WorldWideScience

Sample records for astaxanthin biosynthesis pathway

  1. The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Jin Ho; Lee, Bun Yeol

    2014-01-01

    A major carotenoid in Sphingomonas sp. PB304, originally isolated from a river in Daejon City, South Korea, was identified as astaxanthin dideoxyglycoside. Gene clusters encoding the astaxanthin dideoxyglycoside biosynthetic enzymes were identified by screening Sphingomonas sp. PB304 fosmid...

  2. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    Directory of Open Access Journals (Sweden)

    Steuer Kristin

    2011-04-01

    Full Text Available Abstract Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA. This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798 and the β-carotene-hydroxylase gene (crtZ under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw. Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant

  3. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Jose L. Barredo

    2017-07-01

    Full Text Available Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.

  4. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin; Kuwahara, Hiroyuki; Alazmi, Meshari Saud; Cui, Xuefeng

    2017-01-01

    suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived

  5. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  6. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  7. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    Science.gov (United States)

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls.

    Science.gov (United States)

    Alvarez, Vanessa; Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Gudiña, Eduardo J; Godio, Ramiro P; Martín, Juan F; Barredo, José Luis

    2006-04-01

    The conversion of beta-carotene into xanthophylls is a subject of great scientific and industrial interest. We cloned the crtS gene involved in astaxanthin biosynthesis from two astaxanthin producing strains of Xanthophyllomyces dendrorhous: VKPM Y2410, an astaxanthin overproducing strain, and the wild type ATCC 24203. In both cases, the ORF has a length of 3166 bp, including 17 introns, and codes for a protein of 62.6 kDa with similarity to cytochrome-P450 hydroxylases. crtS gene sequences from strains VKPM Y2410, ATCC 24203, ATCC 96594, and ATCC 96815 show several nucleotide changes, but none of them causes any amino acid substitution, except a G2268 insertion in the 13th exon of ATCC 96815 which causes a change in the reading frame. A G1470 --> A change in the 5' splicing region of intron 8 was also found in ATCC 96815. Both point mutations explain astaxanthin idiotrophy and beta-carotene accumulation in ATCC 96815. Mutants accumulating precursors of the astaxanthin biosynthetic pathway were selected from the parental strain VKPM Y2410 (red) showing different colors depending on the compound accumulated. Two of them were blocked in the biosynthesis of astaxanthin, M6 (orange; 1% astaxanthin, 71 times more beta-carotene) and M7 (orange; 1% astaxanthin, 58 times more beta-carotene, 135% canthaxanthin), whereas the rest produced lower levels of astaxanthin (5-66%) than the parental strain. When the crtS gene was expressed in M7, canthaxanthin accumulation disappeared and astaxanthin production was partially restored. Moreover, astaxanthin biosynthesis was restored when X. dendrorhous ATCC 96815 was transformed with the crtS gene. The crtS gene was heterologously expressed in Mucor circinelloides conferring to this fungus an improved capacity to synthesize beta-cryptoxanthin and zeaxanthin, two hydroxylated compounds from beta-carotene. These results show that the crtS gene is involved in the conversion of beta-carotene into xanthophylls, being potentially useful to

  9. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2016-08-01

    Full Text Available Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each other’s production directly. Thus multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  10. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  11. Antihypertensive effects of astaxanthin

    Directory of Open Access Journals (Sweden)

    Hiroshi Yoshida

    2008-10-01

    Full Text Available Hidekatsu Yanai1,2, Kumie Ito1,2, Hiroshi Yoshida2,3, Norio Tada1,21Department of Internal Medicine; 2Institute of Clinical Medicine and Research; 3Department of Laboratory Medicine, The Jikei University School of Medicine, Chiba, JapanAbstract: Astaxanthin is a biological antioxidant naturally found in a wide variety of aquatic living organisms, and has shown various pharmacological activities, such as anti-inflammatory and antidiabetic activities. A recent study reported that the administration of astaxanthin induced a significant reduction in blood pressure and delayed the incidence of stroke in stroke-prone spontaneously hypertensive rats, suggesting that astaxanthin also has antihypertensive effect. In a study using aortic rings of spontaneously hypertensive rats, astaxanthin induced a significant reduction of the contractile responses of the aorta to α-adrenergic receptor agonist and angiotensin II, which may contribute to the antihypertensive effect of astaxanthin. In a histopathological study, astaxanthin decreased coronary artery wall thickness compared with the control, indicating the possibility that astaxanthin ameliorates hypertension-induced vascular remodeling. Astaxanthin has anti-inflammatory, antidiabetic, antihypertensive, and antioxidative activities; therefore, we should perform further studies to elucidate an antiatherogenic effect of astaxanthin.Keywords: astaxanthin, antioxidant, antihypertensive effect, atherosclerosis

  12. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  13. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  14. Inhibition of the isoprenoid biosynthesis pathway; detection of intermediates by UPLC-MS/MS

    NARCIS (Netherlands)

    Henneman, Linda; van Cruchten, Arno G.; Kulik, Willem; Waterham, Hans R.

    2011-01-01

    The isoprenoid biosynthesis pathway provides the cell with a variety of compounds which are involved in multiple cellular processes. Inhibition of this pathway with statins and bisphosphonates is widely applied in the treatment of hypercholesterolemia and metabolic bone disease, respectively. In

  15. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  16. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  17. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    Science.gov (United States)

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT). Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Chemogenomics profiling of drug targets of peptidoglycan biosynthesis pathway in Leptospira interrogans by virtual screening approaches.

    Science.gov (United States)

    Bhattacharjee, Biplab; Simon, Rose Mary; Gangadharaiah, Chaithra; Karunakar, Prashantha

    2013-06-28

    Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an antileptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.

  19. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T.

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  20. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.

    Science.gov (United States)

    Kunjapur, Aditya M; Hyun, Jason C; Prather, Kristala L J

    2016-04-11

    Vanillin is an industrially valuable molecule that can be produced from simple carbon sources in engineered microorganisms such as Saccharomyces cerevisiae and Escherichia coli. In E. coli, de novo production of vanillin was demonstrated previously as a proof of concept. In this study, a series of data-driven experiments were performed in order to better understand limitations associated with biosynthesis of vanillate, which is the immediate precursor to vanillin. Time-course experiments monitoring production of heterologous metabolites in the E. coli de novo vanillin pathway revealed a bottleneck in conversion of protocatechuate to vanillate. Perturbations in central metabolism intended to increase flux into the heterologous pathway increased average vanillate titers from 132 to 205 mg/L, but protocatechuate remained the dominant heterologous product on a molar basis. SDS-PAGE, in vitro activity measurements, and L-methionine supplementation experiments suggested that the decline in conversion rate was influenced more by limited availability of the co-substrate S-adenosyl-L-methionine (AdoMet or SAM) than by loss of activity of the heterologous O-methyltransferase. The combination of metJ deletion and overexpression of feedback-resistant variants of metA and cysE, which encode enzymes involved in SAM biosynthesis, increased average de novo vanillate titers by an additional 33% (from 205 to 272 mg/L). An orthogonal strategy intended to improve SAM regeneration through overexpression of native mtn and luxS genes resulted in a 25% increase in average de novo vanillate titers (from 205 to 256 mg/L). Vanillate production improved further upon supplementation with methionine (as high as 419 ± 58 mg/L), suggesting potential for additional enhancement by increasing SAM availability. Results from this study demonstrate context dependency of engineered pathways and highlight the limited methylation capacity of E. coli. Unlike in previous efforts to improve SAM or

  1. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    Science.gov (United States)

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. Copyright © 2017 American Society for Microbiology.

  2. Methionine salvage pathway in relation to ethylene biosynthesis

    International Nuclear Information System (INIS)

    Miyazaki, J.H.

    1987-01-01

    The recycling of methionine during ethylene biosynthesis (the methionine cycle) was studied. During ethylene biosynthesis, the H 3 CS-group of S-adenosylmethionine (SAM) is released at 5'-methylthioadenosine (MTA), which is recycled to methionine via 5'-methylthioribose (MTS). In mungbean hypocotyls and cell-free extracts of avocado fruit, [ 14 C]MTR was converted to labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB) as intermediates. Radioactive tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract required an amino group donor. Among several potential donors tested, L-glutamine was the most efficient. Incubation of [ribose-U- 14 C]MTR with avocado extract resulted in the production of [ 14 C]formate, with little evolution of other 14 C-labeled one-carbon compounds, indicating that the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR

  3. An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants.

    Science.gov (United States)

    Hudson, André O; Singh, Bijay K; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and LL-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The LL-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that LL-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms.

  4. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2.

    Science.gov (United States)

    He, Bangxiang; Hou, Lulu; Dong, Manman; Shi, Jiawei; Huang, Xiaoyun; Ding, Yating; Cong, Xiaomei; Zhang, Feng; Zhang, Xuecheng; Zang, Xiaonan

    2018-01-07

    Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe 2+ are reported to be important for astaxanthin accumulation in H. pluvialis . In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL), addition of 25 mM acetate under high light (HA), addition of 20 μM Fe 2+ under high light (HF) and normal green growing cells (HG). Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO). The statistics for DEGs (differentially expressed genes) showed that there were more than 10 thousand DEGs caused by high light and 1800-1900 DEGs caused by acetate or Fe 2+ . The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe 2+ , the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  5. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2+

    Directory of Open Access Journals (Sweden)

    Bangxiang He

    2018-01-01

    Full Text Available Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe2+ are reported to be important for astaxanthin accumulation in H. pluvialis. In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL, addition of 25 mM acetate under high light (HA, addition of 20 μM Fe2+ under high light (HF and normal green growing cells (HG. Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO. The statistics for DEGs (differentially expressed genes showed that there were more than 10 thousand DEGs caused by high light and 1800–1900 DEGs caused by acetate or Fe2+. The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe2+, the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  6. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

    Science.gov (United States)

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.

  7. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  8. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  9. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  10. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium

    Directory of Open Access Journals (Sweden)

    Bijaya K. Sarangi

    2015-12-01

    Full Text Available Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively.

  11. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis.

    Science.gov (United States)

    Brickman, Timothy J; Suhadolc, Ryan J; McKelvey, Pamela J; Armstrong, Sandra K

    2017-02-01

    Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis. Although these Bordetellae lack the nadA and nadB genes needed for de novo NAD biosynthesis, remarkably, they have one de novo pathway gene, nadC, encoding quinolinate phosphoribosyltransferase. Genomic analyses of taxonomically related Bordetella and Achromobacter species also indicated the presence of an 'orphan' nadC and the absence of nadA and nadB. When supplied as the sole NAD precursor, quinolinate promoted B. bronchiseptica growth, and the ability to use it required nadC. Co-expression of Bordetella nadC with the nadB and nadA genes of Paraburkholderia phytofirmans allowed B. bronchiseptica to grow in the absence of supplied pyridines, indicative of de novo NAD synthesis and functional confirmation of Bordetella NadC activity. Expression of nadC in B. bronchiseptica was influenced by nicotinic acid and by a NadQ family transcriptional repressor, indicating that these organisms prioritize their use of pyridines for NAD biosynthesis. © 2016 John Wiley & Sons Ltd.

  12. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2018-01-01

    Full Text Available For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes.

  13. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Clark Shawn M

    2013-01-01

    Full Text Available Abstract Background Bitter acids (e.g. humulone are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP pathway. We used RNA sequencing (RNA-seq to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic and reverse (catabolic reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial and

  14. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  15. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis

    Directory of Open Access Journals (Sweden)

    Apweiler Eva

    2012-06-01

    Full Text Available Abstract Background Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. Results In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. Conclusions The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.

  16. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway.

    Science.gov (United States)

    Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa

    2006-07-13

    Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. This systems biology program combined

  17. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products

    Directory of Open Access Journals (Sweden)

    Md. Mahfuzur Rahman Shah

    2016-04-01

    Full Text Available Many species of microalgae have been used as source of nutrient rich food, feed and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as super anti-oxidant. Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. Thanks to many researches it is now evident, that astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future. Thus, this comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide towards economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation.

  18. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    Science.gov (United States)

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  19. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    Science.gov (United States)

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  20. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation

    Science.gov (United States)

    Liu, Tongjin; Zhang, Xiaohui; Yang, Haohui; Agerbirk, Niels; Qiu, Yang; Wang, Haiping; Shen, Di; Song, Jiangping; Li, Xixiang

    2016-01-01

    The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P

  1. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation

    Directory of Open Access Journals (Sweden)

    Tongjin eLiu

    2016-02-01

    Full Text Available The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM after a plant had evolved a new resistance mechanism (e.g. saponins in Barbara vulgaris was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominate glucosinolates, but their biosynthesis pathway are unclear in this plant. In this study, we used G-type (pest-resistant and P-type (pest-susceptible B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR, while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in

  2. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind

    KAUST Repository

    Kuwahara, Hiroyuki; Alazmi, Meshari; Cui, Xuefeng; Gao, Xin

    2016-01-01

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  3. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind

    KAUST Repository

    Kuwahara, Hiroyuki

    2016-04-29

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  4. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae flowers to deduce monoterpene biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Wu Tian-Shung

    2006-07-01

    Full Text Available Abstract Background Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs, and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. Results The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST. Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives

  5. Identification of Candidate Genes and Biosynthesis Pathways Related to Fertility Conversion by Wheat KTM3315A Transcriptome Profiling

    Directory of Open Access Journals (Sweden)

    Lingli Zhang

    2017-04-01

    Full Text Available The Aegilops kotschyi thermo-sensitive cytoplasmic male sterility (K-TCMS system may facilitate hybrid wheat (Triticum aestivum L. seed multiplication and production. The K-TCMS line is completely male sterile during the normal wheat-growing season, whereas its fertility can be restored in a high-temperature environment. To elucidate the molecular mechanisms responsible for male sterility/fertility conversion and candidate genes involved with pollen development in K-TCMS, we employed RNA-seq to sequence the transcriptomes of anthers from K-TCMS line KTM3315A during development under sterile and fertile conditions. We identified 16840 differentially expressed genes (DEGs in different stages including15157 known genes (15135 nuclear genes and 22 plasmagenes and 1683 novel genes. Bioinformatics analysis identified possible metabolic pathways involved with fertility based on KEGG pathway enrichment of the DEGs expressed in fertile and sterile plants. We found that most of the genes encoding key enzyme in the phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were significant upregulated in uninucleate, binuclate or trinucleate stage, which both interact with MYB transcription factors, and that link between all play essential roles in fertility conversion. The relevant DEGs were verified by quantitative RT-PCR. Thus, we suggested that phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were involved in fertility conversion of K-TCMS wheat. This will provide a new perspective and an effective foundation for the research of molecular mechanisms of fertility conversion of CMS wheat. Fertility conversion mechanism in thermo-sensitive cytoplasmic male sterile/fertile wheat involves the phenylpropanoid biosynthesis pathway, jasmonate biosynthesis pathway, and MYB transcription factors.

  6. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.

    Science.gov (United States)

    Wang, Guodong; Pichersky, Eran

    2007-03-01

    Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.

  7. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-06-29

    Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.

  8. Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Cory Schwartz

    2017-11-01

    Full Text Available Carotenoids are a class of molecules with commercial value as food and feed additives with nutraceutical properties. Shifting carotenoid synthesis from petrochemical-based precursors to bioproduction from sugars and other biorenewable carbon sources promises to improve process sustainability and economics. In this work, we engineered the oleaginous yeast Yarrowia lipolytica to produce the carotenoid lycopene. To enhance lycopene production, we tested a series of strategies to modify host cell physiology and metabolism, the most successful of which were mevalonate pathway overexpression and alleviating auxotrophies previously engineered into the PO1f strain of Y. lipolytica. The beneficial engineering strategies were combined into a single strain, which was then cultured in a 1-L bioreactor to produce 21.1 mg/g DCW. The optimized strain overexpressed a total of eight genes including two copies of HMG1, two copies of CrtI, and single copies of MVD1, EGR8, CrtB, and CrtE. Recovering leucine and uracil biosynthetic capacity also produced significant enhancement in lycopene titer. The successful engineering strategies characterized in this work represent a significant increase in understanding carotenoid biosynthesis in Y. lipolytica, not only increasing lycopene titer but also informing future studies on carotenoid biosynthesis.

  9. Astaxanthin uptake in domestic dogs and cats

    Directory of Open Access Journals (Sweden)

    Massimino Stefan

    2010-06-01

    Full Text Available Abstract Background Research on the uptake and transport of astaxanthin is lacking in most species. We studied the uptake of astaxanthin by plasma, lipoproteins and leukocytes in domestic dogs and cats. Methods Mature female Beagle dogs (18 to 19 mo old; 11 to 14 kg BW were dosed orally with 0, 0.1, 0.5, 2.5, 10 or 40 mg astaxanthin and blood taken at 0, 3, 6, 9, 12, 18 and 24 h post-administration (n = 8/treatment. Similarly, mature domestic short hair cats (12 mo old; 3 to 3.5 kg body weight were fed a single dose of 0, 0.02, 0.08, 0.4, 2, 5, or 10 mg astaxanthin and blood taken (n = 8/treatment at the same interval. Results Both dogs and cats showed similar biokinetic profiles. Maximal astaxanthin concentration in plasma was approximately 0.14 μmol/L in both species, and was observed at 6 h post-dosing. The plasma astaxanthin elimination half-life was 9 to 18 h. Astaxanthin was still detectable by 24 h in both species. In a subsequent study, dogs and cats were fed similar doses of astaxanthin daily for 15 to 16 d and astaxanthin uptake by plasma, lipoproteins, and leukocytes studied. In both species, plasma astaxanthin concentrations generally continued to increase through d 15 or 16 of supplementation. The astaxanthin was mainly associated with high density lipoprotein (HDL. In blood leukocytes, approximately half of the total astaxanthin was found in the mitochondria, with significant amounts also associated with the microsomes and nuclei. Conclusion Dogs and cats absorb astaxanthin from the diet. In the blood, the astaxanthin is mainly associated with HDL, and is taken up by blood leukocytes, where it is distributed to all subcellular organelles. Certain aspects of the biokinetic uptake of astaxanthin in dogs and cats are similar to that in humans.

  10. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  11. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    International Nuclear Information System (INIS)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-01-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14 CO 2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle

  12. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  13. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  14. Protective Effect of Astaxanthin on Liver Fibrosis through Modulation of TGF-β1 Expression and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2014-01-01

    Full Text Available Liver fibrosis is a common pathway leading to cirrhosis and a worldwide clinical issue. Astaxanthin is a red carotenoid pigment with antioxidant, anticancer, and anti-inflammatory properties. The aim of this study was to investigate the effect of astaxanthin on liver fibrosis and its potential protective mechanisms. Liver fibrosis was induced in a mouse model using CCL4 (intraperitoneal injection, three times a week for 8 weeks, and astaxanthin was administered everyday at three doses (20, 40, and 80 mg/kg. Pathological results indicated that astaxanthin significantly improved the pathological lesions of liver fibrosis. The levels of alanine aminotransferase aspartate aminotransferase and hydroxyproline were also significantly decreased by astaxanthin. The same results were confirmed in bile duct liagtion, (BDL model. In addition, astaxanthin inhibited hepatic stellate cells (HSCs activation and formation of extracellular matrix (ECM by decreasing the expression of NF-κB and TGF-β1 and maintaining the balance between MMP2 and TIMP1. In addition, astaxanthin reduced energy production in HSCs by downregulating the level of autophagy. These results were simultaneously confirmed in vivo and in vitro. In conclusion, our study showed that 80 mg/kg astaxanthin had a significant protective effect on liver fibrosis by suppressing multiple profibrogenic factors.

  15. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria.

    Science.gov (United States)

    Smyth, Kevin M; Marchant, Alan

    2013-10-18

    The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis

    Science.gov (United States)

    2014-01-01

    Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production

  17. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  18. An ll-Diaminopimelate Aminotransferase Defines a Novel Variant of the Lysine Biosynthesis Pathway in Plants1[W

    Science.gov (United States)

    Hudson, André O.; Singh, Bijay K.; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and ll-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The ll-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that ll-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms. PMID:16361515

  19. Astaxanthin as a Medical Food

    Directory of Open Access Journals (Sweden)

    Eiji Yamashita

    2013-07-01

    Full Text Available ABSTRACTAstaxanthin is a red pigment that belongs to the carotenoid family like β-carotene. And it’s found in seafood such as crustaceans: shrimp and crabs and fish: salmon and sea bream. Recently, astaxanthin has been reported to have antioxidant activity up to 100 times more potent than that of vitamin E against lipid peroxidation and about 40 times more potent than that of β-carotene on singlet oxygen quenching. Astaxanthin does not show any pro-oxidant activity and its main sight of action is on/in the cell membrane. Various important benefits to date have suggested for human health such as immunomodulation, anti-stress, anti-inflammation, LDL cholesterol oxidation suppression, enhanced skin health, improved semen quality, attenuating eye fatigue, sport performance and endurance, limiting exercised induced muscle damage, suppressing the development of life-style related diseases such as obesity, atherosclerosis, diabetes, hyperlipidemia and hypertension. Nowadays, the research and demand for natural astaxanthin in human health application are explosively growing worldwide. Especially, the clinicians use the astaxanthin extracted from the microalgae, Haematotoccus pluvialis, as an add-on supplementation for the patients who are unsatisfied with the current medications or who can’t receive any medications because of their serious symptom. For example, the treatment enhances their daily activity levels or QOL in heart failure or benign prostatic hypertrophy/lower urinary tract symptom patients. Other studies and trials are under way on chronic diseases such as non-alcoholic steatohepatitis, diabetes and CVD. We may call astaxanthin “a medical food” in the near future.Keywords: astaxanthin, medical food, Haematococcus, add-on supplementation

  20. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  1. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  3. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  4. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra.

    Science.gov (United States)

    Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F

    2017-11-07

    The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  5. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra

    Directory of Open Access Journals (Sweden)

    Shahida Akter Mitu

    2017-11-01

    Full Text Available The sea cucumber (phylum Echinodermata body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  6. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars

    Directory of Open Access Journals (Sweden)

    Xuehua Jin

    2016-09-01

    Full Text Available The cyanidin (Cy, pelargonidin (Pg and delphinidin (Dp pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink and carmine cultivars mainly accumulate Dp, Pg and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3’H1, ScF3’5’H and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3’5’H, ScF3’H and ScDFRs for flower color modification of ornamentals.

  7. Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation.

    Science.gov (United States)

    Levillain, Florence; Poquet, Yannick; Mallet, Ludovic; Mazères, Serge; Marceau, Michael; Brosch, Roland; Bange, Franz-Christoph; Supply, Philip; Magalon, Axel; Neyrolles, Olivier

    2017-11-01

    The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.

  8. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Zavala, A.; Del Razo, L.M.; Garcia-Vargas, G.G.; Aguilar, C.; Borja, V.H.; Albores, A.; Cebrian, M.E. [CINVESTAV-IPN, Mexico (Mexico). Dept. de Farmacologia y Toxicologica

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 {mu}g As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized. (orig.) With 1 fig., 3 tabs., 20 refs.

  9. Multispectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2012-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. The pellets were divided into two groups: one with pellets coated using synthetic astaxanthin in fish oil and the other with pellets coated...

  10. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Molenaar, Johanna A; Wienkoop, Stefanie; Gil-Quintana, Erena; Alibert, Bénédicte; Limami, Anis M; Arrese-Igor, Cesar; González, Esther M

    2014-09-01

    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-L-methionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogen-fixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants, the content of total sulphur, sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a down-regulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions. © 2014 John Wiley & Sons Ltd.

  11. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    International Nuclear Information System (INIS)

    Hashimoto, Muneaki; Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu; Tanaka, Akiko; Aoki, Takashi; Nara, Takeshi

    2012-01-01

    Highlights: ► We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. ► Disruption of the cpsII gene significantly reduced the growth of epimastigotes. ► In particular, the CPSII-null mutant severely retarded intracellular growth. ► The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes—an insect form—possess both activities, amastigotes—an intracellular replicating form of T. cruzi—are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  12. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification.

    Science.gov (United States)

    Yuan, J P; Chen, F

    1999-01-01

    The reaction kinetics for the hydrolysis of astaxanthin esters and the degradation of astaxanthin during saponification of the pigment extract from the microalga Haematococcus pluvialis were investigated. Different concentrations of sodium hydroxide in methanol were used for the saponification under nitrogen in darkness at ambient temperature (22 degrees C) followed by the analysis of astaxanthins and other carotenoids using an HPLC method. The concentration of methanolic NaOH solution was important for promoting the hydrolysis of astaxanthin esters and minimizing the degradation of astaxanthin during saponification. With a higher concentration of methanolic NaOH solution, the reaction rate of hydrolysis was high, but the degradation of astaxanthin occurred significantly. The rate constants of the hydrolysis reaction (first order) of astaxanthin esters and the degradation reaction (zero-order) of astaxanthin were directly proportional to the concentration of sodium hydroxide in the saponified solution. Although the concentration of sodium hydroxide in the saponified solution was 0.018 M, complete hydrolysis of astaxanthin esters was achieved in 6 h for different concentrations (10-100 mg/L) of pigment extracts. Results also indicated that a higher temperature should be avoided to minimize the degradation of astaxanthin. In addition, during saponification, no loss of lutein, beta-carotene, and canthaxanthin was found.

  13. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Effect of astaxanthin on cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Meephansan J

    2017-07-01

    Full Text Available Jitlada Meephansan,1 Atiya Rungjang,1 Werayut Yingmema,2 Raksawan Deenonpoe,3 Saranyoo Ponnikorn3 1Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; 2Laboratory Animal Centers, Thammasat University, Pathum Thani, Thailand; 3Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand Abstract: Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing. Keywords: astaxanthin, wound healing, reactive oxygen species, antioxidant 

  15. Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis.

    Science.gov (United States)

    Narasaki, Craig T; Mertens, Katja; Samuel, James E

    2011-01-01

    Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is

  16. Effect of astaxanthin on cutaneous wound healing.

    Science.gov (United States)

    Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo

    2017-01-01

    Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.

  17. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  18. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  19. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals

    DEFF Research Database (Denmark)

    Chen, Xiulai; Gao, Cong; Guo, Liang

    2018-01-01

    , and pathway optimization at the systems level, offers a conceptual and technological framework to exploit potential pathways, modify existing pathways and create new pathways for the optimal production of desired chemicals. Here, we summarize recent progress of DCEO biotechnology and examples of its......Chemical synthesis is a well established route for producing many chemicals on a large scale, but some drawbacks still exist in this process, such as unstable intermediates, multistep reactions, complex process control, etc. Biobased production provides an attractive alternative to these challenges......, but how to make cells into efficient factories is challenging. As a key enabling technology to develop efficient cell factories, design-construction-evaluation-optimization (DCEO) biotechnology, which incorporates the concepts and techniques of pathway design, pathway construction, pathway evaluation...

  20. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    Science.gov (United States)

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  1. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  2. RNA-sequencing and pathway analysis reveal alteration of hepatic steroid biosynthesis and retinol metabolism by tributyltin exposure in male rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Sun, Ping; Huang, Maoxian; Fan, Mingzhen; Liu, Min

    2017-07-01

    Tributyltin (TBT) is widely spread in aquatic ecosystems. Although adverse effects of TBT on reproduction and lipogenesis are observed in fishes, the underlying mechanisms, especially in livers, are still scarce and inconclusive. Thus, RNA-sequencing runs were performed on the hepatic libraries of adult male rare minnow (Gobiocypris rarus) after TBT exposure for 60d. After differentially expressed genes were identified, enrichment analysis and validation by quantitative real-time PCR were conducted. The results showed that TBT up-regulated the profile of hepatic genes in the steroid biosynthesis pathway and down-regulated the profile of hepatic genes in the retinol metabolism pathway. In the hepatic steroid biosynthesis pathway, TBT might induce biosynthesis of cholesterol, which could affect the bioavailability of steroid hormones. More important, 3beta-hydroxysteroid 3-dehydrogenase, a key enzyme in the biosynthesis of all active steroid hormones, was up-regulated by TBT exposure. In the hepatic retinol metabolism pathway, TBT impaired retinoic acid homeostasis which plays essential roles in both reproduction and lipogenesis. The results of two pathways offered new mechanisms underlying the toxicology of TBT and represented a starting point from which detailed mechanistic links should be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. In silico and in vitro Studies on Begomovirus Induced Andrographolide Biosynthesis Pathway in Andrographis Paniculata for Combating Inflammation and Cancer.

    Science.gov (United States)

    Khan, Asifa; Sharma, Pooja; Khan, Feroz; Ajayakumar, P V; Shanker, Karuna; Samad, Abdul

    2016-07-01

    Andrographolide and neoandrographolide are major bioactive molecules of Andrographis paniculata, a well-known medicinal plant. These molecules exhibited varying degrees of anti-inflammatory and anticancer activities in-vitro and in-vivo. Role of begomovirus protein C2/TrAP in biosynthesis of andrographolide was identified through molecular modeling, docking and predicted results were substantiated by in vitro studies. Homology molecular modeling and molecular docking were performed to study the binding conformations and different bonding behaviors, in order to reveal the possible mechanism of action behind higher accumulation of andrographolide. It was concluded that C2/TrAP inhibit the activation of SNF1-Related Protein Kinase-1 (SnRK1) in terpenoid pathway and removes the negative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) by SnRK1, leading to higher accumulation of andrographolide and neoandrographolide in begomovirus infected plants. The binding site residues of SnRK1 docked with C2/TrAP were found to be associated with ATP binding site, substrate binding site and activation loop. Predicted results were also validated by HPTLC. This study provides important insights into understanding the role of viral protein in altering the regulation of biosynthesis of andrographolide and could be used in future research to develop biomimetic methods for increasing the production of such phytometabolites having anti-cancerous and anti-inflammatory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  5. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  6. Simultaneous extraction of chitin and astaxanthin from waste of ...

    African Journals Online (AJOL)

    This work investigates simple methods for simultaneous extraction of astaxanthin and chitin from industrial waste of the South African West Coast rock lobster Jasus lalandii. Removal of proteins from waste is the critical step to yield intact chitin and astaxanthin. Because common chemical methods destroy astaxanthin and ...

  7. Engineering of Yarrowia lipolytica for production of astaxanthin

    Directory of Open Access Journals (Sweden)

    Kanchana Rueksomtawin Kildegaard

    2017-12-01

    Our study for the first time reports engineering of Y. lipolytica for the production of astaxanthin. The high astaxanthin content and titer obtained even in a small-scale cultivation demonstrates a strong potential for Y. lipolytica-based fermentation process for astaxanthin production.

  8. Engineering of Yarrowia lipolytica for production of astaxanthin

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Adiego Pérez, Belén; Doménech Belda, David

    2017-01-01

    Astaxanthin is a red-colored carotenoid, used as food and feed additive. Astaxanthin is mainly produced by chemical synthesis, however, the process is expensive and synthetic astaxanthin is not approved for human consumption. In this study, we engineered the oleaginous yeast Yarrowia lipolytica f...

  9. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Sabine A.E. Heider

    2014-08-01

    Full Text Available The biotechnologically relevant bacterium C. glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP and its isomer dimethylallyl pyrophosphate (DMAPP, are synthesized in this organism via the methylerythritol phosphate (MEP or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various nonnative C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP astaxanthin could be produced in the mg per g cell dry weight range when the endogenous genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4 oxygenase from Brevundimonas aurantiaca.

  10. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum

    International Nuclear Information System (INIS)

    Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne; Peters-Wendisch, Petra; Wendisch, Volker F.

    2014-01-01

    The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.

  11. The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages*

    Science.gov (United States)

    Ke, Hangjun; Sigala, Paul A.; Miura, Kazutoyo; Morrisey, Joanne M.; Mather, Michael W.; Crowley, Jan R.; Henderson, Jeffrey P.; Goldberg, Daniel E.; Long, Carole A.; Vaidya, Akhil B.

