WorldWideScience

Sample records for astatine iodides

  1. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter

    International Nuclear Information System (INIS)

    The sodium/iodide symporter (NIS) has been recognized as an attractive target for radioiodine-mediated cancer gene therapy. In this study we investigated the role of human NIS for cellular uptake of the high LET α-emitter astatine-211 (211At) in comparison with radioiodine as a potential radionuclide for future applications. A mammalian NIS expression vector was constructed and used to generate six stable NIS-expressing cancer cell lines (three derived from thyroid carcinoma, two from colon carcinoma, one from glioblastoma). Compared with the respective control cell lines, steady state radionuclide uptake of NIS-expressing cell lines increased up to 350-fold for iodine-123 (123I), 340-fold for technetium-99m pertechnetate (99mTcO4-) and 60-fold for 211At. Cellular 211At accumulation was found to be dependent on extracellular Na+ ions and displayed a similar sensitivity towards sodium perchlorate inhibition as radioiodide and 99mTcO4- uptake. Heterologous competition with unlabelled NaI decreased NIS-mediated 211At uptake to levels of NIS-negative control cells. Following uptake both radioiodide and 211At were rapidly (apparent t1/2 3-15 min) released by the cells as determined by wash-out experiments. Data of scintigraphic tumour imaging in a xenograft nude mice model of transplanted NIS-modified thyroid cells indicated that radionuclide uptake in NIS-expressing tumours was up to 70 times (123I), 25 times (99mTcO4-) and 10 times (211At) higher than in control tumours or normal tissues except stomach (3-5 times) and thyroid gland (5-10 times). Thirty-four percent and 14% of the administered activity of 123I and 211At, respectively, was found in NIS tumours by region of interest analysis (n=2). Compared with cell culture experiments, the effective half-life in vivo was greatly prolonged (6.5 h for 123I, 5.2 h for 211At) and preliminary dosimetric calculations indicate high tumour absorbed doses (3.5 Gy/MBqtumour for 131I and 50.3 Gy/MBqtumour for 211At). In

  2. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter

    Energy Technology Data Exchange (ETDEWEB)

    Petrich, T.; Helmeke, H.-J.; Meyer, G.J.; Knapp, W.H.; Poetter, E. [Department of Nuclear Medicine, Medizinische Hochschule Hannover (Germany)

    2002-07-01

    The sodium/iodide symporter (NIS) has been recognized as an attractive target for radioiodine-mediated cancer gene therapy. In this study we investigated the role of human NIS for cellular uptake of the high LET {alpha}-emitter astatine-211 ({sup 211}At) in comparison with radioiodine as a potential radionuclide for future applications. A mammalian NIS expression vector was constructed and used to generate six stable NIS-expressing cancer cell lines (three derived from thyroid carcinoma, two from colon carcinoma, one from glioblastoma). Compared with the respective control cell lines, steady state radionuclide uptake of NIS-expressing cell lines increased up to 350-fold for iodine-123 ({sup 123}I), 340-fold for technetium-99m pertechnetate ({sup 99m}TcO{sub 4}{sup -}) and 60-fold for {sup 211}At. Cellular {sup 211}At accumulation was found to be dependent on extracellular Na{sup +} ions and displayed a similar sensitivity towards sodium perchlorate inhibition as radioiodide and {sup 99m}TcO{sub 4}{sup -} uptake. Heterologous competition with unlabelled NaI decreased NIS-mediated {sup 211}At uptake to levels of NIS-negative control cells. Following uptake both radioiodide and {sup 211}At were rapidly (apparent t{sub 1/2} 3-15 min) released by the cells as determined by wash-out experiments. Data of scintigraphic tumour imaging in a xenograft nude mice model of transplanted NIS-modified thyroid cells indicated that radionuclide uptake in NIS-expressing tumours was up to 70 times ({sup 123}I), 25 times ({sup 99m}TcO{sub 4}{sup -}) and 10 times ({sup 211}At) higher than in control tumours or normal tissues except stomach (3-5 times) and thyroid gland (5-10 times). Thirty-four percent and 14% of the administered activity of {sup 123}I and {sup 211}At, respectively, was found in NIS tumours by region of interest analysis (n=2). Compared with cell culture experiments, the effective half-life in vivo was greatly prolonged (6.5 h for {sup 123}I, 5.2 h for {sup 211}At) and

  3. Organic chemistry of astatine

    International Nuclear Information System (INIS)

    The paper surveys the investigations on the chemical behaviour of astatine in organic systems and deals with the preparation and identification of its organic compounds. A discussion is given on some of the physico-chemical properties of these compounds determined by extrapolation techniques as well as by direct measurement. The biomedical importance of 211At-labelled compounds is briefly referred to. (authors)

  4. Bibliography of astatine chemistry and biomedical applications

    International Nuclear Information System (INIS)

    An overall bibliography is presented on astatine chemistry and on the biomedical applications of its 211At isotope. The references were grouped in the following chapters: General reviews; Discovery, Natural Occurence; Nuclear Data; Preparation, Handling, Radiation Risk; Physico-chemical Properties; Astatine Compounds and Chemical Reactions; Biological Effects and Applications. Entries are sorted alphabetically by authors name in each chapter, and cross-references to other chapters are provided if appropriate. (R.P.)

  5. Potassium Iodide

    Science.gov (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during ... the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency and ...

  6. Astatine-211: production and availability.

    Science.gov (United States)

    Zalutsky, Michael R; Pruszynski, Marek

    2011-07-01

    The 7.2-h half life radiohalogen (211)At offers many potential advantages for targeted α-particle therapy; however, its use for this purpose is constrained by its limited availability. Astatine-211 can be produced in reasonable yield from natural bismuth targets via the (209)Bi(α,2n)(211)At nuclear reaction utilizing straightforward methods. There is some debate as to the best incident α-particle energy for maximizing 211At production while minimizing production of (210)At, which is problematic because of its 138.4-day half life α-particle emitting daughter, (210)Po. The intrinsic cost for producing (211)At is reasonably modest and comparable to that of commercially available (123)I. The major impediment to (211)At availability is attributed to the need for a medium energy α-particle beam for its production. On the other hand, there are about 30 cyclotrons in the world that have the beam characteristics required for (211)At production. PMID:22201707

  7. Recent advances in the organic chemistry of astatine

    International Nuclear Information System (INIS)

    Investigation on the chemical behaviour of astatine in the last decade are surveyed. The survey covers the physical and chemical properties of astatine, synthesis and identification of organic astatine compounds, their physicochemical properties. A special chapter is devoted to biomedical applications, including inorganic 211At species, 211At-labelled proteins and drugs. An extensive bibliography of the related literature is given. (N.T.) 129 refs.; 12 figs.; 14 tabs

  8. Potassium Iodide (KI)

    Science.gov (United States)

    ... Planning Information on Specific Types of Emergencies Potassium Iodide (KI) Language: English Español (Spanish) Recommend on Facebook ... I get KI (potassium iodide)? What is Potassium Iodide (KI)? KI (potassium iodide) is a salt of ...

  9. Methyl Iodide

    Science.gov (United States)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  10. Dosimetrical considerations in astatine-211 radioimmunotherapy

    International Nuclear Information System (INIS)

    Several dosimetrical quantities have been suggested for use in alpha-particle dosimetry. To evaluate the expected biological effect when using these quantities, a Monte Carlo program was set to register the single-event distribution of both specific energy and alpha-particle track length to a cell nucleus (r=5.6 μm). Distributions were acquired for both 'bound' (simulating the effect of 211At-labelled antibodies bound to antigens on cell surfaces (r=7.0 μm)) as well as 'non-bound' (simulating 211At-labelled antibodies that have not bound to a cell) astatine-211. From these distributions, various theoretical cell survival curves were established for 3 different dosimetrical quantities, i.e. specific energy, number of alpha-particle hits and total track length. The survival curves for all quantities are presented for the corresponding mean absorbed dose in order to facilitate comparisons of the expected effects of using the 3 different quantities for both distributions of 211At decays. The theoretical survival curves presented here could, combined with experiments using 'bound' and 'non-bound' 211At in a single-cell suspension, reveal which dosimetrical quantity is most suitable for 211 At-radioimmunotherapy. (author)

  11. Discovery of the astatine, radon, francium, and radium isotopes

    OpenAIRE

    Fry, C; Thoennessen, M

    2012-01-01

    Currently, thirty-nine astatine, thirty-nine radon, thirty-five francium, and thirty-four radium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  12. Extraction of astatine isotopes for development of radiopharmaceuticals using a 211Rn-211At generator

    International Nuclear Information System (INIS)

    In order to utilize a 211At isotope, a promising α-emitter for radionuclide therapy, the chemical properties of astatine isotopes are studied. We have examined wet chemistry methods through the distribution ratios of astatine in liquid-liquid extraction. The astatine isotopes have been found to be well extracted into DIPE and MIBK. We observed that the distribution ratio of astatine isotopes increases with concentrations of HCl greater than 3 M, while it decreases with the HCl concentration less than 2 M. The results will be useful for development of the 211Rn-211At generator. (author)

  13. Unexpected Behavior of the Heaviest Halogen Astatine in the Nucleophilic Substitution of Aryliodonium Salts.

    Science.gov (United States)

    Guérard, François; Lee, Yong-Sok; Baidoo, Kwamena; Gestin, Jean-François; Brechbiel, Martin W

    2016-08-22

    Aryliodonium salts have become precursors of choice for the synthesis of (18) F-labeled tracers for nuclear imaging. However, little is known on the reactivity of these compounds with heavy halides, that is, radioiodide and astatide, at the radiotracer scale. In the first comparative study of radiohalogenation of aryliodonium salts with (125) I(-) and (211) At(-) , initial experiments on a model compound highlight the higher reactivity of astatide compared to iodide, which could not be anticipated from the trends previously observed within the halogen series. Kinetic studies indicate a significant difference in activation energy (Ea =23.5 and 17.1 kcal mol(-1) with (125) I(-) and (211) At(-) , respectively). Quantum chemical calculations suggest that astatination occurs via the monomeric form of an iodonium complex whereas iodination occurs via a heterodimeric iodonium intermediate. The good to excellent regioselectivity of halogenation and high yields achieved with diversely substituted aryliodonium salts indicate that this class of compounds is a promising alternative to the stannane chemistry currently used for heavy radiohalogen labeling of tracers in nuclear medicine. PMID:27305065

  14. Astatine-211-Labeled Targeted Radiotherapeutics: An Update

    International Nuclear Information System (INIS)

    The heavy halogen 211At was first proposed for use in α-particle targeted radiotherapy more than 30 years ago and continues to be one of the most promising radionuclides for this purpose. Although its 7.2-h half life is not ideal for intravenously administered whole antibodies, it is compatible with the pharmacokinetics of antibody fragments, peptides, aptamers and organic molecules. Its diverse chemistry allows its incorporation into a wide array of targeting vehicles, relying on its chemical similarity to iodine to provide a useful point of departure. On the other hand, the relatively low carbon-astatine bond strength is challenging. In common with the other α-emitters being discussed at this symposium, lack of reliable availability is one of the biggest hurdles in the use of 211At for targeted radiotherapy. However, in the case of 211At, it is not a question of production cost or availability of target material, because 211At can be produced in reasonable yield from natural bismuth targets. Rather, the difficulty is the lack of cyclotrons equipped with the medium energy α-particle beams required for its production. If the infrastructure for producing 211At is to be improved to the stage where 211At-labeled radiopharmaceuticals can have a meaningful impact, several developments must occur. First, the ability to produce clinically relevant levels of 211At that can be shipped to remote locations in chemically tractable form must be demonstrated. Approaches under consideration include compensating for radiolysis-mediated effects and the consideration of alternative chemistries. Second, strategies for compensating for heterogeneities in dose deposition must be developed, hopefully in a way that is compatible with approval for human use. And third, it is essential that more clinical trials be performed with 211At-labeled therapeutics, particularly in settings of minimum residual disease where the radiobiological advantages of α-particles can be best exploited. Our

  15. Scrutinizing "Invisible" astatine: A challenge for modern density functionals.

    Science.gov (United States)

    Sergentu, Dumitru-Claudiu; David, Grégoire; Montavon, Gilles; Maurice, Rémi; Galland, Nicolas

    2016-06-01

    The main-group 6p elements did not receive much attention in the development of recent density functionals. In many cases it is still difficult to choose among the modern ones a relevant functional for various applications. Here, we illustrate the case of astatine species (At, Z = 85) and we report the first, and quite complete, benchmark study on several properties concerning such species. Insights on geometries, transition energies and thermodynamic properties of a set of 19 astatine species, for which reference experimental or theoretical data has been reported, are obtained with relativistic (two-component) density functional theory calculations. An extensive set of widely used functionals is employed. The hybrid meta-generalized gradient approximation (meta-GGA) PW6B95 functional is overall the best choice. It is worth noting that the range-separated HSE06 functional as well as the old and very popular B3LYP and PBE0 hybrid-GGAs appear to perform quite well too. Moreover, we found that astatine chemistry in solution can accurately be predicted using implicit solvent models, provided that specific parameters are used to build At cavities. © 2016 Wiley Periodicals, Inc. PMID:27059181

  16. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    CERN Document Server

    Rothe, S; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yu; Köster, U; Lane, J; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of smallest quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.317510(8) eV. New ab initio calculations were performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of super-heavy element 117, the heaviest homologue of astatine.

