WorldWideScience

Sample records for astatine iodides

  1. Potassium Iodide

    Science.gov (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be ... damage the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency ...

  2. Bibliography of astatine chemistry and biomedical applications

    International Nuclear Information System (INIS)

    An overall bibliography is presented on astatine chemistry and on the biomedical applications of its 211At isotope. The references were grouped in the following chapters: General reviews; Discovery, Natural Occurence; Nuclear Data; Preparation, Handling, Radiation Risk; Physico-chemical Properties; Astatine Compounds and Chemical Reactions; Biological Effects and Applications. Entries are sorted alphabetically by authors name in each chapter, and cross-references to other chapters are provided if appropriate. (R.P.)

  3. Astatine-211: production and availability.

    Science.gov (United States)

    Zalutsky, Michael R; Pruszynski, Marek

    2011-07-01

    The 7.2-h half life radiohalogen (211)At offers many potential advantages for targeted α-particle therapy; however, its use for this purpose is constrained by its limited availability. Astatine-211 can be produced in reasonable yield from natural bismuth targets via the (209)Bi(α,2n)(211)At nuclear reaction utilizing straightforward methods. There is some debate as to the best incident α-particle energy for maximizing 211At production while minimizing production of (210)At, which is problematic because of its 138.4-day half life α-particle emitting daughter, (210)Po. The intrinsic cost for producing (211)At is reasonably modest and comparable to that of commercially available (123)I. The major impediment to (211)At availability is attributed to the need for a medium energy α-particle beam for its production. On the other hand, there are about 30 cyclotrons in the world that have the beam characteristics required for (211)At production. PMID:22201707

  4. Adsorption interaction of astatine species with quartz and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serov, A. [Paul Scherrer Institute, Villigen (Switzerland). Lab. for Radiochemistry and Environmental Chemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry; Aksenov, N.; Bozhikov, G. [Joint Institute for Nuclear Research, Dubna (RU). Flerov Lab. of Nuclear Reactions] (and others)

    2011-07-01

    The adsorption interaction of various astatine species with quartz and gold surfaces was investigated by gas chromatography methods. Due to variations of the redox potential of the carrier gas elemental astatine, astatine oxide and hypo-astatic acid have been produced. The identification of the astatine compounds is based on the analogy assumption to the gas phase chemistry of the closest homologues in group 17 of the periodic table, iodine and bromine. The deposition temperatures as well as enthalpies of adsorption have been determined for the astatine species. The enhancement of the metallic character within group 17 towards higher Z is clearly confirmed. Macroscopic properties (sublimation enthalpy) of previously unstudied AtO{sub 2} and HAtO were estimated. The determined data for elemental astatine were compared to available literature data. Based on the obtained experimental results possible designs of experiments for studying of chemical properties of the recently discovered element 117 can be suggested. (orig.)

  5. Recent advances in the organic chemistry of astatine

    International Nuclear Information System (INIS)

    Investigation on the chemical behaviour of astatine in the last decade are surveyed. The survey covers the physical and chemical properties of astatine, synthesis and identification of organic astatine compounds, their physicochemical properties. A special chapter is devoted to biomedical applications, including inorganic 211At species, 211At-labelled proteins and drugs. An extensive bibliography of the related literature is given. (N.T.) 129 refs.; 12 figs.; 14 tabs

  6. Discovery of the astatine, radon, francium, and radium isotopes

    CERN Document Server

    Fry, C

    2012-01-01

    Currently, thirty-nine astatine, thirty-nine radon, thirty-five francium, and thirty-four radium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  7. Unexpected Behavior of the Heaviest Halogen Astatine in the Nucleophilic Substitution of Aryliodonium Salts.

    Science.gov (United States)

    Guérard, François; Lee, Yong-Sok; Baidoo, Kwamena; Gestin, Jean-François; Brechbiel, Martin W

    2016-08-22

    Aryliodonium salts have become precursors of choice for the synthesis of (18) F-labeled tracers for nuclear imaging. However, little is known on the reactivity of these compounds with heavy halides, that is, radioiodide and astatide, at the radiotracer scale. In the first comparative study of radiohalogenation of aryliodonium salts with (125) I(-) and (211) At(-) , initial experiments on a model compound highlight the higher reactivity of astatide compared to iodide, which could not be anticipated from the trends previously observed within the halogen series. Kinetic studies indicate a significant difference in activation energy (Ea =23.5 and 17.1 kcal mol(-1) with (125) I(-) and (211) At(-) , respectively). Quantum chemical calculations suggest that astatination occurs via the monomeric form of an iodonium complex whereas iodination occurs via a heterodimeric iodonium intermediate. The good to excellent regioselectivity of halogenation and high yields achieved with diversely substituted aryliodonium salts indicate that this class of compounds is a promising alternative to the stannane chemistry currently used for heavy radiohalogen labeling of tracers in nuclear medicine. PMID:27305065

  8. Extraction of astatine isotopes for development of radiopharmaceuticals using a 211Rn-211At generator

    International Nuclear Information System (INIS)

    In order to utilize a 211At isotope, a promising α-emitter for radionuclide therapy, the chemical properties of astatine isotopes are studied. We have examined wet chemistry methods through the distribution ratios of astatine in liquid-liquid extraction. The astatine isotopes have been found to be well extracted into DIPE and MIBK. We observed that the distribution ratio of astatine isotopes increases with concentrations of HCl greater than 3 M, while it decreases with the HCl concentration less than 2 M. The results will be useful for development of the 211Rn-211At generator. (author)

  9. Astatine-211-Labeled Targeted Radiotherapeutics: An Update

    International Nuclear Information System (INIS)

    The heavy halogen 211At was first proposed for use in α-particle targeted radiotherapy more than 30 years ago and continues to be one of the most promising radionuclides for this purpose. Although its 7.2-h half life is not ideal for intravenously administered whole antibodies, it is compatible with the pharmacokinetics of antibody fragments, peptides, aptamers and organic molecules. Its diverse chemistry allows its incorporation into a wide array of targeting vehicles, relying on its chemical similarity to iodine to provide a useful point of departure. On the other hand, the relatively low carbon-astatine bond strength is challenging. In common with the other α-emitters being discussed at this symposium, lack of reliable availability is one of the biggest hurdles in the use of 211At for targeted radiotherapy. However, in the case of 211At, it is not a question of production cost or availability of target material, because 211At can be produced in reasonable yield from natural bismuth targets. Rather, the difficulty is the lack of cyclotrons equipped with the medium energy α-particle beams required for its production. If the infrastructure for producing 211At is to be improved to the stage where 211At-labeled radiopharmaceuticals can have a meaningful impact, several developments must occur. First, the ability to produce clinically relevant levels of 211At that can be shipped to remote locations in chemically tractable form must be demonstrated. Approaches under consideration include compensating for radiolysis-mediated effects and the consideration of alternative chemistries. Second, strategies for compensating for heterogeneities in dose deposition must be developed, hopefully in a way that is compatible with approval for human use. And third, it is essential that more clinical trials be performed with 211At-labeled therapeutics, particularly in settings of minimum residual disease where the radiobiological advantages of α-particles can be best exploited. Our

  10. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    CERN Document Server

    Rothe, S; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yu; Köster, U; Lane, J; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of smallest quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.317510(8) eV. New ab initio calculations were performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of super-heavy element 117, the heaviest homologue of astatine.

  11. Synthesis and Evaluation of Astatinated N-[2-(Maleimido)ethyl]-3-(trimethylstannyl)benzamide Immunoconjugates.

    Science.gov (United States)

    Aneheim, Emma; Gustafsson, Anna; Albertsson, Per; Bäck, Tom; Jensen, Holger; Palm, Stig; Svedhem, Sofia; Lindegren, Sture

    2016-03-16

    Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 μm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies. PMID:26791409

  12. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    OpenAIRE

    Rothe, S.; A. N. Andreyev; Antalic, S; Borschevsky, A.; Capponi, L.; Cocolios, T.E.; Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the io...

  13. Synthesis of mercuric iodide and bismuth tri-iodide nanoparticles for heavy metal iodide films nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, L.; Pereira, H.Bentos [Compound Semiconductors Group, CURE, Universidad de la Republica, Rocha (Uruguay); Aguiar, I.; Perez Barthaburu, M. [Compound Semiconductors Group, Facultad de Quimica, Univ. de la Republica, Montevideo (Uruguay)

    2011-12-15

    We synthesized mercuric iodide and bismuth tri-iodide nanoparticles by suspension in octadecene, from Hg(NO{sub 3}){sub 2}.H{sub 2}O and I{sub 2}, and from Bi(NO{sub 3}){sub 3}.5H{sub 2}O and I{sub 2}, respectively. The best synthesis conditions were 2 h at 70-80 C, followed by 10 min at 110 C for mercuric iodide nanoparticles, and 4 h at 80-110 C, followed by 10 min at 180-210 C for bismuth tri-iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X-ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk-like and squared mercuric iodide nanostructures, 80-140 nm and 100-125 nm in size respectively. We also obtained rounded and rod-like bismuth tri-iodide nanoparticles, 30-500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri-iodide nanoparticles exhibited peak maxima shifts in their UV-Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri-iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Final Report for research grant "Development of Methods for High Specific Activity Labeling of Biomolecules Using Astatine-211 in Different Oxidation States"

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, D., Scott

    2011-12-14

    The overall objective of this research effort was to develop methods for labeling biomolecules with higher oxidation state species of At-211. This was to be done in an effort to develop reagents that had higher in vivo stability than the present carbon-bonded At-211-labeled compounds. We were unsuccessful in that effort, as none of the approaches studied provided reagents that were stable to in vivo deastatination. However, we gained a lot of information about At-211 in higher oxidation states. The studies proved to be very difficult as small changes in pH and other conditions appeared to change the nature of the species that obtained (by HPLC retention time analyses), with many of the species being unidentifiable. The fact that there are no stable isotopes of astatine, and the chemistry of the nearest halogen iodine is quite different, made it very difficult to interpret results of some experiments. With that said, we believe that a lot of valuable information was obtained from the studies. The research effort evaluated: (1) methods for chemical oxidation of At-211, (2) approaches to chelation of oxidized At-211, and (3) approaches to oxidation of astatophenyl compounds. A major hurdle that had to be surmounted to conduct the research was the development of HPLC conditions to separate and identify the various oxidized species formed. Attempts to develop conditions for separation of iodine and astatine species by normal and reversed-phase TLC and ITLC were not successful. However, we were successful in developing conditions (from a large number of attempts) to separate oxidized forms of iodine ([I-125]iodide, [I-125]iodate and [I-125]periodate) and astatine ([At-211]astatide, [At-211]astatate, [At-211]perastatate, and several unidentified At-211 species). Information on the basic oxidation and characterization of At-211 species is provided under Objective 1. Conditions were developed to obtain new At-211 labeling method where At-211 is chelated with the DOTA and

  15. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  16. Mercuric iodide sensor technology

    International Nuclear Information System (INIS)

    This report describes the improvement in the performance and the manufacturing yield of mercuric iodide detectors achieved by identifying the dominant impurities, carrier traps, and processing steps limiting device performance. Theoretical studies of electron and hole transport in this material set fundamental limits on detector performance and provided a standard against which to compare experimental results. Spectroscopy techniques including low temperature photoluminescence and thermally stimulated current spectroscopy were applied to characterize the deep level traps in this material. Traps and defects that can be introduced into the detector during growth, from the contact, and during the various steps in detector fabrication were identified. Trap energy levels and their relative abundances were determined. Variations in material quality and detector performance at the micron scale were investigated to understand the distribution in electric field in large volume detectors suitable for gamma-ray spectroscopy. Surface aging and contact degradation was studied extensively by techniques including atomic force microscopy, transmission electron microscopy, and variable angle spectroscopic ellipsometry. Preferred handling and processing procedures for maximizing detector performance and yield were established. The manufacturing yield of high resolution gamma-ray detectors was improved from a few percent to more than 30%

  17. Automated astatination of biomolecules - a stepping stone towards multicenter clinical trials

    DEFF Research Database (Denmark)

    Aneheim, Emma; Albertsson, Per; Bäck, Tom;

    2015-01-01

    To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical...... and physical properties for use in targeted therapies for cancer. Due to the very short range of the emitted α-particles, this therapy is particularly suited to treating occult, disseminated cancers. Astatine is not intrinsically tumour-specific; therefore, it requires an appropriate tumour-specific targeting...... vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method...

  18. Study of Astatine (III) reactions with O, S and N ligands in solution

    International Nuclear Information System (INIS)

    Full text of publication follows. Astatine (At, Z=85: [Xe]4f145d106s26p5) belongs to the halogen group and is located below iodine in the periodic table. One of its isotopes (211At) appears promising as a therapeutic agent in nuclear medicine (Ref.1) owing to the energy of the alpha particles emitted during the disintegration of its nucleus and its short physical half-life (7.2 h). Since there are no stable isotopes of astatine, the chemistry of this element remains poorly understood. Generally, At is supposed to behave as a halogen (Ref.2) but it has been shown recently in our group that astatine presents a metallic behaviour in aqueous solution: it notably exists as At+ and AtO+ species under the oxidation states +I and +III (Ref.3). At the present time, the number of studies dealing with the complexation properties of the cationic forms of astatine remains limited (Ref.4), owing to its low availability. In this work, we have investigated the reactions of AtO+ species with different hetero-atomic (N, S, O) model ligands. A combined approach based on experimental and theoretical studies has been used (Ref.5). On account of the difficulties of experimental investigations of astatine species, the reactivity of AtO+ was explored using a competition method founded on astatine distributions between two distinct phases. Furthermore, for each AtO+/ ligand complex, the nature of the species formed and the associated thermodynamic constants were determined by computational modeling (DFT calculations). In this framework, an original computational methodology was developed to take into account the specificities of astatine, notably the associated relativistic effects. The computed equilibrium constants have been confronted with the experimental results. This comparison demonstrates an outstanding coherence between experience and theory. Furthermore, the analysis of the results shows a key role of solvent effects on astatine chemistry. Lastly, a specific reactivity for the

  19. 21 CFR 184.1634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  20. 21 CFR 582.5634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  1. Some aspects of the organic, biological and inorganic chemistry of astatine

    International Nuclear Information System (INIS)

    Astatine has no stable isotopes and the radioactive isotopes with half-lives sufficiently long for chemical experiments (209At, 210At, 211At) must be produced artificially with a cyclotron or with a high energy accelerator by spallation of Th. This thesis deals with the synthesis and chemistry of At-compounds and the determination of some of their properties. (C.F.)

  2. Astatine-211 Pathway from Radiochemistry to Clinical Investigation

    International Nuclear Information System (INIS)

    Particularly in clinical settings where tumour burden is low and cancers are located in close proximity to essential normal tissue structures, α-particle emitting radionuclides can offer significant advantages for targeted radionuclide therapy. One of the first alpha emitters to be evaluated for this purpose is the 7.2-h half-life radiohalogen Astatine-211 (211At). From a commercialization-potential perspective 211At, is less appealing than the longer half-life alpha particle emitters Radium-223, Actinium-225 and Thorium-227, which have become the focus of many laboratories. However, if methods for providing a better supply of 211At could be developed, this alpha emitter would be the radionuclide of choice for many potential therapeutic applications. With regard to the production of 211At, this can be readily be accomplished by bombarding natural bismuth targets with 28−29.5 MeV alpha particles via the 209Bi(α,2n)211At reaction. The goal is to utilize an alpha particle beam energy that provides the required balance for maximizing 211At production while minimizing creation of 210At, which is problematic because of its 138.4-day half life alpha-particle emitting daughter, 210Po. For most intended clinical applications, alpha particle beam energy of about 29 MeV offers the best compromise between maximizing yield and providing 211At with sufficient radionuclidic purity for clinical use. Clinically relevant levels of 211At have been produced at several institutions using both internal and external cyclotron targets

  3. Uptake of iodide in the marine haptophyte Isochrysis sp. (T.ISO) driven by iodide oxidation.

    Science.gov (United States)

    van Bergeijk, Stef A; Hernández Javier, Laura; Heyland, Andreas; Manchado, Manuel; Pedro Cañavate, José

    2013-08-01

    Uptake of iodide was studied in the marine microalga Isochrysis sp. (isol. Haines, T.ISO) during short-term incubations with radioactive iodide ((125) I(-) ). Typical inhibitors of the sodium/iodide symporter (NIS) did not inhibit iodide uptake, suggesting that iodide is not taken up through this transport protein, as is the case in most vertebrate animals. Oxidation of iodide was found to be an essential step for its uptake by T.ISO and it seemed likely that hypoiodous acid (HOI) was the form of iodine taken up. Uptake of iodide was inhibited by the addition of thiourea and of other reducing agents, like L-ascorbic acid, L-glutathione and L-cysteine and increased after the addition of oxidized forms of the transition metals Fe and Mn. The simultaneous addition of both hydrogen peroxide (H2 O2 ) and a known iodide-oxidizing myeloperoxidase (MPO) significantly increased iodine uptake, but the addition of H2 O2 or MPO separately, had no effect on uptake. This confirms the observation that iodide is oxidized prior to uptake, but it puts into doubt the involvement of H2 O2 excretion and membrane-bound or extracellular haloperoxidase activity of T.ISO. The increase of iodide uptake by T.ISO upon Fe(III) addition suggests the nonenzymatic oxidation of iodide by Fe(III) in a redox reaction and subsequent influx of HOI. This is the first report on the mechanism of iodide uptake in a marine microalga.

  4. An attempt to explore the production routes of Astatine radionuclides: Theoretical approach

    OpenAIRE

    Maiti, Moumita; Lahiri, Susanta

    2008-01-01

    In order to fulfil the recent thrust of Astatine radionuclides in the field of nuclear medicine various production routes have been explored in the present work. The possible production routes of $^{209-211}$At comprise both light and heavy ion induced reactions at the bombarding energy range starting from threshold to maximum 100 MeV energy. For this purpose, we have used the nuclear reaction model codes TALYS, ALICE91 and PACE-II. Excitation functions of those radionuclides, produced throug...

  5. Neutron Detection with Mercuric Iodide

    CERN Document Server

    Bell, Z A

    2003-01-01

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the sup 1 sup 0 B(n, alpha) sup 7 Li* reaction. However, the 374 barn thermal capture cross section of sup n sup a sup t Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant sup 1 sup 9 sup 9 Hg(n, gamma) sup 2 sup 0 sup 0 Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in sup 1 sup 0 B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both ...

  6. Neutron Detection with Mercuric Iodide

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.A.

    2003-06-17

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the {sup 10}B(n, {alpha}){sup 7}Li* reaction. However, the 374 barn thermal capture cross section of {sup nat}Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant {sup 199}Hg(n, {gamma}){sup 200}Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in {sup 10}B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both the 478 and 368 keV gamma rays removes the ambiguity associated with the observation of only one of them. Pulse height spectra, obtained with and without lead and cadmium absorbers, showed the expected gamma rays and demonstrated that they were caused by neutrons.

  7. Rare, severe hypersensitivity reaction to potassium iodide

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Korsholm; Ebbehøj, Eva; Richelsen, Bjørn

    2014-01-01

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acne...

  8. Predissociation dynamics of lithium iodide

    CERN Document Server

    Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

    2015-01-01

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  9. Predissociation dynamics of lithium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany); Bogomolov, A. S. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Baklanov, A. V. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Reich, D. M.; Skomorowski, W.; Koch, C. P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  10. Determination of the electron affinity of astatine and polonium by laser photodetachment

    CERN Multimedia

    We propose to conduct the first electron anity (EA) measurements of the two elements astatine (At) and polonium (Po). Collinear photodetachment spectroscopy will allow us to measure these quantities with an uncertainty limited only by the spectral linewidth of the laser. We plan to use negative ion beams of the two radioactive elements At and Po, which are only accessible on-line and at ISOLDE. The feasibility of our proposed method and the functionality of the experimental setup have been demonstrated at ISOLDE in o-line tests by the clear observation of the photodetachment threshold for stable iodine. This proposal is based on our Letter of Intent I-148 [1].

  11. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  12. The partitioning of iodides into steam

    International Nuclear Information System (INIS)

    In order to estimate the likely releases of radioactive iodine during steam generator tube rupture (SGTR) faults, it is necessary to know the relevant partition coefficients as a function of temperature and solution composition. It has been suggested previously that, under SGTR fault conditions, partitioning of free or ion-paired I- into the steam may be more extensive than that for molecular HI. This report uses available information on the partitioning of iodides and other salts to provide a means of estimating the partition coefficient of the iodide ion as a function of boric acid concentration and temperature. (author)

  13. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  14. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn;

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  15. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  16. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.;

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...

  17. Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide

    OpenAIRE

    Yuzo Nakamura; Motohiro Fujiu; Tatsuya Murase; Yoshimitsu Itoh; Hiroki Serizawa; Kohsuke Aikawa; Koichi Mikami

    2013-01-01

    The trifluoromethylation of aryl iodides catalyzed by copper(I) salt with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide and Zn dust was accomplished. The catalytic reactions proceeded under mild reaction conditions, providing the corresponding aromatic trifluoromethylated products in moderate to high yields. The advantage of this method is that additives such as metal fluoride (MF), which are indispensable to activate silyl groups for transmetallation in the corresp...

  18. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.;

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide/tri-iodide co......The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  19. Composition and properties of thallium mercury iodide

    Science.gov (United States)

    Kennedy, John H.; Schaupp, Christopher; Yang, Yuan; Zhang, Zhengming; Novinson, Thomas; Hoffard, Theresa

    1990-10-01

    Conflicting reports exist in the literature concerning the composition of thallium mercury iodide. Solid state synthesis with HgI 2 and TlI has been reported to give Tl 4HgI 6 while synthesis from solution has been reported to give Tl 2HgI 4. In this report we show that the "orange compound" precipitating from solution is actually a 1:1 mole ratio mixture of Tl 4HgI 6 and HgI 2. Pure Tl 4HgI 6, which is yellow, can be produced by heating the mixture at 100°C for several days to volatilize HgI 2 or more simply, by adding Tl(I) to a solution containing 2:1 KI:K 2HgI 4 to provide the additional iodide ions needed for Tl 4HgI 6. Tl 4HgI 6, unlike Ag 2HgI 4 and Cu 2HgI 4, has no sharp thermochromic changes and has no measurable ionic conductivity. This provides another example of the significant role the metal ion plans in determining structure and properties of metal mercury iodide compounds.

  20. Formation of cyanogen iodide by lactoperoxidase.

    Science.gov (United States)

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen

    2016-01-01

    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products.

  1. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  2. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  3. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  4. Europium-doped barium bromide iodide

    Energy Technology Data Exchange (ETDEWEB)

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  5. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others

    1996-12-31

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  6. Large-area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers

  7. Transfer of the human sodium/iodide symporter gene enhances iodide uptake in melanoma cells

    International Nuclear Information System (INIS)

    Objective: To obtain human sodium/iodide symporter (hNIS) cDNA and to study its biological property and potential use as a therapeutic radioiodide for melanoma. Methods: hNIS gene cDNA was amplified with total RNA from human thyroid tissue by RT-PCR. The hNIS cDNA was inserted into cloning vector pUCm-T and subcloned into eukaryotic expression vector pcDNA3. The recombinant plasmid pcDNA3-hNIS was introduced into B16 cells using the electroporation technique. The uptake and efflux of iodide was examined in vitro. Results: The cloned hNIS cDNA sequence was identical to the published sequence. Two novel cell lines named B16-A containing hNIS and B16-B containing pcDNA3 only were established. The resultant cell line B16-A accumulated 17 and 19 times more radioiodide in vitro than B16 and B16-B did, respectively. However the efflux of iodide from B16-A was also rapid ( T1/2=10 min). Conclusions: Our preliminary data indicate that the transduction of the hNIS gene per se is sufficient to induce iodide transport in melanoma cells in vitro, but its T1/2 is short. With regard to therapeutic application, however, further investigation is necessary so as to develop a method of maintaining more radioiodide in the cells for long enough to produce greater therapeutic effects

  8. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    Science.gov (United States)

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  9. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  10. Dissolution of gaseous methyl iodide into aqueous sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Absorption process of gaseous methyl iodide by water or sodium hydroxide solutions was investigated using a semi-flow type experimental apparatus by measuring the concentration of all measurable chemical species in both the gas and the liquid phase. The experimental temperature ranged from 288 to 311 K and the gaseous methyl iodide and aqueous sodium hydroxide concentrations were approximately 0.6 x 10-3 to 7 x 10-3 and 0 to 0.2 mol/dm3, respectively. It is estimated that the dissolution of methyl iodide into the sodium hydroxide solution proceeds according to the following steps. Step (1) Methyl iodide in air dissolves physically into the aqueous phase. Physical dissolution process obeys Henry's law. Step (2) Methyl iodide dissolved into the aqueous phase is decomposed by a base catalytic hydrolysis and produces methyl alcohol and iodide ion. The equilibrium constants of physical dissolution were obtained from the steady concentration in both the gas and the liquid phases in the semi-flow type experiment because the hydrolysis reaction rate of methyl iodide is very slow in comparison with the physical dissolution in this experimental conditions. The obtained value of the standard heat of solution of methyl iodide into water was 7.2 kcal/mol. Salting-out effect was observed when the concentration of sodium hydroxide in the absorbent was over 0.01 mol/dm3. (auth.)

  11. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  12. Novel mercuric iodide polycrystalline nuclear particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Labs., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI, Strasbourg (France)

    1997-12-01

    Polycrystalline mercuric iodide nuclear radiation detectors have been produced in a novel technology. Unlike the normal single-crystal technology, there is no intrinsic limit to the surface on which these detectors can be produced. Detectors with areas up to about 1.5 cm{sup 2}, thicknesses from 30 to 600 {micro}m, and with single electrodes as well as microstrip and pixel contacts have been fabricated and successfully tested with photons in the range of 40--660 keV, {beta} particle`s emitted from a Sr-Y source, and high energy (100 GeV) muons. Results on both charge collection and counting efficiency are reported as well as some very preliminary imaging results. The experimental results on charge collection have been compared with simulation, and a combined {mu}{tau} product 10{sup {minus}7} cm{sup 2}/V for electrons has been estimated.

  13. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.

    2016-02-12

    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  14. ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MICHAEL R. ZALUTSKY

    2012-08-08

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At

  15. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  16. The Effect on Sodium/Iodide Symporter and Pendrin in Thyroid Colloid Retention Developed by Excess Iodide Intake.

    Science.gov (United States)

    Chen, Xiao-Yi; Lin, Chu-Hui; Yang, Li-Hua; Li, Wang-Gen; Zhang, Jin-Wei; Zheng, Wen-Wei; Wang, Xiang; Qian, Jiang; Huang, Jia-Luan; Lei, Yi-Xiong

    2016-07-01

    It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 μg/L), group B (1500 μg/L), group C (3000 μg/L), group D (6000 μg/L), and group E (12,000 μg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland. PMID:26660892

  17. Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

    NARCIS (Netherlands)

    Smit, J.W.A.; Schröder - van der Elst, J.P.; Karperien, M.; Que, I.; Romijn, J.A.; Heide, van der D.

    2001-01-01

    The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (

  18. Improved Stability of Mercuric Iodide Detectors for Anticoincidence Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize guard ring electrode structures and a new film growth technique to create improved polycrystalline mercuric iodide detectors for background...

  19. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  20. A review of polytypism in lead iodide

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, P.A. [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania (United States)

    2010-05-15

    Lead Iodide (PbI{sub 2}) is an important inorganic solid for both basic scientific research and possible technological applications and in this brief review we discuss the structure of PbI{sub 2}. Although the basic structure is a simple I-Pb-I layered structure with a[PbI{sub 6}]{sup 4-} near-octahedron being the basic building block, there are many ways of stacking the layers which results in many polytypes. We present 20 of the 23 entries for the structure of PbI{sub 2} from the Inorganic Structural Database and order them by polytype. This represents more than 80 years of crystallographic research in the structure of this compound. We present a simple way to view the 2H, 4H, 6H, and 6R polytypes and extend the procedure to higher-order polytypes. We note a relationship, not generally appreciated, between the distortion of the near [PbI{sub 6}]{sup 4-} octahedrons and the polytype. We suggest that the significance of vacancies has only recently been appreciated. We suggest that small discrepancies in structure determination are probably due to different distributions of vacancies and that there are, in practice, very many structures for macroscopic or even mesoscopic samples of a given polytype when vacancies are considered. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Chloride, bromide and iodide scintillators with europium

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  2. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  3. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  4. Iodide kinetics and experimental I-131 therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line

    NARCIS (Netherlands)

    Smit, J.W.A.; Elst, van der J.P.; Karperien, M.; Que, I.; Stokkel, M.; Heide, van der D.; Romijn, J.A.

    2002-01-01

    Uptake of iodide is a prerequisite for radioiodide therapy in thyroid cancer. However, loss of iodide uptake is frequently observed in metastasized thyroid cancer, which may be explained by diminished expression of the human sodium-iodide symporter (hNIS). We studied whether transfection of hNIS int

  5. Evaluation of mercuric iodide ceramic semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.; Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)

    1998-02-01

    Mercuric iodide ceramic radiation detectors, which can act as nuclear particle counters, have been fabricated with single continuos electrical contacts and with linear strip contacts. They have been tested with different kinds of {gamma} and {beta} sources as well as in a high energy beam at CERN. The detectors were also successfully tested for radiation hardness with irradiation of 5*10{sup 14} neutrons/cm{sup 2}. The ratio of detected photons over the number of absorbed photons has been measured with {gamma} sources of different energies, and it ranges from 20% at 44 keV up to about 30% at 660 keV. An absolute efficiency of 70% has been measured for a 350 {mu}m thick detector for {beta} particles emitted by a {sup 90}Sr source. Charge collection efficiency, defined as the amount of charge induced on the electrodes by a mminimum ionizing particle (MIP) traversing the detector, has been measured in two samples. The average collected charge fits well with a linear curve with slope of 35 electrons/(kV/cm) per 100 {mu}m. This result is well described by a dynamic device simulation, where the free carrier mean lifetime is used as a free parameter, adjusted to a value of 1.5 ns, i.e. about 1/100 of the corresponding lifetime in single crystal HgI{sub 2} detectors. The response to MIP has also been studied with a high energy (100 GeV) muon beam in CERN. A preliminary beam profile is presented while a more detailed analysis is still in progress and will be presented elsewhere. These results together with the low cost of the material make ceramic HgI{sub 2} detectors excellent candidates for large area particle tracking and imaging applications, even in a radiation harsh environment. (orig.). 14 refs.

  6. Methyl Iodide Formation Under Postulated Nuclear Reactor Accident Conditions

    International Nuclear Information System (INIS)

    The formation of methyl iodide under conditions of postulated nuclear reactor accidents is discussed. Although thermodynamic calculations indicate the equilibrium methyl iodide concentrations would be quite low, calculations based on a simple kinetic scheme involving reaction between small hydrocarbon species and iodine indicate that concentrations higher than equilibrium can occur during the course of the reaction. Such calculations were performed over a wide range of initial species concentrations and a range of temperatures representative of some reactor accident situations. These calculations suggest that little methyl iodide would be expected within the core volume where temperatures are maximum. As the gas leaves the core volume and expands into the plenum region, it cools and the concentration of methyl iodide increases. At the intermediate temperatures which might characterize this region, the formation of methyl iodide from thermally induced reactions could reach its maximum rate. The gas continues to cool, however, and it is probable that by the time it leaves the plenum region it has cooled to the point where thermally induced reactions may be of little importance. Although the thermally induced reactions will become slower as the gas expands and cools, the radiation-induced reactions will not be slowed to the same extent. The gases leaving the core carry fission products and hence a radiation source is available to initiate reaction by a temperature-independent process. An investigation of the radiation chemical formation and decomposition of methyl iodide in the presence of steam suggests that radiation-induced methyl iodide formation will generally be rapid under the postulated accident situations. Thus, in the plenum region where thermal reactions have become slow, the radiation-induced reaction can still proceed and may well become the dominant factor. The same situation probably pertains as well to the containment region. (author)

  7. Bismuth tri-iodide radiation detector development

    Science.gov (United States)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  8. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy

    Science.gov (United States)

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  9. Radiobiological Effects of Alpha-Particles from Astatine-211: From DNA Damage to Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Kristina

    2011-05-15

    In recent years, the use of high linear energy transfer (LET) radiation for radiotherapeutic applications has gained increased interest. Astatine-211 (211At) is an alpha-particle emitting radionuclide, promising for targeted radioimmunotherapy of isolated tumor cells and microscopic clusters. To improve development of safe radiotherapy using 211At it is important to increase our knowledge of the radiobiological effects in cells. During radiotherapy, both tumors and adjacent normal tissue will be irradiated and therefore, it is of importance to understand differences in the radio response between proliferating and resting cells. The aim of this thesis was to investigate effects in fibroblasts with different proliferation status after irradiation with alpha-particles from 211At or X-rays, from inflicted DNA damage, to cellular responses and biological consequences. Throughout this work, irradiation was performed with alpha-particles from 211A or X-rays. The induction and repair of double-strand breaks (DSBs) in human normal fibroblasts were investigated using pulsed-field gel electrophoresis and fragment analysis. The relative biological effectiveness (RBE) of 211At for DSB induction varied between 1.4 and 3.1. A small increase of DSBs was observed in cycling cells compared to stationary cells. The repair kinetics was slower after 211At and more residual damage was found after 24 h. Comparison between cells with different proliferation status showed that the repair was inefficient in cycling cells with more residual damage, regardless of radiation quality. Activation of cell cycle arrests was investigated using immunofluorescent labeling of the checkpoint kinase Chk2 and by measuring cell cycle distributions with flow cytometry analysis. After alpha-particle irradiation, the average number of Chk2-foci was larger and the cells had a more affected cell cycle progression for several weeks compared with X-irradiated cells, indicating a more powerful arrest after 211At

  10. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  11. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  12. A novel peculiar mutation in the sodium/iodide symporter gene in spanish siblings with iodide transport defect.

    Science.gov (United States)

    Kosugi, Shinji; Okamoto, Hiroomi; Tamada, Aiko; Sanchez-Franco, F

    2002-08-01

    Previously, we reported two Spanish siblings with congenital hypothyroidism due to total failure of iodide transport. These were the only cases reported to date who received long-term iodide treatment over 10 yr. We examined the sodium/iodide symporter (NIS) gene of these patients. A large deletion was observed by long and accurate PCR using primers derived from introns 2 and 7 of the NIS gene. PCR-direct sequencing revealed a deletion of 6192 bases spanning from exon 3 to intron 7 and an inverted insertion of a 431-base fragment spanning from exon 5 to intron 5 of the NIS gene. The patients were homozygous for the mutation, and their mother was heterozygous. In the mutant, deletion of exons 3-7 was suggested by analysis using programs to predict exon/intron organization, resulting in an in-frame 182-amino acid deletion from Met(142) in the fourth transmembrane domain to Gln(323) in the fourth exoplasmic loop. The mutant showed no iodide uptake activity when transfected into COS-7 cells, confirming that the mutation was the direct cause of the iodide transport defect in these patients. Further, the mutant NIS protein was synthesized, but not properly expressed, on the cell surface, but was mostly accumulated in the cytoplasm, suggesting impaired targeting to the plasma membrane. PMID:12161518

  13. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    Science.gov (United States)

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  14. Mercuric iodide dosimeter response to high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loewinger, E.; Nissenbaum, J.; Schieber, M.M.

    1988-01-01

    Mercuric iodide solid state dosimeter response to high energy electron beams of up to 35 MeV is reported. High sensitivity of up to 1.5 V/cGy was observed with a 200 V external bias, as well as several mV/cGy, with no external bias for small volume (approx. 10 mm/sup 3/) detectors. The physical characteristics of the detector response are discussed, showing the feasibility of mercuric iodide as a reliable dosimeter for high energy electron beams.

  15. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    relative low levels of iodide (0-22 nM) and except for samples from one site; the levels of iodide and iodate were in agreement with previously published data. The uptake of iodide from seawater was measured by incubating Atlantic halibut larvae in water with a constant level of radioactive iodide (I-125...... is whether Atlantic halibut larvae are capable of absorbing iodide from the water and if so, can the seawater sustain the iodine requirement during larval development and metamorphosis. Levels of iodide and iodate in seawater samples from four different rearing facilities were analysed. All samples contained...... concentration of iodide in the water. The highest level of iodide used was 2000 nM,100 times higher than what was measured in the seawater samples. The uptake curves did not seem to reach equilibrium. This may be due to a constant nonspecific uptake or that the equilibrium level is higher than 2000 n...

  16. The electrosorption of tetraalkylammonium ions on silver iodide

    NARCIS (Netherlands)

    Keizer, de A.

    1981-01-01

    The object of the present investigations was to study the ef fect of the adsorption of charged organic ions on electrically charged, solid-liquid interfaces. To that end, symmetrical quater nary ammonium ions were adsorbed on a silver iodide-electrolyte interface at various surface charges. The elec

  17. Radiation-hard polycrystalline mercuric iodide semiconductor particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ., Jerusalem (Israel)]|[Sandia National Laboratories, Livermore Ca 94556 (United States); Zuck, A.; Melekhov, L.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)

    1998-06-01

    Mercuric iodide polycrystalline radiation detectors, which can act as nuclear particle counters and for large area imaging devices, have been fabricated using three different methods. Response to X- and gamma rays, beta particles and to 100GeV muons, as well as radiation hardness results are briefly described. (orig.) 8 refs.

  18. Iodide volatility under condition relevant to PWR steam generator faults

    International Nuclear Information System (INIS)

    The evaluation of iodine volatility during steam generator tube rupture (SGTR) is hampered by three factors: (i) lack of suitable plant data under fault conditions, (ii) lack of experimental data (mainly due to the difficulty of performing experiments under the conditions required) and (iii) uncertainty in theoretical methods to extrapolate experimental data to the required conditions. This report summarises methods of estimating the volatility of hydrogen iodide and iodide salts at the required conditions of temperature and pressure. A thermodynamic method has been used to estimate HI volatility and the density correlation method for iodide salt volatility. It is assumed throughout that it is more conservative to predict higher volatility. Consideration is given to two explanations of experiments carried out at Oak Ridge National Laboratory (ORNL) on the influence of boric acid concentration and pH on the volatility of radioiodine ostensibly under SGTR conditions: (i) the results have been interpreted in terms of reactions involving volatility of iodide salt/ion-pairs and complexation by boric acid in the gas phase and (ii) the possibility is explored that the observed results are due to the influence of oxidation leading to the formation of much more volatile iodine species. (author)

  19. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  20. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  1. Thermodynamic analysis of production of high purity titanium by thermal decomposition of titanium iodide

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-hu; WANG Hua; LIU Yi-min; FANG Min

    2009-01-01

    High purity titanium was prepared by thermal decomposition of titanium iodide. The feasible synthetic route and optimum decompositon temperaure were obtained by thermodynamic analysis in the process of thermal decomposition of titanium iodide and nucleation growth theory. The temperature for the formation of titanium iodide is in the range of 800-900 K, at which a large amount of titanium iodide vapour can be obtained. The decomposition temperature of titanium iodide is in the range of 1 300-1 500 K, at which a favourable decomposition rate can be achieved. The experiment results show that the purity of the produced titanium is more than 99.995%.

  2. A novel mutation in the sodium/iodide symporter gene in the largest family with iodide transport defect.

    Science.gov (United States)

    Kosugi, S; Bhayana, S; Dean, H J

    1999-09-01

    We previously reported nine children with an autosomally recessive form of congenital hypothyroidism due to an iodide transport defect in a large Hutterite family with extensive consanguinity living in central Canada. Since the original report, we have diagnosed congenital hypothyroidism by newborn TSH screening in 9 additional children from the family. We performed direct sequencing of the PCR products of each NIS (sodium/iodide symporter) gene exon with flanking introns amplified from genomic DNA extracted from peripheral blood cells of the patients. We identified a novel NIS gene mutation, G395R (Gly395-->Arg; GGA-->AGA), in 10 patients examined in the present study. All of the parents tested were heterozygous for the mutation, suggesting that the patients were homozygous. The mutation was located in the 10th transmembrane helix. Expression experiments by transfection of the mutant NIS complimentary DNA into COS-7 cells showed no perchlorate-sensitive iodide uptake, confirming that the mutation is the direct cause of the iodide transport defect in these patients. A patient who showed an intermediate saliva/serum technetium ratio (14.0; normal, > or = 20) and was considered to have a partial or less severe defect in the previous report (IX-24) did not have a NIS gene mutation. It is now possible to use gene diagnostics of this unique NIS mutation to identify patients with congenital hypothyroidism due to an iodide transport defect in this family and to determine the carrier state of potential parents for genetic counseling and arranging rapid and early diagnosis of their infants. PMID:10487695

  3. Defective organification of iodide causing congenital goitrous hypothyroidism.

    Science.gov (United States)

    Ishikawa, N; Eguchi, K; Ohmori, T; Momotani, N; Nagayama, Y; Hosoya, T; Oguchi, H; Mimura, T; Kimura, S; Nagataki, S; Ito, K

    1996-01-01

    A 26-yr-old Japanese woman with congenital goitrous hypo-thyroidism and sensorineural deafness underwent a thyroidectomy. Examination of the thyroid gland revealed characteristic features of multinodular goiter. The T3 and T4 content in thyroglobulin (Tg) were 0.03 and 0.02 mol/mol Tg, respectively. Iodide incorporation into Tg, using slices of the thyroid tissue, revealed that iodide organification of thyroid tissue from our patient was markedly lower than that of normal controls. Then, guaiacol and iodide oxidation activities of thyroid peroxidase (TPO) in our patient's thyroid tissue were lower than those of normal controls (guaiacol assay: 1.92 vs. 30.0 +/- 5.7 mGU/mg protein; iodide assay: 1.1 vs. 6.6 +/- 2.8 mIU/mg protein). Lineweaver-Burk plot analysis of the oxidation rates of guaiacol and iodide indicated that this patient's TPO had a defect in the binding of guaiacol and iodide, but the coupling activity of the patient's TPO was not decreased compared with those of two normal thyroids. In this case and in control subjects, Nothern gel analysis of TPO messenger RNA from unstimulated and TSH-stimulated thyroid cells revealed a 3.2 kilobase species in the former and four distinct messenger RNA species of 4.0, 3.2, 2.1, and 1.7 kilobases in the latter. Western blot analysis of TPOs obtained from this patient and from control subjects identified the same 107 kDa protein, using antimicrosomal antibody-positive serum. We analyzed the coding sequence in the patient's TPO gene by using polymerase chain reaction technique. A single point mutation of G-->C at 1265 base pair was detected only in the TPO gene, but this point mutation does not alter the amino acid residue. It is possible that posttranslational modification such as abnormal glycosylation may occur in the TPO molecules. Furthermore, it is possible that there are differences in the tertiary structures of the TPO molecules between our patient and normal subjects. The above abnormalities of TPO molecules

  4. Synthesis and Structure of Bis(4-nitrobenzaldehyde thiosemicarbazone) Cadmium Iodide

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The title complex, bis(4-nitrobenzaldehyde thiosemicarbazone) cadmium iodide (C16H16CdI2N8O4S2) crystallizes in the triclinic system, space group P1 with a=9.632(2), b=11.227(2), c=14.031(3), α= 67.50(3), β= 86.99(3), γ= 66.64(3)°, V=1278.13, Z = 2, Dc = 2.117gcm-3, F(000) = 772, μ =3.472mm-1 MoKα radiation (λ=0.71073), R = 0.0443, wR= 0.1425 for 4529 observed reflections [I>2σ(I)] of 4731 independent reflections. The result shows that the structure contains CdL2I2 (where L = 4-nitrobenzaldehyde thiosemicarbazone) distorted tetrahedral units in which the two ligands are S-bonded as monodentate to cadmium ion; the two iodide ions are also coordinated to Cd(II).

  5. (1,2-Dicarba-closo-dodecaboranyltrimethylmethanaminium iodide

    Directory of Open Access Journals (Sweden)

    Jong-Dae Lee

    2011-08-01

    Full Text Available The title compound, [1-(CH33NCH2-1,2-C2B10H11]+·I− or C6H22B10N+·I−, was obtained by the reaction of (1,2-dicarba-closo-dodecaboranyldimethylmethanamine with methyl iodide. The asymmetric unit contains two iodide anions and two (o-carboranyltetramethylammonium cations. The bond lengths and angles in the carborane cage are within normal ranges, but the N—Cmethylene—Ccage angle is very large [120.2 (2°] because of repulsion between the carborane and tetramethylammonium units. In the crystal, ions are linked through C—H...I hydrogen bonds.

  6. Methyl iodide production in the ocean: Implications for climate change

    Science.gov (United States)

    Smythe-Wright, Denise; Boswell, Stephen M.; Breithaupt, Petra; Davidson, Russell D.; Dimmer, Claudia H.; Eiras Diaz, Ledicia B.

    2006-09-01

    Methyl iodide concentrations of up to 45 pmol L-1, which flux into the marine boundary layer, have been found in low latitude waters of the Atlantic and Indian oceans. These high concentrations correlate well with the abundance of Prochlorococcus, and we have confirmed the release of methyl iodide by this species in laboratory culture experiments. Extrapolating, we estimate the global ocean flux of iodine to the marine boundary layer from this single source to be 5.3 × 1011 g I yr-1, which is a large fraction of the previously estimated total global flux and the implications are far reaching. Climate prediction models suggest increases in sea surface temperature and changes in biogeographical provenances in response to global warming. Such changes are likely to increase the abundance of Prochlorococcus, and we estimate a concomitant ˜15% increase in the release of iodine species to the atmosphere. Potentially, this could help mitigate global warming.

  7. New applications for the zinc iodide-osmium tetroxide technique.

    OpenAIRE

    Dağdeviren, A; ALP, H.; Ors, U

    1994-01-01

    The zinc iodide-osmium tetroxide (ZIO) fixation/staining method was applied for neurocytological studies and also to examine several other tissue samples including epidermal Langerhans cells, blood and bone marrow cells and lymphoid tissue. Although precise specificity cannot be attributed to the staining reaction, interesting staining patterns for different cell types were observed by using one of the ZIO staining solutions. The significance of ZIO positivity is briefly discussed.

  8. Heterogeneous ice nucleation on silver-iodide-like surfaces

    OpenAIRE

    Fraux, Guillaume; Doye, Jonathan P. K.

    2014-01-01

    We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ termi nated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminate d face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.

  9. Lead iodide perovskite light-emitting field-effect transistor

    OpenAIRE

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-eff...

  10. Radiative efficiency of lead iodide based perovskite solar cells

    OpenAIRE

    Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Snaith, Henry J.; Vladimir Dyakonov; Bolink, Henk J.

    2015-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a...

  11. Ionic transport in hybrid lead iodide perovskite solar cells

    OpenAIRE

    Eames, Christopher; Frost, Jarvist Moore; Piers R. F. Barnes; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH...

  12. The sodium iodide symporter: its implications for imaging and therapy

    International Nuclear Information System (INIS)

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal tissues, in particular lactating mammary gland. In addition to its key function in thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy as well as therapeutic radioiodine application in benign and malignant thyroid disease. NIS therefore represents one of the oldest targets for molecular imaging and therapy. Based on the effective administration of radioiodine that has been used for over 60 years in the management of follicular cell-derived thyroid cancer, cloning and characterization of the NIS gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer cells followed by therapeutic application of 131I or alternative radionuclides, including 188Re and 211At. In addition, the possibility of direct and non-invasive imaging of functional NIS expression by 123I- and 99mTc-scintigraphy or 124I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion, the dual role of NIS as diagnostic and therapeutic gene and the detection of extra-thyroidal endogenous NIS expression in breast cancer open promising perspectives in nuclear medicine and molecular oncology for diagnostic and therapeutic application of NIS outside the thyroid gland. (orig.)