    2014-01-01

    Heme is an essential cofactor for aerobic organisms. Its redox chemistry is central to a variety of biological functions mediated by hemoproteins. In blood stages, malaria parasites consume most of the hemoglobin inside the infected erythrocytes, forming nontoxic hemozoin crystals from large quantities of heme released during digestion. At the same time, the parasites possess a heme de novo biosynthetic pathway. This pathway in the human malaria parasite Plasmodium falciparum has been considered essential and is proposed as a potential drug target. However, we successfully disrupted the first and last genes of the pathway, individually and in combination. These knock-out parasite lines, lacking 5-aminolevulinic acid synthase and/or ferrochelatase (FC), grew normally in blood-stage culture and exhibited no changes in sensitivity to heme-related antimalarial drugs. We developed a sensitive LC-MS/MS assay to monitor stable isotope incorporation into heme from its precursor 5-[13C4]aminolevulinic acid, and this assay confirmed that de novo heme synthesis was ablated in FC knock-out parasites. Disrupting the FC gene also caused no defects in gametocyte generation or maturation but resulted in a greater than 70% reduction in male gamete formation and completely prevented oocyst formation in female Anopheles stephensi mosquitoes. Our data demonstrate that the heme biosynthesis pathway is not essential for asexual blood-stage growth of P. falciparum parasites but is required for mosquito transmission. Drug inhibition of pathway activity is therefore unlikely to provide successful antimalarial therapy. These data also suggest the existence of a parasite mechanism for scavenging host heme to meet metabolic needs. PMID:25352601

  12. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides.

    Science.gov (United States)

    Do Rego, Jean Luc; Seong, Jae Young; Burel, Delphine; Leprince, Jerôme; Luu-The, Van; Tsutsui, Kazuyoshi; Tonon, Marie-Christine; Pelletier, Georges; Vaudry, Hubert

    2009-08-01

    Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.

  13. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics.Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway.Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  14. Analyzing the structural aspects of Isoprenoid biosynthesis pathway proteins in Ocimum species

    Directory of Open Access Journals (Sweden)

    Muktesh Chandra

    2017-10-01

    Full Text Available Generally thought that the extremely diverse array of secondary metabolites observed within Ocimum species defends against a comparable diverse array of biotic pests, pathogens and herbivores encountered around its natural range. Along with defense the diverse array of secondary metabolite also leads to the therapeutic and remedial property which justifies Ocimum as natural medicinal and aromatic casket. Many of the defense compounds, aroma compounds and medicinal derivatives are secondary metabolites isolated from trichome glands, mainly consist of terpenoids as well as phenylpropanoids. Various pathways fabricating these compounds are known viz. mevalonate pathway (MVA, phenylpropanoid pathway and MEP pathways. The enzyme cascade responsible for various secondary metabolites, need to be explored in various aspects. Here we had studied the MVA pathway enzymes in O. basilicum and O. gratissimum to figure out variations in enzyme structures due to speciation. Hence, in depth analysis of the transcriptome of O. basilicum and O. gratissimum, varrying in qualitative and quantitative aspects of essential oil were carried out. The transcriptome data from NCBI server was assembled using bioinformatic approaches. nr database at NCBI repository used for annotation, which assigned 60% contigs to known functions. Contigs corresponding to Mevalonate pathway enzymes are isolated using perl pipelines developed in our lab, which were further assembled using CLC workbench to remove redundancy and make larger stretch of sequence. Blastx of these larger sequences assigned them function and they are mapped to validated sequences to make full length. Data from both species led us to overall seven enzymes (total 14 of MVA pathway. These enzymes are studied in detail for various physio-chemical properties, steriochemical properties and motif/domain for protein-protein interaction (PPI study. Homolog models of all enzymes were predicted, against templates from RCSB

  15. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  16. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  17. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  18. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources.

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-09-02

    Plant secondary metabolites have been attracting people's attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.

  19. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-01-01

    Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design. PMID:26329726

  20. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    Science.gov (United States)

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  1. Differential expression of carotenogenic genes, associated changes on astaxanthin production and photosynthesis features induced by JA in H. pluvialis.

    Directory of Open Access Journals (Sweden)

    Zhengquan Gao

    Full Text Available Haematococcus pluvialis is an organism that under certain conditions can produce astaxanthin, an economically important carotenoid. In this study, the transcriptional expression patterns of eight carotenogenic genes of H. pluvialis in response to jasmonic acid (JA were evaluated using real-time PCR. Astaxanthin accumulation action and photosynthesis flourescence were monitored at the same time. The results showed all eight genes exhibited higher transcriptional expression significantly under JA treatments. JA25 (25 mg/L induction had greater effect (>10-fold up-regulation on the transcriptional expression of pds, crtR-B and lyc than on ipi-1, ipi-2, psy, bkt2, and crtO. JA50 (50 mg/L treatment had greater impact on the transcriptional expression of ipi-1, ipi-2, psy, crtR-B and crtO than on pds, lyc and bkt2. Astaxanthin biosynthesis in the presence of JA appeared to be up-regulated mainly by psy, pds, crtR-B, lyc, bkt2 and crtO at the transcriptional level and ipi-1, ipi-2 at both transcriptional and post-transcriptional levels. Under JA induction, the photosynthetic efficiency [Y (II] and the maximum quantum efficiency of PS II (Fv/Fm decreased significantly, but the non-photochemical quenching of chlorophyll fluorescence (NPQ increased drastically with the accumulation of astaxanthin.

  2. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrol

    International Nuclear Information System (INIS)

    Wang Yun; Ye Lan; Leung, Lai K.

    2008-01-01

    Cytochrome P450 (CYP) 19 enzyme or aromatase catalyses the rate-determining step of estrogen synthesis. The transcriptional control of CYP19 gene is highly specific in different cell types, for instance, Promoter I.3/II is commonly used for regulation in breast cancer cells. Recently, a positive feedback pathway for estrogen synthesis has been identified in ERα expressing SK-BR-3 cells. CYP19 mRNA abundance and activity are increased in this pathway and the promoter usage is switched from Promoter I.3/II to I.1 through a non-genomic process. In the present study, effect of the phytocompound resveratrol on this Promoter I.1-controlled expression of aromatase was investigated. Results indicated that resveratrol reduced the estradiol-induced mRNA abundance in SK-BR-3 cells expressing ERα. Luciferase reporter gene assays revealed that resveratrol could also repress the transcriptional control dictated by Promoter I.1. Since the ERE-driven luciferase activity was not repressed by resveratrol, the nuclear events of estrogen were unlikely to be suppressed by resveratrol. Instead the phytochemical reduced the amount of ERK activated by estradiol, which could be the pathway responsible for Promoter I.1 transactivation and the induced CYP19 expression. The present study illustrated that resveratrol impeded the non-genomic induction of estrogen on CYP19

  3. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of

  4. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe

    2015-01-01

    Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars. © 2014 Wiley Periodicals, Inc.

  5. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  6. 21 CFR 73.35 - Astaxanthin.

    Science.gov (United States)

    2010-04-01

    ... as a component of a stabilized color additive mixture. Color additive mixtures for fish feed use made... safe for use in color additive mixtures for coloring foods. (b) Specifications. Astaxanthin shall... salmonid fish in accordance with the following prescribed conditions: (1) The color additive is used to...

  7. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. (Michigan State University, East Lansing (USA))

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  8. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns

    International Nuclear Information System (INIS)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A.

    1989-01-01

    Previous labeling studies of abscisic acid (ABA) with 18 O 2 have been mainly conducted with water-stressed leaves. In this study, 18 O incorporation into ABA of stressed leaves of various species was compared with 18 O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), 18 O was most abundant in the carboxyl group, whereas incorporation of a second and third 18 O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in 18 O 2 . ABA from turgid bean leaves showed significant 18 O incorporation, again with highest 18 O enrichment in the carboxyl group. On the basis of 18 O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid

  9. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  10. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.

    Science.gov (United States)

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-14

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  11. EG-01EPIGENETIC INACTIVATION OF ARGININE BIOSYNTHESIS PATHWAY IN PAEDIATRIC HIGH GRADE GLIOMA

    Science.gov (United States)

    Channathodiyil, Prasanna; Kardooni, Hoda; Khozoie, Combiz; Nelofer, Syed; Darling, John; Morris, Mark; Warr, Tracy

    2014-01-01

    Aberrant cellular metabolism contributes significantly to the growth and proliferation of several tumour types. Identification of genes that control critical metabolic pathways is a major factor in the development of novel therapies that target metabolic defects in tumour cells. Our aim is to identify such genes in paediatric high grade glioma that are altered due to promoter hyper-methylation of cytosine residues in CpG dinucleotides. Genome wide DNA methylation profiling using Illumina infinium methylation 450K bead chip array was performed on 18 well-characterised short term cultures derived from paediatric high grade astrocytoma including 3 from diffuse intrinsic pontine glioma. Data analyses were based on beta scores of probes for each gene as measures of intensities of methylation. Genes were selected with beta scores of tumour > =0.70 and that of normal human astrocytes < =0.30. We identified that two vital genes involved in the regulation of arginine biosynthetic pathway, argininosuccinate synthetase 1(ASS1) and argininosuccinate lyase (ASL) were methylated in 9/18 (50%) cases. Hyper methylation was confirmed by methylation-specific PCR and up-regulation of gene expression following treatment with 2 µM 5-aza-2'-deoxyctidine. Down-regulation of ASS1 in hyper methylated samples was confirmed by Western blot analysis. Our findings report epigenetic deregulation of ASS1 and ASL in a subset of paediatric high grade glioma. The enzymes encoded by these genes are essential elements of urea cycle that function together in the de novo synthesis of arginine from citrulline. Tumour cells with deficient ASS1/ASL depend on external sources of arginine for survival and have been reported to be sensitive to autophagic cell death induced by arginine starvation. Therefore, further investigation may render the possibility of arginine-deprivation therapy in such sub type of paediatric high grade glioma. This therapeutic approach is of interest as tumour cells with abnormal

  12. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Barredo, José Luis

    2010-10-01

    Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).

  13. Hydroxyurea Induces Cytokinesis Arrest in Cells Expressing a Mutated Sterol-14α-Demethylase in the Ergosterol Biosynthesis Pathway.

    Science.gov (United States)

    Xu, Yong-Jie; Singh, Amanpreet; Alter, Gerald M

    2016-11-01

    Hydroxyurea (HU) has been used for the treatment of multiple diseases, such as cancer. The therapeutic effect is generally believed to be due to the suppression of ribonucleotide reductase (RNR), which slows DNA polymerase movement at replication forks and induces an S phase cell cycle arrest in proliferating cells. Although aberrant mitosis and DNA damage generated at collapsed forks are the likely causes of cell death in the mutants with defects in replication stress response, the mechanism underlying the cytotoxicity of HU in wild-type cells remains poorly understood. While screening for new fission yeast mutants that are sensitive to replication stress, we identified a novel mutation in the erg11 gene encoding the enzyme sterol-14α-demethylase in the ergosterol biosynthesis pathway that dramatically sensitizes the cells to chronic HU treatment. Surprisingly, HU mainly arrests the erg11 mutant cells in cytokinesis, not in S phase. Unlike the reversible S phase arrest in wild-type cells, the cytokinesis arrest induced by HU is relatively stable and occurs at low doses of the drug, which likely explains the remarkable sensitivity of the mutant to HU. We also show that the mutation causes sterol deficiency, which may predispose the cells to the cytokinesis arrest and lead to cell death. We hypothesize that in addition to the RNR, HU may have a secondary unknown target(s) inside cells. Identification of such a target(s) may greatly improve the chemotherapies that employ HU or help to expand the clinical usage of this drug for additional pathological conditions. Copyright © 2016 by the Genetics Society of America.

  14. Induction of phosphatidylcholine biosynthesis via CDPcholine pathway in lung and liver of rats following intratracheal administration of DDT and endosulfan

    International Nuclear Information System (INIS)

    Narayan, S.; Dani, H.M.; Misra, U.K.

    1989-01-01

    The induction of phosphatidylcholine (PC) biosynthesis via the CDPcholine pathway in lung and liver of rats has been shown following the intratracheal administration of 1,1,1-trichloro-2m2-bis(p-chlorophenyl) ethane (DDT) (5 mg/100 g body weight) and endosulfan (1 mg/100 g body weight) for 3 days. Controls received only the vehicle solution (groundnut oil, 0.1 m1/100 g body weight). The treatment of DDT and endosulfan significantly increased the PC contents and the incorporation of radioactive [methyl-3H]choline into PC of lung and liver microsomes. The incorporation of radioactive [methyl-14C]methionine into microsomal PC of lung and liver was not affected significantly by treatment with either of the insecticides. 1,4,5,6,7-hexachloro-5-norbornene-2,3-dimethano cyclic sulfite (endosulfan) administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal) of lung, whereas DDT increased the activity of only latter. In liver, both DDT and endosulfan administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal). However, the activity of phosphocholinetransferase was not affected in both lung and liver microsomes of rats treated with these insecticides. The PC precursor pool sizes, choline and phosphorylcholine, of lung and liver tissues were not altered by DDT and endosulfan treatments. The present results suggest that the increased level of PC and incorporation of radioactive [methyl-3H]choline into microsomal PC could be the result of increased activity of choline kinase and phosphocholine cytidylyltransferase of lung and liver of rats following intratracheal administration of DDT and endosulfan

  15. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway.

    Science.gov (United States)

    Zhao, Hui; Fang, Yu; Wang, Xiaoyuan; Zhao, Lei; Wang, Jianli; Li, Ye

    2018-04-30

    L-threonine is an important amino acid that can be added in food, medicine, or feed. Here, the influence of glyoxylate shunt on an L-threonine producing strain Escherichia coli TWF001 has been studied. The gene iclR was deleted, and the native promoter of the aceBA operon was replaced by the trc promoter in the chromosome of TWF001, the resulting strainTWF004 could produce 0.39 g L-threonine from1 g glucose after 36-h flask cultivation. Further replacing the native promoter of aspC by the trc promoter in the chromosome of TWF004 resulted in the strain TWF006. TWF006 could produce 0.42 g L-threonine from 1 g glucose after 36-h flask cultivation. Three key genes in the biosynthetic pathway of L-threonine, thrA * (a mutated thrA), thrB, and thrC were overexpressed in TWF006, resulting the strain TWF006/pFW01-thrA * BC. TWF006/pFW01-thrA * BC could produce 0.49 g L-threonine from 1 g glucose after 36-h flask cultivation. Next, the genes asd, rhtA, rhtC, or thrE were inserted into the plasmid TWF006/pFW01-thrA * BC, and TWF006 was transformed with these plasmids, resulting the strains TWF006/pFW01-thrA * BC-asd, TWF006/pFW01-thrA * BC-rhtA, TWF006/pFW01-thrA * BC-rhtC, and TWF006/pFW01-thrA * BC-thrE, respectively. These four strains could produce more L-threonine than the control strain, and the highest yield was produced by TWF006/pFW01-thrA * BC-asd; after 36-h flask cultivation, TWF006/pFW01-thrA * BC-asd could produce 15.85 g/l L-threonine, i.e., 0.53 g L-threonine per 1 g glucose, which is a 70% increase relative to the control strain TWF001. The results suggested that the combined engineering of glyoxylate shunt and L-threonine biosynthesis pathway could significantly increase the L-threonine production in E. coli.

  16. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    Science.gov (United States)

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with

  17. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable e...

  18. 21 CFR 73.37 - Astaxanthin dimethyl-disuccinate.

    Science.gov (United States)

    2010-04-01

    ... of a stabilized mixture. Color additive mixtures for fish feed use made with astaxanthin... in color additive mixtures for coloring foods. (b) Specifications. Astaxanthin dimethyldisuccinate...: (1) The color additive is used to enhance the pink to orange-red color of the flesh of salmonid fish...

  19. Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora.

    Science.gov (United States)

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2007-10-01

    The filamentous ascomycete Sordaria macrospora accumulates melanin during sexual development. The four melanin biosynthesis genes pks, teh, sdh and tih were isolated and their homology to genes involved in 1,8 dihydroxynaphthalene (DHN) melanin biosynthesis was shown. The presence of DHN melanin in S. macrospora was further confirmed by disrupting the pks gene encoding a putative polyketide synthase and by RNA interference-mediated silencing of the sdh gene encoding a putative scytalone dehydratase. Because melanin occurs in fruiting bodies that develop through several intermediate stages within 7 days of growth, a Northern analysis of a developmental time-course was conducted. These data revealed a time-dependent regulation of teh and sdh transcript levels. Comparing the transcriptional expression by real-time PCR of melanin biosynthesis genes in the wild type under conditions allowing or repressing sexual development, a significant downregulation during vegetative growth was detected. Quantitative real-time PCR and Northern blot analysis of melanin biosynthesis gene expression in different developmental mutants confirmed that melanin biosynthesis is linked to fruiting body development and is under the control of specific regulatory genes that participate in sexual differentiation.

  20. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  1. Stability and changes in astaxanthin ester composition from Haematococcus pluvialis during storage

    Science.gov (United States)

    Miao, Fengping; Geng, Yahong; Lu, Dayan; Zuo, Jincheng; Li, Yeguang

    2013-11-01

    In this paper, we investigated the effects of temperature, oxygen, antioxidants, and corn germ oil on the stability of astaxanthin from Haematococcus pluvialis under different storage conditions, and changes in the composition of astaxanthin esters during storage using high performance liquid chromatography and spectrophotometry. Oxygen and high temperatures (22-25°C) significantly reduced the stability of astaxanthin esters. Corn germ oil and antioxidants (ascorbic acid and vitamin E) failed to protect astaxanthin from oxidation, and actually significantly increased the instability of astaxanthin. A change in the relative composition of astaxanthin esters was observed after 96 weeks of long-term storage. During storage, the relative amounts of free astaxanthin and astaxanthin monoesters declined, while the relative amount of astaxanthin diesters increased. Thus, the ratio of astaxanthin diester to monoester increased, and this ratio could be used to indicate if astaxanthin esters have been properly preserved. If the ratio is greater than 0.2, it suggests that the decrease in astaxanthin content could be higher than 20%. Our results show that storing algal powder from H. pluvialis or other natural astaxanthin products under vacuum and in the dark below 4°C is the most economical and applicable storage method for the large-scale production of astaxanthin from H. pluvialis. This storage method can produce an astaxanthin preservation rate of at least 80% after 96 weeks of storage.

  2. Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of LL-diaminopimelate aminotransferase.

    Science.gov (United States)

    Hudson, André O; Gilvarg, Charles; Leustek, Thomas

    2008-05-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an LL-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of L-2,3,4,5-tetrahydrodipicolinate to LL-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze LL-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae.

  3. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  4. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    OpenAIRE

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with o...

  5. Identification of a trichothecene gene cluster and description of the harzianum A biosynthesis pathway in the fungus Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenes that act like mycotoxins. Their biosynthesis has been mainly studied in the fungal genera Fusarium, where most of the biosynthetic genes (tri) are grouped in a cluster regulated by ambient conditions and regulatory genes. Unexpectedly, few studies are available abou...

  6. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. AP2/ERF Transcription Factor, Ii049, Positively Regulates Lignan Biosynthesis in Isatis indigotica through Activating Salicylic Acid Signaling and Lignan/Lignin Pathway Genes

    Directory of Open Access Journals (Sweden)

    Ruifang Ma

    2017-08-01

    Full Text Available Lignans, such as lariciresinol and its derivatives, have been identified as effective antiviral ingredients in Isatis indigotica. Evidence suggests that the APETALA2/ethylene response factor (AP2/ERF family might be related to the biosynthesis of lignans in I. indigotica. However, the special role played by the AP2/ERF family in the metabolism and its underlying putative mechanism still need to be elucidated. One novel AP2/ERF gene, named Ii049, was isolated and characterized from I. indigotica in this study. The quantitative real-time PCR analysis revealed that Ii049 was expressed highest in the root and responded to methyl jasmonate, salicylic acid (SA and abscisic acid treatments to various degrees. Subcellular localization analysis indicated that Ii049 protein was localized in the nucleus. Knocking-down the expression of Ii049 caused a remarkable reduction of lignan/lignin contents and transcript levels of genes involved in the lignan/lignin biosynthetic pathway. Ii049 bound to the coupled element 1, RAV1AAT and CRTAREHVCBF2 motifs of genes IiPAL and IiCCR, the key structural genes in the lignan/lignin pathway. Furthermore, Ii049 was also essential for SA biosynthesis, and SA induced lignan accumulation in I. indigotica. Notably, the transgenic I. indigotica hairy roots overexpressing Ii049 showed high expression levels of lignan/lignin biosynthetic genes and SA content, resulting in significant accumulation of lignan/lignin. The best-engineered line (OVX049-10 produced 425.60 μg·g−1 lariciresinol, an 8.3-fold increase compared with the wild type production. This study revealed the function of Ii049 in regulating lignan/lignin biosynthesis, which had the potential to increase the content of valuable lignan/lignin in economically significant medicinal plants.

  8. Multispectral Image Analysis for Robust Prediction of Astaxanthin Coating

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Frosch, Stina; Nielsen, Michael Engelbrecht

    2013-01-01

    The aim of this study was to investigate the possibility of predicting the type and concentration level of astaxanthin coating of aquaculture feed pellets using multispectral image analysis. We used both natural and synthetic astaxanthin, and we used several different concentration levels...... of synthetic astaxanthin in combination with four different recipes of feed pellets. We used a VideometerLab with 20 spectral bands in the range of 385-1050 nm. We used linear discriminant analysis and sparse linear discriminant analysis for classification and variable selection. We used partial least squares...

  9. Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Nielsen, Michael Engelbrecht; Ersbøll, Bjarne Kjær

    2011-01-01

    Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging...... device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 mu g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results...... concentration in rainbow trout fillets....

  10. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    OpenAIRE

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinc...

  11. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Haijian Wu

    2015-09-01

    Full Text Available Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases.

  12. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    Science.gov (United States)

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze ll-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae. PMID:18310350

  13. Green Approaches to Extract Astaxanthin from Shrimp Waste

    DEFF Research Database (Denmark)

    Razi Parjikolaei, Behnaz; Errico, Massimiliano; El-Houri, Rime Bahij

    2016-01-01

    Sunflower oil and its methyl ester have recently been shown as potential green solvents which could substitute traditional organic solvents. This study investigates the economic feasibility of using these green solvents to extract astaxanthin from shrimp processing waste. The feasibility of comme......Sunflower oil and its methyl ester have recently been shown as potential green solvents which could substitute traditional organic solvents. This study investigates the economic feasibility of using these green solvents to extract astaxanthin from shrimp processing waste. The feasibility...

  14. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes

    Directory of Open Access Journals (Sweden)

    Weiwei Dai

    2015-06-01

    Full Text Available Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation. Results: Increased AA levels enhanced the phosphorylation of ribosomal protein S6 kinase (S6K1, S6, and insulin receptor substrate 1 (IRS-1 on Ser302 but suppressed Akt and p38 phosphorylation; up-regulated the expression of genes related to gluconeogenesis and fatty acid biosynthesis. mTORC1 inhibition not only inhibited the phosphorylation of mTORC1 downstream targets, but also blunted IRS-1 Ser302 phosphorylation and restored excessive AAs-suppressed Akt phosphorylation. Rapamycin also inhibited fatty acid biosynthetic and gluconeogenic gene expression. Conclusion: High levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt activation and thereby weakening insulin action. We propose that p38 MAPK probably also involves in these AAs-induced metabolic changes.

  15. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    Science.gov (United States)

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc 2 155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc 2 155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  16. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynthesis pathway on the synthesis of pullulan, heavy oil and melanin in Aureobasidium pullulans.

    Science.gov (United States)

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-12-18

    Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.

  17. Effect of storage on oxidative quality and stability of extruded astaxanthin-coated fish feed pellets

    DEFF Research Database (Denmark)

    Dethlefsen, Markus Wied; Hjermitslev, Niels Harthøj; Frosch, Stina

    2016-01-01

    This study examined the stability of extruded and astaxanthin-coated fish feed pellets during storage in a light box at 28°C and 620lx. Seven groups of fish feed pellets were vacuum coated with fish oil that contained levels of astaxanthin ranging from 0 to 100ppm. To equalize differences...... was comparatively protected against degradation. Furthermore, the initial concentrations of astaxanthin influenced the degradation per se, signifying self-protective properties of astaxanthin....

  18. THE E2/FRB PATHWAY REGULATION OF DNA REPLICATION AND PROTEIN BIOSYNTHESIS

    Science.gov (United States)

    The E2F/Rb pathway plays a pivotal role in the control of cell cycle progression and regulates the expression of genes required for Gl/S transition. Our study examines the genomic response in Drosophila embryos after overexpression and mutation of E2F/Rb pathway molecules. Hierar...

  19. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  20. Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: Insights into enzyme activities and steroid fluxes in healthy infants during the first year of life from the urinary steroid metabolome.

    Science.gov (United States)

    Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E

    2017-01-01

    The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  2. Preparation of Astaxanthin Nanodispersions Using Gelatin-Based Stabilizer Systems

    Directory of Open Access Journals (Sweden)

    Navideh Anarjan

    2014-09-01

    Full Text Available The incorporation of lipophilic nutrients, such as astaxanthin (a fat soluble carotenoid in nanodispersion systems can either increase the water solubility, stability and bioavailability or widen their applications in aqueous food and pharmaceutical formulations. In this research, gelatin and its combinations with sucrose oleate as a small molecular emulsifier, sodium caseinate (SC as a protein and gum Arabic as a polysaccharide were used as stabilizer systems in the formation of astaxanthin nanodispersions via an emulsification-evaporation process. The results indicated that the addition of SC to gelatin in the stabilizer system could increase the chemical stability of astaxanthin nanodispersions significantly, while using a mixture of gelatin and sucrose oleate as a stabilizer led to production of nanodispersions with the smallest particle size (121.4 ± 8.6 nm. It was also shown that a combination of gelatin and gum Arabic could produce optimal astaxanthin nanodispersions in terms of physical stability (minimum polydispersity index (PDI and maximum zeta-potential. This study demonstrated that the mixture of surface active compounds showed higher emulsifying and stabilizing functionality compared to using them individually in the preparation of astaxanthin nanodispersions.

  3. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat; Jedidi, Abdesslem; Cavallo, Luigi; Eppinger, Jö rg

    2015-01-01

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids

  4. Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads.

    Directory of Open Access Journals (Sweden)

    Shen-Fu Lin

    Full Text Available There has been considerable interest in the biological functions of astaxanthin and its potential applications in the nutraceutical, cosmetics, food, and feed industries in recent years. However, the unstable structure of astaxanthin considerably limits its application. Therefore, this study reports the encapsulation of astaxanthin in calcium alginate beads using the extrusion method to improve its stability. This study also evaluates the stability of the encapsulated astaxanthin under different storage conditions. The evaluation of astaxanthin stability under various environmental factors reveals that temperature is the most influential environmental factor in astaxanthin degradation. Stability analysis shows that, regardless of the formulation used, the content of astaxanthin encapsulated in alginate beads remains above 90% of the original amount after 21 days of storage at 25°C. These results suggest that the proposed technique is a promising way to enhance the stability of other sensitive compounds.

  5. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway.

    Science.gov (United States)

    Zhou, Tao; Dang, Ying; Zheng, Yong-Hui

    2014-03-01

    The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins

  6. Biosynthesis of platelet activating factor (PAF) via alternate pathways: subcellular distribution of products in HL-60 cells

    International Nuclear Information System (INIS)

    Record, M.; Snyder, F.

    1986-01-01

    Final steps in the biosynthesis of PAF can be catalyzed by two different routes: CDP-choline:1-alkyl-2-acetyl-Gro cholinephosphotransferase [dithiothrietol (DTT)-insensitive] or acetyl-CoA:1-alkyl-2-lyso-GroPCho acetyltransferase. The authors have investigated the conversion of tritium-labeled 1-alkyl-2-acetyl-Gro and 1-alkyl-2-lyso-GroPCho (lyso-PAF) to PAF and other lipid products in HL-60 cells and in subcellular organelles isolated by centrifugation in a Percoll gradient. When cells are incubated with the labeled precursors (2 μM) the total amount of labeled PAF and 1-alkyl-2-acyl-GroPCho formed was similar from both precursors (60 pmol from 1-alkyl-2-acetyl-Gro and 50 pmol from lyso-PAF). However, PAF formed from 1-alkyl-2-acetyl-Gro represented 70% of the total products, whereas with lyso-PAF the major labeled product was 1-alkyl-2-acyl-GroPCho. Formation of PAF from 1-[ 3 H]alkyl-2-acetyl-Gro was linear to at least 30 min at 20 0 C. After a 15-min incubation of this neutral lipid with HL-60 cells, the labeled PAF produced was located exclusively in the plasma membrane fraction as opposed to the label in the 1-alkyl-2-acyl-GroPCho, which was found only in the endoplasmic reticulum; none of the labeled PAF product was released to the media. The authors results suggest PAF might be synthesized by the DTT-insensitive cholinephosphotransferase at the site of the plasma membrane in HL-60 cells

  7. Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium.

    Science.gov (United States)

    Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P

    2018-06-01

    Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.

  8. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat

    2015-06-22

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), promoted by the IspH enzyme. Our results support the viability of the bio-organometallic pathway from rotation of the OH group of HMBPP away from the [Fe4S4] cluster at the core of the catalytic site, to be engaged in a H-bond with Glu126. This rotation is synchronous with π-coordination of the C2=C3 double bond of HMBPP to the apical Fe atom of the [Fe4S4] cluster. Dehydroxylation of HMBPP is triggered by a proton transfer from Glu126 to the OH group of HMBPP. The reaction pathway is completed by competitive proton transfer from the terminal phosphate group to the C2 or C4 atom of HMBPP.

  9. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD+ biosynthesis pathway and NAMPT mutation.

    Science.gov (United States)

    Guo, Jun; Lam, Lloyd T; Longenecker, Kenton L; Bui, Mai H; Idler, Kenneth B; Glaser, Keith B; Wilsbacher, Julie L; Tse, Chris; Pappano, William N; Huang, Tzu-Hsuan

    2017-09-23

    Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD + ), and NAD + depletion ultimately results in cell death. The rate limiting step within the NAD + salvage pathway required for converting nicotinamide to NAD + is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD + depletion and cytotoxicity. To identify mechanisms that could cause resistance to NAMPT inhibitor treatment, we generated a human fibrosarcoma cell line refractory to the highly potent and selective NAMPT small molecule inhibitor, GMX1778. We uncovered novel and unexpected mechanisms of resistance including significantly increased expression of quinolinate phosphoribosyl transferase (QPRT), a key enzyme in the de novo NAD + synthesis pathway. Additionally, exome sequencing of the NAMPT gene in the resistant cells identified a single heterozygous point mutation that was not present in the parental cell line. The combination of upregulation of the NAD + de novo synthesis pathway through QPRT over-expression and NAMPT mutation confers resistance to GMX1778, but the cells are only partially resistant to next-generation NAMPT inhibitors. The resistance mechanisms uncovered herein provide a potential avenue to continue exploration of next generation NAMPT inhibitors to treat neoplasms in the clinic. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Directory of Open Access Journals (Sweden)

    Bingying Han

    2016-07-01

    Full Text Available Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD. Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis. All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW, and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS, 10 trehalose-6-phosphate phosphatases (TPP, and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4 that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1 in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose

  11. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  12. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong

    2017-11-29

    The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.

  13. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    Science.gov (United States)

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed. © 2015 by The Mycological Society of America.

  14. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    Science.gov (United States)

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-07

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.

  15. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    Directory of Open Access Journals (Sweden)

    Ranga Rao Ambati

    2014-01-01

    Full Text Available There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  16. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  17. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2018-01-01

    Full Text Available During periods of heavy exercise training and competition, lipid, protein, and nucleic molecules can become damaged due to an overproduction of reactive oxygen and nitrogen species (RONS within the exercising organism. As antioxidants can prevent and delay cellular oxidative damage through removing, deactivating, and preventing the formation of RONS, supplementation with exogenous antioxidant compounds has become a commercialized nutritional strategy commonly adopted by recreationally active individuals and athletes. The following review is written as a critical appraisal of the current literature surrounding astaxanthin and its potential application as a dietary supplement in exercising humans. Astaxanthin is a lipid-soluble antioxidant carotenoid available to supplement through the intake of Haematococcus pluvialis-derived antioxidant products. Based upon in vitro and in vivo research conducted in mice exercise models, evidence would suggest that astaxanthin supplementation could potentially improve indices of exercise metabolism, performance, and recovery because of its potent antioxidant capacity. In exercising humans, however, these observations have yet to be consistently realized, with equivocal data reported. Implicated, in part, by the scarcity of well-controlled, scientifically rigorous research, future investigation is necessary to enable a more robust conclusion in regard to the efficacy of astaxanthin supplementation and its potential role in substrate utilization, endurance performance, and acute recovery in exercising humans.