  17. Synthesis and Evaluation of Astatinated N-[2-(Maleimido)ethyl]-3-(trimethylstannyl)benzamide Immunoconjugates.

    Science.gov (United States)

    Aneheim, Emma; Gustafsson, Anna; Albertsson, Per; Bäck, Tom; Jensen, Holger; Palm, Stig; Svedhem, Sofia; Lindegren, Sture

    2016-03-16

    Effective treatment of metastasis is a great challenge in the treatment of different types of cancers. Targeted alpha therapy utilizes the short tissue range (50-100 μm) of α particles, making the method suitable for treatment of disseminated occult cancers in the form of microtumors or even single cancer cells. A promising radioactive nuclide for this type of therapy is astatine-211. Astatine-211 attached to tumor-specific antibodies as carrier molecules is a system currently under investigation for use in targeted alpha therapy. In the common radiolabeling procedure, astatine is coupled to the antibody arbitrarily on lysine residues. By instead coupling astatine to disulfide bridges in the antibody structure, the immunoreactivity of the antibody conjugates could possibly be increased. Here, the disulfide-based conjugation was performed using a new coupling reagent, maleimidoethyl 3-(trimethylstannyl)benzamide (MSB), and evaluated for chemical stability in vitro. The immunoconjugates were subsequently astatinated, resulting in both high radiochemical yield and high specific activity. The MSB-conjugate was shown to be stable with a long shelf life prior to the astatination. In a comparison of the in vivo distribution of the new immunoconjugate with other tin-based immunoconjugates in tumor-bearing mice, the MSB conjugation method was found to be a viable option for successful astatine labeling of different monoclonal antibodies. PMID:26791409

  18. Mercury iodide crystal growth

    Science.gov (United States)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  19. Astatine-211: production, injection into monoclonal antibodies radiological effect, possible application to cancer treatment

    International Nuclear Information System (INIS)

    Methods developed in the Laboratory of Nuclear Problems, JINR, for producing astatine-211 and injecting it into monoclonal antibodies are described. The use of its diethylene triamine penta-acetic acid complex is shown to be the most effective method of injecting astatine into a biomolecules. The biological effect of the α-particles emitted from the astatine-211 is investigated using Chinese hamster fibroblasts and Ehrlich carcinoma cells. It is established that the mitotic activity depression, number of degenerating cells, number of cells with chromosome aberrations, and cellular surviving fraction depend on the concentration of the radionuclide in the medium 'in vitro'. The RBE of α-particles in comparison with 60Co γ-rays is 3. Injection of astatine-211 absorbed on tellurium particles into mice with ascitic tumors resulted in prolongation of their life or elimination of the tumors. (author). 39 refs, 7 figs

  20. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    OpenAIRE

    Rothe, S.; A. N. Andreyev; Antalic, S; Borschevsky, A.; Capponi, L.; Cocolios, T.E.; Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the io...

  1. Automated astatination of biomolecules - a stepping stone towards multicenter clinical trials

    Science.gov (United States)

    Aneheim, Emma; Albertsson, Per; Bäck, Tom; Jensen, Holger; Palm, Stig; Lindegren, Sture

    2015-07-01

    To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical and physical properties for use in targeted therapies for cancer. Due to the very short range of the emitted α-particles, this therapy is particularly suited to treating occult, disseminated cancers. Astatine is not intrinsically tumour-specific; therefore, it requires an appropriate tumour-specific targeting vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method that combines dry distillation of astatine-211 and a synthesis module for producing radiopharmaceuticals into a process platform. This platform will standardize production of astatinated radiopharmaceuticals, and hence, it will facilitate large clinical studies focused on this promising, but chemically challenging, alpha-emitting radionuclide. In this work, we describe the process platform, and we demonstrate the production of both astaine-211, for preclinical use, and astatine-211 labelled antibodies.

  2. The sodium/iodide symporter and radio-iodide therapy

    International Nuclear Information System (INIS)

    The sodium/iodide symporter (NIS) is an intrinsic membrane protein that mediates the active transport of iodide into the thyroid and other tissues. NIS plays key roles in thyroid pathophysiology as the route by which iodide reaches the gland for thyroid hormone biosynthesis and as a means for diagnostic scintigraphic imaging and for radio-iodide therapy in hyperthyroidism and thyroid cancer. The continued molecular analysis of NIS clearly holds the potential of an even greater impact on the diagnosis and radio-iodide treatment of cancer, both in thyroid and beyond

  3. Final Report for research grant "Development of Methods for High Specific Activity Labeling of Biomolecules Using Astatine-211 in Different Oxidation States"

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, D., Scott

    2011-12-14

    The overall objective of this research effort was to develop methods for labeling biomolecules with higher oxidation state species of At-211. This was to be done in an effort to develop reagents that had higher in vivo stability than the present carbon-bonded At-211-labeled compounds. We were unsuccessful in that effort, as none of the approaches studied provided reagents that were stable to in vivo deastatination. However, we gained a lot of information about At-211 in higher oxidation states. The studies proved to be very difficult as small changes in pH and other conditions appeared to change the nature of the species that obtained (by HPLC retention time analyses), with many of the species being unidentifiable. The fact that there are no stable isotopes of astatine, and the chemistry of the nearest halogen iodine is quite different, made it very difficult to interpret results of some experiments. With that said, we believe that a lot of valuable information was obtained from the studies. The research effort evaluated: (1) methods for chemical oxidation of At-211, (2) approaches to chelation of oxidized At-211, and (3) approaches to oxidation of astatophenyl compounds. A major hurdle that had to be surmounted to conduct the research was the development of HPLC conditions to separate and identify the various oxidized species formed. Attempts to develop conditions for separation of iodine and astatine species by normal and reversed-phase TLC and ITLC were not successful. However, we were successful in developing conditions (from a large number of attempts) to separate oxidized forms of iodine ([I-125]iodide, [I-125]iodate and [I-125]periodate) and astatine ([At-211]astatide, [At-211]astatate, [At-211]perastatate, and several unidentified At-211 species). Information on the basic oxidation and characterization of At-211 species is provided under Objective 1. Conditions were developed to obtain new At-211 labeling method where At-211 is chelated with the DOTA and

  4. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg... with potassium iodide under slightly acidic conditions. (b) The ingredient must be of a purity...

  5. Automated astatination of biomolecules - a stepping stone towards multicenter clinical trials

    DEFF Research Database (Denmark)

    Aneheim, Emma; Albertsson, Per; Bäck, Tom; Jensen, Holger; Palm, Stig; Lindegren, Sture

    2015-01-01

    vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method......To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical and...... challenging, alpha-emitting radionuclide. In this work, we describe the process platform, and we demonstrate the production of both astaine-211, for preclinical use, and astatine-211 labelled antibodies....

  6. Study of Astatine (III) reactions with O, S and N ligands in solution

    International Nuclear Information System (INIS)

    Full text of publication follows. Astatine (At, Z=85: [Xe]4f145d106s26p5) belongs to the halogen group and is located below iodine in the periodic table. One of its isotopes (211At) appears promising as a therapeutic agent in nuclear medicine (Ref.1) owing to the energy of the alpha particles emitted during the disintegration of its nucleus and its short physical half-life (7.2 h). Since there are no stable isotopes of astatine, the chemistry of this element remains poorly understood. Generally, At is supposed to behave as a halogen (Ref.2) but it has been shown recently in our group that astatine presents a metallic behaviour in aqueous solution: it notably exists as At+ and AtO+ species under the oxidation states +I and +III (Ref.3). At the present time, the number of studies dealing with the complexation properties of the cationic forms of astatine remains limited (Ref.4), owing to its low availability. In this work, we have investigated the reactions of AtO+ species with different hetero-atomic (N, S, O) model ligands. A combined approach based on experimental and theoretical studies has been used (Ref.5). On account of the difficulties of experimental investigations of astatine species, the reactivity of AtO+ was explored using a competition method founded on astatine distributions between two distinct phases. Furthermore, for each AtO+/ ligand complex, the nature of the species formed and the associated thermodynamic constants were determined by computational modeling (DFT calculations). In this framework, an original computational methodology was developed to take into account the specificities of astatine, notably the associated relativistic effects. The computed equilibrium constants have been confronted with the experimental results. This comparison demonstrates an outstanding coherence between experience and theory. Furthermore, the analysis of the results shows a key role of solvent effects on astatine chemistry. Lastly, a specific reactivity for the

  7. Hydrogen iodide decomposition

    Science.gov (United States)

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  8. Some aspects of the organic, biological and inorganic chemistry of astatine

    International Nuclear Information System (INIS)

    Astatine has no stable isotopes and the radioactive isotopes with half-lives sufficiently long for chemical experiments (209At, 210At, 211At) must be produced artificially with a cyclotron or with a high energy accelerator by spallation of Th. This thesis deals with the synthesis and chemistry of At-compounds and the determination of some of their properties. (C.F.)

  9. Astatine-211 Pathway from Radiochemistry to Clinical Investigation

    International Nuclear Information System (INIS)

    Particularly in clinical settings where tumour burden is low and cancers are located in close proximity to essential normal tissue structures, α-particle emitting radionuclides can offer significant advantages for targeted radionuclide therapy. One of the first alpha emitters to be evaluated for this purpose is the 7.2-h half-life radiohalogen Astatine-211 (211At). From a commercialization-potential perspective 211At, is less appealing than the longer half-life alpha particle emitters Radium-223, Actinium-225 and Thorium-227, which have become the focus of many laboratories. However, if methods for providing a better supply of 211At could be developed, this alpha emitter would be the radionuclide of choice for many potential therapeutic applications. With regard to the production of 211At, this can be readily be accomplished by bombarding natural bismuth targets with 28−29.5 MeV alpha particles via the 209Bi(α,2n)211At reaction. The goal is to utilize an alpha particle beam energy that provides the required balance for maximizing 211At production while minimizing creation of 210At, which is problematic because of its 138.4-day half life alpha-particle emitting daughter, 210Po. For most intended clinical applications, alpha particle beam energy of about 29 MeV offers the best compromise between maximizing yield and providing 211At with sufficient radionuclidic purity for clinical use. Clinically relevant levels of 211At have been produced at several institutions using both internal and external cyclotron targets

  10. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  11. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn; Jacobsen, Torben

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri-iodide...... layer on top of the FTO glass to lower the tri-iodide reduction rate....

  12. Mercuric iodide sensor technology

    International Nuclear Information System (INIS)

    This report describes the improvement in the performance and the manufacturing yield of mercuric iodide detectors achieved by identifying the dominant impurities, carrier traps, and processing steps limiting device performance. Theoretical studies of electron and hole transport in this material set fundamental limits on detector performance and provided a standard against which to compare experimental results. Spectroscopy techniques including low temperature photoluminescence and thermally stimulated current spectroscopy were applied to characterize the deep level traps in this material. Traps and defects that can be introduced into the detector during growth, from the contact, and during the various steps in detector fabrication were identified. Trap energy levels and their relative abundances were determined. Variations in material quality and detector performance at the micron scale were investigated to understand the distribution in electric field in large volume detectors suitable for gamma-ray spectroscopy. Surface aging and contact degradation was studied extensively by techniques including atomic force microscopy, transmission electron microscopy, and variable angle spectroscopic ellipsometry. Preferred handling and processing procedures for maximizing detector performance and yield were established. The manufacturing yield of high resolution gamma-ray detectors was improved from a few percent to more than 30%

  13. An attempt to explore the production routes of Astatine radionuclides: Theoretical approach

    OpenAIRE

    Maiti, Moumita; Lahiri, Susanta

    2008-01-01

    In order to fulfil the recent thrust of Astatine radionuclides in the field of nuclear medicine various production routes have been explored in the present work. The possible production routes of $^{209-211}$At comprise both light and heavy ion induced reactions at the bombarding energy range starting from threshold to maximum 100 MeV energy. For this purpose, we have used the nuclear reaction model codes TALYS, ALICE91 and PACE-II. Excitation functions of those radionuclides, produced throug...

  14. 21 CFR 582.5634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  15. Direct astatination of a tumour-binding protein, human epidermal growth factor, using nido-carborane as a prosthetic group

    International Nuclear Information System (INIS)

    A method for direct astatine labeling of proteins has been investigated. Binding sites for astatine were created by coupling of a nido-carborane derivative to a protein, the human epidermal growth factor (hEGF), using two different conjugation methods - by glutaraldehyde cross-linking or by introduction of sulfohydryl groups by Traut's reagent with subsequent linking of ANC-1 with m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester. The conjugates were astatinated using the Chloramine-T method in high yield. The best labeling was obtained by the glutaraldehyde conjugate with an average yield of 68 ± 9%. In vitro stability tests indicated that the glutaraldehyde conjugated label was as stable as hEGF labeled with astatobenzoate. (author)

  16. The durability of iodide sodalite

    International Nuclear Information System (INIS)

    Highlights: • Dense iodide sodalite prepared by HIP of hydrothermally synthesised powders. • Sodalite was free from leachable secondary phases. • Leach tests indicate self-arresting congruent dissolution. - Abstract: An iodide sodalite wasteform has been prepared by Hot Isostatic Pressing of powder produced by hydrothermal synthesis. The wasteform was free of leachable secondary phases which can mask leaching mechanisms. Leaching is by congruent dissolution and leach rates decrease as Si and Al accumulate in the leachate. Differential normalised leach rates are 0.005–0.01 g m−2 d−1 during the 7–14 day period. This indicates that sodalite dissolution in natural groundwater, already saturated in these elements, will be very low

  17. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  18. Labelling prospects of astatine-211 with immunoglobulins (IgG): some general considerations

    International Nuclear Information System (INIS)

    The tumour therapeutic potential of the short lived alpha emitting radiohalogen 211At has been already been well recognised in the field of radioimmuno therapy. There is no evidence as such to show that astatine itself is a tumour seeking isotope. Therefore it has to be tagged to tumour seeking compound such as a drug or a protein preferably an antibody (IgG). In this communication, the labelling parameters which are required to be investigated for obtaining a stable product which could be useful as radioimmuno therapeutic agent, are described. (author). 6 refs

  19. Determination of the electron affinity of astatine and polonium by laser photodetachment

    CERN Multimedia

    We propose to conduct the first electron anity (EA) measurements of the two elements astatine (At) and polonium (Po). Collinear photodetachment spectroscopy will allow us to measure these quantities with an uncertainty limited only by the spectral linewidth of the laser. We plan to use negative ion beams of the two radioactive elements At and Po, which are only accessible on-line and at ISOLDE. The feasibility of our proposed method and the functionality of the experimental setup have been demonstrated at ISOLDE in o-line tests by the clear observation of the photodetachment threshold for stable iodine. This proposal is based on our Letter of Intent I-148 [1].

