduced growth, with markedly shorter hypocotyls. Under high K+, but not Na+, pronounced root skewing occurred in nhx1nhx2nhx3nhx4, suggesting that the organization of the cytoskeleton might be perturbed. Whole mount immunolabeling of cortical microtubules indicated that high K+ caused significant microtubule reorganization in nhx1nhx2nhx3nhx4 root cells of the elongation zone. Using microtubule stabilizing (Taxol and destabilizing (propyzamide drugs, we found that the effect of K+ on nhx1nhx2nhx3nhx4 root growth was antagonistic to that of Taxol, whereas elevated K+ exacerbated the endogenous effect of propyzamide on root skewing. Collectively, our results suggest that altered K+ homeostasis leads to an increase in the dynamics of cortical microtubule reorganization in nhx1nhx2nhx3nhx4 root epidermal cells of the elongation zone.

  13. AsTeRICS: a new flexible solution for people with motor disabilities in upper limbs and its implication for rehabilitation procedures.

    Science.gov (United States)

    Morales, Blanca; Diaz-Orueta, Unai; García-Soler, Álvaro; Pecyna, Karol; Ossmann, Roland; Nussbaum, Gerhard; Veigl, Christoph; Weiss, Christoph; Acedo, Javier; Soria-Frisch, Aureli

    2013-11-01

    To present the AsTeRICS construction set, and examine different combinations of sensors installed in the platform and how users interact with them. Nearly 50 participants from Austria, Poland and Spain were included in the study. They had a heterogeneous range of diagnoses, but as a common feature all of them experienced motor limitations in their upper limbs. The study included a 1 h session with each participant where the user interacted with a personalized combination of sensors, based on a previous assessment on their motor capabilities performed by healthcare professionals. The sensors worked as substitutes for a standard QWERTY keyboard and a standard mouse. Semi-structured interviews were conducted to obtain participants' opinions. All collected data were analyzed based on the qualitative methodology. The findings illustrated that AsTeRICS is a flexible platform whose sensors can adapt to different degrees of users' motor capabilities, thus facilitating in most cases the interaction of the participants with a common computer. AsTeRICS platform can improve the interaction between people with mobility limitations and computers. It can provide access to new technologies and become a promising tool that can be integrated in physical rehabilitation programs for people with motor disabilities in their upper limbs. The AsTeRICS platform offers an interesting tool to interface and support the computerized rehabilitation program of the patients. Due to AsTeRICS platform high usability features, family and rehabilitation professionals can learn how to use the AsTeRICS platform quickly fostering the key role of their involvement on patients' rehabilitation. AsTeRICS is a flexible, extendable, adaptable and affordable technology adapted for using computer, environmental control, mobile phone, rehabilitation programs and mechatronic systems. AsTeRICS makes possible an easy reconfiguration and integration of new functionalities, such as biofeedback rehabilitation

  14. The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells.

    Science.gov (United States)

    Chaimovitsh, D; Rogovoy Stelmakh, O; Altshuler, O; Belausov, E; Abu-Abied, M; Rubin, B; Sadot, E; Dudai, N

    2012-03-01

    The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ-tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral's effect on microtubules was both dose- and time-dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ-tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP-Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral's effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Evaluating the quality of the Digital Elevation Models produced from ASTER stereoscopy for topographic mapping in the Brazilian Amazon Region

    Directory of Open Access Journals (Sweden)

    Cleber G. de Oliveira

    2009-06-01

    Full Text Available Brazilian Amazon is a vast territory rich in natural renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation and difficult access, topographic information is still poor, and when available needs to be up-dated or remapped. In this paper, the feasibility of using elevation generated from orbital ASTER- stereo-pairs images for topographic mapping was investigated for the mountainous relief in the Serra dos Carajás, Pará. The quality of information derived from these optical images was evaluated regarding field altimetric measurements. Precise topographic field information acquired from Global Positioning System (GPS was used as Ground Control Points (GCPs for the modeling of the stereoscopic Digital Elevation Models (DEMs and as Independent Check Points (ICPs for the calculation of elevation accuracies. The analysis was performed following two approaches: (1 the use of Root Mean Square Error (RMSE and (2 calculations of trend analysis and accuracy. The investigation has shown that the altimetric accuracy from ASTER fulfilled the Brazilian Map Accuracy Standards elevation requirements for 1:100,000 A Class. In addition, ASTER can provide up-dated planimetric information that is also necessary for cartographic production. Thus, when the environment condition allows the acquisition of stereo-pairs, the use of ASTER can be considered an alternative for semi-detailed topographic mapping in similar environments of the Brazilian Amazon.A Amazônia Brasileira é um rico e vasto território em recursos naturais renováveis e nãorenováveis. Devido às condições ambientais adversas (chuvas, nuvens, vegetação densa e difícil acesso, a informação topográfica ainda é escassa, e quando disponível necessita ser atualizada ou remapeada. Neste trabalho, a viabilidade de usar elevação para mapeamento topográfico por meio de imagens estereoscópicas orbitais ASTER foi investigada para relevo

  16. Estimation of Polder Retention Capacity Based on ASTER, SRTM and LIDAR DEMs: The Case of Majdany Polder (West Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Walczak

    2016-05-01

    Full Text Available This study compares four digital elevation models (DEMs, based on various data sources, to define polder retention capacities. Two commercial and two publically available, free of charge data sources were used. Commercial sources are DEMs based on aerial images and LIDAR (Light Detection and Ranging data. Free data source DEMs generated are based on: SRTM (Shuttle Radar Topography Mission and ASTER GDEM (ASTER Global Digital Elevation Model. In addition, the impact of the spatial resolution of the numerical terrain model on the calculated polder volume was evaluated. A DEM based on LIDAR data was used as the reference model and was supplemented with our own geodetic GPS (Global Positioning System measurements. In flood modeling and management, including retention of river valleys and polders, it is necessary to properly estimate their capacity and the relation between capacity and water level. The study showed the impact of quantitative and qualitative data sources in determining the retention capacity of a polder.

  17. Penentuan Tingkat Kekeringan Lahan Berbasis Analisa Citra Aster Dan Sistem Informasi Geografi

    Directory of Open Access Journals (Sweden)

    Alfian Pujian Hadi

    2016-10-01

    Full Text Available Kekeringan lahan yang melanda suatu daerah menimbulkan dampak yang besar terhadap produktivitas lahan pertanian. Terjadinya kekeringan ini disebabkan oleh defisit air akibat kurangnya hujan yang jatuh, laju infiltrasi air yang tinggi serta jenis tanaman yang tidak sesuai dengan ketersediaan air. Untuk meminimalkan dampak yang terjadi akibat kekeringan lahan maka perlu dilakukan antisipasi dengan mengetahui defisit dan surflus air lahan melalui data curah hujan serta kemampuan tanah menahan air (water holding capasity. Untuk keperluan analisis kekeringan lahan dapat menggunakan citra penginderaan jauh dan neraca air lahan sebagai pengetahuan awal guna perencanaan antisipasi kekeringan lahan sehingga kebutuhan air bagi tanaman dapat terpenuhi setiap saat. Penelitian ini dilakukan di sebagian wilayah Kabupaten Gunung Kidul. Tujuan penelitian ini adalah : (1 Mengkaji akurasi berbagai saluran TIR Citra Aster untuk mendapatkan informasi sebaran suhu permukaan, (2 Mengkaji sebaran kekeringan melalui indeks TVDI (Temperature Vegetation Dryness Indeks yang diekstrak dari suhu permukaan (Land Surface Temperature dan indeks NDVI. (3 Mengkaji tingkat kekeringan lahan dengan menggunakan metode Thornthwaite-Mather, (4 Mengkaji pola tanam yang sesuai diterapkan di wilayah penelitian. Hasil penelitian menunjukkan bahwa saluran 13 Citra Aster memiliki akurasi paling tinggi jika dibandingkan dengan saluran 10,11,12, serta 14 Citra Aster karena memiliki selisih paling kecil dengan suhu permukaan lapangan. Berdasarkan analisis RMS difference diperoleh nilai 1,140. Luas sebaran kekeringan berdasarkan indeks TVDI pada seluruh penggunaan lahan dengan tingkat kekeringan tinggi, sedang dan rendah masingmasing melanda daerah seluas 2.922,8 Ha (4,6%, 20.286,16 Ha (32,11% serta 39.962,72 Ha (63,26%. Dari total luas 2.922,8 Ha lahan yang dilanda kekeringan dengan tingkat kekeringan tinggi (kering/kurang air seluas 2.069,47 Ha merupakan sawah tadah hujan. Analisis hubungan

  18. The nucleation of microtubules in Aspergillus nidulans germlings

    Directory of Open Access Journals (Sweden)