  18. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.

    Science.gov (United States)

    Margis-Pinheiro, Marcia; Zhou, Xue-Rong; Zhu, Qian-Hao; Dennis, Elizabeth S; Upadhyaya, Narayana M

    2005-03-01

    We have isolated a severe dwarf transposon (Ds) insertion mutant in rice (Oryza sativa L.), which could be differentiated early in the seedling stage by reduced shoot growth and dark green leaves, and later by severe dwarfism and failure to initiate flowering. These mutants, however, showed normal seed germination and root growth. One of the sequences flanking Ds, rescued from the mutant, was of a chromosome 4-located putative ent-kaurene synthase (KS) gene, encoding the enzyme catalyzing the second step of the gibberellin (GA) biosynthesis pathway. Dwarf mutants were always homozygous for this Ds insertion and no normal plants homozygous for this mutation were recovered in the segregating progeny, indicating that the Ds insertion mutation is recessive. As mutations in three recently reported rice GA-responsive dwarf mutant alleles and the dwarf mutation identified in this study mapped to the same locus, we designate the corresponding gene OsKS1. The osks1 mutant seedlings were responsive to exogenous gibberellin (GA3). OsKS1 transcripts of about 2.3 kb were detected in leaves and stem of wild-type plants, but not in germinating seeds or roots, suggesting that OsKS1 is not involved in germination or root growth. There are at least five OsKS1-like genes in the rice genome, four of which are also represented in rice expressed sequence tag (EST) databases. All OsKS1-like genes are transcribed with different expression patterns. ESTs corresponding to all six OsKS genes are represented in other cereal databases including barley, wheat and maize, suggesting that they are biologically active.

  19. Genomic variants in the ASS1 gene, involved in the nitric oxide biosynthesis and signaling pathway, predict hydroxyurea treatment efficacy in compound sickle cell disease/β-thalassemia patients.

    Science.gov (United States)

    Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P

    2016-03-01

    Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.

  20. Astaxanthin production from sewage of traditional Thai rice vermicelli

    Science.gov (United States)

    Sujarit, Chutinut; Rittirut, Waigoon; Amornlerdpison, Doungporn; Siripatana, Chairat

    2017-03-01

    This research aimed to investigate an optimal condition for astaxanthin production by Phaffia rhodozyma TISTR 5730 in two different media: synthetic YM medium and the medium added with coconut water and diluted with sewage from Thai traditional rice vermicelli plant (coconut water: sewage of 1:0, 1:1, 1:3 and 1:5 ration respectively). The basic medium formulation was composed of 10 g/L glucose, 3 g/L yeast extract, 0.1 g/L K2HPO4, 0.01 g/L NaCl, 0.01 g/L MgSO4 and 0.01 g/L CaCl2 with initial pH 5.5. The cultures were cultivated on 200 rpm shaking bath at 50 °C for 120 hr. It was found that P. rhodozyma TISTR 5370 grew optimally when cultivated in a mixture of coconut water and Thai rice vermicelli sewage (ratio of 1:3), with growth of 3.23 g dry biomass/L and specific astaxanthin production of 680 μg/g dry cell respectively. When fan palm sugar was added to increase reducing sugar from 10 to 15, 20 and 25 g/L, it was demonstrated that the 15 g/L formulation produced highest both dry cell weight (9.66 g/L) and astaxanthin (810 μg/g dry cell weight). Furthermore, when 0.5, 1.0 and 1.5 g/L citric acid was added as supplement, it was found that 1.0-g/L citric acid formulation gave the best result: 10.30 g/L dried cell weight and 930 μg/g dry cell weight astaxanthin. This study provides a promising alternative method of sewage reduction and valorization of wastewater from Thai traditional rice vermicelli plant.

  1. HPLC Quantification of astaxanthin and canthaxanthin in Salmonidae eggs.

    Science.gov (United States)

    Tzanova, Milena; Argirova, Mariana; Atanasov, Vasil

    2017-04-01

    Astaxanthin and canthaxanthin are naturally occurring antioxidants referred to as xanthophylls. They are used as food additives in fish farms to improve the organoleptic qualities of salmonid products and to prevent reproductive diseases. This study reports the development and single-laboratory validation of a rapid method for quantification of astaxanthin and canthaxanthin in eggs of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis М.). An advantage of the proposed method is the perfect combination of selective extraction of the xanthophylls and analysis of the extract by high-performance liquid chromatography and photodiode array detection. The method validation was carried out in terms of linearity, accuracy, precision, recovery and limits of detection and quantification. The method was applied for simultaneous quantification of the two xanthophylls in eggs of rainbow trout and brook trout after their selective extraction. The results show that astaxanthin accumulations in salmonid fish eggs are larger than those of canthaxanthin. As the levels of these two xanthophylls affect fish fertility, this method can be used to improve the nutritional quality and to minimize the occurrence of the M74 syndrome in fish populations. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans

    Directory of Open Access Journals (Sweden)

    Line Larry L

    2010-03-01

    Full Text Available Abstract Background Astaxanthin modulates immune response, inhibits cancer cell growth, reduces bacterial load and gastric inflammation, and protects against UVA-induced oxidative stress in in vitro and rodent models. Similar clinical studies in humans are unavailable. Our objective is to study the action of dietary astaxanthin in modulating immune response, oxidative status and inflammation in young healthy adult female human subjects. Methods Participants (averaged 21.5 yr received 0, 2, or 8 mg astaxanthin (n = 14/diet daily for 8 wk in a randomized double-blind, placebo-controlled study. Immune response was assessed on wk 0, 4 and 8, and tuberculin test performed on wk 8. Results Plasma astaxanthin increased (P helper, Tcytotoxic or natural killer cells. A higher percentage of leukocytes expressed the LFA-1 marker in subjects given 2 mg astaxanthin on wk 8. Subjects fed 2 mg astaxanthin had a higher tuberculin response than unsupplemented subjects. There was no difference in TNF and IL-2 concentrations, but plasma IFN-γ and IL-6 increased on wk 8 in subjects given 8 mg astaxanthin. Conclusion Therefore, dietary astaxanthin decreases a DNA damage biomarker and acute phase protein, and enhances immune response in young healthy females.

  3. Protective effects of astaxanthin from Paracoccus carotinifaciens on murine gastric ulcer models.

    Science.gov (United States)

    Murata, Kenta; Oyagi, Atsushi; Takahira, Dai; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Ishibashi, Takashi; Hara, Hideaki

    2012-08-01

    The purpose of this study was to investigate the effect of astaxanthin extracted from Paracoccus carotinifaciens on gastric mucosal damage in murine gastric ulcer models. Mice were pretreated with astaxanthin for 1 h before ulcer induction. Gastric ulcers were induced in mice by oral administration of hydrochloride (HCl)/ethanol or acidified aspirin. The effect of astaxanthin on lipid peroxidation in murine stomach homogenates was also evaluated by measuring the level of thiobarbituric acid reactive substance (TBARS). The free radical scavenging activities of astaxanthin were also measured by electron spin resonance (ESR) measurements. Astaxanthin significantly decreased the extent of HCl/ethanol- and acidified aspirin-induced gastric ulcers. Astaxanthin also decreased the level of TBARS. The ESR measurement showed that astaxanthin had radical scavenging activities against the 1,1-diphenyl-2-picrylhydrazyl radical and the superoxide anion radical. These results suggest that astaxanthin has antioxidant properties and exerts a protective effect against ulcer formation in murine models. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Formulation of a fish feed for goldfish with natural astaxanthin extracted from shrimp waste.

    Science.gov (United States)

    Weeratunge, W K O V; Perera, B G K

    2016-01-01

    Astaxanthin is a xanthophyll carotenoid, which exhibits many important biological activities including a high degree of antioxidant capacity (AOC) and antibacterial activity, hence has a significant applicability in food, pharmaceutical and cosmetic industries. An attempt was made towards optimization of astaxanthin extraction conditions using three different extraction conditions and a solvent series, from uncooked, cooked and acid-treated shrimp waste, which is a readily available and cheap source of the pigment. The astaxanthin extracts were analyzed by comparing their UV-visible absorbance spectra and thin layer chromatograms with a standard astaxanthin sample. The percentage of astaxanthin in each crude sample was determined using the Beer-Lambert law. The Folin-Ciocalteu assay and the disk diffusion assay were used to investigate the antioxidant capacities and antibacterial activities of extracted astaxanthin samples respectively. The extracted astaxanthin was incorporated into fish feeds to test its ability to enhance the skin color of goldfish. The best astaxanthin percentage of 68 % was observed with the acetone:ethyl acetate (1:1) solvent system facilitated by maceration of cooked and acid treated shrimp, whereas the best crude yield of 33 % was found to be in the acetone extract of the acid-treated shrimp sample. The highest AOC of 65 µg pyrogallol equivalents/mg was observed for the EtOAc extract obtained by maceration of acid-treated shrimp waste. The highest AOC by sonication and soxhlet extraction methods were also obtained with the EtOAc solvent. The extracts exhibited antibacterial activity against four selected bacterial strains. The newly formulated astaxanthin enriched fish feed was economical and indicated a significant improvement of the skin color and healthiness of goldfish compared to the control feeds. Biologically active astaxanthin can be successfully extracted from shrimp waste in higher percentages. The extraction technique and the

  5. Determination of astaxanthin concentration in Rainbow trout (Oncorhynchus mykiss) by multispectral image analysis

    DEFF Research Database (Denmark)

    Frosch, Stina; Dissing, Bjørn Skovlund; Ersbøll, Bjarne Kjær

    Astaxanthin is the single most expensive constituent in salmonide fish feed. Therefore control and optimization of the astaxanthin concentration from feed to fish is of paramount importance for a cost effective salmonide production. Traditionally, methods for astaxanthin determination include...... extraction of astaxanthin from the minced sample into a suitable solvent such as acetone or hexane before further analysis. The existing methods have several drawbacks including being destructive and labour consuming. Current state-of-the art vision systems for quality and process control in the fish...... to a larger degree than in a trichromatic image. In this study multispectral imaging has been evaluated for characterization of the concentration of astaxanthin in rainbow trout fillets. Rainbow trout’s (Oncorhynchus mykiss), were filleted and imaged using a rapid multispectral imaging device...

  6. Triterpene biosynthesis in plants.

    Science.gov (United States)

    Thimmappa, Ramesha; Geisler, Katrin; Louveau, Thomas; O'Maille, Paul; Osbourn, Anne

    2014-01-01

    The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.

  7. Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar.

    Science.gov (United States)

    Siu, Sarah; Robotham, Anna; Logan, Susan M; Kelly, John F; Uchida, Kaoru; Aizawa, Shin-Ichi; Jarrell, Ken F

    2015-05-01

    Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for

  8. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid

    Directory of Open Access Journals (Sweden)

    Qian Lu

    2017-09-01

    Full Text Available Astaxanthin is a carotenoid of significant commercial value due to its superior antioxidant potential and wide applications in the aquaculture, food, cosmetic and pharmaceutical industries. A higher ratio of astaxanthin to the total carotenoids is required for efficient astaxanthin production. β-Carotene ketolase and hydroxylase play important roles in astaxanthin production. We first compared the conversion efficiency to astaxanthin in several β-carotene ketolases from Brevundimonas sp. SD212, Sphingomonas sp. DC18, Paracoccus sp. PC1, P. sp. N81106 and Chlamydomonas reinhardtii with the recombinant Escherichia coli cells that synthesize zeaxanthin due to the presence of the Pantoea ananatis crtEBIYZ. The B. sp. SD212 crtW and P. ananatis crtZ genes are the best combination for astaxanthin production. After balancing the activities of β-carotene ketolase and hydroxylase, an E. coli ASTA-1 that carries neither a plasmid nor an antibiotic marker was constructed to produce astaxanthin as the predominant carotenoid (96.6% with a specific content of 7.4 ± 0.3 mg/g DCW without an addition of inducer.

  9. Studies on the metabolism of astaxanthin in the rainbow trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Al-Khalifah, A.S.

    1986-01-01

    Racemic astaxanthin was fed to rainbow trout (Salmo gairdneri) for 2, 4, and 6 weeks. The fish showed a bright pink coloration of the skin and flesh; the highest amount of astaxanthin was found in the skin of fish fed the test diet for six weeks. Lutein, 3-epilutein, and zeaxanthin were also detected in the flesh and skin; it was concluded that astaxanthin was converted to zeaxanthin in the skin. The mean vitamin A content of the liver was determined; the ratio of vitamin A 1 :vitamin A 2 was approximately 1:3. Retinol and 3,4-dehydroretinol were extracted from the intestine of rainbow trout low in vitamin A, after force feeding with astaxanthin using a feeding tube. Antibiotic-treated fish had no marked difference in vitamin A content compared with a control group that received no antibiotic. This proves that astaxanthin was converted to vitamin A in fish depleted of vitamin A, that microorganisms were not involved in the conversion, and that conversion occurred in the intestine. An in vitro study using 3 H 3S, 3S'-astaxanthin incubated with duodenal and ileal segments of the intestine provided HLPC and radioisotope data, which showed that rainbow trout were able to bioconvert astaxanthin to vitamin A

  10. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity

    Directory of Open Access Journals (Sweden)

    Philippe Régnier

    2015-05-01

    Full Text Available Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI+/ion trap-MS characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM. No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.

  11. EXTRACTION OF ASTAXANTHIN ESTERS FROM SHRIMP WASTE BY CHEMICAL AND MICROBIAL METHODS

    Directory of Open Access Journals (Sweden)

    A. Khanafari, A. Saberi, M. Azar, Gh. Vosooghi, Sh. Jamili, B. Sabbaghzadeh

    2007-04-01

    Full Text Available The carotenoid pigments specifically astaxanthin has many significant applications in food, pharmaceutical and cosmetic industries. The goal of this research was the extraction of Astaxanthin from a certain Persian Gulf shrimp species waste (Penaeus semisulcatus, purification and identification of the pigment by chemical and microbial methods. Microbial fermentation was obtained by inoculation of two Lactobacillus species Lb. plantarum and Lb. acidophilus in the medium culture containing shrimp waste powder by the intervention of lactose sugar, yeast extract, the composition of Both and the coolage (-20oC. The carotenoids were extracted by an organic solvent system. After purification of astaxanthin with the thin layer chromatography method by spectrophotometer, NMR and IR analysis the presence of astaxanthin esters was recognized in this specific species of Persian Gulf shrimp. Results obtained from this study showed that the coolage at –20 oC not only does not have an amplifying effect on the production of astaxanthin but also slightly reduces this effect. Also the effect of intervention of lactose sugar showed more effectiveness in producing astaxanthin than yeast extract or more than with the presence of both. The results also indicated that there is not much difference in the ability of producing the pigment by comparing both Lb. plantarum and Lb. acidophillus. Also results showed the microbial method of extraction of astaxanthin is more effective than chemical method. The pigment extracted from certain amount of shrimp powder, 23.128 mg/g, was calculated.

  12. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology.

    Science.gov (United States)

    Vakarelova, Martina; Zanoni, Francesca; Lardo, Piergiovanni; Rossin, Giacomo; Mainente, Federica; Chignola, Roberto; Menin, Alessia; Rizzi, Corrado; Zoccatelli, Gianni

    2017-04-15

    Astaxanthin is a carotenoid known for its strong antioxidant and health-promoting characteristics, but it is also highly degradable and thus unsuited for several applications. We developed a sustainable method for the extraction and the production of stable astaxanthin microencapsulates. Nearly 2% astaxanthin was extracted by high-pressure homogenization of dried Haematococcus pluvialis cells in soybean oil. Astaxanthin-enriched oil was encapsulated in alginate and low-methoxyl pectin by Ca 2+ -mediated vibrating-nozzle extrusion technology. The 3% pectin microbeads resulted the best compromise between sphericity and oil retention upon drying. We monitored the stability of these astaxanthin beads under four different conditions of light, temperature and oxygen exposition. After 52weeks, the microbeads showed a total-astaxanthin retention of 94.1±4.1% (+4°C/-light/+O 2 ), 83.1±3.2% (RT/-light/-O 2 ), 38.3±2.2% (RT/-light/+O2), and 57.0±0.4% (RT/+light/+O 2 ), with different degradation kinetics. Refrigeration, therefore, resulted the optimal storage condition to preserve astaxanthin stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus.

    Science.gov (United States)

    Wilmowicz, Emilia; Frankowski, Kamil; Kućko, Agata; Świdziński, Michał; de Dios Alché, Juan; Nowakowska, Anna; Kopcewicz, Jan

    2016-11-01

    Flower abscission is a highly regulated developmental process activated in response to exogenous (e.g. changing environmental conditions) and endogenous stimuli (e.g. phytohormones). Ethylene (ET) and abscisic acid (ABA) are very effective stimulators of flower abortion in Lupinus luteus, which is a widely cultivated species in Poland, Australia and Mediterranean countries. In this paper, we show that artificial activation of abscission by flower removal caused an accumulation of ABA in the abscission zone (AZ). Moreover, the blocking of that phytohormone's biosynthesis by NDGA (nordihydroguaiaretic acid) decreased the number of abscised flowers. However, the application of NBD - an inhibitor of ET action - reversed the stimulatory effect of ABA on flower abscission, indicating that ABA itself is not sufficient to turn on the organ separation. Our analysis revealed that exogenous ABA significantly accelerated the transcriptional activity of the ET biosynthesis genes ACC synthase (LlACS) and oxidase (LlACO), and moreover, strongly increased the level of 1-aminocyclopropane-1-carboxylic acid (ACC) - ET precursor, which was specifically localized within AZ cells. We cannot exclude the possibility that ABA mediates flower abscission processes by enhancing the ET biosynthesis rate. The findings of our study will contribute to the overall basic knowledge on the phytohormone-regulated generative organs abscission in L. luteus. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Physicochemical Properties of Whey-Protein-Stabilized Astaxanthin Nanodispersion and Its Transport via a Caco-2 Monolayer.

    Science.gov (United States)

    Shen, Xue; Zhao, Changhui; Lu, Jing; Guo, Mingruo

    2018-02-14

    Astaxanthin nanodispersion was prepared using whey protein isolate (WPI) and polymerized whey protein (PWP) through an emulsification-evaporation technique. The physicochemical properties of the astaxanthin nanodispersion were evaluated, and the transport of astaxanthin was assessed using a Caco-2 cell monolayer model. The astaxanthin nanodispersions stabilized by WPI and PWP (2.5%, w/w) had a small particle size (121 ± 4.9 and 80.4 ± 5.9 nm, respectively), negative ζ potential (-19.3 ± 1.5 and -35.0 ± 2.2 mV, respectively), and high encapsulation efficiency (92.1 ± 2.9 and 93.5 ± 2.4%, respectively). Differential scanning calorimetry curves indicated that amorphous astaxanthin existed in both astaxanthin nanodispersions. Whey-protein-stabilized astaxanthin nanodispersion showed resistance to pepsin digestion but readily released astaxanthin after trypsin digestion. The nanodispersions showed no cytotoxicity to Caco-2 cells at a protein concentration below 10 mg/mL. WPI- and PWP-stabilized nanodispersions improved the apparent permeability coefficient (P app ) of Caco-2 cells to astaxanthin by 10.3- and 16.1-fold, respectively. The results indicated that whey-protein-stabilized nanodispersion is a good vehicle to deliver lipophilic bioactive compounds, such as astaxanthin, and to improve their bioavailability.

  15. Preparation and Characterization of Astaxanthin Nanoparticles by Solvent-Diffusion Technique

    International Nuclear Information System (INIS)

    Anarjan, N.; Tan, C.P.

    2011-01-01

    In this work, astaxanthin nanoparticles were prepared in aqueous media using solvent-diffusion technique. Sodium caseinate, gelatin, Polysorbate 20 and gum Arabic were selected as different food grade surface active molecules for the stabilization of the produced nanoparticles. Results showed that among produced astaxanthin nanoparticles, the Polysorbate 20-stabilized nanoparticles showed the smallest particle size; gum Arabic-stabilized nanoparticles had the smallest polydispersity index and highest physical stability in simulated gastric fluid (SGF); and those stabilized using gelatin had the highest zeta potential. Sodium caseinate stabilized nanoparticles had the highest astaxanthin content in fresh samples as compared to other prepared nano dispersions. (author)

  16. Synthesis, stability and bioavailability of astaxanthin succinate diester.

    Science.gov (United States)

    Qiao, Xing; Yang, Lu; Zhang, Ting; Zhou, Qingxin; Wang, Yuming; Xu, Jie; Xue, Changhu

    2018-06-01

    We synthesized astaxanthin succinate diester (ASD), a novel astaxanthin (AST) derivate, with succinic anhydride and free AST. ASD was purified and characterized using silica gel column chromatography and spectrometry, respectively. The ASD final synthesis rate was 82.63%. A stability test revealed a high AST and ASD retention rate at pH 5.0-7.0. ASD showed better stability than did AST under acidic conditions. Both sample ions showed lower retention rates under Fe 2+ and Fe 3+ states. The ASD metabolic curve showed serum and liver area under the curve from 0 h to time t (AUC 0-t ) values of 45.05 ± 4.58 and 120.38 ± 23.66 µg h -1  mL -1 , respectively. The long-term accumulation was significantly higher in the ASD group than in the AST group, which showed higher accumulation in the heart, muscle and spleen than in other tissues in vivo. The thermal stability and bioavailability of ASD were higher than that of the non-esterified free AST and common free AST, respectively. Additionally, AST accumulation in different tissues of the ASD group was multifold higher than that of free AST. These results prove that ASD may serve as a better source of AST for human nutrition than does free AST. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Characterization of Flavan-3-ols and Expression of MYB and Late Pathway Genes Involved in Proanthocyanidin Biosynthesis in Foliage of Vitis bellula

    Directory of Open Access Journals (Sweden)

    Ke-Gang Li

    2013-03-01

    Full Text Available Proanthocyanidins (PAs are fundamental nutritional metabolites in different types of grape products consumed by human beings. Although the biosynthesis of PAs in berry of Vitis vinifera has gained intensive investigations, the understanding of PAs in other Vitis species is limited. In this study, we report PA formation and characterization of gene expression involved in PA biosynthesis in leaves of V. bellula, a wild edible grape species native to south and south-west China. Leaves are collected at five developmental stages defined by sizes ranging from 0.5 to 5 cm in length. Analyses of thin layer chromatography (TLC and high performance liquid chromatography-photodiode array detector (HPLC-PAD show the formation of (+-catechin, (−-epicatechin, (+-gallocatechin and (−-epigallocatechin during the entire development of leaves. Analyses of butanol-HCl boiling cleavage coupled with spectrometry measurement at 550 nm show a temporal trend of extractable PA levels, which is characterized by an increase from 0.5 cm to 1.5 cm long leaves followed by a decrease in late stages. TLC and HPLC-PAD analyses identify cyanidin, delphinidin and pelargonidin produced from the cleavage of PAs in the butanol-HCl boiling, showing that the foliage PAs of V. bellula include three different types of extension units. Four cDNAs, which encode VbANR, VbDFR, VbLAR1 and VbLAR2, respectively, are cloned from young leaves. The expression patterns of VbANR and VbLAR2 but not VbLAR1 and VbDFR follow a similar trend as the accumulation patterns of PAs. Two cDNAs encoding VbMYBPA1 and VbMYB5a, the homologs of which have been demonstrated to regulate the expression of both ANR and LAR in V. vinifera, are also cloned and their expression profiles are similar to those of VbANR and VbLAR2. In contrast, the expression profiles of MYBA1 and 2 homologs involved in anthocyanin biosynthesis are different from those of VbANR and VbLAR2. Our data show that both ANR and LAR branches are

  18. A-Factor and Phosphate Depletion Signals Are Transmitted to the Grixazone Biosynthesis Genes via the Pathway-Specific Transcriptional Activator GriR▿ †

    OpenAIRE

    Higashi, Tatsuichiro; Iwasaki, Yuko; Ohnishi, Yasuo; Horinouchi, Sueharu

    2007-01-01

    Grixazone (GX), which is a diffusible yellow pigment containing a phenoxazinone chromophore, is one of the secondary metabolites under the control of A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) in Streptomyces griseus. GX production is also induced by phosphate starvation. The whole biosynthesis gene cluster for GX was cloned and characterized. The gene cluster consisting of 13 genes contained six transcriptional units, griT, griSR, griR, griAB, griCDEFG, and griJIH. During cul...

  19. Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors.

    Science.gov (United States)

    Li, Wenjin; Ulm, Hannah; Rausch, Marvin; Li, Xue; O'Riordan, Katie; Lee, Jean C; Schneider, Tanja; Müller, Christa E

    2014-11-01

    Polysaccharide capsules significantly contribute to virulence of invasive pathogens, and inhibition of capsule biosynthesis may offer a valuable strategy for novel anti-infective treatment. We purified and characterized the enzymes CapD and CapE of the Staphylococcus aureus serotype 5 biosynthesis cluster, which catalyze the first steps in the synthesis of the soluble capsule precursors UDP-D-FucNAc and UDP-L-FucNAc, respectively. CapD is an integral membrane protein and was obtained for the first time in a purified, active form. A capillary electrophoresis (CE)-based method applying micellar electrokinetic chromatography (MEKC) coupled with UV detection at 260 nm was developed for functional characterization of the enzymes using a fused-silica capillary, electrokinetic injection, and dynamic coating with polybrene at pH 12.4. The limits of detection for the CapD and CapE products UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose and UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose, respectively, were below 1 μM. Using this new, robust and sensitive method we performed kinetic studies for CapD and CapE and screened a compound library in search for enzyme inhibitors. Several active compounds were identified and characterized, including suramin (IC50 at CapE 1.82 μM) and ampicillin (IC50 at CapD 40.1 μM). Furthermore, the cell wall precursors UDP-D-MurNAc-pentapeptide and lipid II appear to function as inhibitors of CapD enzymatic activity, suggesting an integrated mechanism of regulation for cell envelope biosynthesis pathways in S. aureus. Corroborating the in vitro findings, staphylococcal cells grown in the presence of subinhibitory concentrations of ampicillin displayed drastically reduced CP production. Our studies contribute to a profound understanding of the capsule biosynthesis in pathogenic bacteria. This approach may lead to the identification of novel anti-virulence and antibiotic drugs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry.

    Science.gov (United States)

    Liu, Xiao Juan; Juan, Liu Xiao; Wu, Ying Hua; Hua, Wu Ying; Zhao, Li Chao; Chao, Zhao Li; Xiao, Su Yao; Yao, Xiao Su; Zhou, Ai Mei; Mei, Zhou Ai; Liu, Xin; Xin, Liu

    2011-01-01

    A highly selective, convenient, and precise method, first-order derivative spectrophotometry, was applied for the determination of astaxanthin in Haematococcus pluvialis. Ethyl acetate and ethanol (1:1, v/v) were found to be the best extraction solvent tested due to their high efficiency and low toxicity compared with nine other organic solvents. Astaxanthin coexisting with chlorophyll and beta-carotene was analyzed by first-order derivative spectrophotometry in order to optimize the conditions for the determination of astaxanthin. The results show that when detected at 432 nm, the interfering substances could be eliminated. The dynamic linear range was 2.0-8.0 microg/mL, with a correlation coefficient of 0.9916. The detection threshold was 0.41 microg/mL. The RSD for the determination of astaxanthin was in the range of 0.01-0.06%; the results of recovery test were 98.1-108.0%. The statistical analysis between first-order derivative spectrophotometry and HPLC by T-testing did not exceed their critical values, revealing no significant differences between these two methods. It was proved that first-order derivative spectrophotometry is a rapid and convenient method for the determination of astaxanthin in H. pluvialis that can eliminate the negative effect resulting from the coexistence of astaxanthin with chlorophyll and beta-carotene.

  1. Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits.

    Science.gov (United States)

    Okada, Yumika; Ishikura, Masaharu; Maoka, Takashi

    2009-09-01

    Astaxanthin is a caroteonid that possesses strong antioxidant activity. Recently, many studies on biological activity have been reported. In general, the absorption of carotenoids is affected greatly by diet and by smoking. In this report, we investigated astaxanthin pharmacokinetics after administration of Haematococcus algal extract, a source of astaxanthin, to smokers and nonsmokers before and after a meal; astaxanthin was given before the meal to nonsmokers (n = 7), after the meal to nonsmokers (n = 6), and after the meal to smokers (n = 7), then serum samples were analyzed. The timing of administration greatly affected astaxanthin bioavailability including the area under the curve (AUC(0-168), 2,968 + or - 959 microg h/l in the before-meal group vs. 7,219 + or - 3,118 microg h/l in the after-meal group), indicating high availability in the after-meal group. Smoking also affected the pharmacokinetic parameters and reduced the half-life (t(1/2)) of astaxanthin elimination significantly.

  2. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Rosenkrantz, Tina J; Haldimann, Andreas

    2003-01-01

    An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene...

  3. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Techapiesancharoenkij, Nirachara [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Fiala, Jeannette L.A. [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Croy, Robert G.; Wogan, Gerald N. [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Groopman, John D. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Ruchirawat, Mathuros [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Essigmann, John M., E-mail: jessig@mit.edu [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-01-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB{sub 1}-DNA adducts in AFB{sub 1}-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB{sub 1} and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB{sub 1} administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB{sub 1}-induced hepatotoxicity. At 24 h after AFB{sub 1} administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB{sub 1}-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB{sub 1} hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. - Highlights: • This study revealed sulforaphane (SF)-deregulated gene sets in aflatoxin B{sub 1} (AFB{sub 1})-treated rat livers. • SF redirects biochemical networks toward lipid biosynthesis in AFB{sub 1}-dosed rats. • SF enhanced gene sets that would be expected to favor cell repair and regeneration.

  4. Astaxanthin increases progesterone production in cultured bovine luteal cells.

    Science.gov (United States)

    Kamada, Hachiro; Akagi, Satoshi; Watanabe, Shinya

    2017-06-29

    Although astaxanthin (AST) is known to be a strong antioxidant, its effects on reproductive function in domestic animals have not yet been elucidated in detail. Therefore, we investigated the effects of AST on luteal cells, which produce progesterone (P4), an important hormone for maintaining pregnancy. Luteal cells were prepared by collagenase dispersion of the corpus luteum (CL). The addition of racemic AST at a low concentration (production than RR-AST. When 1 mg/kg·body weight of SS-AST derived from green algae was fed to cows for 2 weeks, its concentration in blood plasma was 10.9 nM on average, which was sufficient to expect an in vitro effect on the production of P4 in cows. These results suggested the potential of SS-AST supplements for cows to elevate luteal function.

  5. Putative benefits of microalgal astaxanthin on exercise and human health

    Directory of Open Access Journals (Sweden)

    Marcelo P. Barros

    2011-04-01

    Full Text Available Astaxanthin (ASTA is a pinkish-orange carotenoid produced by microalgae, but also commonly found in shrimp, lobster and salmon, which accumulate ASTA from the aquatic food chain. Numerous studies have addressed the benefits of ASTA for human health, including the inhibition of LDL oxidation, UV-photoprotection and prophylaxis of bacterial stomach ulcers. ASTA is recognized as a powerful scavenger of reactive oxygen species (ROS, especially those involved in lipid peroxidation. Both aerobic and anaerobic exercise are closely related to overproduction of ROS in muscle tissue. Post-exercise inflammatory processes can even exacerbate the oxidative stress imposed by exercise. Thus, ASTA is suggested here as a putative nutritional alternative/coadjutant for antioxidant therapy to afford additional protection to muscle tissues against oxidative damage induced by exercise, as well as for an (overall integrative redox re-balance and general human health.

  6. Novel bioassay for the discovery of inhibitors of the 2-C-methyl-D-erythritol 4-phosphate (MEP and terpenoid pathways leading to carotenoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Natália Corniani

    Full Text Available The 2-C-methyl-D-erythritol 4-phosphate (MEP pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.