  20. Extraction of 211At-astatine from hydrochloric acid solutions by means of TOPO, TBP, and triphenylphosphine

    International Nuclear Information System (INIS)

    The extraction behaviour of astatine was studied under defined conditions from hydrochloride acid solutions (cHCl>0.1 M or 1 and 2M). Therefore other effects like adsorption, reduction or hydrolysis can be excluded. The present work describes the extraction with tri- n- octylphosphinoxide (TOPO), tri- n-butylphosphate (TBP) and tri-phenylphosphine in chloroform. (orig.)

  1. No-carrier-added astatination of N-succinimidyl-3-(tri-n-butylstannyl) benzoate (ATE) via electrophilic destannylation

    International Nuclear Information System (INIS)

    The no-carrier-added synthesis of N-succinimidyl 3-[211At]astato-benzoate from N-succinimidyl 3-(tri-n-butylstannyl)benzoate (ATE) is described. The nature of the solvent in which the 211At was isolated from the target was an important factor influencing both the radiochemical yields and the nature of the incorporated astatine activity. (orig.)

  2. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  3. 211At-Rh(16-S4-diol) complex as a precursor for astatine radiopharmaceuticals

    International Nuclear Information System (INIS)

    211At is one of the most promising radionuclides in α-radioimmunotherapy (α-RIT). Unfortunately, biomolecules labeled by direct electrophilic astatination are unstable due to the rapid loss of 211At under both in vitro and in vivo conditions. The present paper describes the results of our studies on attaching At- to the rhodium(III) complex with thioether ligand: 1,5,9,13-etrathiacyclohexadecane-3,11-diol (16-S4-diol). Rh3+ was chosen as a moderately soft metal cation which should form very strong bonds with soft At- anions, but first of all because of the kinetic inertness of low spin rhodium(III) d6 complexes. The 16-S4-diol ligand was selected due to formation of stable complexes with Rh3+. The experiments related to optimization of the reaction conditions were performed with the 131I, basing on a chemical similarity of I- to At-. The experiments with 211At were then carried out under the conditions found optimal for I-. The preliminary results are promising, and indicate a possibility for astatination of biomolecules by using the 211At-Rh(16-S4-diol) complex

  4. Neutron Detection with Mercuric Iodide

    International Nuclear Information System (INIS)

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the 10B(n, α)7Li* reaction. However, the 374 barn thermal capture cross section of natHg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant 199Hg(n, γ)200Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in 10B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both the 478 and 368 keV gamma rays removes the ambiguity associated with the observation of only one of them. Pulse height spectra, obtained with and without lead and cadmium absorbers, showed the expected gamma rays and demonstrated that they were caused by neutrons

  5. Neutron Detection with Mercuric Iodide

    CERN Document Server

    Bell, Z A

    2003-01-01

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the sup 1 sup 0 B(n, alpha) sup 7 Li* reaction. However, the 374 barn thermal capture cross section of sup n sup a sup t Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant sup 1 sup 9 sup 9 Hg(n, gamma) sup 2 sup 0 sup 0 Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in sup 1 sup 0 B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both ...

  6. Rare, severe hypersensitivity reaction to potassium iodide

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Korsholm; Ebbehøj, Eva; Richelsen, Bjørn

    2014-01-01

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acne...

  7. Large area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    Results of an investigation of large area mercuric iodide (HgI2) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI2 photodetectors with active area up to 4 cm2 were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained

  8. Large area mercuric iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  9. Predissociation dynamics of lithium iodide

    CERN Document Server

    Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

    2015-01-01

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  10. Mercuric iodide light detector and related method

    Science.gov (United States)

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  11. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide tablets. 520.763a Section 520... iodide tablets. (a) Chemical name. 3-Ethyl-2- -benzothiazolium iodide. (b) Specifications. Dithiazanine iodide tablets contain 10 milligrams, 50 milligrams, 100 milligrams, or 200 milligrams of...

  12. 21 CFR 520.763b - Dithiazanine iodide powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide powder. 520.763b Section 520... iodide powder. (a) Chemical name. 3-Ethyl-2- -benzothiazoliumiodide. (b) Specifications. Dithiazanine iodide powder contains 200 milligrams of dithiazanine iodide per level standard tablespoon. (c)...

  13. Reaction of bis[trialkyl(aryl)arsonium]-1,4-dihydronaphthalene iodides with mercury(2) iodide in aqueous-alcoholic solutions of potassium iodide

    International Nuclear Information System (INIS)

    Composition of mercury complex iodides, formed in the course of interaction between bis[trialkyl(aryl)arsonium]-1,4-dihydronaphthalene iodides and mercury(2) iodide in aqueous-alcoholic solution in the presence of potassium iodide excess was studied using the methods of chemical analysis, conductivity and IR spectroscopy. It was ascertained that under the conditions mentioned bisarsonium triiodomercurates are formed with the yield of 72-87%. The studies conducted confirm the potentiality of formation of mercury complex iodides of [HgI3]- composition in aqueous solutions of alkali metal iodides in the presence of some organic cations

  14. Processing. alpha. -mercuric iodide by zone refining

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Henderson, D.O.; Biao, Y.; Zhang, K.; Silberman, E. (Fisk Univ., Nashville, TN (United States). Dept. of Physics); Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1992-01-01

    An investigation is being conducted on zone refining {alpha}-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are segregated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone refined material, and the effects of the process on the performance of radiation detectors fabricated from {alpha}-mercuric iodide are being evaluated.

  15. Iodide refining of calcium-thermal zirconium

    International Nuclear Information System (INIS)

    The possibility of high zirconium of calcium - thermal zirconium KTC-HP and metallic wastes production by iodide refining is examined. The impurities behavior is studied,the refining coefficient dependence on the impurity concentration in the initial material is determined. The impurities minimum concentration in iodide zirconium are evaluated by extrapolation.It is determined that the refining efficiency decreases in the range: Ni=Mn > Cr >F>C>N>O>Fe and aluminium and silicon removal during the iodide refining of calcium thermal zirconium is problematic. By comparison of iodide metal of KTC-HP expected quality with the specifications and the iodide zirconium purity real level obtained in the adopted practice the possibility of standard metal production of KTC-HP and metal wastes is demonstrated. The principal merit of KTC - hafnium content <0,01 mass % is preserved. Alloys melting of double or triple on the base of KTC according TS 95.2185-90 with the addition of 35...50 % of iodide zirconium by the method VDP will allow to obtain the alloys KTC-110 and KTC-125 with oxygen fraction of total mass 0,06...0,10% and hafnium content, meeting the world standards

  16. Recovery of anhydrous hydrogen iodide

    Science.gov (United States)

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  17. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.; Jacobsen, T.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide/tri-iodide...... layer on top of the FTO glass in lowering the tri-iodide reduction rate. (c) 2005 Elsevier B.V. All rights reserved....

  18. Kinetics of gold dissolution in iodide solutions

    Science.gov (United States)

    Yang, Kang

    Cyanide has been used as a lixiviant for free milling gold ores for a long time. Cyanide solutions are highly toxic and their use poses long term environmental problems. Cyanidation process is efficient for oxide gold ores but it is ineffective for gold ores containing sulfides. Among the noncyanide based lixiviants, iodide has the potential of replacing cyanide due to its ability to leach gold at a wider pH range and higher rate of gold dissolution. The emerging technology of bio-oxidation is an accepted process for pretreatment of sulfide gold ores. The bio-oxidation is conducted at acidic pH which makes direct cyanidation without pH adjustment impractical. On the contrary, iodide leaching of gold from the bio-oxidized ore can be accomplished without any pH adjustment. The present study was undertaken in order to investigate the kinetics of gold dissolution in various iodide-oxidant solutions under conditions similar to those prevailing in a solution containing bio-oxidized ore. The thermodynamic study indicated that gold can be spontaneously dissolved in iodide-hydrogen peroxide, iodide-ferric ion and iodide-persulfate solutions. Dissolution of gold powder was carried out in these solutions and the results showed that the gold dissolution was dependent on solution pH, concentrations of iodide, oxidants and temperature. Gold dissolution was found to increase with decreasing pH and substantial gold dissolution could be achieved at pH ≤ 2. Increasing concentration of oxidant till an optimum oxidant/iodide molar ratio increased gold dissolution and much higher concentration of oxidant would result in a decrease in gold dissolution. With increasing iodide concentration and temperature, gold dissolution increased significantly. The activation energy data which ranged between 9.6 and 13.6 kcal/mole for various oxidants indicated that surface reaction was the rate controlling step. At higher temperatures a change in rate limiting step with passage of time was observed

  19. Experimental study on preparing gaseous methyl iodide by chlorotrimelthylsilane/sodium iodide

    International Nuclear Information System (INIS)

    The experiments were carried out to study the feasibility of substituting the extremely toxic dimethyl sulfate (DMS) with nontoxic reagents in preparing the gaseous methyl iodide to measure the scrubbing efficiency of iodine adsorber. The test results show that the reaction of chlorotrimelthylsilane/sodium iodide (or potassium iodide) as a iodating agent and phosphate methylesters is a good substitution method, the reaction conditions and productivity of methyl iodide can meet the requirements of both workshop and in-place tests of iodine adsorber, and the substitutes have little influence on the nuclear grade immersed activated carbon filled in the iodine adsorber. The substitution method can substitute the DMS method to prepare gaseous methyl iodide. (authors)

  20. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  1. Luminescent properties of calcium iodide crystals

    International Nuclear Information System (INIS)

    The influence of preparation conditions, temperature and X radiation on luminescent properties of calcium iodide scintillating crystals is studied, the results are provided. The results obtained when studying spectral characteristics of CaI2 and CaI2:H2 crystals in case of optical and X-ray excitation in the temperature range of 90-400 K, allowance made for data obtained when studying luminescent properties of calcium iodide crystals activated by Cl-, Br-, OH- and Ca2+ impurities, permit assumption that band 236 nm observed in excitation spectra of calcium iodide crystals can stem from noncontrolled hydrogen impurity. Luminescence of the crystals with the maximum in the range of 395 nm is assigned to radiation recombination of excitons localized on H- ions

  2. Adsorption of radioactive iodide by natural zeolites

    International Nuclear Information System (INIS)

    Two natural zeolites from Iranian deposits (clinoptilolite and natrolite) were characterized and their ability for adsorption of iodide from nuclear wastewaters was evaluated. The adsorption behavior was studied on natural and modified zeolites by γ-spectrometry using 131I as radiotracer. Adsorption isotherms and distribution coefficient (Kd) were measured. The results showed that clinoptilolite is a more promising zeolite for removal of iodide compared to natrolite. Furthermore, the adsorption was higher in silver, lead and thallium forms, whereas the lowest desorption was observed in lead modified zeolite. (author)

  3. The partitioning of iodides into steam

    International Nuclear Information System (INIS)

    In order to estimate the likely releases of radioactive iodine during steam generator tube rupture (SGTR) faults, it is necessary to know the relevant partition coefficients as a function of temperature and solution composition. It has been suggested previously that, under SGTR fault conditions, partitioning of free or ion-paired I- into the steam may be more extensive than that for molecular HI. This report uses available information on the partitioning of iodides and other salts to provide a means of estimating the partition coefficient of the iodide ion as a function of boric acid concentration and temperature. (author)

  4. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...... methyl radical show large normal KIE's up to 20 % per a-D. Large KIE's were found for the reaction of methyl iodide with sodium, for Pd-catalyzed reaction of methyl iodide with hydrogen, for ET at a platinum cathode, for ET from benzophenone ketyl or from sodium naphthalenide, for iron catalyzed ET from...... a Grignard reagent to methyl iodide, and for reduction of methyl iodide with tributyltin hydride or with gaseous hydrogen iodide. Very small KIE's were found for electron transfer to methyl iodide from magnesium in ether or from sodium in ammonia. The reason may be that these reactions are transport...

  5. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  6. Developments in mercuric iodide gamma ray imaging

    International Nuclear Information System (INIS)

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.)

  7. Developments in mercuric iodide gamma ray imaging

    Science.gov (United States)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    1989-11-01

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented.

  8. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.; Ortale, C.