  13. Synthesis and evaluation of iodide uptake inhibitors in thyroid gland

    International Nuclear Information System (INIS)

    This work was intended to discover small organic molecules acting as iodide uptake inhibitors in thyroid cells. These compounds can indeed be derivatized into biochemical probes for further characterization of proteins involved in iodide transport mechanisms. On the long term, these inhibitors also appear as attractive drug candidates for treatment of thyroid pathologies or radioprotection against iodine isotopes. A similar strategy was adopted for both of the two inhibitor families. First, we synthesized a chemical library of around 100 analogues; we measured their IC50 against iodide uptake in FRTL-5 cells to get structure-activity relationships. Absolute configuration of stereo-genic centers was also investigated, and a preferential stereochemistry was found to be responsible for activity. From this basis, around twenty 'second-generation' analogues were synthesized by combining fragments contributing to biological activity. Biological evaluation indicated that nine were very potent inhibitors, with IC50 ≤ 6 nM and satisfying physicochemical properties required for drug candidates. Finally, one photoactivatable biotinylated probe was developed in each family and used for photoaffinity labeling. Several specifically labeled proteins are still under identification and constitute new potential therapeutic targets. (author)

  14. Gold nanoelectrode ensembles for direct trace electroanalysis of iodide.

    Science.gov (United States)

    Pereira, Francisco C; Moretto, Ligia M; De Leo, Manuela; Zanoni, Maria V Boldrin; Ugo, Paolo

    2006-08-01

    A procedure for the standardization of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter is presented, which is based on the analytical comparison between experimental cyclic voltammograms (CV) obtained at the NEEs in diluted solutions of redox probes and CV patterns obtained by digital simulation. Possible origins of defects sometimes found in NEEs are discussed. Selected NEEs are then employed for the study of the electrochemical oxidation of iodide in acidic solutions. CV patterns display typical quasi-reversible behavior which involves associated chemical reactions between adsorbed and solution species. The main CV characteristics at the NEE compare with those observed at millimeter sized gold disk electrodes (Au-macro), apart a slight shift in E1/2 values and slightly higher peak to peak separation at the NEE. The detection limit (DL) at NEEs is 0.3 microM, which is more than one order of magnitude lower than DL at the Au-macro (4 microM). The mechanism of the electrochemical oxidation of iodide at NEEs is discussed. Finally, NEEs are applied to the direct determination of iodide at micromolar concentration levels in real samples, namely in some ophthalmic drugs and iodized table salt.

  15. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    International Nuclear Information System (INIS)

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  16. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem andt IsotopLabelling, Inst Biol and Technol, iBiTecS, F-91191 Gif Sur Yvette (France)

    2008-07-01

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  17. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the fluori

  18. Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Sébastien, E-mail: s.allard@curtin.edu.au; Gallard, Hervé

    2013-10-01

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO{sub 2}) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4–5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO{sub 2}. The effect of δ-MnO{sub 2}, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO{sub 2} leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine. Highlights: • Methyl iodide is formed when iodide, natural organic matter and MnO{sub 2} are in contact. • Iodide is oxidized to iodine by MnO{sub 2} which reacts with NOM already adsorbed on MnO{sub 2}. • High formation of methyl iodide was observed with pyruvate. • This abiotic mechanism could contribute to the input of iodine in the atmosphere. • This abiotic mechanism could impact the ozone layer in the troposphere.

  19. Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study

    International Nuclear Information System (INIS)

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO2) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4–5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO2. The effect of δ-MnO2, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO2 leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine. Highlights: • Methyl iodide is formed when iodide, natural organic matter and MnO2 are in contact. • Iodide is oxidized to iodine by MnO2 which reacts with NOM already adsorbed on MnO2. • High formation of methyl iodide was observed with pyruvate. • This abiotic mechanism could contribute to the input of iodine in the atmosphere. • This abiotic mechanism could impact the ozone layer in the troposphere

  20. Expression of sodium-iodide symporter in thyroid gland tumors: immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bondarenko O.O.

    2009-01-01

    Full Text Available One of the key moments of radioiodine therapy, and also radioisotope diagnostics of cancers of a thyroid gland is ability of their cells to accumulate iodide. This ability is provided with activity of the specific transporter – sodium-iodide symporter. Our research has shown disorders of sodium-iodide symporter immunoexpression in all tumors of thyroid gland: from overexpression and absence of plasma membrane expression in differentiated carcinomas, up to weak or actually absent in low differentiated cancers and Hurtle-cells tumors. Thus, there is a prospect of application of the sodium-iodide symporter, as the prognostic marker of thyroid cancers.

  1. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  2. Mechanochromic and thermochromic luminescence of a copper iodide cluster.

    Science.gov (United States)

    Perruchas, Sandrine; Le Goff, Xavier F; Maron, Sébastien; Maurin, Isabelle; Guillen, François; Garcia, Alain; Gacoin, Thierry; Boilot, Jean-Pierre

    2010-08-18

    The mechanochromic and thermochromic luminescence properties of a molecular copper(I) iodide cluster formulated [Cu(4)I(4)(PPh(2)(CH(2)CH=CH(2)))(4)] are reported. Upon mechanical grinding in a mortar, its solid-state emission properties are drastically modified as well as its thermochromic behavior. This reversible phenomenon has been attributed to distortions in the crystal packing leading to modifications of the intermolecular interactions and thus of the [Cu(4)I(4)] cluster core geometry. Notably, modification of the Cu-Cu interactions seems to be involved in this phenomenon directly affecting the emissive properties of the cluster. PMID:20698644

  3. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    OpenAIRE

    Baumann, A.; Tvingstedt, K.; Heiber, M. C.; Väth, S.; C. Momblona; H. J. Bolink; Dyakonov, V.

    2014-01-01

    We herein perform open circuit voltage decay (OCVD) measurements on methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70...

  4. Temperature dependent energy levels of methylammonium lead iodide perovskite

    International Nuclear Information System (INIS)

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature

  5. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  6. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  7. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja

    2010-06-01

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.

  8. Progress in tumor therapy with human sodium iodide symporter

    International Nuclear Information System (INIS)

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane protein that mediates active iodide transport into the thyroid gland and several extrathyroidal tissues, in particular the lactation mammary gland. Because of the cloning characterization of NIS, its key role in thyroid pathology and physiology could be investigated. The progress would be significant if the mechanisms of NIS expression in lactating mammary gland and breast cancer are elucidated, in which more than 80% of cases express endogenous NIS. In the future, two approaches could extend the use of radioiodide treatment to thyroid cancer and nonthyroidal cancer. One is by using the main mechanisms involving tumorous transformation to treat the tumor, based on the reinducing NIS expression in thyroid and cancer. The other is based on the application of NIS as a novel cytoreductive gene therapy strategy. NIS offers the unique advantage that it can be used both as a reporter and as a therapeutic gene, so that it is possible to image, monitor, and treat the tumor with radioiodide, just as in differentiated thyroid cancer. (authors)

  9. Polymorphic copper iodide clusters: insights into the mechanochromic luminescence properties.

    Science.gov (United States)

    Benito, Quentin; Le Goff, Xavier F; Maron, Sébastien; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Taulelle, Francis; Kahlal, Samia; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2014-08-13

    An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds. PMID:25076411

  10. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks.

  11. Nonradiometric and radiometric testing of radioiodine sorbents using methyl iodide

    International Nuclear Information System (INIS)

    A nonradiometric test of adsorbents and adsorbers with normal methyl iodide (CH3127I) is desirable. Use of methyl radioiodide (CH3131I) requires special precautions and facilities and results in bed contamination. However, first it must be established to what extent the removal of CH3127I by adsorbents is indicative of the removal of CH3131I. An experimental apparatus was built and used to simultaneously measure the penetrations of CH3I molecules and the radioisotope in CH3131I through charcoal absorbent beds. Gas chromatography with electron capture detection was used to measure CH3I. Radioiodine was measured using charcoal traps within NaI scintillation well crystals. Real time (5-min interval) radioiodine measurement provided immediate penetration results directly comparable to the real time penetrations of methyl iodide. These penetrations were compared for typical charcoal adsorbents with these impregnants: (a) 5% KI3, (b) 5% KI3 + 2% TEDA, (c) 5% TEDA, and (d) metal salts (Whetlerite). Differences between CH3I and CH3131I penetrations observed for the two iodized charcoals were attributed to isotope exchange reactions. Equivalent penetrations were observed for non-iodized adsorbents and for iodized ones at initial time. First order rates were confirmed for reactions with TEDA and for isotope exchange. This was one more confirmation of the lack of a challenge concentration effect on efficiencies at low test bed loadings. In addition to other removal mechanisms, reversible physical adsorption was observed with all charcoals

  12. Numerical modelling of methyl iodide in the eastern tropical Atlantic

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2013-06-01

    Full Text Available Methyl iodide (CH3I is a volatile organic halogen compound that contributes significantly to the transport of iodine from the ocean to the atmosphere, where it plays an important role in tropospheric chemistry. CH3I is naturally produced and occurs in the global ocean. The processes involved in the formation of CH3I, however, are not fully understood. In fact, there is an ongoing debate whether production by phytoplankton or photochemical degradation of organic matter is the main source term. Here, both the biological and photochemical production mechanisms are considered in a biogeochemical module that is coupled to a one-dimensional water column model for the eastern tropical Atlantic. The model is able to reproduce observed subsurface maxima of CH3I concentrations. But, the dominating source process cannot be clearly identified as subsurface maxima can occur due to both direct biological and photochemical production. However, good agreement between the observed and simulated difference between surface and subsurface methyl iodide concentrations is achieved only when direct biological production is taken into account. Production rates for the biological CH3I source that were derived from published laboratory studies are shown to be inappropriate for explaining CH3I concentrations in the eastern tropical Atlantic.

  13. CuI-catalyzed Synthesis of Aryl Thiocyanates from Aryl Iodides

    Institute of Scientific and Technical Information of China (English)

    Ye Feng WANG; Yuan ZHOU; Jia Rui WANG; Lei LIU; Qing Xiang GUO

    2006-01-01

    An operationally simple and inexpensive catalyst system was developed for the cross coupling of potassium thiocyanate with aryl iodides by using CuI as catalyst, 1, 10-phenanthroline as ligand, and tetraethylammonium iodide as activator. The procedure is applicable for the synthesis of diverse aryl thiocyanates without any exotic, poisonous reagents.

  14. Bibenzimidazole containing mixed ligand cobalt(III) complex as a selective receptor for iodide

    Digital Repository Service at National Institute of Oceanography (India)

    Indumathy, R.; Parameswarana, P.S.; Aiswarya, C.V.; Nair, B.U.

    -, OH- and OAc- do not bring about any dramatic visual colorimetric changes. However, metallo-receptor 2 brings about vivid color change with iodide anion visually and this could be due to charge transfer transition via ion pair formation with iodide ion...

  15. Synthesis, growth, structural, thermal, optical properties of new metal-organic crystals: Methyltriphenylphosphonium iodide thiourea and methyltriphenylphosphonium iodide chloroform hemisolvate

    Science.gov (United States)

    Shivachev, Boris L.; Kossev, Krassimir; Dimowa, Louiza T.; Yankov, Georgi; Petrov, Todor; Nikolova, Rositsa P.; Petrova, Nadia

    2013-08-01

    Crystals of methyltriphenylphosphonium iodide thiourea (1) and methyltriphenylphosphonium iodide chloroform hemisolvate (2) were obtained for the first time. Fourier transform infrared (FTIR) spectral studies have been performed to identify the functional groups. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study their thermal properties. The optical transmittance window and the lower cutoff wavelength have been identified by UV-vis studies. Crystals of the title compounds suitable for single crystal X-ray analyses were successfully grown by slow evaporation and diffraction data were collected to elucidate the molecular structure and interactions. The proton donors (phosphonium) and proton acceptor (iodine) in the structure of 1 provide infrastructure to introduce charge asymmetry while in 2 chloroform molecule is not involved in the charge transfer. An optical quality crystal of 1 (5×4×2 mm3) was obtained by macroseeding. The crystal has developed facets with major ones (001) and (00¯1). A crystal of 1 was tested with 1060 nm laser radiation and showed second harmonic generation (SHG).

  16. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R.; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J.; Ellingson, Randy J.; Podraza, Nikolas J.; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-09-28

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm2, and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 +/- 0.33%, indicating good reproducibility.

  17. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters. (author)

  18. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering; Ariesanti, Elsa [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering; Corcoran, Bridget [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  19. Strawberry growers wavered over methyl iodide, feared public backlash

    Directory of Open Access Journals (Sweden)

    Julie Guthman

    2016-08-01

    Full Text Available Methyl iodide, once promoted as a suitable alternative to methyl bromide for soil fumigation in strawberry systems, was withdrawn from the market in 2012 after a contentious regulatory battle that revolved around its high toxicity. At the time of its withdrawal, Arysta LifeScience, the maker of the chemical, claimed that it was no longer economically viable. In this study, I investigated what made the chemical nonviable, with a specific focus on growers' nonadoption of it. Interviews with strawberry growers in the four top California strawberry-growing counties revealed that growers' decisions not to use it were primarily related to public disapproval, although the continued availability of methyl bromide and other fumigants played a contributing role by making adoption less urgent. The study results suggest that policies in place during the methyl bromide phaseout did not strongly encourage the development and extension of less toxic alternatives, which undermined the strawberry industry's position.

  20. Betaine potassium iodide dihydrate: a new compound of betaine

    International Nuclear Information System (INIS)

    Betaine potassium iodide dihydrate, [(CH3)3N+CH2COO-]2.KI.2H2O, BKI for short, is a new compound of the aminoacid betaine with a triclinic symmetry and the space group P1-bar at room temperature. The study of dielectric properties provided evidence for the existence of a structural phase transition occurring around 100 K. The spontaneous electric polarization is zero in both phases. A study of dielectric dispersion disclosed two relaxational modes with different relevance in the high and in the low temperature phases. The main features observed in BKI are consistently described by the Landau theory, by assuming a quadratic coupling between the primary order parameter and the electric polarization. (author). Letter-to-the-editor

  1. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    International Nuclear Information System (INIS)

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 deg. C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  2. Photon recycling in lead iodide perovskite solar cells

    Science.gov (United States)

    Pazos-Outón, Luis M.; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M.; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J.; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J.; Ehrler, Bruno; Friend, Richard H.; Deschler, Felix

    2016-03-01

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

  3. Investigation of sodium iodide hydration and dehydration in moist atmosphere

    International Nuclear Information System (INIS)

    Effect of different factors on NaI hydration and dehydration kinetics under nonequilibrium conditions is studied. NaIx2H2O solid or homogeneous solution is established to be formed at sodium iodide interaction with water vapour depending on air humidity. At low humidity water absorption is not observed. Effect of water vapour pressure, the NaI particle size, the air flux rate over a salt on the absorption rate is studied. The latter points to process rate limitation by diffusion in a gaseous phase. The NaI solution decomposition at light with iodine formation is marked. The character of NaIx2H2O dehydration depends on water vapour removing from the over-salt space. Total water removing before and after crystal hydrate thermal degradation when aqueous solution evaporation occurs, is possible. At 143 deg C the water vapour pressure over solution equals the atmospheric one

  4. Development of mercuric iodide detectors for XAS and XRD measurements

    International Nuclear Information System (INIS)

    A prototype element for an energy dispersive detector (EDD) array was constructed using a Mercuric Iodide detector. Both detector and front end FET could be thermoelectrically cooled. Tested at SSRL, the detector had 250 eV electronic noise and 315 eV resolution at 5.9 keV. K line fluorescence spectra were collected for selected elements between Cl (2622 eV) and Zn (8638 eV). Count rate capability to 60,000 cps was demonstrated. Several detector parameters were measured, including energy linearity, resolution vs. shaping time, and detector dead time. An EXAFS (extended x-ray absorption fine structure) spectrum was recorded and compared to simultaneously collected transmission data

  5. Evaluation of quaternary ammonium halides for removal of methyl iodide from flowing air streams

    International Nuclear Information System (INIS)

    The quaternary ammonium halides of several tertiary amines were used as impregnants on activated carbon and were tested for methyl iodide penetration in accordance with test Method A, ASTM D3803, 1979, ''Standard Test Methods for Radio-iodine Testing of Nuclear Grade Gas Phase Adsorbents''. The results suggest that the primary removal mechanism for methyl iodide-131 is isotopic exchange with the quaternary ammonium halide. For example, a 5 wt% impregnation of each of the tetramethyl, tetraethyl, tetrapropyl and tetrabutyl ammonium iodides on activated carbon yielded percent penetrations of 0.47, 0.53, 0.78, and 0.08 respectively when tested according to Method A of ASTM D3803. A sample impregnated with 5% tetramethyl ammonium hydroxide gave a methyl iodide penetration of 64.87%, thus supporting the isotopic exchange mechanism for removal. It has been a generally held belief that the success of tertiary amines as impregnants for radioiodine removal is a result of their ability to complex with the methyl iodide. The results of the work indicates that the superiority of the tertiary amines similar to triethylene diamine and quinuclidine, when compared to their straight chain analogs, is a result of their ease in reacting with methyl iodide-127 to form the quaternary ammonium iodide followed by isotopic exchange

  6. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S. [Extremadura Univ., Badajoz (Spain). Dept. de Fisica Aplicada

    2011-02-15

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  7. Kinetics and mechanism of the mercury(II)-assisted hydrolysis of methyl iodide.

    Science.gov (United States)

    Celo, Valbona; Scott, Susannah L

    2005-04-01

    The kinetics and mechanism of the reaction of aqueous Hg(II) with methyl iodide have been investigated. The overall reaction is best described as Hg(II)-assisted hydrolysis, resulting in quantitative formation of methanol and, in the presence of excess methyl iodide, ultimately, HgI2 via the intermediate HgI+. The kinetics are biexponential when methyl iodide is in excess. At 25 degrees C, the acceleration provided by Hg2+ is 7.5 times greater than that caused by HgI+, while assistance of hydrolysis was not observed for HgI2. Thus, the reactions are not catalytic in Hg(II). The kinetics are consistent with an SN2-M+ mechanism involving electrophilic attack at iodide. As expected, methylation of mercury is not a reaction pathway; traces of methylmercury(II) are artifacts of the extraction/preconcentration procedure used for methylmercury analysis.

  8. Fluorescence characteristics of 5-amino salicylic acid: An iodide recognition study

    Science.gov (United States)

    Arora, Priyanka; Suyal, Kanchan; Joshi, Neeraj K.; Joshi, Hem Chandra; Pant, Sanjay

    In this paper we report the effect of iodide on the fluorescence of 5-amino salicylic acid (5-ASA). In the absence of iodide, prominent blue green (BG) emission band at ˜465 nm (broad) is observed in aprotic solvents whereas violet (V) emission at ˜408 nm, blue green (BG) at ˜480 nm and green (G) at ˜500 nm are observed in case of protic solvents. On the addition of iodide ion (I-), the intensity of BG fluorescence is enhanced in case of aprotic solvents. On the other hand the G band is enhanced in protic solvents and decrease in the intensity of the V band is observed. The effect of hydrogen bonding as well as the interplay of neutral and ionic species is invoked to explain the observed results. The study projects the application of this system in iodide recognition in protic/aprotic environments.

  9. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  10. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    Science.gov (United States)

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings.

  11. Polarization Effects in Methylammonium Lead Iodide Electronic Devices

    Science.gov (United States)

    Labram, John; Fabini, Douglas; Perry, Erin; Lehner, Anna; Wang, Hengbin; Glaudell, Anne; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael

    The immense success of group IV and III-V semiconductors has resulted in disruptive new photovoltaic (PV) cell technologies emerging extremely infrequently. For this reason, the recent progress in Methylammonium Lead Iodide (MAPbI3) solar cells can be viewed as a highly significant historic event. Despite the staggering recent progress made in reported power conversion efficiency (PCE), debate remains intense on the nature of the various instabilities synonymous with these devices. Using various electronic device measurements, we here present a body of experimental evidence consistent with the existence of a mobile ionic species within the MAPbI3 perovskite. Temperature-dependent transistor measurements reveal operating FET devices only below approximately 210K. This is attributed to ionic screening of the (otherwise charge-neutral) semiconductor-dielectric interface. Temperature-dependent pulsed-gate and impedance spectroscopy experiments also reveal behavior consistent with this interpretation. MAPbI3 PV cells were found to possess a PCE which decreases significantly below 210K. Combined, these set of measurements provide an interesting and consistent description of the internal processes at play within the MAPbI3 perovskite structure.

  12. Thermopower and activation energy of silver iodide based superionic materials

    International Nuclear Information System (INIS)

    Silver iodide based glasses, 60Agl-20Ag sub 2 O-20B sub 2O sub 3, 6 Agl-20Ag sub 2 O-20 MoO sub 3 and 60Agl-20Ag sub 2O-20WO sub 3, all in the mol % ratio, were prepared by rapidly quenching the melts of the chemicals in a stainless steel container; kept in a liquid nitrogen bath. The glassy nature of the as-quenched materials was confirmed by X-ray diffraction (XRD). The electrical conductivity of the glasses was measured at various temperatures ranging from 30 to 70 degree C using an impedance bridge operating in the frequency range between 40 Hz to 100 kHz. The plot of In σT versus 1000/T for each glassy material obeys Arrhenius law and the activation energy obtained is between 0.2 to 0.3 eV. Thermopower measurement was also carried out in the same temperature range as the conductivity measurement to obtain the heat of transport

  13. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  14. Digermylene Oxide Stabilized Group 11 Metal Iodide Complexes.

    Science.gov (United States)

    Yadav, Dhirendra; Siwatch, Rahul Kumar; Sinhababu, Soumen; Karwasara, Surendar; Singh, Dharmendra; Rajaraman, Gopalan; Nagendran, Selvarajan

    2015-12-01

    Use of a substituted digermylene oxide as a ligand has been demonstrated through the isolation of a series of group 11 metal(I) iodide complexes. Accordingly, the reactions of digermylene oxide [{(i-Bu)2ATIGe}2O] (ATI = aminotroponiminate) (1) with CuI under different conditions afforded [({(i-Bu)2ATIGe}2O)2(Cu4I4)] (2) with a Cu4I4 octahedral core, [({(i-Bu)2ATIGe}2O)2(Cu3I3)] (3) with a Cu3I3 core, and [{(i-Bu)2ATIGe}2O(Cu2I2)(C5H5N)2] (4) with a butterfly-type Cu2I2 core. The reactions of compound 1 with AgI and AuI produced [({(i-Bu)2ATIGe}2O)2(Ag4I4)] (5) with a Ag4I4 octahedral core and [{(i-Bu)2ATIGe}2O(Au2I2)] (6) with a Au2I2 core, respectively. The presence of metallophilic interactions in these compounds is shown through the single-crystal X-ray diffraction and atom-in-molecule (AIM) studies. Preliminary photophysical studies on compound 6 are also carried out. PMID:26558406

  15. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    A. Baumann

    2014-08-01

    Full Text Available We herein perform open circuit voltage decay (OCVD measurements on methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70BM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

  16. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Hermon, H.; James, R.B.; Cross, E. [and others

    1997-02-01

    In this study, we report on the results of the investigation of lead iodide material properties. The effectiveness of zone refining purification methods on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide and we also determine the segregation coefficient for some of these impurities. Triple axis x- ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching, and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier- phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

  17. Critical Evaluation of Acetylthiocholine Iodide and Acetylthiocholine Chloride as Substrates for Amperometric Biosensors Based on Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Gabriel-Lucian Radu

    2013-01-01

    Full Text Available Numerous amperometric biosensors have been developed for the fast analysis of neurotoxic insecticides based on inhibition of cholinesterase (AChE. The analytical signal is quantified by the oxidation of the thiocholine that is produced enzymatically by the hydrolysis of the acetylthiocholine pseudosubstrate. The pseudosubstrate is a cation and it is associated with chloride or iodide as corresponding anion to form a salt. The iodide salt is cheaper, but it is electrochemically active and consequently more difficult to use in electrochemical analytical devices. We investigate the possibility of using acetylthiocholine iodide as pseudosubstrate for amperometric detection. Our investigation demonstrates that operational conditions for any amperometric biosensor that use acetylthiocholine iodide must be thoroughly optimized to avoid false analytical signals or a reduced sensitivity. The working overpotential determined for different screen-printed electrodes was: carbon-nanotubes (360 mV, platinum (560 mV, gold (370 mV, based on a catalytic effect of iodide or cobalt phthalocyanine (110 mV, but with a significant reduced sensitivity in the presence of iodide anions.

  18. Experimental study of retinoic acid on improving iodide uptake in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Liang; WU Jing-Chuan; DU Xue-Liang; LI Jia-Ning; WU Zhen; ZOU Ren-Jian

    2005-01-01

    The study aims to investigate the effect of retinoic acid on the iodide uptake of MCF-7 cells and its mechanism. The iodide uptake and expression of hNIS(human sodium/iodide symporter)mRNA in the breast cancer MCF-7 cells were compared individually before and after the intervention of all-trans retinoic acid (ATRA) with the iodide uptake assay and RT-PCR. The following results are obtained: (1) when treated with all-trans retinoic acid in the concentration of 1.0 μmol/L, the capacity of iodide uptake of MCF-7 cells reached about 1.5 times of the basal state; (2) 12 h after the intervention of 1.0 μmol/L ATRA, the hNISmRNA expression of the MCF-7 cells reached maximum. The study shows that all-trans retinoic acid has the effect to improve the iodide uptake of the MCF-7 cells and this effect may result from its up-regulation of the hNISmRNA expression.

  19. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  20. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  1. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-02-01

    Full Text Available In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M and excellent sensitivity of –62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  2. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    Science.gov (United States)

    Cross, Eilene S.; Buffleben, George; Soria, Ed; James, Ralph; Schieber, Michael; Natarajan, Raj; Gerrish, Vern

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS), Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) and Gas Chromatography/Mass Spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper will discuss the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels.

  3. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    Science.gov (United States)

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. PMID:22541949

  4. Characterization of strontium iodide scintillators with silicon photomultipliers

    Science.gov (United States)

    Mitchell, Lee J.; Phlips, Bernard

    2016-06-01

    This work characterizes a commercially available europium-doped strontium iodide detector recently developed by Radiation Monitoring Devices (RMD). The detector has been chosen for a space-based mission scheduled to launch in early 2017. The primary goal of this work was to characterize the detector's response over the expected operational range of -10 °C to 30 °C as well as the expected operational voltage range of +26.5-+28.5 V and identify background interferences that may develop due to neutron activation produced by cosmic-ray interactions. The 8 mm×8 mm×20 mm detectors use KETEK silicon photomultipliers (SiPM), with an active area of 6 mmx6 mm (KETEK PM6660). Our results show substantial integral nonlinearity due to the SiPM ranging from 0% to 25% at room temperature over the energy range of 80-2614 keV. The nonlinearity, a function of temperature and overvoltage, leads to an underestimate of the full width at half max (FWHM), which is 2.6% uncorrected at 662 keV and 3.8% corrected at 662 keV. The temperature dependence of the detector results in a noise threshold that increases substantially above 30 °C due to the SiPM dark rate. In an effort to simulate the harsh environment of space, neutron activation of the detector was also explored. Gamma-ray lines at 127 keV and 164 keV were observed in the detector along with Kα x-rays associated with europium. Beta decay from europium- and iodine-activation products were also observed within the detector.

  5. THERAPY OF GRAVES’ DISEASE WITH SODIUM IODIDE-131

    Directory of Open Access Journals (Sweden)

    I Wayan Hartadi Noor

    2013-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Graves’ disease is the most common form of thyrotoxicosis, with a peak incidence in the 20-40 year of age group. Females are involved about five times more commonly than male. The easiest sign to recognize patients with Graves’ disease is the present of Graves’ ophthalmopathy. The diagnosis of Graves’ disease may sometimes base only on a physical examination and a medical history. Diffuse thyroid enlargement and sign of thyrotoxicosis, mainly ophthalmopathy and to lesser extent dermopathy, usually adequate for diagnosis. TSH test combined with FT4 test is usually the first laboratory test performs in these patients. The patients suffered Graves’ disease can be treated with antithyroid drug therapy or undergo subtotal Thyroidectomy. Another therapy is by using sodium iodide-131, where this therapy has advantages including easy administration, effectiveness, low expense, and absence of pain. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  6. Imaging with polycrystalline mercuric iodide detectors using VLSI readout

    Energy Technology Data Exchange (ETDEWEB)

    Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L.; Schieber, M.; Zuck, A.; Melekhov, L.; Saado, Y.; Hermon, H.; Nissenbaum, J

    1999-06-01

    Potentially low cost and large area polycrystalline mercuric iodide room-temperature radiation detectors, with thickness of 100-600 {mu}m have been successfully tested with dedicated low-noise, low-power mixed signal VLSI electronics which can be used for compact, imaging solutions. The detectors are fabricated by depositing HgI{sub 2} directly on an insulating substrate having electrodes in the form of microstrips and pixels with an upper continuous electrode. The deposition is made either by direct evaporation or by screen printing HgI{sub 2} mixed with glue such as Poly-Vinyl-Butiral. The properties of these first-generation detectors are quite uniform from one detector to another. Also for each single detector the response is quite uniform and no charge loss in the inter-electrode space have been detected. Because of the low cost and of the polycrystallinity, detectors can be potentially fabricated in any size and shape, using standard ceramic technology equipment, which is an attractive feature where low cost and large area applications are needed. The detectors which act as radiation counters have been tested with a beta source as well as in a high-energy beam of 100 GeV muons at CERN, connected to VLSI, low noise electronics. Charge collection efficiency and uniformity have been studied. The charge is efficiently collected even in the space between strips indicating that fill factors of 100% could be reached in imaging applications with direct detection of radiation. Single photon counting capability is reached with VLSI electronics. These results show the potential of this material for applications demanding position sensitive, radiation resistant, room-temperature operating radiation detectors, where position resolution is essential, as it can be found in some applications in high-energy physics, nuclear medicine and astrophysics.

  7. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    OpenAIRE

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the inductio...

  8. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nacapricha, D. [Mahidol Univ., Bangkok (Thailand); Taylor, C. [John Moores Univ., Liverpool (United Kingdom)

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  9. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  10. [Determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography].

    Science.gov (United States)

    Lin, Li; Wang, Haibo; Shi, Yali

    2013-03-01

    A procedure for the determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography has been developed. At first the iodide, thiocyanate and perchlorate ions were separated from interfering ions by a column (IonPac AS16, 250 mm x 4 mm). The iodide ion, thiocyanate and perchlorate ions were then enriched with an enrichment column (MAC-200, 80 mm x 0.75 mm). In the 2nd-dimensional chromatography, iodide thiocyanate and perchlorate ions were separated and quantified by a capillary column (IonPac AS20 Capillary, 250 mm x 0.4 mm). The linear ranges were 0.05 -100 pg/L with correlation coefficients of 0. 999 9, and the detection limits were 0. 02 - 0.05 micro gg/L. The spiked recoveries of iodide, thiocyanate and perchlorate ions were in the range of 85.1% to 100.1%. The relative standard deviations of the recoveries were 1.7% to 4.9%.

  11. Proton and iodine-127 nuclear magnetic resonance studies on the binding of iodide by lactoperoxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, J.; Takahashi, S.; Shimizu, T.; Hatano, M.; Nakamura, S.; Hosoya, T.

    1987-10-06

    Interaction of an iodide ion with lactoperoxidase was studied by the use of /sup 1/H NMR, /sup 127/I NMR, and optical difference spectrum techniques. /sup 1/H NMR spectra demonstrated that a major broad hyperfine-shifted signal at about 60 ppm, which is ascribed to the heme peripheral methyl protons, was shifted toward high field by adding KI, indicating the binding of iodide to the active site of the enzyme; the dissociation constant was estimated to be 38 mM at pH 6.1. The binding was further detected by /sup 127/I NMR, showing no competition with cyanide. Both /sup 1/H NMR and /sup 127/I NMR revealed that the binding of iodide to the enzyme is facilitated by the protonation of an ionizable group with a pK/sup a/ value of 6.0-6.8, which is presumably the distal histidyl residue. Optical difference spectra showed that the binding of an aromatic donor molecule to the enzyme is slightly but distinctly affected by adding KI. On the basis of these results, it was suggested that an iodide ion binds to lactoperoxidase outside the heme crevice but at the position close enough to interact with the distal histidyl residue which possibly mediates electron transport in the iodide oxidation reaction.

  12. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line

    International Nuclear Information System (INIS)

    Introduction: Patients with metastatic thyroid cancers that do not uptake iodine need effective therapeutic option. Differentiation-inducing agents have been tried to restore functional expression of sodium iodide symporter (NIS) without success. Our objective was to assess the effect of alpha-lipoic acid (ALA), known as potential antioxidant, on expression of sodium iodide symporter in thyroid cancer cells. Methods: Human thyroid cancer-derived cell lines, TPC-1, were treated with ALA, and changes in NIS mRNA and protein expression were measured. ALA's effect on NIS gene promoter was evaluated, and functional NIS expression was assessed by iodide uptake assay. Results: Treatment with ALA increased NIS mRNA expression up to ten folds of control dose-dependently after 24 h of exposure. ALA increased NIS promoter activity, and increased iodide uptake by 1.6 fold. ALA induced expression of NIS protein, but had no significant effect on the plasma membrane trafficking. ALA increased phosphorylation of CREB and nuclear translocation of pCREB, and co-treatment of ALA and trichostatin A increased iodide uptake by three folds in TPC-1 cells. Conclusions: ALA is a potential agent to increase NIS transcription in TPC-1. It could be used as an adjunctive agent to increase efficacy of radioiodine therapy if combined with a strategy to increase NIS protein trafficking to cell membrane.

  13. X-ray imaging performance of structured cesium iodide scintillators.

    Science.gov (United States)

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  14. Doping in mercuric iodide crystals and its influence on electronic properties and material structure

    International Nuclear Information System (INIS)

    Doping of mercuric iodide single crystals with SbI3 was studied. Three major aspects of the influence of doping were investigated: the α to β solid phase transition, the crystal structure and the semiconducting properties. A controlled doping method and a new growth technique from the melt were developed. A quantitative correlation between the antimony concentration and the charge carrier transport properties as well as the nuclear detector characteristics of HgI2 were established for the first time. In the present work the influence of various impurities (Sb, Cu, Ag, Bi) on the solid state phase transformation of mercuric iodide has been investigated. In the second part of the work a new growth method for mercuric iodide single crystals containing a controlled amount of SbI3, has been developed. In the last part of this work the influence of the presence of impurities in the crystal on the charge carrier transport properties has been investigated. (author)

  15. Quantification of propidium iodide delivery with millisecond electric pulses: A model study

    CERN Document Server

    Yu, Miao

    2014-01-01

    A model study of propidium iodide delivery with millisecond electric pulses is presented; this work is a companion of the experimental efforts by Sadik et al. [1]. Both membrane permeabilization and delivery are examined with respect to six extra-cellular conductivities. The transmembrane potential of the permeabilized regions exhibits a consistent value, which corresponds to a bifurcation point in the pore-radius-potential relation. Both the pore area density and membrane conductance increase with an increasing extra-cellular conductivity. On the other hand, the inverse correlation between propidium iodide delivery and extra-cellular conductivity as observed in the experiments is quantitatively captured by the model. This agreement confirms that this behavior is primarily mediated by electrophoretic transport during the pulse. The results suggest that electrophoresis is important even for the delivery of small molecules such as propidium iodide. The direct comparison between model prediction and experimental...

  16. Iodide retention by cinnabar (HgS) and chalcocite (Cu{sub 2}S)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Balsley, S.D.; Brady, P.V.

    1995-07-01

    Sorption of iodide (I{sup {minus}}) on cinnabar (HgS) and chalcocite (Cu{sub 2}S) was examined as a function of pH at 25{degrees}C in a series of batch experiments. Calculated distribution ratios (K{sub d}) far exceed those reported for other minerals; maximal K{sub d}`s of 1375 cc/g (Cu{sub 2}S) and 3080 c/g (HgS) were observed between pH 4-5, but wre substantial at all pH`s measured (4 < pH < 10). Iodide sorption apparently occurs by the formation of an insoluble surface solid solution with exposed Hg and Cu sites. Surface solid solution formation is favored at low pH due to the lessened electrostatic repulsion of the iodide ion by the sulfide surfaces.

  17. All-Solid-State Iodide Selective Electrode for Iodimetry of Iodized Salts and Vitamin C

    Directory of Open Access Journals (Sweden)

    TIRUWORK MEQUANINT

    2012-12-01

    Full Text Available A laboratory-made all-solid state iodide selective electrode, with Ag2S-AgI coated on a graphite rod recovered from dry cell battery, was prepared according to previous procedures. The electrode’s linear response to iodide was in the concentration range of 10-6 M to 10-1 M with a slope of 56.85 mV/decade and a detection limit of 6×10-7M. Iodate recovery test for laboratory formulated iodate-iodized salt was found to be 98.6 % with a standard deviation of 1.14%. The titratability of the iodized salt solution was at least 10-200 ppm potassium iodate (6-120 ppm iodine, exhibiting distinct endpoints in the range wider than the ones set in regulatory standards and reflecting that QC monitoring in production and stability decline of iodine content upon storage can be performed with the electrode method. On the basis this potentiometric titration, the application of the laboratory-made iodide electrode (vs. a saturated calomel reference electrode was extended to the determination of iodine in commercial iodized salts. In all the iodine assays, the iodate-iodized salt was initially treated with acid and an excess of iodide before titration against Na2S2O3 solution. The iodine content in table salts iodized with iodide was determined by direct potentiometry. The electrode was further used for vitamin C (ascorbic acid determinations in pharmaceutical tablets and orange juice by back titrating excess I3- against standard Na2S2O3 in acidic media. The overall outcome is that the iodide ISE can be used as sharp endpoint indicator for these titrimetric reactions in place of the well known official, but visually monitored, starch- triodide end-point reaction detection.

  18. Modeling of Turing Structures in the Chlorite-Iodide-Malonic Acid-Starch Reaction System

    Science.gov (United States)

    Lengyel, Istivan; Epstein, Irving R.

    1991-02-01

    Recent experiments on the chlorite-iodide-malonic acid-starch reaction in a gel reactor give the first evidence of the existence of the symmetry breaking, reaction-diffusion structures predicted by Turing in 1952. A five-variable model that describes the temporal behavior of the system is reduced to a two-variable model, and its spatial behavior is analyzed. Structures have been found with wavelengths that are in good agreement with those observed experimentally. The gel plays a key role by binding key iodine species, thereby creating the necessary difference in the effective diffusion coefficients of the activator and inhibitor species, iodide and chlorite ions, respectively.

  19. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene

    Energy Technology Data Exchange (ETDEWEB)

    Haberkom, U. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Dept. of Nuclear Medicine, Univ. of Heidelberg (Germany); Altmann, A.; Jiang, S.; Morr, I.; Mahmut, M. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [Dept. of Nuclear Medicine, Univ. of Heidelberg (Germany)

    2001-05-01

    Human thyroperoxidase (hTPO) is critical for the accumulation of iodide in thyroid tissues. Poorly differentiated and anaplastic thyroid tumours which lack thyroid-specific gene expression fail to accumulate iodide and, therefore, do not respond to iodine-131 therapy. We consequently investigated whether transfer of the hTPO gene is sufficient to restore the iodide-trapping capacity in undifferentiated thyroid and non-thyroid tumour cells. The human anaplastic thyroid carcinoma cell lines C643 and SW1736, the rat Morris hepatoma cell line MH3924A and the rat papillary thyroid carcinoma cell line L2 were used as in vitro model systems. Employing a bicistronic retroviral vector based on the myeloproliferative sarcoma virus for the transfer of the hTPO and the neomycin resistance gene, the C643 cells and SW1736 cells were transfected while the L2 cells and MH3924A cells were infected with retroviral particles. Seven recombinant C643 and seven SW1736 cell lines as well as four recombinant L2 and four MH3924A cell lines were established by neomycin selection. They were studied for hTPO expression using an antibody-based luminescence kit, followed by determination of the enzyme activity in the guaiacol assay and of the iodide uptake capacity in the presence of Na{sup 125}I. Genetically modified cell lines expressed up to 1,800 times more hTPO as compared to wild type tumour cells. The level of hTPO expression varied significantly between individual neomycin-resistant cell lines, suggesting that the recombinant retroviral DNA was integrated at different sites of the cellular genome. The accumulation of iodide, however, was not significantly enhanced in individual recombinant cell lines, irrespective of low or high hTPO expression. Moreover, there was no correlation between hTPO expression and enzyme activity in individual cell lines. The transduction of the hTPO gene per se is not sufficient to restore iodide trapping in non-iodide-concentrating tumour cells. Future

  20. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    OpenAIRE

    Magnus Willander; Zafar Hussain Ibupoto; Kimleang Khun

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and ...

  1. Tris(1,2-dimethoxyethane-κ2O,O′iodidocalcium iodide

    Directory of Open Access Journals (Sweden)

    Siou-Wei Ou

    2012-02-01

    Full Text Available In the title complex, [CaI(C4H10O23]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimethoxyethane (DME ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

  2. Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system.

    Science.gov (United States)

    Bandara, T M W J; Dissanayake, M A K L; Jayasundara, W J M J S R; Albinsson, I; Mellander, B-E

    2012-06-28

    Quasi-solid-state dye-sensitized solar cells have drawn the attention of scientists and technologists as a potential candidate to supplement future energy needs. The conduction of iodide ions in quasi-solid-state polymer electrolytes and the performance of dye sensitized solar cells containing such electrolytes can be enhanced by incorporating iodides having appropriate cations. Gel-type electrolytes, based on PAN host polymers and mixture of salts tetrahexylammonium iodide (Hex4N(+)I(-)) and MgI2, were prepared by incorporating ethylene carbonate and propylene carbonate as plasticizers. The salt composition in the binary mixture was varied in order to optimize the performance of solar cells. The electrolyte containing 120% Hex4N(+)I(-) with respect to weight of PAN and without MgI2 showed the highest conductivity out of the compositions studied, 2.5 × 10(-3) S cm(-1) at 25 °C, and a glass transition at -102.4 °C. However, the electrolyte containing 100% Hex4N(+)I(-) and 20% MgI2 showed the best solar cell performance highlighting the influence of the cation on the performance of the cell. The predominantly ionic behaviour of the electrolytes was established from the dc polarization data and all the electrolytes exhibit iodide ion transport. Seven different solar cells were fabricated employing different electrolyte compositions. The best cell using the electrolyte with 100% Hex4N(+)I(-) and 20% MgI2 with respect to PAN weight showed 3.5% energy conversion efficiency and 8.6 mA cm(-2) short circuit current density.

  3. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  4. Analysis of iodide and iodate in Lake Mead, Nevada using a headspace derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Dorman, James W; Steinberg, Spencer M

    2010-02-01

    We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate. PMID:19184627

  5. Iodide-induced thyrotoxicosis in a thyroidectomized patient with metastatic thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, M.; Tokuyama, T.; Okamura, K.; Sato, K.; Kusuda, K.; Fujishima, M.

    1988-04-15

    An unusual case of iodide-induced thyrotoxicosis is documented in this article. The patient was a 64-year-old euthyroid man with acromegaly. He also had multiple follicular and papillary thyroid carcinomas with a metastatic lesion in the lumbar vertebrae. After a total thyroidectomy, he became slightly hypothyroid, and the lumbar lesion began to incorporate /sup 131/I by scintigraphy. When an iodine-containing contrast medium happened to be injected, a transient increase of serum thyroid hormone level was observed. After complete thyroid ablation with 83 mCi of /sup 131/I, the oral administration of 100 mg of potassium iodide for 7 days induced a prominent increase of serum thyroid hormone level. These findings indicated that the metastatic thyroid carcinoma could produce excess thyroid hormone insofar as a sufficient amount of iodide was given. Although this is the first report of such a case, iodide-induced thyrotoxicosis may not be rare in patients with thyroid carcinomas because the Wolff-Chaikoff effect is thought to be lost, and the organic iodinating activity and lysosomal protease activity are well-preserved.

  6. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm

    OpenAIRE

    Park, Hyunwoong; vecitis, Chad D.; Cheng, Jie; Dalleska, Nathan F; Mader, Brian T.; Hoffmann, Michael R.

    2011-01-01

    The perfluoroalkyl compounds (PFCs), perfluoroalkyl sulfonates (PFXS) and perfluoroalkyl carboxylates (PFXA) are environmentally persistent and recalcitrant towards most conventional water treatment technologies. Here, we complete an in depth examination of the UV-254 nm production of aquated electrons during iodide photolysis for the reductive defluorination of six aquated perfluoroalkyl compounds (PFCs) of various headgroup and perfluorocarbon tail length. Cyclic voltammograms (CV) show tha...

  7. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James

    2011-01-01

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  8. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  9. LIQUID-CRYSTALLINE AND THERMOCHROMIC BEHAVIOR OF 4-SUBSTITUTED 1-METHYLPYRIDINIUM IODIDE SURFACTANTS

    NARCIS (Netherlands)

    NUSSELDER, JJH; ENGBERTS, JBFN; VANDOREN, HA

    1993-01-01

    The mesogenic behaviour of a series of thirty-one 1-alkyl-4-(or 2-)alkyl-pyridinium salts and of a homologous series of four 1-methyl-4-n-alkoxycarbonylpyridinium iodides is described. The occurrence and stability range of the thermotropic phases depend dramatically on the structure of the surfactan

  10. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    International Nuclear Information System (INIS)

    This report considers a model of aerosol nucleation from the vapour phase which has been developed by Buckle. The applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. (U.K.)

  11. Photodissociation of sodium iodide and resonant ionization of sodium atom produced

    Institute of Scientific and Technical Information of China (English)

    HUO Bing-hai; Z.T.Salim; A.H.Bakery

    2004-01-01

    Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.

  12. Regioselective iodination of aromatic compounds with potassium iodide in the presence of benzyltriphenylphosphonium perchlorate

    Institute of Scientific and Technical Information of China (English)

    Jalal Albadi; Masoumeh Abedini; Nasir Iravani

    2012-01-01

    A simple and efficient method for the selective iodination of various aromatic compounds by using potassium iodide in the presence of benzyltriphenylphosphonium perchlorate,is reported.This method provides several advantages such as good selectivity between ortho and para positions of aromatic compounds and high yields of the products.