  7. Micro-PIXE analysis in invasive ductal carcinoma tissues after treatment of astaxanthin

    International Nuclear Information System (INIS)

    Safaverdi, S.; Roshani, F.; Lamehi Rashti, M.; Golkhoo, Sh.; Hassan, Z. M.; Langroudi, L.

    2009-01-01

    Trace elements play an important role in a number of biological processes. Astaxanthin, a carotoid pigment found in certain marine plant and animals, has shown anti cancer and anti free radical properties. This work intended to understand the effect of Astaxanthin in breast cancer (invasive ductal carcinoma) by using micro-PIXE method. For this aim the concentration of trace elements were compared in healthy, cancerous and cancer treated with astaxanthin in the breast and liver tissues of breast cancer bearing mice, using proton induced X-ray emission. Materials and Methods: Proton induced X-ray emission was used In a study intending to compare the concentration of trace elements in breast and liver tissues of mice bearing tumor, three groups of mice: healthy, cancerous, and cancerous treated by astaxanthin, were considered. Astaxanthin was supplied from Research Institute of women, Alzahra University. Results: Comparing the untreated tumor tissue, treatment with Astaxanthm significantly decreased the amount Fe, P, S, and Ca elements level in tumor tissue of the breast cancer. It is also found that the concentrations of those elements in liver of the untreated mice and the liver of treated mice with astaxanthin were fairly equal. Astaxanthln significantly decrease the accumulation of elements in the site of tumor, and caused the breast cancer cell membrane to lose their desire to collect the elements from healthy tissues. Conclusion: The micro -PIXE technique could calculate elemental concentrations in tissues. Changes in metallic elements may affect microenvironment and cell functions, which might led lead to cell degeneration or death, the results shows that astaxanthin reduces vital element concentration in tumor site, thus it could be used as an anti tumor agent.

  8. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    Science.gov (United States)

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  9. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad Talebi

    2014-08-01

    Full Text Available Advanced generations of biofuels basically revolve around non-agricultural energy crops. Among those, microalgae owing to its unique characteristics i.e. natural tolerance to waste and saline water, sustainable biomass production and high lipid content (LC, is regarded by many as the ultimate choice for the production of various biofuels such as biodiesel. In the present study, manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina was achieved using pGH plasmid harboring AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. The stability of transformation was confirmed by PCR after several passages. Southern hybridization of AccD probe with genomic DNA revealed stable integration of the cassette in the specific positions in the chloroplast genome with no read through transcription by indigenous promoters. Comparison of the LC and fatty acid profile of the transformed algal cell line and the control revealed the over-expression of the ME/AccD genes in the transformants leading to 12% increase in total LC and significant improvements in biodiesel properties especially by increasing algal oil oxidation stability. The whole process successfully implemented herein for transforming algal cells by genes involved in lipid production pathway could be helpful for large scale biodiesel production from microalgae.

  10. Involvement of 2-C-methyl-D-erythritol-4-phosphate pathway in biosynthesis of aphidicolin-like tetracyclic diterpene of Scoparia dulcis.

    Science.gov (United States)

    Nkembo, Marguerite Kasidimoko; Lee, Jung-Bum; Nakagiri, Takeshi; Hayashi, Toshimitsu

    2006-05-01

    Specific inhibitors of the MVA pathway (pravastatin) and the MEP pathway (fosmidomycin) were used to interfere with the biosynthetic flux which leads to the production of aphidicolin-like diterpene in leaf organ cultures of Scoparia dulcis. Treatment of leaf organs with fosmidomycin resulted in dose dependent inhibition of chlorophylls, carotenoids, scopadulcic acid B (SDB) and phytol production, and no effect on sterol production was observed. In response to the pravastatin treatment, a significant decrease in sterol and perturbation of SDB production was observed.

  11. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    Directory of Open Access Journals (Sweden)

    Anthony Samsel

    2013-04-01

    Full Text Available Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins.

  12. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day -1 ) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day -1 . DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression

  13. The enzymology of polyether biosynthesis.

    Science.gov (United States)

    Liu, Tiangang; Cane, David E; Deng, Zixin

    2009-01-01

    Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.

  14. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.

    Science.gov (United States)

    Yi, BoRa; Kim, Mi-Ja; Lee, JaeHwan

    2018-03-01

    The antioxidative or prooxidative properties of astaxanthin at the concentrations of 0, 10, and 100 μM were determined in oil-in-water (O/W) emulsions containing neutral, anionic, and cationic emulsifiers, which was Tween 20, sodium dodecyl sulfate, cetyltrimethylammonium bromide (CTAB), respectively, under chlorophyll photosensitization. The oxidative parameters and headspace volatiles were analyzed in O/W emulsions. In the 24 h period of visible light irradiation, 100 μM of astaxanthin acted as an antioxidant in O/W emulsions containing neutral and anionic emulsifiers. However, astaxanthin in O/W emulsions with a cationic emulsifier was neither an antioxidant nor a prooxidant. The profiles of volatile compounds showed that astaxanthin served as a singlet oxygen quencher in O/W emulsions containing neutral and anionic emulsifiers. However, in O/W emulsion with a cationic emulsifier, astaxanthin was neither a singlet oxygen quencher nor a free radical scavenger because prooxidant properties of CTAB overwhelmed the antioxidant effects of astaxanthin. Therefore, the antioxidant properties of astaxanthin were influenced by the emulsifier charges in O/W emulsions. Astaxanthin is a lipid-soluble pigment and has antioxidant, anticancer, and anti-inflammatory properties and beneficial effects on cardiovascular diseases. Many lipid-based foods are displayed on the shelves in the markets under fluorescent light. The addition of astaxanthin can extend the shelf life of O/W emulsion type foods such as beverage and dressing products under visible light irradiation. Also, oxidative stability in emulsion type foods containing astaxanthin rich natural ingredients can be predicted. © 2018 Institute of Food Technologists®.

  15. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  16. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Susannah ePiek

    2012-12-01

    Full Text Available The Gram-negative bacterial cell envelope consists of an inner membrane (IM that surrounds the cytoplasm, and an asymmetrical outer-membrane (OM that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS, phospholipids, outer membrane proteins (OMPs and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the correct biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation and isomerisation pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, these conserved pathways have been modified to suit the lifestyle of each organism.

  17. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation

    NARCIS (Netherlands)

    Houten, S. M.; Frenkel, J.; Waterham, H. R.

    2003-01-01

    Mevalonate kinase (MK) is an essential enzyme in the isoprenoid biosynthesis pathway which produces numerous biomolecules (isoprenoids) involved in a variety of cellular processes. The indispensability of MK and isoprenoid biosynthesis for human health is demonstrated by the identification of its

  18. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  19. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Gaigalat Lars

    2006-08-01

    Full Text Available Abstract Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4-monophosphatases (EC 3.1.3.25. Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown

  20. Production of astaxanthin rich feed supplement for animals from Phaffia rhodozyma yeast at low cost

    Science.gov (United States)

    Irtiza, Ayesha; Shatunova, Svetlana; Glukhareva, Tatiana; Kovaleva, Elena

    2017-09-01

    Dietary nutrients such as amino acids, vitamins, minerals and antioxidants can play a significant role in determining meat quality and also the growth rate of poultry or animal. Phaffia rhodozyma was grown on waste from brewery industry to produce astaxanthin rich feed supplements at a very low cost. Phaffia rhodozyma is yeast specie that has ability to produce carotenoids and approximately 80% of its total carotenoid content is astaxanthin, which is highly valuable carotenoid for food, feed and aquaculture industry. This study was carried out to test yeast extract of spent yeast from brewing industry waste (residual yeast) as potential nitrogen source for growth of Phaffia rhodozyma. Cultivation was carried out in liquid media prepared by yeast extracts and other components (glucose and peptone). Carotenoids from the biomass were released into biomass by suspending cells in DMSO for destruction of cells followed by extraction with petroleum ether. The extracted carotenoids were studied by spectrophotometry to identify and quantify astaxanthin and other carotenoids produced.

  1. Effects of Astaxanthin from Litopenaeus Vannamei on Carrageenan-Induced Edema and Pain Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Zulkiflee Kuedo

    2016-03-01

    Full Text Available Carrageenan produces both inflammation and pain when injected in mouse paws via enhancement of reactive oxygen species formation. We have investigated an effect of astaxanthin extracted from Litopenaeus vannamei in carrageenan-induced mice paw edema and pain. The current study demonstrates interesting effects from astaxanthin treatment in mice: an inhibition of paw edema induced in hind paw, an increase in mechanical paw withdrawal threshold and thermal paw withdrawal latency, and a reduction in the amount of myeloperoxidase enzyme and lipid peroxidation products in the paw. Furthermore the effect was comparable to indomethacin, a standard treatment for inflammation symptoms. Due to adverse effects of indomethacin on cardiovascular and gastrointestinal systems, our study suggests promising prospect of astaxanthin extract as an anti-inflammatory alternative against carrageenan-induced paw edema and pain behavior.

  2. Astaxanthin protecting membrane integrity against photosensitized oxidation through synergism with other carotenoids

    DEFF Research Database (Denmark)

    Du, Hui-Hui; Liang, Ran; Han, Rui-Min

    2015-01-01

    using optical microscopy and digital image heterogeneity analysis. The lowest initial rate of GUV budding after the lag phase was seen for GUVs with astaxanthin as the least reducing carotenoid, while the lowest final level of entropy appeared for those with lycopene or β-carotene as a more reducing...... carotenoid. The combination of astaxanthin and lycopene gave optimal protection against budding with respect to both a longer lag phase and lower final level of entropy by combining good electron acceptance and good electron donation. Quenching of singlet oxygen by carotenoids close to chlorophyll...... a in the membrane interior in parallel with scavenging of superoxide radicals by astaxanthin anchored in the surface may explain the synergism between carotenoids involving both type I and type II photosensitization by chlorophyll a....

  3. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-04-01

    Full Text Available Astaxanthin, a kind of photosynthetic pigment, was employed for gold nanoparticle formation. Nanoparticles were characterized using Ulteraviolet-Visible (UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction, and the possible presence of astaxanthin functional groups were analyzed by Fourier transform infrared spectroscopy (FTIR. The cytotoxic effect of synthesized nanoparticles was evaluated against MDA-MB-231 (human breast cancer cells using a tetrazolium-based assay, and synthesized nanoparticles exhibited dose-dependent toxicity. The morphology upon cell death was differentiated through fluorescent microscopy using different stains that predicted apoptosis. The synthesized nanoparticles were applied in ultrasound-coupled photoacoustic imaging to obtain good images of treated cells. Astaxanthin-reduced gold nanoparticle has the potential to act as a promising agent in the field of photo-based diagnosis and therapy.

  4. Metabolic Characterization of the Anthocyanidin Reductase Pathway Involved in the Biosynthesis of Flavan-3-ols in Elite Shuchazao Tea (Camellia sinensis Cultivar in the Field

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2017-12-01

    Full Text Available Anthocyanidin reductase (ANR is a key enzyme in the ANR biosynthetic pathway of flavan-3-ols and proanthocyanidins (PAs in plants. Herein, we report characterization of the ANR pathway of flavan-3-ols in Shuchazao tea (Camellia sinesis, which is an elite and widely grown cultivar in China and is rich in flavan-3-ols providing with high nutritional value to human health. In our study, metabolic profiling was preformed to identify two conjugates and four aglycones of flavan-3-ols: (−-epigallocatechin-gallate [(−-EGCG], (−-epicatechin-gallate [(−-ECG], (−-epigallocatechin [(−-EGC], (−-epicatechin [(−-EC], (+-catechin [(+-Ca], and (+-gallocatechin [(+-GC], of which (−-EGCG, (−-ECG, (−-EGC, and (−-EC accounted for 70–85% of total flavan-3-ols in different tissues. Crude ANR enzyme was extracted from young leaves. Enzymatic assays showed that crude ANR extracts catalyzed cyanidin and delphinidin to (−-EC and (−-Ca and (−-EGC and (−-GC, respectively, in which (−-EC and (−-EGC were major products. Moreover, two ANR cDNAs were cloned from leaves, namely CssANRa and CssANRb. His-Tag fused recombinant CssANRa and CssANRb converted cyanidin and delphinidin to (−-EC and (−-Ca and (−-EGC and (−-GC, respectively. In addition, (+-EC was observed from the catalysis of recombinant CssANRa and CssANRb. Further overexpression of the two genes in tobacco led to the formation of PAs in flowers and the reduction of anthocyanins. Taken together, these data indicate that the majority of leaf flavan-3-ols in Shuchazao’s leaves were produced from the ANR pathway.

  5. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach.

    Science.gov (United States)

    Zuluaga, M; Gregnanin, G; Cencetti, C; Di Meo, C; Gueguen, V; Letourneur, D; Meddahi-Pellé, A; Pavon-Djavid, G; Matricardi, P

    2017-12-28

    After myocardial infarction, the heart's mechanical properties and its intrinsic capability to recover are compromised. To improve this recovery, several groups have developed cardiac patches based on different biomaterials strategies. Here, we developed polyvinylalcohol/dextran (PVA/Dex) elastic hydrogel patches, obtained through the freeze thawing (FT) process, with the aim to deliver locally a potent natural antioxidant molecule, astaxanthin, and to assist the heart's response against the generated myofibril stress. Extensive rheological and dynamo-mechanical characterization of the effect of the PVA molecular weight, number of freeze-thawing cycles and Dex addition on the mechanical properties of the resulting hydrogels, were carried out. Hydrogel systems based on PVA 145 kDa and PVA 47 kDa blended with Dex 40 kDa, were chosen as the most promising candidates for this application. In order to improve astaxanthin solubility, an inclusion system using hydroxypropyl-β-cyclodextrin was prepared. This system was posteriorly loaded within the PVA/Dex hydrogels. PVA145/Dex 1FT and PVA47/Dex 3FT showed the best rheological and mechanical properties when compared to the other studied systems; environmental scanning electron microscope and confocal imaging evidenced a porous structure of the hydrogels allowing astaxanthin release. In vitro cellular behavior was analyzed after 24 h of contact with astaxanthin-loaded hydrogels. In vivo subcutaneous biocompatibility was performed in rats using PVA145/Dex 1FT, as the best compromise between mechanical support and astaxanthin delivery. Finally, ex vivo and in vivo experiments showed good mechanical and compatibility properties of this hydrogel. The obtained results showed that the studied materials have a potential to be used as myocardial patches to assist infarcted heart mechanical function and to reduce oxidative stress by the in situ release of astaxanthin.

  6. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    Science.gov (United States)

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  7. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14α-demethylase (ERG11 gene of Moniliophthora perniciosa

    Directory of Open Access Journals (Sweden)

    Geruza de Oliveira Ceita

    2014-12-01

    Full Text Available The phytopathogenic fungus Moniliophthora perniciosa (Stahel Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11 that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR. Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  8. Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin

    DEFF Research Database (Denmark)

    Andersen, L.P.; Holck, Susanne; Kupcinskas, L.

    2007-01-01

    . There was a significant decrease in gastric inflammation in H. pylori-positive patients from both groups. There were no significant changes in the density of H. pylori or in any of the interleukins during or after treatment. There was a significant up-regulation of CD4 and down-regulation of CD8 in patients with H....... pylori treated with astaxanthin. Astaxanthin had an effect on the inflammation and on the density of H. pylori in mice in a study where the diet could be standardized without antioxidants (Bennedsen et al., 1999). These dietary conditions are impossible in studies involving humans, and may be due...

  9. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.

    Science.gov (United States)

    Hadjipieri, Margarita; Georgiadou, Egli C; Marin, Alicia; Diaz-Mula, Huertas M; Goulas, Vlasios; Fotopoulos, Vasileios; Tomás-Barberán, Francisco A; Manganaris, George A

    2017-06-14

    Carotenoids are the main colouring substances found in orange-fleshed loquat fruits. The aim of this study was to unravel the carotenoid biosynthetic pathway of loquat fruit (cv. 'Obusa') in peel and flesh tissue during distinct on-tree developmental stages through a targeted analytical and molecular approach. Substantial changes regarding colour parameters, both between peel and flesh and among the different developmental stages, were monitored, concomitant with a significant increment in carotenoid content. Key genes and individual compounds that are implicated in the carotenoid biosynthetic pathway were further dissected with the employment of molecular (RT-qPCR) and advanced analytical techniques (LC-MS). Results revealed significant differences in carotenoid composition between peel and flesh. Thirty-two carotenoids were found in the peel, while only eighteen carotenoids were identified in the flesh. Trans-lutein and trans-β-carotene were the major carotenoids in the peel; the content of the former decreased with the progress of ripening, while the latter registered a 7.2-fold increase. However, carotenoid profiling of loquat flesh indicated trans-β-cryptoxanthin, followed by trans-β-carotene and 5,8-epoxy-β-carotene to be the most predominant carotenoids. High amounts of trans-β-carotene in both tissues were supported by significant induction in a chromoplast-specific lycopene β-cyclase (CYCB) transcript levels. PSY1, ZDS, CYCB and BCH were up-regulated and CRTISO, LCYE, ECH and VDE were down-regulated in most of the developmental stages compared with the immature stage in both peel and flesh tissue. Overall, differential regulation of expression levels with the progress of on-tree fruit development was more evident in the middle and downstream genes of carotenoid biosynthetic pathway. Carotenoid composition is greatly affected during on-tree loquat development with striking differences between peel and flesh tissue. A link between gene up- or down

  10. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  11. Biosynthesis of furanochromones in Pimpinella monoica

    Indian Academy of Sciences (India)

    polyketide origin of their aromatic and pyrone rings while the furan ring originates via an acetate-mevalonate pathway. The plant also utilises glycine and leucine as substrate via acetate. Biotransformation of 3-H-visnagin to (6) but not to (2) was also observed. Keywords. Biosynthesis; furochromones; polyketide origin; ...

  12. Biosynthesis of oleamide.

    Science.gov (United States)

    Mueller, Gregory P; Driscoll, William J

    2009-01-01

    Oleamide (cis-9-octadecenamide) is the prototype long chain primary fatty acid amide lipid messenger. The natural occurrence of oleamide was first reported in human serum in 1989. Subsequently oleamide was shown to accumulate in the cerebrospinal fluid of sleep-deprived cats and to induce sleep when administered to experimental animals. Accordingly, oleamide first became known for its potential role in the mechanisms that mediate the drive to sleep. Oleamide also has profound effects on thermoregulation and acts as an analgesic in several models of experimental pain. Although these important pharmacologic effects are well establish, the biochemical mechanism for the synthesis of oleamide has not yet been defined. This chapter reviews the biosynthetic pathways that have been proposed and highlights two mechanisms which are most supported by experimental evidence: the generation of oleamide from oleoylglycine by the neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), and alternatively, the direct amidation of oleic acid via oleoyl coenzyme A by cytochrome c using ammonia as the nitrogen source. The latter mechanism is discussed in the context of apoptosis where oleamide may play a role in regulating gap junction communication. Lastly, several considerations and caveats pertinent to the future study oleamide biosynthesis are discussed.

  13. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii.

    Science.gov (United States)

    Sivanandhan, Ganeshan; Arunachalam, Chinnathambi; Selvaraj, Natesan; Sulaiman, Ali Alharbi; Lim, Yong Pyo; Ganapathi, Andy

    2015-06-01

    The investigation of seaweeds, Gracilaria edulis and Sargassum wightii extracts was carried out for the estimation of growth characteristics and major withanolides production in hairy root culture of Withania somnifera. The extract of G. edulis (50%) in MS liquid basal medium enabled maximum production of dry biomass (5.46 g DW) and withanolides contents (withanolide A 5.23 mg/g DW; withaferin A 2.24 mg/g DW and withanone 4.83 mg/g DW) in hairy roots after 40 days of culture with 48 h contact time. The obtained withanolides contents were significantly higher (2.32-fold-2.66-fold) in hairy root culture when compared to the control. RT PCR analysis of important pathway genes such as SE, SS, HMGR and FPPS exhibited substantial higher expression upon the seaweed extracts treatment in hairy root culture. This experiment would paw a platform for withanolides production in hairy root culture with the influence of sea weed extracts for pharmaceutical companies in the future. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. The Sorghum Gene for Leaf Color Changes upon Wounding (P Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawahigashi

    2016-05-01

    Full Text Available Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L. Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP and tan Greenleaf (pp cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol to flavan-4-ols (apiforol or luteoforol in vitro. Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway.

  15. Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin

    DEFF Research Database (Denmark)

    Andersen, L.P.; Holck, Susanne; Kupcinskas, L.

    2007-01-01

    The chronic active inflammation caused by Helicobacter pylori is dominated by neutrophils, macrophages, lymphocytes and plasma cells. Several interleukins are involved in the inflammatory process. The aim of this study was to investigate the effect of astaxanthin on gastric inflammation in patien...

  16. Stability of astaxanthin in yogurt used to simulate apricot color, under refrigeration

    Directory of Open Access Journals (Sweden)

    Pedro Cerezal Mezquita

    2014-09-01

    Full Text Available The aim of this study was to incorporate astaxanthin to yogurts with different fat content to match apricot (Prunus armeniaca L. color. The samples containing astaxanthin were stored at 5 ± 3 °C, and color stability and astaxanthin content were determined by colorimetry and high performance liquid chromatography (HPLC, respectively. Yogurt samples were analyzed in triplicate every 24 hours for one week and subsequently every week for 3 more weeks There were no significant differences (p < 0.05 between astaxanthin concentration values at 0 and 28 days for both samples; therefore, it can be said that the fat content in the yogurt had not effect on the stability of pigment. The low dispersion of the data showed uniformity in the three chromaticity coordinates L*, a*, b* throughout the storage period for both types of yogurt. Values of ∆E ≥ 5.0 were not obtained at any time during storage, indicating high stability of the pigment.

  17. 75 FR 5887 - Listing of Color Additives Exempt From Certification; Astaxanthin Dimethyldisuccinate...

    Science.gov (United States)

    2010-02-05

    ... use of astaxanthin dimethyldisuccinate as a color additive in the feed of salmonid fish to enhance the... CFR Part 73 Color additives, Cosmetics, Drugs, Medical devices. 0 Therefore, under the Federal Food... of Food Additive Safety, notice is given that no objections or requests for a hearing were filed in...

  18. Extraction of astaxanthin from microalgae: process design and economic feasibility study

    Science.gov (United States)

    Zgheib, Nancy; Saade, Roxana; Khallouf, Rindala; Takache, Hosni

    2018-03-01

    In this work, the process design and the economic feasibility of natural astaxanthin extraction fromHaematococcus pluvialisspecies have been reported. Complete process drawing of the process was first performed, and then the process was designed including five main steps being the harvesting process, the cell disruption, the spray drying, the supercritical CO2extraction and the anaerobic digestion. The major components of the facility would include sedimentation tanks, a disk stack centrifuge, a bed miller, a spray dryer, a multistage compressor, an extractor, a pasteurizer and a digester. All units have been sized assuming a 10 kg/h of dried biomass as a feedstock to produce nearly 2592 kg of astaxanthin per year. The investment payback time and the return on investment were all estimated for different market prices of astaxanthin. Based on the results the production process was found to become economically feasible for a market price higher than 1500/Kg. Also, a payback period of 1 year and an ROI equal to 113% was estimated for an astaxanthin market price equal to 6000/Kg.

  19. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.

    Science.gov (United States)

    Liao, Cangsong; Seebeck, Florian P

    2017-11-02

    Biosynthesis of N-α-trimethyl-2-thiohistidine (ergothioneine) is a frequent trait in cyanobacteria. This sulfur compound may provide essential relief from oxidative stress related to oxygenic photosynthesis. The central steps in ergothioneine biosynthesis are catalyzed by a histidine methyltransferase and an iron-dependent sulfoxide synthase. In this report, we present evidence that some cyanobacteria recruited and adapted a sulfoxide synthase from a different biosynthetic pathway to make ergothioneine. The discovery of a second origin of ergothioneine production underscores the physiological importance of this metabolite and highlights the evolutionary malleability of the thiohistidine biosynthetic machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  1. The expanding universe of alkaloid biosynthesis.

    Science.gov (United States)

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  2. Effect of dietary Astaxanthin sources supplementation on muscle pigmentation and lipid peroxidation in rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Marco Saroglia

    2010-01-01

    Full Text Available Astaxanthin is one of the major carotenoids in aquatic animals including salmonid fishes and is the preferred pigments added to salmon feed. It’s also a powerful antioxidant compared to other carotenoids and that may confer numerous health benefits. The aim of the present experi- ment was to investigate the effect of Astaxanthin deposition on the lipids peroxidation by studying the Malondialdeide (MDA level in muscle of rainbow trout (Oncorhynchus mykiss. The Astaxanthin concentrations in fish fed with a commercial sources as Lucantin®Pink (BASF Ludwigshafen, Ger- many reached values to 5.76±0.18x10-3 mg/g after 50 days feeding, while the MDA concentration de- creased from 1.56x103 to 0.45x103 ng/g. The correlation between MDA and Astaxanthin concentrations decreased linearly and confirmed the antioxidant properties of the pigment by reducing the lipids peroxidation.

  3. Biosynthesis and function of chondroitin sulfate.

    Science.gov (United States)

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. OPTIMISATION OF SUPERCRITICAL FLUID EXTRACTION OF ASTAXANTHIN FROM PENAEUS MONODON WASTE USING ETHANOL-MODIFIED CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    SHAZANA A. RADZALI

    2016-05-01

    Full Text Available Some studies demonstrated that astaxanthin surpasses the antioxidant benefits of beta-carotene, zeaxanthin, canthaxanthin, vitamin C, and vitamin E. Penaeus monodon (Tiger shrimp is one of the most valuable traded crustacean products in which astaxanthin can be found in its by-products. The extraction of thermolabile compound like carotenoids at lower temperatures through supercritical carbon dioxide (SC-CO2 can reduce the potential isomerization and degradation of the extraction product. In this study, astaxanthin had been extracted using SC-CO2 with 15% (v/v ethanol as an entrainer and the recovered astaxanthin was analyzed using High performance liquid chromatography (HPLC. A central composite design (CCD was employed to study the effect of three SC-CO2 parameters namely temperature (X1 from 40 to 80°C, pressure (X2 from 150 to 250 bar and extraction flow rate (X3 from 1 to 3 ml/min on the astaxanthin complex yield, (Y1 and free astaxanthin content, (Y2. The nonlinear regression equations were significantly (p0.9261, which had no indication of lack of fit. The results indicated that a combined set of values of temperature (56.88°C, pressure (215.68 bar and extraction flow rate (1.89 ml/min was predicted to provide the optimum region in terms of astaxanthin complex yield, (58.50 ± 2.62 µg/g and free astaxanthin content (12.20 ± 4.16 µg/g studied.

  5. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Bioavailability of Astaxanthin Is Dependent on Both the Source and the Isomeric Variants of the Molecule

    Directory of Open Access Journals (Sweden)

    Myriam MIMOUN-BENARROCH

    2016-11-01

    Full Text Available Astaxanthin is a marine carotenoid that has a number of potential health benefits, including a very strong antioxidant potential. Present in the flesh of salmonids and shellfish, its natural sources currently on the market for food supplements come from the algae Haematococcus pluvialis and krill. However other natural sources can be found and may be of interest. Cellular uptake studies were performed on Caco-2/TC7 colonic cells. The cells were cultured on a semi-permeable membrane to create a polarized and functional epithelium, representative of the intestinal barrier. Four sources of astaxanthin were selected and compared; synthetic, natural extracts from bacteria, algae or yeast. Astaxanthin was incorporated at a concentration of 5µM into mixed micelles and applied to cultured cells and concentration of astaxanthin measured by HPLC in both apical and basolateral compartments. Small variations in bioavailability were observed at 3 hours. After 6 hours, only the algae source of astaxanthin was still present in the apical compartment as the esterified form. Structure-activity relationships are further discussed. Animal experiments using yeast and algae sources in different types of matrices confirm the role of source and formulation in the bioavailability potential of astaxanthin.

  7. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: kinetics study and stability as affected by storage conditions

    Directory of Open Access Journals (Sweden)

    Sirima Takeungwongtrakul

    2016-02-01

    Full Text Available Abstract The kinetics of astaxanthin degradation and lipid oxidation in shrimp oil from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei as affected by storage temperature were studied. When shrimp oil was incubated at different temperatures (4, 30, 45 and 60 °C for 16 h, the rate constants (k of astaxanthin degradation and lipid oxidation in shrimp oil increased with increasing temperatures (p < 0.05. Thus, astaxanthin degradation and lipid oxidation in shrimp oil were augmented at high temperature. When shrimp oils with different storage conditions (illumination, oxygen availability and temperature were stored for up to 40 days, astaxanthin contents in all samples decreased throughout storage (p < 0.05. All factors were able to enhance astaxanthin degradation during 40 days of storage. With increasing storage time, the progressive formation of primary and secondary oxidation products were found in all samples as evidenced by the increases in both peroxide values (PV and thiobarbituric acid reactive substances (TBARS (p < 0.05. Light, air and temperatures therefore had the marked effect on astaxanthin degradation and lipid oxidation in shrimp oils during the extended storage.

  8. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-nitrosourea-induced Rat Mammary Carcinogenesis.

    Science.gov (United States)

    Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo

    Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Enzymology of the Carnitine Biosynthesis Pathway

    NARCIS (Netherlands)

    Strijbis, Karin; Vaz, Frédéric M.; Distel, Ben

    2010-01-01

    The water-soluble zwitterion carnitine is an essential metabolite in eukaryotes required for fatty acid oxidation as it functions as a carrier during transfer of activated acyl and acetyl groups across intracellular membranes. Most eukaryotes are able to synthesize carnitine endogenously, besides

  10. Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation

    African Journals Online (AJOL)

    The anthocyanin biosynthesis pathway is a little complex with branches responsible for the synthesis of a variety of metabolites. In fruit tree crops, during the past decade, many structural genes encoding enzymes in the anthocyanin biosynthetic pathway and various regulatory genes encoding transcription factors that ...

  11. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    VanDusen, W.J.; Jaworski, J.G.

    1986-01-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14 CO 2 . None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14 CO 2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  12. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  13. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Page, G I; Davies, S J

    2006-01-01

    A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; Ptrout vs. 5.5% in salmon; Ptrout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (Ptrout; Ptrout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.

  14. PCR-based method for the rapid identification of astaxanthin-accumulating yeasts (Phaffia spp.).

    Science.gov (United States)

    Colabella, Fernando; Libkind, Diego

    2016-01-01

    It has been recently found that the natural distribution, habitat, and genetic diversity of astaxanthin-producing yeasts (i.e. Phaffia rhodozyma, synonym Xanthophyllomyces dendrorhous) is much greater than previously thought. P. rhodozyma is biotechnologically exploited due to its ability to produce the carotenoid pigment astaxanthin and thus, it is used as a natural source of this pigment for aquaculture. P. rhodozyma was also capable of synthesizing the potent UVB sunscreen mycosporine-glutaminol-glucoside (MGG). Therefore, further environmental studies are needed to elucidate its ecological aspects and detect new potential strains for the production of astaxanthin and MGG. However, obtaining new isolates of P. rhodozyma and related species is not always easy due to its low abundance and the presence of other sympatric and pigmented yeasts. In this work we report a successful development of a species-specific primer which has the ability to quickly and accurately detecting isolates representing all known lineages of the genus Phaffia (including novel species of the genus) and excluding closely related taxa. For this purpose, a primer of 20 nucleotides (called PhR) was designed to be used in combination with universal primers ITS3 and NL4 in a multiplex amplification. The proposed method has the sensitivity and specificity required for the precise detection of new isolates, and therefore represents an important tool for the environmental search for novel astaxanthin-producing yeasts. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Amelioration of ultraviolet-induced photokeratitis in mice treated with astaxanthin eye drops.

    OpenAIRE

    Lennikov, Anton; Kitaichi, Nobuyoshi; Fukase, Risa; Murata, Miyuki; Noda, Kousuke; Ando, Ryo; Ohguchi, Takeshi; Kawakita, Tetsuya; Ohno, Shigeaki; Ishida, Susumu

    2012-01-01

    Purpose: Ultraviolet (UV) acts as low-dose ionizing radiation. Acute UVB exposure causes photokeratitis and induces apoptosis in corneal cells. Astaxanthin (AST) is a carotenoid, present in seafood, that has potential clinical applications due to its high antioxidant activity. In the present study, we examined whether topical administration of AST has preventive and therapeutic effects on UV-photokeratitis in mice. Methods: C57BL/6 mice were administered with AST diluted in polyethylene glyco...