    1987-01-01

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.

  9. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.; Ortale, C. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations)

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  10. Scintillator handbook with emphasis on cesium iodide

    Science.gov (United States)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  11. 21 CFR 184.1634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... ingredient meets the specifications of the “Food Chemicals Codex,” 3d Ed. (1981), pp. 246-247, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  12. Iodide-trapping defect of the thyroid

    International Nuclear Information System (INIS)

    We describe a grossly hypothyroid 50-year-old woman, mentally retarded since birth. On the basis of her history of recurrent goitre, absence of 131I neck uptake and a low saliva/plasma 131I ratio, congenital hypothyroidism due to a defect of the iodide-trapping mechanism was diagnosed. Other family members studied did not have the defect

  13. Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide

    OpenAIRE

    Yuzo Nakamura; Motohiro Fujiu; Tatsuya Murase; Yoshimitsu Itoh; Hiroki Serizawa; Kohsuke Aikawa; Koichi Mikami

    2013-01-01

    The trifluoromethylation of aryl iodides catalyzed by copper(I) salt with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide and Zn dust was accomplished. The catalytic reactions proceeded under mild reaction conditions, providing the corresponding aromatic trifluoromethylated products in moderate to high yields. The advantage of this method is that additives such as metal fluoride (MF), which are indispensable to activate silyl groups for transmetallation in the corresp...

  14. Determining Of Iodide Concentration In Salt Using Iodide Ion Selective Electrode

    International Nuclear Information System (INIS)

    There are various studies about the determination of iodide or iodinate in table salt samples. Iodo metric method (5), spectrophotometric method(8), gravimetric method (2), chromatographic method (6), differential potentiometric method (3).But with ion selective electrode technicality the determination of iodide in geothermal water was only determined. So, in this work, the concentration of iodide in control table salt, iodinate table salt samples were determination, using iodide ion selective electrode . Iodide calibration graph was plotted according to the standard method, and the results of control salt samples which contain a defined concentration of iodide, and known amount of ionic strength adjustment buffer, were compatible with the assigned values. The linearity and sensitivity of method were studied, the results were 50 mg.L-1 and 0.2 mg.L-1 respectively . While, when the method applied on iodinate table salt samples which contain a amount concentration of potassium iodate (KIO3), the results were inconsistent. So, we had to convert the KIO3 to I-1 with oxidation - reduction reaction. By using convenient reduction in acidic medium . Iodate calibration graph was plotted according to the last standard method, and the results of control iodinate table salt samples were good with relative standard deviation was 3 %. (author)

  15. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  16. ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MICHAEL R. ZALUTSKY

    2012-08-08

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At

  17. Transfer of the human sodium/iodide symporter gene enhances iodide uptake in melanoma cells

    International Nuclear Information System (INIS)

    Aim: Radioiodide therapy using 131I is effective for patients who have benign thyroid diseases or differentiated thyroid carcinoma. The transport of iodide across the cell membrane is mediated by the human sodium/iodide symporter (hNIS). To investigate the feasibility of 131I therapy for melanoma, we established melanoma cells stably expressing hNIS gene that can be modulated and studied in vivo and in vitro. Material and Methods: We transfected hNIS gene into a mouse melanoma cell line (B16) by electroporation. Iodide accumulation was assessed under various extracellular concentrations of sodium and iodide, and iodide efflux was also evaluated. Biodistribution and tumor imaging were studied using tumor-bearing mice. Results: We established a novel cell line B16-3 stably expressing the hNIS gene from B16. 125I uptake by B16-3 cells is between 6-17-fold that of B16 cells and 8-33-fold that of cell lines transduced with the eukaryotic expression vector pcDNA3 only. Iodide uptake was completely inhibited by 1mmol/L perchlorate and was dependent on external sodium and iodide concentrations. The velocity of iodide efflux from B16-3 cells was almost equal to that of FRTL-5 thyroid cells (T1/2 = 4min). In the biodistribution study using B16-3-xenografted mice, high tumor uptake of 131I was shown at 1 hour after injection, and tumor-to-normal tissue ratios were also high, except in the thyroid and stomach. However, the residual iodide in tumor lessened with time, reaching less than 3% at 24 h after injection. Conclusion: The transduction of he hNIS gene per se is sufficient to induce iodide transport in melanoma cells in vivo and in vitro. With regard to therapeutic application, however, further investigation is necessary to determine a method of maintaining radioiodide in the cells long enough to produce greater therapeutic effects

  18. Mercuric iodide X-ray camera

    Science.gov (United States)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  19. Mercuric iodide x-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs

  20. Mercuric iodide X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  1. Mercuric iodide x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1985-01-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs.

  2. Mercuric iodide X-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV

  3. Composition and properties of thallium mercury iodide

    Science.gov (United States)

    Kennedy, John H.; Schaupp, Christopher; Yang, Yuan; Zhang, Zhengming; Novinson, Thomas; Hoffard, Theresa

    1990-10-01

    Conflicting reports exist in the literature concerning the composition of thallium mercury iodide. Solid state synthesis with HgI 2 and TlI has been reported to give Tl 4HgI 6 while synthesis from solution has been reported to give Tl 2HgI 4. In this report we show that the "orange compound" precipitating from solution is actually a 1:1 mole ratio mixture of Tl 4HgI 6 and HgI 2. Pure Tl 4HgI 6, which is yellow, can be produced by heating the mixture at 100°C for several days to volatilize HgI 2 or more simply, by adding Tl(I) to a solution containing 2:1 KI:K 2HgI 4 to provide the additional iodide ions needed for Tl 4HgI 6. Tl 4HgI 6, unlike Ag 2HgI 4 and Cu 2HgI 4, has no sharp thermochromic changes and has no measurable ionic conductivity. This provides another example of the significant role the metal ion plans in determining structure and properties of metal mercury iodide compounds.

  4. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  5. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  6. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  7. Tritium and iodide diffusion through opalinus clay

    International Nuclear Information System (INIS)

    The International Mont Terri Project started in 1995 under the patronage of the Swiss National Hydrological and Geological Survey (SNHGS), and has the authorization of the Republique et Canton du Jura. The underground rock laboratory is located at the northwestern part of Switzerland (Canton Jura), in and beside the reconnaissance gallery of the Mont Terri motorway tunnel, one of the several tunnels of the A16 'Transjurane' motorway. The depth of overburden above the rock laboratory is approximately 300 meters. The project is aimed to investigate the geological, hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay for assessing the feasibility and safety of a repository for radioactive waste placed in this type of host rock. One of the issues under study is radionuclide migration by diffusion through clays. As a part of this investigation, an interlaboratory comparison on small-scale diffusion experiments was carried out by three research laboratories: AEA Technology (UK), SCK-CEN (Belgium) and CIEMAT (Spain). The radionuclides investigated were tritium and iodine. This paper concerns to the methodological approach and results of the experiments undertaken by CIEMAT. The effective diffusion coefficients were measured for tritiated water and iodine (as Γ), resulting larger for tritium [(1.7±0.4)x10-11 m2/s] than for iodide [(2.7±0.3)x10-12 m2/s]. The porosity available for diffusion was calculated by using the time-lag method, but some results seemed unrealistic and showed a large variability. In general, tritium exhibited higher values of porosity than iodide (17 to 26% and 12 to 17%, respectively), which were consistent with the anion exclusion affecting the distribution of iodide into the clay pores. Copyright (2001) Material Research Society

  8. Transfer of the human sodium/iodide symporter gene enhances iodide uptake in melanoma cells

    International Nuclear Information System (INIS)

    Objective: To obtain human sodium/iodide symporter (hNIS) cDNA and to study its biological property and potential use as a therapeutic radioiodide for melanoma. Methods: hNIS gene cDNA was amplified with total RNA from human thyroid tissue by RT-PCR. The hNIS cDNA was inserted into cloning vector pUCm-T and subcloned into eukaryotic expression vector pcDNA3. The recombinant plasmid pcDNA3-hNIS was introduced into B16 cells using the electroporation technique. The uptake and efflux of iodide was examined in vitro. Results: The cloned hNIS cDNA sequence was identical to the published sequence. Two novel cell lines named B16-A containing hNIS and B16-B containing pcDNA3 only were established. The resultant cell line B16-A accumulated 17 and 19 times more radioiodide in vitro than B16 and B16-B did, respectively. However the efflux of iodide from B16-A was also rapid ( T1/2=10 min). Conclusions: Our preliminary data indicate that the transduction of the hNIS gene per se is sufficient to induce iodide transport in melanoma cells in vitro, but its T1/2 is short. With regard to therapeutic application, however, further investigation is necessary so as to develop a method of maintaining more radioiodide in the cells for long enough to produce greater therapeutic effects

  9. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  10. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  11. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  12. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    Science.gov (United States)

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  13. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    Science.gov (United States)

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere. PMID:26745029

  14. Recent developments in thick mercuric iodide spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; van den Berg, L.

    1982-01-01

    Thick (approx. 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (approx. 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  15. Large-area mercuric iodide photodectors

    Science.gov (United States)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-07-01

    The limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection are discussed. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  16. Large-area mercuric iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-01-01

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI/sub 2/ photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  17. The addition of iodine to tetramethylammonium iodide

    Science.gov (United States)

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  18. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others

    1996-12-31

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  19. Novel mercuric iodide polycrystalline nuclear particles counters

    International Nuclear Information System (INIS)

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm2 and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm2 were produced by industrial ceramic equipment while the smaller ones, about 1 cm2 area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported

  20. Large-area mercuric iodide photodetectors

    International Nuclear Information System (INIS)

    This article discusses the limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers

  1. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.;

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  2. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  3. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Dithiazanine iodide oral dosage forms....

  4. Experimental research on performance of gaseous methyl iodide removal

    International Nuclear Information System (INIS)

    Under the circumstance of gaseous methyl iodide removal process in containment venting system, taking the deionized water and alkalescent sodium thiosulphate as absorber, the experimental researches on the performance of gaseous methyl iodide removal were carried out at different solution temperatures and concentrations. And the effects of two types of mechanisms, namely mass transfer and chemical reaction, on gaseous methyl iodide removal process were analyzed based on the experimental results. The research results show that at room temperature, the mass transfer mechanism plays a dominant role in gaseous methyl iodide removal process through the absorption of alkalescent sodium thiosulphate solution. Thus, the slow chemical reaction rate is the major factor that limits gaseous methyl iodide removal efficiency. With temperature increasing, the effect of chemical reaction is constantly enhanced in the methyl iodide removal process. However, the gas absorption process will get into an insensitive region when the reaction rate reaches to a certain point and the continuously enhancing chemical reaction rate will not greatly influence the removal efficiency. At that point, mass transfer performance becomes the major factor that limits gaseous methyl iodide removal process. The efficiency of gaseous methyl iodide removal can be further improved by necessary means of enhancing mass transfer process through increasing contact surface and so on. (authors)

  5. Dissolution of gaseous methyl iodide into aqueous sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Absorption process of gaseous methyl iodide by water or sodium hydroxide solutions was investigated using a semi-flow type experimental apparatus by measuring the concentration of all measurable chemical species in both the gas and the liquid phase. The experimental temperature ranged from 288 to 311 K and the gaseous methyl iodide and aqueous sodium hydroxide concentrations were approximately 0.6 x 10-3 to 7 x 10-3 and 0 to 0.2 mol/dm3, respectively. It is estimated that the dissolution of methyl iodide into the sodium hydroxide solution proceeds according to the following steps. Step (1) Methyl iodide in air dissolves physically into the aqueous phase. Physical dissolution process obeys Henry's law. Step (2) Methyl iodide dissolved into the aqueous phase is decomposed by a base catalytic hydrolysis and produces methyl alcohol and iodide ion. The equilibrium constants of physical dissolution were obtained from the steady concentration in both the gas and the liquid phases in the semi-flow type experiment because the hydrolysis reaction rate of methyl iodide is very slow in comparison with the physical dissolution in this experimental conditions. The obtained value of the standard heat of solution of methyl iodide into water was 7.2 kcal/mol. Salting-out effect was observed when the concentration of sodium hydroxide in the absorbent was over 0.01 mol/dm3. (auth.)

  6. Iodide sensing via electrochemical etching of ultrathin gold films

    International Nuclear Information System (INIS)

    Iodide is an essential element for humans and animals and insufficient intake is still a major problem. Affordable and accurate methods are required to quantify iodide concentrations in biological and environmental fluids. A simple and low cost sensing device is presented which is based on iodide induced electrochemical etching of ultrathin gold films. The sensitivity of resistance measurements to film thickness changes is increased by using films with a thickness smaller than the electron mean free path. The underlying mechanism is demonstrated by simultaneous cyclic voltammetry experiments and resistance change measurements in a buffer solution. Iodide sensing is conducted in buffer solutions as well as in lake water with limits of detection in the range of 1 μM (127 μg L−1) and 2 μM (254 μg L−1), respectively. In addition, nanoholes embedded in the thin films are tested for suitability of optical iodide sensing based on localized surface plasmon resonance. (paper)

  7. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  8. Carrier traps and transport in mercuric iodide

    Science.gov (United States)

    Schlesinger, T. E.; Bao, X. J.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1992-11-01

    Thermally stimulated current spectroscopy (TSC) was performed on a variety of mercuric iodide samples and detectors to determine the nature and origin of deep traps in this material. It is shown that the trap type and concentration is a function of the metal overlayer employed as a contact material. The energy barrier height as well as the type (electron or hole) of barrier at the metal/semiconductor interface has also been determined by internal photoemission measurements. When polarization effects are not present, as is the case in most Pd contacted samples, the barrier height can be accurately determined by this technique. A value of 1.05 eV was measured for a hole barrier at the Pd/Hgl 2 interface.