    Cristina de Andrade-Monteiro

    1999-09-01

    Full Text Available Microtubules are filaments composed of dimers of alpha- and beta-tubulins, which have a variety of functions in living cells. In fungi, the spindle pole bodies usually have been considered to be microtubule-organizing centers. We used the antimicrotubule drug Benomyl in block/release experiments to depolymerize and repolymerize microtubules in Aspergillus nidulans germlings to learn more about the microtubule nucleation process in this filamentous fungus. Twenty seconds after release from Benomyl short microtubules were formed from several bright (immunofluorescent dots distributed along the germlings, suggesting that microtubule nucleation is randomly distributed in A. nidulans germlings. Since nuclear movement is dependent on microtubules in A. nidulans we analyzed whether mutants defective in nuclear distribution along the growing hyphae (nud mutants have some obvious microtubule defect. Cytoplasmic, astral and spindle microtubules were present and appeared to be normal in all nud mutants. However, significant changes in the percentage of short versus long mitotic spindles were observed in nud mutants. This suggests that some of the nuclei of nud mutants do not reach the late stage of cell division at normal temperatures.Microtúbulos são filamentos compostos por dímeros das tubulinas a e b e têm uma variedade de funções nas células vivas. Em fungos, os corpúsculos polares dos fusos são geralmente considerados os centros organizadores dos microtúbulos. Com o objetivo de contribuir para uma melhor compreensão dos processos de nucleação dos microtúbulos no fungo filamentoso A. nidulans, nós utilizamos a droga antimicrotúbulo Benomil em experimentos de bloqueio e liberação para depolimerizar e repolimerizar os microtúbulos. Após 20 segundos de reincubação em meio sem Benomil, pequenos microtúbulos foram formados a partir de pontos distribuídos pela célula, sugerindo que os pontos de nucleação de microtúbulos s

  19. PENENTUAN TINGKAT KEKERINGAN LAHAN BERBASIS ANALISA CITRA ASTER DAN SISTEM INFORMASI GEOGRAFIS

    Directory of Open Access Journals (Sweden)

    Alfian Pujian Hadi

    2016-10-01

    Full Text Available ABSTRAK Kekeringan lahan yang melanda suatu daerah menimbulkan dampak yang besar terhadap produktivitas lahan pertanian. Terjadinya kekeringan ini disebabkan oleh defisit air akibat kurangnya hujan yang jatuh, laju infiltrasi air yang tinggi serta jenis tanaman yang tidak sesuai dengan ketersediaan air. Untuk meminimalkan dampak yang terjadi akibat kekeringan lahan maka perlu dilakukan antisipasi dengan mengetahui defisit dan surflus air lahan melalui data curah hujan serta kemampuan tanah menahan air (water holding capasity. Untuk keperluan analisis kekeringan lahan dapat menggunakan citra penginderaan jauh dan neraca air lahan sebagai pengetahuan awal guna perencanaan antisipasi kekeringan lahan sehingga kebutuhan air bagi tanaman dapat terpenuhi setiap saat. Penelitian ini dilakukan di sebagian wilayah Kabupaten Gunung Kidul. Tujuan penelitian ini adalah : (1 Mengkaji akurasi berbagai saluran TIR Citra Aster untuk mendapatkan informasi sebaran suhu permukaan, (2 Mengkaji sebaran kekeringan melalui indeks TVDI (Temperature Vegetation Dryness Indeks yang diekstrak dari suhu permukaan (Land Surface Temperature dan indeks NDVI. (3 Mengkaji tingkat kekeringan lahan dengan menggunakan metode Thornthwaite-Mather,  (4 Mengkaji pola tanam yang sesuai diterapkan di wilayah penelitian. Hasil penelitian menunjukkan bahwa saluran 13 Citra Aster memiliki akurasi paling tinggi jika dibandingkan dengan saluran 10,11,12, serta 14 Citra Aster karena memiliki selisih paling kecil dengan suhu permukaan lapangan. Berdasarkan analisis RMS difference diperoleh nilai 1,140. Luas sebaran kekeringan berdasarkan indeks TVDI pada seluruh penggunaan lahan dengan tingkat kekeringan tinggi, sedang dan rendah masingmasing melanda daerah seluas 2.922,8 Ha (4,6%, 20.286,16 Ha (32,11% serta 39.962,72 Ha (63,26%. Dari total luas 2.922,8 Ha lahan yang dilanda kekeringan dengan tingkat kekeringan tinggi (kering/kurang air seluas 2.069,47 Ha merupakan sawah tadah hujan. Analisis

  20. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    Directory of Open Access Journals (Sweden)

    Chen-Yi Sun

    2008-09-01

    Full Text Available The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures.

  1. The Lattice As Allosteric Effector: Structural Studies of Alphabeta- And Gamma-Tubulin Clarify the Role of GTP in Microtubule Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rice, L.M.; Montabana, E.A.; Agard, D.A.

    2009-05-21

    GTP-dependent microtubule polymerization dynamics are required for cell division and are accompanied by domain rearrangements in the polymerizing subunit, alpha-tubulin. Two opposing models describe the role of GTP and its relationship to conformational change in alpha-tubulin. The allosteric model posits that unpolymerized alpha-tubulin adopts a more polymerization-competent conformation upon GTP binding. The lattice model posits that conformational changes occur only upon recruitment into the growing lattice. Published data support a lattice model, but are largely indirect and so the allosteric model has prevailed. We present two independent solution probes of the conformation of alpha-tubulin, the 2.3 A crystal structure of gamma-tubulin bound to GDP, and kinetic simulations to interpret the functional consequences of the structural data. These results (with our previous gamma-tubulin:GTPgammaS structure) support the lattice model by demonstrating that major domain rearrangements do not occur in eukaryotic tubulins in response to GTP binding, and that the unpolymerized conformation of alpha-tubulin differs significantly from the polymerized one. Thus, geometric constraints of lateral self-assembly must drive alpha-tubulin conformational changes, whereas GTP plays a secondary role to tune the strength of longitudinal contacts within the microtubule lattice. alpha-Tubulin behaves like a bent spring, resisting straightening until forced to do so by GTP-mediated interactions with the growing microtubule. Kinetic simulations demonstrate that resistance to straightening opposes microtubule initiation by specifically destabilizing early assembly intermediates that are especially sensitive to the strength of lateral interactions. These data provide new insights into the molecular origins of dynamic microtubule behavior.

  2. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    Science.gov (United States)

    Spruce, Joseph P.; Graham, William; Smoot, James

    2009-01-01

    This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was

  3. VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES

    Directory of Open Access Journals (Sweden)

    D. Gesch

    2016-06-01

    Full Text Available The ASTER Global Digital Elevation Model Version 3 (GDEM v3 was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1 in 2009 and GDEM Version 2 (v2 in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters, the mean error (bias does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2 and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  4. Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project

    Directory of Open Access Journals (Sweden)

    Recep Gundogan

    2008-02-01

    Full Text Available The satellite imagery has been effectively utilized for classifying land covertypes and detecting land cover conditions. The Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER sensor imagery has been widely used in classificationprocess of land cover. However, atmospheric corrections have to be made by preprocessingsatellite sensor imagery since the electromagnetic radiation signals received by the satellitesensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study,an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance(TOA, was used to classify the land use/cover types, according to COoRdination ofINformation on the Environment (CORINE land cover nomenclature, for an arearepresenting the heterogonous characteristics of eastern Mediterranean regions inKahramanmaras, Turkey. The results indicated that using the surface reflectance data ofASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of83.2% and 0.79, respectively and low-cost cover mapping as a part of inventory forCORINE Land Cover Project.

  5. Using ASTER Imagery in Land Use/cover Classification of Eastern Mediterranean Landscapes According to CORINE Land Cover Project.

    Science.gov (United States)

    Yüksel, Alaaddin; Akay, Abdullah E; Gundogan, Recep

    2008-02-21

    The satellite imagery has been effectively utilized for classifying land covertypes and detecting land cover conditions. The Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER) sensor imagery has been widely used in classificationprocess of land cover. However, atmospheric corrections have to be made by preprocessingsatellite sensor imagery since the electromagnetic radiation signals received by the satellitesensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study,an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance(TOA), was used to classify the land use/cover types, according to COoRdination ofINformation on the Environment (CORINE) land cover nomenclature, for an arearepresenting the heterogonous characteristics of eastern Mediterranean regions inKahramanmaras, Turkey. The results indicated that using the surface reflectance data ofASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of83.2% and 0.79, respectively) and low-cost cover mapping as a part of inventory forCORINE Land Cover Project.