  13. Kinetic modeling of the purging of activated carbon after short term methyl iodide loading

    International Nuclear Information System (INIS)

    A bimolecular reaction model containing the physico-chemical parameters of the adsorption and desorption was developed earlier to describe the kinetics of methyl iodide retention by activated carbon adsorber. Both theoretical model and experimental investigations postulated constant upstream methyl iodide concentration till the maximum break-through. The work reported here includes the extension of the theoretical model to the general case when the concentration of the challenging gas may change in time. The effect of short term loading followed by purging with air, and an impulse-like increase in upstream gas concentration has been simulated. The case of short term loading and subsequent purging has been experimentally studied to validate the model. The investigations were carried out on non-impregnated activated carbon. A 4 cm deep carbon bed had been challenged by methyl iodide for 30, 90, 120 and 180 min and then purged with air, downstream methyl iodide concentration had been measured continuously. The main characteristics of the observed downstream concentration curves (time and slope of break-through, time and amplitude of maximum values) showed acceptable agreement with those predicted by the model

  14. Ammonium-iodide route to anhydrous EuI2:mechanism and preparation

    Institute of Scientific and Technical Information of China (English)

    刁成鹏; 余金秋; 李红卫; 彭鹏; 吴浩; 何华强; 颜世宏; 胡运生

    2015-01-01

    Anhydrous EuI2 is an essential raw material for novel Eu2+-doped halide scintillators such as SrI2:Eu, CsBa2I5:Eu and BaBrI:Eu. An efficient and economic method to produce high purity anhydrous EuI2 is critical for future development and applications of these scintillators. In this paper, the ammonium-iodide route to anhydrous EuI2 was investigated, and anhydrous EuI2 with purity of 99.95 wt.%was successfully prepared. The dehydration mechanisms of europium iodide hydrate and its mixture with NH4I were comparatively investigated by X-ray diffraction (XRD), thermal analysis and fluorescence spectroscopy. The thermal decomposition process of individual europium iodide hydrate was revealed as follows:EuI3·9H2O→EuI3·8H2O→EuI3·7H2O→EuI2·H2O→EuI2, and the hydrolysis mechanism of europium hydrate was comprehensively studied. When europium iodide hydrate was dehydrated with NH4I, NH4Eu2I5 formed as an intermediate product, and the hydrolysis of EuI2 was effectively restrained. The role of NH4I as an io-dination agent was also discussed.

  15. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%. PMID:27309951

  16. Activation of lactoperoxidase by heme-linked protonation and heme-independent iodide binding.

    Science.gov (United States)

    Toyama, Akira; Tominaga, Aya; Inoue, Tatsuo; Takeuchi, Hideo

    2010-01-01

    Lactoperoxidase (LPO), a mammalian secretory heme peroxidase, catalyzes the oxidation of thiocyanate by hydrogen peroxide to produce hypothiocyanate, an antibacterial agent. Although LPO is known to be activated at acidic pH and in the presence of iodide, the structural basis of the activation is not well understood. We have examined the effects of pH and iodide concentration on the catalytic activity and the structure of LPO. Electrochemical and colorimetric assays have shown that the catalytic activity is maximized at pH 4.5. The heme Soret absorption band exhibits a small red-shift at pH 5.0 upon acidification, which is ascribable to a structural transition from a neutral to an acidic form. Resonance Raman spectra suggest that the heme porphyrin core is slightly contracted and the Fe-His bond is strengthened in the acidic form compared to the neutral form. The structural change of LPO upon activation at acidic pH is similar to that observed for myeloperoxidase, another mammalian heme peroxidase, upon activation at neutral pH. Binding of iodide enhances the catalytic activity of LPO without affecting either the optimum pH of activity or the heme structure, implying that the iodide binding occurs at a protein site away from the heme-linked protonation site.

  17. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    Science.gov (United States)

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  18. Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters

    Science.gov (United States)

    Parmeggiani, Fabio; Sacchetti, Alessandro

    2012-01-01

    A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…

  19. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Ekberg, C. (Chalmers Univ. of Technology, Goeteborg (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT, Espoo (Finland)); Glaenneskog, H. (Vattenfall Power Consultant, Goeteborg (Sweden))

    2011-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment, was started. During year 2008 (NROI-1) the radiolytic oxidation of elemental iodine was investigated and during 2009 (NROI-2), the radiolytic oxidation of organic iodine was studied. This project (NROI-3) is a continuation of the investigation of the oxidation of organic iodine. The project has been divided into two parts. 1. The aims of the first part were to investigate the effect of ozone and UV-radiation, in dry and humid conditions, on methyl iodide. 2. The second project was about gamma radiation (approx20 kGy/h) and methyl iodide in dry and humid conditions. 1. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UV-radiation intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. The particle formation was instant and extensive when methyl iodide was exposed to ozone and/or radiation at all temperatures. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-200 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine oxides (I{sub xO{sub y}). However, the correct speciation of the formed particles was difficult to obtain because the particles melted and fused together under the electron beam. 2. The results from this sub-project are more inconsistent and hard to interpret. The particle formation was significant lesser than corresponding experiments when ozone/UV-radiation was used instead of gamma radiation. The transport of gaseous methyl iodide through the facility was

  20. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    Science.gov (United States)

    Pillar, E. A.; Guzman, M. I.

    2013-12-01

    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  1. [The application of eosin and propidium iodide in evaluation of vitality of human spermatozoa].

    Science.gov (United States)

    Ploskonos, М В

    2014-11-01

    The article analyzes comparative assessment of vitality of spermatozoa by condition of permeability of membranes for eosin and propidium iodide and comparison of results acquired using technique of light and fluorescent microscopy. The comparison of data of light microscopy with eosin staining with data of fluorescent microscopy with propidium iodide staining demonstrated that percentage of content of spermatozoa separated from ejaculates of 28 fertile males and stained with eosin was reliably higher (34.8 ± 3.2) than percentage of content of spermatozoa with stained with propidium iodide (2.1 ± 4.0). After incubation of spermatozoa under room temperature during 24 hours percentage of unviable cells with stained eosin also was higher than in case of propidium iodide staining correspondingly (44.5 ± 3.3% and 34.7 ± 3.6%). The analysis of vitality of spermatozoa under damaging effect of oxidative stress on cell membrane developed by 4 hours incubation with 200 mkM of hydrogen peroxide (H2O2) demonstrated that under staining of spermatozoa with propidium iodide significantly higher percentage of damaged cells is detected. In such cases, eosin staining is less suitable for detection of vitality of spermatozoa (73.6 ± 5.8% against 51.7 ± 6.4%). The carried out experiment demonstrates that in case of detected effects on spermatozoa (for example, effect of oxidative stress) the light microscopy insufficiently adequate reflects degree of damage of membranes of spermatozoa. The fluorescent microscopy detects a higher percentage of spermatozoa with damaged membrane.

  2. Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media

    International Nuclear Information System (INIS)

    The synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%. The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter S θ is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions

  3. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  4. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  5. Synthesis of cholesteryl-α-D-lactoside via generation and trapping of a stable β-lactosyl iodide

    Science.gov (United States)

    Davis, Ryan A.; Fettinger, James C.; Gervay-Hague, Jacquelyn

    2015-01-01

    The generation of β-lactosyl iodide was carried out under non-in situ-anomerization, metal free conditions by reacting commercially available β-per-O-acetylated lactose with trimethylsilyl iodide (TMSI). The β-iodide was surprisingly stable as evidenced by NMR spectroscopy. Introduction of octanol or cholesterol under microwave conditions gave high yields of α-linked glycoconjugates. Careful analysis of the reaction products and mechanistic considerations suggest an acid catalyzed rearrangement that provides α-linked glycosylation products with a free C2-hydroxyl. Accessibility to these compounds may further advance glycolipidomic profiling of immune modulating bacterial derived-glycans. PMID:26543257

  6. Part I. Voltammetric studies of potassium iodide at gold and platinum electrodes. Part II. Electrodeposition and characterization of poly(vinylferrocene) films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.J.

    1993-01-01

    A mechanism for the adsorption of iodide on platinum and gold has been proposed in the literature which assumes hydrogen gas is evolved along with an adsorbed iodide atom. A rotating platinum ring-disk electrode was used here to detect the presence of any hydrogen produced upon iodide adsorption. No evidence for hydrogen formation was found. A gold-gold/platinum gas permeable double membrane electrode also did not show any evidence of hydrogen gas produced at gold during iodide adsorption. The voltammetry of iodide and iodate was examined using both gold and platinum ring-disk electrodes and a gas permeable double membrane electrode. The oxidation of adsorbed iodide was examined. The successful determination of the various oxidation states of iodide in acid media were performed: I[sub 2], IO[sup [minus

  7. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Glaenneskog, H.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland))

    2010-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  8. Reversible radiochromic plate based on polyvinyl alcohol-iodide complex containing silica nanoparticles

    International Nuclear Information System (INIS)

    A radiochromic plate based on a reversible change between iodide and iodine was prepared using a polyvinyl alcohol-iodide complex, silica nanoparticles, and agarose. X-ray (30 kV, 15 mA) irradiation of the plate changed it to a red color, which gradually disappeared and was completely erased within a day after stopping X-ray irradiation. The minimum detection dose was about 0.5 Gy for X-rays and 10 Gy for 137Cs γ-rays. The G-value for the oxidation of I- was estimated to be about 19.6 in a neutral solution and about 20.64 in an acidic solution. (author)

  9. Parametric study on removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide

    International Nuclear Information System (INIS)

    The removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide is influenced by various parameters such as temperature, relative humidity, face velocity and packing density. This study is to evaluate the dependency of the removal efficiency on each parameter and these combined parameters, quantitatively. Four types of adsorbents, BC-727, AgX, CHC-50 and SS 208C 5KI3, were tested. From experimental data and mass transfer theory, an experimental equation for evaluating the removal efficiency of adsorbents was derived under a series of experiments for radioactive methyl iodine-131. It was concluded that the removal efficiency calculated from the experimental equation agreed well with the experimental value. Effects of experimental specific parameters, such as Pre-flow time, methyl iodide injection time and After-flow time, on the removal efficiency of adsorbent are also described

  10. Iodide Recognition and Sensing in Water by a Halogen-Bonding Ruthenium(II)-Based Rotaxane.

    Science.gov (United States)

    Langton, Matthew J; Marques, Igor; Robinson, Sean W; Félix, Vítor; Beer, Paul D

    2016-01-01

    The synthesis and anion-recognition properties of the first halogen-bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen-bonding axle component, which is stoppered with water-solubilizing permethylated β-cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)-based macrocycle component. (1) H NMR anion-binding titrations in D2 O reveal the halogen-bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free-energy calculations. Photo-physical investigations demonstrate the ability of the interlocked halogen-bonding host to sense iodide in water, through enhancement of the macrocycle component's Ru(II) metal-ligand charge transfer (MLCT) emission. PMID:26626866

  11. Induction of iodide uptake in transformed thyrocytes: a compound screening in cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Eleonore [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Brossart, Peter [University of Tuebingen, Department of Haematology, Oncology, Immunology and Rheumatology, Internal Medicine, Tuebingen (Germany); Wahl, Richard [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Department IV, Internal Medicine, Tuebingen (Germany)

    2009-05-15

    Retinoic acid presently is the most advanced agent able to improve the efficacy of radioiodine therapy in differentiated thyroid carcinoma. In order to identify compounds with higher efficacy a panel of pharmacologically well-characterized compounds with antitumour action in solid cancer cell lines was screened. The effects of the compounds on iodide uptake, cell number, proliferation and apoptosis were evaluated. In general, compounds were more effective in cell lines derived from more aggressive tumours. The effectiveness in terms of number of responsive cell lines and maximal increase in iodide uptake achieved decreased in the order: APHA > valproic acid {approx} sirolimus {approx} arsenic trioxide > retinoic acid {approx} lovastatin > apicidine {approx} azacytidine {approx} retinol {approx} rosiglitazone {approx} bortezomib. We hypothesize that testing of cells from primary tumours or metastases in patients may be a way to identify compounds with optimum therapeutic efficacy for individualized treatment. (orig.)

  12. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method

    Directory of Open Access Journals (Sweden)

    Veissid N.

    1999-01-01

    Full Text Available The bandgap energy as a function of temperature has been determined for lead iodide. The monocrystal was obtained in a vacuum sealed quartz ampoule inside a vertical furnace by Bridgman's method. The optical transmittance measurement enables to evaluate the values of Eg. By a fitting procedure of Eg as a function of temperature is possible to extract the parameters that govern its behavior. The variation of Eg with temperature was determined as: Eg(T = Eg(0 - aT2/(a + T, with: Eg(0 = (2.435 ± 0.008 eV, a = (8.7 ± 1.3 x 10-4 eV/K and a = (192 ± 90 K. The bandgap energy of lead iodide at room temperature was found to be 2.277 ± 0.007 eV.

  13. Non-isothermal adsorption of radioactive methyl iodide at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Seon; Park, Geun Il; Lee, Jung Won; Yoon, Ju Hyeon [KAERI, Taejon (Korea, Republic of); Yang, Ho Yeon [KHNPC, Taejon (Korea, Republic of); Ryu, Seung Kon [Chungnam National Univ., Taejon (Korea, Republic of)

    2003-07-01

    Although activated carbon has been successfully used in nuclear power plants, it cannot be considered as a primary adsorbent in a high temperature system, because of its low ignition temperature and its adverse reaction with nitrogen oxide. Therefore, activated carbon is virtually ruled out for high temperature operating systems. The adsorption and dynamic characteristics of gaseous methyl iodide for silver ion-exchanged zeolites at high temperatures up to 400 .deg. C was evaluated. In this study a simple nonisothermal and axially dispersed plug-flow was adopted to simulate the experimental breakthrough curves. The Langmuir-Freundlich isotherm model was used to represent the equilibrium relationship, and the linear driving force (LDF) approximation was used to represent the article uptake. From the viewpoint of silver utilization for the removal of methyl iodide, both the optimal operating temperature and the effective silver ion-exchange level were also determined.

  14. Performance of non-coconut base adsorbers in removal of iodine and organic iodides

    International Nuclear Information System (INIS)

    Systems for the removal of radioactive iodine and organic iodides have used impregnated coconut shell activated carbons almost exclusively. Coconut shell carbons have some disadvantages: their geographical origin determines their trace chemical content; pore structures and impregnant effectiveness are highly dependent on activation and impregnation techniques. The authors report laboratory performance of a group of iodine-organic iodide adsorbers using bases other than coconut shell carbon. These have been evaluated in conformity with USAEC Regulatory Guide 1.52 and RDT M16 1T. Performance with regard to 131I2 and CH3131I penetration and high-temperature elution have equaled or exceeded both the requirements of Guide 1.52 and results on typical coconut-shell carbons. Some performance outside Guide 1.52 ranges is included. Experimental problems in simulated LOCA testing are discussed. (U.S.)

  15. Heck Arylation of Acrylonitrile with Aryl Iodides Catalyzed by a Silica-bound Arsine Palladium(0) Complex

    Institute of Scientific and Technical Information of China (English)

    Ming Zhong CAI; Hong ZHAO; Rong Li ZHANG

    2005-01-01

    Acrylonitrile reacts with aryl iodides in the presence of tri-n-butylamine and a catalytic amount of a silica-bound arsine palladium(0) complex to afford stereoselectively (E)-cinnamonitriles in high yields.

  16. A mercuric ensemble based on a cycloruthenated complex as a visual probe for iodide in aqueous solution

    Science.gov (United States)

    Su, Xianlong; Guo, Lieping; Ma, Yajuan; Li, Xianghong

    2016-01-01

    A new water-soluble cycloruthenated complex Ru(bthiq)(dcbpy)2+ (1, Hbthiq = 1-(2-benzo[b]thiophenyl)isoquinoline, dcbpy = 4,4‧-dicarboxylate-2,2‧-bipyridine) was designed and synthesized to form its mercuric ensemble (1-Hg2+) to achieve visual detection of iodide anions. The binding constant of 1-Hg2+ is calculated to be 2.40 × 104 M-1, which is lower than that of HgI2. Therefore, the addition of I- to the aqueous solution of 1-Hg2+lead to significant color changes from yellow to deep-red by the release of 1. The results showed that iodide anions could be easily detected by the naked eyes. The detection limit of iodide anion is calculated as 0.77 μM. In addition, an easily-prepared test strip of 1-Hg2+ was obtained successfully to detect iodide anions.

  17. Cooperative effect of silver in copper-catalyzed trifluoromethylation of aryl iodides using Me3SiCF3

    KAUST Repository

    Weng, Zhiqiang

    2011-06-13

    An effective model of cooperative effect of silver for the coppercatalyzed trifluoromethylation of activated and unactivated aryl iodides to trifluoromethylated arenes using Me3SiCF3 was achieved with a broad substrate scope. © 2011 American Chemical Society.

  18. Furnace design for the mercuric iodide crystal growth for new semiconductor radiation detector

    International Nuclear Information System (INIS)

    Mercuric iodide has been attracted an interest for 40 years due to its efficiency as room temperature detector for X and γ-rays. It is worthy to note that commercial γ-ray detectors such as Ge semiconductor detectors should cool down to liquid nitrogen temperature. Compared to other semiconductor detectors such as CdZnTe and CdTe, mercuric iodide has higher efficiency, lower leakage current and less degradation. In addition, mercuric iodide has useful properties such as large band gap of 2.15 eV, low electron-hole pair creation energy of 4.2 eV, and high atomic number (Hg : 80 and I : 53). However, it is difficult to obtain high quality single crystals and the long term reliability problem in devices so that the applications of α-HgI2 are limited. Mercuric iodide undergoes a structural phase transition from an orthorhombic yellow phase (β-HgI2) to a tetragonal red phase (α-HgI2) at 127 .deg. C. In addition, the melting temperature of HgI2 is 259 .deg. C. Thus, when it grows through a melting method over 259 .deg. C, the β-HgI2 phase can be included in the final crystals in the room temperature. In general, in order to grow α-HgI2single crystals, the operating temperature is below 127 .deg. C. Note that the crystals from the solution method have contamination problems and the crystals from the physical vapor method usually display a higher quality with a well defined structure. A good thing for the physical vapor method is that α-HgI2 has high vapor pressure (∼0.1 Torr at 120 .deg. C) indicating that α-HgI2 can be grown in closed ampoules

  19. Nickel-catalyzed reductive arylation of activated alkynes with aryl iodides

    Science.gov (United States)

    Dorn, Stephanie C. M.; Olsen, Andrew K; Kelemen, Rachel E.; Shrestha, Ruja; Weix, Daniel J.

    2015-01-01

    The direct, regioselective, and stereoselective arylation of activated alkynes with aryl iodides using a nickel catalyst and manganese reductant is described. The reaction conditions are mild (40 °C in MeOH, no acid or base) and an intermediate organomanganese reagent is unlikely. Functional groups tolerated include halides and pseudohalides, free and protected anilines, and a benzyl alcohol. Other activated alkynes including an amide and a ketone also reacted to form arylated products in good yields. PMID:26028781

  20. Use of potassium iodide in Dermatology: updates on an old drug*

    OpenAIRE

    Costa, Rosane Orofino; de Macedo, Priscila Marques; Carvalhal, Aline; Bernardes-Engemann, Andréa Reis

    2013-01-01

    Potassium iodide, as a saturated solution, is a valuable drug in the dermatologist's therapeutic arsenal and is useful for the treatment of different diseases due to its immunomodulatory features. However, its prescription has become increasingly less frequent in dermatology practice. Little knowledge about its exact mechanism of action, lack of interest from the pharmaceutical industry, the advent of new drugs, and the toxicity caused by the use of high doses of the drug are some possible ex...

  1. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    Science.gov (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  2. Peroxide effects of iodide excess on mitochondria in Fischer rat thyroid cell line in the early period

    Institute of Scientific and Technical Information of China (English)

    李敏

    2014-01-01

    Objective To investigate the peroxide effects of iodide excess on mitochondria in Fischer rat thyroid cell line(FRTL)in the early period.Methods After treatment with 0.0 mmol/L(control group)or 0.1 mmol/L potassium iodide(KI)for 2,4 and 24 h,respectively,changes of mitochondrial superoxide formation were assayed by flow cytometry and fluorescence microscopy using mitochondria-targeted hydroethidine(Mito SOX).

  3. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    OpenAIRE

    Laishun Shi; Xiaomei Wang; Na Li; Jie Liu; Chunying Yan

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and...

  4. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  5. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Science.gov (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna

    2015-01-01

    Summary Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  6. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    Science.gov (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  7. Determination of microamounts of potassium in sodium iodide by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Microdetermination of potassium in sodium iodide was developed by the standard addition method. Twenty grams of sample were dissolved in 50 ml of water in a quartz beaker. To the solution, 30 ml of concentrated hydrochloric acid and 30 ml of 30% hydrogen peroxide were added, and evaporated to dryness. By this process sodium iodide was converted into sodium chloride. The cake thus obtained was dissolved in water and diluted to exactly 200 ml. To 25 ml aliquots of the solution, the standard potassium and cesium chloride solutions were added and diluted to 50 ml with water; the concentration of potassium was 0 -- 1 mg/l and that of cesium 4 mM. These solutions were introduced into an air-propane flame and the absorbances were measured at 769.9 nm. During the conversion reaction, hydrochloric acid was completely decomposed, and remained hydrogen peroxide had no influence for absorbance, and other backgrounds were negligible. The linear calibration curve was obtained in the range 0 -- 2 mg of potassium per liter. Potassium in sodium iodide was determined by this method within the coefficient of variation of +-(20 -- 3)% in the range (1.7 -- 32.5) ppm. (author)

  8. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    International Nuclear Information System (INIS)

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  9. Study on multiphoton ionization dissociation processes of ethyl iodide at 800 nm laser radiation

    International Nuclear Information System (INIS)

    Multiphoton ionization-dissociation (MPID) process of ethyl iodide are studied at 800 nm femto-second laser, and time-of-flight mass spectrometer of ethyl iodide are obtained. The result of laser power index shows that the parent-ion mainly undergoes the 3 + 3 resonant enhanced multiphoton ionization (REMPI) process. The percentage of part fragment ions to the total ion current and the laser intensity dependence of the molecule are measured. Based on the experiment results, the multiphoton ionization- dissociation mechanism of ethyl iodide is discussed. The conclusion is that most of ion fragments are produced by C2H5I+ dissociation, this is consistent with the parent-ion dissociation staircase. The two possible dissociation channels of parent-ion are analyzed, but the C-I dissociation is the main channel. We also use Gaussian 03 calculated the energy change of the two channels with B3LYP/3-21G basis set, the theoretical results further demonstrated the experiment. (authors)

  10. Radiofrequency induction on sodium/iodide symporter expression of thyroid cancer

    Institute of Scientific and Technical Information of China (English)

    Youxin Tian; Qinjiang Liu; Yaqiong Ni

    2013-01-01

    Objective:The aim of this study was to investigate the ef ects of radiofrequency treatment on sodium/iodide symporter expression of thyroid cancer cells. Methods:In 29 thyroid cancer patients with low or no expression of soda\\iodide symporter, the radio frequency combined 131I therapy was used, the whole-body scintigraphy and serum Ig were detected before and after the radiofrequency treatment. Results:The whole-body scintigraphy showed that 4 cases (4/29) before radiofrequency treatment had positive iodine uptake, 19 cases (19/29) two weeks after radiofrequency treatment had the positive iodine uptake, 12 cases (12/29) four weeks after radiofrequency treatment had the positive iodine uptake. Four weeks after radiofrequency treatment, 5 cases had increased serum Ig levels, 17 cases had decreased serum Ig levels, 7 cases showed no change. 25 cases (25/29) were ef ective, 15 cases (15/29) were cured. Conclusion:The radiofrequency induced the non-expressed the sodium/iodide symporter of thyroid cancer cells regain the iodine intake ability, it improved the clinical ef icacy of 131I therapy in dedif erentiated thyroid cancer.

  11. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines.

    Science.gov (United States)

    Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J

    2014-10-21

    Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.

  12. Simple and rapid determination of iodide in table salt by stripping potentiometry at a carbon-paste electrode.

    Science.gov (United States)

    Svancara, Ivan; Ogorevc, Bozidar; Nović, Milko; Vytras, Karel

    2002-04-01

    A simple and rapid procedure, utilising constant-current stripping analysis (CCSA) at a carbon-paste electrode containing tricresyl phosphate as a pasting liquid (TCP-CPE), has been developed for the determination of iodide in table salt. Because of a synergistic accumulation mechanism based on ion-pairing and extraction of iodide in combination with electrolytic pretreatment of the TCP-CPE, the method is selective for iodide and enables direct determination of iodide in samples of table salt containing anti-caking agents such as K(4)[Fe(CN)(6)] (food additive "E 536") or MgO. The iodide content (calculated as KI) can be determined in a concentration range of 2 to 100 mg kg(-1) salt, with a detection limit (S/N=3) of 1 mg kg(-1), and a recovery from 90 to 115%. The proposed method has been used to determine iodide in several types of artificially iodised table salt and in one sample of natural sea salt. The results obtained agreed well with those obtained by use of three independent reference methods (titration, spectrophotometry, and ICP-MS) used to validate the CCSA method, indicating that the developed method is applicable as a routine procedure for rapid testing in salt production process control and in the analysis of marketed table salts.

  13. The use of mercuric iodide in instruments for safeguards and non-proliferation applications

    International Nuclear Information System (INIS)

    Mercuric Iodide is a material exceptionally suited for solid state detectors operating at room temperature. The high density and the high atomic numbers of the constituent elements provide a large absorption factor and a high full-energy-peak efficiency at gamma ray energies. The large electronic bandgap results in a very high resistivity and therefore a low leakage current at temperatures within and outside the personal comfort range. Constellation Technology has developed the technology to grow large, high quality crystals from mercuric iodide. Spectrometry grade detectors with dimensions of 25 mm x 25 mm x 3 mm and with an energy resolution of approximately 3% FWHM at 662 keV can be fabricated from these mercuric iodide crystals. The resolution of this detector approximately 1.8% FWHM and the peak-to-valley ratio is larger than twelve. Standard semi-Gaussian processing and no pulse-shape discrimination was used. These detectors can be conveniently incorporated into hand-held instruments to detect weak sources or heavily shielded sources. Previous measurements have shown that the Minimum Detectable Activity (MDA) of a 3 mm thick mercuric iodide detector with dimensions as given above is about 10% less than the MDA of a 50 mm x 50 mm sodium iodide detector, due to the superior energy resolution. Software methods are being developed to improve the identification of weak sources against a large background. Results of these measurements will be presented. Smaller detectors can be used in safeguards applications where the intensity of the radiation is relatively high. The spectral resolution of the detectors is high enough to clearly identify the significant energy lines in the spectra of stored uranium and plutonium. The shape of the spectral peaks is constant over a large range of energies so that existing software systems can be used to analyze the spectra. The small size, ruggedness, temperature stability and high efficiency of these detectors makes them good

  14. Reduction of stimulated sodium iodide symporter expression by estrogen receptor ligands in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Su-Jin; Jang, DooRye; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee [Department of Nuclear Medicine, Cyclotron Research Center, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Katzenellenbogen, John A., E-mail: jkatzene@illinois.ed [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Kim, Dong Wook, E-mail: kimdw@chonbuk.ac.k [Department of Nuclear Medicine, Cyclotron Research Center, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2011-02-15

    Purpose: The sodium iodide symporter (NIS) mediates active iodide uptake in lactating breast tissue, and when its levels are enhanced by all-trans retinoic acid (atRA), NIS has been proposed as a target for the imaging and radiotherapy of breast cancer. Importantly, the estrogen receptor {alpha} (ER{alpha}) is an important regulator of atRA induced NIS gene expression in breast cancer cells. In this study, we investigated the effect of an ER agonist (17{beta}-estradiol, E{sub 2}) or antagonist [trans-hydroxytamoxifen (TOT) or raloxifene (RAL)] treatment on the regulation of NIS gene expression and iodide uptake in an ER{alpha}-positive breast cancer (MCF-7) model. Methods: NIS functional activity was measured in vitro by {sup 125}I uptake assay after incubation with E{sub 2} (from 10{sup -15} to 10{sup -5} M), TOT (from 5x10{sup -8} to 5x10{sup -6} M), or RAL (from 5x10{sup -8} to 5x10{sup -6} M) in the presence or absence of atRA (10{sup -7} M). Under the same conditions, NIS mRNA expression was examined by reverse transcriptase polymerase chain reaction. Athymic mice with MCF-7 xenograft tumors were treated with atRA alone or atRA together with E{sub 2} to evaluate the change of {sup 125}I uptake in tumor tissues in vivo. Results: In the iodide uptake study in cells, E{sub 2}, TOT, or RAL treatment alone did not stimulate {sup 125}I uptake. However, when iodide uptake was stimulated by atRA, cotreatment with E{sub 2}, TOT or RAL decreased {sup 125}I uptake in a concentration-dependent manner. The hormone effects on NIS mRNA expression levels in MCF-7 cells were similar. The results of the in vivo biodistribution study showed that {sup 125}I uptake was reduced 50% in tumor tissues of mice treated with atRA/E{sub 2} as compared to tumors treated only with atRA. Conclusion: Our results suggest that combination treatment of atRA and ER ligands could limit the functional activity of the NIS gene induced by atRA, thereby compromising its use as a target for diagnosis

  15. Towards a biochemical and structural characterisation of the sodium-iodide sym-porter (Nis)

    International Nuclear Information System (INIS)

    Iodide is essential for thyroid hormone biosynthesis in mammals, and therefore for the control of cell metabolism and the development of the central nervous system in the foetus and newborns, but is relatively scarce element in the environment. To ensure its accumulation, the thyroid gland has evolved a remarkably efficient system, the sodium-iodide sym-porter (NIS), that was first characterized at the molecular level 10 years ago (1). NIS is an intrinsic protein mainly located in the basolateral membrane of thyroid follicular cells where it actively transports iodide ions using the sodium gradient as a driving force (2,3). In addition, this transporter has been found in lactating mammary gland, stomach, and salivary glands, and its mRNA was detected in brain, ovaries, testis. To date, the physiological role of NIS in these organs is not yet identified (3,4).The capacity of NIS to mediate the accumulation of radioactive iodide has been exploited for many years in the diagnosis of thyroid cancer as well as for the detection and radiotherapy of derived metastases. Moreover, the presence of NIS in some breast tumours and the possibility to express it by targeted gene therapy in tumour cells where it is not naturally present could also widen its medical application (4-7). In case of accidental contamination, NIS would also be responsible for accumulation of radioisotopes in the thyroid and for their transfer to the milk and the newborn, eventually causing thyroid cancers. This has motivated our research program in the perspective of designing novel specific therapeutics. During the last decade, the gene encoding the thyroid NIS has been identified and sequenced in various species including rat, mouse and human (1, 8). It was also demonstrated that the protein expression and activity are highly regulated both at the transcriptional and post-translational levels (3). A preliminary topological mode could be drawn from the protein sequence. It proposes a general

  16. Iodide Sorption to Clays and the Relationship to the Surface Charge Environment

    Science.gov (United States)

    Miller, A. W.; Wang, Y.

    2011-12-01

    In performance assessments of nuclear waste repositories, iodine-129 is often the major contributor to dose at time scales ≥10,000 years. The breakthrough behavior of iodine is determined by the monovalent, anionic nature and the assumed lack of surface reactivity of the iodide ion. This assumption is corroborated by batch sorption data where iodide sorption to clays is typically very small, and only measurable under specific conditions. This result is consistent with charge repulsion arguments due to the fixed negative charge of clays repelling the anionic iodide. However, in compacted column diffusion experiments, iodide is routinely retarded relative to tritium, and is described with Kd values from ≈0.001-2.9ml/g. While small, these values can dramatically change the dose profile in performance assessment calculations. We hypothesize that contributions from the basal plane and edge charge of individual clay particles as well as the physical morphology of the clay particles are contributing to the conflicting behavior. In a series of experiments involving a wide range of clay minerals from the clay bank repository, both surface charge and iodide sorption were examined using surface titrations and batch sorption experiments. The clay minerals studied include: kaolinite, ripidolite, illite, montmorillonite, palygorskite, sepiolite, and an illite/smectite mixed layer clay. Each of these clays was characterized using XRD, and surface titrations in 0.01, 0.1, and 0.5 M NaCl electrolyte. The titrations spanned the pH range from 2.5-10.5 and were automated using an autotitrator. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were interpreted using an inversion method to attain the pKa distribution for each clay and metal oxide at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly

  17. Distribution and leaching of methyl iodide in soil following emulated shank and drip application.

    Science.gov (United States)

    Guo, Mingxin; Zheng, Wei; Papiernik, Sharon K; Yates, Scott R

    2004-01-01

    Methyl iodide (MeI) is a promising alternative to methyl bromide in soil fumigation. The pest-control efficacy and ground water contamination risks of MeI as a fumigant are highly related to its gas-phase distribution and leaching after soil application. In this study, the distribution and leaching of MeI in soil following shank injection and subsurface drip application were investigated. Methyl iodide (200 kg ha(-1)) was directly injected or drip-applied at a 20-cm depth into Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralfs) columns (12-cm i.d., 70-cm height) tarped with virtually impermeable film. Concentration profiles of MeI in the soil air were monitored for 7 d. Methyl iodide diffused rapidly after soil application, and reached a 70-cm depth within 2 h. Relative to shank injection, drip application inhibited diffusion, resulting in significantly lower concentration profiles in the soil air. Seven days after MeI application, fumigated soil was uncapped, aerated for 7 d, and leached with water. Leaching of MeI was significant from the soil columns under both application methods, with concentrations of >10 mug L(-1) in the early leachate. The leaching was greater following shank injection than drip application, with an overall potential of 33 g ha(-1) for shank injection and 19 g ha(-1) for drip application. Persistent residues of MeI remaining in soils after leaching were 50 to 240 ng kg(-1), and the contents were slightly higher following shank injection than drip application. The results suggest that fumigation with MeI may pose a risk of ground water contamination in vulnerable areas. PMID:15537937

  18. Equations of state for crystalline zirconium iodide: The role of dispersion

    Science.gov (United States)

    Rossi, Matthew L.; Taylor, Christopher D.

    2013-02-01

    We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  19. Phase partitioning, retention kinetics, and leaching of fumigant methyl iodide in agricultural soils

    International Nuclear Information System (INIS)

    Although it is not currently being sold in the USA, the recent US registration of the fumigant methyl iodide has led to an increased interest in its environmental fate and transport. Although some work has now considered its volatile emissions from soil, there remains a lack of experimental data regarding its ability to be retained in soil and ultimately become transported with irrigation/rain waters. Using laboratory batch and soil column experiments, we aimed to better understand the phase partitioning of MeI, the ability of soils to retain MeI on the solid phase, and the potential for leaching of MeI and its primary degradation product, iodide, down a soil profile. Results indicated that MeI was retained by the solid phase of soil, being protected from volatilization and degradation, particularly in the presence of elevated organic matter. Retention was greater at lower moisture content, and maximum retention occurred after 56 days of incubation. At higher moisture content, the liquid phase also became important in retaining MeI within soil. Together with low observed KD values (0.10 to 0.57 mL g−1), these data suggest that MeI may be prone to leaching. Indeed, in a steady-state soil column study, initially retained MeI was transported with interstitial water. The MeI degradation product, iodide, was also readily transported in this manner. The data highlight a potentially significant process by which MeI fate and transport within the environment may be impacted. -- Highlights: ► Following fumigation and venting, MeI is retained by soil. ► Soil organic matter status is highly significant in MeI retention. ► Retained MeI is protected from degradation and volatilization. ► Retained MeI can be removed from the solid phase to the liquid phase and leached.

  20. Electrical properties of solid iodo mercurates resulting from the reaction of HgI2 with alcaline iodides

    Science.gov (United States)

    Ponpon, J. P.; Amann, M.

    2005-01-01

    Potassium iodide solutions are currently used during the fabrication process of mercuric iodide based nuclear radiation detectors. However, KI treatment leaves the HgI2 surface covered with a residual compound (namely the potassium tri-iodo mercurate) which has a significant influence on the surface properties and stability of mercuric iodide devices and therefore on the detectors characteristics. Looking for other solutions to etch mercuric iodide, we found it interesting to investigate the electrical properties of the compounds which may form when etching HgI2 in NH4I, NaI, and RbI. For this purpose, solid iodo mercurates with the cations ammonium, sodium, and rubidium, have been prepared by reacting HgI2 with the solutions of interest. Study of the electrical properties of these samples and comparison with those of potassium tri-iodo mercurate ones, especially with respect to humidity, indicates noticeable stability differences in presence of water vapour. This could have interesting consequences on the surface cleaning of mercuric iodide.

  1. Efficient radiation production in a weakly ionized, low-pressure, nonequilibrium gallium-iodide positive column discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David J; Michael, J Darryl; Midha, Vikas; Cotzas, George M; Sommerer, Timothy J [General Electric Research, One Research Circle, Niskayuna, NY 12309 (United States)

    2007-07-07

    Electric-discharge plasmas in gallium-iodide vapours are experimentally found to convert 40% of input electric power into ultraviolet and visible radiation (200-800 nm). The conditions are a weakly ionized positive column consisting of 5-10 Torr argon, and the gallium-iodide vapour is formed by heating condensed gallium-iodide to 100-120 deg. C. The input power density is 50-100 mW cm{sup -3}. The plasma is contained in a sealed silica tube and excited by an external radiofrequency antenna. Computational analysis and plasma diagnostics lead to a quantitative understanding that gallium atoms are formed by electron-impact dissociation of gallium-iodide compounds that evaporate into the plasma volume, and that further electron collisions excite the gallium atoms, which then decay by photon emission. High efficiency is possible only because several photons are emitted per dissociation event, and because nonradiative power channels such as electron-impact elastic heating and vibrational excitation are not dominant. The dissociated species recombine on the wall to reform the species that evaporates. The plasma properties change discontinuously as the molar ratio of iodine to gallium (I/Ga) in the system crosses the values I/Ga = 3 and I/Ga = 2, consistent with the thermodynamic properties of condensed gallium-iodide compounds.

  2. Synergy between iodide ions and mangrove tannins as inhibitors of mild steel corrosion

    OpenAIRE

    Adam, Mohd Ridhwan; Rahim, Afidah Abdul; Shah, Affaizza Mohamad

    2015-01-01

    Context Corrosion of materials is a problem faced by many industries. One of the solutions to this problem is to apply corrosion inhibitors.Aims In this study, the synergy between iodide ions and mangrove tannin extracted from mangrove bark (waste products of the charcoal industry) was tested on the inhibition of corrosion of mild steel in 0.5 M HCl and 0.25 M H2SO4. It was compared with the inhibition provided by mimosa and chestnut tannins.MethodsPotentiodynamic and electrochemical impedanc...

  3. Indirect Complexometric Determination of Mercury Using Potassium Iodide as Selective Masking Agent

    OpenAIRE

    RAO, B. Muralidhara

    1998-01-01

    This paper describes a indirect complexometric method for the determination of mercury in the presence of co-ions, based on the selective masking ability of potassium iodide. To the mixture of mercury (II) and other metal ion solution, EDTA solution was added in excess of the metal ions present. The pH of the solution was adjusted to 5.0-6.0 using solid hexamine (10 \\pm 2 g) and surplus EDTA was titrated with zinc sulfate solution using xylenol orange indicator. An excess of solid potassium i...

  4. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    International Nuclear Information System (INIS)

    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI2 is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI2; recent progress is reported

  5. Detection of experimentally produced acute pulmonary arterial occlusion by methyl iodide-131 inhalation imaging

    International Nuclear Information System (INIS)

    Methyl iodide-131 (CH3I-131) is described as an agent for detection of acute experimentally produced pulmonary arterial occlusion in dogs. When gaseous CH3I-131 is inhaled, radioactivity passes instantaneously from the alveoli to the lung capillary bed. Where pulmonary blood flow exists, activity is washed out into the systemic circulation, but in areas of blood stasis, a transient pulmonary hot spot remains. CH3I-131 is easily produced and inexpensive, but administration is awkward and strict radiation safety precautions are mandatory

  6. Atypical cutaneous sporotrichosis in an immunocompetent adult: Response to potassium iodide

    Directory of Open Access Journals (Sweden)

    Nikita Gandhi

    2016-01-01

    Full Text Available Cutaneous sporotrichosis, also known as “Rose Gardener's disease,” caused by dimorphic fungus Sporothrix schenkii, is usually characterized by indolent nodular or nodulo-ulcerative lesions arranged in a linear pattern. We report bizarre nonlinear presentation of Sporotrichosis, in an immunocompetent adult occurring after a visit to Amazon rain forest, speculating infection with more virulent species of Sporothrix. The diagnosis was reached with the help of periodic acid-Schiff positive yeast cells and cigar shaped bodies seen in skin biopsy along with the therapeutic response to potassium iodide.

  7. A study on sodium iodide symporter gene mutation in congenital hypothyroidism

    International Nuclear Information System (INIS)

    Objective: To investigate the mutation of sodium iodide symporter (NIS) gene in the patients with congenital hypothyroidism (CH) in Tianjin area. Methods: Total genomic DNA was extracted from peripheral blood of 18 patients with CH and 35 normal subjects randomly selected. All 15 exons of NIS gene were individually amplified. Mutation was detected by single-strand conformational polymorphism(SSCP) technique and confirmed with direct sequencing. Results: Exons of NIS gene of all the subjects were successfully amplified by polymerase chain reaction. SSCP analysis displayed no abnormality. No mutation was found in these patients Conclusion: The CH in Tianjin urban area had no mutation of NIS gene. (authors)

  8. Towards Renewable Iodide Sources for Electrolytes in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Iryna Sagaidak

    2016-03-01

    Full Text Available A novel family of iodide salts and ionic liquids based on different carbohydrate core units is herein described for application in dye-sensitized solar cell (DSC. The influence of the molecular skeleton and the cationic structure on the electrolyte properties, device performance and on interfacial charge transfer has been investigated. In combination with the C106 polypyridyl ruthenium sensitizer, power conversion efficiencies lying between 5.0% and 7.3% under standard Air Mass (A.M. 1.5G conditions were obtained in association with a low volatile methoxypropionitrile (MPN-based electrolyte.

  9. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.

    1982-01-01

    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI/sub 2/ is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI/sub 2/; recent progress is reported. (WHK)

  10. Zinc iodide-osmium staining of membrane-coating granules in keratinized and non-keratinized mammalian oral epithelium.

    Science.gov (United States)

    Squier, C A

    1982-01-01

    Specimens of keratinized and non-keratinized oral epithelium were examined in the electron microscope after being stained with zinc iodide-osmium. In both types of tissue, reaction was seen in unmyelinated nerves, in the specific granules of epithelial Langerhans cells and within lysosome-like organelles and small vesicles associated with Golgi systems. In keratinized epithelia, the reaction was also present in the membrane-coating granules and between the deepest cells of the keratinized layer. In contrast, the membrane-coating granules of non-keratinized epithelia lacked Zn iodide-osmium staining despite the presence of reaction in adjacent Golgi systems. It is suggested that Zn iodide-osmium stains glycolipid or glycoprotein material in the cell. This material is elaborated in the Golgi systems from which lysosomes and the membrane-coating granules of keratinized tissues are probably derived.

  11. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    International Nuclear Information System (INIS)

    Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  12. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    Directory of Open Access Journals (Sweden)

    Byeong-Cheol Ahn

    2012-01-01

    Full Text Available Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers.

  13. The effect of potassium iodide on the production of acid phosphatase by Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    P. S. Grover

    2003-06-01

    Full Text Available The present study was undertaken to find out the in vitro effect of potassium iodide (KI on the production of acid phosphatase by fully characterized strain of S.schenckii isolated from a patient of Cutaneous Sporotrichosis. The enzyme acid phosphatase was estimated during the 3 phases of growth of S.schenckii, without and with three concentrations of KI incorporated in the culture medium. In the control and in the test proper, with various concentrations of KI, no adverse effect of KI was observed on the production of acid phosphatase in early and mid log phase of fungal growth. Whereas in the exponential phase in test proper, there was a statistical significant decrease in the enzyme production with 0.8% and 3.2% of KI. The low activity at 0.8% and 3.2% KI indicates that KI has inhibitory effect on the growth of S.schenckii and has led to decrease in the activity of the enzyme. (Med J Indones 2003; 12: 65-8 Keywords: S.schenckii, acid phosphatase, potassium iodide

  14. Iodine in raw and pasteurized milk of dairy cows fed different amounts of potassium iodide.

    Science.gov (United States)

    Norouzian, M A

    2011-02-01

    Relation between iodine (I) intake by lactating Holstein cows and iodine concentrations in raw and pasteurized milk were investigated. Four treatment groups with eight cows assigned to each treatment were fed a basal diet containing 0.534 mg I/kg alone or supplemented with potassium iodide at 2.5, 5 or 7.5 mg/kg in 7-week period. Iodine concentrations in raw milk increased with each increase in dietary I from 162.2 ng/ml for basal diet to 534.5, 559.8 and 607.5 ng/ml when 2.5, 5 and 7.5 mg/kg was fed as potassium iodide (P iodine concentration. Iodine supplementation had no significant effect on thyroidal hormones. high-temperature short-time (HTST) pasteurization process reduced I concentration. The mean iodine content found in the milk prior to heating processing was 466.0 ± 205.0 ng/ml, whereas for the processed milk this level was 349.5 ± 172.8 ng/ml. It was concluded that iodine supplementation above of NRC recommendation (0.5 mg/kg diet DM) resulted in significant increases in iodine concentrations in milk, although the effect of heating in HTST pasteurization process on iodine concentration was not negligible.

  15. Sodium iodide symporter (NIS) in extrathyroidal malignancies: focus on breast and urological cancer

    International Nuclear Information System (INIS)

    Expression and function of sodium iodide symporter (NIS) is requisite for efficient iodide transport in thyrocytes, and its presence in cancer cells allows the use of radioiodine as a diagnostic and therapeutic tool in thyroid neoplasia. Discovery of NIS expression in extrathyroidal tissues, including transformed cells, has opened a novel field of research regarding NIS-expressing extrathyroidal neoplasia. Indeed, expression of NIS may be used as a biomarker for diagnostic, prognostic, and therapeutic purposes. Moreover, stimulation of endogenous NIS expression may permit the radioiodine treatment of extrathyroidal lesions by concentrating this radioisotope. This review describes recent findings in NIS research in extrathyroidal malignancies, focusing on breast and urological cancer, emphasizing the most relevant developments that may have clinical impact. Given the recent progress in the study of NIS regulation as molecular basis for new therapeutic approaches in extrathyroidal cancers, particular attention is given to studies regarding the relationship between NIS and clinical-pathological aspects of the tumors and the regulation of NIS expression in the experimental models

  16. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications.

    Science.gov (United States)

    Aubert-Viard, François; Martin, Adeline; Chai, Feng; Neut, Christel; Tabary, Nicolas; Martel, Bernard; Blanchemain, Nicolas

    2015-02-01

    Polyethylene terephtalate (PET) and Polypropylene (PP) textiles are widely used in biomedical application such as wound dressings and implants. The aim of this work was to develop an antibacterial chitosan (CHT) coating activated by silver or by iodine. Chitosan was immobilized onto PET and PP supports using citric acid (CTR) as a crosslinking agent through a pad-dry-cure textile finishing process. Interestingly, depending on the CHT/CTR molar ratio, two different systems were obtained: rich in cationic ammonium groups when the CTR concentration was 1%w/v, and rich in anionic carboxylate groups when the CTR concentration was 10%w/v. As a consequence, such samples could be selectively loaded with iodine and silver nitrate, respectively.Both types of coatings were analyzed using SEM and FTIR, their sorption capacities were evaluated toward iodide/iodate anions (I(-)/IO3(-)) and the silver cations (Ag(+)) were evaluated using elemental analysis. Finally, in vitro evaluations were carried out to evaluate the cytocompatibility on the epithelial cell line. The silver loaded textile reported a stronger antibacterial effect against E.coli (5 log10 reduction) than toward S. aureus (3 log10) while the antibacterial effect of the iodide loaded textiles was limited to 1 log10 to 2 log10 on both strains. PMID:25730424

  17. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Filho, A.M. [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil); Mulato, M., E-mail: mmulato@ffclrp.usp.b [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil)

    2011-04-21

    Some semiconductor materials such as lead iodide (PbI{sub 2}) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 10{sup 8} {Omega} cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  18. Observation of crystallization and characterizations on thiourea cadmium iodide: A semi-organic optical material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preeti; Hasmuddin, Mohd. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Abdullah, M.M. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Promising Centre for Sensors and Electronic Devices (PCSED), Department of Physics, Faculty of Sciences and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Shkir, Mohd. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India) and Department of Physics, ARSD College, University of Delhi, New Delhi 110021 (India); Wahab, M.A., E-mail: aries.pre84@gmail.com [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India)

    2013-10-15

    Graphical abstract: - Highlights: • Thiourea cadmium iodide (TCI) was grown by slow evaporation solution technique. • Morphology and growth rate of the grown compound are determined with the help of inverted microscope. • Optical band gap has been determined. • Microstructure analysis has been reported. • Electrical study has been reported and discussed. - Abstract: In this work, the single crystals of thiourea cadmium iodide were grown by slow evaporation solution technique in two different ratios 2:1 and 1:1. During the formation of their single crystals the morphological features and its live growth process were recorded with the help of inverted microscope. Structural studies of the grown crystals have been carried out by powder X-ray diffraction to confirm the crystal system and vibrational modes by Raman spectroscopy. The optical energy band gaps were investigated through UV–vis spectroscopy study. The surface morphology of the grown single crystals was analyzed by using Scanning Electron Microscope and thermal analysis was carried out by using thermogravimetric analysis. The electrical properties were also studied as a function of frequency and the obtained results are discussed.