  16. Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids.

    Science.gov (United States)

    Butler, Thomas O; McDougall, Gordon J; Campbell, Raymond; Stanley, Michele S; Day, John G

    2017-12-26

    Astaxanthin from Haematococcus pluvialis is commercially produced in a two-stage process, involving green vegetative (macrozooid) and red aplanospore stages. This approach has been scaled up to an industrial process but constraints limit its commercial success and profitability, including: contamination issues, high pigment extraction costs, requirements for high light levels and photo-bleaching in the red stage. However, in addition to the aplanospore stage, this alga can produce astaxanthin in vegetative palmelloid and motile macrozooid cells. In this study, a two-stage process utilising different media in the green stage, with subsequent re-suspension in medium without nitrate was employed to optimise the formation of red motile macrozooids. Optimal growth in the green phase was obtained on cultivation under mixotrophic conditions in EG:JM media followed by re-suspension in medium without nitrate resulting in red motile macrozooids with an astaxanthin content of 2.74% (78.4% of total carotenoids) and a lipid content of 35.3% (rich in unsaturated fatty acids. It is envisaged that the red motile macrozooids could be harvested and fed as a whole-cell product directly in the animal feed and aquaculture sectors, or used as a blend of carotenoids and polyunsaturated fatty acids (PUFAs) in nutraceutical products.

  17. Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids

    Directory of Open Access Journals (Sweden)

    Thomas O. Butler

    2017-12-01

    Full Text Available Astaxanthin from Haematococcus pluvialis is commercially produced in a two-stage process, involving green vegetative (macrozooid and red aplanospore stages. This approach has been scaled up to an industrial process but constraints limit its commercial success and profitability, including: contamination issues, high pigment extraction costs, requirements for high light levels and photo-bleaching in the red stage. However, in addition to the aplanospore stage, this alga can produce astaxanthin in vegetative palmelloid and motile macrozooid cells. In this study, a two-stage process utilising different media in the green stage, with subsequent re-suspension in medium without nitrate was employed to optimise the formation of red motile macrozooids. Optimal growth in the green phase was obtained on cultivation under mixotrophic conditions in EG:JM media followed by re-suspension in medium without nitrate resulting in red motile macrozooids with an astaxanthin content of 2.74% (78.4% of total carotenoids and a lipid content of 35.3% (rich in unsaturated fatty acids. It is envisaged that the red motile macrozooids could be harvested and fed as a whole-cell product directly in the animal feed and aquaculture sectors, or used as a blend of carotenoids and polyunsaturated fatty acids (PUFAs in nutraceutical products.

  18. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  19. Wybutosine biosynthesis: Structural and mechanistic overview

    Science.gov (United States)

    Perche-Letuvée, Phanélie; Molle, Thibaut; Forouhar, Farhad; Mulliez, Etienne; Atta, Mohamed

    2014-01-01

    Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article. PMID:25629788

  20. Astaxanthin, a Carotenoid, Stimulates Immune Responses by Enhancing IFN-γ and IL-2 Secretion in Primary Cultured Lymphocytes in Vitro and ex Vivo

    Science.gov (United States)

    Lin, Kuan-Hung; Lin, Kao-Chang; Lu, Wan-Jung; Thomas, Philip-Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2015-01-01

    Astaxanthin, a potent antioxidant carotenoid, plays a major role in modulating the immune response. In this study, we examined the immunomodulatory effects of astaxanthin on cytokine production in primary cultured lymphocytes both in vitro and ex vivo. Direct administration of astaxanthin (70–300 nM) did not produce cytotoxicity in lipopolysaccharide (LPS, 100 µg/ mL)- or concanavalin A (Con A, 10 µg/ mL)-activated lymphocytes, whereas astaxanthin alone at 300 nM induced proliferation of splenic lymphocytes (p < 0.05) in vitro. Although astaxanthin, alone or with Con A, had no apparent effect on interferon (INF-γ) and interleukin (IL-2) production in primary cultured lymphocytes, it enhanced LPS-induced INF-γ production. In an ex vivo experiment, oral administration of astaxanthin (0.28, 1.4 and 7 mg/kg/day) for 14 days did not cause alterations in the body or spleen weights of mice and also was not toxic to lymphocyte cells derived from the mice. Moreover, treatment with astaxanthin significantly increased LPS-induced lymphocyte proliferation ex vivo but not Con A-stimulated lymphocyte proliferation ex vivo. Enzyme linked immunosorbent assay (ELISA) analysis revealed that administration of astaxanthin significantly enhanced INF-γ production in response to both LPS and Con A stimulation, whereas IL-2 production increased only in response to Con A stimulation. Also, astaxanthin treatment alone significantly increased IL-2 production in lymphocytes derived from mice, but did not significantly change production of INF-γ. These findings suggest that astaxanthin modulates lymphocytic immune responses in vitro, and that it partly exerts its ex vivo immunomodulatory effects by increasing INF-γ and IL-2 production without inducing cytotoxicity. PMID:26729100

  1. Technical Report on the Development of Mutant Paracoccus strain and Optimization of Medium Composition for the Mass Production of Astaxanthin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok

    2010-08-15

    Astaxanthin is used to role of provitamin A, and it is stronger antioxidant activity than vitamin E (100-500 times higher activity) and other carotenoids (10-fold). Furthermore, astaxanthin is also used as a nutraceutical and a medicinal ingredient against degenerative diseases such as cancer, heart disease, and skin related illness. The objective of this study was develop a carotenoid-hyperproducing mutant of Paracoccus N81106 using gamma irradiation and optimized medium composition. A mutant of Paracoccus having higher carotenoid content was isolated, and the production medium was optimized using response surface methodology. These results support that astaxanthin with strong antioxidant activity could be economically produced using the mutant and will be helpful for the related industry

  2. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation.

    Science.gov (United States)

    Martínez-Delgado, Alejandra Anahí; Khandual, Sanghamitra; Villanueva-Rodríguez, Socorro Josefina

    2017-06-15

    Astaxanthin is a carotenoid pigment found in numerous organisms ranging from bacteria to algae, yeasts, plants, crustaceans and fish such as salmon. Technological importance of this pigment emerged from various studies demonstrating that it is a powerful antioxidant, even with higher activity than alpha-tocopherol and other carotenoids. It has been included in various pharmaceutical products because of several beneficial properties. By its nature, astaxanthin is susceptible to degradation and can undergo chemical changes during food processing. Therefore, different studies have focused on improving the stability of the carotenoid under conditions such as high temperatures, pressures and mechanical force, among others. In this review, common processes involved in food processing and their effect on the stability of astaxanthin, integrated into a food matrix are discussed. Moreover, preservation techniques such as microencapsulation, inclusion in emulsions, suspensions, liposomes, etc., that are being employed to maintain stability of the product are also reviewed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Technical Report on the Development of Mutant Paracoccus strain and Optimization of Medium Composition for the Mass Production of Astaxanthin

    International Nuclear Information System (INIS)

    Choi, Jong Il; Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok

    2010-08-01

    Astaxanthin is used to role of provitamin A, and it is stronger antioxidant activity than vitamin E (100-500 times higher activity) and other carotenoids (10-fold). Furthermore, astaxanthin is also used as a nutraceutical and a medicinal ingredient against degenerative diseases such as cancer, heart disease, and skin related illness. The objective of this study was develop a carotenoid-hyperproducing mutant of Paracoccus N81106 using gamma irradiation and optimized medium composition. A mutant of Paracoccus having higher carotenoid content was isolated, and the production medium was optimized using response surface methodology. These results support that astaxanthin with strong antioxidant activity could be economically produced using the mutant and will be helpful for the related industry

  4. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  5. Recent advances in combinatorial biosynthesis for drug discovery

    Directory of Open Access Journals (Sweden)

    Sun H

    2015-02-01

    Full Text Available Huihua Sun,1,* Zihe Liu,1,* Huimin Zhao,1,2 Ee Lui Ang1 1Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore; 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA *These authors contributed equally to this work Abstract: Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1 precursor-directed biosynthesis; 2 enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3 pathway-level recombination. Recent examples of combinatorial biosynthesis employing these

  6. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  7. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin.

    Science.gov (United States)

    Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro

    2016-07-01

    Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, 1 O 2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Classification of Astaxanthin Colouration of Salmonid Fish using Spectral Imaging and Tricolour Measurement

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Dissing, Bjørn Skovlund; Nielsen, Michael Engelbrecht

    capturing, tricolour CIELAB measurement, and manual SalmoFan inspection. Furthermore it was tested whether the best predictions come from measurements of the steak or the fillet of the fish. Methods used for classication were linear discriminant analysis (LDA), quadratic discriminant analysis (QDA......The goal of this study was to investigate if it is possible to differentiate between rainbow trout (Oncorhynchus mykiss) having been fed with natural or synthetic astaxanthin. Three different techniques were used for visual inspection of the surface colour of the fish meat: multi-spectral image...

  9. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  10. Recent advances in the elucidation of enzymatic function in natural product biosynthesis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gao-Yi Tan

    2016-02-01

    Full Text Available With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  11. Recent advances in the elucidation of enzymatic function in natural product biosynthesis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tan Gao-Yi

    2015-12-01

    Full Text Available With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  12. Terpenoids and Their Biosynthesis in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bagmi Pattanaik

    2015-01-01

    Full Text Available Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.

  13. Terpenoids and Their Biosynthesis in Cyanobacteria

    Science.gov (United States)

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  14. [A systematic review of biosynthesis of poly (3-hydroxypropionate)].

    Science.gov (United States)

    Chang, Le; Zhan, Yuanlong; Liu, Changli

    2018-04-25

    Poly (3-hydroxypropionate) (P3HP), a new member of thermoplastic of family polyhydroxyalkanoates (PHAs), has excellent characteristics of biodegradability and biocompatibility. By now no reports can be found about wild-type bacteria that naturally synthesize P3HP, so the main way to produce P3HP is chemical and biological methods. Chemical method by adding high cost 3-HP monomers or their structural analogs as precursors, has the drawbacks of toxicity, low effectiveness and high cost. Biological method using engineered strain may utilize inexpensive and renewable carbon source to produce P3HP and has gradually become more and more popular. We systematically review here the biosynthesis of P3HP research progress. The advantages and disadvantages of biosynthesis pathways of glycerol pathway, malonyl-CoA pathway and β-alanine pathway were analyzed.

  15. Brassinosteroid biosynthesis and signalling in Petunia hybrida.

    Science.gov (United States)

    Verhoef, Nathalie; Yokota, Takao; Shibata, Kyomi; de Boer, Gert-Jan; Gerats, Tom; Vandenbussche, Michiel; Koes, Ronald; Souer, Erik

    2013-05-01

    Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.

  16. Molecular and biochemical studies of fragrance biosynthesis in rose

    NARCIS (Netherlands)

    Sun, P.

    2017-01-01

    Roses are one of the most popular ornamental plants, whose floral volatiles are not only involved in environmental interactions but also widely used by industries. The biosynthesis of many of these volatiles in roses is not well understood. This thesis describes alternative pathways for the

  17. Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin

    Czech Academy of Sciences Publication Activity Database

    Alster, J.; Polívka, Tomáš; Arellano, J.B.; Hříbek, P.; Vácha, František; Hala, J.; Pšenčík, J.

    2012-01-01

    Roč. 111, 1-2 (2012), s. 193-204 ISSN 0166-8595 R&D Projects: GA ČR GA206/09/0375 Institutional research plan: CEZ:AV0Z50510513 Keywords : light- harvesting * astaxanthin * self-assembly * bacteriochlorophyll aggregates Subject RIV: BO - Biophysics Impact factor: 3.150, year: 2012

  18. Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia

    Directory of Open Access Journals (Sweden)

    Konstantin Chekanov

    2014-08-01

    Full Text Available We report on a novel arctic strain BM1 of a carotenogenic chlorophyte from a coastal habitat with harsh environmental conditions (wide variations in solar irradiance, temperature, salinity and nutrient availability identified as Haematococcus pluvialis Flotow. Increased (25‰ salinity exerted no adverse effect on the growth of the green BM1 cells. Under stressful conditions (high light, nitrogen and phosphorus deprivation, green vegetative cells of H. pluvialis BM1 grown in BG11 medium formed non-motile palmelloid cells and, eventually, hematocysts capable of a massive accumulation of the keto-carotenoid astaxanthin with a high nutraceutical and therapeutic potential. Routinely, astaxanthin was accumulated at the level of 4% of the cell dry weight (DW, reaching, under prolonged stress, 5.5% DW. Astaxanthin was predominantly accumulated in the form of mono- and diesters of fatty acids from C16 and C18 families. The palmelloids and hematocysts were characterized by the formation of red-colored cytoplasmic lipid droplets, increasingly large in size and number. The lipid droplets tended to merge and occupied almost the entire volume of the cell at the advanced stages of stress-induced carotenogenesis. The potential application of the new strain for the production of astaxanthin is discussed in comparison with the H. pluvialis strains currently employed in microalgal biotechnology.

  19. Supplementation of laying-hen feed with palm tocos and algae astaxanthin for egg yolk nutrient enrichment.

    Science.gov (United States)

    Walker, Laurie A; Wang, Tong; Xin, Hongwei; Dolde, David

    2012-02-29

    Adding supplements to hen feed can increase egg nutritional value. Astaxanthin, tocotrienols, and tocopherols are potent antioxidants that provide health benefits to humans. We hypothesized that the addition of these nutrients to hen feed would result in an increased nutrient content in egg yolk with minimum changes in functional properties. Laying hens (Hy-Line W-36 breed) were fed four diets with different supplementation levels of palm toco concentrate and algae biomass containing astaxanthin for 8 weeks. Egg yolks were analyzed for physical, chemical, and functional properties. The feed with the highest nutrient concentration was also studied for stability of these antioxidants using the Arrhenius approach. No significant differences were observed in functional properties except for emulsification capacity and sensory characteristics among eggs from different diet treatments. Changes in egg yolk color reached the maximum values at day 8. Incorporation of tocopherols and tocotrienols increased until day 8, astaxanthin incorporation increased until day 10, and all decreased thereafter. Feed nutrients resulted in a dose-response relationship of these compounds in the egg yolk. The transfer efficiency ranged from 0 to 9.9% for tocotrienols and tocopherols and from 7.6 to 14.9% for astaxanthin at their peak values. Results of the Arrhenius accelerated stability study showed significant differences in the shelf life of various nutrients, and these results can be used to properly formulate and store the feed materials.

  20. The effect of astaxanthin on resistance of juvenile prawns Macrobrachium nipponense (Decapoda: Palaemonidae to physical and chemical stress

    Directory of Open Access Journals (Sweden)

    Babak Tizkar

    2014-12-01

    Full Text Available In recent years, the use of new scientific techniques has effectively improved aquaculture production processes. Astaxanthin has various properties in aquacultureand its antioxidant benefits have been closely related to stress resistance; besides, it is an essential factor for growth in many crustaceans and fish. The objective of this study was to evaluate the resistance of prawn (Macrobrachium nipponense fed diets containing different amounts of astaxanthin (AX to the shock and stress of differentphysicochemical environments. A 70-day trial was conducted to evaluate the effect of supplementation of a source of astaxanthin (Carophyll Pink, 10% astaxanthin, w/w, Hoffman-La Roche, Switzerland at various levels in the diet of M. nipponense juveniles. Four dry diets were prepared: AX0 without astaxanthin, AX50 with 50mg/kg, AX100 with 100mg/kg, and AX150 with 150mg/kg astaxanthin. The feeding trial was conducted in a recirculation water system consisting of 12 fiberglass tanks (1 000L used for holding prawns. Three replicate aquaria were initially stocked with 36org/m² per tank. During the trial, prawns were maintained on a 12:12-h light:dark photoperiod with an ordinary incandescent lamp, and the water quality parameters were maintained as follows: water temperature, 25-26°C; salinity, 1g/L; pH, 8.5-8.8; dissolved oxygen, 6.0-6.5mg/L; and ammonia-nitrogen, 0.05mg/L. Incorporation of AX, production output, and physiological condition were recorded after 10 weeks of feeding. At the end of the growing period, the prawns were exposed to thermal shock (0°C, ammonia (0.75mg/L, and reduced oxygen (0.5mg/L. The time to lethargyand the time to complete death of the prawns were recorded. The results showed that control prawns had the shortest time to lethargy and death compared with prawns subjected to the other treatments. The results of this study have shown that the amount of muscle tissue and gill carotenoids in prawn fed with an AX150 diet showed

  1. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  2. Final Report on Regulation of Guaiacyl and Syringyl Monolignol Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent L. Chiang

    2006-03-09

    The focus of this research is to understand syringyl monolignol biosynthesis that leads to the formation of syringyl lignin, a type of lignin that can be easily removed during biomass conversion. We have achieved the three originally proposed goals for this project. (1) SAD and CAD genes (enzyme catalytic and kinetic properties) and their functional relevance to CAld5H/AldOMT pathway, (2) spatiotemporal expression patterns of Cald5H, AldOMT, SAD and CAD genes, and (3) functions of CAld5H, AldOMT, and SAD genes in vivo using transgenic aspen. Furthermore, we also found that microRNA might be involved in the upstream regulatory network of lignin biosynthesis and wood formation. The achievements are as below. (1) Based on biochemical and molecular studies, we discovered a novel syringyl-specific alcohol dehydrogenase (SAD) involved in monolignol biosynthesis in angiosperm trees. Through CAld5H/OMT/SAD mediation, syringyl monolignol biosynthesis branches out from guaiacyl pathway at coniferaldehyde; (2) The function of CAld5H gene in this syringyl monolignol biosynthesis pathway also was confirmed in vivo in transgenic Populus; (3) The proposed major monolignol biosynthesis pathways were further supported by the involving biochemical functions of CCR based on a detailed kinetic study; (4) Gene promoter activity analysis also supported the cell-type specific expression of SAD and CAD genes in xylem tissue, consistent with the cell-specific locations of SAD and CAD proteins and with the proposed pathways; (5) We have developed a novel small interfering RNA (siRNA)-mediated stable gene-silencing system in transgenic plants; (6) Using the siRNA and P. trichocarpa transformation/regeneration systems we are currently producing transgenic P. trichocarpa to investigate the interactive functions of CAD and SAD in regulating guaiacyl and syringyl lignin biosynthesis; (7) We have cloned for the first time from a tree species, P. trichocarpa, small regulatory RNAs termed micro

  3. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  4. Effect of astaxanthin in combination with alpha-tocopherol or ascorbic acid against oxidative damage in diabetic ODS rats.

    Science.gov (United States)

    Nakano, Masako; Onodera, Aya; Saito, Emi; Tanabe, Miyako; Yajima, Kazue; Takahashi, Jiro; Nguyen, Van Chuyen

    2008-08-01

    The present study was performed to investigate the effect of astaxanthin in combination with other antioxidants against oxidative damage in streptozotocin (STZ)-induced diabetic Osteogenic Disorder Shionogi (ODS) rats. Diabetic-ODS rats were divided into five groups: control, astaxanthin, ascorbic acid, alpha-tocopherol, and tocotrienol. Each of the four experimental groups was administered a diet containing astaxanthin (0.1 g/kg), in combination with ascorbic acid (3.0 g/kg), alpha-tocopherol (0.1 g/kg), or tocotrienol (0.1 g/kg) for 20 wk. The effects of astaxanthin with other antioxidants on lipid peroxidation, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion, serum creatinine (Cr) level, creatinine clearance (Ccr), and urinary protein content were assessed. The serum lipid peroxide levels and chemiluminescent (CL) intensity in the liver of the alpha-tocopherol and tocotrienol groups were significantly reduced in comparison to that of the control group. In the alpha-tocopherol group, urinary 8-OHdG excretion, serum Cr level, Ccr, urinary albumin excretion, and urinary protein concentration were significantly decreased as compared with those in the control group. Additionally, the CL intensity in the kidney of the alpha-tocopherol group was significantly lower, but that of the ascorbic acid group was significantly higher than that in the control group. These results indicate that dietary astaxanthin in combination with alpha-tocopherol has an inhibitory effect on oxidative stress. On the other hand, our study suggests that excessive ascorbic acid intake increases lipid peroxidation in diabetic rats.

  5. In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides.

    Science.gov (United States)

    Kalaitzis, John A; Cheng, Qian; Thomas, Paul M; Kelleher, Neil L; Moore, Bradley S

    2009-03-27

    Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways.

  6. Topical problems in the biosynthesis of red blood pigment

    International Nuclear Information System (INIS)

    Franck, B.

    1982-01-01

    Uroporphyrinogen III plays a key role in the biosynthesis of heme, the red pigment of blood. In vivo studies with specifically 14 C- and 3 H-labeled precursors have revealed that the formation of uroporphyrinogen III in the organism follows several primary and subsidiary pathways. Model experiments on the pattern of biosynthesis have led to simple and effective methods of synthesizing uroporphyrin analogs and have shwon that their production is strongly favored thermodynamically, The biologically important porphyrins thus available permit a mechanistic explanantion of the light-induced dermatoses in porphyria diseases and suggest promising medical applications in diagnosis and therapy. (orig.)

  7. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1997-06-01

    Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.

  8. Biosynthesis and metabolic fate of phenylalanine in conifers

    Directory of Open Access Journals (Sweden)

    María Belén Pascual

    2016-07-01

    Full Text Available The amino acid phenylalanine (Phe is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  9. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    Science.gov (United States)

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  10. Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid.

    Science.gov (United States)

    McReynolds, Melanie R; Wang, Wenqing; Holleran, Lauren M; Hanna-Rose, Wendy

    2017-07-07

    NAD + biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD + biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD + biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD + biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD + biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD + from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD + levels and partially reversed NAD + -dependent phenotypes caused by mutation of pnc-1 , which encodes a nicotinamidase required for NAD + salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD + homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD + biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD + biosynthesis creates novel possibilities for manipulating NAD + biosynthetic pathways, which is key for the future of therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Zincophorin – biosynthesis in Streptomyces griseus and antibiotic properties

    Directory of Open Access Journals (Sweden)

    Walther, Elisabeth

    2016-11-01

    Full Text Available Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium . The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.

  12. Purine biosynthesis de novo by lymphocytes in gout

    International Nuclear Information System (INIS)

    Kamoun, P.; Chanard, J.; Brami, M.; Funck-Brentano, J.L.

    1978-01-01

    A method of measurement in vitro of purine biosynthesis de novo in human circulating blood lymphocytes is proposed. The rate of early reactions of purine biosynthesis de novo was determined by the incorporation of [ 14 C]formate into N-formyl glycinamide ribonucleotide when the subsequent reactions of the metabolic pathway were completely inhibited by the antibiotic azaserine. Synthesis of 14 C-labelled N-formyl glycinamide ribonucleotide by lymphocytes was measured in healthy control subjects and patients with primary gout or hyperuricaemia secondary to renal failure, with or without allopurinol therapy. The average synthesis was higher in gouty patients without therapy than in control subjects, but the values contained overlap the normal range. In secondary hyperuricaemia the synthesis was at same value as in control subjects. These results are in agreement with the inconstant acceleration of purine biosynthesis de novo in gouty patients as seen by others with measurement of [ 14 C]glycine incorporation into urinary uric acid. (author)

  13. Methoxypyrazines biosynthesis and metabolism in grape: A review.

    Science.gov (United States)

    Lei, Yujuan; Xie, Sha; Guan, Xueqiang; Song, Changzheng; Zhang, Zhenwen; Meng, Jiangfei

    2018-04-15

    This review summarizes research on the discovery, biosynthesis, accumulation, transport, and metabolism of 3-alkyl-2-methoxypyrazines (MPs) in grape. The MPs are a family of potent volatile compounds distributed throughout biological kingdoms. These compounds impart herbaceous/green/vegetal sensory attributes to certain varieties of wine. Generally, high levels of MPs in wine are derived mainly from the corresponding grapes. Although two pathways for MPs biosynthesis have been proposed, only the final step and the enzymes that catalyze it has been confirmed in grape, and the metabolic intermediates and key enzymes involved in other steps are still unknown. The limited understanding of MPs metabolism has restricted research on these compounds, and some empirical results cannot be explained by the current knowledge of MPs metabolism. This review provides insights into research on MPs biosynthesis and metabolism, and proposes directions for further research on this important class of flavour/odour compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of Astaxanthin and β-carotene on Kissing Gourami (Helostoma temminckii Colouring

    Directory of Open Access Journals (Sweden)

    Ján Kopecký

    2012-10-01

    Full Text Available This study evaluated the role of carotenoids in regulate the skin color of Kissing Gourami (Helostoma temminckii. 40 fishes were randomly selected into 2 groups (20 each group. Control group was fed with standard flake feed. Astaxanthin (12mg/kg and β-carotene (157 mg/kg were added to the standard diet for experimental group. Fish skin colour was compare with colour scale. Colour change was recorded weekly for the 12 weeks of experiment. First colour change was record in 5 th week in control group. No other change of colour was determinate. In experimental group was first colour change in 3rd week and the maximal influence of carotenoids was recorded in 8th week. No other colour change was record in experimental group to the end of experiment.

  15. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity?

    Directory of Open Access Journals (Sweden)

    Ana Martínez

    2012-01-01

    Full Text Available In this Density Functional Theory study, it became apparent that astaxanthin (ASTA may form metal ion complexes with metal cations such as Ca+2, Cu+2, Pb+2, Zn+2, Cd+2 and Hg+2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

  16. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery.

    Science.gov (United States)

    Acevedo, Francisca; Rubilar, Mónica; Jofré, Ignacio; Villarroel, Mario; Navarrete, Patricia; Esparza, Magdalena; Romero, Fernando; Vilches, Elías Alberto; Acevedo, Valentina; Shene, Carolina

    2014-01-01

    Astaxanthin (AST) is a valued molecule because of its high antioxidant properties. However, AST is extremely sensitive to oxidation, causing the loss of its bioactive properties. The purposes of this study were to define conditions for microencapsulating AST in oil bodies (OB) from Brassica napus to enhance its oxidative stability, and to test the bioactivity of the microencapsulated AST (AST-M) in cells. Conditions for maximising microencapsulation efficiency (ME) were determined using the Response Surface Methodology, obtaining a high ME (>99%). OB loaded with AST showed a strong electrostatic repulsion in a wide range of pH and ionic strengths. It was found that AST-M exposed to air and light was more stable than free AST. In addition, the protective effect of AST against intracellular ROS production was positively influenced by microencapsulation in OB. These results suggest that OB offer a novel option for stabilising and delivering AST.

  17. Astaxanthin from Crayfish (Procambarus clarkii as a Pigmentary Ingredient in the Feed of Laying Hens

    Directory of Open Access Journals (Sweden)

    Garrido-Fernández, J.

    2008-06-01

    Full Text Available Chicken egg yolks generally owe their color to yellow carotenoids. The addition of synthetic red pigments allows changes in color, from the original yellow to red hues which may be more appealing to consumers in certain markets.Our aim has been to test whether ground crayfish shells, which are a rich and natural source of astaxanthin, produce detectable changes in the coloration of egg yolks through the accumulation of this carotenoid. Laying hens were fed with a commercial feed mixed with crayfish powder and the carotenoid profiles of the yolks in the eggs laid during the trial were monitored by HPLC. The analyses showed a progressive increase in the astaxanthin concentration in the egg yolks, reaching similar levels to those obtained for the rest of present carotenoid pigments.La yema de huevo de gallina debe su coloración a la presencia de carotenoides de tonalidad amarilla. La adición de colorantes sintéticos de tonalidades rojas permite modificar e incrementar la coloración de la yema desde el amarillo original a tonos rojos que pueden ser demandados en ciertos mercados según las preferencias del consumidor. El objetivo del trabajo fue probar si un triturado obtenido a partir de caparazones de cangrejo, que es una fuente natural y rica en astaxanteno, produce cambios detectables en la coloración de la yema de huevo por la acumulación de dicho carotenoide. Las gallinas ponedoras se alimentaron con un pienso comercial al que se adicionó triturado de caparazón de cangrejo. Se realizó un seguimiento de los cambios en la composición carotenoide (mediante HPLC de la yema de los huevos puestos durante el periodo de alimentación suplementada. Los análisis mostraron una progresiva incorporación de astaxanteno que alcanzó niveles similares al resto de carotenoides presentes inicialmente en la yema.

  18. 46_ _267 - 278__Aminu- Biosynthesis

    African Journals Online (AJOL)

    User

    ISSN 2006 – 6996. BIOSYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDY OF .... the excitation of surface Plasmon vibration with. AgNPs. ... Thin films of the sample were prepared on a carbon ... The resulting film on the SEM.

  19. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA under laboratory conditions

    Directory of Open Access Journals (Sweden)

    ANA S CIFUENTES

    2003-01-01

    Full Text Available The microalga Haematococcus pluvialis Flotow is one of the natural sources of astaxanthin, a pigment widely used in salmon feed. This study was made to discover optimal conditions for biomass and astaxanthin production in H. pluvialis from Steptoe, Nevada (USA, cultured in batch mode. Growth was carried out under autotrophic (with NaNO3, NH4Cl and urea and mixotrophic conditions (with 4, 8, 12 mM sodium acetate under two photon flux densities (PFD (35 and 85 µmol m-2 s-1. The carotenogenesis was induced by 1 addition of NaCl (0.2 and 0.8 %, 2 N-deprivation and 3 high PFD (150 µmol m-2 s-1. Total carotenoids were estimated by spectrophotometry and total astaxanthin by HPLC. Ammonium chloride was the best N-source for growth (k=0.7 div day-1, 228-258 mg l-1and 2.0 x 10(5 - 2.5 x 10(5 cells ml-1 at both PFD, respectively. With increasing acetate concentration, a slight increment in growth occurred only at 85 µmol m-2 s-1. Light was the best inductive carotenogenic factor, and the highest carotenoid production (4.9 mg l-1, 25.0 pg cell-1 was obtained in cultures pre-grown in nitrate at low light. The NaCl caused an increase in carotenoid content per cell at increasing salt concentrations, but resulted in a high cell mortality and did not produce any increment in carotenoid content per volume compared to cultures grown at 150 µmol m-2 s-1. The highest carotenoid content per cell (22 pg and astaxanthin content per dry weight (10.3 mg g-1 (1% w/w were obtained at 85 µmol m-2 s-1 with 0.8% NaCl.

  20. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A sub-chronic toxicity evaluation of a natural astaxanthin-rich carotenoid extract of Paracoccus carotinifaciens in rats

    Directory of Open Access Journals (Sweden)

    Toyohisa Katsumata

    2014-01-01

    Full Text Available Astaxanthin is believed to be beneficial to human health because it possesses strong antioxidant properties. A natural astaxanthin-rich carotenoid extract (ARE was produced by a well-controlled fermentation of a natural bacteria Paracoccus carotinifaciens, followed by the extraction and enrichment of the final product comprising mixture of carotenoids that is predominantly astaxanthin. The aim of this study was to evaluate the sub-chronic toxicity of the ARE using 6 week old Sprague-Dawley SPF rats [Crl:CD(SD]. The test article was suspended in olive oil and administered daily to the rats by oral gavage for 13 weeks at doses of 0 (olive oil, 250, 500 or 1000 mg/kg/day. Each group consisted of 10 animals of each sex. No deaths occurred and no treatment-related changes were observed in the detailed clinical observations, manipulative tests, grip strength, motor activity, body weights, food consumption, ophthalmology, urinalysis, hematology, blood chemistry, organ weight, necropsy or histopathology. Dark-red feces were observed throughout the administration period in all treated groups due to excretion of the colored test article. Based on these results, it was concluded that the no observed adverse effect level (NOAEL for ARE was at least 1000 mg/kg/day for male and female rats, respectively.

  2. Astaxanthin and papilioerythrinone in the skin of birds: a chromatic convergence of two metabolic routes with different precursors?