  6. Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations  

    Directory of Open Access Journals (Sweden)

    Adam Carter

    2010-11-01

    Full Text Available Shiveluch (Kamchatka, Russia is the most active andesitic volcano of the Kuril-Kamchatka arc, typically exhibiting near-continual high-temperature fumarolic activity and periods of exogenous lava dome emplacement punctuated by discrete large explosive eruptions. These eruptions can produce large pyroclastic flow (PF deposits, which are common on the southern flank of the volcano. Since 2000, six explosive eruptions have occurred that generated ash fall and PF deposits. Over this same time period, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument has been acquiring image-based visible/near infrared (VNIR, short wave infrared (SWIR and thermal infrared (TIR data globally, with a particular emphasis on active volcanoes. Shiveluch was selected as an ASTER target of interest early in the mission because of its frequent activity and potential impact to northern Pacific air transportation. The north Pacific ASTER archive was queried for Shiveluch data and we present results from 2000 to 2009 that documents three large PF deposits emplaced on 19 May 2001, 9 May 2004, and 28 February 2005. The long-term archive of infrared data provides an excellent record on the changing activity and eruption state of the volcano.

  7. Monitoring coastal water quality in a municipal beach in Paphos-Cyprus using ASTER image data and spectral signatures

    Science.gov (United States)

    Diofantos, Hadjimitsis G.; Marinos, Hadjimitsis G.; Athos, Agapiou; Kyriacos, Themistocleous

    2009-09-01

    Using remote sensing data to assess the quality of water bodies has proven to be successful not only in inland waters but to coastal water areas as shown by several others conducted studies. The main objective of this study is to use ASTER data to evaluate the potential of using such remotely sensed digital data, to extract information that help in the monitoring system for Cyprus coastal water quality, especially in municipal beaches that are included in the Blue Flag Programme. Reflectance signature of municipal coastal water is monitored using a GER 1500 field spectroradiometer. Simultaneous measurements of turbidity, temperature have been acquired. E-coli values have been retrieved through the sampling procedure. Such coastal water quality assessment can assist the Blue-Flag Programme in the area under investigation. ASTER images can be programmed for summer acquisitions in which Blue-Flag Programme is active so this can be considered an advantage and can be used by the local authorities as a systematic monitoring tool. It has been found after correlating the SS, Turbidity with the water reflectance obtained using the GER 1500 that high correlation was occurred for the wavelength region that corresponds to ASTER band 2 and band 3 respectively (r2>0.80 ). Temporal and spatial variations can be monitored from satellite images as shown from the in-situ validated spectroradiometric measurements.

  8. Using aster multispectral imagery for mapping woody invasive species in pico da vara natural reserve (Azores Islands, Portugal

    Directory of Open Access Journals (Sweden)

    Artur Gil

    2014-06-01

    Full Text Available This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal. This assessment was done by applying K-Nearest Neighbor (KNN, Support Vector Machine (SVM and Maximum Likelihood (MLC pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR and Short Wave Infrared (SWIR of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams" of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.

  9. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    Science.gov (United States)

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.

  10. FcɛRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane

    Science.gov (United States)

    Nishida, Keigo; Yamasaki, Satoru; Ito, Yukitaka; Kabu, Koki; Hattori, Kotaro; Tezuka, Tohru; Nishizumi, Hirofumi; Kitamura, Daisuke; Goitsuka, Ryo; Geha, Raif S.; Yamamoto, Tadashi; Yagi, Takeshi; Hirano, Toshio

    2005-01-01

    The aggregation of high affinity IgE receptors (Fcɛ receptor I [FcɛRI]) on mast cells is potent stimulus for the release of inflammatory and allergic mediators from cytoplasmic granules. However, the molecular mechanism of degranulation has not yet been established. It is still unclear how FcɛRI-mediated signal transduction ultimately regulates the reorganization of the cytoskeleton and how these events lead to degranulation. Here, we show that FcɛRI stimulation triggers the formation of microtubules in a manner independent of calcium. Drugs affecting microtubule dynamics effectively suppressed the FcɛRI-mediated translocation of granules to the plasma membrane and degranulation. Furthermore, the translocation of granules to the plasma membrane occurred in a calcium-independent manner, but the release of mediators and granule–plasma membrane fusion were completely dependent on calcium. Thus, the degranulation process can be dissected into two events: the calcium-independent microtubule-dependent translocation of granules to the plasma membrane and calcium-dependent membrane fusion and exocytosis. Finally, we show that the Fyn/Gab2/RhoA (but not Lyn/SLP-76) signaling pathway plays a critical role in the calcium-independent microtubule-dependent pathway. PMID:15998803

  11. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase

    Directory of Open Access Journals (Sweden)

    Amayra Hernández-Vega

    2017-09-01

    Full Text Available Non-centrosomal microtubule bundles play important roles in cellular organization and function. Although many diverse proteins are known that can bundle microtubules, biochemical mechanisms by which cells could locally control the nucleation and formation of microtubule bundles are understudied. Here, we demonstrate that the concentration of tubulin into a condensed, liquid-like compartment composed of the unstructured neuronal protein tau is sufficient to nucleate microtubule bundles. We show that, under conditions of macro-molecular crowding, tau forms liquid-like drops. Tubulin partitions into these drops, efficiently increasing tubulin concentration and driving the nucleation of microtubules. These growing microtubules form bundles, which deform the drops while remaining enclosed by diffusible tau molecules exhibiting a liquid-like behavior. Our data suggest that condensed compartments of microtubule bundling proteins could promote the local formation of microtubule bundles in neurons by acting as non-centrosomal microtubule nucleation centers and that liquid-like tau encapsulation could provide both stability and plasticity to long axonal microtubule bundles.

  12. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase.

    Science.gov (United States)

    Hernández-Vega, Amayra; Braun, Marcus; Scharrel, Lara; Jahnel, Marcus; Wegmann, Susanne; Hyman, Bradley T; Alberti, Simon; Diez, Stefan; Hyman, Anthony A

    2017-09-05

    Non-centrosomal microtubule bundles play important roles in cellular organization and function. Although many diverse proteins are known that can bundle microtubules, biochemical mechanisms by which cells could locally control the nucleation and formation of microtubule bundles are understudied. Here, we demonstrate that the concentration of tubulin into a condensed, liquid-like compartment composed of the unstructured neuronal protein tau is sufficient to nucleate microtubule bundles. We show that, under conditions of macro-molecular crowding, tau forms liquid-like drops. Tubulin partitions into these drops, efficiently increasing tubulin concentration and driving the nucleation of microtubules. These growing microtubules form bundles, which deform the drops while remaining enclosed by diffusible tau molecules exhibiting a liquid-like behavior. Our data suggest that condensed compartments of microtubule bundling proteins could promote the local formation of microtubule bundles in neurons by acting as non-centrosomal microtubule nucleation centers and that liquid-like tau encapsulation could provide both stability and plasticity to long axonal microtubule bundles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity.

    Directory of Open Access Journals (Sweden)

    Kyle D Grode

    Full Text Available Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules.

  14. Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization.

    Science.gov (United States)

    Takatani, Shogo; Ozawa, Shinichiro; Yagi, Noriyoshi; Hotta, Takashi; Hashimoto, Takashi; Takahashi, Yuichiro; Takahashi, Taku; Motose, Hiroyasu

    2017-08-10

    Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.

  15. Inversion of Land Surface Temperature (LST Using Terra ASTER Data: A Comparison of Three Algorithms

    Directory of Open Access Journals (Sweden)

    Milton Isaya Ndossi

    2016-12-01

    Full Text Available Land Surface Temperature (LST is an important measurement in studies related to the Earth surface’s processes. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER instrument onboard the Terra spacecraft is the currently available Thermal Infrared (TIR imaging sensor with the highest spatial resolution. This study involves the comparison of LSTs inverted from the sensor using the Split Window Algorithm (SWA, the Single Channel Algorithm (SCA and the Planck function. This study has used the National Oceanic and Atmospheric Administration’s (NOAA data to model and compare the results from the three algorithms. The data from the sensor have been processed by the Python programming language in a free and open source software package (QGIS to enable users to make use of the algorithms. The study revealed that the three algorithms are suitable for LST inversion, whereby the Planck function showed the highest level of accuracy, the SWA had moderate level of accuracy and the SCA had the least accuracy. The algorithms produced results with Root Mean Square Errors (RMSE of 2.29 K, 3.77 K and 2.88 K for the Planck function, the SCA and SWA respectively.

  16. Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes

    Science.gov (United States)

    Brenning, A.; Peña, M. A.; Long, S.; Soliman, A.

    2012-03-01

    Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potential of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions.