  9. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.

    2016-02-12

    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  10. Photoluminescence studies of impurities and defects in mercuric iodide

    International Nuclear Information System (INIS)

    The authors have studied the effects of chemical etching in potassium iodide(KI) aqueous solution, vacuum exposure and bulk heating on the photoluminescence(PL) spectra of mercuric iodide(HgI2). Different contact materials deposited onto HgI2 were also investigated, such as Pd, Cu, Al, Ni, Sn, In, Ag and Ta. These processing steps and the choice of a suitable electrode material are very important in the manufacturing of high-quality mercuric iodide nuclear detectors. Comparisons are made between the front surface photoluminescence and transmission photoluminescence spectra

  11. Electro regeneration of iodide loaded resin. Contributed Paper RD-18

    International Nuclear Information System (INIS)

    Spent resins generated in the nuclear reactor contain essentially cationic activities due to Cesium, Strontium, Cobalt, and anionic activities due to Iodide, Iodate etc with activity loading to the extent of 0.1 Cim-3 and a surface dose of the order of 5 R. It is necessary to convert the spent resin into innocuous, reusable forms. An attempt has been made to regenerate Iodide containing spent resin into OH- electrolytically by using the OH- produced at the cathode compartment of an electrolytic cell. Results show that the regeneration of the spent resin containing Iodide could be completely accomplished electrolytically more efficiently than by addition of alkali. (author)

  12. Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

    NARCIS (Netherlands)

    Smit, J.W.A.; Schröder - van der Elst, J.P.; Karperien, M.; Que, I.; Romijn, J.A.; Heide, van der D.

    2001-01-01

    The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (

  13. The Effect on Sodium/Iodide Symporter and Pendrin in Thyroid Colloid Retention Developed by Excess Iodide Intake.

    Science.gov (United States)

    Chen, Xiao-Yi; Lin, Chu-Hui; Yang, Li-Hua; Li, Wang-Gen; Zhang, Jin-Wei; Zheng, Wen-Wei; Wang, Xiang; Qian, Jiang; Huang, Jia-Luan; Lei, Yi-Xiong

    2016-07-01

    It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 μg/L), group B (1500 μg/L), group C (3000 μg/L), group D (6000 μg/L), and group E (12,000 μg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland. PMID:26660892

  14. Preparation and evaluation of mercuric iodide for crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, N.L.; Ortale, C.; Schieber, M.M.

    1988-01-01

    Large quantities, on the order of several hundred, of consistent, high quality mercuric iodide for crystal growth have not been commercially available. The hydrocarbon, anion, and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting materials was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of mercuric iodide preparation in batches of 3 kg using Hg(NO/sub 3/)/sub 2/ or HgCl/sub 2/and KI. Since these salts are produced in much larger quantities than mercuric iodide, more consistent quality is available. The impurity content of these batched and single crystals are compared. Some of the single crystals grown using the in-house prepared mercuric iodide have yielded a large number of spectroscopy grade nuclear radiation detectors. The influence of the major impuritites are discussed. 13 refs., 4 figs., 1 tab.

  15. Cesium iodide crystals fused to vacuum tube faceplates

    Science.gov (United States)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  16. Improved Stability of Mercuric Iodide Detectors for Anticoincidence Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize guard ring electrode structures and a new film growth technique to create improved polycrystalline mercuric iodide detectors for background...

  17. Kinetic determination of iodide by the oxidation reaction of benzidine with chloramine B

    International Nuclear Information System (INIS)

    Iodide catalyzed oxidation of benzidine with Chloramine B is studied for its possible application to kinetic determination of iodides. Based on the results of kinetic studies performed, optimal conditions for the catalytic reaction are revealed and a kinetic method for iodide determination is developed. The determination limit of iodide is 2x10-4 μg/ml. It was demonstrated that the proposed method can be used for the determination of iodides in water, soil, and kelp

  18. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  19. Processing {alpha}-mercuric iodide by zone refining

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Henderson, D.O.; Biao, Y.; Zhang, K.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1992-06-01

    An investigation is being conducted on zone refining {alpha}-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are segregated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone refined material, and the effects of the process on the performance of radiation detectors fabricated from {alpha}-mercuric iodide are being evaluated.

  20. A review of polytypism in lead iodide

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, P.A. [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania (United States)

    2010-05-15

    Lead Iodide (PbI{sub 2}) is an important inorganic solid for both basic scientific research and possible technological applications and in this brief review we discuss the structure of PbI{sub 2}. Although the basic structure is a simple I-Pb-I layered structure with a[PbI{sub 6}]{sup 4-} near-octahedron being the basic building block, there are many ways of stacking the layers which results in many polytypes. We present 20 of the 23 entries for the structure of PbI{sub 2} from the Inorganic Structural Database and order them by polytype. This represents more than 80 years of crystallographic research in the structure of this compound. We present a simple way to view the 2H, 4H, 6H, and 6R polytypes and extend the procedure to higher-order polytypes. We note a relationship, not generally appreciated, between the distortion of the near [PbI{sub 6}]{sup 4-} octahedrons and the polytype. We suggest that the significance of vacancies has only recently been appreciated. We suggest that small discrepancies in structure determination are probably due to different distributions of vacancies and that there are, in practice, very many structures for macroscopic or even mesoscopic samples of a given polytype when vacancies are considered. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Mercuric iodide photodetectors for scintillation spectroscopy

    International Nuclear Information System (INIS)

    We have measured the responses to 137Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-μmthick mercuric iodide (HgI2) photodetector, and a 1-cmdiam by 1-cm-thick CaWO4 scintillator coupled to a 1.3-cm-diam by 600-μm-thick HgI2 photodetector. Best spectral resolution to 137Cs was 7.8% FWHM for the NaI(Tl)-HgI2 and 12.5% FWHM for the CaWO4-HgI2 detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI2 detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal

  2. Mercuric iodide photodetectors for scintillation spectroscopy

    International Nuclear Information System (INIS)

    We have measured the responses to 137Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-μm-thick mercuric iodide (HgI2) photodetector, and a 1-cm-diam by 1-cm-thick CaWO4 scintillator coupled to a 1.3-cm-diam by 600-μm-thick HgI2 photodetector. Best spectral resolution to 137Cs was 7.8% FWHM for the NaI(Tl)-HgI2 and 12.5% FWHM for the CaWO4-HgI2 detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI2 detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal

  3. Mercuric iodide photodetectors for scintillation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Dabrowski, A.; Iwanczyk, J.; Ortale, C.; Schnepple, W.

    1985-02-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..mthick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cmdiam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  4. Mercuric iodide photodetectors for scintillation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1984-01-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..m-thick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cm-diam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  5. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration.

    Science.gov (United States)

    Serrano-Nascimento, Caroline; Calil-Silveira, Jamile; Nunes, Maria Tereza

    2010-04-01

    Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 microg/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid. PMID:20107044

  6. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    Science.gov (United States)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  7. Stability and in vivo behavior of Rh[16aneS4-diol]211At complex: A potential precursor for astatine radiopharmaceuticals

    International Nuclear Information System (INIS)

    Introduction: The heavy halogen 211At is of great interest for targeted radiotherapy because it decays by the emission of short-range, high-energy α-particles. However, many astatine compounds that have been synthesized are unstable in vivo, providing motivation for seeking other 211At labeling strategies. One relatively unexplored approach is to utilize prosthetic groups based on astatinated rhodium (III) complex stabilized with a tetrathioether macrocyclic ligand – Rh[16aneS4-diol]211At. The purpose of the current study was to evaluate the in vitro and in vivo stability of this complex in comparison to its iodine analog – Rh[16aneS4-diol]131I. Methods: Rh[16aneS4-diol]211At and Rh[16aneS4-diol]131I complexes were synthesized and purified by HPLC. The stability of both complexes was evaluated in vitro by incubation in phosphate-buffered saline (PBS) and human serum at different temperatures. The in vivo behavior of the two radiohalogenated complexes was assessed by a paired-label biodistribution study in normal Balb/c mice. Results: Both complexes were synthesized in high yield and purity. Almost no degradation was observed for Rh[16aneS4-diol]131I in PBS over a 72 h incubation. The astatinated analog exhibited good stability in PBS over 14 h. A slow decline in the percentage of intact complex was observed for both tracers in human serum. In the biodistribution study, retention of 211At in most tissues was higher than that of 131I at all time points, especially in spleen and lungs. Renal clearance of Rh[16aneS4-diol]211At and Rh[16aneS4-diol]131I predominated, with 84.1 ± 2.3% and 94.6 ± 0.9% of injected dose excreted via the urine at 4 h. Conclusions: The Rh[16aneS4-diol]211At complex might be useful for constructing prosthetic groups for the astatination of biomolecules and further studies are planned to evaluate this possibility

  8. Iodide kinetics and experimental I-131 therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line

    NARCIS (Netherlands)

    Smit, J.W.A.; Elst, van der J.P.; Karperien, M.; Que, I.; Stokkel, M.; Heide, van der D.; Romijn, J.A.

    2002-01-01

    Uptake of iodide is a prerequisite for radioiodide therapy in thyroid cancer. However, loss of iodide uptake is frequently observed in metastasized thyroid cancer, which may be explained by diminished expression of the human sodium-iodide symporter (hNIS). We studied whether transfection of hNIS int

  9. Methyl Iodide Formation Under Postulated Nuclear Reactor Accident Conditions

    International Nuclear Information System (INIS)

    The formation of methyl iodide under conditions of postulated nuclear reactor accidents is discussed. Although thermodynamic calculations indicate the equilibrium methyl iodide concentrations would be quite low, calculations based on a simple kinetic scheme involving reaction between small hydrocarbon species and iodine indicate that concentrations higher than equilibrium can occur during the course of the reaction. Such calculations were performed over a wide range of initial species concentrations and a range of temperatures representative of some reactor accident situations. These calculations suggest that little methyl iodide would be expected within the core volume where temperatures are maximum. As the gas leaves the core volume and expands into the plenum region, it cools and the concentration of methyl iodide increases. At the intermediate temperatures which might characterize this region, the formation of methyl iodide from thermally induced reactions could reach its maximum rate. The gas continues to cool, however, and it is probable that by the time it leaves the plenum region it has cooled to the point where thermally induced reactions may be of little importance. Although the thermally induced reactions will become slower as the gas expands and cools, the radiation-induced reactions will not be slowed to the same extent. The gases leaving the core carry fission products and hence a radiation source is available to initiate reaction by a temperature-independent process. An investigation of the radiation chemical formation and decomposition of methyl iodide in the presence of steam suggests that radiation-induced methyl iodide formation will generally be rapid under the postulated accident situations. Thus, in the plenum region where thermal reactions have become slow, the radiation-induced reaction can still proceed and may well become the dominant factor. The same situation probably pertains as well to the containment region. (author)

  10. Molecular imaging using sodium iodide symporter (NIS)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Je Yoel [School of Dentistry, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

  11. Molecular imaging using sodium iodide symporter (NIS)

    International Nuclear Information System (INIS)

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases

  12. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  13. Introduction of extrinsic defects into mercuric iodide during processing

    International Nuclear Information System (INIS)

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI2) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI2 has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance

  14. Introduction of extrinsic defects into mercuric iodide during processing

    Science.gov (United States)

    Hung, C.-Y.; Bao, X. J.; Schlesinger, T. E.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1993-05-01

    Low-temperature photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI2) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI2 has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  15. Modified purification of mercuric iodide for crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, N.L.; Ortale, C.; Schieber, M.M.; van den Berg, L.

    1988-01-01

    The standard procedure used in our laboratory to purify commercially available mercuric iodide consists of a sequence of steps: (1) repeated sublimation under continous evacuation, followed by (2) melting and recrystallization, and (3) a sublimation process in a closed tube. This paper describes a modification of the standard purification sequence by adding recrystallization of the mercuric iodide in hydrochloric acid. Leaching cation impurities out of mercuric iodide powder with hydrochloric acid has been practiced before by Zaletin, (V.M. Zaletin, I.H. Nozhiua, I.N. Fomin, V.T. Shystov, and N.V. Protasov, Atomic Energy 48, 169 (1980)). Our objective for the hydrochloric acid treatment was to remove nitrates and hydrocarbons which were interfering with the vapor transport during crystal growth. Results of the procedure are presented in terms of total carbon and selected ion content of the treated and untreated material. 13 refs., 8 figs., 3 tabs.