    Science.gov (United States)

    García-de Blas, Esther; Mateo, Rafael; Guzmán Bernardo, Francisco Javier; Rodríguez Martín-Doimeadios, Rosa Carmen; Alonso-Alvarez, Carlos

    2014-05-01

    Carotenoids are organic pigments involved in several important physiological functions and may serve as indicators of individual quality in animals. These pigments are only obtained by animals from the diet, but they can be later transformed into other carotenoids by specific enzymatic reactions. The diet of farm-reared and probably wild red-legged partridges ( Alectoris rufa) is mainly based on cereals that contain high levels of lutein and zeaxanthin. These two carotenoids are also predominant in internal tissues and blood of red-legged partridges. However, in their integuments, astaxanthin and papilioerythrinone (the last one identified in this work) are mainly present in their free form and esterified with fatty acids. According to available literature about carotenoid metabolism in animals, we propose that astaxanthin ( λ max = 478 nm) and papilioerythrinone ( λ max = 452-478 nm) are the result of a chromatic convergence of the transformation of dietary zeaxanthin and lutein, respectively. Moreover, the results obtained in this work provide the first identification by liquid chromatography coupled to accurate mass quadrupole time-of-flight mass spectrometer system of papilioerythrinone ( m/z 581.3989 [M + H]+) in the skin (i.e., not feathers) of a vertebrate. Astaxanthin and papilioerythrinone are very close in terms of chemical structure and coloration, and the combination of these two keto-carotenoids is responsible for the red color of the ornaments in red-legged partridges.

  3. Oxidative Stress Regulation on Endothelial Cells by Hydrophilic Astaxanthin Complex: Chemical, Biological, and Molecular Antioxidant Activity Evaluation

    Directory of Open Access Journals (Sweden)

    M. Zuluaga

    2017-01-01

    Full Text Available An imbalance in the reactive oxygen species (ROS homeostasis is involved in the pathogenesis of oxidative stress-related diseases. Astaxanthin, a xanthophyll carotenoid with high antioxidant capacities, has been shown to prevent the first stages of oxidative stress. Here, we evaluate the antioxidant capacities of astaxanthin included within hydroxypropyl-beta-cyclodextrin (CD-A to directly and indirectly reduce the induced ROS production. First, chemical methods were used to corroborate the preservation of astaxanthin antioxidant abilities after inclusion. Next, antioxidant scavenging properties of CD-A to inhibit the cellular and mitochondrial ROS by reducing the disturbance in the redox state of the cell and the infiltration of lipid peroxidation radicals were evaluated. Finally, the activation of endogenous antioxidant PTEN/AKT, Nrf2/HO-1, and NQOI gene and protein expression supported the protective effect of CD-A complex on human endothelial cells under stress conditions. Moreover, a nontoxic effect on HUVEC was registered after CD-A complex supplementation. The results reported here illustrate the need to continue exploring the interesting properties of this hydrophilic antioxidant complex to assist endogenous systems to counteract the ROS impact on the induction of cellular oxidative stress state.

  4. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    Van Dusen, W.J.; Jaworski, J.G.

    1987-01-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14 C]CO 2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  5. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  6. Engineering of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Møldrup, Morten Emil; Salomonsen, Bo; Halkier, Barbara Ann

    2012-01-01

    -efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana...... here will be beneficial to elucidate and engineer other plant biosynthetic pathways....

  7. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in sorghum bicolor

    Science.gov (United States)

    The phenylpropanoid biosynthesis pathway that generates lignin subunits represents a significant target to alter the abundance and composition of lignin. The major regulators of phenylpropanoid metabolism are myb transcription factors, which have been shown to modulate secondary cell wall compositi...

  8. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    Science.gov (United States)

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  9. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  10. Biosynthesis of anthocyanins and their regulation in colored grapes.

    Science.gov (United States)

    He, Fei; Mu, Lin; Yan, Guo-Liang; Liang, Na-Na; Pan, Qiu-Hong; Wang, Jun; Reeves, Malcolm J; Duan, Chang-Qing

    2010-12-09

    Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  11. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  12. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  13. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  14. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    Science.gov (United States)

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  15. ODORANT1 Regulates Fragrance Biosynthesis in Petunia FlowersW⃞

    Science.gov (United States)

    Verdonk, Julian C.; Haring, Michel A.; van Tunen, Arjen J.; Schuurink, Robert C.

    2005-01-01

    Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production and emission are regulated is unknown. By targeted transcriptome analyses, we identified ODORANT1 (ODO1), a member of the R2R3-type MYB family, as a candidate for the regulation of volatile benzenoids in Petunia hybrida cv W115 (Mitchell) flowers. These flowers are only fragrant in the evening and at night. Transcript levels of ODO1 increased before the onset of volatile emission and decreased when volatile emission declined. Downregulation of ODO1 in transgenic P. hybrida Mitchell plants strongly reduced volatile benzenoid levels through decreased synthesis of precursors from the shikimate pathway. The transcript levels of several genes in this pathway were reduced by suppression of ODO1 expression. Moreover, ODO1 could activate the promoter of the 5-enol-pyruvylshikimate-3-phosphate synthase gene. Flower pigmentation, which is furnished from the same shikimate precursors, was not influenced because color and scent biosynthesis occur at different developmental stages. Our studies identify ODO1 as a key regulator of floral scent biosynthesis. PMID:15805488

  16. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  17. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  18. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  20. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Biotechnology Division, Applied Science Department, University of ... Abstract. In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic ... example of the biosynthesis using fungi was that the cell-.

  1. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  2. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model

    Science.gov (United States)

    Mano, Camila M.; Cardozo, Karina H. M.; Colepicolo, Pio; Bechara, Etelvino J. H.

    2018-01-01

    Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes. PMID:29649159

  3. Astaxanthin preparation by fermentation of esters from Haematococcus pluvialis algal extracts with Stenotrophomonas species.

    Science.gov (United States)

    Dong, Hao; Li, Xuemin; Xue, Changhu; Mao, Xiangzhao

    2016-05-01

    Natural astaxanthin (Ax) is an additive that is widely used because of its beneficial biochemical functions. However, the methods used to produce free Ax have drawbacks. Chemical saponification methods produce several by-products, and lipase-catalyzed hydrolysis methods are not cost effective. In this study, a bacterial strain of Stenotrophomonas sp. was selected to enzymatically catalyze the saponification of Ax esters to produce free all-trans-Ax. Through single-factor experiments and a Box-Behnken design, the optimal fermentation conditions were determined as follows: a seed culture age of 37.79 h, an inoculum concentration of 5.92%, and an initial broth pH of 6.80. Under these conditions, a fermentation curve was drawn, and the optimal fermentation time was shown to be 60 h. At 60 h, the degradation rate of the Ax esters was 98.08%, and the yield of free all-trans-Ax was 50.130 μg/mL. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:649-656, 2016. © 2016 American Institute of Chemical Engineers.

  4. Amelioration of ultraviolet-induced photokeratitis in mice treated with astaxanthin eye drops.

    Science.gov (United States)

    Lennikov, Anton; Kitaichi, Nobuyoshi; Fukase, Risa; Murata, Miyuki; Noda, Kousuke; Ando, Ryo; Ohguchi, Takeshi; Kawakita, Tetsuya; Ohno, Shigeaki; Ishida, Susumu

    2012-01-01

    Ultraviolet (UV) acts as low-dose ionizing radiation. Acute UVB exposure causes photokeratitis and induces apoptosis in corneal cells. Astaxanthin (AST) is a carotenoid, present in seafood, that has potential clinical applications due to its high antioxidant activity. In the present study, we examined whether topical administration of AST has preventive and therapeutic effects on UV-photokeratitis in mice. C57BL/6 mice were administered with AST diluted in polyethylene glycol (PEG) in instillation form (15 μl) to the right eye. Left eyes were given vehicle alone as controls. Immediately after the instillation, the mice, under anesthesia, were irradiated with UVB at a dose of 400 mJ/cm². Eyeballs were collected 24 h after irradiation and stained with H&E and TUNEL. In an in vitro study, mouse corneal epithelial (TKE2) cells were cultured with AST before UV exposure to quantify the UV-derived cytotoxicity. UVB exposure induced cell death and thinning of the corneal epithelium. However, the epithelium was morphologically well preserved after irradiation in AST-treated corneas. Irradiated corneal epithelium was significantly thicker in eyes treated with AST eye drops, compared to those treated with vehicles (peyes than controls after irradiation (peffect increased with the dose of AST. Topical AST administration may be a candidate treatment to limit the damages by UV irradiation with wide clinical applications.

  5. Controlled release of astaxanthin from nanoporous silicified-phospholipids assembled boron nitride complex for cosmetic applications

    Science.gov (United States)

    Lee, Hye Sun; Sung, Dae Kyung; Kim, Sung Hyun; Choi, Won Il; Hwang, Ee Tag; Choi, Doo Jin; Chang, Jeong Ho

    2017-12-01

    Nanoporous silicified-phospholipids assembled boron nitride (nSPLs@BN) powder was prepared and demonstrated for use in controlled release of anti-oxidant astaxanthin (AX) as a cosmetic application. The nanoporous silicified phospholipids (nSPLs) were obtained by the silicification with tetraethyl orthosilicate (TEOS) of the hydrophilic region of phospholipid bilayers. This process involved the co-assembly of chemically active phospholipid bilayers within the porous silica matrix. In addition, nSPLs@BN was characterized using several analytical techniques and tested to assess their efficiency as drug delivery systems. We calculated the maximum release amounts as a function of time and various pH. The release rate of AX from the nSPLs@BN for the initial 24 h was 10.7 μmol/(h mg) at pH 7.4. Furthermore, we determined the antioxidant activity (KD) for the released AX with DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical and the result was 34.6%.

  6. Suppression Effect of Astaxanthin on Osteoclast Formation In Vitro and Bone Loss In Vivo

    Directory of Open Access Journals (Sweden)

    Yun-Ho Hwang

    2018-03-01

    Full Text Available Osteoporosis is characterized by a reduction of the bone mineral density (BMD and microarchitectural deterioration of the bone, which lead to bone fragility and susceptibility to fracture. Astaxanthin (AST has a variety of biological activities, such as a protective effect against asthma or neuroinflammation, antioxidant effect, and decrease of the osteoclast number in the right mandibles in the periodontitis model. Although treatment with AST is known to have an effect on inflammation, no studies on the effect of AST exposure on bone loss have been performed. Thus, in the present study, we examined the antiosteoporotic effect of AST on bone mass in ovariectomized (OVX mice and its possible mechanism of action. The administration of AST (5, 10 mg/kg for 6 weeks suppressed the enhancement of serum calcium, inorganic phosphorus, alkaline phosphatase, total cholesterol, and tartrate-resistant acid phosphatase (TRAP activity. The bone mineral density (BMD and bone microarchitecture of the trabecular bone in the tibia and femur were recovered by AST exposure. Moreover, in the in vitro experiment, we demonstrated that AST inhibits osteoclast formation through the expression of the nuclear factor of activated T cells (NFAT c1, dendritic cell-specific transmembrane protein (DC-STAMP, TRAP, and cathepsin K without any cytotoxic effects on bone marrow-derived macrophages (BMMs. Therefore, we suggest that AST may have therapeutic potential for the treatment of postmenopausal osteoporosis.

  7. The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation.

    Science.gov (United States)

    Balietti, Marta; Giannubilo, Stefano R; Giorgetti, Belinda; Solazzi, Moreno; Turi, Angelo; Casoli, Tiziana; Ciavattini, Andrea; Fattorettia, Patrizia

    2016-01-30

    Astaxanthin (Ax) is a ketocarotenoid of the xanthophyll family with activities such as antioxidation, preservation of the integrity of cell membranes and protection of the redox state and functional integrity of mitochondria. The aim of this study was to investigate potential gender-related differences in the effect of Ax on the aging rat brain. In females, interleukin 1 beta (IL1β) was significantly lower in treated rats in both cerebral areas, and in the cerebellum, treated animals also had significantly higher IL10. In males, no differences were found in the cerebellum, but in the hippocampus, IL1β and IL10 were significantly higher in treated rats. These are the first results to show gender-related differences in the effect of Ax on the aging brain, emphasizing the necessity to carefully analyze female and male peculiarities when the anti-aging potentialities of this ketocarotenoid are evaluated. The observations lead to the hypothesis that Ax exerts different anti-inflammatory effects in female and male brains. © 2015 Society of Chemical Industry.

  8. Astaxanthin attenuates neurotoxicity in a mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    B. Grimmig, L. Daly

    2017-08-01

    Full Text Available Background: Astaxanthin (AXT is a natural carotenoid with diverse biological activities. Although it is best known as a potent antioxidant, recent work suggests additional mechanisms of action that have the potential to oppose the ongoing pathophysiology of Parkinson’s disease (PD. For example, AXT has a putative role in modulating microglial activity and preserving mitochondrial function, thereby implicating this compound as a neuroprotective agent. Both oxidative stress and inflammation are involved in the progression of many neurodegenerative diseases. Therefore, we examined the efficacy for AXT to reduced neurotoxicity in a toxic model of PD in mice. Methods: In this study, we used a 4-week dietary supplementation of algae derived AXT to reduce 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP induced dopaminergic cell death. Results: AXT treated mice were protected against the loss of tyrosine hydroxylase (TH staining in the substantia nigra (SN after MPTP exposure compared to the control diet. This effect of preserved TH immunoreactivity was also observed in the striatum. Furthermore, AXT administration was able to interrupt the neuroinflammatory process known to contribute to neurodegeneration in this model. Conclusions: We demonstrate that AXT neuroprotection was associated with attenuated microglial activation as indicated by reduced immunohistochemical detection of IBA-1 in the SN and striatum of AXT treated mice. Altogether, these studies suggest that AXT has neuroprotective property in the central nervous system against MPTP neurodegeneration.

  9. Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla.

    Science.gov (United States)

    Gu, Fenglin; Chen, Yonggan; Hong, Yinghua; Fang, Yiming; Tan, Lehe

    2017-12-01

    High-performance liquid chromatography-mass spectrometry (LC-MS) was used for comprehensive metabolomic fingerprinting of vanilla fruits prepared from the curing process. In this study, the metabolic changes of vanilla pods and vanilla beans were characterized using MS-based metabolomics to elucidate the biosynthesis of vanillin. The vanilla pods were significantly different from vanilla beans. Seven pathways of vanillin biosynthesis were constructed, namely, glucovanillin, glucose, cresol, capsaicin, vanillyl alcohol, tyrosine, and phenylalanine pathways. Investigations demonstrated that glucose, cresol, capsaicin, and vanillyl alcohol pathway were detected in a wide range of distribution in microbial metabolism. Thus, microorganisms might have participated in vanillin biosynthesis during vanilla curing. Furthermore, the ion strength of glucovanillin was stable, which indicated that glucovanillin only participated in the vanillin biosynthesis during the curing of vanilla.

  10. Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul; Lein, Wolfgang

    2004-01-01

    Purine nucleotides are essential components to sustain plant growth and development. In plants they are either synthesized "de novo" during the process of purine biosynthesis or are recycled from purine bases and purine nucleosides throughout the salvage pathway. Comparison between animals...... biosynthesis pathway in plants, and the in planta functional analysis of PRPP (5-phosphoribosyl-1-pyrophoshate) amidotransferase (ATase), catalyzing the first committed step of the "de novo" purine biosynthesis. The cloning of the genes involved in the purine biosynthesis pathway was attained by a screening...... strategy with heterologous cDNA probes and by using S. cerevisiae mutants for complementation. Southern hybridization showed a complex genomic organization for these genes in solanaceous species and their organ- and developmental specific expression was analyzed by Northern hybridization. The specific role...

  11. Transcriptional Responses and Gentiopicroside Biosynthesis in Methyl Jasmonate-Treated Gentiana macrophylla Seedlings.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Cao

    Full Text Available Gentiana macrophylla, a medicinal plant with significant pharmacological properties, contains the bioactive compound gentiopicroside. Methyl jasmonate (MeJA is an effective elicitor for enhancing the production of such compounds. However, little is known about MeJA-mediated biosynthesis of gentiopicroside. We investigated this phenomenon as well as gene expression profiles to determine the molecular mechanisms for MeJA-mediated gentiopicroside biosynthesis and regulation in G. macrophylla. Our HPLC results showed that Gentiana macrophylla seedlings exposed to MeJA had significantly higher concentrations of gentiopicroside when compared with control plants. We used RNA sequencing to compare transcriptional profiles in seedlings treated for 5 d with either 0 μmol L-1 MeJA (C or 250 μmol L-1 MeJA (M5 and detected differentially expressed genes (DEGs. In total, 77,482 unique sequences were obtained from approximately 34 million reads. Of these, 48,466 (57.46% sequences were annotated based on BLASTs performed against public databases. We identified 5,206 DEGs between the C and M5 samples, including genes related to the α-lenolenic acid degradation pathway, JA signaling pathway, and gentiopicroside biosynthesis. Expression of numerous enzyme genes in the glycolysis pathway was significantly up-regulated. Many genes encoding transcription factors (e.g. ERF, bHLH, MYB, and WRKY also responded to MeJA elicitation. Rapid acceleration of the glycolysis pathway that supplies precursors for IPP biosynthesis and up-regulates the expression of enzyme genes in that IPP pathway are probably most responsible for MeJA stimulation of gentiopicroside synthesis. Our qRT-PCR results showed that the expression profiles of 12 gentiopicroside biosynthesis genes were consistent with the RNA-Seq data. These results increase our understanding about how the gentiopicroside biosynthesis pathway in G. macrophylla responds to MeJA.

  12. Biosynthesis of Tropolones in Streptomyces spp: Interweaving Biosynthesis and Degradation of Phenylacetic Acid and Hydroxylations on Tropone Ring.

    Science.gov (United States)

    Chen, Xuefei; Xu, Min; Lü, Jin; Xu, Jianguo; Wang, Yemin; Lin, Shuangjun; Deng, Zixin; Tao, Meifeng

    2018-04-13

    Tropolonoids are important natural products that contain a unique seven-membered aromatic tropolone core and exhibit remarkable biological activities. 3,7-Dihydroxytropolone (DHT) isolated from Streptomyces species is a multiply hydroxylated tropolone exhibiting antimicrobial, anticancer, and antiviral activities. Herein, we determined the DHT biosynthetic pathway by heterologous expression, gene deletion, and bioconversion. Nine trl genes and some of the aerobic phenylacetic acid degradation pathway genes ( paa ) located outside of the trl biosynthetic gene cluster are required for the heterologous production of DHT. The trlA gene encodes a single-domain protein homologous to the C-terminal enoyl-CoA hydratase domain of PaaZ. TrlA truncates the phenylacetic acid catabolic pathway and redirects it towards the formation of heptacyclic intermediates. TrlB is a 3-deoxy-D-arabino-heptulosonic acid-7-phosphate (DAHP) synthase homolog. TrlH is an unusual bifunctional protein bearing an N-terminal prephenate dehydratase domain and a C-terminal chorismate mutase domain. TrlB and TrlH enhanced de novo biosynthesis of phenylpyruvate, thereby providing abundant precursor for the prolific production of DHT in Streptomyces Six seven-membered carbocyclic compounds were identified from the gene deletion mutants of trlC , trlD , trlE , and trlF Four of these chemicals, including 1,4,6-cycloheptatriene-1-carboxylic acid, tropone, tropolone and 7-hydroxytropolone, were verified as key biosynthetic intermediates. TrlF is required for the conversion of 1,4,6-cycloheptatriene-1-carboxylic acid into tropone. Monooxygenases TrlE and TrlCD catalyze the regioselective hydroxylations of tropone to afford DHT. This study reveals a natural association of anabolism of chorismate and phenylpyruvate, catabolism of phenylacetic acid, and biosynthesis of tropolones in Streptomyces spp. IMPORTANCE Tropolonoids are promising drug lead compounds because of their versatile bioactivities attributed to

  13. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    OpenAIRE

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of t...

  14. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    Science.gov (United States)

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425

  15. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  16. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  17. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Fikadu G Tafesse

    2015-10-01

    Full Text Available The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  18. Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria.

    Science.gov (United States)

    Méjean, Annick; Paci, Guillaume; Gautier, Valérie; Ploux, Olivier

    2014-12-01

    Freshwater cyanobacteria produce secondary metabolites that are toxic to humans and animals, the so-called cyanotoxins. Among them, anatoxin-a and homoanatoxin-a are potent neurotoxins that are agonists of the nicotinic acetylcholine receptor. These alkaloids provoke a rapid death if ingested at low doses. Recently, the cluster of genes responsible for the biosynthesis of these toxins, the ana cluster, has been identified in Oscillatoria sp. PCC 6506, and a biosynthetic pathway was proposed. This biosynthesis was reconstituted in vitro using purified enzymes confirming the predicted pathway. One of the enzymes, AnaB a prolyl-acyl carrier protein oxidase, was crystallized and its three dimensional structure solved confirming its reaction mechanism. Three other ana clusters have now been identified and sequenced in other cyanobacteria. These clusters show similarities and some differences suggesting a common evolutionary origin. In particular, the cluster from Cylindrospermum stagnale PCC 7417, possesses an extra gene coding for an F420-dependent oxidoreductase that is likely involved in the biosynthesis of dihydroanatoxin-a. This review summarizes all these new data and discusses them in relation to the production of anatoxins in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis

    Science.gov (United States)

    Henry-Kirk, Rebecca A.

    2012-01-01

    Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple. Abbreviations:ANOVAanalysis of varianceANRanthocyanidin reductaseDADdiode array detectorDAFBdays after full bloomDFRdihydroflavonol reductaseLARleucoanthocyanidin reductaseLC-MSliquid chromatography/mass spectrometryPAproanthocyanidinqPCRreal-time quantitative PCR PMID:22859681

  20. The regulation and biosynthesis of antimycins

    Directory of Open Access Journals (Sweden)

    Ryan F. Seipke

    2013-11-01

    Full Text Available Antimycins (>40 members were discovered nearly 65 years ago but the discovery of the gene cluster encoding antimycin biosynthesis in 2011 has facilitated rapid progress in understanding the unusual biosynthetic pathway. Antimycin A is widely used as a piscicide in the catfish farming industry and also has potent killing activity against insects, nematodes and fungi. The mode of action of antimycins is to inhibit cytochrome c reductase in the electron transport chain and halt respiration. However, more recently, antimycin A has attracted attention as a potent and selective inhibitor of the mitochondrial anti-apoptotic proteins Bcl-2 and Bcl-xL. Remarkably, this inhibition is independent of the main mode of action of antimycins such that an artificial derivative named 2-methoxyantimycin A inhibits Bcl-xL but does not inhibit respiration. The Bcl-2/Bcl-xL family of proteins are over-produced in cancer cells that are resistant to apoptosis-inducing chemotherapy agents, so antimycins have great potential as anticancer drugs used in combination with existing chemotherapeutics. Here we review what is known about antimycins, the regulation of the ant gene cluster and the unusual biosynthetic pathway.

  1. Biosynthesis of plasmenylcholine in guinea pig heart

    International Nuclear Information System (INIS)

    Wientzek, M.; Choy, P.C.

    1986-01-01

    In some mammalian hearts, up to 40% of the choline phosphoglyceride (CPG) exists as plasmenylcholine (1-alkenyl-2-acyl-glycero-3-phosphocholine). Although the majority of diacylphosphatidylcholine (PC) in mammalian hearts is synthesized from choline via the CDP-choline pathway, the formation of plasmenylcholine from choline was not known. In this study, they investigated the biosynthesis of plasmenyl-choline in the isolated guinea pig heart by perfusion with [ 3 H]choline. Labelled choline containing metabolites and labelled plasmenylcholine were isolated and determined at different perfusion time points. Significant amounts of labelling were found only in choline, phosphocholine, CDP-choline, plasmenyl-choline and PC. In addition, a precursor-product relationship was observed between the labelling of CDP-choline and plasmenylcholine. Such a relationship was not observed between choline and plasmenylcholine. Hence, they postulate that the incorporation of choline into plasmenylcholine is via the CDP-choline pathway and not via base exchange. The ability to condense 1-alkenyl-2-acyl-glycerol with CDP-choline was also demonstrated in vitro with guinea pig heart microsomes

  2. Prevalence of the Ancient Wood-Ljungdahl Pathway in a Subseafloor Olivine Community

    Science.gov (United States)

    Smith, A. R.; Mueller, R.; Fisk, M. R.; Mason, O. U.; Popa, R.; Kieft, B.; Colwell, F. S.

    2018-05-01

    The ancient Wood-Ljungdahl pathway used for biosynthesis and energy generation was found to be the predominant metabolic pathway in a microbial community from olivine grains incubated in the Juan de Fuca subseafloor aquifer.

  3. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  4. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  5. Cholesterol biosynthesis in polychlorinated biphenyl-treated rats

    International Nuclear Information System (INIS)

    Kling, D.; Gamble, W.

    1982-01-01

    After administration of polychlorinated biphenly (PCB) at 0.055 (w/w) of the diet to Wistar rats for 30 days, followed by intraperitioneal injection of tritiated water, [ 14 C]mevalonate, and [ 14 C]acetate, there was a decrease in cholesterol biosynthesis in rat liver. No significant change in cholesterol formation was observed when PCB was administered at 0.01% (w/w) of the diet. In vitro inhibition of cholesterol synthesis by rat liver microsomes was observed with PCB. Squalene 2,3-oxidocyclase activity of rat liver microsomes was not significantly altered. Desmosterol delta 24 reductase activity was inhibited only at relatively high concentrations of PCB. There was increased incorporation of radioactivity into squalene and lanosterol, in vitro, in the presence of PCB. The primary inhibition of cholesterol biosynthesis appears to be at the demethylation and rearrangement reactions between lanosterol and cholesterol in the biosynthetic pathway

  6. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    Science.gov (United States)

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  8. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans.

    Science.gov (United States)

    Wang, Yongkang; Song, Xiaodan; Zhang, Yongjun; Wang, Bochu; Zou, Xiang

    2016-08-22

    Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Its monomer, L-malic acid, is also a potential C4 platform chemical. However, little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. In this study, the effects of different nitrogen concentration on cell growth and PMA biosynthesis were investigated via comparative transcriptomics and proteomics analyses, and a related signaling pathway was also evaluated. A high final PMA titer of 44.00 ± 3.65 g/L (49.9 ± 4.14 g/L of malic acid after hydrolysis) was achieved in a 5-L fermentor under low nitrogen concentration (2 g/L of NH4NO3), which was 18.3 % higher yield than that obtained under high nitrogen concentration (10 g/L of NH4NO3). Comparative transcriptomics profiling revealed that a set of genes, related to the ribosome, ribosome biogenesis, proteasome, and nitrogen metabolism, were significantly up- or down-regulated under nitrogen sufficient conditions, which could be regulated by the TOR signaling pathway. Fourteen protein spots were identified via proteomics analysis, and were found to be associated with cell division and growth, energy metabolism, and the glycolytic pathway. qRT-PCR further confirmed that the expression levels of key genes involved in the PMA biosynthetic pathway (GLK, CS, FUM, DAT, and MCL) and the TOR signaling pathway (GS, TOR1, Tap42, and Gat1) were upregulated due to nitrogen limitation. Under rapamycin stress, PMA biosynthesis was obviously inhibited in a dose-dependent manner, and the transcription levels of TOR1, MCL, and DAT were also downregulated. The level of nitrogen could regulate cell growth and PMA biosynthesis. Low concentration of nitrogen was beneficial for PMA biosynthesis, which could upregulate the expression of key genes involved in the PMA biosynthesis pathway. Cell growth and PMA biosynthesis might be mediated by the TOR signaling pathway in

  9. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    Science.gov (United States)

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  10. Penambahan Astaxanthin pada Pengencer Kuning Telur Berbagai Jenis Unggas Dapat Memproteksi Semen Babi Selama Penyimpanan (THE ADDITION OF ASTAXANTHIN ON SPERM DILUENTS PHOSPHATE EGGYOLK OF VARIOUS POULTRY CAN PROTECT QUALITY OF PIG SPERM DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Wayan Bebas

    2017-01-01

    Full Text Available A study was conducted to formulate semen diluent of pigswith a better quality, cheap and easy toprepare using egg yolk of various poultries such as chickens, ducks and quails in combinationwithastaxanthin, a potent antioxidant. The research design used was a completely randomized factorialdesign with three different types of sperm diluents and four levels of astaxanthin concentration. Spermdiluents used were phosphate duck egg yolk, phosphate quail egg yolk and yolks phosphate supplementedrespectivelywith 0,002%, 0,004% and 0,008%astaxanthine. The treated sperm were strored at 5oC for 48hours. The sperm qualities were examined for progressive motility, spermatozoa abnormalities, viabilityand plasma membrane integrity. The result showed that sperm diluents of using duck egg yolk phosphatein combination with 0.002% astaxanthinresulted in the highest progressive motility, viability and plasmamembrane intact while abnormalities spermatozoa is lowest. It can be concluded that phosphate duck eggyolk sperm diluents with the addition of 0,002% astaxanthinappeared to be able to maintain the qualityof pig sperm stored at 5oC for 48 hours.

  11. Identification of a Novel Esterase from Marine Environmental Genomic DNA Libraries and Its Application in Production of Free All- trans-Astaxanthin.

    Science.gov (United States)

    Lu, Ping; Gao, Xinwei; Dong, Hao; Liu, Zhen; Secundo, Francesco; Xue, Changhu; Mao, Xiangzhao

    2018-03-21

    Astaxanthin is a pigment with various functions. Free astaxanthin is obtained mainly through saponification methods, which could result in many byproducts. Enzymatic methods using lipases have been used in a few cases, while there are no reports on the use of esterases for the production of free astaxanthin. Herein we present the screening and identification of a novel esterase (Est3-14) from a marine mud metagenomic library. Est3-14 is pH-sensitive and keeps good stability in alkaline buffers (residual activity 94%, pH 8.0, 4 °C, and 36 h). Meanwhile, Est3-14 keeps a good stability in the medium temperature condition (residual activity 56.7%, pH 8.0, 40 °C, and 84 h). Est3-14 displayed high hydrolysis activity to prepare free all- trans-astaxanthin in biphasic systems. Furthermore, under optimal conditions (0.5 mL ethanol, 6 mL 0.1 M Tris-HCl buffer, pH 8.0, 0.5% (w/v) H. pluvialis oil, 40 °C), the hydrolytic conversion ratio was 99.3% after 36 h.

  12. Sodiation as a tool for enhancing the diagnostic value of MALDI-TOF/TOF-MS spectra of complex astaxanthin ester mixtures from Haematococcus pluvialis

    NARCIS (Netherlands)

    Weesepoel, Y.J.A.; Vincken, J.P.; Pop, R.M.; Liu, K.; Gruppen, H.

    2013-01-01

    The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono- and diesters. For rapid fingerprinting of these esters, matrix-assisted laser desorption ionization time of flight

  13. Efficacy of Astaxanthin for the Treatment of Atopic Dermatitis in a Murine Model.

    Directory of Open Access Journals (Sweden)

    Yoko Yoshihisa

    Full Text Available Atopic dermatitis (AD is a common chronic inflammatory skin disease associated with various factors, including immunological abnormalities and exposure to allergens. Astaxanthin (AST is a xanthophyll carotenoid that has recently been demonstrated to have anti-inflammatory effects and to regulate the expression of inflammatory cytokines. Thus, we investigated whether AST could improve the dermatitis and pruritus in a murine model of AD using NC/Nga mice. In addition to a behavioral evaluation, the effects of AST on the AD were determined by the clinical skin severity score, serum IgE level, histological analyses of skin, and by reverse transcription-PCR and Western blotting analyses for the expression of inflammation-related factors. AST (100 mg/kg or vehicle (olive oil was orally administered once day and three times a week for 26 days. When compared with vehicle-treated group, the administration of AST significantly reduced the clinical skin severity score. In addition, the spontaneous scratching in AD model mice was reduced by AST administration. Moreover, the serum IgE level was markedly decreased by the oral administration of AST compared to that in vehicle-treated mice. The number of eosinophils, total and degranulated mast cells all significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. The mRNA and protein levels of eotaxin, MIF, IL-4, IL-5 and L-histidine decarboxylase were significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. These results suggest that AST improves the dermatitis and pruritus in AD via the regulation of the inflammatory effects and the expression of inflammatory cytokines.