  17. The mechanics of microtubule networks in cell division.

    Science.gov (United States)

    Forth, Scott; Kapoor, Tarun M

    2017-06-05

    The primary goal of a dividing somatic cell is to accurately and equally segregate its genome into two new daughter cells. In eukaryotes, this process is performed by a self-organized structure called the mitotic spindle. It has long been appreciated that mechanical forces must be applied to chromosomes. At the same time, the network of microtubules in the spindle must be able to apply and sustain large forces to maintain spindle integrity. Here we consider recent efforts to measure forces generated within microtubule networks by ensembles of key proteins. New findings, such as length-dependent force generation, protein clustering by asymmetric friction, and entropic expansion forces will help advance models of force generation needed for spindle function and maintaining integrity. © 2017 Forth and Kapoor.

  18. Vibrations of microtubules: Physics that has not met biology yet

    Czech Academy of Sciences Publication Activity Database

    Kučera, Ondřej; Havelka, Daniel; Cifra, Michal

    2017-01-01

    Roč. 72, 1 July (2017), s. 13-22 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GA15-17102S Grant - others:AV ČR(CZ) SAV-15-22 Program:Bilaterální spolupráce Institutional support: RVO:67985882 Keywords : Models * Vibration s * Microtubules Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.575, year: 2016

  19. An assessment of the land surface emissivity in the 8 - 12 micrometer window determined from ASTER and MODIS data

    Science.gov (United States)

    Schmugge, T.; Hulley, G.; Hook, S.

    2009-04-01

    The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region

  20. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  1. Phase Transitioning the Centrosome into a Microtubule Nucleator.

    Science.gov (United States)

    Rale, Michael J; Kadzik, Rachel S; Petry, Sabine

    2018-01-09

    Centrosomes are self-assembling, micron-scale, nonmembrane bound organelles that nucleate microtubules (MTs) and organize the microtubule cytoskeleton of the cell. They orchestrate critical cellular processes such as ciliary-based motility, vesicle trafficking, and cell division. Much is known about the role of the centrosome in these contexts, but we have a less comprehensive understanding of how the centrosome assembles and generates microtubules. Studies over the past 10 years have fundamentally shifted our view of these processes. Subdiffraction imaging has probed the amorphous haze of material surrounding the core of the centrosome revealing a complex, hierarchically organized structure whose composition and size changes profoundly during the transition from interphase to mitosis. New biophysical insights into protein phase transitions, where a diffuse protein spontaneously separates into a locally concentrated, nonmembrane bounded compartment, have provided a fresh perspective into how the centrosome might rapidly condense from diffuse cytoplasmic components. In this Perspective, we focus on recent findings that identify several centrosomal proteins that undergo phase transitions. We discuss how to reconcile these results with the current model of the underlying organization of proteins in the centrosome. Furthermore, we reflect on how these findings impact our understanding of how the centrosome undergoes self-assembly and promotes MT nucleation.

  2. Alteration, slope-classified alteration, and potential lahar inundation maps of volcanoes for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Volcano Archive

    Science.gov (United States)

    Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin

    2015-01-01

    This study identifies areas prone to lahars from hydrothermally altered volcanic edifices on a global scale, using visible and near infrared (VNIR) and short wavelength infrared (SWIR) reflectance data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and digital elevation data from the ASTER Global Digital Elevation Model (GDEM) dataset. This is the first study to create a global database of hydrothermally altered volcanoes showing quantitatively compiled alteration maps and potentially affected drainages, as well as drainage-specific maps illustrating modeled lahars and their potential inundation zones. We (1) identified and prioritized 720 volcanoes based on population density surrounding the volcanoes using the Smithsonian Institution Global Volcanism Program database (GVP) and LandScan™ digital population dataset; (2) validated ASTER hydrothermal alteration mapping techniques using Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and ASTER data for Mount Shasta, California, and Pico de Orizaba (Citlaltépetl), Mexico; (3) mapped and slope-classified hydrothermal alteration using ASTER VNIR-SWIR reflectance data on 100 of the most densely populated volcanoes; (4) delineated drainages using ASTER GDEM data that show potential flow paths of possible lahars for the 100 mapped volcanoes; (5) produced potential alteration-related lahar inundation maps using the LAHARZ GIS code for Iztaccíhuatl, Mexico, and Mount Hood and Mount Shasta in the United States that illustrate areas likely to be affected based on DEM-derived volume estimates of hydrothermally altered rocks and the ~2x uncertainty factor inherent within a statistically-based lahar model; and (6) saved all image and vector data for 3D and 2D display in Google Earth™, ArcGIS® and other graphics display programs. In addition, these data are available from the ASTER Volcano Archive (AVA) for distribution (available at http://ava.jpl.nasa.gov/recent_alteration_zones.php).

  3. Tracking of plus-ends reveals microtubule functional diversity in different cell types

    Science.gov (United States)

    Shaebani, M. Reza; Pasula, Aravind; Ott, Albrecht; Santen, Ludger

    2016-07-01

    Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.

  4. Linking cortical microtubule attachment and exocytosis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ivar Noordstra

    2017-04-01

    Full Text Available Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.

  5. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    Science.gov (United States)

    Casenghi, Martina; Meraldi, Patrick; Weinhart, Ulrike; Duncan, Peter I; Körner, Roman; Nigg, Erich A

    2003-07-01

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

  6. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Qun Zhang

    2015-12-01

    Full Text Available ABSTRACT Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

  7. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  8. How selective severing by katanin promotes order in the plant cortical microtubule array

    Science.gov (United States)

    Tindemans, Simon H.; Lindeboom, Jelmer J.; Mulder, Bela M.

    2017-01-01

    Plant morphogenesis requires differential and often asymmetric growth. A key role in controlling anisotropic expansion of individual cells is played by the cortical microtubule array. Although highly organized, the array can nevertheless rapidly change in response to internal and external cues. Experiments have identified the microtubule-severing enzyme katanin as a central player in controlling the organizational state of the array. Katanin action is required both for normal alignment and the adaptation of array orientation to mechanical, environmental, and developmental stimuli. How katanin fulfills its controlling role, however, remains poorly understood. On the one hand, from a theoretical perspective, array ordering depends on the “weeding out” of discordant microtubules through frequent catastrophe-inducing collisions among microtubules. Severing would reduce average microtubule length and lifetime, and consequently weaken the driving force for alignment. On the other hand, it has been suggested that selective severing at microtubule crossovers could facilitate the removal of discordant microtubules. Here we show that this apparent conflict can be resolved by systematically dissecting the role of all of the relevant interactions in silico. This procedure allows the identification of the sufficient and necessary conditions for katanin to promote array alignment, stresses the critical importance of the experimentally observed selective severing of the “crossing” microtubule at crossovers, and reveals a hitherto not appreciated role for microtubule bundling. We show how understanding the underlying mechanism can aid with interpreting experimental results and designing future experiments. PMID:28630321

  9. Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules

    Directory of Open Access Journals (Sweden)

    Régine Roubin

    2012-12-01

    The generation of cellular microtubules is initiated at specific sites such as the centrosome and the Golgi apparatus that contain nucleation complexes rich in γ-tubulin. The microtubule growing plus-ends are stabilized by plus-end tracking proteins (+TIPs, mainly EB1 and associated proteins. Myomegalin was identified as a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterase. We show here that Myomegalin exists as several isoforms. We characterize two of them. One isoform, CM-MMG, harbors a conserved domain (CM1, recently described as a nucleation activator, and is related to a family of γ-tubulin binding proteins, which includes Drosophila centrosomin. It localizes at the centrosome and at the cis-Golgi in an AKAP450-dependent manner. It recruits γ-tubulin nucleating complexes and promotes microtubule nucleation. The second isoform, EB-MMG, is devoid of CM1 domain and has a unique N-terminus with potential EB1-binding sites. It localizes at the cis-Golgi and can localize to microtubule plus-ends. EB-MMG binds EB1 and affects its loading on microtubules and microtubule growth. Depletion of Myomegalin by small interfering RNA delays microtubule growth from the centrosome and Golgi apparatus, and decreases directional migration of RPE1 cells. In conclusion, the Myomegalin gene encodes different isoforms that regulate microtubules. At least two of these have different roles, demonstrating a previously unknown mechanism to control microtubules in vertebrate cells.

  10. Astral microtubule pivoting promotes their search for cortical anchor sites during mitosis in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stephan Baumgärtner

    Full Text Available Positioning of the mitotic spindle is crucial for proper cell division. In the budding yeast Saccharomyces cerevisiae, two mechanisms contribute to spindle positioning. In the Kar9 pathway, astral microtubules emanating from the daughter-bound spindle pole body interact via the linker protein Kar9 with the myosin Myo2, which moves the microtubule along the actin cables towards the neck. In the dynein pathway, astral microtubules off-load dynein onto the cortical anchor protein Num1, which is followed by dynein pulling on the spindle. Yet, the mechanism by which microtubules target cortical anchor sites is unknown. Here we quantify the pivoting motion of astral microtubules around the spindle pole bodies, which occurs during spindle translocation towards the neck and through the neck. We show that this pivoting is largely driven by the Kar9 pathway. The microtubules emanating from the daughter-bound spindle pole body pivot faster than those at the mother-bound spindle pole body. The Kar9 pathway reduces the time needed for an astral microtubule inside the daughter cell to start pulling on the spindle. Thus, we propose a new role for microtubule pivoting: By pivoting around the spindle pole body, microtubules explore the space laterally, which helps them search for cortical anchor sites in the context of spindle positioning in budding yeast.