  19. Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Benjamin C. [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341 (United States)]. E-mail: bblount@cdc.gov; Valentin-Blasini, Liza [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341 (United States)

    2006-05-10

    Because of health concerns surrounding in utero exposure to perchlorate, we developed a sensitive and selective method for quantifying iodide, as well as perchlorate and other sodium-iodide symporter (NIS) inhibitors in human amniotic fluid using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Iodide and NIS inhibitors were quantified using a stable isotope-labeled internal standards (Cl{sup 18}O{sub 4} {sup -}, S{sup 13}CN{sup -} and {sup 15}NO{sub 3} {sup -} with excellent assay accuracy of 100%, 98%, 99%, 95% for perchlorate, thiocyanate, nitrate and iodide, respectively, in triplicate analysis of spiked amniotic fluid sample). Excellent analytical precision (<5.2% RSD for all analytes) was found when amniotic fluid quality control pools were repetitively analyzed for iodide and NIS-inhibitors. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. Analytical response was linear across the physiologically relevant concentration range for the analytes. Analysis of a set of 48 amniotic fluid samples identified the range and median levels for perchlorate (0.057-0.71, 0.18 {mu}g/L), thiocyanate (<10-5860, 89 {mu}g/L), nitrate (650-8900, 1620 {mu}g/L) and iodide (1.7-170, 8.1 {mu}g/L). This selective, sensitive, and rapid method will help assess exposure of the developing fetus to low levels of NIS-inhibitors and their potential to inhibit thyroid function.

  20. Replacement of monochromator and proportional gas counter by mercuric iodide detector in X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, J.; Levi, A.; Burger, A.; Schieber, M. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology)

    1983-02-01

    Low resolution and therefore low-cost mercuric iodide detectors have successfully been applied to replace the combination of a graphite monochromator and a proportional gas radiation counter used in X-ray diffractometers. The mercuric iodide detector requires a lower DC bias of only 200 V rather than the 1500 V bias needed for the proportional gas counter. The much better stopping power of HgI/sub 2/ allows higher counting efficiency and therefore a better signal-to-noise ratio. Results are shown for X-ray powder diffractions of polycrystalline cubic silicon and tetragonal HgI/sub 2/.

  1. A reversible fluorescent INHIBIT logic gate for determination of silver and iodide based on the use of graphene oxide and a silver–selective probe DNA

    International Nuclear Information System (INIS)

    We describe a reversible fluorescent DNA–based INHIBIT logic gate for the determination of silver(I) and iodide ions using graphene oxide (GO) as a signal transducer and Ag(I) and iodide as mechanical activators. The basic performance, optimized conditions, sensitivity and selectivity of the logic gate were investigated and revealed that the method is highly sensitive and selective over potentially interfering ions. The limits of detection for Ag(I) and iodide are 10 nM and 50 nM, respectively. This logic gate was successfully applied to the determination of Ag(I) and iodide in (spiked) tap water and river water. It was also used for the determination of iodide in human urine samples with satisfactory results. Compared to other methods, this INHIBIT logic gate is simple in design and has small background interference. (author)

  2. Sorption, degradation, and transport of methyl iodide and other iodine species in geologic media

    International Nuclear Information System (INIS)

    Iodine is an important element in studies of human nutrition to combat I deficiency disorders, and in protection of the environment and human health from anthropogenic release of radioactive I. Biogeochemical cycling of I in the subsurface environment is complex, because it occurs in multiple oxidation states and as inorganic and organic species that may be volatile, hydrophilic and biophilic. Predicting the fate and transport of anthropogenic radioiodine deposited from the atmosphere or released into the subsurface requires knowledge of the sorption and degradation behavior of the various I species that may interact with soils and sediments. In this study, sorption, degradation, and transport behavior of I species (iodide, iodate, methyl iodide, and 4-iodoaniline) were examined in 12 geologic samples of differing physico-chemical characteristics, collected at numerous nuclear facilities in the USA. In particular, this work focuses on the sorption and degradation behavior of CH3I in geologic media, for which few studies are available, even though it is recognized as an important gaseous form of I in the marine atmosphere, and as a major form released from nuclear fuel reprocessing facilities and during nuclear accidents. Results from complementary batch and column experiments show that different I species exhibit very different sorption and transport behavior in geologic media. Sorption of I− is in general minimal, but a low concentration (5 10−13 M) of radioactive 125I is found to be strongly sorbed onto samples with high organic matter. Sorption of IO3- is consistently greater than that of I−, and sorption of 4-iodoaniline is generally strong and seems to be related to the amount of organic matter in the media. Methyl iodide is weakly sorbed onto 12 geologic samples with a distribution coefficient of about 1 mL/g, but its degradation varies greatly as a function of organic matter content, with a regression line of t1/2 = 0.084 × OM + 0.088 (R2 = 0.898, N

  3. Cyclization of 2′-hydroxychalcones to flavones using ammonium iodide as an iodine source: An eco-friendly approach

    OpenAIRE

    Kulkarni Pramod S.; Kondhare Dasharath D.; Varala Ravi; Zubaidha Pudukulathan K.

    2013-01-01

    Ammonium iodide in open air decomposes to ammonia and iodine. The in situ generated iodine has been used for cyclization of 2′-hydroxychalcones to corresponding flavones under solvent free conditions with good to excellent yields. This method would serve as an attractive alternative to the existing methods for synthesis of flavones and use of toxic molecular iodine is avoided.

  4. Cyclization of 2′-hydroxychalcones to flavones using ammonium iodide as an iodine source: An eco-friendly approach

    Directory of Open Access Journals (Sweden)

    Kulkarni Pramod S.

    2013-01-01

    Full Text Available Ammonium iodide in open air decomposes to ammonia and iodine. The in situ generated iodine has been used for cyclization of 2′-hydroxychalcones to corresponding flavones under solvent free conditions with good to excellent yields. This method would serve as an attractive alternative to the existing methods for synthesis of flavones and use of toxic molecular iodine is avoided.

  5. Polymer adsorption and its effect on the Stability of hydrophobic colloids. III. Kinetics of th Flocculation of silver iodide sols

    NARCIS (Netherlands)

    Fleer, G.J.; Lyklema, J.

    1976-01-01

    In a previous study on the flocculation of silver iodide sols by polyvinyl alcohol (PVA) it was demonstrated that the extent of flocculation depends critically on the way in which sol particles and polymer are mixed. Optimal flocculation was shown to occur if a two-portion method of mixing is applie

  6. N,N-Dimethylbenzimidazolium iodide as a green catalyst for cross-coupling of aromatic aldehydeswith unactivated imines

    Directory of Open Access Journals (Sweden)

    Viwat Hahnvajana wong

    2016-03-01

    Full Text Available Cross-coupling of aromatic aldehydes with unactivated iminescatalyzed by N,N-dimethylbenzimidazolium iodide in ethanolic sodium hydroxide solution gave α-amino ketonesin satisfactory yields. Benzoin condensation and further oxidation of the resulted aroins also occurred as side reactions.

  7. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  8. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  9. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  10. The lactoperoxidase system : the influence of iodide and the chemical and antimicrobial stability over the period of about 18 months

    NARCIS (Netherlands)

    Bosch, EH; Van Doorne, H; De Vries, S

    2000-01-01

    The lactoperoxidase (LP) system is a natural antimicrobial system, the use of which has been suggested as a preservative in foods and pharmaceuticals. The effect of adding iodide to the LP system, the chemical stability and the change in antimicrobial effectiveness during storage was studied. Additi

  11. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide.

    Science.gov (United States)

    Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo

    2016-09-01

    Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. PMID:27522547

  12. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  13. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos; Zhu, Kai; Rumbles, Garry

    2016-09-09

    We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is much slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).

  14. Photoemission and optical constant measurements of Cesium Iodide thin film photocathode

    CERN Document Server

    Triloki,; Gupta, Nikita; Jammal, Nabeel F A; Singh, B K

    2014-01-01

    Performance of cesium iodide (CsI) as a reflective photocathode is presented. Absolute quantum efficiency (QE) measurement of 500 nm thick CsI film has been carried out in the wavelength range of 150 nm to 200 nm. Optical absorbance of 500 nm thick CsI film in the spectral range of 190 nm to 900 nm is analyzed and optical energy band gap is calculated using Tauc plot. To see the dispersive behavior of CsI film, refractive index has been determined by envelop plot of transmittance data, using Swanepoel method. Additional information on morphological and elemental composition results of CsI film, gained by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively are also reported in present work.

  15. Coordination-Induced Syntheses of Two Hybrid Framework Iodides: A Thermochromic Luminescent Thermometer.

    Science.gov (United States)

    Zhang, Ren-Chun; Wang, Jun-Jie; Zhang, Jing-Chao; Wang, Meng-Qi; Sun, Min; Ding, Feng; Zhang, Dao-Jun; An, Yong-Lin

    2016-08-01

    Two new 3D hybrid framework iodides, Hmta[(Hmta)Ag4I4] (1; Hmta = hexamethylenetetramine) and [(Hmta)2Ag8I6]I2 (2), have been synthesized under solvothermal conditions. Compound 1 consists of a neutral 3D framework built up from alternation of the tetrahedral Ag4I4 unit and Hmta with dia-b topology. Compound 2 features a 3D cationic framework with flu topology, constructed by cationic [Ag8I6](2+) units linked with Hmta. Tetrahedral Hmta plays crucial structure-directing roles in the formation of these 3D frameworks with high symmetry. The temperature-dependent photoluminescent measurement reveals luminescent thermochromism of the compounds, the emission maximum of which shows a gradual blue shift with increasing temperature. The results indicate that 1 is a promising wavelength- and intensity-dependent luminescent thermometer applicable in two different temperature ranges. PMID:27438190

  16. A review of recent measurements of optical and thermal properties of. alpha. -mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Silberman, E. (Fisk Univ., Nashville, TN (United States). Dept. of Physics); Nason, D.; Cheng, A.Y. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1991-01-01

    The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide ({alpha}-HgI{sub 2}) is a material which was found important applications as room temperature X-ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of {alpha}-HgI{sub 2} where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth and device fabrication.

  17. Electric field effects on the quantum efficiency of Cesium-iodide photocathodes in gas media

    International Nuclear Information System (INIS)

    We have measured the quantum efficiency (QE) of Cesium iodide photocathodes as a function of the electric field strength in a parallel-plate geometry, in CH4, C2H6 AND i-C4H10 both in charge collection and multiplication modes. It was found that in the collection mode the QE value in gases is lower compared to that of vacuum and is independent on the field; in gas media the QE starts to increase at the transition between collection and multiplication modes and reaches the vacuum value at high gas gain. We explain this effect by a decrease of the electron-molecule elastic backscattering while entering the multiplication mode. We conclude that the electric field effects observed here, would also apply for other photocathodes and gas mixtures. An enhancement of the QE after micro discharges was observed and is discussed in detail. (authors) 30 refs, 10 figs

  18. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    International Nuclear Information System (INIS)

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices

  19. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors

    Science.gov (United States)

    Dolnik, Milos; Epstein, Irving R.

    1993-01-01

    The dynamical behavior of the chlorine dioxide-iodide reaction has been studied in a system consisting of two continuous flow stirred tank reactors (CSTRs). The reactors are coupled by computer monitoring of the electrochemical potential in each reactor, which is then used to control the input into the other reactor. Two forms of coupling are employed: reciprocally triggered, exponentially decreasing stimulation, and alternating mass exchange. The reaction, which exhibits oscillatory and excitable behavior in a single CSTR, displays neuronlike bursting behavior with both forms of coupling. Reciprocal stimulation yields bursting in both reactors, while with alternating mass exchange, bursting is observed in one reactor and complex oscillation in the other. A simple model of the reaction gives good agreement between the experimental observations and numerical simulations.

  20. Lead iodide films as X-ray sensors tested in the mammography energy region

    International Nuclear Information System (INIS)

    We present an alternative method for the deposition of thin films of lead iodide (PbI2), which is a promising semiconductor candidate for applications in medical digital radiography. The spray pyrolysis technique enables the fabrication of thick films with a deposition rate of about 3.3 As-1. We investigate the influence of the main deposition parameters on the final properties of the films. They were substrate temperature from 150 up to 270 oC and nozzle-spray distance to substrate from 13.0 to 16.5 cm. The films were mainly investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Photoluminescence (PL) spectroscopy. Also, electrical characterizations were made in the dark as a function of temperature, and with the samples submitted to X-ray exposures in the energy range of mammography diagnosis

  1. Mercuric iodide composite films using polyamide, polycarbonate and polystyrene fabricated by casting

    International Nuclear Information System (INIS)

    Mercuric iodide (HgI2) composite films were obtained by using the casting technique. Insulator polymers such as polyamide, polycarbonate and polystyrene were mixed to HgI2 crystallites forming a final sub-millimeter thick self-standing film. Fabrication temperature varied from 10 to 100 oC, and total fabrication time reached at most 5 min. The larger the fabrication temperature, the thinner the film and the smaller its electrical resistivity. Electrical characterization was performed in the dark, under UV illumination and under mammographic X-ray exposure. The final properties of the films are discussed and related to fabrication conditions. The optimized composite film might be a better candidate for use as X-ray detector for medical imaging, in place of the single HgI2 crystalline device.

  2. Electron and Hole Drift Mobility Measurements on Methylammonium Lead Iodide Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.

    2016-04-25

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  3. Determination of iodide by volumetric titration in support of the oil eletrolabeling with {sup 123}I

    Energy Technology Data Exchange (ETDEWEB)

    Kenup-Cantuaria, Hericka O.H.; Brandao, Luis E.B., E-mail: hkenup@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    The accuracy in measuring flow rate in pipelines is essential task to control various technical parameters in an industrial plant in oil industry and its derivatives. For this reason, it becomes increasingly widespread the uses of organic molecules labeled with radioactive isotopes mainly because of the wide possibility in use of different radioisotopes also due to the new labeling techniques. This paper presents a study to develop an electrochemical technique for oil labeling with iodine -123 and to determine the yield of production by measuring the concentration of iodide (I{sup -}) during this process. The volumetric titration technique was applied as a basis for quantitative and qualitative measures to monitor the labeling process. The results indicate the technical proposal as a viable alternative for monitoring electro labeling process of lubricating oils with iodine -123. (author)

  4. Cell Cycle Analysis of CML Stem Cells Using Hoechst 33342 and Propidium Iodide.

    Science.gov (United States)

    DeSouza, Ngoc; Zhou, Megan; Shan, Yi

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease with an expansion of white blood cells. The current treatments for CML are shown not to be long-term effective because of CML stem cells' insensitivity to tyrosine kinase inhibitors. Therefore, studying more about CML stem cells is essential to understand the pathways of CML stem cell development and proliferation and finally lead to effective treatments to eliminate CML stem cells and eradicate CML. This chapter describes two methods to analyze cell cycle of CML stem cells. The rare population of CML stem cells can be identified by staining with cell surface markers, and then DNA-binding dyes Hoechst 33342 and propidium iodide (PI) are added to stain the DNA content which is changed when cells go through different phases of the cell cycle. Samples are run through the flow cytometer to be analyzed based on different absorbance and emission wavelengths of different florescent colors. PMID:27581138

  5. Growth of single crystals of mercuric iodide (HgI2) in spacelab III

    International Nuclear Information System (INIS)

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed

  6. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide

    Science.gov (United States)

    Yusof, Y. M.; Shukur, M. F.; Illias, H. A.; Kadir, M. F. Z.

    2014-03-01

    This work focuses on the characteristics of polymer blend electrolytes based on corn starch and chitosan doped with ammonium iodide (NH4I). The electrolytes were prepared using the solution cast method. A polymer blend comprising 80 wt% starch and 20 wt% chitosan was found to be the most amorphous blend and suitable to serve as the polymer host. Fourier transform infrared spectroscopy analysis proved the interaction between starch, chitosan and NH4I. The highest room temperature conductivity of (3.04 ± 0.32) × 10-4 S cm-1 was obtained when the polymer host was doped with 40 wt% NH4I. This result was further proven by field emission scanning electron microscopy study. All electrolytes were found to obey the Arrhenius rule. Dielectric studies confirm that the electrolytes obeyed non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting sample follows the quantum mechanical tunneling model.

  7. Role of -methyl-8-(alkoxy)quinolinium iodide in suppression of protein-protein interactions

    Indian Academy of Sciences (India)

    Bimlesh Ojha; Cirantan Kar; Gopal Das

    2013-03-01

    There is a great deal of interest in developing small molecule inhibitors of protein misfolding and aggregation due to a growing number of pathologic states known as amyloid disorders. In searching for alternative ways to reduce protein-protein interactions or to inhibit the amyloid formation, the inhibitory effects of cationic amphiphile viz. -methyl-8-(alkoxy)quinolinium iodide on aggregation behaviour of hen egg white lysozyme (HEWL) at alkaline pH has been studied. Even though the compounds did not protect native HEWL from conformational changes, they were effective in diminishing HEWL amyloid formation, delaying both nucleation and elongation phases. It is likely that strong binding in the HEWL compound complex, raises the activation energy barrier for protein misfolding and subsequent aggregation, thereby retarding the aggregation kinetics substantially.

  8. The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-01-01

    Full Text Available The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. The inhibition effect of potassium iodide on the corrosion of pure iron in 0.5 M H2SO4 has been studied by weight loss. It has been observed from the results that the inhibition efficiency (IE% of KI increases from 82.17% to 97.51% with the increase in inhibitor concentration from 1·10−4 to 2·10−3 M. The apparent activation energy (Ea and the equilibrium constant of adsorption (Kads were calculated. The adsorption of the inhibitor on the pure iron surface is in agreement with Langmuir adsorption isotherm.

  9. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells

    Science.gov (United States)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.

    2016-04-01

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  10. Influence of ionic strength on the transport parameters of tritiated water and iodide in boom clay

    International Nuclear Information System (INIS)

    To fulfil its role as main barrier for High and Medium Level radioactive waste (HLW and MLW), Boom Clay relies on its advantageous capacity to minimise radionuclide transport by its slow diffusion and high retention properties. One of the key parameters in the radionuclide dispersion process is the diffusion accessible porosity (ηacc). Diffusion accessible porosity, is a transport parameter that is linked to the properties of each dispersing radionuclide and the geochemical conditions of Boom Clay. Disposing radioactive waste in Boom Clay will inevitably cause perturbations of which some can generate changes in the Boom Clay pore water chemistry. One effect of these chemical perturbations will be the increase of ionic strength of the pore water in the vicinity of a repository. This paper synthesises the results of the experimental work done to obtain the transport parameters of tritiated water and iodide for Boom Clay at different ionic strengths. (authors)

  11. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter

    Directory of Open Access Journals (Sweden)

    C. Massart

    2014-01-01

    Full Text Available NADPH oxidases (NOXes and dual oxidases (DUOXes generate O2.− and H2O2. Diphenyleneiodonium (DPI inhibits the activity of these enzymes and is often used as a specific inhibitor. It is shown here that DPI, at concentrations similar to those which inhibit the generation of O2 derivatives, activated the efflux of radioiodide but not of its analog 99mTcO4− nor of the K+ cation mimic 86Rb+ in thyroid cells, in the PCCl3 rat thyroid cell line and in COS cell lines expressing the iodide transporter NIS. Effects obtained with DPI, especially in thyroid cells, should therefore be interpreted with caution.

  12. A method for objectively quantifying propidium iodide exclusion in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Happ, Denise F; Tasker, Andrew

    2016-01-01

    BACKGROUND: Organotypic hippocampal slice cultures (OHSCs) are an attractive in vitro model to examine mechanisms of neuronal injury, because the normal hippocampal architecture, function and cellular diversity are mostly preserved. The effects of exposure to excitotoxins such as N......-methyl-d-aspartate (NMDA) on cell viability can be determined by propidium iodide (PI) staining. NEW METHOD: We describe a simple method to objectively quantify cell death in NMDA exposed slice cultures using PI that provides a standardized means of quantifying cell death in hippocampal subfields without the need to...... induce maximal cell death in each slice. The method employs separation of subfields using simple landmarks and densitometric quantification of PI intensity in 10 template-oriented counting fields. RESULTS: We show that exposure to increasing concentrations of NMDA results in a dose-dependent increase in...

  13. Thermodynamics of iodide adsorption at the instantaneous air-water interface

    Science.gov (United States)

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-01

    We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010), 10.1021/jp909219k]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy.

  14. Cesium-iodide-based nanocrystal for the detection of ionizing radiation

    Science.gov (United States)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.

    2016-05-01

    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  15. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D., E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Vourlias, George; Patsalas, Panos A. [Department of Physics, Laboratory of Applied Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  16. {sup 11}C-methylations using {sup 11}C-methyl iodide and tetrabutylammonium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.J.; Jivan, S.; Huser, J.M.; Lu, J. [TRIUMF Univ. of British Columbia, Vancouver (Canada)

    2000-07-01

    Carbon-11 methylation reactions on functional groups such as phenols and amides require a base when using {sup 11}C-methyl iodide. This study demonstrates that tetrabutylammonium fluoride (TBAF) can be used as a base to prepare {sup 11}C-radiopharmaceuticals efficiently and in high yield. We have applied this method to raclopride, methylphenidate, PK11195, dihydrotetrabenazine and MDL100907 and have compared the results with the Alumina/KF and hydroxide methods. Our results indicate that TBAF gives equivalent or higher radiochemical yields compared to the other bases even when using as little as 200 {mu}g of precursor. In the case of PK11195 the TBAF method was the only one that provided a reasonable yield of product. (orig.)

  17. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    International Nuclear Information System (INIS)

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. - Abstract: A colorimetric method for the recognition and sensing of iodide ions (I−) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I− in the presence of sodium thiosulfate (Na2S2O3). Specifically, I− together with Na2S2O3 can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na2S2O3, the etching reactions on TAg-NPs were observed not only by I− but also other halides ions. The Na2S2O3 plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na2S2O3/I mixture was proportional to the concentration of I− in the range 1.0 × 10−9–1.0 × 10−6 mol L−1. Moreover, no other ions besides I− can induce an eye discernible color change as low as 1.0 × 10−7 mol L−1. Finally, this method was successfully applied for I− determination in kelp samples

  18. Expression of sodium/iodide symporter transgene in neural stem cells

    International Nuclear Information System (INIS)

    The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to 20μM, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene expression of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions

  19. Thermochromic luminescence of copper iodide clusters: the case of phosphine ligands.

    Science.gov (United States)

    Perruchas, Sandrine; Tard, Cédric; Le Goff, Xavier F; Fargues, Alexandre; Garcia, Alain; Kahlal, Samia; Saillard, Jean-Yves; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-11-01

    Three copper(I) iodide clusters coordinated by different phosphine ligands formulated [Cu(4)I(4)(PPh(3))(4)] (1), [Cu(4)I(4)(Pcpent(3))(4)] (2), and [Cu(4)I(4)(PPh(2)Pr)(4)] (3) (PPh(3) = triphenylphosphine, Pcpent(3) = tricyclopentylphosphine, and PPh(2)Pr = diphenylpropylphosphine) have been synthesized and characterized by (1)H and (31)P NMR, elemental analysis and single crystal X-ray diffraction analysis. They crystallize in different space groups, namely, monoclinic P21/c, cubic Pa ̅3, and tetragonal I ̅42m for 1, 2, and 3, respectively. The photoluminescence properties of clusters 1 and 3 show reversible luminescence thermochromism with two highly intense emission bands whose intensities are temperature dependent. In accordance to Density Functional Theory (DFT) calculations, these two emission bands have been attributed to two different transitions, a cluster centered (CC) one and a mixed XMCT/XLCT one. Cluster 2 does not exhibit luminescence variation in temperature because of the lack of the latter transition. The absorption spectra of the three clusters have been also rationalized by time dependent DFT (TDDFT) calculations. A simplified model is suggested to represent the luminescence thermochromism attributed to the two different excited states in thermal equilibrium. In contrast with the pyridine derivatives, similar excitation profiles and low activation energy for these phosphine-based clusters reflect high coupling of the two emissive states. The effect of the Cu-Cu interactions on the emission properties of these clusters is also discussed. Especially, cluster 3 with long Cu-Cu contacts exhibits a controlled thermochromic luminescence which is to our knowledge, unknown for this family of copper iodide clusters. These phosphine-based clusters appear particularly interesting for the synthesis of original emissive materials. PMID:21957984

  20. Marginal iodide deficiency and thyroid function: Dose-response analysis for quantitative pharmacokinetic modeling

    International Nuclear Information System (INIS)

    Severe iodine deficiency (ID) results in adverse health outcomes and remains a benchmark for understanding the effects of developmental hypothyroidism. The implications of marginal ID, however, remain less well known. The current study examined the relationship between graded levels of ID in rats and serum thyroid hormones, thyroid iodine content, and urinary iodide excretion. The goals of this study were to provide parametric and dose-response information for development of a quantitative model of the thyroid axis. Female Long Evans rats were fed casein-based diets containing varying iodine (I) concentrations for 8 weeks. Diets were created by adding 975, 200, 125, 25, or 0 μg/kg I to the base diet (∼25 μg I/kg chow) to produce 5 nominal I levels, ranging from excess (basal + added I, Treatment 1: 1000 μg I/kg chow) to deficient (Treatment 5: 25 μg I/kg chow). Food intake and body weight were monitored throughout and on 2 consecutive days each week over the 8-week exposure period, animals were placed in metabolism cages to capture urine. Food, water intake, and body weight gain did not differ among treatment groups. Serum T4 was dose-dependently reduced relative to Treatment 1 with significant declines (19 and 48%) at the two lowest I groups, and no significant changes in serum T3 or TSH were detected. Increases in thyroid weight and decreases in thyroidal and urinary iodide content were observed as a function of decreasing I in the diet. Data were compared with predictions from a recently published biologically based dose-response (BBDR) model for ID. Relative to model predictions, female Long Evans rats under the conditions of this study appeared more resilient to low I intake. These results challenge existing models and provide essential information for development of quantitative BBDR models for ID during pregnancy and lactation.

  1. Diffusional analysis of the adsorption of methyl iodide on silver exchanged mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T. [Oak Ridge National Lab., TN (United States); Counce, R.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-08-01

    The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine-well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH{sub 3}I uptake behavior onto the Ag{degrees}Z. Linear and multidimensional regression techniques were used to estimate the diffusion constants and other model parameters, which then permitted the selection of an appropriate mass transfer model. Although a number of studies have been conducted to evaluate the loading of both elemental and methyl iodide on silver-exchanged mordenite, these studies focused primarily on the macro scale (deep bed) while evaluating the material under a broad range of process conditions and contaminants for total bed loading at the time of breakthrough. A few studies evaluated equilibrium or maximum loading. Thus, to date, only bulk loading data exist for the adsorption of CH{sub 3}I onto Ag{degrees}Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process, It can be concluded from the analysis of the experimental data obtained by the {open_quotes}single-pellet{close_quotes} type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH{sub 3}I onto Ag{degrees}Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10{sup -14} cm{sup 2}/s. The system was also shown to be isothermal under all conditions of this study. 21 refs., 6 figs., 8 tabs.

  2. The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite

    International Nuclear Information System (INIS)

    The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH3I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH3I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH3I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10-14 cm2/s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs

  3. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinyan; Chen, Shu, E-mail: chenshumail@gmail.com; Tang, Jian; Xiong, Yuan; Long, Yunfei, E-mail: l_yunfei927@163.com

    2014-05-01

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. Abstract: A colorimetric method for the recognition and sensing of iodide ions (I⁻) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I⁻ in the presence of sodium thiosulfate (Na₂S₂O₃). Specifically, I⁻ together with Na₂S₂O₃ can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na₂S₂O₃, the etching reactions on TAg-NPs were observed not only by I⁻ but also other halides ions. The Na₂S₂O₃ plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na₂S₂O₃/I⁻ mixture was proportional to the concentration of I⁻ in the range 1.0 × 10⁻⁹–1.0 × 10⁻⁶ mol L⁻¹. Moreover, no other ions besides I⁻ can induce an eye discernible color change as low as 1.0 × 10⁻⁷ mol L⁻¹. Finally, this method was successfully applied for I⁻ determination in kelp samples.

  4. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shikha [Bio-Organic Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Ghosh, Sunil K., E-mail: ghsunil@barc.gov.in [Bio-Organic Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Sharma, Joti N., E-mail: jnsharma@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-09-15

    Highlights: • A new class of quart-ammonium based ligands have been designed and synthesized. • Ligand showed high extractability and selectivity for Ru in nitric acid medium. • Results are better compared to other extractants reported so far. • The iodide ion played key role in extraction process. • The composition of the extracted complex was found to be L[Ru(NO)(NO{sub 3}){sub 3}I]. - Abstract: A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2 M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L{sup +}I{sup −} and Ru(NO)(NO{sub 3}){sub 3}. Ruthenium formed an adduct of structure LRu(NO)(NO{sub 3}){sub 3}I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste.

  5. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    International Nuclear Information System (INIS)

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na+/I- sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared 125I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in ∼ 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  6. PI3K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer

    Directory of Open Access Journals (Sweden)

    Capen Charles C

    2007-07-01

    Full Text Available Abstract Background The sodium/iodide symporter (NIS is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability. We previously identified PI3K signaling as important in NIS upregulation in transgenic mouse models of breast cancer, and the PI3K pathway is commonly activated in human breast cancer. Methods NIS expression, subcellular localization, and function were analyzed in MCF-7 human breast cancer cells and MCF-7 cells stably or transiently expressing PI3K p110alpha subunit using Western blot of whole cell lysate, cell surface biotinylation Western blot and immunofluorescence, and radioiodide uptake assay, respectively. NIS localization was determined in a human breast cancer tissue microarray using immunohistochemical staining (IHC and was correlated with pre-existing pAkt IHC data. Statistical analysis consisted of Student's t-test (in vitro studies or Fisher's Exact Test (in vivo correlational studies. Results In this study, we demonstrate that PI3K activation in MCF-7 human mammary carcinoma cells leads to expression of underglycosylated NIS lacking cell surface trafficking necessary for iodide uptake ability. PI3K activation also appears to interfere with cell surface trafficking of exogenous NIS as well as all-trans retinoic acid-induced endogenous NIS. A correlation between NIS expression and upregulation of PI3K signaling was found in a human breast cancer tissue microarray. Conclusion Thus, the PI3K pathway likely plays a major role in the discordance between NIS expression and iodide uptake in breast cancer patients. Further study is warranted to realize the application of NIS-mediated radioiodide

  7. Radioiodine uptake and retention mediated by adenovirus transfer of the sodium iodide symphorter and thyroperoxidase gene in hepatic cancer cell

    International Nuclear Information System (INIS)

    Objective: Sodium iodide symporter (NIS) is capable of the thyroid to concentrate iodide, thyroperoxidase (TPO) is involved in iodide organification which promotes iodide retention within thyroid cells. Both are important for effectively treatment of differentiated thyroid cancers. To test whether this therapeutic strategy would be used to hepatic tumor by coupling radioiodide administration and organification with transfer of the NIS gene and TPO gene into target cells. Methods: hNIS and hTPO cDNA were amplified from Graves' patient's thyroid tissue by RT-PCR, then constructed recombinant adenovirus encoding the NIS and TPO gene under the control of the cytomegalovirus early promoter (AdNIS and AdTPO). Infection HeGp2 cells with AdNIS virus, coinfection with AdNIS and AdTPO. The uptake and effiux of 1251 was examined, and also performed 131I cytotoxicity experiment in vitro. Results: The cells infected with AdNIS showed 1251 uptake higher than that in noninfected cells. Whereas, radioiodide effiux was rapid, which limited tumor cell killing. In contrast, cotransfection AdNIS and AdTPO resulted in increased uptake and retention of radioiodide, and then greater cytotoxicity was observed in tumor cells. Conclusion: These data indicate that cotransfection AdNIS and AdTPO is sufficient to induce iodide uptake and organification in nonthyroid tumor cell, which will led to efficient tumor cell killing. However, we need apply this study in vivo, and solve the problem of selectively killing tumor cells when taking radioiodide therapy. (authors)

  8. PI3K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer

    International Nuclear Information System (INIS)

    The sodium/iodide symporter (NIS) is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability. We previously identified PI3K signaling as important in NIS upregulation in transgenic mouse models of breast cancer, and the PI3K pathway is commonly activated in human breast cancer. NIS expression, subcellular localization, and function were analyzed in MCF-7 human breast cancer cells and MCF-7 cells stably or transiently expressing PI3K p110alpha subunit using Western blot of whole cell lysate, cell surface biotinylation Western blot and immunofluorescence, and radioiodide uptake assay, respectively. NIS localization was determined in a human breast cancer tissue microarray using immunohistochemical staining (IHC) and was correlated with pre-existing pAkt IHC data. Statistical analysis consisted of Student's t-test (in vitro studies) or Fisher's Exact Test (in vivo correlational studies). In this study, we demonstrate that PI3K activation in MCF-7 human mammary carcinoma cells leads to expression of underglycosylated NIS lacking cell surface trafficking necessary for iodide uptake ability. PI3K activation also appears to interfere with cell surface trafficking of exogenous NIS as well as all-trans retinoic acid-induced endogenous NIS. A correlation between NIS expression and upregulation of PI3K signaling was found in a human breast cancer tissue microarray. Thus, the PI3K pathway likely plays a major role in the discordance between NIS expression and iodide uptake in breast cancer patients. Further study is warranted to realize the application of NIS-mediated radioiodide ablation in breast cancer

  9. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T. [Univ Nice Sophia Antipolis, Sch Med, CEA, DSV, iBEB, SBTN, TIRO, F-06107 Nice (France); Chang, P. [CNRS, UPMC Biol Dev, UMR 7009, F-06230 Villefranche Sur Mer (France); Huc, S.; Darrouzet, E. [CEA Valrho, DSV, iBEB, SBTN, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na{sup +}/I{sup -} sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared {sup 125}I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in {approx} 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  10. Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter

    OpenAIRE

    Jauregui-Osoro, Maite; Sunassee, Kavitha; Weeks, Amanda J.; Berry, David J; Paul, Rowena L.; Cleij, Marcel; Banga, Jasvinder Paul; O’Doherty, Michael J.; Marsden, Paul K.; Clarke, Susan E. M.; Ballinger, James R.; Szanda, Istvan; Cheng, Sheue-yann; Blower, Philip J

    2010-01-01

    Purpose The human sodium/iodide symporter (hNIS) is a well-established target in thyroid disease and reporter gene imaging using gamma emitters 123I-iodide, 131I-iodide and 99mTc-pertechnetate. However, no PET imaging agent is routinely available. The aim of this study was to prepare and evaluate 18F-labelled tetrafluoroborate ([18F]TFB) for PET imaging of hNIS. Methods [18F]TFB was prepared by isotopic exchange of BF4 − with [18F]fluoride in hot hydrochloric acid and purified using an alumin...

  11. The effect of temperature on radiolysis of iodide ion diluted aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbovitskaya, T.; Tiliks, J. [Latvia Univ., Lab. of Radiation Chemistry, Riga (Latvia)

    1996-12-01

    To investigate the radiolysis of iodine containing aqueous solutions a flow type facility (ITF) has a possibility to irradiate aqueous solutions in the steel vessel with {sup 60}Co {gamma}-rays and continuously (on line) to analyze the products of radiolysis both in liquid and in gaseous phases. By means of ITF the formation of I{sub ox} (I{sub 2} + I{sub 3}{sup -} + HOI), IO{sub 3}{sup -}, H{sub 2}O{sub 2} was studied in 10{sup -5} - 10{sup -3} mol/dm{sup 3} CsI aqueous solutions by their radiolysis at dose rate 4.5 kGv/h for six hours in region of temperatures from 313 to 404 K. Some experiments in glass ampoules were also performed. The steady-state concentrations of I{sub ox} and IO{sub 3}{sup -} decreased with increasing temperature as linear function of inverted temperature. The effect decreased with decreasing concentration of iodide ion. As the result, at high temperatures (T{>=}380 K) the steady-state concentration of I{sub ox} does not depend essentially on the iodide ion initial concentration. Molecular iodine (I{sub 2}) released from the solution was the main radiolysis product in gaseous phase. Its steady-state concentration increased with increasing temperature because of iodine solubility in the water and decreased at the same time because the radiolytic iodine concentrations decreased. Therefore the most volatility of irradiated 10{sup -3} and 10{sup -4}M CsI solutions was observed at the temperature about 350 K. The volatility of 10{sup -5}M solutions gradually decreased with increasing temperature. The experimental data were explained on the base of the hypothesis that the reaction between I{sub 2} and radiolytic H{sub 2}O{sub 2} was the limit one determining the temperature dependence of I{sub ox} and IO{sub 3}{sup -}steady-state concentrations. Its activation energy was estimated to be 27,5 kcal.mol{sup -1}. The temperature dependence for reaction (IO{sup -} + H{sub 2}O{sub 2}) was also estimated. (author) 8 figs., 1 tab., 17 refs.

  12. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-02-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere is based on observations and modeling studies using low resolution oceanic emission scenarios derived from top down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1° × 1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol I yr−1 for CH3I (Robust Fit/Ordinary Least Square regression technique. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic region. "Hot spots" for global

  13. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-09-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  14. Assessment of methods for methyl iodide emission reduction and pest control using a simulation model

    Science.gov (United States)

    Luo, Lifang; Ashworth, Daniel J.; Šimunek, Jirka; Xuan, Richeng; Yates, Scott R.

    2013-02-01

    The increasing registration of the fumigant methyl iodide within the USA has led to more concerns about its toxicity to workers and bystanders. Emission mitigation strategies are needed to protect the public and environmental health while providing effective pest control. The effectiveness of various methods on emissions reduction and pest control was assessed using a process-based mathematical model in this study. Firstly, comparisons between the simulated and laboratory measured emission fluxes and cumulative emissions were made for methyl iodide (MeI) under four emission reduction treatments: 1) control, 2) using soil with high organic matter content (HOM), 3) being covered by virtually impermeable film (VIF), and 4) irrigating soil surface following fumigation (Irrigation). Then the model was extended to simulate a broader range of emission reduction strategies for MeI, including 5) being covered by high density polyethylene (HDPE), 6) increasing injection depth from 30 cm to 46 cm (Deep), 7) HDPE + Deep, 8) adding a reagent at soil surface (Reagent), 9) Reagent + Irrigation, and 10) Reagent + HDPE. Furthermore, the survivability of three types of soil-borne pests (citrus nematodes [Tylenchulus semipenetrans], barnyard seeds [Echinochloa crus-galli], fungi [Fusarium oxysporum]) was also estimated for each scenario. Overall, the trend of the measured emission fluxes as well as total emission were reasonably reproduced by the model for treatments 1 through 4. Based on the numerical simulation, the ranking of effectiveness in total emission reduction was VIF (82.4%) > Reagent + HDPE (73.2%) > Reagent + Irrigation (43.0%) > Reagent (23.5%) > Deep + HDPE (19.3%) > HOM (17.6%) > Deep (13.0%) > Irrigation (11.9%) > HDPE (5.8%). The order for pest control efficacy suggests, VIF had the highest pest control efficacy, followed by Deep + HDPE, Irrigation, Reagent + Irrigation, HDPE, Deep, Reagent + HDPE, Reagent, and HOM. Therefore, VIF is the optimal method disregarding

  15. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tunsu, Cristian, E-mail: tunsu@chalmers.se; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-15

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I{sub 2}/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I{sub 2}/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe{sub 4}BTBP showed good removal of mercury

  16. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions.

    Science.gov (United States)

    Liu, Yang; Gu, Ping; Jia, Lin; Zhang, Guanghui

    2016-01-25

    Cuprous chloride (CuCl) was examined as a precipitant to remove iodide (I(-)) from aqueous solutions. The effects of the dosage of CuCl, reaction time, initial concentrations of I(-) and bicarbonate (HCO3(-)) on I(-) removal were investigated. The results showed that the optimized removal efficiency of I(-) reached approximately 95.8% when the dosage was 150 mg/L, the initial I(-) concentration ranged from 5 to 40 mg/L and the reaction time was 15 min. The removal efficiency decreased from 95.8% to 76.0% with the addition of HCO3(-) at a concentration in the range of 0-107 mg/L. Furthermore, the dissociation of CuCl, the disproportionation reaction of Cu(+), the precipitation of cuprous iodide (CuI) and cuprous oxide (Cu2O), and the formations of copper sulfide (CuxS, 1≤xradioactive I(-) pollution in water.

  17. Thyroglobulin in smoking mothers and their newborns at delivery suggests autoregulation of placental iodide transport overcoming thiocyanate inhibition

    DEFF Research Database (Denmark)

    Andersen, Stine L; Backman Nøhr, Susanne; Wu, Chun S;

    2013-01-01

    ). The pregnant women reported on intake of iodine-containing supplements during pregnancy and Tg in maternal serum at delivery and in cord serum were analyzed. RESULTS: In a context of mild-to-moderate iodine deficiency, smoking mothers had significantly higher serum Tg than nonsmoking mothers (mean Tg smokers...... maternal smoking, but compensatory autoregulation of iodide transport differs between organs. The extent of autoregulation of placental iodide transport remains to be clarified. OBJECTIVE: To compare the impact of maternal smoking on thyroglobulin (Tg) levels in maternal serum at delivery and in cord serum...... as markers of maternal and fetal iodine deficiency. METHODS: One hundred and forty healthy, pregnant women admitted for delivery and their newborns were studied before the iodine fortification of salt in Denmark. Cotinine in urine and serum classified mothers as smokers (n=50) or nonsmokers (n=90...

  18. New measurement of the Fano factor of mercuric iodide. [astronomical x-ray detector charge collection efficiency

    Science.gov (United States)

    Ricker, G. R.; Vallerga, J. V.; Dabrowski, A. J.; Iwanczyk, J. S.; Entine, G.

    1982-01-01

    It is pointed out that mercuric iodide (HgI2) shows great promise as a high-resolution X-ray detector for use in X-ray astronomy. Development of mercuric iodide for astronomical work has required investigation of the temperature dependence of the HgI2 crystal parameters such as leakage current, resolution, and mobility of the charge carriers. The first studies in connection with these investigations have led to a new value of the Fano factor of 0.19 + or - 0.03. The best value previously reported was 0.27 measured at room temperature. The new upper limit of 0.19 for the HgI2 Fano factor was determined by cooling the HgI2 crystal and preamp to -20 C. It is concluded that room-temperature energy resolution of HgI2 is not limited by charge generation statistics but rather by collection efficiency.

  19. Iodide-selective polymeric membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) complex

    Institute of Scientific and Technical Information of China (English)

    Ali Benvidi; M.T. Ghanbarzadeh; M. Mazloum-Ardakani; R. Vafazadeh

    2011-01-01

    A PVC membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) as ionophor was prepared. The ion selective electrode was tested by inorganic anions and showed a good selectivity for iodide ion. This sensor exhibited Nernstian behavior with a slope of -57.8 mV per decade at 25 ℃. The proposed electrode showed a linear range from 1.0 × 10-5 to 1.0 × 10-1 mol/L with a detection limit of 5.0 × 10-6 mol/L. The electrode response was independent of pH in the range of 3.0-10.0. The proposed sensor was applied to determine the iodide in water and antiseptic samples.

  20. Synthesis of Mixed Carbonates via a Three-Component Coupling of Alcohols, CO2, and Alkyl Halides in the Presence of K2CO3 and Tetrabutylammonium Iodide

    OpenAIRE

    Yu-Mei Shen; Min Shi

    2002-01-01

    Various mixed carbonates can be conveniently prepared in good yields using the corresponding alcohols, alkyl halides under CO2 atmosphere in the presence of potassium carbonate or sodium carbonate and tetrabutylammonium iodide.

  1. The reaction of carbon disulphide with -haloketones and primary amines in the presence of potassium iodide as catalyst

    Indian Academy of Sciences (India)

    Javad Safaei-Ghomi; Fariba Salimi; Ali Ramazani

    2013-09-01

    A simple, mild and convenient method has been developed for the synthesis of 3,4,5-trialkyl-1,3-thiazole-2(3)-thione derivatives through one pot three-component reaction between a primary amine, carbon disulphide, and -haloketone in the presence of potassium iodide at room temperature conditions. The products were obtained with excellent yield and appropriate reaction times. This reaction represents a rapid and unprecedented route to the described molecules that have biological specifications.

  2. Dual-expressing adenoviral vectors encoding the sodium iodide symporter for use in noninvasive radiological imaging of therapeutic gene transfer

    International Nuclear Information System (INIS)

    Introduction: Noninvasive analysis of therapeutic transgene expression is important for the development of clinical translational gene therapy strategies against cancer. To image p53 and MnSOD gene transfer noninvasively, we used radiologically detectable dual-expressing adenoviral vectors with the human sodium iodide symporter (hNIS) as the reporter gene. Methods: Dual-expressing adenoviral vectors were constructed with hNIS cloned into E3 region and therapeutic genes, either MnSOD or p53, recombined into the E1 region. Steady-state mRNA levels of hNIS were evaluated by real-time polymerase chain reaction. hNIS function was determined by iodide uptake assay and MnSOD, and p53 protein levels were assessed by Western blots. Results: 125I- accumulation resulting from hNIS expression in both Ad-p53-hNIS- and Ad-MnSOD-hNIS-infected MDA-MB-435 cells could be visualized clearly on phosphorimaging autoradiograph. Iodide accumulation increased with increasing adenovirus titer, and there was a linear correlation between iodide uptake and dose. p53 and MnSOD protein levels increased as a function of adenovirus titer, and there was a direct positive correlation between p53 and MnSOD expression and hNIS function. P53 and MnSOD overexpression inhibited cell growth in the dual-expressing adenoviral vector-infected cells. Conclusions: Radiological detection of hNIS derived from dual-expressing adenoviral vectors is a highly effective method to monitor therapeutic gene transfer and expression in a noninvasive manner

  3. Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide.

    Science.gov (United States)

    Huang, Ying-Ying; Choi, Hwanjun; Kushida, Yu; Bhayana, Brijesh; Wang, Yuguang; Hamblin, Michael R

    2016-09-01

    Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended. PMID:27381399

  4. Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide.