  16. Introduction of extrinsic defects into mercuric iodide during processing

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.; Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)); James, R.B. (Advanced Materials Research Division, Sandia National Laboratories, Livermore, California 94550 (United States)); Cheng, A.Y.; Ortale, C.; van den Berg, L. (EG G Energy Measurements, Incorporated, Goleta, California 93116 (United States))

    1993-05-01

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI[sub 2]) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI[sub 2] has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  17. Removal efficiency of organic iodide by silver-exchanged zeolite

    International Nuclear Information System (INIS)

    The removal efficiency of radioactive organic iodide generated under accident conditions at nuclear power plants or nuclear fuel cycle processes by silver-exchanged zeolite(AgX) was experimentally evaluated. First of all, adsorption capacities of various adsorbents such as activated carbon, zeocarbon and zeolite 13X as a function of process temperature were analyzed. Optimal operating condition for the removal of methyl iodide using AgX was suggested, based on silver-exchanged amounts and adsorption temperature. The effective removal efficiency of methyl iodide by AgX was obtained at conditions that the process temperature is in the range of 150 .deg. C to 200 .deg. C and the silver exchanged amount is about 10 wt%

  18. Adsorption of Gaseous Methyl Iodide by Active Carbons

    International Nuclear Information System (INIS)

    The impregnation of active carbons is known to be a useful means of improving the ability of these carbons to retain methyl iodide which might be formed during the accidental release of fission products from a reactor. Some basic work was done on both impregnated and unimpregnated materials, which involved: (a) the texture: (b) the reaction of Mel with the impregnants; (c) the adsorption of Mel on the carbons under dry and wet conditions at different temperatures. It was found that the carbons are highly microporous. A large part of this porosity disappears on impregnation with organic amine; These impregnants react chemically with the methyl iodide, which is thereby fixed on the carbon. For carbon which is impregnated with KI, a rapid exchange reaction takes place between the methyl iodide and KI under both dry and wet conditions. Consequently most of the iodine activity can be removed from the gas. (author)

  19. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  20. A novel peculiar mutation in the sodium/iodide symporter gene in spanish siblings with iodide transport defect.

    Science.gov (United States)

    Kosugi, Shinji; Okamoto, Hiroomi; Tamada, Aiko; Sanchez-Franco, F

    2002-08-01

    Previously, we reported two Spanish siblings with congenital hypothyroidism due to total failure of iodide transport. These were the only cases reported to date who received long-term iodide treatment over 10 yr. We examined the sodium/iodide symporter (NIS) gene of these patients. A large deletion was observed by long and accurate PCR using primers derived from introns 2 and 7 of the NIS gene. PCR-direct sequencing revealed a deletion of 6192 bases spanning from exon 3 to intron 7 and an inverted insertion of a 431-base fragment spanning from exon 5 to intron 5 of the NIS gene. The patients were homozygous for the mutation, and their mother was heterozygous. In the mutant, deletion of exons 3-7 was suggested by analysis using programs to predict exon/intron organization, resulting in an in-frame 182-amino acid deletion from Met(142) in the fourth transmembrane domain to Gln(323) in the fourth exoplasmic loop. The mutant showed no iodide uptake activity when transfected into COS-7 cells, confirming that the mutation was the direct cause of the iodide transport defect in these patients. Further, the mutant NIS protein was synthesized, but not properly expressed, on the cell surface, but was mostly accumulated in the cytoplasm, suggesting impaired targeting to the plasma membrane. PMID:12161518

  1. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer

    Science.gov (United States)

    Hartsough, Neal; Iwanczyk, Jan

    2009-01-01

    A film-growth process was developed for polycrystalline mercuric iodide that creates cost-effective, large-area detectors for high-energy charged-particle detection. A material, called a barrier film, is introduced onto the substrate before the normal mercuric iodide film growth process. The barrier film improves the quality of the normal film grown and enhances the adhesion between the film and the substrate. The films grown using this improved technique were found to have adequate signal-to-noise properties so that individual high-energy charged -particle interactions could be distinguished from noise, and thus, could be used to provide an anticoincidence veto function as desired.

  2. Depolymerization of Lignin in Wood with Molecular Hydrogen Iodide

    OpenAIRE

    Shevchenko, Sergey M.

    2000-01-01

    Depolymerization of lignin in wood with hydrogen iodide in a non-polar solvent is a selective, high-yield reaction that releases a diiodide of potential synthetic value into the solution. Finely milled wood (Douglas-fir, spruce, aspen, and sugarcane), was suspended in CDCl3 and treated with dry hydrogen iodide in a NMR tube. The yields and composition of the chloroform-soluble monomeric lignin depolymerization products, 1,3-diiodo-1-(4-hydroxyaryl)propanes, originated from guaiacyl (G), syrin...

  3. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  4. 21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide and piperazine citrate... § 520.763c Dithiazanine iodide and piperazine citrate suspension. (a) Specifications. Each milliliter of the drug contains 69 milligrams of dithiazanine iodide and 83 milligrams of piperazine base...

  5. Degradation of Methyl Iodide in Soil: Effects of Environmental Factors

    Science.gov (United States)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide, and its environmental fate following soil fumigation is of great concern. Experiments were conducted to investigate the effect of various environmental factors on the degradation rate of MeI in soil. The chem...

  6. Enthalpies of potassium iodide dissolution in isopropanol aqueous solutions

    International Nuclear Information System (INIS)

    At 298.15 K in air-tight microcalorimeter with isothermal shell enthalpies of potassium iodide dissolution in water and in water-isopropyl alcohol mixtures (5,10,20,30,50 and 70 mol.%) are measured. Dissolution enthalpies during infinite dilution in the above-mentioned mixed solvents are determined

  7. Iodide volatility under condition relevant to PWR steam generator faults

    International Nuclear Information System (INIS)

    The evaluation of iodine volatility during steam generator tube rupture (SGTR) is hampered by three factors: (i) lack of suitable plant data under fault conditions, (ii) lack of experimental data (mainly due to the difficulty of performing experiments under the conditions required) and (iii) uncertainty in theoretical methods to extrapolate experimental data to the required conditions. This report summarises methods of estimating the volatility of hydrogen iodide and iodide salts at the required conditions of temperature and pressure. A thermodynamic method has been used to estimate HI volatility and the density correlation method for iodide salt volatility. It is assumed throughout that it is more conservative to predict higher volatility. Consideration is given to two explanations of experiments carried out at Oak Ridge National Laboratory (ORNL) on the influence of boric acid concentration and pH on the volatility of radioiodine ostensibly under SGTR conditions: (i) the results have been interpreted in terms of reactions involving volatility of iodide salt/ion-pairs and complexation by boric acid in the gas phase and (ii) the possibility is explored that the observed results are due to the influence of oxidation leading to the formation of much more volatile iodine species. (author)

  8. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  9. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  10. Formation of organic iodides from containment paint ingredients caused by gamma irradiation

    International Nuclear Information System (INIS)

    The formation of volatile alkyl iodides other than methyl iodide during a serious nuclear reactor accident may have radiological significance. The hypothesis that radioactive alkyl iodides, other than methyl iodide, could form from paint solvents under the conditions of a serious nuclear accident in light water reactors (under boiling water reactor (BWR) and pressurised water reactor (PWR) conditions) was tested using stable elemental iodine, a gamma irradiator and gas chromatography equipment. It was found that methyl and isopropyl iodides were formed from the texanol ester, which is used in many modern water-based paints. Methyl, ethyl, propyl and butyl iodides were formed from a hydrocarbon solvent (white spirit) commonly used in paint products used in the past. These results suggest that further work on the formation and behaviour of the higher alkyl iodides (containing more than one carbon atom) under the conditions of a serious nuclear accident is justified. (author)

  11. A novel mutation in the sodium/iodide symporter gene in the largest family with iodide transport defect.

    Science.gov (United States)

    Kosugi, S; Bhayana, S; Dean, H J

    1999-09-01

    We previously reported nine children with an autosomally recessive form of congenital hypothyroidism due to an iodide transport defect in a large Hutterite family with extensive consanguinity living in central Canada. Since the original report, we have diagnosed congenital hypothyroidism by newborn TSH screening in 9 additional children from the family. We performed direct sequencing of the PCR products of each NIS (sodium/iodide symporter) gene exon with flanking introns amplified from genomic DNA extracted from peripheral blood cells of the patients. We identified a novel NIS gene mutation, G395R (Gly395-->Arg; GGA-->AGA), in 10 patients examined in the present study. All of the parents tested were heterozygous for the mutation, suggesting that the patients were homozygous. The mutation was located in the 10th transmembrane helix. Expression experiments by transfection of the mutant NIS complimentary DNA into COS-7 cells showed no perchlorate-sensitive iodide uptake, confirming that the mutation is the direct cause of the iodide transport defect in these patients. A patient who showed an intermediate saliva/serum technetium ratio (14.0; normal, > or = 20) and was considered to have a partial or less severe defect in the previous report (IX-24) did not have a NIS gene mutation. It is now possible to use gene diagnostics of this unique NIS mutation to identify patients with congenital hypothyroidism due to an iodide transport defect in this family and to determine the carrier state of potential parents for genetic counseling and arranging rapid and early diagnosis of their infants. PMID:10487695

  12. Mercuric iodide (HgI2) growth for nuclear detectors

    Science.gov (United States)

    Schnepple, W.

    1982-01-01

    The purpose of this investigation is to grow more-perfect mercuric iodide crystals in a low-gravity environment by taking advantage of diffusion-controlled growth conditions and by avoiding the problem of strain dislocations produced by the crystal's weight. This crystal has considerable practical importance as a sensitive gamma-ray detector and energy spectrometer that can operate at ambient temperature, as compared to presently available detectors that must be cooled to near liquid nitrogen temperatures. However, the performance of mercuric iodide crystals only rarely approaches the expected performance, presumably because some of the free electrical charges produced within the crystal are not collected at the electrodes, but instead remain trapped or immobilized at crystal defects. An efficient high atomic number semiconductor detector capable of operating at room temperature utilizing single HgI2 crystals offers a greater potential than existing detector technology.

  13. Development of the semiconductor detector of lead iodide

    International Nuclear Information System (INIS)

    Lead iodide (PbI2) crystal is one of the most promising semiconductor detectors to be operated at room temperature. It is a semiconductor with a wide band gap energy and high atomic numbers. The preparation of a detector crystal consists of the purification of starting material, in quartz ampoules, by zone refining technique and growth of crystals by Bridgman method. The ability to obtain high purity crystals containing a relatively low number of defects and the physical-chemistry characterization are necessary pre-requisites for the production of good quality radiation detectors. This work reports the lead iodide monocrystal purification and growth methods to obtain those crystals with appropriate characteristics for their application as radiation detectors. (author)

  14. Behaviour of organic iodides under pwr accident conditions

    International Nuclear Information System (INIS)

    Laboratory experiments were performed to study the behaviour of radioactive methyl iodide under PWR loss-of-coolant conditions. The pressure relief equipment consisted of an autoclave for simulating the primary circuit and of an expansion vessel for simulating the conditions after a rupture in the reactor coolant system. After pressure relief, the composition of the CH3sup(127/131)I-containing steam-air mixture within the expansion vessel was analysed at 80 0C over a period of 42 days. On the basis of the values measured and of data taken from the literature, both qualitative and quantitative assessments have been made as to the behaviour of radioactive methyl iodide in the event of loss-of-coolant accidents. (author)

  15. (1,2-Dicarba-closo-dodecaboranyltrimethylmethanaminium iodide

    Directory of Open Access Journals (Sweden)

    Jong-Dae Lee

    2011-08-01

    Full Text Available The title compound, [1-(CH33NCH2-1,2-C2B10H11]+·I− or C6H22B10N+·I−, was obtained by the reaction of (1,2-dicarba-closo-dodecaboranyldimethylmethanamine with methyl iodide. The asymmetric unit contains two iodide anions and two (o-carboranyltetramethylammonium cations. The bond lengths and angles in the carborane cage are within normal ranges, but the N—Cmethylene—Ccage angle is very large [120.2 (2°] because of repulsion between the carborane and tetramethylammonium units. In the crystal, ions are linked through C—H...I hydrogen bonds.

  16. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    International Nuclear Information System (INIS)

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  17. Recovery of thallium-activated sodium iodide detectors

    International Nuclear Information System (INIS)

    A method for recovery and treatment of sodium iodide thallium activated detectors, NaI(Tl), is described. Special techniques of polishing and mounting in a dry environment (relative humidity less than 10%) are applied. The resolution was determined and compared with that obtained with a new detector and the results showed that a typical 3' phi x 3' recovered detector had a performance very similar to that of a new one. (Author)

  18. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    OpenAIRE

    Viroj Wiwanitkit

    2011-01-01

    The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 19...

  19. Lead iodide perovskite light-emitting field-effect transistor

    OpenAIRE

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-eff...

  20. Radiative efficiency of lead iodide based perovskite solar cells

    OpenAIRE

    Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Snaith, Henry J.; Vladimir Dyakonov; Bolink, Henk J.

    2015-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a...

  1. Ionic transport in hybrid lead iodide perovskite solar cells

    OpenAIRE

    Eames, Christopher; Frost, Jarvist Moore; Piers R. F. Barnes; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH...

  2. Structural insight into iodide uptake by AFm phases.

    Science.gov (United States)

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V

    2012-04-01

    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I. PMID:22376086

  3. Growth of mercuric iodide single crystals from dimethylsulfoxide

    Science.gov (United States)

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  4. New applications for the zinc iodide-osmium tetroxide technique.

    OpenAIRE

    Dağdeviren, A; ALP, H.; Ors, U

    1994-01-01

    The zinc iodide-osmium tetroxide (ZIO) fixation/staining method was applied for neurocytological studies and also to examine several other tissue samples including epidermal Langerhans cells, blood and bone marrow cells and lymphoid tissue. Although precise specificity cannot be attributed to the staining reaction, interesting staining patterns for different cell types were observed by using one of the ZIO staining solutions. The significance of ZIO positivity is briefly discussed.