  11. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  12. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules.

    Science.gov (United States)

    Fridén, B; Wallin, M

    1991-07-10

    Microtubule-associated proteins (MAPs) were separated from tubulin with several different methods. The ability of the isolated MAPs to reinduce assembly of phosphocellulose purified tubulin differed markedly between the different methods. MAPs isolated by addition of 0.35 M NaCl to taxol-stabilized microtubules stimulated tubulin assembly most effectively, while addition of 0.6 M NaCl produced MAPs with a substantially lower ability to stimulate tubulin assembly. The second best preparation was achieved with phosphocellulose chromatographic separation of MAPs with 0.6 M NaCl elution. The addition of estramustine phosphate to microtubules reconstituted of MAPs prepared by 0.35 M NaCl or phosphocellulose chromatography, induced less disassembly than for microtubules assembled from unseparated proteins, and was almost without effect on microtubules reconstituted from MAPs prepared by taxol and 0.6 M NaCl. Estramustine phosphate binds to the tubulin binding part of the MAPs, and the results do therefore indicate that the MAPs are altered by the separation methods. Since the MAPs are regarded as highly stable molecules, one probable alteration could be aggregation of the MAPs, as also indicated by the results. The purified tubulin itself seemed not to be affected by the phosphocellulose purification, since the microtubule proteins were unchanged by the low buffer strenght used during the cromatography. However, the assembly competence after a prolonged incubation of the microtubule proteins at 4 degrees C was dependent on intact bindings between the tubulin and MAPs.

  13. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle.

    Science.gov (United States)

    Chinen, Takumi; Liu, Peng; Shioda, Shuya; Pagel, Judith; Cerikan, Berati; Lin, Tien-Chen; Gruss, Oliver; Hayashi, Yoshiki; Takeno, Haruka; Shima, Tomohiro; Okada, Yasushi; Hayakawa, Ichiro; Hayashi, Yoshio; Kigoshi, Hideo; Usui, Takeo; Schiebel, Elmar

    2015-10-27

    Inhibitors of microtubule (MT) assembly or dynamics that target α/β-tubulin are widely exploited in cancer therapy and biological research. However, specific inhibitors of the MT nucleator γ-tubulin that would allow testing temporal functions of γ-tubulin during the cell cycle are yet to be identified. By evolving β-tubulin-binding drugs we now find that the glaziovianin A derivative gatastatin is a γ-tubulin-specific inhibitor. Gatastatin decreased interphase MT dynamics of human cells without affecting MT number. Gatastatin inhibited assembly of the mitotic spindle in prometaphase. Addition of gatastatin to preformed metaphase spindles altered MT dynamics, reduced the number of growing MTs and shortened spindle length. Furthermore, gatastatin prolonged anaphase duration by affecting anaphase spindle structure, indicating the continuous requirement of MT nucleation during mitosis. Thus, gatastatin facilitates the dissection of the role of γ-tubulin during the cell cycle and reveals the sustained role of γ-tubulin.

  14. Wide area lithologic mapping with ASTER thermal infrared data: Case studies for the regions in/around the Pamir Mountains and the Tarim basin

    Science.gov (United States)

    Ninomiya, Yoshiki; Fu, Bihong

    2017-07-01

    After the authors have proposed the mineralogical indices, e.g., Quartz Index (QI), Carbonate Index (CI), Mafic Index (MI) for ASTER thermal infrared (TIR) data, many articles have been applied the indices for the geological case studies and proved to be robust in extracting geological information at the local scale. The authors also have developed a system for producing the regional map with the indices, which needs mosaicking of many scenes considering the relatively narrow spatial coverage of each ASTER scene. The system executes the procedures very efficiently to find ASTER data covering a wide target area in the vast and expanding ASTER data archive. Then the searched ASTER data are conditioned, prioritized, and the indices are calculated before finally mosaicking the imagery. Here in this paper, we will present two case studies of the regional lithologic and mineralogic mapping of the indices covering very wide regions in and around the Pamir Mountains and the Tarim basin. The characteristic features of the indices related to geology are analysed, interpreted and discussed.

  15. Conservation genetics of the rare Pyreneo-Cantabrian endemic Aster pyrenaeus (Asteraceae)

    Science.gov (United States)

    Escaravage, Nathalie; Cambecèdes, Jocelyne; Largier, Gérard; Pornon, André

    2011-01-01

    Background and aims Aster pyrenaeus (Asteraceae) is an endangered species, endemic to the Pyrenees and Cantabrian Mountain ranges (Spain). For its long-term persistence, this taxon needs an appropriate conservation strategy to be implemented. In this context, we studied the genetic structure over the entire geographical range of the species and then inferred the genetic relationships between populations. Methodology Molecular diversity was analysed for 290 individuals from 12 populations in the Pyrenees and the Cantabrian Mountains using inter simple sequence repeats (ISSRs). Bayesian-based analysis was applied to examine population structure. Principal results Analysis of genetic similarity and diversity, based on 87 polymorphic ISSR markers, suggests that despite being small and isolated, populations have an intermediate genetic diversity level (P % = 52.8 %, HE = 0.21 ± 0.01, genetic similarity between individuals = 49.6 %). Genetic variation was mainly found within populations (80–84 %), independently of mountain ranges, whereas 16–18 % was found between populations and <5 % between mountain ranges. Analyses of molecular variance indicated that population differentiation was highly significant. However, no significant correlation was found between the genetic and geographical distances among populations (Rs = 0.359, P = 0.140). Geographical structure based on assignment tests identified five different gene pools that were independent of any particular structure in the landscape. Conclusions The results suggest that population isolation is probably relatively recent, and that the outbreeding behaviour of the species maintains a high within-population genetic diversity. We assume that some long-distance dispersal, even among topographically remote populations, may be determinant for the pattern of genetic variation found in populations. Based on these findings, strategies are proposed for genetic conservation and management of the species. PMID:22476499

  16. Avaliação de fluxos de calor e evapotranspiração pelo modelo SEBAL com uso de dados do sensor ASTER Evaluation of heat fluxes and evapotranspiration using SEBAL model with data from ASTER sensor

    Directory of Open Access Journals (Sweden)

    Thiago Veloso dos Santos

    2010-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência da aplicação do modelo SEBAL em estimar os fluxos de energia em superfície e a evapotranspiração diária, numa extensa área de cultivo de arroz irrigado, no município de Paraíso do Sul, RS, tendo como parâmetros dados do sensor ASTER. As variáveis estudadas constituem importantes parâmetros do tempo e do clima em estudos agrometeorológicos e de racionalização no uso da água. As metodologias convencionais de estimativa desses parâmetros são pontuais e geralmente apresentam incertezas, que aumentam quando o interesse é o comportamento espacial desses parâmetros. Aplicou-se o algoritmo "Surface Energy Balance Algorithm for Land" (SEBAL, em uma imagem do sensor "Advanced Spaceborne Thermal Emission and Reflection Radiometer" (ASTER. As estimativas obtidas foram comparadas com medições em campo, realizadas por uma estação micrometeorológica localizada no interior da área de estudo. As estimativas mais precisas foram as de fluxo de calor sensível e de evapotranspiração diária, e a estimativa que apresentou maior erro foi a do fluxo de calor no solo. A metodologia empregada foi capaz de reproduzir os fluxos de energia em superfície de maneira satisfatória para estudos agrometeorológicos e de rendimento de culturas.The objective of this study was to evaluate the efficiency of SEBAL model in estimating soil surface energy fluxes and daily evapotranspiration for a large area of irrigated rice farms, near the municipality of Paraíso do Sul, RS, Brazil, using data from ASTER sensor. The evaluated variables are important weather and climatic parameters for agrometeorological studies and rationalization of water use. The conventional methodologies for estimating these parameters generally present uncertainties, which increase when concern is in the spatial behavior of such parameters. The Surface Energy Balance Algorithm for Land (SEBAL was applied in an Advanced Spaceborne

  17. Microtubule-associated protein 1b is required for shaping the neural tube.

    Science.gov (United States)