  14. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Chun-Hung Chiu

    2016-07-01

    Full Text Available Lipopolysaccharide (LPS-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST, a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10 for seven days and then were LPS-challenged (i.p., 5 mg/kg. The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT, glutamic oxaloacetic transaminase (GOT, blood urea nitrogen (BUN, creatinine (CRE, hepatic malondialdehyde (MDA and glutathione peroxidase (GSH-Px, IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS, suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day. Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity.

  15. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  16. Purine biosynthesis in archaea: variations on a theme

    Directory of Open Access Journals (Sweden)

    Brown Anne M

    2011-12-01

    Full Text Available Abstract Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected or Enzyme Commission (E. C. numbers (57 proteins, 7.7%. There were also 57 proteins (7.7% assigned overly generic names and 78 proteins (10.6% without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is

  17. Biological variation of lipid constituents and distribution of tocopherols and astaxanthin in farmed Atlantic salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Brockhoff, Per B; Jensen, Benny

    1998-01-01

    The contents of fat, astaxanthin, and tocogherols and the fatty acid composition of a homogeneous group of 145 farmed Atlantic salmon (Salmo salar) were determined. The analytical variation of the data was stastistically-separated from the biological variation. The fat content in the muscle near...... the head was 15.0% with a biological standard deviation of 3.0%. The astaxanthin concentration was 5.5 mg/kg of muscle with a biological standard deviation of 1.1 mg/kg of muscle, and the canthaxanthin concentration was 200 mu g/kg of muscle with a standard deviation of 47 mu g/kg of muscle....... The concentrations of alpha-, gamma-, and delta-tocopherols were approximately 32, 2.9, and 0.4 mg/kg of muscle, respectively, and the biological standard deviations were 4.5, 0.4, and 0.07 mg/kg (14, 14, and 20%), respectively. in another group of five salmon the distributions throughout the fillet were determined...

  18. The changes of astaxanthin content and chemical characteristics of tiger prawn (Penaeus monodon) due to processing: boiling, smoking and frying

    Science.gov (United States)

    Swastawati, F.

    2018-03-01

    Food processing using high temperatures can cause changes in pigment color and chemical characteristics in food stuffs, including prawn. The aim of this research was to evaluate the changes in pigment and chemical characteristics of tiger prawn caused by boiling, smoking and frying. Ten kg of tiger prawn was boiled, smoked and fried at the temperature of ± 100 °C for ± 10 min. The results showed that boiling, smoking and frying gave a significant effect (P < 0.05) on the astaxanthin pigment, pH, moisture, protein, salt content, Aw and color. The content of astaxanthin pigments in fresh prawn, boiled prawn, smoked prawn and fried prawn was: 132.79 ± 1.5 μg·g-1 82.89 ± 0.92 μg·g-1 78.28 ± 0.1 μg·g-1 and 91.35 ± 2.59 μg·g-1, respectively. The value of °Hue on fresh prawn, boiled prawn, smoked prawn and fried prawn was: 87.85° 52.5° 55.94° and 53.98°. The tiger prawn processed by the smoking method has preferable by panelist rather than processed by boiling and frying.

  19. A model for evolution and regulation of nicotine biosynthesis regulon in tobacco.

    Science.gov (United States)

    Kajikawa, Masataka; Sierro, Nicolas; Hashimoto, Takashi; Shoji, Tsubasa

    2017-06-03

    In tobacco, the defense alkaloid nicotine is produced in roots and accumulates mainly in leaves. Signaling mediated by jasmonates (JAs) induces the formation of nicotine via a series of structural genes that constitute a regulon and are coordinated by JA-responsive transcription factors of the ethylene response factor (ERF) family. Early steps in the pyrrolidine and pyridine biosynthesis pathways likely arose through duplication of the polyamine and nicotinamide adenine dinucleotide (NAD) biosynthetic pathways, respectively, followed by recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon. Transcriptional regulation of nicotine biosynthesis by ERF and cooperatively-acting MYC2 transcription factors is implied by the frequency of cognate cis-regulatory elements for these factors in the promoter regions of the downstream structural genes. Indeed, a mutant tobacco with low nicotine content was found to have a large chromosomal deletion in a cluster of closely related ERF genes at the nicotine-controlling NICOTINE2 (NIC2) locus.

  20. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  1. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moï se, Alexander R.; Al-Babili, Salim; Wurtzel, Eleanore T.

    2014-01-01

    precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological

  2. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  3. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  4. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    OpenAIRE

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes...

  5. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  6. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum

    Science.gov (United States)

    The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has b...

  7. The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Quax, W.J.; Hiroyuki, O.; Toshiya, M.; Kayser, O.; Bouwmeester, H.J.

    2010-01-01

    A key point in the biosynthesis of the antimalarial drug artemisinin is the formation of dihydroartemisinic aldehyde which represents the key difference between chemotype specific pathways. This key intermediate is the substrate for several competing enzymes, some of which increase the metabolic

  8. Manipulation of isoprenoid biosynthesis as a possible therapeutic option in mevalonate kinase deficiency

    NARCIS (Netherlands)

    Schneiders, Marit S.; Houten, Sander M.; Turkenburg, Marjolein; Wanders, Ronald J. A.; Waterham, Hans R.

    2006-01-01

    OBJECTIVE: In cells from patients with the autoinflammatory disorder mevalonate kinase (MK) deficiency, which includes the hyperimmunoglobulin D with periodic fever syndrome, MK becomes the rate-limiting enzyme in the isoprenoid biosynthesis pathway. This suggests that up-regulation of residual MK

  9. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae

    Science.gov (United States)

    Although the biosynthesis of oxalic acid is known to occur in a number of bacteria, the mechanism(s) regulating its production remains largely unknown. To date, there is no report on the identification of an oxalic acid biosynthetic pathway gene from bacteria. In an attempt to identify such a gene...

  10. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses

    OpenAIRE

    He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming

    2017-01-01

    Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesi...

  11. The regulation of microcystin biosynthesis pathways and genetic mechanisms

    OpenAIRE

    Serap YALÇIN

    2012-01-01

    The cyanobacteria (blue-green algae), as they arecommonly named, comprise a diverse group of oxygenicphotosynthetic bacteria that inhabit a wide rangeof aquatic and terrestrial environments, and displayincredible morphological diversity. Cyanobacteriaproduce bioactive secondary metabolites, includingalkaloids, polyketides and non-ribosomal peptides, someof which are potent toxins. The common occurrenceof toxic cyanobacteria causes problems for health ofanimals and human. Cyanobacterial toxins...

  12. A preliminary investigation of the enzymatic inhibition of 5alpha-reduction and growth of prostatic carcinoma cell line LNCap-FGC by natural astaxanthin and Saw Palmetto lipid extract in vitro.

    Science.gov (United States)

    Anderson, Mark L

    2005-01-01

    Inhibition of 5alpha-reductase has been reported to decrease the symptoms of benign prostate hyperplasia (BPH) and possibly inhibit or help treat prostate cancer. Saw Palmetto berry lipid extract (SPLE) is reported to inhibit 5alpha-reductase and decrease the clinical symptoms of BPH. Epidemiologic studies report that carotenoids such as lycopene may inhibit prostate cancer. In this investigation the effect of the carotenoid astaxanthin, and SPLE were examined for their effect on 5alpha-reductase inhibition as well as the growth of prostatic carcinoma cells in vitro. These studies support patent #6,277,417 B1. The results show astaxanthin demonstrated 98% inhibition of 5alpha-reductase at 300 microg/mL in vitro. Alphastat, the combination of astaxanthin and SPLE, showed a 20% greater inhibition of 5alpha-reductase than SPLE alone n vitro. A nine day treatment of prostatic carcinoma cells with astaxanthin in vitro produced a 24% decrease in growth at 0.1 mcg/mL and a 38% decrease at 0.01 mcg/mL. SPLE showed a 34% decrease at 0.1 mcg/mL. Low levels of carotenoid astaxanthin inhibit 5alpha-reductase and decrease the growth of human prostatic cancer cells in vitro. Astaxanthin added to SPLE shows greater inhibition of 5alpha-reductase than SPLE alone in vitro.

  13. Phosphatidylcholine (PC) biosynthesis in pancreatic islets of Langerhans

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Laychock, S.G.

    1986-01-01

    Islets of Langerhans isolated from rat pancreata were incubated with [ 14 C]choline to determine the biosynthesis of PC by the CDP choline to determine the biosynthesis of PC by the CDPcholine pathway. Recovery of [ 14 C]PC in islet membranes was time-related, and stimulated by glucose (17mM) during 60 min. The rate of PC synthesis was constant during 60 min with glucose stimulation. In contrast, the sulfonylurea tolbutamide (2 mM) reduced the recovery of [ 14 C]choline in PC, and 8-bromo-cyclic AMP (5 mM) did not significantly affect [ 14 C]PC recovery. Incubation of islets in Ca 2+ -free medium enhanced glucose-stimulated recovery of [ 14 C]choline-labeled PC due to the inhibition of phospholipase and phospholipid hydrolysis. Inhibition of CTP:phosphocholine cytidylyltransferase with 5-deoxy-5'-isobutylthioadenosine (SIBA) reduced [ 14 C]PC levels and insulin release in a concentration dependent manner. Treatment with SIBA also reduced Mg 2+ -dependent Ca 2+ -ATPase activity in islet microsomes. Quantitation of membrane PC showed that glucose stimulation did not alter islet P levels. Thus, islet PC biosynthesis is linked to glucose stimulation and contributes to the maintenance of PC levels in membranes undergoing exocytosis and phospholipid hydrolysis. Adequate PC levels support Ca 2+ pump activity and secretory mechanisms

  14. Essential oil biosynthesis and regulation in the genus Cymbopogon.

    Science.gov (United States)

    Ganjewala, Deepak; Luthra, Rajesh

    2010-01-01

    Essential oils distilled from Cymbopogon species are of immense commercial value as flavors and fragrances in the perfumery, cosmetics, soaps, and detergents and in pharmaceutical industries. Two major constituents of the essential oil, geraniol and citral, due to their specific rose and lemon like aromas are widely used as flavors, fragrances and cosmetics. Citral is also used for the synthesis of vitamin A and ionones (for example, beta-ionone, methyl ionone). Moreover, Cymbopogon essential oils and constituents possess many useful biological activities including cytotoxic, anti-inflammatory and antioxidant. Despite the immense commercial and biological significance of the Cymbopogon essential oils, little is known about their biosynthesis and regulatory mechanisms. So far it is known that essential oils are biosynthesized via the classical acetate-MVA route and existence of a newly discovered MEP pathway in Cymbopogon remains as a topic for investigation. The aim of the present review is to discuss the biosynthesis and regulation of essential oils in the genus Cymbopogon with given emphasis to two elite members, lemongrass (C. flexuosus Nees ex Steud) and palmarosa (C. martinii Roxb.). This article highlights the work done so far towards understanding of essential oil biosynthesis and regulation in the genus Cymbopogon. Also, based on our experiences with Cymbopogon species, we would like to propose C. flexuosus as a model system for the study of essential oil metabolism beyond the much studied plant family Lamiaceae.

  15. Phospholipid biosynthesis in Candida albicans: Regulation by the precursors inositol and choline

    International Nuclear Information System (INIS)

    Klig, L.S.; Friedli, L.; Schmid, E.

    1990-01-01

    Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway. The same pathway in C. albicans responds to the exogenous provision of choline. Possible explanations for the observed differences in regulation are discussed

  16. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis.

    Science.gov (United States)

    Wang, Zhong-Wei; Jiang, Cong; Wen, Qiang; Wang, Na; Tao, Yuan-Yuan; Xu, Li-An

    2014-03-15

    Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A Biotin Biosynthesis Gene Restricted to Helicobacter

    Science.gov (United States)

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  18. Explorations into the biosynthesis of bioscorine

    International Nuclear Information System (INIS)

    Michelson, R.H.

    1988-01-01

    The biosynthesis of dioscorine in Dioscorea hispida has been studied by the feeding of putative precursors labelled at specific positions with 2 H, 3 H, and 14 C. Administration of [3- 14 C]3-hydroxy-3-methylglutaric acid to D. hispida by the wick method afforded dioscorine labelled preferentially at the C 10 position implying that the biosynthetic pathway to the acetate-derived half of the dioscorine skeleton is going through this compound. Administration of ethyl [6- 14 C]orsellinate to D. hispida by the wick method failed to give an appreciable incorporation into dioscroine thereby disproving an alternative mechanism describing the formation of the acetate-derived half of the dioscorine skeleton. Two attempts to simulate the alternative mechanism by oxidatively cleaving ethyl orsellinate also failed, further disfavoring this mechanism. Administration of [2,3] 13 C 2 , 14 C 2 succinic acid, [3- 14 C]aspartic acid and [7a- 14 C]tryptophan by the leaf painting method gave very low incorporations into dioscorine making determination of the source of the nicotinic acid half of the dioscorine skeleton inconclusive. Administration of [6- 2 H, 3 H]nicotinic acid to D. hispida by the wick method afforded dioscorine exhibiting complete retention of 3 H thereby disfavoring a mechanism involving a 3,6-dihydropyridine intermediate in the formation of the dioscorine skeleton

  19. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  20. Exploring the fungal protein cadre in the biosynthesis of PbSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jaya Mary; Sharma, Sumit; Balakrishnan, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2017-02-15

    Highlights: • Pb and Se stress activates specific metal detoxification surge in the fungus. • Fungus releases phytochelatins, metallothioneins, super oxide dismutases etc. • These mechanisms capacitate the fungi as bio-factories for synthesis of PbSe QDs. • A pathway for PbSe QD biosynthesis by marine Aspergillus terreus was elucidated - Abstract: While a large number of microbial sources have recently emerged as potent sources for biosynthesis of chalcogenide quantum dots (QDs), studies regarding their biomimetic strategies that initiate QD biosynthesis are scarce. The present study describes several mechanistic aspects of PbSe QD biosynthesis using marine Aspergillus terreus. Scanning electron microscopic (SEM) studies indicated distinctive morphological features such as abrasion and agglomeration on the fungal biomass after the biosynthesis reaction. Further, the biomass subsequent to the heavy metal/metalloid precursor was characterized with spectral signatures typical to primary and secondary stress factors such as thiol compounds and oxalic acid using Fourier Transform Infra-Red Spectroscopic (FTIR) analysis. An increase in the total protein content in the reaction mixture after biosynthesis was another noteworthy observation. Further, metal-phytochelatins were identified as the prominent metal-ion trafficking components in the reaction mixture using Liquid Chromatography Mass Spectroscopic analysis (LCMS). Subsequent assays confirmed the involvement of metal binding peptides namely metallothioneins and other anti-oxidant enzymes that might have played a prominent role in the microbial metal detoxification system for the biosynthesis of PbSe QDs. Based on these findings a possible mechanism for the biosynthesis of PbSe QDs by marine A. terreus has been elucidated.

  1. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2018-02-01

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.

  2. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  4. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    International Nuclear Information System (INIS)

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-01-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18 O 2 . It was found that in stressed leaves three atoms of 18 O from 18 O 2 are incorporated into the ABA molecule, and that the amount of 18 O incorporated increases with time. One 18 O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18 O 2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18 O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18 O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied 14 C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18 O incorporated during 8'-hydroxylation of ABA to phaseic acid

  5. Evolution of the Kdo2-lipid A Biosynthesis in Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    S Opiyo; R Pardy; H Moriyama; E Moriyama

    2011-12-31

    BACKGROUND: Lipid A is the highly immunoreactive endotoxic center of lipopolysaccharide (LPS). It anchors the LPS into the outer membrane of most Gram-negative bacteria. Lipid A can be recognized by animal cells, triggers defense-related responses, and causes Gram-negative sepsis. The biosynthesis of Kdo2-lipid A, the LPS substructure, involves with nine enzymatic steps. RESULTS: In order to elucidate the evolutionary pathway of Kdo2-lipid A biosynthesis, we examined the distribution of genes encoding the nine enzymes across bacteria. We found that not all Gram-negative bacteria have all nine enzymes. Some Gram-negative bacteria have no genes encoding these enzymes and others have genes only for the first four enzymes (LpxA, LpxC, LpxD, and LpxB). Among the nine enzymes, five appeared to have arisen from three independent gene duplication events. Two of such events happened within the Proteobacteria lineage, followed by functional specialization of the duplicated genes and pathway optimization in these bacteria. CONCLUSIONS: The nine-enzyme pathway, which was established based on the studies mainly in Escherichia coli K12, appears to be the most derived and optimized form. It is found only in E. coli and related Proteobacteria. Simpler and probably less efficient pathways are found in other bacterial groups, with Kdo2-lipid A variants as the likely end products. The Kdo2-lipid A biosynthetic pathway exemplifies extremely plastic evolution of bacterial genomes, especially those of Proteobacteria, and how these mainly pathogenic bacteria have adapted to their environment.

  6. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    Science.gov (United States)

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  7. Biosynthesis of secondary metabolites in sugarcane

    Directory of Open Access Journals (Sweden)

    S.C. França

    2001-12-01

    Full Text Available A set of genes related to secondary metabolism was extracted from the sugarcane expressed sequence tag (SUCEST database and was used to investigate both the gene expression pattern of key enzymes regulating the main biosynthetic secondary metabolism pathways and the major classes of metabolites involved in the response of sugarcane to environmental and developmental cues. The SUCEST database was constructed with tissues in different physiological conditions which had been collected under varied situation of environmental stress. This database allows researchers to identify and characterize the expressed genes of a wide range of putative enzymes able to catalyze steps in the phenylpropanoid, isoprenoid and other pathways of the special metabolic mechanisms involved in the response of sugarcane to environmental changes. Our results show that sugarcane cDNAs encoded putative ultra-violet induced sesquiterpene cyclases (SC; chalcone synthase (CHS, the first enzyme in the pathway branch for flavonoid biosynthesis; isoflavone synthase (IFS, involved in plant defense and root nodulation; isoflavone reductase (IFR, a key enzyme in phenylpropanoid phytoalexin biosynthesis; and caffeic acid-O-methyltransferase, a key enzyme in the biosynthesis of lignin cell wall precursors. High levels of CHS transcripts from plantlets infected with Herbaspirillum rubri or Gluconacetobacter diazotroficans suggests that agents of biotic stress can elicit flavonoid biosynthesis in sugarcane. From this data we have predicted the profile of isoprenoid and phenylpropanoid metabolism in sugarcane and pointed the branches of secondary metabolism activated during tissue-specific stages of development and the adaptive response of sugarcane to agents of biotic and abiotic stress, although our assignment of enzyme function should be confirmed by careful biochemical and genetic supporting evidence.Este trabalho foi realizado com os objetivos de gerar uma coleção de genes

  8. In Vitro Biosynthesis of Unnatural Enterocin and Wailupemycin Polyketides¥

    Science.gov (United States)

    Kalaitzis, John A.; Cheng, Qian; Thomas, Paul M.; Kelleher, Neil L.; Moore, Bradley S.

    2009-01-01

    Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways. PMID:19215142

  9. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation.

    Science.gov (United States)

    Wang, Qiong; Wang, Feng; Xu, Zhenghong; Ding, Zhongyang

    2017-06-13

    Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.

  10. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  11. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  12. Inhibitory effects of astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities.

    Science.gov (United States)

    Zheng, Yu Fen; Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Choi, Hye Duck; Shin, Wan Gyoon; Bae, Soo Kyung

    2013-09-01

    Astaxanthin, β-cryptoxanthin, canthaxanthin, lutein and zeaxanthin, the major xanthophylls, are widely used in food, medicine, and health care products. To date, no studies regarding the inhibitory effects of these xanthophylls on the nine CYPs isozymes have been reported. This study investigated the reversible and time-dependent inhibitory potentials of five xanthophylls on CYPs activities in vitro. The reversible inhibition results showed that the five compounds had only a weak inhibitory effect on the nine CYPs. Lutein did not inhibit the nine CYPs activities. Astaxanthin weakly inhibited CYP2C19, with an IC₅₀ of 16.2 μM; and β-cryptoxanthin weakly inhibited CYP2C8, with an IC₅₀ of 13.8 μM. In addition, canthaxanthin weakly inhibited CYP2C19 and CYP3A4/5, with IC₅₀ values of 10.9 and 13.9 μM, respectively. Zeaxanthin weakly inhibited CYP3A4/5, with an IC₅₀ of 15.5 μM. However, these IC₅₀ values were markedly greater than the Cmax values reported in humans. No significant IC₅₀ shift was observed in the time-dependent inhibition screening. Based on these observations, it is unlikely that these five xanthophylls from the diet or nutritional supplements alter the pharmacokinetics of drugs metabolized by CYPs. These findings provide some useful information for the safe use of these five xanthophylls in clinical practice. Copyright © 2013. Published by Elsevier Ltd.

  13. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.

    Directory of Open Access Journals (Sweden)

    Christine N Shulse

    Full Text Available Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs, such as eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3, is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.

  14. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis.

    Science.gov (United States)

    Mina, John G M; Denny, P W

    2018-02-01

    Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.

  15. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Lyu, Xiaomei; Ng, Kuan Rei; Lee, Jie Lin; Mark, Rita; Chen, Wei Ning

    2017-08-09

    Flavonoids are an important class of plant polyphenols that possess a variety of health benefits. In this work, S. cerevisiae was metabolically engineered to produce the flavonoid naringenin, using tyrosine as the precursor. Our strategy to improve naringenin production comprised three modules. In module 1, we employed a modified GAL system to overexpress the genes of the naringenin biosynthesis pathway and investigated their synergistic action. In module 2, we simultaneously up-regulated acetyl-CoA production and down-regulated fatty acid biosynthesis in order to increase the precursor supply, malonyl-CoA. In module 3, we engineered the tyrosine biosynthetic pathway to eliminate the feedback inhibition of tyrosine and also down-regulated competing pathways. It was found that modules 1 and 3 played important roles in improving naringenin production. We succeeded in producing up to ∼90 mg/L of naringenin in our final strain, which is a 20-fold increase as compared to the parental strain.

  16. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    Science.gov (United States)

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  17. Vanillin biosynthetic pathways in plants.

    Science.gov (United States)

    Kundu, Anish

    2017-06-01

    The present review compiles the up-to-date knowledge on vanillin biosynthesis in plant systems to focus principally on the enzymatic reactions of in planta vanillin biosynthetic pathway and to find out its impact and prospect in future research in this field. Vanillin, a very popular flavouring compound, is widely used throughout the world. The principal natural resource of vanillin is the cured vanilla pods. Due to the high demand of vanillin as a flavouring agent, it is necessary to explore its biosynthetic enzymes and genes, so that improvement in its commercial production can be achieved through metabolic engineering. In spite of significant advancement in elucidating vanillin biosynthetic pathway in the last two decades, no conclusive demonstration had been reported yet for plant system. Several biosynthetic enzymes have been worked upon but divergences in published reports, particularly in characterizing the crucial biochemical steps of vanillin biosynthesis, such as side-chain shortening, methylation, and glucoside formation and have created a space for discussion. Recently, published reviews on vanillin biosynthesis have focused mainly on the biotechnological approaches and bioconversion in microbial systems. This review, however, aims to compile in brief the overall vanillin biosynthetic route and present a comparative as well as comprehensive description of enzymes involved in the pathway in Vanilla planifolia and other plants. Special emphasis has been given on the key enzymatic biochemical reactions that have been investigated extensively. Finally, the present standpoint and future prospects have been highlighted.

  18. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    Science.gov (United States)

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  19. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  20. The Spatial Organization of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Nintemann, Sebastian

    cells is an open question. Likewise, it is not known how glucosinolate biosynthesis is orchestrated at the subcellular level. These open questions were addressed with several approaches in this project, with the aim of shedding light on the spatial organization of glucosinolate biosynthesis from...... between the individual classes of glucosinolates under constitutive and induced conditions and identified the source tissues of these defense compounds. Protein-protein interaction studies were carried out to investigate the subcellular organization of glucosinolate biosynthesis. We identified a family...

  1. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis).

    Science.gov (United States)

    Huang, Ruimin; Huang, Youjun; Sun, Zhichao; Huang, Jianqin; Wang, Zhengjia

    2017-05-24

    Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.

  2. Purine biosynthesis is the bottleneck in trimethoprim-treated Bacillus subtilis.

    Science.gov (United States)

    Stepanek, Jennifer Janina; Schäkermann, Sina; Wenzel, Michaela; Prochnow, Pascal; Bandow, Julia Elisabeth

    2016-10-01

    Trimethoprim is a folate biosynthesis inhibitor. Tetrahydrofolates are essential for the transfer of C 1 units in several biochemical pathways including purine, thymine, methionine, and glycine biosynthesis. This study addressed the effects of folate biosynthesis inhibition on bacterial physiology. Two complementary proteomic approaches were employed to analyze the response of Bacillus subtilis to trimethoprim. Acute changes in protein synthesis rates were monitored by radioactive pulse labeling of newly synthesized proteins and subsequent 2DE analysis. Changes in protein levels were detected using gel-free quantitative MS. Proteins involved in purine and histidine biosynthesis, the σ B -dependent general stress response, and sporulation were upregulated. Most prominently, the PurR-regulon required for de novo purine biosynthesis was derepressed indicating purine depletion. The general stress response was activated energy dependently and in a subpopulation of treated cultures an early onset of sporulation was observed, most likely triggered by low guanosine triphosphate levels. Supplementation of adenosine triphosphate, adenosine, and guanosine to the medium substantially decreased antibacterial activity, showing that purine depletion becomes the bottleneck in trimethoprim-treated B. subtilis. The frequently prescribed antibiotic trimethoprim causes purine depletion in B. subtilis, which can be complemented by supplementing purines to the medium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Lehman, L.J.; Olson, L.

    1986-01-01

    Rates of carnitine biosynthesis in mammals depend on the availability of substrates and the activity of enzymes subserving the pathway. This study was undertaken to test the hypothesis that the availability of epsilon-N-trimethyllysine is rate-limiting for synthesis of carnitine in the growing rat and to evaluate diet as a source of this precursor for carnitine biosynthesis. Rats apparently absorbed greater than 90% of a tracer dose of [methyl- 3 H]epsilon-N-trimethyllysine, and approximately 30% of that was incorporated into tissues as [ 3 H]carnitine. Rats given oral supplements of epsilon-N-trimethyllysine (0.5-20 mg/d), but no dietary carnitine, excreted more carnitine than control animals receiving no dietary epsilon-N-trimethyllysine or carnitine. Rates of carnitine excretion increased in a dose-dependent manner. Tissue and serum levels of carnitine also increased with dietary epsilon-N-trimethyllysine supplementation. There was no evidence that the capacity for carnitine biosynthesis was saturated even at the highest level of oral epsilon-N-trimethyllysine supplementation. Common dietary proteins (casein, soy protein and wheat gluten) were found to be poor sources of epsilon-N-trimethyllysine for carnitine biosynthesis. The results of this study indicate that the availability of epsilon-N-trimethyllysine limits the rate of carnitine biosynthesis in the growing rat

  4. Comparative proteomic analysis provides insight into 10-hydroxy-2-decenoic acid biosynthesis in honey bee workers.

    Science.gov (United States)

    Yang, Xiao-Hui; Yang, Shi-Fa; Wang, Rui-Ming

    2017-07-01

    10-Hydroxy-2-decenoic acid (10-HDA) is the major compound produced from the mandibular glands (MGs) of honey bee workers. However, little information is available on the molecular mechanisms of 10-HDA biosynthesis. In our study, based on investigating the 10-HDA secretion pattern and the morphological characteristics of MGs from honey bee workers of different ages, a comparative proteomic analysis was performed in the MGs of workers with different 10-HDA production. In total, 59 up-regulated protein species representing 45 unique proteins were identified in high 10-HDA-producing workers by 2-DE-MALDI-TOF/TOF MS. These proteins were involved in carbohydrate/energy metabolism, fatty acid metabolism, protein metabolism and folding, antioxidation, cytoskeleton, development and cell signaling. Proteins related to fatty acid metabolism, including fatty acid synthase and β-oxidation enzymes, are potentially crucial proteins involved in 10-HDA biosynthesis pathway. And RNA interference (RNAi) results demonstrated that knockdown of electron transfer flavoprotein subunit beta (ETF-β), one of the protein related to fatty acid metabolism, decreased 10-HDA production of worker bees, suggesting that ETF-β was necessary for 10-HDA biosynthesis. This study reveals the characteristics of MGs of worker bees at different developmental stages and proteins associated with 10-HDA biosynthesis, which provides the first insight into the molecular mechanism of 10-HDA biosynthesis.

  5. Regulation of anthocyanin biosynthesis in peach fruits.

    Science.gov (United States)

    Rahim, Md Abdur; Busatto, Nicola; Trainotti, Livio

    2014-11-01

    MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

  6. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  7. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    Science.gov (United States)

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  8. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis

    Science.gov (United States)

    Frelin, Océane; Huang, Lili; Hasnain, Ghulam; Jeffryes, James G.; Ziemak, Michael J.; Rocca, James R.; Wang, Bing; Rice, Jennifer; Roje, Sanja; Yurgel, Svetlana N.; Gregory, Jesse F.; Edison, Arthur S.; Henry, Christopher S.; deCrécy-Lagard, Valérie; Hanson, Andrew D.

    2015-01-01

    Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multistep pathway. The early intermediates of this pathway are notoriously reactive, and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. Here we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA, respectively). We present cheminformatic, biochemical, genetic, and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multienzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites. PMID:25431972

  9. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis.

    Science.gov (United States)

    Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M

    2015-09-01

    Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Transcriptomic analysis reveals key genes related to betalain biosynthesis in pulp coloration of Hylocereus polyrhizus

    Directory of Open Access Journals (Sweden)

    Hua eQingzhu

    2016-01-01

    Full Text Available Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages of Guanhuahong (H. polyrhizus were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1,183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8,871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. Polyrhizus (7-1 and H. Undatus (132-4. Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses and gene expression profiles.

  11. Human renin biosynthesis and secretion in normal and ischemic kidneys

    International Nuclear Information System (INIS)

    Pratt, R.E.; Carleton, J.E.; Richie, J.P.; Heusser, C.; Dzau, V.J.

    1987-01-01

    The pathway of renin biosynthesis and secretion in normal and ischemic human kidneys has been investigated by pulse-labeling experiments. The results indicate that in normal human kidney, preprorenin is rapidly processed to 47-kDa prorenin. Microradiosequencing showed that this molecule was generated by cleavage between Gly-23 and Leu-24, yielding a 43-amino acid proregion. Analysis of prorenin secreted by the kidney tissue yielded an identical sequence, indicating that prorenin is secreted without any further proteolysis. An examination of the kinetics of processing and secretion suggested that a majority of the newly synthesized prorenin is quickly secreted, while only a small fraction is processed intracellularly to the mature renin. The differences in secretion kinetics between prorenin and mature renin and the selective inhibition of prorenin secretion by monensin suggest that they are secreted independently via two pathways: a constitutive pathway probably from the Golgi or protogranules that rapidly release prorenin and a regulated pathway that secretes mature renin from the mature granules. A comparison of the kinetics of processing between normal and ischemic tissues suggests that renal ischemia leads to an overall increase in the rate of processing or prorenin to mature renin. In addition, prolonged biosynthetic labeling of renin in the ischemic kidney yielded two smaller molecular weight immunoreactive forms suggestive of renin fragments that may be degradative products. These fragments were not detected in normal kidney tissue labeled for similar lengths of time

  12. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  13. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  14. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    International Nuclear Information System (INIS)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs

  15. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    Energy Technology Data Exchange (ETDEWEB)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.