    Science.gov (United States)

    Huang, Ying-Ying; Choi, Hwanjun; Kushida, Yu; Bhayana, Brijesh; Wang, Yuguang; Hamblin, Michael R

    2016-09-01

    Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended.

  5. Research into Uncertainty in Measurement of Seawater Chemical Oxygen Demand by Potassium Iodide-Alkaline Potassium Permanganate Determination Method.

    OpenAIRE

    Zhang, Shiqiang; Guo, Changsong

    2007-01-01

    Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is...

  6. Mercuric iodide research and development in support of DOE Historically Black Colleges and University Program. Semiannual technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Zheng, Y.; Salary, L.; Chen, K.T.; Burger, A.

    1994-10-31

    This report describes the progress achieved during the first six months of the program. The different subjects studied were: zone refining experiments of mercuric iodide to establish optimum refining parameters and produce purified material; development of surface reflection spectroscopy as a method to measure crystal surface temperatures, with emphasis on investigation the potential of using optical multichannel analysis; optical methods for measuring iodine vapor during physical vapor transport of HgI{sub 2}; and atomic force microscopy studies.

  7. Sodium Iodide Symporter and Phosphatase and Tensin Homolog Deleted on Chromosome Ten Expression in Cholangiocarcinoma Analysis with Clinicopathological Parameters

    OpenAIRE

    Han, Sang Young; Lee, Sung Wook; Baek, Yang Hyun; Kim, Ha Yoen; Kim, Jong Han; Jeong, Jin Sook; Roh, Young Hoon; Kim, Young Hoon; Park, Byung Ho; Kwon, Hee Jin; Cho, Jin Han; Nam, Kyung Jin

    2012-01-01

    Background/Aims This study was performed to investigate the correlation of sodium iodide symporter (NIS) expression with the functionality and loss of phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression in human cholangiocarcinoma (CCA). Methods Immunohistochemistry for the expression of NIS and PTEN was performed in 60 biopsy specimens of CCA. The clinicopathological parameters were retrospectively identified from medical records. The expression pattern of NIS and loss...

  8. Pd-Catalyzed Coupling of γ-C(sp(3))-H Bonds of Oxalyl Amide-Protected Amino Acids with Heteroaryl and Aryl Iodides.

    Science.gov (United States)

    Han, Jian; Zheng, Yongxiang; Wang, Chao; Zhu, Yan; Huang, Zhi-Bin; Shi, Da-Qing; Zeng, Runsheng; Zhao, Yingsheng

    2016-07-01

    Pd-catalyzed regioselective coupling of γ-C(sp(3))-H bonds of oxalyl amide-protected amino acids with heteroaryl and aryl iodides is reported. A wide variety of iodides are tolerated, giving the corresponding products in moderate to good yields. Various oxalyl amide-protected amino acids were compatible in this C-H transformation, thus representing a practical method for constructing non-natural amino acid derivatives. PMID:27286881

  9. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Przepioski, Joshua [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  10. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    Science.gov (United States)

    Whitfield, P. S.; Herron, N.; Guise, W. E.; Page, K.; Cheng, Y. Q.; Milas, I.; Crawford, M. K.

    2016-01-01

    We have examined the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q ∼ (Tc−T)β, where Tc is the critical temperature and the exponent β was close to ¼, as predicted for a tricritical phase transition. However, we also observed coexistence of the cubic and tetragonal phases over a range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI3 based solar cells. PMID:27767049

  11. Crystal structure of 4-{2-[4-(dimethylaminophenyl]diazen-1-yl}-1-methylpyridinium iodide

    Directory of Open Access Journals (Sweden)

    Katherine Chulvi

    2015-12-01

    Full Text Available The molecular geometry of the ionic title compound, C14H17N4+·I− or DAZOP+·I−, is essentially featureless. Regarding the crystal structure, in addition to the obvious cation–anion Coulombic interactions, the packing is mostly directed by non-covalent interactions involving both ring systems, as well as the iodide anion. It consists of cationic molecules aligned along [101] and disposed in an antiparallel fashion while linked into π-bonded dimeric entities by a stacking contact involving symmetry-related phenyl rings, with a centroid–centroid distance of 3.468 (3 Å and a slippage of 0.951 Å. The dimers are, in addition, sustained by a number of C—H...I and I...π (I...centroid = 3.876 Å interactions involving the anion. Finally, interdimeric contacts are of the C—H...I and C—H...π types.

  12. Experimental and analytical study on cesium iodide behavior in piping in wave experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, A.; Igarashi, M.; Hashimoto, K.; Sugimoto, J. [Japan Atomic Energy Research Inst., Dep. of Reactor Safety Research, Tokai-mura (Japan); Yoshino, T. [Toshiba Advanced System Corp., Isago Kawasaki-ku (Japan)

    1996-12-01

    The WAVE (Wide range Aerosol model VErification) experiments have been performed at JAERI to investigate cesium iodide (CsI) deposition onto an inner surface of piping wall under typical severe accident conditions. The test facility consists of a dish containing CsI powder, electrical heaters and a straight pipe of 1.5 m in length with diameter of 0.042m. Nitrogen gas and superheated steam were injected into the pipe to carry the vaporized CsI and to simulate the thermohydraulic condition for the PWR hot-leg inlet. Analyses of the experiments have been conducted with a three-dimensional thermohydraulic code, SPRAC and the radionuclide behavior analysis codes, ART and VICTORIA. A clear difference was found in the deposition behavior between nitrogen and steam conditions as carrier gases. For nitrogen gas, the analyses well reproduced the experimental results by closely coupling the CsI behavior and the detailed thermohydraulic analyses. For steam carrier gas, on the contrary, the experimental results could not be well reproduced without the use of larger aerosol size. Since the observed enhancement of aerosol size in superheated steam cannot be explained by existing models, it is necessary to further investigate this mechanisms by experiment and analysis. (author) 34 figs., 23 refs.

  13. The DNA intercalators ethidium bromide and propidium iodide also bind to core histones

    Directory of Open Access Journals (Sweden)

    Amrita Banerjee

    2014-01-01

    Full Text Available Eukaryotic DNA is compacted in the form of chromatin, in a complex with histones and other non-histone proteins. The intimate association of DNA and histones in chromatin raises the possibility that DNA-interactive small molecules may bind to chromatin-associated proteins such as histones. Employing biophysical and biochemical techniques we have characterized the interaction of a classical intercalator, ethidium bromide (EB and its structural analogue propidium iodide (PI with hierarchical genomic components: long chromatin, chromatosome, core octamer and chromosomal DNA. Our studies show that EB and PI affect both chromatin structure and function, inducing chromatin compaction and disruption of the integrity of the chromatosome. Calorimetric studies and fluorescence measurements of the ligands demonstrated and characterized the association of these ligands with core histones and the intact octamer in absence of DNA. The ligands affect acetylation of histone H3 at lysine 9 and acetylation of histone H4 at lysine 5 and lysine 8 ex vivo. PI alters the post-translational modifications to a greater extent than EB. This is the first report showing the dual binding (chromosomal DNA and core histones property of a classical intercalator, EB, and its longer analogue, PI, in the context of chromatin.

  14. The effect of tanespimycin (17-AAG) on radioiodine accumulation in sodium iodide symporter expressing cells

    International Nuclear Information System (INIS)

    The heat shock protein 90 inhibitor, tanespimycin, is an anticancer agent known to increase iodine accumulation in normal and cancerous thyroid cells. Iodine accumulation is regulated by membrane proteins such as sodium iodide sym porter (NIS) and pendrin (PDS), and thus we attempted to characterize the effects of tanespimycin on those genes. Cells were incubated with tanespimycin in order to evaluate 125I accumulation and efflux ability. Radioiodine uptake and efflux were measured by a gamma counter and normalized by protein amount. RT PCR were performed to measure the level of gene expression. After tanespimycin treatment, 125uptake was in creased by ∼2.5 fold in FRTL 5, hNIS ARO. and hNIS MDA MB 231 cells, but no changes were detected in the hNIS HeLa cells. Tanespimycin significantly reduced the radioiodine efflux rate only in the FRTL 5 cell. in the FRTL 5 and hNIS ARO cells, PDS mRNA levels were markedly reduced; the only other observed alteration in the levels of NIS mRNA after tanespimtycin treatment was an observed increase in the h hNIS ARO cells. These results indicate that cellular responses against tanespimycin treatment differed between the normal rat thyroid cells and human cancer cells, and the reduction in the 125I efflux rate by tanespimycin in the normal rat thyroid cells might be attributable to reduced PDS gene expression

  15. Growth and properties of lead iodide thin films by spin coating

    Indian Academy of Sciences (India)

    D ACUÑA; B KRISHNAN; S SHAJI; S SEPÚLVEDA; J L MENCHACA

    2016-10-01

    In this study, lead iodide (PbI$_2$) thin films were deposited on glass substrates by spin coating a solution of 0.2 M PbI$_2$ dissolved in dimethylformamide, varying the deposition time and the spin speed. The thickness of the thin films decreased with increase in spin speed and deposition time, as examined by profilometry measurements.The structure,morphology, optical and electrical properties of the thin films were analysed using various techniques. X-ray diffraction patterns revealed that the thin films possessed hexagonal structures. The thin films were grown highly oriented to [001] direction of the hexagonal lattice. Raman peaks detected at 96 and 136 cm$^{-1}$ were corresponding to the characteristic vibration modes of PbI$_2$. The X-ray photoelectron spectroscopy detected the presence of Pb and I with core level binding energies corresponding to that in PbI2. Atomic force microscopy showed smooth and compact morphology of the thin films. From UV–Vis transmittance and reflectance spectral analysis, the bandgap of the thin films $\\sim$2.3 eV was evaluated. The dark conductivity of the thin films was computed and the value decreased as the deposition time and spin speed increased.

  16. Electron–Rotor Interaction in Organic–Inorganic Lead Iodide Perovskites Discovered by Isotope Effects

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D.; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C.; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-04

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA+) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA+. Polaron model elucidates the electron-rotor interaction.

  17. Fluorescence Quenching and Binding Interaction of l0-Methylacridinium Iodide to Nucleic Acids

    Institute of Scientific and Technical Information of China (English)

    孙险峰; 江致勤; 丁兵林

    2003-01-01

    Interaction of 10-methylacridinium iodide (MAI) as fluorescence probe with nucleobases, nucleosides and nucleic acids has been studied by UV-visible absorption and fluorescence spectroscopy. It was found that fluorescence of MAI is strongly quenched by the nucleobases, nucleosides and nucleic acids, respectively. The quenching follows the Stern-Volmer linear equation. The fluorescence quenching rate constant (kq) was measured to be 109-1010 (L/mol)/s within the range of diffusion-controlled rate limit, indicating that the interaction between MAI and nucleic acid and their precursors is characteristic of electron transfer mechanism. In addition, the binding interaction model of MAI to calf thymus DNA (ct-DNA) was further investigated. Apparent hypochromism in the absorption spectra of MAI was observed when MAI binds to ct-DNA.Three spectroscopic methods, which include (1) UV spectroscopy, (2) fluorescence quenching of MAI, (3) competitive dual-probe method of MAI and ethidium bromide (EB), were utilized to determine the affinity binding constants (K)of MAI and ct-DNA. The binding constants K obtained from the above methods gave consistent data in the same range (1.0-5.5) ×104 L/mol, which lend credibility to these measurements. The binding site number was determined to be 1.9. The influence of thermal denaturation and phosphate concentration on the binding was examined. The binding model of MAI to ct-DNA including intercalation and outside binding was investigated.

  18. 2,3,5-Triphenyl-2H-tetrazol-3-ium iodide

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2012-09-01

    Full Text Available The asymmetric unit of the title molecular salt, C19H15N4+·I−, contains four 2,3,5-triphenyl-2H-tetrazol-3-ium cations and five iodide anions, with two of the latter lying on crystallographic inversion centres. In each cation, the tetrazole ring is essentially planar (r.m.s. deviations = 0.004–0.007 Å. The dihedral angles between the tetrazole ring and its three attached benzene rings in the four independent cations are: 12.9 (4, 67.0 (4, 48.1 (4; 20.8 (4, 51.1 (4, 62.3 (4; 11.4 (4, 52.3 (4, 47.3 (4 and 6.0 (4, 85.7 (4, 43.5 (4°. A C—H...I hydrogen bond and C—H...π interactions are observed in the crystal.

  19. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    International Nuclear Information System (INIS)

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively

  20. FEASIBILITY STUDY FOR POTASSIUM IODIDE (KI) DISTRIBUTION IN NEW YORK CITY.

    Energy Technology Data Exchange (ETDEWEB)

    MOSS, STEVEN

    2005-04-29

    The New York City Department of Health and Mental Hygiene (DOHMH), Bureau of Environmental Science and Engineering, Office of Radiological Health (ORH) [as the primary local technical consultant in the event of a radiological or nuclear incident within the boundaries of New York City] requested the assistance of Brookhaven National Laboratory (BNL) with the development of a Feasibility Study for Potassium Iodide (KI) distribution in the unlikely event of a significant release of radioactive iodine in or near New York City. Brookhaven National Laboratory had previously provided support for New York City with the development of the radiological/nuclear portions of its All Hazards Emergency Response Plans. The work is funded by Medical and Health Research Association (MHRA) of New York City, Inc., under a work grant by the Federal Centers for Disease Control (CDC) for Public Health Preparedness and Response for Bioterrorism. This report is part of the result of that effort. The conclusions of this report are that: (1) There is no credible radiological scenario that would prompt the need for large segments of the general population of New York City to take KI as a result of a projected plume exposure to radioiodine reaching even the lowest threshold of 5 rem to the thyroid; and (2) KI should be stockpiled in amounts and locations sufficient for use by first responders/emergency responders in response to any localized release of radioiodine.

  1. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B. [Xsirius, Inc, Camarillo, CA (United States)

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  2. FEASIBILITY STUDY FOR POTASSIUM IODIDE (KI) DISTRIBUTION IN NEW YORK CITY

    International Nuclear Information System (INIS)

    The New York City Department of Health and Mental Hygiene (DOHMH), Bureau of Environmental Science and Engineering, Office of Radiological Health (ORH) [as the primary local technical consultant in the event of a radiological or nuclear incident within the boundaries of New York City] requested the assistance of Brookhaven National Laboratory (BNL) with the development of a Feasibility Study for Potassium Iodide (KI) distribution in the unlikely event of a significant release of radioactive iodine in or near New York City. Brookhaven National Laboratory had previously provided support for New York City with the development of the radiological/nuclear portions of its All Hazards Emergency Response Plans. The work is funded by Medical and Health Research Association (MHRA) of New York City, Inc., under a work grant by the Federal Centers for Disease Control (CDC) for Public Health Preparedness and Response for Bioterrorism. This report is part of the result of that effort. The conclusions of this report are that: (1) There is no credible radiological scenario that would prompt the need for large segments of the general population of New York City to take KI as a result of a projected plume exposure to radioiodine reaching even the lowest threshold of 5 rem to the thyroid; and (2) KI should be stockpiled in amounts and locations sufficient for use by first responders/emergency responders in response to any localized release of radioiodine

  3. Highly spin-polarized deuterium atoms from the UV dissociation of Deuterium Iodide

    CERN Document Server

    Sofikitis, D; Koumarianou, G; Jiang, H; Bougas, L; Samartzis, P C; Andreev, A; Rakitzis, T P

    2016-01-01

    Hyperpolarisation of deuterium (D) and tritium (T) nuclear spins increases the D-T fusion reaction rate by ~50%, thus lowering the breakeven limit for the achievement of self-sustained fusion, and controls the emission direction of the reaction products for improved reactor efficiency. However, the important D-D polarization-dependent fusion reaction has not yet been measured, due to the low density of conventional polarized deuterium beams of ~10$^{12}$ cm$^{-3}$, limited by collisions on the ms-timescale of production. Here we demonstrate that hyperpolarised D atoms are produced by the 270 nm photodissociation of deuterium iodide (DI), yielding ~60% nuclear D polarization after ~1.6 ns, ~10$^6$ times faster than conventional methods, allowing collision-limited densities of ~10$^{18}$ cm$^{-3}$. Such ultrahigh densities of polarized D atoms open the way for the study of high-signal polarized D-D reactions. We discuss the possibility of the production of high-density pulsed polarized beams, and of polarized D...

  4. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    Science.gov (United States)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  5. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals.

    Science.gov (United States)

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114

  6. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    Science.gov (United States)

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-04-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.

  7. Removal of mercury from solids using the potassium iodide/iodine leaching process

    International Nuclear Information System (INIS)

    Potassium iodide (KI) and iodine (I2) leaching solutions have been evaluated for use in a process for removing mercury from contaminated mixed waste solids. Most of the experimental work was completed using surrogate waste. During the last quarter of fiscal year 1995, this process was evaluated using an actual mixed waste (storm sewer sediment from the Oak Ridge Y-12 Site). The mercury content of the storm sewer sediment was measured and determined to be approximately 35,000 mg/kg. A solution consisting of 0.2 M I2 and 0.4 M KI proved to be the most effective leachant used in the experiments when applied for 2 to 4 h at ambient temperature. Over 98% of the mercury was removed from the storm sewer sediment using this solution. Iodine recovery and recycle of the leaching agent were also accomplished successfully. Mathematical model was used to predict the amount of secondary waste in the process. Both surrogate waste and actual waste were used to study the fate of radionuclides (uranium) in the leaching process

  8. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites.

    Science.gov (United States)

    Stroppa, Alessandro; Di Sante, Domenico; Barone, Paolo; Bokdam, Menno; Kresse, Georg; Franchini, Cesare; Whangbo, Myung-Hwan; Picozzi, Silvia

    2014-01-01

    Ferroelectricity is a potentially crucial issue in halide perovskites, breakthrough materials in photovoltaic research. Using density functional theory simulations and symmetry analysis, we show that the lead-free perovskite iodide (FA)SnI3, containing the planar formamidinium cation FA, (NH2CHNH2)(+), is ferroelectric. In fact, the perpendicular arrangement of FA planes, leading to a 'weak' polarization, is energetically more stable than parallel arrangements of FA planes, being either antiferroelectric or 'strong' ferroelectric. Moreover, we show that the 'weak' and 'strong' ferroelectric states with the polar axis along different crystallographic directions are energetically competing. Therefore, at least at low temperatures, an electric field could stabilize different states with the polarization rotated by π/4, resulting in a highly tunable ferroelectricity appealing for multistate logic. Intriguingly, the relatively strong spin-orbit coupling in noncentrosymmetric (FA)SnI3 gives rise to a co-existence of Rashba and Dresselhaus effects and to a spin texture that can be induced, tuned and switched by an electric field controlling the ferroelectric state. PMID:25533044

  9. Colloidal silver iodide characterization within the framework of nuclear spent fuel dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Bernard-Mozziconacci, O.; Devisme, F.; Marignier, JL.; Belloni, J

    2004-07-01

    Iodine-129 partitioning during the dissolution stage of the Purex reprocessing, based on volatile molecular iodine formation and stripping, is mainly limited by dissolved oxidized species such as iodate and insoluble forms such as colloidal silver iodide. The study of their formation and stability, not completely clarified, requires to prepare the colloid in a reproducible way under various conditions and to characterize it. The work reported here describes a first step towards this objective. Carried out under simplified operating conditions, speciation and physical characterization (spectrophotometry and TEM) made it possible to evaluate, for the first time, the molar extinction coefficient of the colloid per monomer and its variation with the nuclearity, {epsilon}(n), on the basis of a simplified coalescence model: {epsilon}(n) = {epsilon}{sub max} (1 - e{sup -{alpha}}{sup n}) where {epsilon}{sub max} {approx} 7000 L mol{sup -1} cm{sup -1} and {alpha} = 4.3 x 10{sup -6} per monomer number in a particle. (authors)

  10. Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps

    Science.gov (United States)

    2016-01-01

    Photoluminescence (PL) of organometal halide perovskite materials reflects the charge dynamics inside of the material and thus contains important information for understanding the electro-optical properties of the material. Interpretation of PL blinking of methylammonium lead iodide (MAPbI3) nanostructures observed on polycrystalline samples remains puzzling owing to their intrinsic disordered nature. Here, we report a novel method for the synthesis of high-quality single-crystal MAPbI3 nanorods and demonstrate a single-crystal study on MAPbI3 PL blinking. At low excitation power densities, two-state blinking was found on individual nanorods with dimensions of several hundred nanometers. A super-resolution localization study on the blinking of individual nanorods showed that single crystals of several hundred nanometers emit and blink as a whole, without showing changes in the localization center over the crystal. Moreover, both the blinking ON and OFF times showed power-law distributions, indicating trapping–detrapping processes. This is further supported by the PL decay times of the individual nanorods, which were found to correlate with the ON/OFF states. Furthermore, a strong environmental dependence of the nanorod PL blinking was revealed by comparing the measurements in vacuum, nitrogen, and air, implying that traps locate close to crystal surfaces. We explain our observations by proposing surface charge traps that are likely related to under-coordinated lead ions and methylammonium vacancies to result in the PL blinking observed here.

  11. The kinetics of iodide oxidation by the manganese oxide mineral birnessite

    Science.gov (United States)

    Fox, P.M.; Davis, J.A.; Luther, G. W.

    2009-01-01

    The kinetics of iodide (I-) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (??-MnO2) was investigated over the pH range 4.5-6.25. I- oxidation to iodate (IO3-) proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I- from solution was first order with respect to I- concentration, pH, and birnessite concentration, such that -d[I-]/dt = k[I-][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ?? 0.06 ?? 107 M-2 h-1. The data are consistent with the formation of an inner sphere I- surface complex as the first step of the reaction, and the adsorption of I- exhibited significant pH dependence. Both I2, and to a lesser extent, IO3- sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and IO3-, as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.

  12. Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide

    International Nuclear Information System (INIS)

    This work focuses on the characteristics of polymer blend electrolytes based on corn starch and chitosan doped with ammonium iodide (NH4I). The electrolytes were prepared using the solution cast method. A polymer blend comprising 80 wt% starch and 20 wt% chitosan was found to be the most amorphous blend and suitable to serve as the polymer host. Fourier transform infrared spectroscopy analysis proved the interaction between starch, chitosan and NH4I. The highest room temperature conductivity of (3.04 ± 0.32) × 10−4 S cm−1 was obtained when the polymer host was doped with 40 wt% NH4I. This result was further proven by field emission scanning electron microscopy study. All electrolytes were found to obey the Arrhenius rule. Dielectric studies confirm that the electrolytes obeyed non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting sample follows the quantum mechanical tunneling model. (paper)

  13. Room temperature fluorescence and phosphorescence study on the interactions of iodide ions with single tryptophan containing serum albumins.

    Science.gov (United States)

    Gałęcki, Krystian; Kowalska-Baron, Agnieszka

    2016-12-01

    In this study, the influence of heavy-atom perturbation, induced by the addition of iodide ions, on the fluorescence and phosphorescence decay parameters of some single tryptophan containing serum albumins isolated from: human (HSA), equine (ESA) and leporine (LSA) has been studied. The obtained results indicated that, there exist two distinct conformations of the proteins with different exposure to the quencher. In addition, the Stern-Volmer plots indicated saturation of iodide ions in the binding region. Therefore, to determine quenching parameter, we proposed alternative quenching model and we have performed a global analysis of each conformer to define the effect of iodide ions in the cavity by determining the value of the association constant. The possible quenching mechanism may be based on long-range through-space interactions between the buried chromophore and quencher in the aqueous phase. The discrepancies of the decay parameters between the albumins studied may be related with the accumulation of positive charge at the main and the back entrance to the Drug Site 1 where tryptophan residue is located. PMID:27303942

  14. Functional activity of a thyroid nodule under the influence of stable iodide administration in a hyperthyroid patient

    International Nuclear Information System (INIS)

    In a thyrotoxic patient with nodular goiter treated with stable iodide and Carbimazole, a series of 131I scans was performed at different intervals for proposed 131I therapy. Originally, total uptake was suppressed and the node was evaluated as active. The same type of scan was seen repeatedly with uptake increasing for about 6 months following stable iodide withdrawal. Only 9 months later, the effect of 127I disappeared and uptake rose considerably with a reversal of the scan to the picture of a hypofunctioning node. The same distribution was found after therapeutic 131I administration. 6 months following treatment, without any thyrostatic drugs, the patient was euthyroid and on the scan most of tracer was found in the node. It is believed that this change is best explained by the different sensitivity of the nodule and the paranodular tissue to the effect of stable iodide. It is believed that the hyperthyroidism originated in the paranodular tissue highly sensitive on the 127I, while the nodule (presumably an adenoma) was less sensitive and showed uptake only when the paranodular tissue was depressed by 127I or, later, injured by the effect of therapeutic 131I. (orig.)

  15. Tumour-specific activation of the sodium/iodide symporter gene under control of the glucose transporter gene 1 promoter (GTI-1.3)

    International Nuclear Information System (INIS)

    Targeted transfer of a functionally active sodium iodide symporter (NIS) into tumour cells may be used for radioiodine therapy of cancer. Therefore, we investigated radioiodine uptake in a hepatoma cell line in vitro and in vivo after transfer of the sodium iodide symporter (hNIS) gene under the control of a tumour-specific regulatory element, the promoter of the glucose transporter 1 gene (GTI-1.3). Employing a self-inactivating bicistronic retroviral vector for the transfer of the hNIS and the hygromycin resistance genes, rat Morris hepatoma (MH3924A) cells were infected with retroviral particles and hNIS-expressing cell lines were generated by hygromycin selection. 125I- uptake and efflux were determined in genetically modified and wild type hepatoma cells. In addition, the iodide distribution in rats bearing wild type and genetically modified hepatomas was monitored. hNIS-expressing MH3924A cell lines accumulated up to 30 times more iodide than wild type hepatoma cells, with a maximal iodide uptake after 30 min incubation time. Competition experiments in the presence of sodium perchlorate revealed a decrease in the iodide uptake (80-84% decrease). Moreover, ouabain led to a loss of accumulated I- (81% decrease) whereas 4,4'-diisothiocyano-2,2'-disulphonic acid stilbene (DIDS) increased the I- uptake into cells (87% increase). However, a rapid efflux of the radioactivity (70%) was observed 20 min after 125I--containing medium had been replaced by non-radioactive medium. Lithium had no significant effect on iodide efflux. In rats, the hNIS-expressing tumours accumulated 22 times more iodide than the contralateral wild type tumour. In accordance with the in vitro data, we also observed a rapid efflux of the radioactivity out of the tumour in vivo. Dosimetric calculations resulted in an absorbed dose of 85 mGy in the wild type tumour and 830 mGy in the hNIS-expressing tumour after administration of 18.5 MBq 131I. In conclusion, transduction of the hNIS gene under

  16. The fabrication of sub-micron size cesium iodide x-ray scintillator

    Science.gov (United States)

    Hun, Chien Wan; Chen, Po Chun; Huang, Ker Jer; Chen, Chien Chon

    2015-05-01

    The cesium iodide (CsI) scintillator can converts incident X-ray into visible light with very high conversion efficiency of optical photons. The incident energy, response time, film thickness, sample size, and spatial resolution require in engineering and medical applications are difference. A smooth and flat surface and single crystal structure of CsI enhance the X-ray to visible light conversion. However, the regular CsI is soft and extremely hygroscopic; it is very difficult to polish to obtain a smooth and optical flat plane. In order to obtain a good quality of CsI scintillator for X-ray application we used an ordering channel as template and formed sub-micron CsI wire in the template. The fabrication process including: (1) Ordering structure of nano or sub-micron channels were made by an anodization method; (2) fill CsI scintillated film on the channel by CsI solution, (3) fill CsI melt into the channel formation single crystal of sub-micron crystalline scintillator after solidification. The non-vacuum processes of anodization and solidication methods were used for the sub-micron CsI scintillator column formation that is cost down the scintillator fabrication. In addition, through the fabrication method, the ordering structure scintillator of scintillator can be made by anodic treatment and die casting technology with low cost and rapid production; moreover, the film oxidized metal tubes of the tubular template can be further manufactured to nano tubes by adjusting electrolyte composition, electrolysis voltage, and processing time of anodic treatment, and the aperture size, the thickness and the vessel density of the nano tube can be controlled and ranged from 10 nm to 500 nm, 0.1 μm to 1000 μm, and hundred million to thousand billion tube/cm2, respectively.

  17. Parametric studies of radiolytic oxidation of iodide solutions with and without paint: comparison with code calculations

    Energy Technology Data Exchange (ETDEWEB)

    Poletiko, C.; Hueber, C. [Inst. de Protection et de Surete Nucleaire, C.E. Cadarache, St. Paul-lez-Durance (France); Fabre, B. [CISI, C.E. Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    In case of severe nuclear accident, radioactive material may be released into the environment. Among the fission products involved, are the very volatile iodine isotopes. However, the chemical forms are not well known due to the presence of different species in the containment with which iodine may rapidly react to form aerosols, molecular iodine, hydroiodic acid and iodo-organics. Tentative explanations of different mechanisms were performed through benchscale tests. A series of tests has been performed at AEA Harwell (GB) to study parameters such as pH, dose rate, concentration, gas flow rate, temperature in relation to molecular iodine production, under dynamic conditions. Another set of tests has been performed in AECL Whiteshell (CA) to study the behaviour of painted coupons, standing in gas phase or liquid phase or both, with iodine compounds under radiation. The purpose of our paper is to synthesize the data and compare the results to the IODE code calculation. Some parameters of the code were studied to fit the experimental result the best. A law, concerning the reverse reaction of iodide radiolytic oxidation, has been proposed versus: pH, concentrations and gas flow-rate. This law does not apply for dose rate variations. For the study of painted coupons, it has been pointed out that molecular iodine tends to be adsorbed or chemically absorbed on the surface in gas phase, but the mechanism should be more sophisticated in the aqueous phase. The iodo-organics present in liquid phase tend to be partly or totally destroyed by oxidation under radiation (depending upon the dose delivered). These points are discussed. (author) 18 figs., 3 tabs., 15 refs.

  18. Development of crystals based in cesium iodide for application as radiation detectors

    International Nuclear Information System (INIS)

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10-1 M to 10-2 M and the lead (Pb) in the range of 10-2 M to 5x10-4 M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a 241Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  19. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  20. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  1. New insights into the photodissociation of methyl iodide at 193 nm: stereodynamics and product branching ratios.

    Science.gov (United States)

    Marggi Poullain, Sonia; González, Marta G; Samartzis, Peter C; Kitsopoulos, Theofanis N; Rubio-Lago, Luis; Bañares, Luis

    2015-11-28

    The stereodynamics of methyl iodide photodissociation after excitation at 193 nm has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization (REMPI) detection of the methyl and iodine products. A weak anisotropic ring appearing in the image corresponding to vibrationally excited CH3(ν1 = 1) confirms the production of ground state I((2)P3/2) atoms at this excitation wavelength as a signature of the predissociation channel reported previously [M. G. González et al., J. Chem. Phys., 2011, 135, 021102] tentatively assigned to the coupling between the B-band (3)R1 Rydberg state and the A-band (1)Q1 repulsive state. Direct REMPI detection of ground state iodine atoms indicates that most of the I((2)P3/2) species are produced in correlation with highly internally excited methyl radicals, in excellent agreement with the recent results of Xu and Pratt [Xu et al., J. Chem. Phys., 2013, 139, 214310; Xu et al., J. Phys. Chem. A, 2015, 119, 7548]. From the comparison between the CH3(ν) second order Dixon's bipolar moments β(2)(0)(20), β(0)(0)(22), β(2)(0)(02) and β(2)(0)(22) measured in this work and those reported previously for the B-band origin and the A-band, a general picture of the CH3I photodissociation stereodynamics in terms of different effects, such as the breakdown of the unique recoil direction (URD) approximation, the non-adiabatic curve crossings and the depolarization induced by the parent molecule rotation, is drawn. PMID:26489797

  2. Instrumental measurements of different homeopathic dilutions of potassium iodide in water.

    Science.gov (United States)

    Jerman, I; Berden, M; Skarja, M

    1999-01-01

    Although more than 200 years have elapsed since the beginning of homeopathy and in spite of numerous confirmatory scientific experiments, the so-called memory of water is still a highly disputable and controversial theme in scientific circles. To make a contribution to solving this riddle, our research group tried to examine memory properties of water by the method of differential corona discharge Kirlian electrophotography of water-drop pairs. The method is based on a modified form of Kirlian photography with a subsequent thorough computer picture analysis. The potassium iodide (KI) mother solution (0.1M) was diluted in the standard way (without potentisation) or with potentisation (succussion by hand - by striking the vial 60 times against a large book as used traditionally) to 10(-3)M, 10(-6)M, 10(-10)M, 10(-16)M, 10(-17)M and 10(-24)M KI solutions. In the electrophotography method a drop of KI solution was compared with a drop of control water. To get a dependable system of results we compared homeopathic dilutions with ordinary distilled water, sham-potentised distilled water and non-potentised (standard) solutions. The results were analyzed by the Chi-square Goodness-of-fit test and the Sign test. They showed repeatable and statistically significant effects of concentration of KI dilutions as well as potentisation on the corona discharge process (from p < 0.05 to p < 0.001). This indicates that there is some physical basis of molecular (ionic) information imprinted into water. PMID:10472820

  3. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    Science.gov (United States)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively.

  4. A comparison of the use of sodium iodide and lanthanum bromide scintillation crystals for airborne surveys

    Science.gov (United States)

    Bailey, Derek M.

    The Environmental Protection Agency (EPA) Aerial Spectral Environmental Collection Technology (ASPECT) program performs aerial radiological and chemical characterization of geographical regions of interest. Airborne surveys are performed to characterize environmental radionuclide content, for mineral exploration, as well as for emergency scenarios such as major releases or lost sources. Two radiological detection systems are used by the ASPECT team for gamma-ray detection and characterization: lanthanum bromide [LaBr 3(Ce)] and sodium iodide [NaI(Tl)] scintillation systems. An aerial survey of a uranium mine in the western United States was performed using both NaI(Tl) and LaBr3(Ce) detection systems. Analyses of the survey data were performed with RadAssist software and applying International Atomic Energy Agency (IAEA) airborne gamma ray mapping guidelines. The data for the survey were corrected for cross-over, which is spectral interference from higher energy photons as a result of Compton scattering, height attenuation, cosmic ray contribution to signal, and Radon contribution to signal. Two radiation survey contours were generated from each discrete data set. Based on analysis of the uranium mine survey results, LaBr3(Ce) produced a product comparable to that of NaI(Tl). The LaBr3(Ce) detection system contained 1/16th the scintillating volume and had a total system weight that was 1/4th that of the NaI(Tl) system. LaBr3(Ce) demonstrated a clear advantage over NaI(Tl) detectors in system mobility, and weight factors in airborne gamma ray spectroscopy.

  5. Thermogravimetric and calorimetric study of cadmium iodide adducts with cyclic ureas

    International Nuclear Information System (INIS)

    Adducts of general formula CdI2·nL [n=1 and 2; L: ethyleneurea (eu) and propyleneurea (pu)] were synthesized by a solid state route and characterized by elemental analysis, infrared spectroscopy, thermogravimetry and reaction solution calorimetry. The infrared results shown that eu and pu coordinate through oxygen atom. All adducts release the ligand molecules in a single mass loss step, suggesting that, in the bisadducts, both ligand molecules are in equivalent coordination sites, exhibiting similar bond enthalpies. For all thermogravimetric curves, the first mass loss step is associated with the release of ligand molecules and the second one with the sublimation of cadmium iodide: CdI2·nL(s)→CdI2(s)+nL(g); CdI2(s)→CdI2(g). The observed thermal stability trend is: CdI2·eu (228 deg. C) > CdI2·pu (213 deg. C) > CdI2·2pu (200) > CdI2·2eu (186 deg. C). The standard molar reaction enthalpy in condensed phase: CdI2(cr)+nL(cr)=CdI2·nL(cr); ΔrHmθ, were obtained from reaction-solution calorimetry, to give the following values for mono and bisadducts: -7.16 and -27.61, -4.99 and -9.07 kJ mol-1 for eu and pu adducts, respectively. Decomposition (ΔDHmθ) and lattice (ΔMHmθ) enthalpies, as well as the mean cadmium-oxygen bond dissociation enthalpy, D(Cd-O), were calculated for all adducts

  6. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    International Nuclear Information System (INIS)

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future

  7. Structural Evolution in Methylammonium Lead Iodide CH3NH3PbI3.

    Science.gov (United States)

    Ong, Khuong P; Goh, Teck Wee; Xu, Qiang; Huan, Alfred

    2015-11-01

    The organic-inorganic hybrid perovskite, in particular, methylammonium lead iodide (MAPbI3), is currently a subject of intense study due to its desirability in making efficient photovoltaic devices economically. It is known that MAPbI3 undergoes structural phase transitions from orthorhombic Pnma to tetragonal I4/mcm at ∼170 K and then to cubic Pm3̅m at ∼330 K. A tetragonal P4mm phase is also reported at 400 K considering total cation disorder is not appealing due to its hydrogen-bonding capabilities. Resolving this ambiguity of phase transition necessitates the study of the structural evolution across these phases in our work using ab initio methods. In this work, we show that the structural phase evolves from Pnma to I4/mcm to P4mm to Pm3̅m with increasing volume. The P4mm phase is a quasi-cubic one with slight distortion in one direction from cubic Pm3̅m due to the rotation of MA cations. Biaxial strain on MAPbI3 reveals that only the Pnma and P4mm phases are energetically stable at a 9.14 Å, respectively. The Pnma, I4/mcm, P4mm, and Pm3̅m phases can be stable under various uniaxial strain conditions. Our study provides a clear understanding of the structural phase transitions that occur in MAPbI3 and provides a guide for the epitaxial growth of specific phases under various strain conditions. PMID:26462962

  8. The 11C-radioisotopic study of methanol conversion on V-MCM-41; the influence of methyl iodide on the transformation

    International Nuclear Information System (INIS)

    Complete text of publication follows. The MCM-41 mesoporous material has Lewis and even Bronsted acid sites to produce dimethyl ether with some hydrocarbons, while over metal modified MCM-41 mostly formaldehyde and dimethoxy methane (i.e. methylal) or methyl formate are produced. In present experiments V incorporated basically mild acid sites of MCM-41 was prepared by low temperature direct synthesis. The V-MCM-41 has enough main active Lewis sites (by V-) to form formaldehyde and also light Bronsted acid sites to let the adsorbed formaldehyde eliminate and afterwards, with methanol, to form dimethoxy methane in nonoxidative environment. This V-MCM-41 has been tested by ethanol conversion in non-oxidative environments too and diethoxy methane as main product was detected. In present work the methanol conversion, as well as the methanol co-reaction with methyl iodide are studied from the same V-MCM-41 sample using 11C-technique. The 11C-labelled radioactive methanol has been already applied for determination of methanol conversion rates on Cu-modified MCM-41. The V-MCM-41 was prepared by direct hydrothermal synthesis method. The adsorption rate of 11C-methanol and, after the reaction, the desorption rate of the remaining 11C-derivatives on catalyst were continuously detected by gamma detectors. The derivatives were analyzed by radio-gas chromatography (gas chromatograph with FID coupled on-line with a radioactivity detector). Both dimethyl ether and hydrocarbon formation are also in slight degrees according to weak Lewis and Bronsted acidities. Since the conversion was carried out without added oxygen gas, only the frame oxygen can take part into catalysis. In presence of non-radioactive methyl iodide, the radioactive methanol is converted to radioactive methyl iodide on V-MCM-41. The radio-GC analysis confirmed that the iodide induced change of the reaction performance was reversible i.e. the radioactive methyl iodide was regenerated to non-radioactive methyl

  9. Iodide Selective Electrodes Based on Bis(2-mercaptobenzothiazolato Mercury(II and Bis(4-chlorothiophenolato Mercury(II Carriers

    Directory of Open Access Journals (Sweden)

    Morteza M. Zohory

    2003-12-01

    Full Text Available New iodide-selective electrodes based on bis(2-mercaptobenzothiazolato mercury(II [Hg(MBT2] and bis(4-chlorothiophenolato mercury(II [Hg(CTP2] carriers are described. The electrodes were prepared by incorporating the ionophores into plasticized PVC membranes, which were directly coated on the surface of graphite disk electrodes. The electrodes displayed high selectivity for iodide with respect to a number of inorganic and organic anions. The influence of the membrane composition and pH, and the effect of lipophilic cationic and anionic additives on the response properties of the electrodes were investigated. The electrodes exhibited near-Nernstian slopes of -57.6 ± 0.8 and -58.4 ± 1.4 mV/decade of iodide concentration over the range 1 × 10-6 – 1 × 10-1 M, with detection limits of ~4 × 10-7 and 6 × 10-7 M for the electrodes based on [Hg(MBT2] and [Hg(CTP2], respectively. They have relatively fast response times (≤ 10 s, satisfactory reproducibility, and life times of at least two months. The potentiometric responses of the electrodes are independent of pH of the test solution over the range 3.5 – 11.5.

  10. The solvent shell structure of aqueous iodide: X-ray absorption spectroscopy and classical, hybrid QM/MM and full quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.T. [Ecole Polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); Tavernelli, I. [Ecole Polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); Milne, C.J.; van der Veen, R.M. [Ecole Polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); D' Angelo, P. [Dipartimento di Chimica, Universita di Roma ' La Sapienza' , Ple A. Moro 5, 00185 Roma (Italy); Bressler, Ch. [Ecole Polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); Chergui, M., E-mail: Majed.Chergui@epfl.ch [Ecole Polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland)

    2010-05-25

    Graphical abstract: The L{sub 3}-edge EXAFS spectra of aqueous iodide are compared to classical, QM/MM and DFT-based molecular dynamics simulations. The QM/MM simulations reproduce best the experimental data. An anisotropy of the solvation shell is also identified. - Abstract: The L{sub 3} X-ray absorption spectrum of aqueous iodide is reported, and its EXAFS is compared to theoretical spectra reconstructed from the radial distribution function of the iodide hydration obtained from classical, hybrid Quantum Mechanics Molecular Mechanics, (QM/MM) and full quantum (density functional theory, DFT) molecular dynamics simulations. Since EXAFS is mainly sensitive to short distances around the iodide ion, it is a direct probe of the local solvation structure. The comparison shows that QM/MM simulations deliver a satisfactory description of the EXAFS signal, while nonpolarizable classical simulations are somewhat less satisfactory and DFT-based simulations perform poorly. We also identify a weak anisotropy of the water solvation shell around iodide, which may be of importance in electron photoejection experiments.

  11. Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique.

    Science.gov (United States)

    Huang, Zhongping; Zhu, Zuoyi; Subhani, Qamar; Yan, Wenwu; Guo, Weiqiang; Zhu, Yan

    2012-08-17

    A simple ion chromatographic method for simultaneous detection of iodide and iodate in a single running was proposed, with columns packed with homemade functionalized polystyrene-divinylbenzene (PS-DVB) resins and column-switching technique. Homemade resins were functionalized with controllable amounts of quaternary ammonium groups. The low-capacity anion-exchange column and high-capacity anion-exchange column were prepared, due to the resins having different exchange capacities. With this method, iodide and iodate in povidone iodine solution were detected simultaneously in a short time with iodide being eluted off first. A series of standard solutions consisting of target anions of various concentrations from 0.01 mg/L to 100 mg/L were analyzed. Each anion exhibited satisfactory linearity, with correlation coefficient r ≥ 0.9990. The detection limits (LODs) for iodide and iodate obtained by injecting 100 μL of sample were 5.66 and 14.83 μg/L (S/N=3), respectively. A spiking study was performed with satisfactory recoveries between 101.2% and 100.6% for iodide and iodate. PMID:22771256

  12. I3-/I- Redox Behavior of Alkali-metal Iodide Complexes with Crown Ether/Cryptand Macrocycles and Their Applications to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    史成武; 戴松元; 王孔嘉; 潘旭; 郭力; 胡林华; 孔凡太

    2005-01-01

    In this article, the I3-/I- redox behavior in 3-methoxypropionitrile (MePN) containing alkali-metal iodide complexes with crown ether and crypt,and macrocycles was studied by cyclic voltammetry. It was found that the apparent diffusion coefficient D values of triiodide and iodide ions correlate with cations. D values of triiodide follow the order: 1,2-dimethyl-3-propylimidazolium cation (DMPI+)>[Na belong to 15-C-5]+ (the mathematical symbol of inclus ions belong to, was used to indicate Na+ included in 15-C-5)> [K belong to 18-C-6]+> [Na belog to 2.2.1-cryptand]+ and those of iodide ionsfollow the order: [Na belong to 2.2.1-cryptand]+ > [Na belong to 15-C-5]+≈[K belong to 18-C-6]+ > DMPI+. The photovoltaic performances of dye-sensitized solar cells (DSC) with these complexes were compared with those containing 1,2-dimethyl-3-propylimidazolium iodide (DMPII) in MePN. It shows that DSC with these complexes gave a little higher short photocurrent intensity and lower fill factor than those with DMPII, which is consistent with D values of triiodide and iodide ions. Moreover, solvents played an important role for the photo-electric conversion efficiency of DSC. The photo-electric conversion efficiency of DSC with DMPII is higher than that with [K belong to 18-C-6]I in MePN, while in ACN, it shows a little difference.

  13. Antineoplastic effect of iodine and iodide in dimethylbenz[a]anthracene-induced mammary tumors: association between lactoperoxidase and estrogen-adduct production.

    Science.gov (United States)

    Soriano, Ofelia; Delgado, Guadalupe; Anguiano, Brenda; Petrosyan, Pavel; Molina-Servín, Edith D; Gonsebatt, Maria E; Aceves, Carmen

    2011-08-01

    Several groups, including ours, have reported that iodine exhibited antiproliferative and apoptotic effects in various cancer cells only if this element is supplemented as molecular iodine, or as iodide, to cells that are able to oxidize it with the enzyme thyroperoxidase. In this study, we analyzed the effect of various concentrations of iodine and/or iodide in the dimethylbenz[a]anthracene (DMBA) mammary cancer model in rats. The results show that 0.1% iodine or iodide increases the expression of peroxisome proliferator-activated receptor type γ (PPARγ), triggering caspase-mediated apoptosis pathways in damaged mammary tissue (DMBA-treated mammary gland) as well as in frank mammary tumors, but not in normal mammary gland. DMBA treatment induces the expression of lactoperoxidase, which participates in the antineoplastic effect of iodide and could be involved in the pro-neoplastic effect of estrogens, increasing the formation of DNA adducts. In conclusion, our results show that a supplement of 0.1% molecular iodine/potassium iodide (0.05/0.05%) exert antineoplastic effects, preventing estrogen-induced DNA adducts and inducing apoptosis through PPARγ/caspases in pre-cancer and cancerous cells. Since this iodine concentration does not modify the cytology (histology, apoptosis rate) or physiology (triiodothyronine and thyrotropin) of the thyroid gland, we propose that it be considered as an adjuvant treatment for premenopausal mammary cancer.

  14. K-edge XANES investigation of octakis(DMSO)lanthanoid(III) complexes in DMSO solution and solid iodides

    OpenAIRE

    D’Angelo, Paola; MIGLIORATI, VALENTINA; Spezia, Riccardo; De Panfilis, Simone; Persson, Ingmar; ZITOLO, ANDREA

    2013-01-01

    The potentiality of high energy XANES (X-ray absorption near edge structure) as a structural tool for lanthanoid-containing systems has been explored. The K-edge XANES spectra of La3+, Gd3+, and Lu3+ ions both in DMSO solution and solid octakis(DMSO) lanthanoid(III) iodides have been analysed. Although the K-edges of lanthanoids cover the energy range 38 (La) to 65 (Lu) keV, the large widths of the core hole states do not appreciably reduce the potential structural information of XANES data. ...