    Jayachandran, Pradeepa; Olmo, Valerie N; Sanchez, Stephanie P; McFarland, Rebecca J; Vital, Eudorah; Werner, Jonathan M; Hong, Elim; Sanchez-Alberola, Neus; Molodstov, Aleksey; Brewster, Rachel M

    2016-01-18

    Shaping of the neural tube, the precursor of the brain and spinal cord, involves narrowing and elongation of the neural tissue, concomitantly with other morphogenetic changes that contribue to this process. In zebrafish, medial displacement of neural cells (neural convergence or NC), which drives the infolding and narrowing of the neural ectoderm, is mediated by polarized migration and cell elongation towards the dorsal midline. Failure to undergo proper NC results in severe neural tube defects, yet the molecular underpinnings of this process remain poorly understood. We investigated here the role of the microtubule (MT) cytoskeleton in mediating NC in zebrafish embryos using the MT destabilizing and hyperstabilizing drugs nocodazole and paclitaxel respectively. We found that MTs undergo major changes in organization and stability during neurulation and are required for the timely completion of NC by promoting cell elongation and polarity. We next examined the role of Microtubule-associated protein 1B (Map1b), previously shown to promote MT dynamicity in axons. map1b is expressed earlier than previously reported, in the developing neural tube and underlying mesoderm. Loss of Map1b function using morpholinos (MOs) or δMap1b (encoding a truncated Map1b protein product) resulted in delayed NC and duplication of the neural tube, a defect associated with impaired NC. We observed a loss of stable MTs in these embryos that is likely to contribute to the NC defect. Lastly, we found that Map1b mediates cell elongation in a cell autonomous manner and polarized protrusive activity, two cell behaviors that underlie NC and are MT-dependent. Together, these data highlight the importance of MTs in the early morphogenetic movements that shape the neural tube and reveal a novel role for the MT regulator Map1b in mediating cell elongation and polarized cell movement in neural progenitor cells.

  18. Molecular quantum robotics: particle and wave solutions, illustrated by "leg-over-leg" walking along microtubules.

    Science.gov (United States)

    Levi, Paul

    2015-01-01

    Remarkable biological examples of molecular robots are the proteins kinesin-1 and dynein, which move and transport cargo down microtubule "highways," e.g., of the axon, to final nerve nodes or along dendrites. They convert the energy of ATP hydrolysis into mechanical forces and can thereby push them forwards or backwards step by step. Such mechano-chemical cycles that generate conformal changes are essential for transport on all different types of substrate lanes. The step length of an individual molecular robot is a matter of nanometers but the dynamics of each individual step cannot be predicted with certainty (as it is a random process). Hence, our proposal is to involve the methods of quantum field theory (QFT) to describe an overall reliable, multi-robot system that is composed of a huge set of unreliable, local elements. The methods of QFT deliver techniques that are also computationally demanding to synchronize the motion of these molecular robots on one substrate lane as well as across lanes. Three different challenging types of solutions are elaborated. The impact solution reflects the particle point of view; the two remaining solutions are wave based. The second solution outlines coherent robot motions on different lanes. The third solution describes running waves. Experimental investigations are needed to clarify under which biological conditions such different solutions occur. Moreover, such a nano-chemical system can be stimulated by external signals, and this opens a new, hybrid approach to analyze and control the combined system of robots and microtubules externally. Such a method offers the chance to detect mal-functions of the biological system.

  19. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules.

    Science.gov (United States)

    Volkov, Vladimir A; Grissom, Paula M; Arzhanik, Vladimir K; Zaytsev, Anatoly V; Renganathan, Kutralanathan; McClure-Begley, Tristan; Old, William M; Ahn, Natalie; McIntosh, J Richard

    2015-06-22

    Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that it may contribute to the firm bonds between kinetochores and the flared plus ends of dynamic MTs. A polypeptide from CENP-F's C terminus also bound MTs, and either protein fragment diffused on a stable MT wall. They also followed the ends of dynamic MTs as they shortened. When either fragment was coupled to a microbead, the force it could transduce from a shortening MT averaged 3-5 pN but could exceed 10 pN, identifying CENP-F as a highly effective coupler to shortening MTs. © 2015 Volkov et al.

  20. Dysregulation of Microtubule Stability Impairs Morphofunctional Connectivity in Primary Neuronal Networks.

    Science.gov (United States)

    Verstraelen, Peter; Detrez, Jan R; Verschuuren, Marlies; Kuijlaars, Jacobine; Nuydens, Rony; Timmermans, Jean-Pierre; De Vos, Winnok H

    2017-01-01

    Functionally related neurons assemble into connected networks that process and transmit electrochemical information. To do this in a coordinated manner, the number and strength of synaptic connections is tightly regulated. Synapse function relies on the microtubule (MT) cytoskeleton, the dynamics of which are in turn controlled by a plethora of MT-associated proteins, including the MT-stabilizing protein Tau. Although mutations in the Tau-encoding MAPT gene underlie a set of neurodegenerative disorders, termed tauopathies, the exact contribution of MT dynamics and the perturbation thereof to neuronal network connectivity has not yet been scrutinized. Therefore, we investigated the impact of targeted perturbations of MT stability on morphological (e.g., neurite- and synapse density) and functional (e.g., synchronous calcium bursting) correlates of connectivity in networks of primary hippocampal neurons. We found that treatment with MT-stabilizing or -destabilizing compounds impaired morphofunctional connectivity in a reversible manner. We also discovered that overexpression of MAPT induced significant connectivity defects, which were accompanied by alterations in MT dynamics and increased resistance to pharmacological MT depolymerization. Overexpression of a MAPT variant harboring the P301L point mutation in the MT-binding domain did far less, directly linking neuronal connectivity with Tau's MT binding affinity. Our results show that MT stability is a vulnerable node in tauopathies and that its precise pharmacological tuning may positively affect neuronal network connectivity. However, a critical balance in MT turnover causes it to be a difficult therapeutic target with a narrow operating window.

  1. Mapping invasive alien Acacia dealbata Link using ASTER multispectral imagery: a case study in central-eastern of Portugal

    Directory of Open Access Journals (Sweden)

    Filipe Martins

    2016-12-01

    Full Text Available Aim of the study: Acacia dealbata is an alien invasive species that is widely spread in Portugal. The main goal of this study was to produce an accurate and detailed map for this invasive species using ASTER multispectral imagery. Area of study: The central-eastern zone of Portugal was used as study area. This whole area is represented in an ASTER scene covering about 321.1 x 103 ha. Material and methods: ASTER imagery of two dates (flowering season and dry season were classified by applying three supervised classifiers (Maximum Likelihood, Support Vector Machine and Artificial Neural Networks to five different land cover classifications (from most generic to most detailed land cover categories. The spectral separability of the land cover categories was analyzed and the accuracy of the 30 produced maps compared. Main results: The highest classification accuracy for acacia mapping was obtained using the flowering season imagery, the Maximum Likelihood classifier and the most detailed land cover classification (overall accuracy of 86%; Kappa statistics of 85%; acacia class Kappa statistics of 100%. As a result, the area occupied by acacia was estimated to be approximated 24,770 ha (i.e. 8% of the study area. Research highlights: The methodology explored proved to be a cost-effective solution for acacia mapping in central-eastern of Portugal. The obtained map enables a more accurate and detailed identification of this species’ invaded areas due to its spatial resolution (minimum mapping unit of 0.02 ha providing a substantial improvement comparably to the existent national land cover maps to support monitoring and control activities. Keywords: remote sensing; invasive alien species; land cover mapping; vegetation mapping.

  2. Mapping invasive alien Acacia dealbata Link using ASTER multispectral imagery: a case study in central-eastern of Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Martins, F.; Alegria, C.; Artur, G.