  5. Transport of Iodide Ion in Compacted Bentonite Containing Ag2O - 12111

    International Nuclear Information System (INIS)

    Observations of the transport of iodide through compacted bentonite containing Ag2O as additive and that without additive were made. Compacted bentonite samples with densities of 1.41 g/cm3 and 1.60 g/cm3 were used in the experiment. The amount of Ag2O added to the compacted bentonite was in the range of 0.0064 ∼ 0.0468 wt/wt%. Two diffusion solutions were used: one in which iodide ion was dissolved in demineralized water (pure iodide solution), and one in which iodide ion was dissolved in 0.1 M NaCl solution (0.1 M NaCl-iodide solution). Experimental results confirmed that iodide ion was transported by the diffusion process in the compacted bentonite containing Ag2O as well as in the compacted bentonite without Ag2O. The time-lag of diffusion of iodide ion in the compacted bentonite containing Ag2O is larger than that in the compacted bentonite without Ag2O. The increase of the time-lag of diffusion was observed in pure iodide ion solution as well as in 0.1 M NaCl-iodide solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag2O was smaller than in the compacted bentonite without Ag2O. The effective diffusion coefficient decreased as the amount of Ag2O in the compacted bentonite increased. (authors)

  6. The sodium iodide symporter: its implications for imaging and therapy

    International Nuclear Information System (INIS)

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal tissues, in particular lactating mammary gland. In addition to its key function in thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy as well as therapeutic radioiodine application in benign and malignant thyroid disease. NIS therefore represents one of the oldest targets for molecular imaging and therapy. Based on the effective administration of radioiodine that has been used for over 60 years in the management of follicular cell-derived thyroid cancer, cloning and characterization of the NIS gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer cells followed by therapeutic application of 131I or alternative radionuclides, including 188Re and 211At. In addition, the possibility of direct and non-invasive imaging of functional NIS expression by 123I- and 99mTc-scintigraphy or 124I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion, the dual role of NIS as diagnostic and therapeutic gene and the detection of extra-thyroidal endogenous NIS expression in breast cancer open promising perspectives in nuclear medicine and molecular oncology for diagnostic and therapeutic application of NIS outside the thyroid gland. (orig.)

  7. Synthesis and evaluation of iodide uptake inhibitors in thyroid gland

    International Nuclear Information System (INIS)

    This work was intended to discover small organic molecules acting as iodide uptake inhibitors in thyroid cells. These compounds can indeed be derivatized into biochemical probes for further characterization of proteins involved in iodide transport mechanisms. On the long term, these inhibitors also appear as attractive drug candidates for treatment of thyroid pathologies or radioprotection against iodine isotopes. A similar strategy was adopted for both of the two inhibitor families. First, we synthesized a chemical library of around 100 analogues; we measured their IC50 against iodide uptake in FRTL-5 cells to get structure-activity relationships. Absolute configuration of stereo-genic centers was also investigated, and a preferential stereochemistry was found to be responsible for activity. From this basis, around twenty 'second-generation' analogues were synthesized by combining fragments contributing to biological activity. Biological evaluation indicated that nine were very potent inhibitors, with IC50 ≤ 6 nM and satisfying physicochemical properties required for drug candidates. Finally, one photoactivatable biotinylated probe was developed in each family and used for photoaffinity labeling. Several specifically labeled proteins are still under identification and constitute new potential therapeutic targets. (author)

  8. Growth and luminescence properties of undoped strontium iodide crystals

    International Nuclear Information System (INIS)

    Highlights: •Undoped strontium iodide crystal with high optical quality was grown using the Bridgman method. •Metal impurities distribution throughout crystal boule was determined and discussed. •Reliable optical transmission spectrum of undoped strontium iodide crystal was obtained. •Luminescence properties for broad emission band at room temperature were studied. •The room temperature broad emission band was proposed to have an origin of self-trapped exciton. -- Abstract: High optical quality undoped strontium iodide crystal grown by using the Bridgman method was characterized. Crystal growth process was described and growth technical parameters were discussed. Impurity analysis of raw materials and as-grown crystal boule indicates that it is feasible to pre-purify the raw material by zone refining or recrystallization. Luminescence properties were studied by photoluminescence, radioluminescence, fluorescence decay time, and scintillation time response. As-grown crystal shows good optical transmittance with wavelength concerned and is transparent for its large Stoke shift, 540 nm peaked broad emission, which has a fluorescence decay time 494 ns at 300 K. The broad emission range from 350 nm to 800 nm was tentatively speculated to be intrinsic and have an origin of self-trapped exciton

  9. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the fluori

  10. Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Sébastien, E-mail: s.allard@curtin.edu.au; Gallard, Hervé

    2013-10-01

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO{sub 2}) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4–5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO{sub 2}. The effect of δ-MnO{sub 2}, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO{sub 2} leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine. Highlights: • Methyl iodide is formed when iodide, natural organic matter and MnO{sub 2} are in contact. • Iodide is oxidized to iodine by MnO{sub 2} which reacts with NOM already adsorbed on MnO{sub 2}. • High formation of methyl iodide was observed with pyruvate. • This abiotic mechanism could contribute to the input of iodine in the atmosphere. • This abiotic mechanism could impact the ozone layer in the troposphere.

  11. Abiotic formation of methyl iodide on synthetic birnessite: A mechanistic study

    International Nuclear Information System (INIS)

    Methyl iodide is a well-known volatile halogenated organic compound that contributes to the iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most methyl iodide sources derive from biological activity in oceans and soils with very few abiotic mechanisms proposed in the literature. In this study we report that synthetic manganese oxide (birnessite δ-MnO2) can catalyze the formation of methyl iodide in the presence of natural organic matter (NOM) and iodide. Methyl iodide formation was only observed at acidic pH (4–5) where iodide is oxidized to iodine and NOM is adsorbed on δ-MnO2. The effect of δ-MnO2, iodide and NOM concentrations, nature of NOM and ionic strength was investigated. High concentrations of methyl iodide were formed in experiments conducted with the model compound pyruvate. The Lewis acid property of δ-MnO2 leads to a polarization of the iodine molecule, and catalyzes the reaction with natural organic matter. As manganese oxides are strong oxidants and are ubiquitous in the environment, this mechanism could significantly contribute to the global atmospheric input of iodine. Highlights: • Methyl iodide is formed when iodide, natural organic matter and MnO2 are in contact. • Iodide is oxidized to iodine by MnO2 which reacts with NOM already adsorbed on MnO2. • High formation of methyl iodide was observed with pyruvate. • This abiotic mechanism could contribute to the input of iodine in the atmosphere. • This abiotic mechanism could impact the ozone layer in the troposphere

  12. Discovery of aryl-tri-fluoroborates as potent sodium/iodide sym-porter (NIS) inhibitors

    International Nuclear Information System (INIS)

    The structure-based design of sodium/iodide sym-porter (NIS) inhibitors identified new active compounds. The organo-tri-fluoroborate shown was found to inhibit iodide uptake with an IC50 value of 0.4 μM on rat-derived thyroid cells. The biological activity is rationalized by the presence of the BF3- ion as a minimal binding motif for substrate recognition at the iodide binding site. (authors)

  13. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    The natural diet of marine fish larvae, copepods, contain 60-350 mg I kg(-1), while live feed used in commercial hatcheries have iodine concentrations in the range of 1 mg kg(-1). Seawater is also considered to be an important source of iodine for marine fish. The question asked in this study is...... relative low levels of iodide (0-22 nM) and except for samples from one site; the levels of iodide and iodate were in agreement with previously published data. The uptake of iodide from seawater was measured by incubating Atlantic halibut larvae in water with a constant level of radioactive iodide (I-125...

  14. Expression of sodium-iodide symporter in thyroid gland tumors: immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bondarenko O.O.

    2009-01-01

    Full Text Available One of the key moments of radioiodine therapy, and also radioisotope diagnostics of cancers of a thyroid gland is ability of their cells to accumulate iodide. This ability is provided with activity of the specific transporter – sodium-iodide symporter. Our research has shown disorders of sodium-iodide symporter immunoexpression in all tumors of thyroid gland: from overexpression and absence of plasma membrane expression in differentiated carcinomas, up to weak or actually absent in low differentiated cancers and Hurtle-cells tumors. Thus, there is a prospect of application of the sodium-iodide symporter, as the prognostic marker of thyroid cancers.

  15. Experimental studies on removal of airborne fission products methyl iodide by sprays in containment

    International Nuclear Information System (INIS)

    For reducing the amount of fission products leaked to environment under accident conditions of PWR, the experimental studies on the removal of airborne fission products methyl iodide by sprays in containment was carried out on the basis of the theoretical work in a simulation facility. Inactive methyl iodide was used for the experiment so the experiment facility was simplified. A gas chromatography was employed to measure the aerosol concentration of methyl iodide. A series of experiments on the removal of methyl iodide by sprays under different temperatures and various chemical additives has been made. The experimental results are useful for rationally selecting parameters of containment spray system of PWR

  16. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  17. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    Science.gov (United States)

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  18. Mechanochromic and thermochromic luminescence of a copper iodide cluster.

    Science.gov (United States)

    Perruchas, Sandrine; Le Goff, Xavier F; Maron, Sébastien; Maurin, Isabelle; Guillen, François; Garcia, Alain; Gacoin, Thierry; Boilot, Jean-Pierre

    2010-08-18

    The mechanochromic and thermochromic luminescence properties of a molecular copper(I) iodide cluster formulated [Cu(4)I(4)(PPh(2)(CH(2)CH=CH(2)))(4)] are reported. Upon mechanical grinding in a mortar, its solid-state emission properties are drastically modified as well as its thermochromic behavior. This reversible phenomenon has been attributed to distortions in the crystal packing leading to modifications of the intermolecular interactions and thus of the [Cu(4)I(4)] cluster core geometry. Notably, modification of the Cu-Cu interactions seems to be involved in this phenomenon directly affecting the emissive properties of the cluster. PMID:20698644

  19. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja

    2010-06-01

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.

  20. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Felter, T.E.; Stulen, R.H. (Sandia National Labs., Livermore, CA (USA)); Schnepple, W.F.; Ortale, C.; Van den Berg, L. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations)

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T {approx equal} 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored. (orig.).

  1. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    Science.gov (United States)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Markakis, J. M.; Cheng, A. Y.; Ortale, C.

    1989-09-01

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  2. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    Science.gov (United States)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≈ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored.

  3. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    James, R.B. (Theoretical Division, Sandia National Laboratories, Livermore, California 94551-0969 (US)); Bao, X.J. (Theoretical Division, Sandia National Laboratories, Livermore, California 94551-0969 (US)); Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213); Markakis, J.M. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213); Cheng, A.Y. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213); Ortale, C. (EG G Energy Measurements, Inc., Goleta, California 93116)

    1989-09-15

    Mercuric-iodide (HgI{sub 2} ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI{sub 2} interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  4. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    International Nuclear Information System (INIS)

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse

  5. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    International Nuclear Information System (INIS)

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≅ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored. (orig.)

  6. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  7. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    OpenAIRE

    Baumann, A.; Tvingstedt, K.; Heiber, M. C.; Väth, S.; C. Momblona; H. J. Bolink; Dyakonov, V.

    2014-01-01

    We herein perform open circuit voltage decay (OCVD) measurements on methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70...

  8. Temperature dependent energy levels of methylammonium lead iodide perovskite

    International Nuclear Information System (INIS)

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature

  9. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  10. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis.

    Science.gov (United States)

    Wiwanitkit, Viroj

    2011-04-01

    The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks. PMID:21731865

  11. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks.