  15. Ober Phaseniibergange von Ammonium-Alkali-Jodiden und verwandten Halogeniden / Phase Transitions of Ammonium-alkali Iodides and Related Halides

    Science.gov (United States)

    Brauer, Peter

    1981-03-01

    The investigation of the order-disorder transitions of the ammonium-chlorides and -bromides, in which some of the NH4+ are replaced by Cs+, Rb+ or K+, is extended to the corresponding iodides using birefringence and differential thermal analysis. As the temperature range of the martensitic transition (Pm 3 m↔Fm 3 m) is now overlapping the temperature range of the orderdisorder transitions, the former must be included in the measurements. The results allowing an overlook are discussed using the work of Garland, Lushington, and Leung [5

  16. Potassium Iodide and Acrylamide Fluorescence Quenching Studies on Gamma-Crystallins of Human Lenses in Development and Aging

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    γ_1-γ_2-and γ_3-crystallin(corresponding to γs-,γC-and γD- crys-tallin respectively)of human fetal,2 year and 20~+ year old lenses areseparated by Sephadex gel chromatography.lodide and acrylamide are usedto quench the tryptophane fluorescence of sub-γ-crystalline fractions and Ksvand fa values are calculated.The results show that iodide has no clear quench-ing effects on all γ-crystallins,the quenching effects of acrylamide on the tryp-tophan fluorescences of γ1-γ2-and γ3-crystallin from lenses of the ...

  17. Resonance enhanced multiphoton ionization photoelectron spectroscopy on nano- and picosecond timescales of Rydberg states of methyl iodide

    OpenAIRE

    Buma, W.J.; Dobber, M.R.; Lange

    1993-01-01

    Rydberg states of methyl iodide have been investigated using resonance enhanced multiphoton ionization in combination with photoelectron spectroscopy with nanosecond and picosecond laser pulses. The study of the ns (6n10) Rydberg states in two-, three-, and four-photon excitations has resulted in an unambiguous identification of state [1] in the 7s and 8s Rydberg states. As a consequence, it is concluded that the transition to 6s[1] in two- and three-photon excitations is anomalously weak. Th...

  18. Iodide and iodate (129I and 127I) in surface water of the Baltic Sea, Kattegat and Skagerrak

    DEFF Research Database (Denmark)

    Hansen, Violeta; Yi, Peng; Hou, Xiaolin;

    2011-01-01

    Despite the common incorporation of iodine in the biological cycle and occurrence of huge contamination of the radioactive isotope 129I in the Baltic Proper, Skagerrak and Kattegat, there is no data on chemical speciation of iodine in these waters. We here present first time data on iodine isotopes...... in Skagerrak and Kattegat may be a slow process. Additionally, the positive correlation between salinity and iodide and iodate (both isotopes) may reflect effective control of Skagerrak water mass on iodine distribution in surface water of the Baltic Sea....

  19. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A., E-mail: boatnerla@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ramey, J.O., E-mail: rameyjo@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kolopus, J.A., E-mail: kolopusja@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Neal, John S., E-mail: nealjs1@ornl.gov [Center for Radiation Detection Materials & Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Nuclear Science and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-21

    The alkaline-earth scintillator, CaI{sub 2}:Eu{sup 2+}, was initially discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI{sub 2}:Eu{sup 2+} has the potential to exceed the excellent scintillation performance of SrI{sub 2}:Eu{sup 2+}. In fact, theoretical predictions for the light yield of CaI{sub 2}:Eu{sup 2+} scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. As in the case of the early SrI{sub 2}:Eu{sup 2+} scintillator, the performance of CaI{sub 2}:Eu{sup 2+} scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI{sub 2}:Eu{sup 2+} scintillators in single-crystal form, we have developed new techniques that are applied here to CaI{sub 2}:Eu{sup 2+} and pure CaI{sub 2} with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI{sub 2}:Eu{sup 2+} form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles—so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI{sub 2}. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI{sub 2}:Eu{sup 2+} and un-doped CaI{sub 2}. Large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI{sub 2}:Eu{sup 2+} and pure CaI{sub 2} single crystals are presented that include

  20. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.

    Science.gov (United States)

    Ikari, Mariya; Matsui, Yoshihiko; Suzuki, Yuta; Matsushita, Taku; Shirasaki, Nobutaka

    2015-01-01

    Chlorine oxidation followed by treatment with activated carbon was studied as a possible method for removing radioactive iodine from water. Chlorination time, chlorine dose, the presence of natural organic matter (NOM), the presence of bromide ion (Br⁻), and carbon particle size strongly affected iodine removal. Treatment with superfine powdered activated carbon (SPAC) after 10-min oxidation with chlorine (1 mg-Cl₂/L) removed 90% of the iodine in NOM-containing water (dissolved organic carbon concentration, 1.5 mg-C/L). Iodine removal in NOM-containing water increased with increasing chlorine dose up to 0.1 mg-Cl₂/L but decreased at chlorine doses of >1.0 mg-Cl₂/L. At a low chlorine dose, nonadsorbable iodide ion (I⁻) was oxidized to adsorbable hypoiodous acid (HOI). When the chlorine dose was increased, some of the HOI reacted with NOM to form adsorbable organic iodine (organic-I). Increasing the chlorine dose further did not enhance iodine removal, owing to the formation of nonadsorbable iodate ion (IO₃⁻). Co-existing Br⁻ depressed iodine removal, particularly in NOM-free water, because hypobromous acid (HOBr) formed and catalyzed the oxidation of HOI to IO₃⁻. However, the effect of Br⁻ was small in the NOM-containing water because organic-I formed instead of IO₃⁻. SPAC (median particle diameter, 0.62 μm) had a higher equilibrium adsorption capacity for organic-I than did conventional PAC (median diameter, 18.9 μm), but the capacities of PAC and SPAC for HOI were similar. The reason for the higher equilibrium adsorption capacity for organic-I was that organic-I was adsorbed principally on the exterior of the PAC particles and not inside the PAC particles, as indicated by direct visualization of the solid-phase iodine concentration profiles in PAC particles by field emission electron probe microanalysis. In contrast, HOI was adsorbed evenly throughout the entire PAC particle. PMID:25462731

  1. Photoelectron anisotropy and channel branching ratios in the detachment of solvated iodide cluster anions

    International Nuclear Information System (INIS)

    Photoelectron spectra and angular distributions in 267 nm detachment of the I-·Ar, I-·H2O, I-·CH3I, and I-·CH3CN cluster anions are examined in comparison with bare I- using velocity-map photoelectron imaging. In all cases, features are observed that correlate to two channels producing either I(2P3/2) or I(2P1/2). In the photodetachment of I- and I-·Ar, the branching ratios of the 2P1/2 and 2P3/2 channels are observed to be ≅0.4, in both cases falling short of the statistical ratio of 0.5. For I-·H2O and I-·CH3I, the 2P1/2 to 2P3/2 branching ratios are greater by a factor of 1.6 compared to the bare iodide case. The relative enhancement of the 2P1/2 channel is attributed to dipole effects on the final-state continuum wave function in the presence of polar solvents. For I-·CH3CN the 2P1/2 to 2P3/2 ratio falls again, most likely due to the proximity of the detachment threshold in the excited spin-orbit channel. The photoelectron angular distributions in the photodetachment of I-, I-·Ar, I-·H2O, and I-·CH3CN are understood within the framework of direct detachment from I-. Hence, the corresponding anisotropy parameters are modeled using variants of the Cooper-Zare central-potential model for atomic-anion photodetachment. In contrast, I-·CH3I yields nearly isotropic photoelectron angular distributions in both detachment channels. The implications of this anomalous behavior are discussed with reference to alternative mechanisms, affording the solvent molecule an active role in the electron ejection process

  2. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon

    2012-08-21

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  3. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz, E-mail: lioz.etgar@mail.huji.ac.il [Institute of Chemistry, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 90400 (Israel)

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  4. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    Science.gov (United States)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  5. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  6. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    Directory of Open Access Journals (Sweden)

    Bat-El Cohen

    2014-08-01

    Full Text Available Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  7. K-edge XANES investigation of octakis(DMSO)lanthanoid(III) complexes in DMSO solution and solid iodides.

    Science.gov (United States)

    D'Angelo, Paola; Migliorati, Valentina; Spezia, Riccardo; De Panfilis, Simone; Persson, Ingmar; Zitolo, Andrea

    2013-06-14

    The potential of high energy XANES (X-ray absorption near edge structure) as a tool for the structural analysis of lanthanoid-containing systems has been explored. The K-edge XANES spectra of La(3+), Gd(3+), and Lu(3+) ions both in DMSO solution and solid octakis(DMSO)lanthanoid(III) iodides have been analysed. Although the K-edges of lanthanoids cover the energy range of 38 (La) to 65 (Lu) keV, the large widths of the core hole states do not appreciably reduce the potential structural information of the XANES data. We show that, for lanthanoid compounds, accurate structural parameters are obtained from the analysis of K-edge XANES signals if a deconvolution procedure is carried out. We found that in solid octakis(DMSO)lanthanoid(III) iodides the Ln(3+) ions are coordinated by eight DMSO ligands arranged in a quite symmetric fashion. In DMSO solution the Ln(3+) ions retain a regular eight-coordination structure and the coordination number does not change along the series. In contrast to when in water the second coordination shell has been found to provide a negligible contribution to the XANES spectra of Ln(3+) ions in DMSO solution.

  8. Cutaneous sporotrichosis treatment with potassium iodide: a 24 year experience in São Paulo state, Brazil

    Directory of Open Access Journals (Sweden)

    Karin Yamada

    2011-04-01

    Full Text Available BACKGROUND: Sporotrichosis is a subacute or chronic disease caused by a dimorphic fungus, Sporothrix schenckii. The first and most traditional treatment is potassium iodide in satured solution (SSKI used by DE BEURMANN in 1907. For its effectiveness, it is still used for cutaneous sporotrichosis. OBJECTIVE: To evaluate the treatment of cutaneous sporotrichosis with SSKI in relation to clinical cure, side effects, length of treatment and reactivation. METHODS: We conducted a retrospective analysis of medical records over a 24-year period (1981-2005. Patients of all ages who were treated in the hospital´s division of dermatology were included in the study providing that they had a positive culture of S. schenckii. Satured solution of potassium iodide (3 to 6g per day was the treatment prescribed. For children, half of the dose was prescribed. RESULTS: The lymphocutaneous disease was prevalent, the cure rate was 94.7%, side effects were described in 5.5% of the cases, mean length of treatment was 3.5 months and possible reactivation was observed in 11.1%. CONCLUSION: SSKI is an effective drug, with many side effects, but with low frequency. Resolution was for maximum six months of treatment. SSKI has been found to be a very effective drug in this retrospective study of culture-proven cases of cutaneous and lymphocutaneous sporotrichosis. It should be used as first drug of choice especially in resource-limited settings.

  9. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    International Nuclear Information System (INIS)

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells

  10. Electrocatalytic oxidation of hydrazine by copper iodide modified sol-gel derived carbon-ceramic composite Electrode

    Directory of Open Access Journals (Sweden)

    Ghasem Karim-Nezhad

    2014-03-01

    Full Text Available A new sol-gel derived ceramic-carbon composite electrode was fabricated by the use of CuI as modifier. The electrocatalytic activity of the copper iodide modified sol-gel derived ceramic-carbon composite (CIM-SGD-CCC electrode was examined for the oxidation of hydrazine. Cyclic voltammetry was employed to study the electrochemical and electrocatalytic properties of the modified electrode. Results showed that the CIM-SGD-CCC electrode has very high catalytic activity for electrooxidation of hydrazine. This proves that the copper iodide bears the main role in electro-catalytic oxidation of hydrazine. This modified electrode shows fast amperometric response with the range from 1 μ mol L-1 to 40 μ mol L-1 and the limit of detection (LOD of 0.524 μ mol L-1 for hydrazine. The relative standard deviation (R.S.D. was 0.72 % for 5 successive assays. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed electrode.

  11. P(MMA-EMA Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Nurul Akmaliah Dzulkurnain

    2015-02-01

    Full Text Available Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10−6 S·cm−1 and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.

  12. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand

    Science.gov (United States)

    Shakila, K.; Kalainathan, S.

    2015-01-01

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

  13. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.

    Science.gov (United States)

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram

    2013-06-01

    Preparation of antibacterial polyurethane coatings from novel functional soybean oil was considered in this work. First, epoxidized soybean oil (ESBO) as a low price and widely available renewable resource raw material was subjected to the reaction with aniline using an ionic liquid as a green catalyst. The intermediate phenylamine containing polyol (SAP) was then methylated by reaction with methyl iodide to produce a polyol (QAP) with pendant dimethylphenylammonium iodide groups. To regulate the physical and mechanical properties as well as biological characteristics of final coatings, QAP was mixed with different portions of a similar soybean oil-based polyol (MSP) without quaternary ammonium groups. The mixtures were reacted with isophorone diisocyanate to produce crosslinked polyurethane coatings. Evaluation of viscoelastic properties by DMA method revealed single phase structure with Tg in the range of 50-82°C. Stress-strain analysis of the prepared polyurethanes showed initial modulus, tensile strength, and elongation at break in the ranges of 13-299 MPa, 4.5-13.8 MPa, and 16-109%, respectively. Additionally, the coatings showed good adherence to aluminum and PVC substrates. The solvent extracted samples showed excellent biocompatibility as determined by monitoring L929 fibroblast cells morphology and MTT assay. Meanwhile, very promising antibacterial properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria with bacterial reduction in the range of 83-100% was observed. PMID:23172859

  14. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis.

    Science.gov (United States)

    Kong, Fen-Ying; Li, Wei-Wei; Wang, Jing-Yi; Wang, Wei

    2015-07-15

    Herein, we report, for the first time, the synthesis of reduced graphene oxide-DNA-Ag (RGO-DNA-Ag) nanohybrids by ultraviolet (UV) irradiation of aqueous solutions of GO and Ag ions in the presence of DNA. The morphology and microstructure characterizations of the resultant nanohybrids reveal that the proposed method leads to the simultaneous reduction of GO and Ag ions together with efficient dispersion of Ag nanoparticles on the surface of RGO sheets. This simple and fast synthesis route is carried out at ambient conditions without using any additional chemical reducing agents, which has the potential to provide new avenues for the green fabrication of various RGO-based nanomaterials. Additionally, the RGO-DNA-Ag nanohybrids can be utilized as a novel sensing interfacial for direct determination of iodide by simple differential pulse voltammetry (DPV), without requiring any preceding preconcentration of the analyte. Based on the RGO-DNA-Ag nanohybrids modified electrode, a wide linear range of 1μM-1mM and a low detection limit of 0.2μM were obtained. This sensitive and direct method of analysis can be applied successfully to the determination of iodide in real samples.

  15. Comments on "Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand" by K. Shakila and S. Kalainathan, Spectrochim. Acta 135 A (2015) 1059-1065

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R.; Nadkarni, V. S.

    2016-06-01

    Shakila and Kalainathan report on the synthetic and structural aspects of a zinc iodide complex with Schiff based ligand, which exhibits room temperature ferromagnetism. In this comment, many points of criticism, concerning the characterization of this so called zinc iodide complex of Schiff based ligand are highlighted to prove that the title paper is completely erroneous.

  16. Concentration and electrode material dependence of the voltammetric response of iodide on platinum, glassy carbon and boron-doped diamond in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide

    International Nuclear Information System (INIS)

    The electro-oxidation of iodide has been investigated as a function of concentration using steady-state microelectrode voltammetry, transient cyclic voltammetry and linear-sweep semi-integral voltammetry on platinum, glassy carbon and boron-doped diamond electrodes in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Two oxidation processes are observed on all of the investigated electrode materials, with the first being assigned to the oxidation of iodide to triiodide (confirmed by UV/visible spectroscopy) and the second being attributed to the oxidation of triiodide to iodine. Iodide oxidation is kinetically more facile on platinum compared to glassy carbon or boron-doped diamond. At elevated bulk iodide concentrations, the nucleation and growth of sparingly soluble electrogenerated iodine at the electrode surface was observed and imaged in situ using optical microscopy. The diffusion coefficient of iodide was determined to be 2.59 (±0.04) × 10−7 cm2 s−1 and independent of the bulk concentration of iodide. The steady-state iodide oxidation current measured at a platinum microelectrode was found to be a linear function of iodide concentration, as expected if there are no contributions from non-Stokesian mass-transport processes (electron hopping and/or Grotthuss-type exchange) under the investigated conditions

  17. High-Performance Doped Strontium Iodide Crystal Growth Using a Modified Bridgman Method

    Science.gov (United States)

    Rowe, Emmanuel

    dipole-allowed and thus are about 106 times stronger than the more frequently observed 4f-4f transition in the trivalent rare earth ions. Ce3+, Nd3+ and Pr3+ have been investigated for fast response applications while Ce3+, Eu 2+, and Yb2+ stand out as the most promising activators offering high light yield, and high energy resolution. Using a modified Bridgman growth technique we have grown crystals with a low energy resolution of 2.6% at 662 keV, which is lower than the previous 2.8% reported for SrI2:Eu 2+. The modified technique (called so for its vertical crystal growth orientation) is necessary due to the anisotropic thermal expansion coefficient of Strontium Iodide. The problem plaguing the growth of the crystal is spontaneous cracking, which usually appear during cooling in the bulk. With the use of a zone separating shield, one can achieve more control of the temperature gradient between the two zones without compromising the actual temperature of the two zones. Additionally the use of codopants, in particular divalent magnesium improved the crystalline quality by acting as a gathering for iodine ions, which led to reduction of defect density.

  18. Radioactive Iodide (131I Excretion Profiles in Response to Potassium Iodide (KI and Ammonium Perchlorate (NH4ClO4 Prophylaxis

    Directory of Open Access Journals (Sweden)

    Jeffrey Fisher

    2012-08-01

    Full Text Available Radioactive iodide (131I protection studies have focused primarily on the thyroid gland and disturbances in the hypothalamic-pituitary-thyroid axis. The objective of the current study was to establish 131I urinary excretion profiles for saline, and the thyroid protectants, potassium iodide (KI and ammonium perchlorate over a 75 hour time-course. Rats were administered 131I and 3 hours later dosed with either saline, 30 mg/kg of NH4ClO4 or 30 mg/kg of KI. Urinalysis of the first 36 hours of the time-course revealed that NH4ClO4 treated animals excreted significantly more 131I compared with KI and saline treatments. A second study followed the same protocol, but thyroxine (T4 was administered daily over a 3 day period. During the first 6–12 hour after 131I dosing, rats administered NH4ClO4 excreted significantly more 131I than the other treatment groups. T4 treatment resulted in increased retention of radioiodide in the thyroid gland 75 hour after 131I administration. We speculate that the T4 treatment related reduction in serum TSH caused a decrease synthesis and secretion of thyroid hormones resulting in greater residual radioiodide in the thyroid gland. Our findings suggest that ammonium perchlorate treatment accelerates the elimination rate of radioiodide within the first 24 to 36 hours and thus may be more effective at reducing harmful exposure to 131I compared to KI treatment for repeated dosing situations. Repeated dosing studies are needed to compare the effectiveness of these treatments to reduce the radioactive iodide burden of the thyroid gland.

  19. Transport and deposition of halide in alkali metal-stainless steel systems, (IV). Measurement of sodium iodide solubility in sodium with major constituents of stainless steel and oxide in sodium

    International Nuclear Information System (INIS)

    Solubility of sodium iodide in sodium is measured separately (a) with concentrations of major constituents leached from stainless steel in sodium and (b) with controlled concentration of oxide in sodium by the use of stainless steel capsule. The capsules loaded with 20 g sodium and 0.1-0.3 g powder of additives are heated at their upper part in a furnace and cooled at their bottom on brass plates. (a) After a given period of run for sodium iodide equilibration, the distribution of the iodide and constituents is fixed in solidified sodium by quenching the capsules. Sodium samples taken from the sectioned capsule tube are submitted to sodium dissolution by steam for determining the iodide and to vacuum distillation for determining the constituents. The iodide solubility appears to be in a reverse correlation with concentrations of iron and nickel and to be insensitive to change in those of chromium, manganese and silicon. (b) After a given period of run for sodium oxide equilibration, the sodium is solidified by quenching the capsule. Deposits on the capsule bottom is removed by sectioning the capsule tube and crystals of sodium iodide are introduced to the sectioned capsule on which an end plug is seal-welded. The capsule is again set under the large temperature gradient for a period of run for iodide equilibration. After fixing the iodide distribution in solidified sodium by the quenching, sodium samples are taken from the sectioned capsule tube and submitted to the sodium dissolution by steam for determining iodide in sodium. The iodide solubility data obtained from the present measurement are observed to be scarcely affected by the oxide concentration. (author)

  20. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry.

    Science.gov (United States)

    Bach, Cristina; Boiteux, Virginie; Hemard, Jessica; Colin, Adeline; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier

    2016-05-27

    Here, we developed and validated a headspace-solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) method for the determination of 14 volatile perfluorinated alkylated substances (PFASs) in water and sediment samples according to SANTE 11945/2015 guidelines. Three fluorotelomer alcohols (FTOHs), two perfluoroalkyl iodides (PFIs), three fluorotelomer iodides (FTIs), four fluorotelomer acrylates and methacrylates (FTACs and FTMACs) and two perfluoroalkyl sulfonamides (FASAs) were analysed simultaneously to assess the occurrence of these compounds from their emission sources to the outlets in water treatment plants. Several SPME parameters were optimised for both water and sediment to maximise responses and keep analysis time to a minimum. In tap water, the limits of quantification (LOQs) were found to be between 20ng/L and 100ng/L depending on the analyte, with mean recoveries ranging from 76 to 126%. For sediments, LOQs ranged from 1 to 3ng/g dry weight depending on the target compound, with mean recoveries ranging from 74 to 125%. SPME considerably reduced sample preparation time and its use provided a sensitive, fast and simple technique. We then used this HS-SPME-GC/MS method to investigate the presence of volatile PFASs in the vicinity of an industrial facility. Only 8:2 FTOH and 10:2 FTOH were detected in a few water and sediment samples at sub-ppb concentration levels. Moreover, several non-target fluorotelomers (12:2 FTOH, 14:2 FTOH and 10:2 FTI) were identified in raw effluent samples. These long-chain fluorotelomers have high bioaccumulative potential in the aquatic environment compared with short-chain fluorotelomers such as 6:2 FTOH and 6:2 FTI. PMID:27125188

  1. Cul-catalyzed Coupling Reactions of Aryl Iodides with Amides Using L-Proline and KF/Al2O3

    Institute of Scientific and Technical Information of China (English)

    HOSSEINZADEH Rahman; TAJBAKHSH Mahmood; MOHADJERANI Maryam; GHORBANI Elham

    2008-01-01

    An efficient experimentally simple and inexpensive catalyst system for the selective amidation of aryl iodides using 15 mol% of Cul as catalyst,15 mol% of L-proline as ligand and KF/Al2O3 as a base in toluene is described.

  2. Copper-catalysed N-arylation of arylsulfonamides with aryl bromides and aryl iodides using KF/Al2O3

    Indian Academy of Sciences (India)

    Rahman Hosseinzadeh; Mahmood Tajbakhsh; Maryam Mohadjerani; Mohammad Alikarami

    2010-03-01

    An efficient synthesis of -arylsulfonamides with a variety of aryl bromides, aryl iodides and heteroaryl bromides using KF/Al2O3 as a suitable base, CuI as an inexpensive catalyst and ,'-dimethylethylenediamine (,'-DMEDA) as an effective ligand is described.

  3. Calix[4]arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity

    International Nuclear Information System (INIS)

    A water- soluble p-sulphonatocalix[4]arene was synthesized and anchored onto the surface of gold nanoparticles (AuNPs) in aqueous medium. The conjugate was characterized by IR, UV–Vis and TEM analysis. This material responds to iodide in giving a color change from pink to blue which is easily detectable with bare eyes. While periodate itself does not cause any spectral changes, a substantial spectral change can be seen in the presence of traces of iodide. The lower detection limit for iodide in the absence of periodate is 2.5 μM, which is further lowered to 80 nM in presence of periodate. A mechanistic study revealed that the chemisorption of the ions I− and I3−, formed by the reaction I− and periodate on the surface of AuNPs resulted in spontaneous oxidation of the anions. The electron transfer changes the size and morphology of the nanoparticles and results in the color change. The method is specific for iodide. It was successfully applied to the determination of I− in (spiked) waters and in solutions of iodized edible salt. (author)

  4. Iodide-induced organothiol desorption and photochemical reaction, gold nanoparticle (AuNP) fusion, and SERS signal reduction in organothiol-containing AuNP aggregates

    Science.gov (United States)

    Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...

  5. An organic-ligand-free thermochromic luminescent cuprous iodide trinuclear cluster: evidence for cluster centered emission and configuration distortion with temperature.

    Science.gov (United States)

    Li, Shi-Li; Zhang, Fu-Qiang; Zhang, Xian-Ming

    2015-05-11

    An organic-ligand-free cuprous iodide trinuclear cluster with significant temperature-dependent structural distortion has been synthesized and characterized, which shows thermochromic luminescence originating from a single cluster-centered triplet due to the absence of an organic ligand. This compound also shows interesting reversible temperature dependent phase transition from chiral to centrosymmetric space groups. PMID:25865286

  6. Copper iodide nanoparticles on poly(4-vinylpyridine): A new and efficient catalyst for the synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions

    Indian Academy of Sciences (India)

    Jalal Albadi; Mosadegh Keshavarz; Masoumeh Abedini; Moloud Khoshakhlagh

    2013-03-01

    Poly(4-vinylpyridine)-supported nanoparticles of copper(I) iodide is reported as a new, efficient and recyclable catalyst for the synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. This catalyst can be recovered by simple filtration and recycled up to 10 consecutive runs without losing of its efficiency.

  7. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III) : A Clock Reaction Kinetic Study

    NARCIS (Netherlands)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; t

  8. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    OpenAIRE

    Na Li; Laishun Shi; Xiaomei Wang; Fang Guo; Chunying Yan

    2011-01-01

    The mole ratio r(r = [I−]0/[ClO2]0) has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r = 6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for tri...

  9. Enhancement of gaseous iodine emission by aqueous ferrous ions during the heterogeneous reaction of gaseous ozone with aqueous iodide.

    Science.gov (United States)

    Sakamoto, Yosuke; Enami, Shinichi; Tonokura, Kenichi

    2013-04-11

    Gaseous I2 formation from the heterogeneous reaction of gaseous ozone with aqueous iodide in the presence of aqueous ferrous ion (Fe(2+)) was investigated by electron impact ionization mass spectrometry. Emission of gaseous I2 increased as a function of the aqueous FeCl2 concentration, and the maximum I2 formation with Fe(2+) was about 10 times more than without Fe(2+). This enhancement can be explained by the OH(-) scavenging by Fe(3+) formed from Fe(2+) ozonation to produce colloidal Fe(OH)3. This mechanism was confirmed by measurements of aqueous phase products using a UV-vis spectrometer and an electrospray ionization mass spectrometer. We infer that such a pH-buffering effect may play the key role in general halogen activations.

  10. The antimicrobial effect of apical box versus apical cone preparation using iodine potassium iodide as root canal dressing

    DEFF Research Database (Denmark)

    Markvart, Merete; Dahlén, Gunnar; Reit, Claes-Erik;

    2013-01-01

    Abstract Purpose. The purpose was to study the reduction of intra-canal microflora in premolars with apical periodontitis instrumented with either apical box or apical cone preparation and to provide measurements of intervention effects to allow proper power calculation in future clinical trials....... Methods. Twenty-four patients were centrally randomized to apical box preparation (size #60) or cone preparation (apical size #25). The groups were comparable regarding the presence of primary caries and type of coronal restoration. In the course of canal preparation each tooth was irrigated with 2.5% Na......OCl (12 ml). Lastly, the canals were filled with 17% EDTA (2 × 30 s) and 5% iodine potassium iodide (IKI) for 10 min. The canals were sampled for micro-organisms on four occasions: before instrumentation, after instrumentation, after application of IKI dressing and at the beginning of the second...

  11. Development of a kinetic model and calculation of radiation dose estimates for sodium iodide-131I in athyroid individuals

    International Nuclear Information System (INIS)

    The treatment for some thyroid carcinomas involves surgically removing the thyroid gland and administering the radiopharmaceutical Sodium iodide-131I (NaI). A diagnostic dose of NaI is given to the patient to determine if remnant tissue from the gland remains or larger doses are administered in order to treat the malignant tissue. Past research regarding NaI uptake and retention in euthyroid individuals (normal functioning thyroid) reveal that radioiodine concentrates mainly in the thyroid tissue and the remaining material is excreted from the body. The majority of radioiodine in athyroid (without thyroid) individuals is also eliminated from the body; however, there has been recent evidence of a long-term retention phase for individuals with no radioiodine concentrating tissue. The general purpose of this study was to develop a kinetic model and estimate the absorbed dose to athyroid individuals regarding the distribution and retention of NaI

  12. Synthesis, crystal growth and characterizations of bis ( l-proline) cadmium iodide: a new semi-organic nonlinear optical material

    Science.gov (United States)

    Boopathi, K.; Jagan, R.; Ramasamy, P.

    2016-07-01

    Novel semi-organic single crystals of bis ( l-proline) cadmium iodide (BLPC) were grown by slow evaporation technique. The crystal structure was determined by single-crystal X-ray diffraction studies. Single-crystal X-ray diffraction study shows that [BLPC] crystallizes in orthorhombic system with space group P212121. 1H NMR and 13C NMR studies were conducted for the grown crystal. Functional groups present in the compound were identified by FTIR spectral studies. The UV-Vis-NIR spectrum was studied to analyse the optical properties of the grown crystals. Thermogravimetric analysis was carried out to study thermal behaviour of the materials. Vickers microhardness measurement was carried out for different loads. Etching studies were carried out using water as etchant. The second harmonic generation efficiency was determined by the Kurtz powder method and it was found to be higher than that of potassium dihydrogen phosphate.

  13. Modeling high speed growth of large rods of cesium iodide crystals by edge-defined film-fed growth (EFG)

    Science.gov (United States)

    Yeckel, Andrew

    2016-09-01

    A thermocapillary model of edge-defined film-fed growth (EFG) is developed to analyze an experimental system for high speed growth of cesium iodide as a model system for halide scintillator production. The model simulates heat transfer and fluid dynamics in the die, melt, and crystal under conditions of steady growth. Appropriate mass, force, and energy balances are used to compute self-consistent shapes of the growth interface and melt-vapor meniscus. The model is applied to study the effects of growth rate, die geometry, and furnace heat transfer on the limits of system operability. An inverse problem formulation is used to seek operable states at high growth rates by adjusting the overall temperature level and thermal gradient in the furnace. The model predicts that steady growth is feasible at rates greater than 20 mm/h for crystals up to 18 mm in diameter under reasonable furnace gradients.

  14. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  15. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    Science.gov (United States)

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine. PMID:26838450

  16. Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous; Yang, Mengjin; Li, Zhen; Islam, Nazifah; Pan, Xuan; Zhu, Kai; Fan, Zhaoyang

    2016-07-08

    Researchers have debated whether methylammonium lead iodide (MAPbI3), with a perovskite crystal structure, is ferroelectric and therefore contributes to the current--voltage hysteresis commonly observed in hybrid perovskite solar cells (PSCs). We thoroughly investigated temperature-dependent polarization, dielectric, and impedance spectroscopies, and we found no evidence of ferroelectric effect in a MAPbI3 thin film at normal operating conditions. Therefore, the effect does not contribute to the hysteresis in PSCs, whereas the large component of ionic migration observed may play a critical role. Our temperature-based polarization and dielectric studies find that MAPbI3 exhibits different electrical behaviors below and above ca. 45 degrees C, suggesting a phase transition around this temperature. In particular, we report the activation energies of ionic migration for the two phases and temperature-dependent permittivity of MAPbI3. This study contributes to the understanding of the material properties and device performance of hybrid perovskites.

  17. The effect of porous lead iodide precursor film on perovskite film formation and its photovoltaic property after an effective pretreatment

    Science.gov (United States)

    Yan, Jian-Jun; Li, Yan; Chang, Yin; Jiang, Pan; Wang, Cheng-Wei

    2016-06-01

    An effective solvent sealed natural drying (SND) pretreatment was introduced for forming a satisfactory crystalline porous iodide (PbI2) precursor film, which could help to generate excellent CH3NH3PbI3 perovskite films for high performance of planar heterojunction perovskite solar cells. And the influence of SND pretreated time on the device performance was investigated in detail. We found that the PbI2 precursor film after 10 min pretreatment could make the perovskite device achieve the optimal power conversion efficiency (PCE) of 8.6%, significantly increased up to 95.5% and 28.4% compared to without pretreatment or traditional treatment. The results show that the time of SND pretreatment is critical to forming large grain size and good crystallinity for PbI2 precursor film, which would markedly improve the efficiency of planar heterojunction perovskite solar cells.

  18. Ginkgo biloba extract alters the binding of the sodium [123I] iodide (Na123I) on blood constituents

    International Nuclear Information System (INIS)

    We evaluated the in vitro effect of an aqueous extract of Ginkgo biloba (EGb) on the distribution in blood cells (BC) and plasma (P) and on the binding of Na123I to the blood constituents using precipitation with trichloroacetic acid. The radioactivity percentages insoluble (SF) and insoluble fraction (IF) of blood constituents were determined. The EGb interfered (p123I in the P (from 69.64 to 86.13) and BC (from 30.36 to 13.87) and altered the fixation of the Na123I in IF-P and in IF-BC. - Highlights: ► Interaction between the Ginkgo biloba and blood constituents radiolabeled. ► Modification of the binding of sodium iodide (Na123I) to the blood constituents. ► This alteration should have influence in a diagnosis of nuclear medicine.

  19. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    Science.gov (United States)

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine.

  20. Characteristic x-ray spectra of sodium and magnesium measured at room temperature using mercuric iodide detectors

    International Nuclear Information System (INIS)

    Mercuric iodide detectors, operating at room temperature with the FET of the first stage of amplification cooled with a two-stage Peltier element, have been used to detect low-energy x rays from light elements excited by 2.0- and 6.1-MeV α particles. X-ray lines from Na (1.04 keV) and Mg (1.25 keV) have been seen for the first time with room-temperature energy-dispersive detectors. A resolution of 390 eV at 1.25 keV was obtained. Further improvement of the resolution is believed to be achievable. However, even the present characteristics are adequate for many applications in x-ray fluorescence and elemental analysis. Several such possible applications are suggested

  1. The Synthesis of 1-Ethyl-1'-(4-vinylbenzyl)-4, 4'-bipyridinium Chloride and Iodide and its Electrochromic Property

    Institute of Scientific and Technical Information of China (English)

    Qing Long JIANG; Xiang Kai FU; Zhu Jun CHEN

    2006-01-01

    A new compound 1-ethyl-1'-(4-vinylbenzyl)-4, 4'-bipyridinium chloride and iodide has been synthesized. The cyclic voltammogram and impedance spectra indicated that a layer of viologen's electrochromic (EC) film could be deposited on conductive ITO glass working electrode.With polyelectrolyte as ionic conduction layer, solid EC devices based on this compound have been assembled and their thickness was about 2.35 mm. When different voltages were added,they showed blue or violet red color. After optimization, its response time was less than 50 ms,the number of redox circulation was over 107 and the color of coloration states could be kept for 3days. This kind of EC device can meet the demand of electronic ink.

  2. A New Synthetic Method of Rhodium Iodide%三碘化铑的新合成方法

    Institute of Scientific and Technical Information of China (English)

    刘桂华; 匡飞平; 潘再富; 余尧; 侯文明; 沈善问; 高金翠; 杨军; 彭玉玲; 杨善晓

    2012-01-01

    A new method has been introduced to synthesize rhodium iodide, an important homogenous catalyst for earbonylation of methanol, to overcome shortcomings of the present methods. These shortcomings include low yield, poor quality and unacceptability with respect to industrial manufacturing. The new method involves the direct reaction of RhC13 with HI. The yield is up to 98.5% and Cl-ean be minimized to 50 ppm by optimizing synthetic operations, superior to the reported data.%三氯化铑与氢碘酸直接合成碘化铑,在最佳反应条件下,合成的收率达到98.5%,产品晶形均一,氯离子含量小于50 mg/kg。

  3. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    International Nuclear Information System (INIS)

    Sodium ion (Na+) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na+ conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10−11 S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10−5 S/cm

  4. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

    Science.gov (United States)

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Lin, Lin; Zhang, Tian-Yang; Gao, Nai-Yun

    2013-06-01

    This study was to explore the formation of iodinated disinfection by-products (I-DBPs), including iodoform (CHI3), iodoacetic acid (IAA) and triiodoacetic acid (TIAA), when iodide-containing artificial synthesized waters and raw waters are in contact with chlorine dioxide (ClO2). Among the investigated I-DBPs, CHI3 was the major species during ClO2 oxidation in artificial synthesized waters. Impact factors were evaluated, including the concentrations of ClO2, iodide (I(-)), dissolved organic carbon (DOC) and pH. Formation of CHI3, IAA and TIAA followed an increasing and then decreasing pattern with increased ClO2 or DOC concentration. I-DBPs yield was significantly affected by solution pH. High concentrations of I-DBPs were generated under circumneutral conditions with the maximum formation at pH 8. The increase of I(-) concentration can increase I-DBPs yields, but the increment was suppressed when I(-) concentration was higher than 50 μM. When 100 μg/L I(-)and ClO2 (7.5-44.4 μM) were spiked to the raw water samples from Yangshupu and Minhang drinking water treatment plant, certain amounts of CHI3 and IAA were found under pH 7 and the concentrations were strongly correlated with ClO2 dosage and water qualities, however, no TIAA was detected. Finally, we investigated I-DBPs formation of 18 model compounds, including 4 carboxylic acids, 5 phenols and 8 amino acids, treating with ClO2 when I(-) was present. Results showed that most of these model compounds could form a considerable amount of I-DBPs, especially for propanoic acid, butanoic acid, resorcinol, hydroquinone, alanine, glutamic acid, phenylalanine and serine.

  5. Changes in the decontamination factor of cesium iodide on evaporation of a scrubbing solution in the Filtered Containment Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Ha, Kwang Soon; Kim, Sungil; Cho, Song-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    When the pressure in the containment building approaches a setting value, the FCVS(Filtered Containment Venting System) operates. The amount of steam and gas mixtures generated during a severe accident can be released into the FCVS. Non-condensable gases and fine aerosols can pass a scrubbing solution and the filters in the FCVS vessel. The decontaminated gases are finally discharged from the FCVS to the outside environment. Previous study observed that a scrubbing solution in the FCVS vessel was constantly evaporating owing to high-temperature steam released continuously from the containment building. A scrubbing solution in the FCVS vessel was completely evaporated at about 31 hours after the FCVS operation. Pool evaporation in the FCVS vessel can negatively affect the decontamination feature of the FCVS because it reduces the scrubbing depth for fission products in an aerosol form. This study carefully evaluated the decontamination factor of metal iodide aerosols especially cesium iodide (CsI), on a scrubbing solution in the FCVS. This paper summarizes the calculated results on the decontamination factor of CsI in the FCVS vessel, which was presented at the international OECD-NEA/NUGENIA-SARNET workshop. This study estimated the decontamination factor of CsI on a scrubbing solution in the FCVS. The MELCOR computer code simulated that an SBO occurred in the OPR 1000. The FCVS consists of a cylindrical vessel with a 3 m diameter and 6.5 m height, and it includes a scrubbing solution of 21 tons. Accumulated mass of CsI aerosol was calculated in a scrubbing solution and the atmosphere in the FCVS vessel and the outside environment. In the early FCVS operation, the decontamination factor of CsI aerosol rapidly increased owing to steam condensation in a scrubbing solution. When the temperature of a pool approached its saturation temperature, the decontamination factor of CsI aerosol started to decrease.

  6. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, Jose A [ORNL; Uckan, Taner [ORNL; Gunning, John E [ORNL; Brukiewa, Patrick D [ORNL; Upadhyaya, Belle R [ORNL; Revis, Stephen M [ORNL

    2010-01-01

    monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction

  7. Changes in gastric sodium-iodide symporter (NIS) activity are associated with differences in thyroid gland sensitivity to perchlorate during metamorphosis.

    Science.gov (United States)

    Carr, James A; Murali, Sharanya; Hu, Fang; Goleman, Wanda L; Carr, Deborah L; Smith, Ernest E; Wages, Mike

    2015-08-01

    We investigated stage-dependent changes in sensitivity of the thyroid gland to perchlorate during development of African clawed frog tadpoles (Xenopus laevis) in relation to non-thyroidal iodide transporting tissues. Perchlorate-induced increases in thyroid follicle cell size and colloid depletion were blunted when exposures began at Nieuwkoop-Faber (NF) stage 55 compared to when exposures began at NF stages 49 or 1-10. To determine if the development of other iodide transporting tissues may contribute to this difference we first examined which tissues expressed transcripts for the sodium dependent iodide symporter (NIS). RT-PCR analysis revealed that NIS was expressed in stomach and small intestine in addition to the thyroid gland of X. laevis tadpoles. NIS mRNA was not detected in lung, kidney, skin, gill, muscle, heart or liver. Perchlorate sensitive (125)I uptake was found in stomach, lung, kidney, gill, and small intestine but not muscle, liver, or heart. Perchlorate-sensitive (125)I uptake by stomach was 6-10 times greater than in any other non-thyroidal tissue in tadpoles. While NF stage 49 tadpoles exhibited perchlorate-sensitive uptake in stomach it was roughly 4-fold less than that observed in NF stage 55 tadpoles. Although abundance of NIS gene transcripts was greater in stomachs from NF stage 55 compared to NF stage 49 tadpoles this difference was not statistically significant. We conclude that gastric iodide uptake increases between NF stages 49 and 55, possibly due to post-translational changes in NIS glycosylation or trafficking within gastric mucosal cells. These developmental changes in gastric NIS gene expression may affect iodide availability to the thyroid gland.

  8. Synthesis of two potential NK1-receptor ligands using [1-11C]ethyl iodide and [1-11C]propyl iodide and initial PET-imaging

    Directory of Open Access Journals (Sweden)

    Genchel Tove

    2007-07-01

    Full Text Available Abstract Background The previously validated NK1-receptor ligand [O-methyl-11C]GR205171 binds with a high affinity to the NK1-receptor and displays a slow dissociation from the receptor. Hence, it cannot be used in vivo for detecting concentration changes in substance P, the endogenous ligand for the NK1-receptor. A radioligand used for monitoring these changes has to enable displacement by the endogenous ligand and thus bind reversibly to the receptor. Small changes in the structure of a receptor ligand can lead to changes in binding characteristics and also in the ability to penetrate the blood-brain barrier. The aim of this study was to use carbon-11 labelled ethyl and propyl iodide with high specific radioactivity in the synthesis of two new and potentially reversible NK1-receptor ligands with chemical structures based on [O-methyl-11C]GR205171. Methods [1-11C]Ethyl and [1-11C]propyl iodide with specific radioactivities of 90 GBq/μmol and 270 GBq/μmol, respectively, were used in the synthesis of [O-methyl-11C]GR205171 analogues by alkylation of O-desmethyl GR205171. The brain uptake of the obtained (2S,3S-N-(1-(2- [1-11C]ethoxy-5-(3-(trifluoromethyl-4H-1,2,4-triazol-4-ylphenylethyl-2-phenylpiperidin-3-amine (I and (2S,3S-2-phenyl-N-(1-(2- [1-11C]propoxy-5-(3-(trifluoromethyl-4H-1,2,4-triazol-4-ylphenylethylpiperidin-3-amine (II was studied with PET in guinea pigs and rhesus monkeys and compared to the uptake of [O-methyl-11C]GR205171. Results All ligands had similar uptake distribution in the guinea pig brain. The PET-studies in rhesus monkeys showed that (II had no specific binding in striatum. Ligand (I had moderate specific binding compared to the [O-methyl-11C]GR205171. The ethyl analogue (I displayed reversible binding characteristics contrary to the slow dissociation rate shown by [O-methyl-11C]GR205171. Conclusion The propyl-analogue (II cannot be used for detecting changes in NK1-ligand levels, while further studies should be

  9. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    International Nuclear Information System (INIS)

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process

  10. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Qi, Yingying [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Zhang, Fu-Shen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  11. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M.; Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)

    2014-08-29

    Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin to cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities

  12. Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution

    Science.gov (United States)

    Adhikari, Nirmal; Dubey, Ashish; Gaml, Eman A.; Vaagensmith, Bjorn; Reza, Khan Mamun; Mabrouk, Sally Adel Abdelsalam; Gu, Shaopeng; Zai, Jiantao; Qian, Xuefeng; Qiao, Qiquan

    2016-01-01

    An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite grain size of ~600 nm and solar cell efficiency of 12.42% at forward scan with a rate of 0.5 V s-1. Device performance decreases after increasing water concentration beyond 5% in the MAI solution due to formation of the PbI2 phase. Transient photocurrent and photovoltage measurements show the shortest charge transport time at 0.99 μs and the longest charge carrier life time at 13.6 μs for perovskite films prepared from 5% water in MAI solution, which improved perovskite solar cell efficiency from 9.04% to 12.42%.An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite

  13. Synthesis and Crystal Structure of a Novel 1D Mercury(II) Iodide Coordination Polymer Containing 40-Membered Macrocycle%Synthesis and Crystal Structure of a Novel 1D Mercury(II) Iodide Coordination Polymer Containing 40-Membered Macrocycle

    Institute of Scientific and Technical Information of China (English)

    GAN Xiao-Ping; KONG Ling; WU Peng; LV Chen; TU Yu-Long; CHEN Yi-Xin; ZHOU Hong-Ping; WU Jie-Ying; TIAN Yu-Peng

    2011-01-01

    A mercury coordination polymer [Hg3(TizT)216]n (Mr = 1921.72, TizT = 2,4,6- tri(imidazole- 1-yl)- 1,3,5-triazine) containing a 40-membered macrocycle which was constructed by four TizT ligands and four mercury(II) iodide molecules had been synthesized by the reaction of HgI2 with TizT. The complex was characterized by elemental analysis, FT-IR, ^1H NMR spectra and X-ray crystallography. The crystal of the complex belongs to the monoclinic system and C2/c space group with a = 35.840(5), b = 8.169(5), c = 14.980(5) A, β = 104.466(5)°, Z= 4, V= 4247(3) A^3, De = 3.006 g·cm^-3, μ= 15.223 mm^-1, F(000) = 3384, Rint = 0.0504, wR = 0.0833 and constructs a chair-like conformation of cyclohexane one by one, which forms a 1-D polymer through the fashion of fused ring aromatic hydrocarbon. The hydrogen bonds and π-π interactions shape the 2-D network structure. The two compounds excited weak fluorescence.