    2016-07-01

    Aim of the study: Acacia dealbata is an alien invasive species that is widely spread in Portugal. The main goal of this study was to produce an accurate and detailed map for this invasive species using ASTER multispectral imagery. Area of study: The central-eastern zone of Portugal was used as study area. This whole area is represented in an ASTER scene covering about 321.1 x 103 ha. Material and methods: ASTER imagery of two dates (flowering season and dry season) were classified by applying three supervised classifiers (Maximum Likelihood, Support Vector Machine and Artificial Neural Networks) to five different land cover classifications (from most generic to most detailed land cover categories). The spectral separability of the land cover categories was analyzed and the accuracy of the 30 produced maps compared. Main results: The highest classification accuracy for acacia mapping was obtained using the flowering season imagery, the Maximum Likelihood classifier and the most detailed land cover classification (overall accuracy of 86%; Kappa statistics of 85%; acacia class Kappa statistics of 100%). As a result, the area occupied by acacia was estimated to be approximated 24,770 ha (i.e. 8% of the study area). Research highlights: The methodology explored proved to be a cost-effective solution for acacia mapping in central-eastern of Portugal. The obtained map enables a more accurate and detailed identification of this species’ invaded areas due to its spatial resolution (minimum mapping unit of 0.02 ha) providing a substantial improvement comparably to the existent national land cover maps to support monitoring and control activities. (Author)

  3. ErbB2-dependent chemotaxis requires microtubule capture and stabilization coordinated by distinct signaling pathways.

    Directory of Open Access Journals (Sweden)

    Khedidja Benseddik

    Full Text Available Activation of the ErbB2 receptor tyrosine kinase stimulates breast cancer cell migration. Cell migration is a complex process that requires the synchronized reorganization of numerous subcellular structures including cell-to-matrix adhesions, the actin cytoskeleton and microtubules. How the multiple signaling pathways triggered by ErbB2 coordinate, in time and space, the various processes involved in cell motility, is poorly defined. We investigated the mechanism whereby ErbB2 controls microtubules and chemotaxis. We report that activation of ErbB2 increased both cell velocity and directed migration. Impairment of the Cdc42 and RhoA GTPases, but not of Rac1, prevented the chemotactic response. RhoA is a key component of the Memo/ACF7 pathway whereby ErbB2 controls microtubule capture at the leading edge. Upon Memo or ACF7 depletion, microtubules failed to reach the leading edge and cells lost their ability to follow the chemotactic gradient. Constitutive ACF7 targeting to the membrane in Memo-depleted cells reestablished directed migration. ErbB2-mediated activation of phospholipase C gamma (PLCγ also contributed to cell guidance. We further showed that PLCγ signaling, via classical protein kinases C, and Memo signaling converged towards a single pathway controlling the microtubule capture complex. Finally, inhibiting the PI3K/Akt pathway did not affect microtubule capture, but disturbed microtubule stability, which also resulted in defective chemotaxis. PI3K/Akt-dependent stabilization of microtubules involved repression of GSK3 activity on the one hand and inhibition of the microtubule destabilizing protein, Stathmin, on the other hand. Thus, ErbB2 triggers distinct and complementary pathways that tightly coordinate microtubule capture and microtubule stability to control chemotaxis.

  4. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    Science.gov (United States)

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  5. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp and outward (away from the pulp fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.

  6. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain.

    Science.gov (United States)

    Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian

    2011-03-23

    Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.

  7. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data

    Science.gov (United States)

    Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Rodriguez, Sergio R.

    2007-01-01

    In this study, we evaluated and compared the utility of spaceborne SRTM and ASTER DEMs with baseline DTED-1 “bald-earth” topography for mapping lahar inundation hazards from volcan Citlaltépetl, Mexico, a volcano which has had a history of producing debris flows of various extents. In particular, we tested the utility of these topographic datasets for resolving ancient valley-filling deposits exposed around the flanks of the volcano, for determining their magnitude using paleohydrologic methods and for forecasting their inundation limits in the future. We also use the three datasets as inputs to a GIS stream inundation flow model, LAHARZ, and compare the results.

  8. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Jessica M Esparza

    Full Text Available Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19 and p80 (pf15 subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.

  9. Microtubule-targeting anticancer agents from marine natural substance.

    Science.gov (United States)

    Liu, Zhiguo; Xu, Pengfei; Wu, Tao; Zeng, Wenbin

    2014-03-01

    Effective novel therapeutics is urgently needed due to increasing incidence of malignant cancer and drug multi-resistance. Natural products and their derivatives have historically been a source of pharmaceutical leads and therapeutic drugs. Microtubule-targeting compounds are among the most promising candidates in the combat against cancer. In particular, marine natural products (MNPs) have demonstrated exceptional potency and potential as anticancer agents. Drug discovery from MNPs provides a new pathway to develop original anticancer agents. In this review, seven classes of typical MNPs with diverse structures are summarized. Bioactive marine compounds isolated from different organisms including invertebrate animals, algae, fungi and bacteria are also discussed.

  10. The Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass

    Directory of Open Access Journals (Sweden)

    Wenjian Ni

    2014-08-01

    Full Text Available The Global Digital Elevation Model produced from stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer data (ASTER GDEM covers land surfaces between latitudes of 83°N and 83°S. The Phased Array type L-band Synthetic Aperture Radar (PALSAR onboard Advanced Land Observing Satellite (ALOS collected many SAR images since it was launched on 24 January 2006. The combination of ALOS/PALSAR interferometric data and ASTER GDEM should provide the penetration depth of SAR data assuming ASTER GDEM was the elevation of vegetation canopy top. It would be correlated with forest biomass because penetration depth could be affected by forest density and forest canopy height. Their combination held great promises for the forest biomass mapping over large area. The feasibility of forest biomass mapping through the data synthesis of ALOS/PALSAR InSAR data and ASTER GDEM was investigated in this study. A procedure for the extraction of penetration depth was firstly proposed. Then three models were built for biomass estimation: (I model only using backscattering coefficients of ALOS/PALSAR data; (II model only using penetration depth; (III model using both of them. The biomass estimated from Lidar data was taken as reference data to evaluate the three different models. The results showed that the combination of backscattering coefficients and penetration depth gave the best accuracy. The forest disturbance has to be considered in forest biomass estimation because of the long time span of ASTER data for generating ASTER GDEM. The spatial homogeneity could be used to improve estimation accuracy.

  11. The synthesis of organic charge transfer hetero-microtubules by crack welding.

    Science.gov (United States)

    Kim, J; Chung, J; Hyon, J; Kwon, T; Seo, C; Nam, J; Kang, Y

    2014-09-14

    The strain-induced cracks in organic microtubules composed of an organic charge transfer (CT) complex of 1,2,4,5-tetracyanobenzene (TCNB) and naphthalene were selectively welded via the formation of secondary CT complexes; this process, in turn, led to the formation of organic hetero-microtubules consisting of multiple segments of two organic CT complexes.

  12. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  13. XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation

    DEFF Research Database (Denmark)

    Mortuza, Gulnahar B; Cavazza, Tommaso; Garcia-Mayoral, Maria Flor

    2014-01-01

    chTOG is a conserved microtubule polymerase that catalyses the addition of tubulin dimers to promote microtubule growth. chTOG interacts with TACC3, a member of the transforming acidic coiled-coil (TACC) family. Here we analyse their association using the Xenopus homologues, XTACC3 (TACC3) and XM...

  14. Configuration of the microtubule cytoskeleton in elongating fibers of flax (Linum usitatissimum L.)

    NARCIS (Netherlands)

    Lammeren, van A.A.M.; Ageeva, M.; Kieft, H.; Lhuissier, F.G.P.; Vos, J.; Gorshkova, T.; Emons, A.M.C.

    2003-01-01

    There are three basic types of plant cell growth: isodiametric, unidirectional diffuse, and tip growth. During plant cell growth, microtubules are present in the cell cortex, appressed against the plasma membrane. It is well documented that these cortical microtubules determine the orientation of

  15. How the kinetochore couples microtubule force and centromere stretch to move chromosomes

    Science.gov (United States)

    Suzuki, Aussie; Badger, Benjamin L.; Haase, Julian; Ohashi, Tomoo; Erickson, Harold P.; Salmon, Edward D.; Bloom, Kerry

    2016-01-01

    Summary The Ndc80 complex (Ndc80, Nuf2, Spc24, Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus-ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule and MAP binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus-end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule binding interactions with Ndc80 and Dam1 complexes. PMID:26974660

  16. The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity

    Science.gov (United States)

    McNally, Karen Perry; McNally, Francis J.

    2011-01-01

    Katanin is a heterodimeric microtubule-severing protein that is conserved among eukaryotes. Loss-of-function mutations in the Caenorhabditis elegans katanin catalytic subunit, MEI-1, cause specific defects in female meiotic spindles. To determine the relationship between katanin’s microtubule-severing activity and its role in meiotic spindle formation, we analyzed the MEI-1(A338S) mutant. Unlike wild-type MEI-1, which mediated disassembly of microtubule arrays in Xenopus fibroblasts, MEI-1(A338S) had no effect on fibroblast microtubules, indicating a lack of microtubule-severing activity. In C. elegans, MEI-1(A338S) mediated assembly of extremely long bipolar meiotic spindles. In contrast, a nonsense mutation in MEI-1 caused assembly of meiotic spindles without any poles as assayed by localization of the spindle-pole protein, ASPM-1. These results indicated that katanin protein, but not katanin’s microtubule-severing activity, is required for assembly of acentriolar meiotic spindle poles. To understand the nonsevering activities of katanin, we characterized the N-terminal domain of the katanin catalytic subunit. The N-terminal domain was necessary and sufficient for binding to the katanin regulatory subunit. The katanin regulatory subunit in turn caused a dramatic change in the microtubule-binding properties of the N-terminal domain of the catalytic subunit. This unique bipartite microtubule-binding structure may mediate the spindle-pole assembly activity of katanin during female meiosis. PMID:21372175

  17. Rearrangement of the keratin cytoskeleton after combined treatment with microtubule and microfilament inhibitors

    OpenAIRE

    1983-01-01

    In addition to containing microtubule and microfilament systems, vertebrate epithelial cells contain an elaborate keratin intermediate- filament cytoskeleton. Little is known about its structural organization or function. Using indirect immunofluorescence microscopy with an antikeratin antiserum probe, we found that destabilization of microtubules and microfilaments with cytostatic drugs induces significant alterations in the cytoskeletal organization of keratin filaments in HeLa and fetal mo...