  16. Structure and Biosynthesis of Branched Wax Compounds on Wild Type and Wax Biosynthesis Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Busta, Lucas; Jetter, Reinhard

    2017-06-01

    The cuticle is a waxy composite that protects the aerial organs of land plans from non-stomatal water loss. The chemical make-up of the cuticular wax mixture plays a central role in defining the water barrier, but structure-function relationships have not been established so far, in part due to gaps in our understanding of wax structures and biosynthesis. While wax compounds with saturated, linear hydrocarbon tails have been investigated in detail, very little is known about compounds with modified aliphatic tails, which comprise substantial portions of some plant wax mixtures. This study aimed to investigate the structures, abundances and biosynthesis of branched compounds on the species for which wax biosynthesis is best understood: Arabidopsis thaliana. Microscale derivatization, mass spectral interpretation and organic synthesis identified homologous series of iso-alkanes and iso-alcohols on flowers and leaves, respectively. These comprised approximately 10-15% of wild type wax mixtures. The abundances of both branched wax constituents and accompanying unbranched compounds were reduced on the cer6, cer3 and cer1 mutants but not cer4, indicating that branched compounds are in part synthesized by the same machinery as unbranched compounds. In contrast, the abundances of unbranched, but not branched, wax constituents were reduced on the cer2 and cer26 mutants, suggesting that the pathways to both types of compounds deviate in later steps of chain elongation. Finally, the abundances of branched, but not unbranched, wax compounds were reduced on the cer16 mutant, and the (uncharacterized) CER16 protein may therefore be controlling the relative abundances of iso-alkanes and iso-alcohols on Arabidopsis surfaces. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    Science.gov (United States)

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  18. Biosynthesis of NAD from nicotinic acid and nicotinamide by resting cells of Arthrobacter globiformis

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1978-01-01

    Isotopically labeled nicotinic acid and nicotinamide were incorporated into the metabolites of nicotinic acid-dependent pathway (Preiss-Handler pathway) of the NAD biosynthesis by resting cells of Arthrobacter globiformis. Azaserine and adenosine markedly stimulated the accumulation of NAD in the cells. Radioactive nicotinic acid and nicotinamide were also incorporated into an unknown compound when the cells were incubated in the presence of azaserine. Cell-free extract of the organism showed the NAD synthetase activity, which required ammonium ion and ATP for the amidation of deamido-NAD. Adenosine inhibited the enzyme activity. The organism possessed nicotinamidase, suggesting deamidation is the first step in the biosynthesis of NAD from nicotinamide. The activity was inhibited by NAD, NADP and NMN. (auth.)

  19. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Mol, J.; Jenkins, G.; Schäfer, E.; Weiss, D.

    1996-01-01

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  20. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-03-01

    Full Text Available Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  1. Sites and regulation of auxin biosynthesis in Arabidopsis roots.

    Science.gov (United States)

    Ljung, Karin; Hull, Anna K; Celenza, John; Yamada, Masashi; Estelle, Mark; Normanly, Jennifer; Sandberg, Göran

    2005-04-01

    Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.

  2. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review

    Science.gov (United States)

    Liu, Ying; Tikunov, Yury; Schouten, Rob E.; Marcelis, Leo F. M.; Visser, Richard G. F.; Bovy, Arnaud

    2018-03-01

    Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e. pepper, tomato, eggplant and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  3. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    National Research Council Canada - National Science Library

    Archer, Michael

    2000-01-01

    ...) can be accounted for by their inhibitory effect on the cholesterol biosynthesis (mevalonate) pathway. In Task 1, we have shown that the decrease in mammary gland HMG-CoA reductase seen in LDL-R -/- mice compared...

  4. The Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    National Research Council Canada - National Science Library

    Archer, Michael

    2001-01-01

    ...)can be accounted for by their inhibitory effect on the cholesterol biosynthesis (mevalonate) pathway. In Task 1, we have shown that the decrease in mammary gland HMG-CoA redustase seen in LDL-R -/- mice compared...

  5. The Arabidopsis YUCCA1 Flavin Monooxygenase Functions in the Indole-3-Pyruvic Acid Branch of Auxin Biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Stepanova, A.N.; Yun, J.; Robles, L.M.; Novák, Ondřej; He, W.; Guo, H.W.; Ljung, K.; Alonso, J.M.

    2011-01-01

    Roč. 23, č. 11 (2011), s. 3961-3973 ISSN 1040-4651 R&D Projects: GA ČR GA301/08/1649 Keywords : PLANT DEVELOPMENT * GLUCOSINOLATE BIOSYNTHESIS * REPRODUCTIVE DEVELOPMENT * MASS-SPECTROMETRY * ALDEHYDE OXIDASE * THALIANA * GENE * METABOLISM * MUTANTS * PATHWAY Subject RIV: EF - Botanics Impact factor: 8.987, year: 2011

  6. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  7. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.

    Science.gov (United States)

    Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar

    2014-12-01

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. © 2014 Scandinavian Plant Physiology Society.

  9. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-11-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in /sup 18/O/sub 2/. It was found that in stressed leaves three atoms of /sup 18/O from /sup 18/O/sub 2/ are incorporated into the ABA molecule, and that the amount of /sup 18/O incorporated increases with time. One /sup 18/O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in /sup 18/O/sub 2/ shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more /sup 18/O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, /sup 18/O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied /sup 14/C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional /sup 18/O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  10. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.

    Science.gov (United States)

    Tomita, Hiroya; Imanaka, Tadayuki; Atomi, Haruyuki

    2013-10-01

    Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2-oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20-29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk-KPR) displayed reductase activity specific for 2-oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH-dependent enzymes. Tk-KPR activity decreased dramatically in the presence of CoA and KPR activity in cell-free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea. © 2013 John Wiley & Sons Ltd.

  11. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440

    Science.gov (United States)

    Molina‐Henares, M. Antonia; García‐Salamanca, Adela; Molina‐Henares, A. Jesús; De La Torre, Jesús; Herrera, M. Carmen; Ramos, Juan L.; Duque, Estrella

    2009-01-01

    Summary Pseudomonas putida KT2440 is a non‐pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini‐Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene‐encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB‐like genes are present in the host chromosome. PMID:21261884

  12. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Barwal Indu

    2011-12-01

    Full Text Available Abstract Background Elucidation of molecular mechanism of silver nanoparticles (SNPs biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver

  13. HOG MAP kinase regulation of alternariol biosynthesis in Alternaria alternata is important for substrate colonization.

    Science.gov (United States)

    Graf, Eva; Schmidt-Heydt, Markus; Geisen, Rolf

    2012-07-16

    Strains of the genus Alternaria are ubiquitously present and frequently found on fruits, vegetables and cereals. One of the most commonly found species from this genus is A. alternata which is able to produce the mycotoxin alternariol among others. To date only limited knowledge is available about the regulation of the biosynthesis of alternariol, especially under conditions relevant to food. Tomatoes are a typical substrate of A. alternata and have a high water activity. On the other hand cereals with moderate water activity are also frequently colonized by A. alternata. In the current analysis it was demonstrated that even minor changes in the osmotic status of the substrate affect the alternariol biosynthesis of strains from vegetables resulting in nearly complete inhibition. High osmolarity in the environment is usually transmitted to the transcriptional level of downstream regulated genes by the HOG signal cascade (high osmolarity glycerol cascade) which is a MAP kinase transduction pathway. The phosphorylation status of the A. alternata HOG (AaHOG) was determined. Various concentrations of NaCl induce the phosphorylation of AaHOG in a concentration, time and strain dependent manner. A strain with a genetically inactivated aahog gene was no longer able to produce alternariol indicating that the activity of the aahog gene is required for alternariol biosynthesis. Further experiments revealed that the biosynthesis of alternariol is important for the fungus to colonize tomato tissue. The tight water activity dependent regulation of alternariol biosynthesis ensures alternariol biosynthesis at conditions which indicate an optimal colonization substrate for the fungus. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Egghead and brainiac are essential for glycosphingolipid biosynthesis in vivo

    DEFF Research Database (Denmark)

    Wandall, Hans H; Pizette, Sandrine; Pedersen, Johannes W

    2004-01-01

    -acetylglucosaminyltransferase predicted by in vitro analysis to control synthesis of the glycosphingolipid core structure, GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer, found widely in invertebrates but not vertebrates. In this report we present direct in vivo evidence for this hypothesis. egghead and brainiac mutants lack elongated...... lactosylceramide glycosphingolipid biosynthetic pathway (Galbeta1-4Glcbeta1-Cer) using a human beta4-galactosyltransferase (beta4Gal-T6) transgene. Conversely, introduction of egghead in vertebrate cells (Chinese hamster ovary) resulted in near complete blockage of biosynthesis of glycosphingolipids...... and accumulation of Manbeta1-4Glcbeta1-Cer. The study demonstrates that glycosphingolipids are essential for development of complex organisms and suggests that the function of the Drosophila glycosphingolipids in development does not depend on the core structure....

  15. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...... responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids...... and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate...

  16. Astaxanthin Supplementation Delays Physical Exhaustion and Prevents Redox Imbalances in Plasma and Soleus Muscles of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Tatiana G. Polotow

    2014-12-01

    Full Text Available Astaxanthin (ASTA is a pinkish-orange carotenoid commonly found in marine organisms, especially salmon. ASTA is a powerful antioxidant and suggested to provide benefits for human health, including the inhibition of LDL oxidation, UV-photoprotection, and prophylaxis of bacterial stomach ulcers. Exercise is associated to overproduction of free radicals in muscles and plasma, with pivotal participation of iron ions and glutathione (GSH. Thus, ASTA was studied here as an auxiliary supplement to improve antioxidant defenses in soleus muscles and plasma against oxidative damage induced by exhaustive exercise. Long-term 1 mg ASTA/kg body weight (BW supplementation in Wistar rats (for 45 days significantly delayed time to exhaustion by 29% in a swimming test. ASTA supplementation increased scavenging/iron-chelating capacities (TEAC/FRAP and limited exercise-induced iron overload and its related pro-oxidant effects in plasma of exercising animals. On the other hand, ASTA induced significant mitochondrial Mn-dependent superoxide dismutase and cytosolic glutathione peroxidase antioxidant responses in soleus muscles that, in turn, increased GSH content during exercise, limited oxidative stress, and delayed exhaustion. We also provided significant discussion about a putative “mitochondrial-targeted” action of ASTA based on previous publications and on the positive results found in the highly mitochondrial populated (oxidative-type soleus muscles here.

  17. Fatty acids and astaxanthin composition of two edible native Mexican crayfish Cambarellus (C.) montezumae and Procambarus (M.) bouvieri

    International Nuclear Information System (INIS)

    Coral-Hinostroza, G.; Diaz-Martinez, M.; Huberman, A.; Silencio-Barrita, J.L.

    2016-01-01

    The content and composition of the fatty acids (F As) and astaxanthin (AST) in the edible forms of crayfish: the whole animal of Cambarellus (C.) montezumae, and the tail meat (TM) of Procambarus (M.) bouvieri were determined by GC and HPLC. The exoskeleton (EXK) of P. (M.) bouvieri was also studied. Unsaturated FAs, and mostly oleic acid (C18:1 n-9), were predominant in both edible forms. The contents of the polyunsaturated eicosapentaenoic (C20:5 n-3, EPA), arachidonic (C20:4 n-6, ARA) and docosahexaenoic acid (C22:6 n-3, DHA), were higher in the TM of P. (M.) bouvieri than in the complete C. (C.) montezumae (p 79.50%). AST esters were enriched with saturated FAs in C. (C.) montezumae and with PUFAs in EXK of P. (M.) bouvieri. We conclude that both C. (C.) montezumae and the TM of P. (M.) bouvieri are traditional foods rich in n-3 PUFAs and C. (C.) montezumae in AST. The EXK of P. (M.) bouvieri is a rich potential source of AST, n-3 PUFAs, and the combination AST-DHA. [es

  18. Acute Phase Response and Neutrophils : Lymphocyte Ratio in Response to Astaxanthin in Staphylococcal Mice Mastitis Model

    Directory of Open Access Journals (Sweden)

    Tshering Dolma

    2014-01-01

    Full Text Available The purpose of the study was to determine the immunotherapeutic effect of astaxanthin (AX on total clinical score (TCS, C-reactive protein (CRP, and neutrophil : lymphocyte ratio in mice mastitis model challenged with pathogenic Staphylococcus aureus. Twenty-four lactating mice were divided in 4 equal groups: group I mice served as normal healthy control, group II, positive control, were challenged with pathogenic S. aureus, group III mice were challenged and treated with AX, and group IV were treated with amoxicillin plus sulbactum. The TCS was higher in postchallenged mice; however it was significantly higher in group II untreated mice as compared to group III and group IV mice. The neutrophil was higher and lymphocyte count was lower in group II mice at 120 hrs post challenge (PC. The CRP was positive in all the challenged group at 24 hrs PC, but it remained positive till 120 hrs PC in group II. The parameters are related to enhancement of the mammary defense and reduction of inflammation. Hence AX may be used alone or as an adjunct therapy with antibiotic for amelioration of mastitis. Development of such therapy may be useful to reduce the antibiotic burden in management of intramammary infection.

  19. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    Science.gov (United States)

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

    Science.gov (United States)

    Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre

    2016-08-01

    GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements1[OPEN

    Science.gov (United States)

    Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Yamamoto, Atsushi; Kurata, Tetsuya; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota

    2016-01-01

    Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell’s metabolic

  2. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    Science.gov (United States)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our

  3. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  4. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  5. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    Science.gov (United States)

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs

  6. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    Science.gov (United States)

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  7. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  8. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Liu, J.; Estiu, G.

    2010-01-01

    histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of similar to 10(6) compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus......-and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability...

  9. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I 50 concentration of 3.2 μM. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I 50 of 4 μM. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4- 3 H-mevalonic acid and incubating latex with a mixture of this and 14 C-mevalonic acid. From the 3 H/ 14 C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs

  10. Triterpenoid biosynthesis in Euphorbia lathyris latex

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.

  11. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    OpenAIRE

    Leech Mark; Palacios-Rojas Natalia

    2004-01-01

    Terpenoid indole alkaloids (TIA) are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limit...

  12. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  13. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  14. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  15. Accumulation of Charantin and Expression of Triterpenoid Biosynthesis Genes in Bitter Melon (Momordica charantia).

    Science.gov (United States)

    Cuong, Do Manh; Jeon, Jin; Morgan, Abubaker M A; Kim, Changsoo; Kim, Jae Kwang; Lee, Sook Young; Park, Sang Un

    2017-08-23

    Charantin, a natural cucurbitane type triterpenoid, has been reported to have beneficial pharmacological functions such as anticancer, antidiabetic, and antibacterial activities. However, accumulation of charantin in bitter melon has been little studied. Here, we performed a transcriptome analysis to identify genes involved in the triterpenoid biosynthesis pathway in bitter melon seedlings. A total of 88,703 transcripts with an average length of 898 bp were identified in bitter melon seedlings. On the basis of a functional annotation, we identified 15 candidate genes encoding enzymes related to triterpenoid biosynthesis and analyzed their expression in different organs of mature plants. Most genes were highly expressed in flowers and/or fruit from the ripening stages. An HPLC analysis confirmed that the accumulation of charantin was highest in fruits from the ripening stage, followed by male flowers. The accumulation patterns of charantin coincide with the expression pattern of McSE and McCAS1, indicating that these genes play important roles in charantin biosynthesis in bitter melon. We also investigated optimum light conditions for enhancing charantin biosynthesis in bitter melon and found that red light was the most effective wavelength.

  16. RNA-seq analysis of overexpressing ovine AANAT gene of melatonin biosynthesis in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-08-01

    Full Text Available Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector (EV control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differential expression genes (DEGs in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid and gingerol and signaling pathways (MAPK signaling pathway, estrogen signaling pathway were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism.

  17. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  18. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  19. Pheromone biosynthesis in bark beetles.

    Science.gov (United States)

    Tittiger, Claus; Blomquist, Gary J

    2017-12-01

    Pine bark beetles rely on aggregation pheromones to coordinate mass attacks and thus reproduce in host trees. The structural similarity between many pheromone components and those of defensive tree resin led to early suggestions that pheromone components are metabolic derivatives of ingested precursors. This model has given way to our current understanding that most pheromone components are synthesized de novo. Their synthesis involves enzymes that modify products from endogenous metabolic pathways; some of these enzymes have been identified and characterized. Pheromone production is regulated in a complex way involving multiple signals, including JH III. This brief review summarizes progress in our understanding of this highly specialized metabolic process. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  1. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  3. Metabolic engineering for improved heterologous terpenoid biosynthesis

    NARCIS (Netherlands)

    Ryden, A.; Melillo, E.; Czepnik, M.; Kayser, O.

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  4. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  5. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.).

    Science.gov (United States)

    Jiang, Yusong; Liao, Qinhong; Zou, Yong; Liu, Yiqing; Lan, Jianbin

    2017-10-23

    Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR). A total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the "terpenoid backbone biosynthesis" and "stilbenoid, diarylheptanoid and gingerol biosynthesis" pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log 2 (fold-change) ≥ 1) in FR than in YG or MG. This study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to

  6. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    Science.gov (United States)

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: a prospective, randomized, double blind, and placebo-controlled study5

    DEFF Research Database (Denmark)

    Kupcinskas, L.; Lafolie, P.; Lignell, A.

    2008-01-01

    OBJECTIVES: The aim of this study was to evaluate the efficacy of the natural antioxidant astaxanthin in functional dyspepsia in different doses and compared with placebo. DESIGN: The study was a controlled, prospective, randomized, and double blind trial. PARTICIPANTS: Patients with functional d...

  8. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.

    Science.gov (United States)

    Machas, Michael S; McKenna, Rebekah; Nielsen, David R

    2017-10-01

    2-Phenylethanol (2PE) is a key molecule used in the fragrance and food industries, as well as a potential biofuel. In contrast to its extraction from plant biomass and/or more common chemical synthesis, microbial 2PE production has been demonstrated via both native and heterologous expression of the yeast Ehrlich pathway. Here, a novel alternative to this established pathway is systematically engineered in Escherichia coli and evaluated as a more robust and efficient route. This novel pathway is constructed via the modular extension of a previously engineered styrene biosynthesis pathway, proceeding from endogenous l-phenylalanine in five steps and involving four heterologous enzymes. This "styrene-derived" pathway boasts nearly a 10-fold greater thermodynamic driving force than the Ehrlich pathway, and enables reduced accumulation of acetate byproduct. When directly compared using a host strain engineered for l-phenylalanine over-production, preservation of phosphoenolpyruvate, and reduced formation of byproduct 2-phenylacetic acid, final 2PE titers via the styrene-derived and Ehrlich pathways reached 1817 and 1164 mg L -1 , respectively, at yields of 60.6 and 38.8 mg g -1 . Following optimization of induction timing and initial glucose loading, 2PE titers by the styrene-derived pathway approached 2 g L -1 - nearly a two-fold twofold increase over prior reports for 2PE production by E. coli employing the Ehrlich pathway. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Cun-dong Fan

    2017-12-01

    Full Text Available Homocysteine (Hcy as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD. Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM, TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS. Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.

  10. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage.

    Science.gov (United States)

    Fan, Cun-Dong; Sun, Jing-Yi; Fu, Xiao-Ting; Hou, Ya-Jun; Li, Yuan; Yang, Ming-Feng; Fu, Xiao-Yan; Sun, Bao-Liang

    2017-01-01

    Homocysteine (Hcy) as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD). Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX) as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM), TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS). Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.

  11. Effects of Dietary Supplementation with Astaxanthin on Histamine Induced Lesions in the Gizzard and Proventriculus of Broiler Chicks

    Directory of Open Access Journals (Sweden)

    Mi-hyang Ohh

    2016-06-01

    Full Text Available Astaxanthin (ASX is a xanthophyll pigment isolated from crustaceans and salmonids. Owing to its powerful antioxidant activity, ASX has been reported to have the potential to protect against gastric ulcers and a variety of other illnesses. Histamine (His is a dietary factor that causes gastric erosion and ulceration in young chicks. In this study, we examined whether ASX had protective effects on dietary histamine-induced lesions in the gizzard and proventriculus of broiler chickens. Four experimental treatment groups were planned: basal diet (BD, BD+His, BD+ASX, and BD+ASX+His, with four chicks (5 days old in each group and three replications (i.e., a total of 12 chicks per group. The BD was supplemented with either 0.4% His or 100 ppm ASX. The birds were fed ad libitum for 3 weeks, and diets contained no antimicrobial compounds. Supplementing the diet with His significantly decreased body weight gain, but increased the weights of the gizzard and proventriculus of the chicks as compared with those of chicks in the BD group (p<0.05. ASX did not affect His-dependent changes in chick body weight or weights of the gizzard and proventriculus. The loss of gastric glands in the proventriculus, which was observed in His-treated chicks, was not prevented by ASX administration. The frequency of proventricular ulceration, however, was lowered by treatment with ASX, without significant differences between the two supplementation levels. In conclusion, our data showed that ASX might be helpful for alleviating structural damage to the digestive system in poultry under certain stressful conditions.

  12. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R

    2012-03-09

    Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

  13. Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.

    Science.gov (United States)

    Pech-Kú, Roberto; Muñoz-Sánchez, J Armando; Monforte-González, Miriam; Vázquez-Flota, Felipe; Rodas-Junco, Beatriz A; González-Mendoza, Víctor M; Hernández-Sotomayor, S M Teresa

    2018-04-01

    Toxicity by aluminum is a growth-limiting factor in plants cultivated in acidic soils. This metal also promotes signal transduction pathways leading to the biosynthesis of defense compounds, including secondary metabolites. In this study, we observed that Coffea arabica L. cells that were kept in the dark did not produce detectable levels of caffeine. However, irradiation with light and supplementation of the culture medium with theobromine were the best conditions for cell maintenance to investigate the role of aluminum in caffeine biosynthesis. The addition of theobromine to the cells did not cause any changes to cell growth and was useful for the bioconversion of theobromine to caffeine. During a short-term AlCl 3 -treatment (500μM) of C. arabica cells kept under light irradiation, increases in the caffeine levels in samples that were recovered from both the cells and culture media were evident. This augmentation coincided with increases in the enzyme activity of caffeine synthase (CS) and the transcript level of the gene encoding this enzyme (CS). Together, these results suggest that actions by Al and theobromine on the same pathway lead to the induction of caffeine biosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis.

    Science.gov (United States)

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A; Hall, David H; Fleming, John T; Göbel, Verena

    2011-09-18

    Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.

  15. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    Science.gov (United States)

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  16. Neuroprotective Properties of the Marine Carotenoid Astaxanthin and Omega-3 Fatty Acids, and Perspectives for the Natural Combination of Both in Krill Oil

    Directory of Open Access Journals (Sweden)

    Marcelo P. Barros

    2014-03-01

    Full Text Available The consumption of marine fishes and general seafood has long been recommended by several medical authorities as a long-term nutritional intervention to preserve mental health, hinder neurodegenerative processes, and sustain cognitive capacities in humans. Most of the neurological benefits provided by frequent seafood consumption comes from adequate uptake of omega-3 and omega-6 polyunsaturated fatty acids, n-3/n-6 PUFAs, and antioxidants. Optimal n-3/n-6 PUFAs ratios allow efficient inflammatory responses that prevent the initiation and progression of many neurological disorders. Moreover, interesting in vivo and clinical studies with the marine antioxidant carotenoid astaxanthin (present in salmon, shrimp, and lobster have shown promising results against free radical-promoted neurodegenerative processes and cognition loss. This review presents the state-of-the-art applications of n-3/n-6 PUFAs and astaxanthin as nutraceuticals against neurodegenerative diseases associated with exacerbated oxidative stress in CNS. The fundamental “neurohormesis” principle is discussed throughout this paper. Finally, new perspectives for the application of a natural combination of the aforementioned anti-inflammatory and antioxidant agents (found in krill oil are also presented herewith.

  17. Creatine biosynthesis and transport in health and disease.

    Science.gov (United States)

    Joncquel-Chevalier Curt, Marie; Voicu, Pia-Manuela; Fontaine, Monique; Dessein, Anne-Frédérique; Porchet, Nicole; Mention-Mulliez, Karine; Dobbelaere, Dries; Soto-Ares, Gustavo; Cheillan, David; Vamecq, Joseph

    2015-12-01

    Creatine is physiologically provided equally by diet and by endogenous synthesis from arginine and glycine with successive involvements of arginine glycine amidinotransferase [AGAT] and guanidinoacetate methyl transferase [GAMT]. A specific plasma membrane transporter, creatine transporter [CRTR] (SLC6A8), further enables cells to incorporate creatine and through uptake of its precursor, guanidinoacetate, also directly contributes to creatine biosynthesis. Breakthrough in the role of creatine has arisen from studies on creatine deficiency disorders. Primary creatine disorders are inherited as autosomal recessive (mutations affecting GATM [for glycine-amidinotransferase, mitochondrial]) and GAMT genes) or X-linked (SLC6A8 gene) traits. They have highlighted the role of creatine in brain functions altered in patients (global developmental delay, intellectual disability, behavioral disorders). Creatine modulates GABAergic and glutamatergic cerebral pathways, presynaptic CRTR (SLC6A8) ensuring re-uptake of synaptic creatine. Secondary creatine disorders, addressing other genes, have stressed the extraordinary imbrication of creatine metabolism with many other cellular pathways. This high dependence on multiple pathways supports creatine as a cellular sensor, to cell methylation and energy status. Creatine biosynthesis consumes 40% of methyl groups produced as S-adenosylmethionine, and creatine uptake is controlled by AMP activated protein kinase, a ubiquitous sensor of energy depletion. Today, creatine is considered as a potential sensor of cell methylation and energy status, a neurotransmitter influencing key (GABAergic and glutamatergic) CNS neurotransmission, therapeutic agent with anaplerotic properties (towards creatine kinases [creatine-creatine phosphate cycle] and creatine neurotransmission), energetic and antioxidant compound (benefits in degenerative diseases through protection against energy depletion and oxidant species) with osmolyte behavior (retention of

  18. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eichenberger, Michael; Hansson, Anders; Fischer, David; Dürr, Lara; Naesby, Michael

    2018-06-01

    Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.

  19. De novo Biosynthesis of "Non-Natural" Thaxtomin Phytotoxins.

    Science.gov (United States)

    Winn, Michael; Francis, Daniel; Micklefield, Jason

    2018-03-30

    Thaxtomins are diketopiperazine phytotoxins produced by Streptomyces scabies and other actinobacterial plant pathogens that inhibit cellulose biosynthesis in plants. Due to their potent bioactivity and novel mode of action there has been considerable interest in developing thaxtomins as herbicides for crop protection. To address the need for more stable derivatives, we have developed a new approach for structural diversification of thaxtomins. Genes encoding the thaxtomin NRPS from S. scabies, along with genes encoding a promiscuous tryptophan synthase (TrpS) from Salmonella typhimurium, were assembled in a heterologous host Streptomyces albus. Upon feeding indole derivatives to the engineered S. albus strain, tryptophan intermediates with alternative substituents are biosynthesized and incorporated by the NRPS to deliver a series of thaxtomins with different functionalities in place of the nitro group. The approach described herein, demonstrates how genes from different pathways and different bacterial origins can be combined in a heterologous host to create a de novo biosynthetic pathway to "non-natural" product target compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  1. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.

    Science.gov (United States)

    Peck, Spencer C; van der Donk, Wilfred A

    2013-08-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cultivo da levedura Phaffia rhodozyma (Xanthophyllomyces dendrorhous em processo descontínuo alimentado para produção de astaxantina Cultivation of Phaffia rhodozyma (Xanthophyllomyces dendrorhous yeast in discontinuous system to obtain astaxanthin

    Directory of Open Access Journals (Sweden)

    Miriam Blümel Chociai

    2002-12-01

    Full Text Available A levedura Phaffia rhodozyma, produtora de astaxantina, pigmento carotenóide largamente empregado na aqüicultura de peixes e crustáceos, pode ser eficientemente cultivada num meio de cultura de baixo custo, à base de caldo de cana diluído 1:10 e uréia a 1 g/L. No entanto, a produção de biomassa e a formação do carotenóide sofrem a inibição pelo substrato (efeito "Crabtree", limitando desta forma a utilização do caldo de cana com concentrações da fonte de carbono superiores a 20 g/L, importante consideração na produção industrial de astaxantina. No presente trabalho, o cultivo da levedura P. rhodozyma foi realizado em processo descontínuo alimentado, no qual se obteve produtividade volumétrica de 0,024 mg astaxantina/L.h. em relação aos 0,013 mg astaxantina/L.h. obtidos no cultivo controle, que não sofreu alimentação da fonte de carbono.The yeast Phaffia rhodozyma produces astaxanthin, a carotenoid pigment widely applied in fish and crustaceous cultivation. This yeast can be efficiently cultured in a low cost medium, sugar cane broth diluted 1:10 and supplemented with 1 g/L urea. However, the biomass and astaxanthin production undergo inhibition by the substrate (Crabtree effect, limiting the utilization of sugar cane broth up to 20 g/L total sugar concentration. Therefore, this effect must be considered during the industrial production of astaxanthin. In the present work, using fed batch system to cultivate P. rhodozyma we were able to obtain 0.024 mg astaxanthin/l.h compared to 0.013 mg astaxanthin/l.h obtained by the discontinuous cultivation system.

  3. Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes

    DEFF Research Database (Denmark)

    Schroll, Casper; Christensen, Jens P.; Christensen, Henrik

    2014-01-01

    . Typhi and S. Gallinarum and happened through independent events. The remaining polyamine biosynthesis pathway was found to be essential for oral infection with S. Gallinarum since single and double mutants in speB and speE, encoding the pathways from agmatine to putrescine and from putrescine...... to putrescine. The first pathway is not active in S. Gallinarum and S. Typhi, and this prompted us to investigate the importance of polyamines for virulence in S. Gallinarum. Bioinformatic analysis of all sequenced genomes of Salmonella revealed that pseudogene formation of the speC gene was exclusive for S...

  4. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  5. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    Science.gov (United States)

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    Science.gov (United States)

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  7. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  8. Investigation of the biosynthesis in Achillea millefolium ssp. collina Becker using radioactive isotopes

    International Nuclear Information System (INIS)

    Verzarne Petri, G.; Shalaby El-Sayed, A.

    1979-01-01

    The biosynthesis in Achillea millefolium ssp. collina Becker was studied using CH 3 - 14 COONa and 14 CH 3 - COONa precursors. It has been found that CH 3 - 14 COONa incorporates more slowly and in lower rate into the biosynthetic pathway of essential oil than 14 CH 3 - COONa. The incorporation of both demonstrates the oil forming ability of herb and flowers. The process is more emphasized in the flower out of the organs of the plants. Further on it was stated that the biosynthesis leads to bicyclic α-pinene and borneol through some aliphatic and cyclic monoterpenes, while eucalyptole (cineol) as an oxydation product appears in an early stage. Of sesquiterpenes the caryophyllene procedes the formation of camazulene. (author)

  9. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    Science.gov (United States)

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  10. Discovery, biosynthesis, and rational engineering of novel enterocin and wailupemycin polyketide analogues.

    Science.gov (United States)

    Kalaitzis, John A

    2013-01-01

    The marine actinomycete Streptomyces maritimus produces a structurally diverse set of unusual polyketide natural products including the major metabolite enterocin. Investigations of enterocin biosynthesis revealed that the unique carbon skeleton is derived from an aromatic polyketide pathway which is genetically coded by the 21.3 kb enc gene cluster in S. maritimus. Characterization of the enc biosynthesis gene cluster and subsequent manipulation of it via heterologous expression and/or mutagenesis enabled the discovery of other enc-based metabolites that were produced in only very minor amounts in the wild type. Also described are techniques used to harness the enterocin biosynthetic machinery in order to generate unnatural enc-derived polyketide analogues. This review focuses upon the molecular methods used in combination with classical natural products detection and isolation techniques to access minor metabolites of the S. maritimus secondary metabolome.

  11. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit

    Directory of Open Access Journals (Sweden)

    Bhekumthetho Ncube

    2015-07-01

    Full Text Available The immense chemical diversity of plant-derived secondary metabolites coupled with their vast array of biological functions has seen this group of compounds attract considerable research interest across a range of research disciplines. Medicinal and aromatic plants, in particular, have been exploited for this biogenic pool of phytochemicals for products such as pharmaceuticals, fragrances, dyes, and insecticides, among others. With consumers showing increasing interests in these products, innovative biotechnological techniques are being developed and employed to alter plant secondary metabolism in efforts to improve on the quality and quantity of specific metabolites of interest. This review provides an overview of the biosynthesis for phytochemical compounds with medicinal and other related properties and their associated biological activities. It also provides an insight into how their biosynthesis/biosynthetic pathways have been modified/altered to enhance production.

  12. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  13. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence rep