  14. Stereospecific Synthesis of (Z)-α-Fluoro-β-trifluoromethyl Vinyl Iodides and Their Application to the Synthesis of Polyfluorinated Thienyl Alkadienes

    Institute of Scientific and Technical Information of China (English)

    SHEN,Yan-Chang; WANG,Guo-Ping

    2006-01-01

    The direct iodination of polyfluorinated vinyl stannanes by tin-iodine exchange methodology was achieved giving (Z)-α-fluoro-β-trifluoromethyl vinyl iodides stereospecifically. Changing the substituent in R group from the electron-withdrawing group to electron-donating group led to an increase in the yield from 78% to 90%, while it was moved from para to meta position the reaction did not afford a dramatic change in the yield (90% to 95%). In addition, this reaction also can be applied to the vinyl stannane with heterocyclic group. The further coupling reaction of prepared vinyl iodide containing heterocyclic moiety with (Z)-α-fluoro-β-trifluoromethylstannanes gave polyfluorinated heterocyclic alkadienes with 2E,4E-selectivity.

  15. TBAHS CATALYZED COUPLING REACTIONS OF ARYL IODIDES AND ARYL BROMIDES WITH THIOLS UNDER SOLVENT FREE CONDITIONS TBAHS katalysierten Kupplungen von Aryliodiden und-Arylbromiden mit Thiolen unter lösungsmittelfreien freien Bedingungen

    Directory of Open Access Journals (Sweden)

    Gajendera Singha, Ajay kumarb , Sakshi Malikc, Preeti Chaudharyd

    2013-04-01

    Full Text Available A recyclable and efficient Tetrabutylammonium hydrogensulfate (TBAHS catalysed coupling reaction of aryl halides (iodide and bromide with aryl and alkyl thiols under solvent-free conditions were developed.

  16. Effects of high concentrations of iodide exposure on mitochondrial superoxide production in the thyroid of metallothionein Ⅰ/Ⅱ knockout mice

    Institute of Scientific and Technical Information of China (English)

    张娜

    2014-01-01

    Objective To investigate the effects of high concentrations of iodide exposure on mitochondrial superoxide production,cell viability and cell damage in the thyroid of metallothioneinⅠ/Ⅱknockout(MT-Ⅰ/ⅡKO)mice and corresponding wild type(WT)mice.Methods Thyroid cell suspension of six to eight weeks old healthy male MT-Ⅰ/ⅡKO mice and WT mice were prepared.The

  17. Wash Bottle Laboratory Exercises: Iodide-Catalyzed H[subscript 2]O[subscript 2] Decomposition Reaction Kinetics Using the Initial Rate Approach

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2010-01-01

    A wash bottle water displacement scheme is used to determine the kinetics of the iodide-catalyzed H[subscript 2]O[subscript 2] decomposition reaction. The reagents (total volume 5.00 mL) are added to a test tube that is placed in a wash bottle containing water. The mass of the water displaced in [approximately]60 s is measured. The reaction is…

  18. [Studies on the iodide metabolism and the expression of thyroglobulin and thyroid peroxidase mRNA in the thyroid of BB/W rats].

    Science.gov (United States)

    Fukasawa, N

    1991-10-20

    BioBreeding/Worcester (BB/W) rats develop insulin dependent diabetes mellitus (IDDM) and lymphocytic thyroiditis (LT) spontaneously. Our previous studies have shown that BB/W (Saitama-Tokyo colony) rats develop LT at about 10 weeks of age. Their serum TSH values increase as LT extends, although their serum thyroid hormone levels remain normal. This indicates that BB/W rats suffer from subclinical hypothyroidism. To investigate whether BB/W rats have a defect in iodide metabolism, the thyroidal radioactive iodine uptake (RAIU) in BB/W rats was examined. Thyroidal RAIU at 3hr in both 8 and 16 week-old BB/W rats was significantly higher than that in age-matched normal Wistar rats. On the other hand, BB/W rats had significantly lower 48hr thyroidal RAIU than normal Wistar rats. This suggests that BB/W rats appear to have some defects in iodide metabolism, especially in iodide organification even before the development of LT. The expression of thyroid peroxidase (TPO) and thyroglobulin (Tg) mRNA in BB/W and Wistar rats was then examined using the Northern blot analysis. The expression of both TPO and Tg mRNA was greatly decreased in BB/W rats compared with that in Wistar rats despite the high serum TSH levels in BB/W rats. This indicates that BB/W rats may have pretranslational defects in TPO and Tg synthesis, resulting in the impaired thyroid hormone synthesis. In the present study, it has been demonstrated that BB/W rats appear to have a defect(s) in iodide metabolism possibly due to some abnormalities in TPO and Tg synthesis. PMID:1752338

  19. Effect of iodide on Fas, Fas-ligand and Bcl-w mRNA expression in thyroid of NOD mice pretreated with methimazole

    Directory of Open Access Journals (Sweden)

    L.H.B. Boechat

    2002-03-01

    Full Text Available Nonobese diabetic (NOD mice and a derived strain, NOD.H.2h4, have been used as a model for experimental spontaneous thyroiditis and thyroiditis induced by iodide excess after a goiter-inducing period. Some authors have proposed that iodide, given after methimazole or propylthiouracil, is capable of inducing apoptosis in thyroid cells and that anti-thyroid drugs can modulate the expression of apoptosis components such as Fas and its ligand (Fas-L. Here we evaluated the effect of potassium iodide (20 µg/animal for 4 days, ip given to NOD mice at the 10th week of life after exposure to methimazole (1 mg/ml in drinking water from the 4th to the 10th week of life. Fas, Fas-L and Bcl-w expression were analyzed semiquantitatively by RT-PCR immediately after potassium iodide administration (group MI44D or at week 32 (MI32S. Control groups were added at 10 (C10 and 32 weeks (C32, as well as a group that received only methimazole (CM10. An increase in the expression of Fas-L and Bcl-w (P<0.01, ANOVA was observed in animals of group MI44D, while Fas was expressed at higher levels (P = 0.02 in group C32 (72.89 ± 47.09 arbitrary units when compared to group C10 (10.8 ± 8.55 arbitrary units. Thus, the analysis of Fas-L and Bcl-w expression in the MI44D group and Fas in group C32 allowed us to detect two different patterns of expression of these apoptosis components in thyroid tissue of NOD mice.

  20. Advanced radiation detector development mercuric iodide, silicon with internal gain, hybrid scintillator/semiconductor detectors. Comprehensive summary report, 1976-1985

    International Nuclear Information System (INIS)

    Accomplishments are reported in the development of a compound semi-insulator mercuric iodide (HgI2) for nuclear radiation detection and spectroscopy, early lung cancer detection and localization in the uranium miner/worker population, computer digital image processing and image reconstruction research, and a concept for multiple, filtered x-ray computed tomography scanning to reveal chemical compositional information. Another area of interest is the study of new advances in the area of silicon detectors with internal gain (''avalanche'')

  1. Effects of N-n-butyl Haloperidol Iodide on Myocardial Ischemia/Reperfusion Injury and Egr-1 Expression in Rat

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei ZHANG; Gang-Gang SHI; Zhao TANG; Jin-Hong ZHENG; Wei-Qiu LI; Fu-Xiao GUO; Qiang-Yong JIA

    2006-01-01

    We have previously shown that N-n-butyl haloperidol iodide (F2) derived from haloperidol reduces ischemia/reperfusion-induced myocardial injury by blocking intracellular Ca2+ overload. This study tested the hypothesis that cardio-protection with F2 is associated with an attenuation in the expression of early growth response gene 1 (Egr-1). In an in vivo rat model of 60 min coronary occlusion followed by 180 min of reperfusion, treatment with F2 significantly reduced myocardial injury evidenced by the reduction in release of plasma creatine kinase, myocardial creatine kinase isoenzyme and lactate dehydrogenase. In cultured neonatal rat cardiomyocytes of hypoxia for 3 h and reoxygenation for 1 h, F2 treatment attenuated necrotic and apoptotic cell death, as demonstrated by electron microscopy. Concomitant with cardio-protection by F2, the increased expression levels of Egr-1 mRNA and proteinwere significantly reduced in myocardial tissue and cultured cardiomyocytes as detected by reverse transcription-polymerase chain reaction, immunohistochemistry and immunocytochemistry. In conclusion, these results suggest that the protective effect of F2 on ischemia/reperfusion- or hypoxia/reoxygenation-induced myocardial injury might be partly mediated by downregulating Egr-1 expression.

  2. Chlorine doping reduces electron-hole recombination in lead iodide perovskites: time-domain ab initio analysis.

    Science.gov (United States)

    Liu, Jin; Prezhdo, Oleg V

    2015-11-19

    Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron-hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wave functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron-vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping. PMID:26505613

  3. The biological half life and distribution of 125Iodide and radioiodinated protein in the imported fire ant, Solenopsis invicta

    International Nuclear Information System (INIS)

    The radioisotope 125Iodide, a gamma emittor, was used in two different forms, as 125I mixed with egg yolk and as 125I covalently attached to egg albumin and mixed with egg yolk, to study food flow in the imported fire ant, Solenopsis invicta Buren. The biological half life of 125I-albumin in egg yolk powder was determined to be 96 hr in isolated workers, 108 hr in individuals held with small groups of unlabelled workers, and 1,008 hr in workers held in colonies exposed to labelled food for 48 hr. In contrast, the biological half life of free 125I mixed with egg yolk powder was 22 hr, 20 hr, and 40 hr, respectively. The internal distribution of radioactivity was checked after 24, 48, and 380 hr. There was a significant difference in distribution of 125I in ants fed either free 125I or 125I-albumin. Most of the free 125I was rapidly excreted. A high percentage of 125I-albumin was assimilated, apparently through protein digestion pathways with eventual storage in or below the cuticle. There was no evidence of gland involvement in food flow to either larvae or queens with the radio-iodinated protein. (orig.)

  4. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4

    Science.gov (United States)

    Autès, Gabriel; Isaeva, Anna; Moreschini, Luca; Johannsen, Jens C.; Pisoni, Andrea; Mori, Ryo; Zhang, Wentao; Filatova, Taisia G.; Kuznetsov, Alexey N.; Forró, László; van den Broek, Wouter; Kim, Yeongkwan; Kim, Keun Su; Lanzara, Alessandra; Denlinger, Jonathan D.; Rotenberg, Eli; Bostwick, Aaron; Grioni, Marco; Yazyev, Oleg V.

    2016-02-01

    Recent progress in the field of topological states of matter has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs ,,,), followed by closely related ternary compounds and predictions of several weak TIs (refs ,,). However, both the conceptual richness of Z2 classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z2 topological insulator is theoretically predicted and experimentally confirmed in the β-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of β-Bi4I4, characterized by Z2 invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction.

  5. Application of columnar cesium iodide (CsI) as a secondary-electron emission source to gas avalanche detectors

    International Nuclear Information System (INIS)

    A columnar cesium iodide (CsI) layer as a secondary-electron emission (SEE) source was applied to conventional gas avalanche detectors to improve their operating characteristics. The concentration of the primary electrons to a small interaction region allows gas avalanche detectors to have better spatial and timing resolutions. In this study, the signal enhancement and timing resolution of a microstrip gas chamber (MSGC) coupled with the columnar CsI layer were investigated. A large amount of electron amplification occurred within the columnar CsI layer when it was activated, greatly enhancing the signal pulse amplitude over that coming from the ionization in the gas drift region alone. The measured timing resolution of the MSGC detector having an anode width of 5 μm, a cathode width of 95 μm, and a pitch of 200 μm was about 5.5 ns rms at a reduced gas pressure to 30 torr. The SEE efficiency of the columnar CsI layer was also investigated and estimated with about 6%. (author)

  6. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range

    Science.gov (United States)

    Condeles, J. F.; Mulato, M.

    2016-02-01

    Lead iodide polycrystalline films have been deposited on corning glass substrates using solution evaporation in oven. Films 6 μm-thick were obtained with full coverage of the substrates as verified by scanning electron microscopy. Some pin-holes were observable. X-ray diffraction revealed a crystalline structure corresponding to the 4 H-PbI2 polytype formation. Polarized Raman scattering experiments indicated a lamellar structure. Anisotropy was also investigated using depolarization ratio calculations. The optical and electrical properties of the samples were investigated using photoluminescence and dark conductivity as a function of temperature, respectively. Activation energies of 0.10 up to 0.89 eV were related to two main electrical transport mechanisms. Films were also exposed to X-ray irradiation in the mammography X-ray energy range. The detector produced was also exposed to X-ray from 5 mR up to 1450 mR. A linear response was observed as a function of dose with a slope of 0.52 nA/mm2 per mR.

  7. Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution.

    Science.gov (United States)

    Adhikari, Nirmal; Dubey, Ashish; Gaml, Eman A; Vaagensmith, Bjorn; Reza, Khan Mamun; Mabrouk, Sally Adel Abdelsalam; Gu, Shaopeng; Zai, Jiantao; Qian, Xuefeng; Qiao, Qiquan

    2016-02-01

    An optimal small amount of water added into methyl ammonium iodide (MAI) solution in isopropyl alcohol (IPA) helps perovskite crystallization and leads to larger grain size from sequential deposition of perovskite films. The concentration of water was varied from 1% to 7% (vol% of IPA) in MAI solution and optical absorption, crystallization, morphology of perovskite films and their photovoltaic performance were studied in perovskite solar cells. 5% by volume was found to lead to preferential crystallization in the (110) plane with grain size about three times that of perovskite films prepared without adding water into the MAI solution. The optimal water concentration of 5% by volume in the MAI solution led to average perovskite grain size of ∼600 nm and solar cell efficiency of 12.42% at forward scan with a rate of 0.5 V s(-1). Device performance decreases after increasing water concentration beyond 5% in the MAI solution due to formation of the PbI2 phase. Transient photocurrent and photovoltage measurements show the shortest charge transport time at 0.99 μs and the longest charge carrier life time at 13.6 μs for perovskite films prepared from 5% water in MAI solution, which improved perovskite solar cell efficiency from 9.04% to 12.42%.

  8. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4.

    Science.gov (United States)

    Autès, Gabriel; Isaeva, Anna; Moreschini, Luca; Johannsen, Jens C; Pisoni, Andrea; Mori, Ryo; Zhang, Wentao; Filatova, Taisia G; Kuznetsov, Alexey N; Forró, László; Van den Broek, Wouter; Kim, Yeongkwan; Kim, Keun Su; Lanzara, Alessandra; Denlinger, Jonathan D; Rotenberg, Eli; Bostwick, Aaron; Grioni, Marco; Yazyev, Oleg V

    2016-02-01

    Recent progress in the field of topological states of matter has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs ,,,), followed by closely related ternary compounds and predictions of several weak TIs (refs ,,). However, both the conceptual richness of Z2 classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z2 topological insulator is theoretically predicted and experimentally confirmed in the β-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of β-Bi4I4, characterized by Z2 invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the  point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction. PMID:26657327

  9. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Na Li

    2011-01-01

    Full Text Available The mole ratio r(r=[I−]0/[ClO2]0 has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r=6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for triiodide ion, 460 nm for iodine. The mole ratio r is equal to 1.00 is the changing point of the curve's shape no matter at which wavelength to determine the reaction. For the reaction of ClO2-I−-H+ in different pH buffer solution, the curve of absorbance along with the reaction time was recorded at 460 nm for iodine. When r is greater than 1.00, the transition point of the curve's shape locates at pH 2.0, which is also the point of producing chlorite or chloride for chlorine dioxide at different pH. When r is less than 1.00, the transition point locates at pH 7.0.

  10. Red mercuric iodide crystals obtained by isothermal solution evaporation: Characterization for mammographic X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, A.M.F.; Ugucioni, J.C.; Mulato, M.

    2014-02-11

    Millimeter-sized mercury iodide crystals were obtained by the isothermal evaporation technique using dimethylformamide (DMF), diethyl-ether/DMF mixture and THF. Different concentrations (18 mM and 400 mM) and solution temperature (25–80 °C) were used to obtain varied evaporation rates (0.1×10{sup −4}–5000×10{sup −4} ml/h). Different crystal sizes and shapes were obtained by changing solvents, mixture and initial solution volume. According to X-ray diffraction the samples are monocrystalline. The top surface was investigated by SEM. Optical band-gaps above 2 eV were obtained from photoacoustic spectroscopy. Photoluminescence spectra indicated band-to-band electronic transitions, and the presence of sub-band gap states. Excitons, structural defects and the presence of impurities are discussed and correlated to the electrical measurements. Crystals obtained using pure DMF as solvent showed better general properties, including under the exposure to mammographic X-ray energy range that led to sensibility of about 25 μC/Rcm{sup 2}.

  11. Growth, surface treatment and characterization of polycrystalline lead iodide thick films prepared using close space deposition technique

    Science.gov (United States)

    Zhu, Xinghua; Sun, Hui; Yang, Dingyu; Zheng, Xiaolin

    2012-11-01

    Lead iodide (PbI2) polycrystalline thick films were fabricated on glass substrates with a conductive indium-tin-oxide layer using a close space deposition technique. The morphology of the as-deposited PbI2 films is typically and highly oriented polycrystalline structure, made up of microcrystal platelets upright on the substrate plane. Two techniques including the surface mechanical cutting and after-growth cadmium telluride coating were employed to improve the films' surface properties. It was shown that both of the film surface treatment methods markedly decreased the dark current of PbI2 films. The photo-to-dark current ratio of about 2.05 under 241Am γ-ray source with activity of 2.78 μCi irradiation was obtained from the film treated using both surface cutting and after-growth CdTe coating. Charge transport characteristics of these films were measured and the hole mobility 7.7×10-2-1.67×10-1 cm2/V s was estimated.

  12. Ionic and Optical Properties of Methylammonium Lead Iodide Perovskite across the Tetragonal-Cubic Structural Phase Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA; Islam, Nazifah [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA; Li, Zhen [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden Colorado 80401 USA; Ren, Guofeng [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA; Zhu, Kai [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden Colorado 80401 USA; Fan, Zhaoyang [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA

    2016-09-01

    Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. These observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.

  13. Synergistic effects on iodine release in potassium iodide solution by combination of ultrasound and visible light irradiations

    Institute of Scientific and Technical Information of China (English)

    MA Chunying; XU Jianyi; LIU Xiaojun

    2008-01-01

    Iodine release in potassium iodide solution has been investigated under the irradi-ations of ultrasound and visible light respectively and simultaneously. We have observed that the amount of iodine liberated under the combined irradiation of ultrasound and visible light is larger than the sum of that under the respective irradiations of ultrasound and visible light,indicating a synergistic effect of ultrasound and visible light irradiations. Based on the investi-gation of the reaction kinetics of iodine liberated, we have ascribed the synergistic effect to the perfect stirring of the photochemical reactor induced by the applying simultaneous ultrasound.The ideal stirring can result in the homogenization of the primary light effect in the whole reac-tion medium, which induces the acceleration of the photochemical reaction. On behavior of our knowledge, there are few reports on the investigations of utilizing the combination of ultrasonic energy and hght energy to accelerate the reaction yield and rate as well as the kinetics of the reaction.

  14. Synthesis of p-acdophenyl Trimethyl Amonium Iodide%碘化三甲基对乙酰苯基铵的合成

    Institute of Scientific and Technical Information of China (English)

    邱德敏; 雷光东

    2014-01-01

    在乙酸乙酯溶剂中,以碘甲烷和对二甲氨基苯乙酮反应合成了碘化三甲基对乙酰苯基铵,通过红外光谱和核磁共振氢谱表征了其分子结构。结果表明,在碘甲烷过量50%条件下,反应时间4h,生成的产物可自行从溶液中沉淀出来,产率达85%以上。%p-acdophenyl trimethyl ammonium iodide was synthesized with p-dimethyamino acetophenone and methyl io-dide in ethyl acetate solution.The structure was characterized by infrared spectroscopy and nuclear magnetic resonance spec-troscopy.The effect of reaction conditions on the yield was investigated.The results showed that in ethyl acetate solution, when the methyl iodide was used by an excess of 50%,the resulting product will precipitate out of the solution.When the re-action time lasts for 4 hours,the yield can reach 85%.

  15. Reduction of ketones and alkyl iodides by SmI(2) and Sm(II)-HMPA complexes. Rate and mechanistic studies.

    Science.gov (United States)

    Prasad, E; Flowers, Robert A

    2002-06-19

    The effect of HMPA on the electron transfer (ET) rate of samarium diiodide reduction reactions in THF was analyzed for a series of ketones (2-butanone, methyl acetoacetate, and N,N-dimethylacetoacetamide) and alkyl iodides (1-iodobutane and 2-iodobutane) with stopped flow spectrophotometric studies. Activation parameters for the ET processes were determined by temperature-dependence studies over a range of 30-50 degrees C. The ET rate constants and the activation parameters obtained for the above systems in the presence of different equivalents of HMPA were compared to understand the mechanism of action of HMPA on various substrates. The results obtained from these studies indicate that coordination or chelation is possible in the transition state geometry for SmI(2)/ketone systems even in the presence of the sterically demanding ligand HMPA. After the addition of 4 equiv of HMPA the ET rate and activation parameters for ketone reduction by Sm is unaffected by further HMPA addition while a linear dependence of ET rate on the equivalents of HMPA was found in the SmI(2)/alkyl iodide system. The results of these studies are consistent with an inner-sphere-type ET for the reduction of ketones by SmI(2) (and SmI(2)[bond]HMPA complexes) and an outer-sphere-type ET for the reduction of alkyl iodides by SmI(2) or SmI(2)[bond]HMPA complexes.

  16. Evaluation of Lentiviral-Mediated Expression of Sodium Iodide Symporter in Anaplastic Thyroid Cancer and the Efficacy of In Vivo Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    2011-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is one of the most deadly cancers. With intensive multimodalities of treatment, the survival remains low. ATC is not sensitive to 131I therapy due to loss of sodium iodide symporter (NIS gene expression. We have previously generated a stable human NIS-expressing ATC cell line, ARO, and the ability of iodide accumulation was restored. To make NIS-mediated gene therapy more applicable, this study aimed to establish a lentiviral system for transferring hNIS gene to cells and to evaluate the efficacy of in vitro and in vivo radioiodide accumulation for imaging and therapy. Lentivirus containing hNIS cDNA were produced to transduce ARO cells which do not concentrate iodide. Gene expression, cell function, radioiodide imaging and treatment were evaluated in vitro and in vivo. Results showed that the transduced cells were restored to express hNIS and accumulated higher amount of radioiodide than parental cells. Therapeutic dose of 131I effectively inhibited the tumor growth derived from transduced cells as compared to saline-treated mice. Our results suggest that the lentiviral system efficiently transferred and expressed hNIS gene in ATC cells. The transduced cells showed a promising result of tumor imaging and therapy.

  17. Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis.

    Science.gov (United States)

    Wu, Yuanfeng; Beland, Frederick A; Fang, Jia-Long

    2016-04-01

    Triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and bisphenol A (BPA) have been reported to disturb thyroid hormone (TH) homeostasis. We have examined the effects of these chemicals on sodium/iodide symporter (NIS)-mediated iodide uptake and the expression of genes involved in TH synthesis in rat thyroid follicular FRTL-5 cells, and on the activity of thyroid peroxidase (TPO) using rat thyroid microsomes. All four chemicals inhibited NIS-mediated iodide uptake in a concentration-dependent manner. A decrease in the iodide uptake was also observed in the absence of sodium iodide. Kinetic studies showed that all four chemicals were non-competitive inhibitors of NIS, with the order of Ki values being triclosantriclocarbantriclocarban. BDE-47 decreased the level of Tpo, while BPA altered the expression of all six genes. Triclosan and triclocarban inhibited the activity of TPO at 166 and >300 μM, respectively. Neither BDE-47 nor BPA affected TPO activity. In conclusion, triclosan, triclocarban, BDE-47, and BPA inhibited iodide uptake, but had differential effects on the expression of TH synthesis-related genes and the activity of TPO. PMID:26827900

  18. Radioiodine Therapy of Liver Cancer Cell Following Tissue Specific Sodium Iodide Symporter Gene Transfer and Assessment of Therapeutic Efficacy with Optical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byoung Kuk; Lee, You La; Lee, Yong Jin [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2008-10-15

    Cancer specific killing can be achieved by therapeutic gene activated by cancer specific promotor. Expression of sodium iodide symporter (NIS) gene causes transportation and concentration of iodide into the cell, therefore radioiodine treatment after NIS gene transfer to cancer cell could be a form of radionuclide gene therapy. luciferase (Luc) gene transfected cancer cell can be monitored by in vivo optical imaging after D-luciferin injection. Aims of the study are to make vector with both therapeutic NIS gene driven by AFP promoter and reporter Luc gene driven by CMV promoter, to perform hepatocellular carcinoma specific radiodiodine gene therapy by the vector, and assessment of the therapy effect by optical imaging using luciferase expression. A Vector with AFP promoter driven NIS gene and CMV promoter driven Luc gene (AFP-NIS-CMV-Luc) was constructed. Liver cancer cell (HepG2, Huh-7) and non liver cancer cell (HCT-15) were transfected with the vector using liposome. Expression of the NIS gene at mRNA level was elucidated by RT-PCR. Radioiodide uptake, perchlorate blockade, and washout tests were performed and bioluminescence also measured by luminometer in these cells. In vitro clonogenic assay with I-131 was performed. In vivo nuclear imaging was obtained with gamma camera after I-131 intraperitoneal injection. A Vector with AFP-NIS-CMV-Luc was constructed and successfully transfected into HepG2, Huh-7 and HCT-15 cells. HepG2 and Huh-7 cells with AFP-NIS-CMV-Luc gene showed higher iodide uptake than non transfected cells and the higher iodide uptake was totally blocked by addition of perchlorate. HCT-15 cell did not showed any change of iodide uptake by the gene transfection. Transfected cells had higher light output than control cells. In vitro clonogenic assay, transfected HepG2 and Huh-7 cells showed lower colony count than non transfected HepG2 and Huh-7 cells, but transfected HCT-15 cell did not showed any difference than non transfected HCT-15 cell

  19. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry G.; Aoki, Toshihiro; Patel, Maulik K.; Yang, Mengjin; Berry, Joseph J.; Al-Jassim, Mowafak; Zhou, Weilie; Zhu, Kai

    2016-01-01

    Organic-inorganic perovskites have emerged as an important class of next generation solar cells due to their remarkably low cost, band gap, and sub-900 nm absorption onset. Here, we show a series of in situ observations inside electron microscopes and X-ray diffractometers under device-relevant synthesis conditions focused on revealing the crystallization process of the formamidinium lead-triiodide perovskite at the optimum temperature of 175 degrees C. Direct in situ observations of the structure and chemistry over relevant spatial, temporal, and temperature scales enabled identification of key perovskite formation and degradation mechanisms related to grain evolution and interface chemistry. The lead composition was observed to fluctuate at grain boundaries, indicating a mobile lead-containing species, a process found to be partially reversible at a key temperature of 175 degrees C. Using low energy electron microscopy and valence electron energy loss spectroscopy, lead is found to be bonded in the grain interior with iodine in a tetrahedral configuration. At the grain boundaries, the binding energy associated with lead is consequently shifted by nearly 2 eV and a doublet peak is resolved due presumably to a greater degree of hybridization and the potential for several different bonding configurations. At the grain boundaries there is adsorption of hydrogen and OH- ions as a result of residual water vapor trapped as a non-crystalline material during formation. Insights into the relevant formation and decomposition reactions of formamidinium lead iodide at low to high temperatures, observed metastabilities, and relationship with the photovoltaic performance were obtained and used to optimize device processing resulting in conversion efficiencies of up to 17.09% within the stability period of the devices.

  20. Biosynthesis of ascaridole: iodide peroxidase-catalyzed synthesis of a monoterpene endoperoxide in soluble extracts of Chenopodium ambrosioides fruit.

    Science.gov (United States)

    Johnson, M A; Croteau, R

    1984-11-15

    Ascaridole, an asymmetric monoterpene endoperoxide with anthelmintic properties, occurs as a major constituent (60-80%) in the volatile oil of American wormseed fruit (Chenopodium ambrosioides: Chenopodiaceae), and as a lesser component in the leaf pocket oil of the boldo tree (Peumus boldus: Monimiaceae). Determination of optical activity and chromatographic resolution of naturally occurring ascaridole, and several synthetic derivatives, showed that both wormseed and boldo produce ascaridole in racemic form. The biosynthesis of ascaridole from the conjugated, symmetrical diene alpha-terpinene (a major component of the oil from wormseed) was shown to be catalyzed by a soluble iodide peroxidase isolated from homogenates of C. ambrosioides fruit and leaves. The enzymatic synthesis of ascaridole was confirmed by capillary gas-liquid chromatography and mass spectrometry of the product, which was also shown to be racemic. Optimal enzymatic activity occurred at pH 4.0 in the presence of 2.5 mM H2O2 and 1 mM NaI. Soluble enzyme extracts were fractionated by gel filtration on both Sephacryl S-300 and Sephadex G-100, and were shown to consist of a high-molecular-weight peroxidase component (Mr greater than 1,000,000, 30% of total activity) and two other peroxidase species having apparent molecular weights of 62,000 and 45,000 (major component). Peroxidase activity was susceptible to proteolytic destruction only after periodate treatment, suggesting an association of the enzyme(s) with polysaccharide material. Ascaridole biosynthesis from alpha-terpinene was inhibited by cyanide, catalase, and reducing agents, but not by compounds that trap superoxide or quench singlet oxygen. A peroxide transfer reaction initiated by peroxidase-generated I+ is proposed for the conversion of alpha-terpinene to ascaridole. PMID:6497393

  1. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples.

  2. Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging

    International Nuclear Information System (INIS)

    Objective: Strategies to overcome the problem of extensive early stem cell loss following transplantation requires a method to quantitatively assess their efficacy. This study compared the ability of sodium/iodide symporter (NIS) and enhanced green fluorescent protein (EGFP) imaging to monitor the effectiveness of treatments to enhance early stem cell survival. Methods: Human adipose-derived stem cells (ADSCs) transduced with an adenoviral vector to express both NIS and EGFP were mixed with culture media (control), matrigel (matrigel group) or pro-survival cocktail (PSC group), and 5 × 106 cells were injected into thigh muscles of C57BL/6 mice. Animals underwent serial optical imaging and 99mTcO4- scintigraphy. Image-based EGFP fluorescence and 99mTcO4- uptake was measured by region-of-interest analysis, and extracted tissues were measured for 99mTc activity. Fluorescent intensity measured from homogenized muscle tissue was used as reference for actual amount of viable ADSCs. Results: ADSCs were efficiently transduced to express EGFP and NIS without affecting proliferative capacity. The absence of significant apoptosis was confirmed by annexin V FACS analysis and Western blots for activated caspase-3. Both fluorescence optical imaging and 99mTcO4- scintigraphy visualized implanted cells in living mice for up to 5 days. However, optical imaging displayed large variations in fluorescence intensity, and thus failed to detect difference in cell survival between groups or its change over time. In comparison, 99mTcO4- scintigraphy provided more reliable assessment of within-in group donor cell content as well as its temporal change. As a result, NIS imaging was able to discern beneficial effects of matrigel and pro-survival cocktail treatment on early ADSC survival, and provided quantitative measurements that correlated to actual donor cell content within implanted tissue. Conclusion: NIS reporter imaging may be useful for noninvasively assessing the efficacies of

  3. Growth and characterization of potassium strontium iodide: A new high light yield scintillator with 2.4% energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stand, L., E-mail: lstand@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Zhuravleva, M.; Lindsey, A. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Melcher, C.L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2015-04-21

    A new ternary metal halide scintillator, potassium strontium iodide, activated with divalent europium (KSr{sub 2}I{sub 5}:Eu) has been discovered. This material has a monoclinic crystal structure with a density of 4.39 g/cm{sup 3}. Differential scanning calorimetry indicates a congruent melting point of 470 °C and suggests that this compound has no solid–solid phase transitions. As is the case with most metal halides, the material is hygroscopic, and it has some internal radioactivity due to the presence of {sup 40}K. Single crystals of KSr{sub 2}I{sub 5} doped with 4% Eu{sup 2+} were grown in evacuated quartz ampoules via the Bridgman technique. The X-ray excited emission spectrum consisted of a single peak at ~445 nm due to the 5d–4f transition in Eu{sup 2+}. The measured light yield is ~94,000 photons/MeV with an energy resolution of 2.4% at 662 keV. The crystal has an excellent proportionality response over a wide range of energies from 14 keV to 1275 keV. - Highlights: • New Eu{sup 2+}-doped scintillators KSr{sub 2}I{sub 5}. • Single crystals of KSr{sub 2}I{sub 5}:Eu 4% were grown using the Bridgman technique. • This new material exhibit excellent properties for X-ray and gamma-ray detections. • Light yield of 94,000 ph/MeV and energy resolution of 2.4% at 662 keV.

  4. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  5. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine

    Directory of Open Access Journals (Sweden)

    Hutzen Brian

    2012-11-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Although the clinical outcome for medulloblastoma patients has improved significantly, children afflicted with the disease frequently suffer from debilitating side effects related to the aggressive nature of currently available therapy. Alternative means for treating medulloblastoma are desperately needed. We have previously shown that oncolytic measles virus (MV can selectively target and destroy medulloblastoma tumor cells in localized and disseminated models of the disease. MV-NIS, an oncolytic measles virus that encodes the human thyroidal sodium iodide symporter (NIS, has the potential to deliver targeted radiotherapy to the tumor site and promote a localized bystander effect above and beyond that achieved by MV alone. Methods We evaluated the efficacy of MV-NIS against medulloblastoma cells in vitro and examined their ability to incorporate radioiodine at various timepoints, finding peak uptake at 48 hours post infection. The effects of MV-NIS were also evaluated in mouse xenograft models of localized and disseminated medulloblastoma. Athymic nude mice were injected with D283med-Luc medulloblastoma cells in the caudate putamen (localized disease or right lateral ventricle (disseminated disease and subsequently treated with MV-NIS. Subsets of these mice were given a dose of 131I at 24, 48 or 72 hours later. Results MV-NIS treatment, both by itself and in combination with 131I, elicited tumor stabilization and regression in the treated mice and significantly extended their survival times. Mice given 131I were found to concentrate radioiodine at the site of their tumor implantations. In addition, mice with localized tumors that were given 131I either 24 or 48 hours after MV-NIS treatment exhibited a significant survival advantage over mice given MV-NIS alone. Conclusions These data suggest MV-NIS plus radioiodine may be a potentially useful therapy for

  6. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    Science.gov (United States)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  7. Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media

    Directory of Open Access Journals (Sweden)

    Nicolas Reynier

    2015-11-01

    Full Text Available The Canadian Nuclear Laboratories (CNL is developing a long-term management strategy for its existing inventory of solid radioactive cemented wastes, which contain uranium, mercury, fission products, and a number of minor elements. The composition of the cemented radioactive waste poses significant impediments to the extraction and recovery of uranium using conventional technology. The goal of this research was to develop an innovative method for uranium, mercury and cesium recovery from surrogate radioactive cemented waste (SRCW. Leaching using sulfuric acid and saline media significantly improves the solubilization of the key elements from the SRCW. Increasing the NaCl concentration from 0.5 to 4 M increases the mercury solubilization from 82% to 96%. The sodium chloride forms a soluble mercury complex when mercury is present as HgO or metallic mercury but not with HgS that is found in 60 °C cured SRCW. Several leaching experiments were done using a sulfuric acid solution with KI to leach SRCW cured at 60 °C and/or aged for 30 months. Solubilization yields are above 97% for Cs and 98% for U and Hg. Leaching using sulfuric acid and KI improves the solubilization of Hg by oxidation of Hg0, as well as HgS, and form a mercury tetraiodide complex. Hg and Cs were selectively removed from the leachate prior to uranium recovery. It was found that U recovery from sulfuric leachate in iodide media using the resin Lewatit TP260 is very efficient. Considering these results, a process including effluent recirculation was applied. Improvements of solubilization due to the recycling of chemical reagents were observed during effluent recirculation.

  8. New analysis of the ν6 and 2ν3 bands of methyl iodide (CH3I)

    Science.gov (United States)

    Perrin, A.; Haykal, I.; KwabiaTchana, F.; Manceron, L.; Doizi, D.; Ducros, G.

    2016-06-01

    A new rovibrational study of the ν6 band of methyl iodide was conducted to obtain a rather complete line list. A new analysis of line positions was accomplished. The spectrum of this band has been first recorded using the Bruker IFS125HR Fourier transform spectrometer (FTS) at the AILES beamline of the SOLEIL Synchrotron facility and later with the Bruker IFS125HR FTS located at the LISA facility in Créteil. Altogether, about 10,000 lines were assigned for the ν6 and 2ν3 bands up to high quantum numbers (J ⩽ 85 and K ⩽ 20). Because of the large value of the 127I nuclear quadrupole hyperfine constant, a significant portion of these assignments concerns clusters of hyperfine subcomponents, which are easily observable at 11 μm. These infrared data were combined in a least squares fit together with the existing microwave data on rotational transitions within the v6 = 1 and v3 = 2 vibrational states to get the upper state rotational constants and interacting parameters for the v6 = 1 and v3 = 2 states. Due to the high values of quantum numbers achieved during this infrared analysis, the final energy level calculation accounts for aCx (Δℓ = ± 1; ΔK = ± 1) and an α (Δℓ = ∓ 1; ΔK = ± 2) types of Coriolis interactions coupling the v6 = 1 energy levels with those from the v3 = 2 and v2 = 1 states, respectively. On the other hand, it proved unnecessary to update the existing hyperfine parameters for the v6 = 1 and v3 = 2 states.

  9. Anti-natrium/iodide symporter antibodies and other anti-thyroid antibodies in children with Turner's syndrome.

    Science.gov (United States)

    Kucharska, Anna M; Czarnocka, Barbara; Demkow, Urszula

    2013-01-01

    Antibodies against the Na/I symporter (anti-NIS ab) have been found in adult patients with autoimmune thyroid diseases. As easily available for the immune system, NIS can play a role in the initial stage of autoimmune thyroid diseases. Children with Turner's syndrome (TS) being at high risk of autoimmune thyroid disease development seem a valuable group for the investigation of the early autoimmune process. The aim of the study was to investigate the presence of anti-NIS ab and its potential clinical significance in TS children. Fifty four girls with TS were examined (age 11.9 ± 2.46 years), and 23 healthy girls with normal thyroid function, free of autoimmune diseases. Anti-NIS antibodies were measured by the in-house ELISA method and the Western blotting. Sera considered positive for anti-NIS ab were used for the iodide uptake bioassay using COS7 cells stably transfected with hNIS. In all patients the thyroid function, antithyroid antibodies presence and thyroid ultrasonography were evaluated. In 20% of the patients a subclinical hypothyroidism was diagnosed and 70.4% had antithyroid antibodies (anti-TPO - 64.8% and Anti-Tg - 24%). Anti-NISab were present in 14.8% girls with TS and in none of the control group. Their presence was unrelated to other antithyroid antibodies titre or patients' age. A positive correlation between the anti-NIS ab presence and the hypothyroidism was found (p < 0.04). Anti-NIS ab-positive sera did not suppress iodine uptake. In conclusion, anti-NIS antibodies were present in 14.8% of children with TS and they were related to the presence of hypothyroidism. PMID:22836628

  10. Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.; Arof, A. K.

    2016-08-01

    In this work, we have investigated the influence of guanine as an organic dopant in dye-sensitized solar cell (DSSC) based on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) polymer blend electrolyte along with binary iodide salts (potassium iodide (KI) and tetrabutylammonium iodide (TBAI)) and iodine (I2). The PVDF-HFP/KI + TBAI/I2, PVDF-HFP/PEO/KI + TBAI/I2 and guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolytes were prepared by solution casting technique using DMF as solvent. The PVDF-HFP/KI + TBAI/I2 electrolyte showed an ionic conductivity value of 9.99 × 10-5 Scm-1, whereas, it was found to be increased to 4.53 × 10-5 Scm-1 when PEO was blended with PVDF-HFP/KI + TBAI/I2 electrolyte. However, a maximum ionic conductivity value of 3.67 × 10-4 Scm-1 was obtained for guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 blend electrolyte. The photovoltaic properties of all these polymer electrolytes in DSSCs were characterized. As a consequence, the power conversion efficiency of the guanine incorporated PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC was significantly improved to 4.98% compared with PVDF-HFP/PEO/KI + TBAI/I2 electrolyte based DSSC (2.46%). These results revealed that the guanine can be an effective organic dopant to enhance the performance of DSSCs.

  11. Synthesis and biological evaluation of [{sup 18}F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui-Osoro, Maite; Sunassee, Kavitha; Weeks, Amanda J.; Berry, David J.; Paul, Rowena L.; Cleij, Marcel; O' Doherty, Michael J.; Marsden, Paul K.; Szanda, Istvan; Blower, Philip J. [King' s College London, Division of Imaging Sciences, London (United Kingdom); Banga, Jasvinder Paul [King' s College London, Division of Cell and Gene Based Therapy, London (United Kingdom); Clarke, Susan E.M.; Ballinger, James R. [Guy' s and St Thomas' NHS Trust, Department of Nuclear Medicine, London (United Kingdom); Cheng, Sheue-Yann [National Cancer Institute, Laboratory of Molecular Biology, Bethesda (United States)

    2010-11-15

    The human sodium/iodide symporter (hNIS) is a well-established target in thyroid disease and reporter gene imaging using gamma emitters {sup 123}I-iodide, {sup 131}I-iodide and {sup 99m}Tc-pertechnetate. However, no PET imaging agent is routinely available. The aim of this study was to prepare and evaluate {sup 18}F-labelled tetrafluoroborate ([{sup 18}F]TFB) for PET imaging of hNIS. [{sup 18}F]TFB was prepared by isotopic exchange of BF{sub 4} {sup -} with [{sup 18}F]fluoride in hot hydrochloric acid and purified using an alumina column. Its identity, purity and stability in serum were determined by HPLC, thin-layer chromatography (TLC) and mass spectrometry. Its interaction with NIS was assessed in vitro using FRTL-5 rat thyroid cells, with and without stimulation by thyroid-stimulating hormone (TSH), in the presence and absence of perchlorate. Biodistribution and PET imaging studies were performed using BALB/c mice, with and without perchlorate inhibition. [{sup 18}F]TFB was readily prepared with specific activity of 10 GBq/mg. It showed rapid accumulation in FRTL-5 cells that was stimulated by TSH and inhibited by perchlorate, and rapid specific accumulation in vivo in thyroid (SUV = 72 after 1 h) and stomach that was inhibited 95% by perchlorate. [{sup 18}F]TFB is an easily prepared PET imaging agent for rodent NIS and should be evaluated for hNIS PET imaging in humans. (orig.)

  12. Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwanjeong [Department of Nuclear Medicine, College of Medicine, Wonkwang University, Iksan, Jellabuk-do 570-711 (Korea, Republic of); Kim, Yu-Ri [Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Ki-Nam [Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Choe, Jae-Gol [Department of Nuclear Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul 110-774 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-774 (Korea, Republic of); Kim, Meyoung-Kon [Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)]. E-mail: jerrykim@korea.ac.kr

    2006-10-15

    The plasma membrane glycoprotein sodium/iodide symporter (NIS) is crucial for thyroid hormone biosynthesis and mediates the iodide uptake of thyrocytes. It has been shown that retinoic acid (RA) alters NIS gene expression in thyroid carcinoma lines and stimulates their iodide uptake. Here, we generated an ARO human thyroidal cancer cell line that expresses the NIS gene (ARO-NIS) and found that its baseline {sup 125}I uptake was threefold higher than that of its parental ARO cells. However, a 1-{mu}M all-trans retinoic acid (tRA) treatment significantly increased this {sup 125}I uptake up to approximately {approx}6.5-fold on Day 3. tRA also elevated NIS mRNA expression in ARO-NIS cells, with peaks of expression being observed on Day 3. To investigate the underlying genomic mechanisms involved in these tRA-induced phenotypic changes, we subjected tRA-treated and untreated ARO-NIS cells to cDNA microarray analysis. Of 1152, genes spotted onto the microarray membrane, 18 were up-regulated (z ratio>2.0) and 33 were down-regulated (z ratio<-2.0) in ARO-NIS cells after 3 days of tRA treatment. More specifically, tRA increased the expression of BCL3, CSRP3, v-fos, and CDK5 genes and decreased the expression of the FGF12 and IGFBP6 genes. Thus, tRA treatment of human anaplastic thyroid carcinoma cells stably expressing the NIS gene significantly elevates their NIS-mediated radioiodine uptake and alters the expression of many genes involved in cell growth and cellular differentiation. Therefore, tRA treatment and NIS gene transfection are potential tools for the diagnosis and treatment of thyroid cancer.

  13. Influence of metal to ligand molar ratios on the supramolecular structure formation of Cu(II) with diaminopropane and iodide: Synthesis, structure, spectroscopic and DFT studies

    Science.gov (United States)

    Kharediya, Bhagwan; Shukla, Madhulata; Saha, Satyen; Sunkari, Sailaja

    2014-03-01

    Two new copper(II) complexes with 1,3-diaminopropane and iodide, viz., [{Cu ((1,3-diaminopropane)2 I (I3))}] (1) and [{Cu ((1,3 diaminopropane)2(I)2)}] (2) have been synthesized under self assembly conditions and structurally characterised to observe the structural variations brought about by varying ligand molar ratios, towards studying the effect of external factors on supramolecular structure formation, with a long term goal of obtaining magnetic materials. Corresponding to the variation in metal to ligand molar ratios from one to two, totally different products are obtained whose gross structural features are entirely different. The formation of 1, is unpredicted under given synthetic conditions and hence is interesting. The formation of 2, is as generally expected for the reacting components under given conditions. In case of 1, the metal ion's choice to adopt a square pyramidal geometry by coordinating to two ligand units and a coordinated iodide, even in the absence of sufficient moles of ligand, as in 2, is due to sub-molar ligand ratios complemented by weak hydrogen bonding interactions, operating between the ligand amino hydrogens and coordinated iodide and uncoordinated triiodide moiety. This approach of providing sub-molar amounts of ligand to the metal to satisfy its coordination requirements, appear to be a promising strategy towards obtaining novel solid systems of material relevance. Both the complexes are characterised structurally and spectroscopically. Further, both the structures were satisfactorily modelled by calculations based on Density Functional Theory (DFT), and their UV-visible spectra were analyzed in depth with the help of Time Dependent DFT (TD-DFT).

  14. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libo, E-mail: libochen888@hotmail.com [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Guo Guoying [Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Liu Tianjing; Guo Lihe [Division of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zhu Ruisen [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-07-15

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated {sup 125}I{sup -} up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T{sub 1/2eff} of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or {sup 131}I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%{+-}2.5%, 43.4%{+-}2.8% and 8.6%{+-}1.2% after exposure to {sup 131}I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  15. Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene.