  18. Validation of the Open Source Code_Aster Software Used in the Modal Analysis of the Fluid-filled Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    B D. Kashfutdinov

    2017-01-01

    Full Text Available The paper deals with a modal analysis of the elastic cylindrical shell with a clamped bottom partially filled with fluid in open source Code_Aster software using the finite element method. Natural frequencies and modes obtained in Code_Aster are compared to experimental and theoretical data. The aim of this paper is to prove that Code_Aster has all necessary tools for solving fluid structure interaction problems. Also, Code_Aster can be used in the industrial projects as an alternative to commercial software. The available free pre- and post-processors with a graphical user interface that is compatible with Code_Aster allow creating complex models and processing the results.The paper presents new validation results of open source Code_Aster software used to calculate small natural modes of the cylindrical shell partially filled with non-viscous compressible barotropic fluid under gravity field.The displacement of the middle surface of thin shell and the displacement of the fluid relative to the equilibrium position are described by coupled hydro-elasticity problem. The fluid flow is considered to be potential. The finite element method (FEM is used. The features of computational model are described. The resolution equation has symmetrical block matrices. To compare the results, is discussed the well-known modal analysis problem of cylindrical shell with flat non-deformable bottom, filled with a compressible fluid. The numerical parameters of the scheme were chosen in accordance with well-known experimental and analytical data. Three cases were taken into account: an empty, a partially filled and a full-filled cylindrical shell.The frequencies of Code_Aster are in good agreement with those, obtained in experiment, analytical solution, as well as with results obtained by FEM in other software. The difference between experiment and analytical solution in software is approximately the same. The obtained results extend a set of validation tests for

  19. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex.

    Science.gov (United States)

    Ciferri, Claudio; Pasqualato, Sebastiano; Screpanti, Emanuela; Varetti, Gianluca; Santaguida, Stefano; Dos Reis, Gabriel; Maiolica, Alessio; Polka, Jessica; De Luca, Jennifer G; De Wulf, Peter; Salek, Mogjiborahman; Rappsilber, Juri; Moores, Carolyn A; Salmon, Edward D; Musacchio, Andrea

    2008-05-02

    Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered "bonsai" Ndc80 complex containing a shortened rod domain but retaining the globular domains required for kinetochore localization and microtubule binding. The structure reveals a microtubule-binding interface containing a pair of tightly interacting calponin-homology (CH) domains with a previously unknown arrangement. The interaction with microtubules is cooperative and predominantly electrostatic. It involves positive charges in the CH domains and in the N-terminal tail of the Ndc80 subunit and negative charges in tubulin C-terminal tails and is regulated by the Aurora B kinase. We discuss our results with reference to current models of kinetochore-microtubule attachment and centromere organization.

  20. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    Science.gov (United States)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  1. Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya

    Science.gov (United States)

    Fujita, Koji; Suzuki, Ryohei; Nuimura, Takayuki; Sakai, Akiko

    To assess the potential volume of a glacial lake outburst flood (GLOF) more precisely than in previous studies, we analyze ground survey data and remote-sensing digital elevation models (DEMs) around glacial lakes in the Lunana region, Bhutan. Based on a DEM generated from differential GPS ground surveys, we first evaluate the relative accuracies of DEMs produced by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM). Root-mean-square errors of the altitudinal difference between these DEMs and ground survey data were 11.0 m for ASTER and 11.3 m for SRTM. These errors are similar to those of previous studies. We show that a topographical classification allows a better estimate of elevation on lakes/ponds, riverbeds and glaciers due to their flat surfaces, while the relative accuracy is worse over moraines and hill slopes due to their narrow ridges and steep slopes. Using the optical satellite images and the ground survey data, we re-evaluate the GLOF volume in 1994 as (17.2±5.3) × 106 m3. We show GLOF-related information such as distance, altitudinal difference and gradient at possible outburst points where the lake level is higher than the neighboring riverbed and/or glacial lake.

  2. Mapping the alteration footprint and structural control of Taknar IOCG deposit in east of Iran, using ASTER satellite data

    Science.gov (United States)

    Maroufi Naghadehi, Khosrow; Hezarkhani, Ardeshir; Asadzadeh, Saeid

    2014-12-01

    Taknar Fe + Cu ± Zn ± Pb ± Au ± Ag deposit in northeast of Iran is studied by Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) reflectance and emittance data. Structural and mineralogical evidences of IOCG mineralization is mapped by visual image interpretation and spectral processing techniques. The tectonic model is consistent with an extensional zone associated with a releasing bend of right-lateral regional faults, extending about 7 km2 and encompassing all the known orebodies of Taknar. A combination of band ratio logical operator and matched filtering were used for spectral mapping, which lead to a series of mineral content and crystallinity maps including ferric oxide, ferrous, white mica, chlorite, silica and opaque minerals. The channel way in which hydrothermal fluids were migrating is accurately defined by abundance of white mica and ferric iron oxide maps. Rhythmic sediments of Taknar formation which was characterized by chlorite mineral map is a “reducing” environment that hosts the mineralization. This REDOX environment is also marked by a sudden change in white mica composition from acidic phases to neutral/alkaline. Subsequent field check and microscopic study indicated the accuracy of these remotely mapped minerals. Based on this finding, several new prospects for further exploration was proposed. These results indicates that ASTER data is capable of delineating alteration footprints of an IOCG mineral system in deposit scale exploration.

  3. Molecular wear of microtubules propelled by surface-adhered kinesins

    Science.gov (United States)

    Dumont, Emmanuel L. P.; Do, Catherine; Hess, Henry

    2015-02-01

    Wear is the progressive loss of material from a body caused by contact and relative movement and is a major concern in both engineering and biology. Advances in nanotechnology have allowed the origins of wear processes to be studied at the atomic and molecular scale, but also demand that wear in nanoscale systems can be predicted and controlled. Biomolecular systems can undergo a range of active movements at the nanoscale, which are enabled by the transduction of chemical energy into mechanical work by polymerization processes and motor proteins. The active movements are accompanied by dissipative processes that can be conceptually understood as ‘protein friction’. Here, we show that wear also occurs in an in vitro system consisting of microtubules gliding across a surface coated with kinesin-1 motor proteins, and that energetic considerations suggest a molecule-by-molecule removal of tubulin proteins. The rates of removal show a complex dependence on sliding velocity and kinesin density, which, in contrast to the friction behaviour between microtubules and kinesin-8, cannot be explained by simple chemical reaction kinetics.

  4. Ordering of Dipoles in Different Types of Microtubule Lattice

    Science.gov (United States)

    Trpišová, B.; Brown, J. A.

    Microtubules (MTs) are the largest protein polymers in the cytoskeleton of eucaryotic cells in which they perform various functions. They are important in cell division, cell movement, they seem to be the devices through which are transferred signals in the nervous system. In this paper we continued to investigate the hypothesis that MTs can be viewed as assemblies of dipoles which are carried by the MT subunits, tubulin heterodimers. These assemblies were studied by means of the two-dimensional Ising model for both the A- and B-type arrangements of the tubulin subunits in a MT and the number of protofilaments 12, 13 and 14. We found that depending on these parameters and the magnitudes and orientations of the dipoles a MT may be at body temperature in an ordered phase or in a phase characterized by a random configuration of dipoles. The type of the ordered phase is determined by the above parameters as well, and it can be ferroelectric, antiferroelectric or ferrielectric. The dipolar ordering also depends on the presence of microtubule associated proteins, assuming that they can locally alter the dipolar interactions by binding to a MT, and external electric fields. The model presented here started by Tuszyński1-3 can be one of the first steps in the theoretical investigation of the electromagnetic features of MTs and their role in the MT behavior.

  5. Kindlin1 regulates microtubule function to ensure normal mitosis.

    Science.gov (United States)

    Patel, Hitesh; Stavrou, Ifigeneia; Shrestha, Roshan L; Draviam, Viji; Frame, Margaret C; Brunton, Valerie G

    2016-08-01

    Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced mic