    Science.gov (United States)

    Urnauer, Sarah; Morys, Stephan; Krhac Levacic, Ana; Müller, Andrea M; Schug, Christina; Schmohl, Kathrin A; Schwenk, Nathalie; Zach, Christian; Carlsen, Janette; Bartenstein, Peter; Wagner, Ernst; Spitzweg, Christine

    2016-08-01

    The sodium iodide symporter (NIS) as well-characterized theranostic gene represents an outstanding tool to target different cancer types allowing noninvasive imaging of functional NIS expression and therapeutic radioiodide application. Based on its overexpression on the surface of most cancer types, the cMET/hepatocyte growth factor receptor serves as ideal target for tumor-selective gene delivery. Sequence-defined polymers as nonviral gene delivery vehicles comprising polyethylene glycol (PEG) and cationic (oligoethanoamino) amide cores coupled with a cMET-binding peptide (cMBP2) were complexed with NIS-DNA and tested for receptor-specificity, transduction efficiency, and therapeutic efficacy in hepatocellular cancer cells HuH7. In vitro iodide uptake studies demonstrated high transduction efficiency and cMET-specificity of NIS-encoding polyplexes (cMBP2-PEG-Stp/NIS) compared to polyplexes without targeting ligand (Ala-PEG-Stp/NIS) and without coding DNA (cMBP2-PEG-Stp/Antisense-NIS). Tumor recruitment and vector biodistribution were investigated in vivo in a subcutaneous xenograft mouse model showing high tumor-selective iodide accumulation in cMBP2-PEG-Stp/NIS-treated mice (6.6 ± 1.6% ID/g (123)I, biological half-life 3 hours) by (123)I-scintigraphy. Therapy studies with three cycles of polyplexes and (131)I application resulted in significant delay in tumor growth and prolonged survival. These data demonstrate the enormous potential of cMET-targeted sequence-defined polymers combined with the unique theranostic function of NIS allowing for optimized transfection efficiency while eliminating toxicity.

  16. Investigation of Mechanisms of Enhanced Open-Circuit Photovoltage of Dye-Sensitized Solar Cells Based the Electrolyte Containing 1-Hexyl-3-Methylimidazolium Iodide

    Institute of Scientific and Technical Information of China (English)

    WANG Miao; ZHANG Qing-Li; WENG Yu-Xiang; LIN Yuan; XIAO Xu-Rui

    2006-01-01

    @@ The open-circuit photovoltage is improved by adding 1-hexyl-3-methylimidazolium iodide (HMImI) into the electrolyte. To investigate the mechanisms of the increase of the open-circuit photovoltage, we take the Mott Schottky analysis and time-resolved mid-infrared absorption spectroscopy to study the band edge movement of TiO2 and the rate of back electron transfer, respectively. The results indicate that the negative shift of the conduction band of TiO2 is a predominant factor to increase the open-circuit photovoltage for the electrolyte containing HMImL

  17. Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit

    KAUST Repository

    Masih, Dilshad

    2015-02-05

    Here, we report for the first time a one-step direct method for sensing halides in aqueous solution using phosphorescence quenching of platinum-cationic porphyrin. This method offers an easy, rapid, environmentally friendly, ultra-sensitive (with a previously unattained detection limit of 1 × 10−12 M) and economical method for the determination of iodide. To fully understand the reaction mechanism responsible for the phosphorescence quenching process, we have employed cutting-edge time-resolved laser spectroscopy with broadband capabilities.

  18. (2S,7S-10-Ethyl-1,8,10,12-tetraazatetracyclo[8.3.1.18,12.02,7]pentadecan-10-ium iodide

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2012-10-01

    Full Text Available The title chiral quaternary ammonium salt, C13H25N4+·I−, was synthesized through the Menschutkin reaction between the cage aminal (2S,7S-1,8,10,12-tetraazatetracyclo[8.3.1.18,12.02,7]pentadecane and ethyl iodide. The quaternization occurred regioselectively on the nitrogen with major sp3 character. The crystal structure consists of anions and cations separated by normal distances. Ions are not linked through C—H...I hydrogen bonds.

  19. Photoinduced triplet-state electron transfer of platinum porphyrin: A one-step direct method for sensing iodide with an unprecedented detection limit

    KAUST Repository

    Masih, Dilshad

    2014-02-05

    Here, we report for the first time a one-step direct method for sensing halides in aqueous solution using phosphorescence quenching of platinum-cationic porphyrin. This method offers an easy, rapid, environmentally friendly, ultra-sensitive (with a previously unattained detection limit of 1 × 10-12 M) and economical method for the determination of iodide. To fully understand the reaction mechanism responsible for the phosphorescence quenching process, we have employed cutting-edge time-resolved laser spectroscopy with broadband capabilities. This journal is © The Royal Society of Chemistry 2015.

  20. Study of low noise preamplifier systems for use with room temperature mercuric iodide (HgI2) x-ray detectors

    International Nuclear Information System (INIS)

    An analysis of different preamplification systems for use with room temperature mercuric iodide x-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution of 295 eV (FWHM) for Fe-55 source (5.9 keV) and 225 eV (FWHM) for the pulser have been obtained with both the detector and the input FET at room temperature using the pulsed-light feedback preamplifier. It has been shown that cooling the input FET using a small Peltier element allows the energy resolution to be improved up to 25%

  1. Catalytic titrations of silver(I) applying the iodide-catalysed manganese(IV)-arsenic(III) indicator reaction in the presence of sulphuric acid

    OpenAIRE

    TIBOR J. PASTOR; VOJKA V. ANTONIJEVIC; FERENC T. PASTOR

    1999-01-01

    A new catalytic potentiometric titration method for the determination of silver(I), applying the iodide-catalysed manganese(IV)-arsenic(III) indicator reaction in the presence of sulphuric acid, has been developed. The effect of the concentration of sulphuric acid and different ions, and of the mole ratio of manganese(IV) to arsenic(III) in the titrated solution, as well as of the titrand temperature on the conditions for the determination of silver(I) in solutions of various concentrations, ...

  2. Highly Efficient C--N Bond Forming Reactions in Water Catalyzed by Copper(I) Iodide with Calix[4]arene Supported Amino Acid Ionic Liquid%Highly Efficient C--N Bond Forming Reactions in Water Catalyzed by Copper(I) Iodide with Calix[4]arene Supported Amino Acid Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    黄利; 金灿; 苏为科

    2012-01-01

    A novel and effective protocol has been developed for the Ullmann-type C--N coupling reaction catalyzed by calix[4]arene supported amino acid ionic liquid and copper(I) iodide in water under microwave irradiation condition The protocol uses ealix[4]arene supported amino acid ionic liquid as double function of the ligand and phase-transfer catalyst, and shows good tolerance in good to excellent yields.

  3. The feasibility of using a baculovirus vector to deliver the sodium-iodide symporter gene as a reporter

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiang; Li Biao; Wang Jun; Yin Hongyan [Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Zhang Yifan [Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)], E-mail: zhangyifan1992@yahoo.com.cn

    2010-04-15

    Purpose: To evaluate the efficiency of baculovirus vectors in transducing FTC-133 cells and to examine the feasibility of using baculovirus vectors for the delivery of the sodium-iodide symporter (NIS) gene as a reporter through co-transduction to monitor the expression of the target gene. Method: Two recombinant baculoviruses were constructed to express NIS and green fluorescent protein (GFP) respectively. FTC-133, 8050C, SW1116, A549 cells, were infected with Bac-GFP. The infection efficiency of Bac-GFP and the intensity of fluorescence, in either the presence or absence of sodium butyrate, were monitored by flow cytometry. The iodine uptake by FTC-133 cells infected with Bac-NIS was measured using a {gamma} counter. FTC-133 cells were infected with a mixture of equal amounts of Bac-NIS and Bac-GFP at different setting of multiplicity of infection (MOI). The changes of GFP fluorescence intensity and iodine uptake were monitored 24 h after infection in the coinfected cells. Results: We have successfully constructed recombinant baculoviruses carrying NIS and GFP under the control of the cytomegalovirus IE-1 promoter. We found that transduced efficiency of baculovirus in 8505C, SW1116, A549 cells are low in absence of sodium butyrate. Yet Bac-GFP infects FTC-133 cells at a high efficiency, 77.67%, 85.57% and 93.23% with MOI of 100, 200 and 400, respectively. The fluorescence intensity of the Bac-GFP infected tumor cells correlated positively with the MOI of the virus. Sodium butyrate induction increased both the infection efficiency and the fluorescence intensity, but increase of infection efficiency was insignificant in FTC-133 cells. Reporter gene (GFP) expression in FTC-133 is stable within 7 days after infection. The radioactivity incorporated by the tumor cells infected with Bac-NIS correlated positively with the MOI of Bac-NIS as well. In tumor cells co-infected with Bac-NIS and Bac-GFP, the amount of radioactivity incorporated significantly correlated with

  4. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  5. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Hoon; Chung, June-Key; Lee, Yong Jin; Kim, Kwang Il [Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, 110-744, Chongno-gu, Seoul (Korea); Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea); Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea); Kang, Joo Hyun; Jeong, Jae Min; Lee, Dong Soo [Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, 110-744, Chongno-gu, Seoul (Korea); Kim, Chul Woo [Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea); Lee, Myung Chul [Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, 110-744, Chongno-gu, Seoul (Korea)

    2004-03-01

    Positron emission tomography (PET) imaging reporter genes, such as HSV1-tk and D{sub 2} receptor genes, make it possible to visualise gene expression non-invasively and repetitively in vivo. However, these systems require the synthesis of complicated substrates and the availability of expensive PET equipment. Expression of the sodium/iodide symporter (NIS) gene can be easily monitored with radioiodines and technetium-99m using a gamma camera. To evaluate the possibility of using NIS as an imaging reporter gene, we compared its characteristics with those of the conventional HSV1-tk gene. The CM cell line was made by transfecting the HSV1-tk gene into CT-26 (mouse colon carcinoma cell line). The CTN and CMN cell lines were then made by transfecting the NIS gene into CT-26 and CM. We measured the uptake of iodine-125 iodovinyldeoxyuridine ([{sup 125}I]IVDU) and {sup 125}I to evaluate the expression of the HSV1-tk and NIS genes, respectively. Each cell line was injected into four flank sites in Balb/c mice. The biodistribution study was performed after intravenously injecting [{sup 125}I]IVDU and {sup 131}I, and {sup 131}I scintigraphy was performed for the evaluation of NIS expression. In vitro studies indicated that CTN and CMN had 40- to 79-fold and 150- to 256-fold higher uptake of {sup 125}I than CT-26 and CM, respectively. Furthermore, CM and CMN showed 57- to 69-fold higher uptake of [{sup 125}I]IVDU than CT-26 and CTN. NIS gene expression and {sup 125}I accumulation were found to be directly correlated (R{sup 2}=0.923), as were HSV1-tk gene expression and [{sup 125}I]IVDU accumulation (R{sup 2}=0.956). Calculated signal per unit NIS and HSV1-tk mRNA expression was 23,240{+-}3,755 cpm and 34,039{+-}5,346 cpm, respectively. In vivo study indicated that CTN and CMN had 2.3- and 5.8-fold higher uptake of {sup 131}I than CT-26 and CM, and 1.8- and 3.5-fold higher uptake of [{sup 125}I]IVDU than CT-26 and CTN. Scintigraphy using {sup 131}I easily visualised CTN and

  6. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    Science.gov (United States)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  7. Coulomb explosion of methyl iodide clusters using giga watt laser pulses in the visible region: Effect of wavelength, polarisation and doping

    Indian Academy of Sciences (India)

    S Das; P Sharma; R K Vatsa

    2009-11-01

    Nanosecond laser-induced Coulomb explosion studies have been carried out for methyl iodide clusters at 532 and 563 nm under similar laser intensity (∼ 5 × 109 W/cm2) conditions. Multiply charged atomic ions of carbon and iodine having large kinetic energy (∼ 100 s of eV) were observed in both the cases. Observation of higher charged states at 563 nm for Coulomb exploded atomic ions supports the preposition of enhanced inverse bremsstrahlung heating of the ionized cluster system at this wavelength. The angular distribution of the multiply charged atomic ions is found to be isotropic with respect to laser polarization direction at 532 nm. When water doped methyl iodide clusters were irradiated at 563 nm, highly charged atomic ions of oxygen along with carbon and iodine were also observed. This result suggests that the mechanism leading to Coulomb explosion is a collective property of the cluster as a whole and individual molecular properties do not play significant role.

  8. Experimental and theoretical studies of the second- and third-order NLO properties of a semi-organic compound: 6-Aminoquinolinium iodide monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Pedro S. Pereira, E-mail: psidonio@pollux.fis.uc.pt [CEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal); El Ouazzani, Hasnaa; Pranaitis, Mindaugas [Institut des Sciences et Technologies Moléculaires d’Angers, MOLTECH ANJOU, CNRS UMR 6200, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex (France); Silva, Manuela Ramos [CEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal); Arranja, Cláudia T.; Sobral, Abilio J.F.N. [Department of Chemistry, University of Coimbra, P-3004-516 Coimbra (Portugal); Sahraoui, Bouchta [Institut des Sciences et Technologies Moléculaires d’Angers, MOLTECH ANJOU, CNRS UMR 6200, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex (France); Paixão, José A. [CEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2014-01-15

    Highlights: • Synthesis and structure of 6-aminoquinolinium iodide monohydrate is reported. • UV–vis absorption and fluorescence spectra are reported. • SHG and THG signals measured with the Maker fringes technique. • Hyperpolarizabilities calculated with the DFT and MP2 methods. • Behaviour of hybrid functionals corrected with ESP charges. - Abstract: A new semi-organic compound, 6-aminoquinolinium iodide monohydrate (I), has been synthesized and characterized by single crystal X-ray diffraction, UV–vis absorption and fluorescence spectroscopy and nonlinear optical (NLO) measurements. The second- and third-order NLO responses were investigated with the second- and third-harmonic Maker fringes techniques, carried out on thin films at a fundamental wavelength of 1064 nm. From the molecular structure, the molecular hyperpolarizability tensors were determined with density functional theory and second-order Møller–Plesset perturbation method. The second- and third-order susceptibility tensors of the reported crystal were evaluated using the oriented gas model with the Lorenz–Lorentz and the Wortmann–Bishop local-field corrections. The calculations using the Wortmann–Bishop local-field were able to reproduce the correct order of magnitude of the experimental third-order susceptibilities. The value of χ{sup (3)} obtained by summing the effective third-order polarizability calculated for the asymmetric unit surrounded by ESP-derived charges have also the same order of magnitude of the experimental.

  9. Kinetic studies of the radical oxidation in gaseous phase of organic iodides and of the formation of iodine oxide particles under the simulated conditions of a nuclear reactor containment submitted to a severe accident

    International Nuclear Information System (INIS)

    Within the framework of the research in the nuclear reactor safety field, the iodine oxides formation by organic iodides destruction in the containment has been studied with the means of the atmospheric chemistry field. The destruction kinetics and their activation energy of organic iodides by .OH and .O radical has been quantified by a Flash Photolysis system able to monitor the oxidant radicals by resonance fluorescence. Those results have been published and some of them for the first time in the literature. The mechanisms leading to the organic iodides destruction are either by a hydrogen atom abstraction, either by the formation of a complex, depending on the organic iodide involved. Then, certain kinetics reactions have been updated in the IODAIR code. Other reactions have been added based on the recent literature available. A comparison of the kinetics destruction of CH3I by .OH and .O with IODAIR and the global kinetics of destruction in ASTEC/IODE showed a difference of about 2 which shows the importance of these two radicals (and mainly .O) in those destruction processes. The other main path of destruction would be by electron radiation. Other radicals like .H and .N would not contribute significantly to organic iodides destruction. A sensitivity analysis highlighted that organic iodides would mostly be destroyed into iodine oxides with a almost complete conversion within a few hours. Finally, an atmospheric chamber has been used to quantify iodine oxides growth, density and composition. Under the conditions studied, their formation is fast. Particles sizes of about 200-400 nm are formed within a few hours. The main parameters influencing their growth are the relative humidity and the presence of ozone (whose function is to create .O and .OH radicals). (author)

  10. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.

    Science.gov (United States)

    Stoumpos, Constantinos C; Malliakas, Christos D; Kanatzidis, Mercouri G

    2013-08-01

    A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p

  11. The effects of human TSH receptor gene transfection on iodide uptake and thyroid-specific gene expression in poorly differentiated thyroid carcinoma cell line

    International Nuclear Information System (INIS)

    Objective: To investigate the changes of iodide uptake and the expression of thyroid-specific genes in poorly differentiated follicular thyroid carcinoma (FTC) cells after transfection of human TSH receptor (hTSHR) gene in vitro. Methods: The recombinant eukaryotic expression plasmid PcDNA3.1/hTSHR-cDNA was transformed into DH5a bacterial for amplification and then the recombinant plasmid was extracted. The recombinant was identified with PCR amplifying, restriction enzyme digestion analysis and DNA sequencing. The recombinant plasmid pcDNA3.1/hTSHR was transfected into FTC-133 cell line by lipofectin method in vitro. Immunofluorescence, iodide uptake studies and real time-PCR were applied to detect target protein expression. Statistical analysis was performed with t-test using SPSS 13.0 software. Results: Kpn I and Xba I restriction enzyme digestion, PCR amplifying and DNA sequencing confirmed that pcDNA3.1/hTSHR was successfully constructed. After transfection of the recombinant plasmid pcDNA3.1/hTSHR-cDNA and the stimulation of hTSH, the tumor cells displayed the expression of hTSHR protein at cell surface and cytoplasm. The iodine uptake in pcDNA3.1/hTSHR transfected cells was 2.9 times higher than that of control(pcDNA3.1(+) transfected cells) group(t = 28.63, P<0.01). The expression of TSHR, NIS, TPO and Tg (mRNA levels) in pcDNA3.1/hTSHR transfected cells were also significantly elevated by 1.74 (t =5.959, P<0.01), 7.2 (t =3.807, P<0.05), 2.88 (t=4.769, P<0.01) and 2.67 times (t=6.388, P<0.01) respectively compared to those of the control group. Conclusion: The study demonstrates that iodide uptake may be reactivated by hTSHR receptor gene transfection in poorly differentiated FTC cell. (authors)

  12. Feasibility of dual reporter gene in rat myoblast cell line using human sodium iodide symporter (hNIS) and enhanced green fluorescent protein (EGFP) gene

    International Nuclear Information System (INIS)

    To develop a non-invasive combined imaging method of gamma camera and optical imaging to assess rat myoblast cell line, H9c2, we constructed retrovirus containing hNIS and EGFP gene, and transfected to rat myoblast cell and monitored hNIS and EGFP expression. Rat myoblast cell line, H9C2, was transfected with hNIS and EGFP gene using retrovirus (H9C2-NG). The expression of hNIS and EGFP gene was determined by RT-PCR and fluorescence microscopy, respectively. The uptake and efflux of I-125 were measured in the transfected and wild type cell lines. Each cell line was injected to 4 flank sites (H9c2: 1X107 or 2X107, H9C2-NG: 1X107 or 2X107) in nude mouse. Scintigraphic image was performed at 3h, 1 day after H9C2 and H9C2-NG cell inoculation. We performed gamma camera and animal PET imaging to evaluate NIS expression. Also, GFP image obtained using optical imaging system. The expression of hNIS and EGFP gene was confirmed by RT-PCR. In iodide uptake, H9C2-NG cells accumulated 274.52.2 pmol/ mg protein at 30 min. But wild type cell line did not uptake iodide. In fluorescent microscopy, H9C2-NG cells were highly fluorescent than that of H9C2 cells. In iodide efflux study, 50% of radioactivity flowed out during the first 10min. Scintigraphy showed increased uptake of Tc-99m in H9c2-NG than in H9C2 for 1 day. Also, H9C2-NG cells showed high signal-to-background fluorescent spots in animal body. In this study, NIS and EGFP reporter gene were successfully transfected by a retrovirus in myoblast cell line, and the transfected cell can be easily visualized in vivo. These results suggest that NIS and EGFP gene has an excellent feasibility as a reporter gene, and it can be used to monitor cell trafficking for monitoring

  13. Cu(OAc)2/Pyrimidines-Catalyzed Cross-coupling Reactions of Aryl Iodides and Activated Aryl Bromides with Alkynes under Aerobic, Solvent-free and Palladium-free Conditions

    Institute of Scientific and Technical Information of China (English)

    XIE Ye-Xiang; DENG Chen-Liang; PI Shao-Feng; LI Jin-Heng; YIN Du-Lin

    2006-01-01

    Excellent results have been achieved in the Cu(OAc)2-catalyzed Sonogashira cross-couplings of aryl iodides and activated aryl bromides utilizing TBAF (tetrabutylammonium fluoride) as the base and 4,6-dimethoxypyrimidin-2-amine as the ligand. It is noteworthy that the reaction is conducted under aerobic, solvent-free and palladium-free conditions.

  14. The second harmonic generation and the photoelectric property studies on a new dye, (E)- N-octadecyl-4-[2-(4-dimethylaminophenyl) enamine] pyridinium iodide

    Science.gov (United States)

    Zhai, Jin; Huang, Chun-Hui; Wei, Tian-Xin; Yu, An-Chi; Zhao, Xin-Sheng

    1999-03-01

    According to quantum chemistry calculation, a Schiff-base (E)- N-octadecyl-4-[2-(4-dimethylaminophenyl) enamine] pyridinium iodide with a large dipole moment difference between the excited state and the ground state (Δ μ), is designed and synthesized as a second-order non-linear optical material. Its second-order susceptibility ( χ(2)zzz) is evaluated to be 279.4 pm V -1, which is larger than that of the hemicyanine which is known as one of the best dyes in the second harmonic generation (SHG) behavior. Its LB film formation properties were studied. The photoelectric conversion property is not as good as expected. According to the experiments and the results of the quantum chemistry calculation, an explanation of this phenomenon is proposed.

  15. Use of chemically derivatized n-type silicon photoelectrodes in aqueous media: photooxidation of iodide, hexacyanoiron(II), and hexaammineruthenium(II) at ferrocene-derivatized photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Bocarsly, A.B.; Walton, E.G.; Wrighton, M.S.

    1980-05-07

    A procedure is described for the chemical derivatization of the surface of n-type semiconductor photoanodes to yield photosensitive interfaces for use in a large number of thermodynamically uphill oxidation processes. (1,1'-ferrocenediyl)dichlorosilane was used to derivatize n-type Si to yield a photoanode that can be used under conditions where the naked (nonderivatized) n-type Si undergoes photoanodic corrosion yielding an insulating SiO/sub x/ surface layer. The results of use of this derivatized n-type Si in aqueous solutions to investigate the photooxidation of iodide, hexacyanoiron(II), and hexaammineruthenium(II) are reported. This type photoelectrode has an operation range that is nearly ideal from the point of solar energy conversion. (BLM)

  16. Chemical structure of extracted copper from scrap Cu/ITO thin films in a room temperature ionic liquid containing iodine/iodide

    Science.gov (United States)

    Huang, Hsin-Liang; Huang, Hsin-Hung; Wei, Yu Jhe

    2016-05-01

    A RTIL (room temperature ionic liquid) containing iodine/iodide (RTIL-I) was studied to determine its coated copper extraction efficiency on the surface of scrap Cu/indium tin oxide (ITO) thin films. According to the X-ray absorption near edge structural spectra and transmission electron microscopy observations, about 95% of Cu with the size of 80 nm was stripped from scrap Cu/ITO thin film into the RTIL-I and then formed 90 nm of α-CuI and CuI2- within 30 min at 298 K. The 31P NMR (nuclear magnetic resonance) spectra suggests [PF6]- of the RTIL-I may enhance the extraction of nanoparticles into the RTIL-I.

  17. Development of a kinetic model and calculation of radiation dose estimates for sodium iodide-{sup 131}I in athyroid individuals

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.

    1997-07-01

    The treatment for some thyroid carcinomas involves surgically removing the thyroid gland and administering the radiopharmaceutical Sodium iodide-{sup 131}I (NaI). A diagnostic dose of NaI is given to the patient to determine if remnant tissue from the gland remains or larger doses are administered in order to treat the malignant tissue. Past research regarding NaI uptake and retention in euthyroid individuals (normal functioning thyroid) reveal that radioiodine concentrates mainly in the thyroid tissue and the remaining material is excreted from the body. The majority of radioiodine in athyroid (without thyroid) individuals is also eliminated from the body; however, there has been recent evidence of a long-term retention phase for individuals with no radioiodine concentrating tissue. The general purpose of this study was to develop a kinetic model and estimate the absorbed dose to athyroid individuals regarding the distribution and retention of NaI.

  18. New zinc-glycine-iodide complexes as a product of equilibrium and non-equilibrium crystallization in the Gly - ZnI2 - H2O system

    Science.gov (United States)

    Tepavitcharova, S.; Havlíček, D.; Matulková, I.; Rabadjieva, D.; Gergulova, R.; Plocek, J.; Němec, I.; Císařová, I.

    2016-09-01

    Equilibrium crystallization of two anhydrous complex compounds, [Zn(gly)2I2] and [Zn(gly)I2], and non-equilibrium crystallization of the [Zn3(H2O)4(μ-gly)2I6] complex have been observed in the Gly - ZnI2 - H2O system at 25°C. Different mixed zinc-glycine-iodide-aqua complexes exist in the studied solutions and those with the highest activity are responsible for the crystallization process. The stable [ZnI2O2(2Gly)]0 complexes are responsible for the large equilibrium crystallization field of the compound [Zn(gly)2I2] (monoclinic system, C2/c space group), in whose crystal structure they are incorporated as discrete distorted electroneutral tetrahedra. In zinc-iodide solutions with a low water activity it is more probable that the glycine zwitterions act as bidentate ligands and form polynuclear complexes. We assume the [ZnI2O2(2/2Gly)]0 infinite chains build the compound [Zn(gly)I2], for which we have found a narrow equilibrium crystallization field. We have failed to describe the crystal structure of this compound because of its limited stability in the air. Non-equilibrium crystallization of [Zn3(H2O)4(μ-gly)2I6] (triclinic system, P-1 space group) was demonstrated, with crystal structure built by trinuclear complexes [ZnI3O(1/2Gly)] [ZnO4(4H2O)O2(2/2Gly)(trans)][ZnI3O(1/2Gly)]. The FTIR and Raman spectra and also the thermal behaviour of the three compounds were discussed.

  19. Electrochemical Study of Iodide in the Presence of Phenol and o-Cresol: Application to the Catalytic Determination of Phenol and o-Cresol

    Directory of Open Access Journals (Sweden)

    Davood Nematollahi

    2004-11-01

    Full Text Available Abstract: The electrochemical oxidation of iodide in the presence of phenol and o-cresol was investigated at a glassy carbon electrode in buffered media by cyclic voltammetry, linear sweep voltammetry and controlled–potential coulometry. The experimental results indicate that the phenol and o-cresol convert to their derivatives after participating in a halogenation coupled reaction (quasi-catalytic reaction following the oxidation of iodide to iodine. The concentrations of phenol and o-cresol have been determined in aqueous solutions according to the linear dependence of quasi-catalytic peak currents with the concentration. The calibration graphs show two linear sections of 0.0 to 1.0×10-4 M and 2.0×10-4 to 1.0 ×10-3 M for phenol and 4.2×10-5 to 1.0×10-4 M and 2.0×10-4 to 1.0×10-3 M for o-cresol. The theoretical detection limits and the relative standard deviations for ten measurements of phenol and o-cresol are 1.125×10-5 M, 1.06% and 4.201×10-5 M, 1.44%, respectively.

  20. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1±4.7%, 54.0±6.4%, 85.7±8.7%, and 98.4±1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704±6,659 picomole/106 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168±2,134 picomole/106 cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression

  1. Comparison of human sodium iodide symporter (hNIS) gene expression between lentiviral and adenoviral vectors in rat mesenchymal stem cell

    International Nuclear Information System (INIS)

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been done. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated stably hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning the hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and Rad-hNIS transduced rMSC (adeno-hNIS-rMSC) was evaluated for the hNIS expression 48 hours post infection at MOI 1, 5, 20, 50, and 100. The hNIS expression in lenti-hNIS-rMSC or adeno-hNIS-rMSC was assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry using mono-clonal anti-hNIS antibody revealed that intensity of hNIS immunoreactivity in lenti-hNIS-rMSC was greater than that in adeno-hNIS-rMSC at MOl 20 but lower than that at MOl 50. Western blot analysis also showed that lenti-hNIS-rMSC was intermediate between adeno-hNIS-rMSCs at MOl 20 and 50 in hNIS expression. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (297046659 picomole/106 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (61682134 picomole/106 cells). These results suggest that lentivirus mediated hNIS expression is greater in terms of hNIS function but lower in terms of hNIS protein amount than adenovirus mediated hNIS expression 48 hours post infection. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative viral efficiency of transgene expression

  2. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Lee, Won Woo; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Jin; Lee, Heui Ran [Medical Research Center, Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1{+-}4.7%, 54.0{+-}6.4%, 85.7{+-}8.7%, and 98.4{+-}1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704{+-}6,659 picomole/10{sup 6} cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168{+-}2,134 picomole/10{sup 6} cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

  3. Study on the Iodine 125 Uptake of H460 Lung Cancer Cell Line by Co-transfection with the Human Sodium/Iodide Symporter and the Human Thyroperoxidase

    Directory of Open Access Journals (Sweden)

    Wei LI

    2010-06-01

    Full Text Available Background and objective Lung cancer harms people’s health or even lives severely. Especially, the therapy of non-small cell lung cancer (NSCLC has not been obviously improved for many years. The aim of this study is to transfer the human sodium/iodide symporter (hNIS and the human thyroperoxidase (hTPO genes into H460 lung cancer cell line, and to study the uptake ability of iodide after co-transfected hTPO and hNIS gene in cell lines. Methods Through cloning, recombination, packaging and amplifying, the recombinant adenosine virus (AdTPO was constructed. Then the protein expression of AdTPO was tested by Western blot. After transfected hNIS gene into human lung cancer cell line H460 through liposome, stably expressing hNIS gene cell lines (hNIS-H460 selected by G418 antibiotics was determined as hNIS-H460 group. Using AdTPO, hTPO gene was transducted into hNIS-H460, as AdTPO-hNIS-H460 group. H460 cell without hNIS gene was applied as control group (H460. Then, we investigated the 125I uptake assay of the above cells. Results We were successful in co-transfecting hNIS and hTPO gene into human lung cell lines H460, and were obtained hNIS and hTPO gene lung cancer cell lines (hNIS-H460 and AdTPO-hNIS-H460. In AdTPO-hNIS-H460, hNIS-H460 and H460, the uptake ability of 125I was (59 637.67±1 281.13, (48 622.17±2 242.28 and (1 440.17±372.86 counts•min-1. The uptake ability of 125I was 41 fold higher in AdTPO-hNIS-H460 than in blank control H460 (P<0.01, and 34 fold higher in hNIS-460 than in blank control H460 (P<0.01, and 1.2 fold higher in AdTPO-hNIS-H460 than in hNIS-H460 (P<0.01. Conclusion The uptake ability of 125I could increase by co-transfected hNIS and hTPO genes into human lung cancer cell lines H460.

  4. Combined 2-deoxy glucose and metformin improves therapeutic efficacy of sodium-iodide symporter-mediated targeted radioiodine therapy in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Chatterjee S

    2015-08-01

    Full Text Available Sushmita Chatterjee, Nirmal Thaker, Abhijit DeMolecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, IndiaAbstract: Radiosensitization using either metformin or 2-deoxy-d-glucose (2-DG in various cancer cells has been reported. The present study reveals novel information on combining these drugs to enhance radiosensitization effect in breast cancer (BC cells. Responses to low-dose Cobalt60 radiation, as well as a newly emerged radioiodine therapy target for BC, that is, sodium-iodide symporter (NIS or SLC5A5 protein, are tested. As therapeutic potential of NIS in BC is often limited due to low uptake and fast efflux rate of iodine, the scope of these two radiosensitizers to further improve NIS-mediated 131I therapeutic efficacy is explored. Two BC cell lines, MCF-7, and MDA MB231 are tested to optimize minimal drug doses required for radiosensitization. A combination of 2 mM metformin and 20 mM 2-DG with 2 grey (Gy Cobalt60 radiation shows significant radiosensitization effect (P=0.0002. In cells treated with the combination therapy, increased γH2A.X foci formation was noted. Further, MCF-7 BC cells overexpressing NIS (MCF-7 NIS was established, and using the optimized drug concentrations, significant radiosensitization (P=0.0019 by 50 µ Ci 131I usage was found to be the case as well. Apoptosis data corroborates with the result of clonogenic assay showing significant increase in apoptotic population upon dual drug-mediated radiosensitization. In case of metformin treatment, lowered adenosine triphosphate (ATP content of the cell has been observed. The encouraging radiosensitization effect observed using combined 2-DG and metformin may aid in reducing Cobalt60 radiation exposure or for targeted radioiodine therapy in BC cells with NIS expression. This study indicates high potential of this drug combination in sensitizing BC cells for NIS

  5. Study on Artificially Catalytic Thunder Reduction Nanometer Iodide Silver Nucleation Rate and Nucleation Rate%人工催化消雷纳米级碘化银成核率与核化速率的研究

    Institute of Scientific and Technical Information of China (English)

    李迪飞; 毕武; 宋欣; 陈宁

    2011-01-01

    通过20L和1200L云室条件下的检测试验,对微米级和纳米级碘化银的成核率与核化速率进行了统计分析,实验证明纳米级碘化银冻结阂温高且成冰性能好,在人工影响闪电方面是一种较好的消雷催化剂。%Through the detection tests in 20L and 1200L cloud chambers, the statistic analysis of the micrometer and nanometer iodide silver nucleation rate and nucleation rate is made. The experiment shows that nanometer iodide silver has a high freezing threshold temperature and good ice nucleation performance, making it a perfect thunder reduction catalyst in the aspect of artificially influenced lightening

  6. Nickel-catalyzed cross-coupling reactions of o-carboranyl with aryl iodides: facile synthesis of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes.

    Science.gov (United States)

    Tang, Cen; Xie, Zuowei

    2015-06-22

    A nickel-catalyzed arylation at the carbon center of o-carborane cages has been developed, thus leading to the preparation of a series of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C'-diarylation by cross-coupling reactions of o-carboranyl with aryl iodides. PMID:25959849

  7. Molecular and structural characterisation of the human sodium/iodide symporter (h N.I.S.) C-terminus and the implication of this domain in the transporter regulation

    International Nuclear Information System (INIS)

    The human natrium iodide symporter (h N.I.S.) is an intrinsic membrane protein expressed in thyroid cells where it allows iodide uptake and accumulation. It is composed of thirteen transmembrane helices and its ninety- three amino acids long cytosolic C-terminus presents many potential post-translational regulatory sites. A first part of the PhD work has been dedicated to the expression in a bacterial system and to the purification of the cytosolic C-terminal fragment. Biochemical and structural characterisation have revealed that this C-terminus is very flexible but prone to dimerization. The fragment has also been used as a bait to test the interactions with PDZ domain proteins spotted on a membrane. Several proteins interacting with the (natrium/iodide symporter) N.I.S. C-terminus have thus been identified and the study of their implication in the protein regulation has been initiated. A second part of the work has underlined the existence of a N.I.S. fragment co-purified with the entire protein. This fragment has been found in cells in culture stably expressing N.I.S. and also in human thyroid extracts and in rodent thyroid cells. We observed that this fragment is spontaneously associated with the entire protein. It is composed of the last 131 amino acid of the protein and so comprises the last transmembrane domain and the C-terminal extremity. The expression of a truncated form of h N.I.S., lacking the last 131 amino acids, shows that this protein is not correctly addressed to the cell membrane and cells expressing this mutated symporter cannot accumulate iodide. However, our results show that the co-expression of the two N.I.S. parts, the truncated form lacking the last 131 amino acid, and the complementary C-terminal fragment, leads to cells presenting 10 % of the activity of cells expressing the whole N.I.S.. (author)

  8. Use of potassium iodide in Dermatology: updates on an old drug Uso do iodeto de potássio na Dermatologia: considerações atuais de uma droga antiga

    OpenAIRE

    Rosane Orofino Costa; Priscila Marques de Macedo; Aline Carvalhal; Andréa Reis Bernardes-Engemann

    2013-01-01

    Potassium iodide, as a saturated solution, is a valuable drug in the dermatologist's therapeutic arsenal and is useful for the treatment of different diseases due to its immunomodulatory features. However, its prescription has become increasingly less frequent in dermatology practice. Little knowledge about its exact mechanism of action, lack of interest from the pharmaceutical industry, the advent of new drugs, and the toxicity caused by the use of high doses of the drug are some possible ex...

  9. Computations with the FIPLOC MOD 1/83 program on the methyl iodide and aerosol distribution of number A-5 and A-11 containment systems experiments

    International Nuclear Information System (INIS)

    In the present final report different computations regarding two containment systems experiments are documented by the FIPLOC program. The spatial distribution for methyl iodide and a cesium aerosol in consequence of natural, undisturbed flow processes in the model containment measuring 850 m3 and divided into three rooms was calculated. By improved discretisation and precise simulation of the course of the experiments the measuring results were closely confirmed. The characteristic courses of the two experiments, which differ mainly by the variation of steam feed, are analytically verified by means of the computation results and interpreted. The verification calculations carried through for the FIPLOC code clearly demonstrate the necessity of simultaneous simulation of distribution and deposition phenomena. Future improvements of the model are planned both for the thermohydraulic part, from which especially more precise indications are to be obtained regarding local saturation conditions, and for the aerosol part, which is to be enlarged in such a manner that also the time and site-related changes in particle size can be simulated by condensation/evaporation and coagulation. (orig./RB)

  10. Effects of lithium iodide doping on devolatilization characteristics of brown coals; Yoka lithium no tenka ga kattan no kanetsu henka katei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, J.; Kumagai, H.; Hayashi, J.; Chiba, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    In order to discuss effects of lithium iodide (LiI) doping on condensation structure of brown coals during heating, spectral changes were measured by using an in-situ FT-IR. It was found that the LiI doping accelerates weight reduction due to heating, and the doping effect is affected by coal structure. Both of Loy Yang (LY) coal and its LiI doped coal (DLY) had absorption intensity of the FT-IR spectra decreased with rising temperature, and the absorption center belonging to an OH group shows different shifts between the LY and DLY coals. This indicates that the LiI doping has affected the change in hydrogen bonding patterns associated with heating. Both of South Banko (SB) and LY coals had the absorption spectral intensity in the OH group decreased as the weight reduction (conversion) rate increased. Reduction in the OH groups associated with heating is caused by volatilization and condensation reaction in light-gravity fraction. However, in the case of equal conversion rate, the LiI doped coal shows higher spectral intensity than the original coal, with the LiI doping suppressing reduction in the OH groups. It appears that the doping suppresses the condensation reaction between the OH groups. 2 refs., 6 figs., 1 tab.

  11. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion

    Science.gov (United States)

    Krämer, Christina E. M.; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2016-01-01

    Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour. PMID:27580964

  12. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction.

    Science.gov (United States)

    Kawai, Hiroki; Giorgi, Giacomo; Marini, Andrea; Yamashita, Koichi

    2015-05-13

    We report on an analysis of hot-carrier lifetimes from electron-phonon interaction in lead iodide perovskites using first-principles calculations. Our calculations show that the holes in CsPbI3 have very long lifetimes in the valence band region situated 0.6 eV below the top of the valence band. On the other hand, no long lifetime is predicted in PbI3(-). These different results reflect the different electronic density of states (DOSs) in the valence bands, that is, a small DOS for the former structure while a sharp DOS peak for the latter structure. We propose a reduction of the relaxation paths in the small valence DOS as being the origin of the slow hot-hole cooling. Analyzing the generalized Eliashberg functions, we predict that different perovskite A-site cations do not have an impact on the carrier decay mechanism. The similarity between the DOS structures of CsPbI3 and CH3NH3PbI3 enables us to extend the description of the decay mechanism of fully inorganic CsPbI3 to its organic-inorganic counterpart, CH3NH3PbI3.

  13. Quantum Chemical Studies on the Prediction of Structures, Charge Distributions and Vibrational Spectra of Some Ni(II), Zn(II), and Cd(II) Iodide Complexes

    Science.gov (United States)

    Bardakci, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-06-01

    Transition metal complexes play an important role in coordination chemistry as well as in the formation of metal-based drugs. In order to obtain accurate results for studying these type of complexes quantum chemical studies are performed and especially density functional theory (DFT) has become a promising choice. This talk represents molecular structures, charge distributions and vibrational analysis of Ni(II), Zn(II), and Cd(II) iodide complexes of p-toluidine and m-toluidine by means of DFT. Stable structures of the ligands and the related complexes have been obtained in the gas phase at B3LYP/def2-TZVP level and calculations predict Ni(II) complexes as distorted polymeric octahedral whereas Zn(II) and Cd(II) complexes as distorted tetrahedral geometries. Charge distribution analysis have been performed by means of Mulliken, NBO and APT methods and physically most meaningful method for our compounds is explained. Vibrational spectra of the title compounds are computed from the optimized geometries and theoretical frequencies are compared with the previously obtained experimental data. Since coordination occurs via nitrogen atoms of the free ligands, N-H stretching bands of the ligands are shifted towards lower wavenumbers in the complexes whereas NH_2 wagging and twisting vibrations are shifted towards higher wavenumbers.

  14. Ginkgo biloba extract alters the binding of the sodium [{sup 123}I] iodide (Na{sup 123}I) on blood constituents

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, Luiz Claudio Martins [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil); Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, Via Cinco s/n, 21945-450 Rio de Janeiro (Brazil); Moreno, Silvana Ramos Farias, E-mail: srfmoreno@hotmail.com [Departamento de Patologia, Universidade Federal Fluminense, 24030-210, Niteroi, RJ (Brazil); Programa de Pos-Graduacao em Ciencias Medicas, Universidade Federal Fluminense, 24030-210, Niteroi, RJ (Brazil); Freitas, Rosimeire de Souza [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil); Thomaz, Helio [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, Via Cinco s/n, 21945-450 Rio de Janeiro (Brazil); Santos-Filho, Sebastiao David [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil)

    2012-01-15

    We evaluated the in vitro effect of an aqueous extract of Ginkgo biloba (EGb) on the distribution in blood cells (BC) and plasma (P) and on the binding of Na{sup 123}I to the blood constituents using precipitation with trichloroacetic acid. The radioactivity percentages insoluble (SF) and insoluble fraction (IF) of blood constituents were determined. The EGb interfered (p<0.05) on the distribution of Na{sup 123}I in the P (from 69.64 to 86.13) and BC (from 30.36 to 13.87) and altered the fixation of the Na{sup 123}I in IF-P and in IF-BC. - Highlights: Black-Right-Pointing-Pointer Interaction between the Ginkgo biloba and blood constituents radiolabeled. Black-Right-Pointing-Pointer Modification of the binding of sodium iodide (Na{sup 123}I) to the blood constituents. Black-Right-Pointing-Pointer This alteration should have influence in a diagnosis of nuclear medicine.

  15. Calibration of a 7.6 cm x 7.6 cm (3 inch x 3 inch) Sodium Iodide Gamma Ray Spectrometer for Air Kerma Rate

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L.; Walters, B.R.B.; Hovgaard, J.; LaMarre, J.R

    2001-07-01

    An experimental procedure is described for converting a gamma ray spectral measurement from a 7.6 cm x 7.6 cm (3 inch x 3 inch) sodium iodide (NaI) detector to air kerma rate. The calibration procedure involves measuring the energy deposited in the detector using 10 radioactive sources of known activity covering an energy range from 60 keV to 1836 keV. For each of the 10 sources, gamma ray spectra were measured with the source at different angles to the detector axis. The total energy deposited in the detector for the ten sources was confirmed by Monte Carlo calculations. The spectra measured at different angles were combined to produce a spectrum that would represent a homogeneous semi-infinite source of radiation. The resultant spectrum was then subdivided into 10 energy regions. Based on the known air kerma rates due to the sources, a calibration coefficient was calculated for each of the 10 energy regions. These calibration coefficients could then be used to convert the energy deposited in the 10 regions of an unknown spectrum to air kerma rate. The calibration procedure was confirmed by comparing the results from the detector with those from calibrated collimated beams of {sup 137}Cs and {sup 60}Co. A comparison of measurements using a calibrated pressurised ionisation chamber with those from a similar NaI spectrometer in Finland provided additional confirmation of the calibration procedure. (author)

  16. Response of silicon multistrip detectors and a cesium iodide scintillator to a calcium ion beam of 0.5 GeV/u

    International Nuclear Information System (INIS)

    We have constructed and operated charge preamplifiers for silicon strip detectors with a dynamic range extending from fractions of minimum ionising particle (MIP) up to 16 124 MIPs. These silicon detectors combined with time-of-flight counters and cesium iodide scintillator form a segment of the VENUS detector that has been exposed to a calcium beam of 0.5 GeV/u at the GSI accelerator. The aim of the instrument is the identification of all nuclides of the periodic table of the elements. Measurements of electronic noise, cross-talk among channels and energy deposit resolutions in various experimental conditions for silicon detectors are given. The measured light output of the CsI(Tl) crystal induced by calcium is compared with that extrapolated from lower-energy data of various nuclide species determined in other experiments. The charge resolution for calcium ions, determined by the dE/dx detectors and TOF counters of time resolution of 55±7 ps, amounts to 0.42 charge units (rms). Improvements in ion discrimination with respect to the present detector configuration are considered. (orig.)

  17. Response of silicon multistrip detectors and a cesium iodide scintillator to a calcium ion beam of 0.5 GeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Codino, A.; Miozza, M.; Brunetti, M.T.; Checcucci, B.; Federico, C.; Grimani, C.; Lanfranchi, M.; Macchiaiolo, T.; Menichelli, M.; Maffei, P.; Vocca, H. [Istituto Nazionale di Fisica Nucleare, Perugia (Italy); Plouin, F. [Laboratoire National de Saturne, 91191 Gif-sur-Yvette Cedex (France)

    1997-10-21

    We have constructed and operated charge preamplifiers for silicon strip detectors with a dynamic range extending from fractions of minimum ionising particle (MIP) up to 16 124 MIPs. These silicon detectors combined with time-of-flight counters and cesium iodide scintillator form a segment of the VENUS detector that has been exposed to a calcium beam of 0.5 GeV/u at the GSI accelerator. The aim of the instrument is the identification of all nuclides of the periodic table of the elements. Measurements of electronic noise, cross-talk among channels and energy deposit resolutions in various experimental conditions for silicon detectors are given. The measured light output of the CsI(Tl) crystal induced by calcium is compared with that extrapolated from lower-energy data of various nuclide species determined in other experiments. The charge resolution for calcium ions, determined by the dE/dx detectors and TOF counters of time resolution of 55{+-}7 ps, amounts to 0.42 charge units (rms). Improvements in ion discrimination with respect to the present detector configuration are considered. (orig.). 12 refs.

  18. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells

    Science.gov (United States)

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-01-01

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs. PMID:27166184

  19. 纳米氧化铜催化碘代芳烃的氨基化反应%Ligand-free copper(Ⅱ)-catalyzed amination of aryl iodides

    Institute of Scientific and Technical Information of China (English)

    吕良忠; 徐欢; 丁元华; 刘伟; 袁宇

    2012-01-01

    针对硝基化合物还原制备芳香胺中反应条件苛刻、适用范围较小、副产物较多、产品质量欠佳等缺陷,研究出一种以纳米氧化铜为催化剂、氨水为氨源且无配体参与的一步合成芳香伯胺的方法.该方法具有原料价廉、反应条件温和、对环境友好等优点,为芳香胺的合成增添了新的途径.%Reduction of nitro substituted aromatic compounds is the main method for preparation of aromatic amines in industry at present. However, the conventional synthetic methods often have relatively harsh reaction conditions, small scope of application, unavoidable by-products, poor selectivity, poor product quality and other shortcomings. This paper develops one step method of ligand-free nano copper oxide catalyzed amination reaction of aryl iodides with ammonia. Aqueous NH3 solution is a convenient and inexpensive source of ammonia. The synthesis method with mild conditions and environmental friendliness, has added a new method for synthesizing primary aromatic amines.

  20. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.

    Science.gov (United States)

    Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2016-01-01

    Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour. PMID:27580964