  12. Progress in tumor therapy with human sodium iodide symporter

    International Nuclear Information System (INIS)

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane protein that mediates active iodide transport into the thyroid gland and several extrathyroidal tissues, in particular the lactation mammary gland. Because of the cloning characterization of NIS, its key role in thyroid pathology and physiology could be investigated. The progress would be significant if the mechanisms of NIS expression in lactating mammary gland and breast cancer are elucidated, in which more than 80% of cases express endogenous NIS. In the future, two approaches could extend the use of radioiodide treatment to thyroid cancer and nonthyroidal cancer. One is by using the main mechanisms involving tumorous transformation to treat the tumor, based on the reinducing NIS expression in thyroid and cancer. The other is based on the application of NIS as a novel cytoreductive gene therapy strategy. NIS offers the unique advantage that it can be used both as a reporter and as a therapeutic gene, so that it is possible to image, monitor, and treat the tumor with radioiodide, just as in differentiated thyroid cancer. (authors)

  13. Polymorphic copper iodide clusters: insights into the mechanochromic luminescence properties.

    Science.gov (United States)

    Benito, Quentin; Le Goff, Xavier F; Maron, Sébastien; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Taulelle, Francis; Kahlal, Samia; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2014-08-13

    An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds. PMID:25076411

  14. Comparison of Germanium and Sodium Iodide: In Vivo Measurement Systems

    International Nuclear Information System (INIS)

    The experience several investigators have had with lithium-drifted germanium. Ge(Li), and lithium-drifted silicon, Si (Li), counting systems for in vivo measurements is compared with conventional scintillator detector systems in similar configurations. Measurements of plutonium and americium in lungs, other organs, and wounds using coaxial and planar-drift detectors are presented. A proposed large area planar Ge(Li) lung counter system is compared to two- and four-crystal sodium iodide counters (130 cm2 by 9 mm thick) currently used for uranium and plutonium lung measurements. A large Ge(Li) detector system being employed at Battelle-Northwest Laboratory to make whole-body measurements of radionuclide deposits in humans consists of four coaxial detectors, each 40 cm3 in volume (total 160 cm3). The individual detectors are enclosed in separate cryostats but mounted in a common 30 litre liquid nitrogen dewar of the ''chicken feeder'' design. The system is compared to the standard 23 cm diameter by 10 cm thick sodium iodide scintillator in the standard chair position. (author)

  15. Interruption with the Migration of Iodide by GR(CT)

    International Nuclear Information System (INIS)

    The purpose of this study is to understand the influence of green rust on the migration of iodide. GR(CT) would be major corrosion product of iron near the seawater or saline layer in underground. The GR(CT) may play an important role in the retardation of the iodide migration in a deep geological environment due to it's anionic exchange reaction. In underground radioactive waste repository, the corrosion of iron canisters would be proceed as follows; Fe(II) and/or Fe(III) dissolved from iron containers → Fe(II)(OH)2 and/or Fe(III)(OH)3 → Green rust → Lepidocrocite or Magnetite → Goetite etc. Generally, the green rust has known to exist in environments close to the Fe(Π)/Fe(ΠΙ) transition zone or between the oxidized layer and reduced layer in the underground. As anion exchanger and strong reducer, the green rusts can affect the migration of anions, reactions involving green rusts were poorly studied in relation to the safety assessment of radioactive waste repository

  16. Nonradiometric and radiometric testing of radioiodine sorbents using methyl iodide

    International Nuclear Information System (INIS)

    A nonradiometric test of adsorbents and adsorbers with normal methyl iodide (CH3127I) is desirable. Use of methyl radioiodide (CH3131I) requires special precautions and facilities and results in bed contamination. However, first it must be established to what extent the removal of CH3127I by adsorbents is indicative of the removal of CH3131I. An experimental apparatus was built and used to simultaneously measure the penetrations of CH3I molecules and the radioisotope in CH3131I through charcoal absorbent beds. Gas chromatography with electron capture detection was used to measure CH3I. Radioiodine was measured using charcoal traps within NaI scintillation well crystals. Real time (5-min interval) radioiodine measurement provided immediate penetration results directly comparable to the real time penetrations of methyl iodide. These penetrations were compared for typical charcoal adsorbents with these impregnants: (a) 5% KI3, (b) 5% KI3 + 2% TEDA, (c) 5% TEDA, and (d) metal salts (Whetlerite). Differences between CH3I and CH3131I penetrations observed for the two iodized charcoals were attributed to isotope exchange reactions. Equivalent penetrations were observed for non-iodized adsorbents and for iodized ones at initial time. First order rates were confirmed for reactions with TEDA and for isotope exchange. This was one more confirmation of the lack of a challenge concentration effect on efficiencies at low test bed loadings. In addition to other removal mechanisms, reversible physical adsorption was observed with all charcoals

  17. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    Science.gov (United States)

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  18. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters. (author)

  19. Advances of radioiodine therapy of tumor induced by sodium iodide symporter gene

    International Nuclear Information System (INIS)

    As a kind of membrane protein that mainly mediates iodide transport into thyroid follicular cells, sodium iodide symporter (NIS) plays a key role in radioiodine therapy of both thyroid and other cancers. Studies show that decreased NIS expression level or intracellular localization in thyroid carcinomas lead to low iodine uptake. So NIS gene therapy is a new method to overcome this problem. To be therapeutically effective, radioiodine has to be remained in the tumor cells for sufficient long time; this is still a problem which reduces therapeutic effect. It should increase iodide retention and decrease iodide efflux in tumor cells to optimize therapeutic scheme. This article reviews the studies on advances of radioiodine therapy of tumor induced by sodium iodide symporter gene. (authors)

  20. Recovery and separation for the trace amounts of iodide in PWR spent fuel

    International Nuclear Information System (INIS)

    An separation and recovery technique for iodide in spent pressurized water reactor (PWR) fuels has been established using a SIMFUEL simulated for spent PWR fuel. The spent PWR fuels were dissolved with mixture of nitric and hydrochloric acids(80; 20 mol%) which can oxidize iodide to iodate through dissolution process. Iodide in uranium matrix and co-exist fission products was separated and recovered by organic extraction of iodine with carbon tetrachloride and by back extraction of iodide with 0.1 M NaHSO3. Recovered iodide was measured using an ion chromatograph/shielding system available for analysis of radioactive materials. In practice, a spent PWR fuel whose burnup rate was 42,261 MWd/MtU was analyzed and then the relation between the burnup and the quantity of the fission products was compared to the calculated by burnup code, Origen 2

  1. Ultrasensitive iodide detection based on the resonance light scattering of histidine-stabilized gold nanoclusters

    International Nuclear Information System (INIS)

    We have developed a novel resonance light scattering (RLS) assay for the sensitive and selective determination of iodide. It is based on the use of histidine-stabilized gold nanoclusters (His-AuNCs) which undergo fusion and aggregation in the presence of iodide. The resulting enhancement in the intensity of RLS is proportional to the concentration of iodide in the 0.01 to 8.0 μM range, and the detection limit is as low as 1.8 nM at a signal-to-noise ratio of 3. This “turn-on” method is highly selective for iodide and not interfered by other ions commonly present. It was applied to the determination of iodide in (spiked) real water samples. (author)

  2. Iodine K-edge EXAFS analysis of iodide ion-cyclodextrin inclusion complexes in aqueous solution

    International Nuclear Information System (INIS)

    We study the structure of inclusion complexes of α-, β-, γ-cyclodextrin with mono-iodide ion in aqueous solution by means of iodine K-edge EXAFS spectroscopy. The analysis is based on the assumption that two kinds of iodide ions exist in KI-cyclodextrin aqueous solution i.e. hydrated mono-iodide ions and one-one mono-iodide-cyclodextrin inclusion complexes. In KI-α-cyclodextrin system, iodine K-edge EXAFS analyse show that the average coordination number of the oxygen atoms in water molecules in the first hydration shell decreases as the fraction of included ions increases. This result suggests that dehydration process accompanies the formation of the inclusion complex. This is not found in the case of β-cyclodextrin, indicating that in this case the iodide ions are included together with the whole first hydration shell.

  3. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  4. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid

    OpenAIRE

    Shohei Sase; Ryo Kakimoto; Ryutaro Kimura; Kei Goto

    2015-01-01

    A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D8]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the ...

  5. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for the oral administration of sodium iodide I... sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels... oral administration of sodium iodide I-131 requiring a written directive in quantities less than...

  6. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for the oral administration of sodium iodide I... Byproduct Material-Written Directive Required § 35.394 Training for the oral administration of sodium iodide... of sodium iodide I-131 requiring a written directive in quantities greater than 1.22...

  7. 76 FR 16770 - Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide...

    Science.gov (United States)

    2011-03-25

    ... AGENCY Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide... iodide) be suspended and cancelled. The Agency is posting this petition for public comment. Following the... Earthjustice requesting that all uses of iodomethane (methyl iodide) be suspended and cancelled. The Agency...

  8. Strawberry growers wavered over methyl iodide, feared public backlash

    Directory of Open Access Journals (Sweden)

    Julie Guthman

    2016-08-01

    Full Text Available Methyl iodide, once promoted as a suitable alternative to methyl bromide for soil fumigation in strawberry systems, was withdrawn from the market in 2012 after a contentious regulatory battle that revolved around its high toxicity. At the time of its withdrawal, Arysta LifeScience, the maker of the chemical, claimed that it was no longer economically viable. In this study, I investigated what made the chemical nonviable, with a specific focus on growers' nonadoption of it. Interviews with strawberry growers in the four top California strawberry-growing counties revealed that growers' decisions not to use it were primarily related to public disapproval, although the continued availability of methyl bromide and other fumigants played a contributing role by making adoption less urgent. The study results suggest that policies in place during the methyl bromide phaseout did not strongly encourage the development and extension of less toxic alternatives, which undermined the strawberry industry's position.

  9. Betaine potassium iodide dihydrate: a new compound of betaine

    International Nuclear Information System (INIS)

    Betaine potassium iodide dihydrate, [(CH3)3N+CH2COO-]2.KI.2H2O, BKI for short, is a new compound of the aminoacid betaine with a triclinic symmetry and the space group P1-bar at room temperature. The study of dielectric properties provided evidence for the existence of a structural phase transition occurring around 100 K. The spontaneous electric polarization is zero in both phases. A study of dielectric dispersion disclosed two relaxational modes with different relevance in the high and in the low temperature phases. The main features observed in BKI are consistently described by the Landau theory, by assuming a quadratic coupling between the primary order parameter and the electric polarization. (author). Letter-to-the-editor

  10. Incorporation of defects during processing of mercuric iodide detectors

    Science.gov (United States)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Stulen, R. H.; Ortale, C.; Cheng, A. Y.

    1990-07-01

    The effects of chemical etching in KI solution, heating, and vacuum exposures of HgI2 were individually studied by low-temperature photoluminescence (PL) spectroscopy. Each of these processing steps is important in the manufacturing of mercuric iodide detectors and may be responsible for the incorporation of carrier traps both in the near-surface region and in the bulk. The results of etching experiments showed that the near-surface region has a different defect structure than the bulk, which appears to result from iodine deficiency. Bulk heating at 100 °C also modifies the defect structure of the crystal. Vacuum exposure has an effect similar to chemical etching, but it does not cause significant degradation of the stoichiometry for recently KI-etched specimens. These studies suggest that some features in the PL spectra of HgI2 are associated with stoichiometry of the specimens.

  11. Electronic characterization of mercuric iodide gamma ray spectrometers

    International Nuclear Information System (INIS)

    During the past four years the yield of high resolution mercuric iodide (HgI2) gamma ray spectrometers produced at EG ampersand G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI2 synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI2 spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI2 surface, probably due to surface states formed prior to contact deposition

  12. Incorporation of defects during processing of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (USA)); James, R.B.; Stulen, R.H. (Theoretical Division, Sandia National Laboratories, Livermore, California 94450 (USA)); Ortale, C.; Cheng, A.Y. (EG G Energy Measurements, Inc., Goleta, California 93116 (USA))

    1990-07-01

    The effects of chemical etching in KI solution, heating, and vacuum exposures of HgI{sub 2} were individually studied by low-temperature photoluminescence (PL) spectroscopy. Each of these processing steps is important in the manufacturing of mercuric iodide detectors and may be responsible for the incorporation of carrier traps both in the near-surface region and in the bulk. The results of etching experiments showed that the near-surface region has a different defect structure than the bulk, which appears to result from iodine deficiency. Bulk heating at 100 {degree}C also modifies the defect structure of the crystal. Vacuum exposure has an effect similar to chemical etching, but it does not cause significant degradation of the stoichiometry for recently KI-etched specimens. These studies suggest that some features in the PL spectra of HgI{sub 2} are associated with stoichiometry of the specimens.

  13. Modified purification of mercuric iodide for crystal growth

    Science.gov (United States)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Van Den Berg, L.

    1988-06-01

    The standard procedure used in our laboratory to purify commercially available mercuric iodide (HgI 2) consists of a sequence of steps: (1) repeated sublimation under continuous evacuation, followed by (2) melting and recrystallization, and (3) a sublimation process in a closed tube. This paper describes a modification of the standard purification sequence by adding recrystallization of the HgI 2 in hydrochloric acid. Leaching cation impurities out of HgI 2 powder with hydrochloric acid has been practised before by Zaletin et al. Our objective for the hydrochloric acid treatment was to remove nitrates and hydrocarbons which were interfering with the vapor transport during crystal growth. Results of the procedure are presented in terms of total carbon and selected ion content of the treated and untreated material.

  14. Investigation of copper electrodes for mercuric iodide detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA (USA)); James, R.B.; Stulen, R.H. (Advanced Materials Division, Sandia National Laboratories, Livermore, CA (USA)); Ortale, C.; van den Berg, L. (EG G Energy Measurements, Inc., Goleta, CA (USA))

    1990-06-15

    Copper diffusion in mercuric iodide was studied by low-temperature photoluminescence (PL) spectroscopy and Auger electron spectroscopy. A broad radiative emission band at a wavelength of about 6720 A in the PL spectra was found to be related to Cu incorporation in the crystal. PL spectra obtained from surface doping experiments indicate that Cu is a rapid diffuser in HgI{sub 2} bulk material. Auger electron spectroscopy performed as a function of depth from the crystal surface confirms the rapid bulk diffusion process of Cu in HgI{sub 2}. Fabrication of HgI{sub 2} nuclear detectors with Cu electrodes indicates that Cu is not acceptable as an electrode material, which is consistent with the fact that it diffuses easily into the bulk crystal and introduces new radiative recombination centers.

  15. Investigation of copper electrodes for mercuric iodide detector applications

    Science.gov (United States)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Stulen, R. H.; Ortale, C.; van den Berg, L.

    1990-06-01

    Copper diffusion in mercuric iodide was studied by low-temperature photoluminescence (PL) spectroscopy and Auger electron spectroscopy. A broad radiative emission band at a wavelength of about 6720 Å in the PL spectra was found to be related to Cu incorporation in the crystal. PL spectra obtained from surface doping experiments indicate that Cu is a rapid diffuser in HgI2 bulk material. Auger electron spectroscopy performed as a function of depth from the crystal surface confirms the rapid bulk diffusion process of Cu in HgI2. Fabrication of HgI2 nuclear detectors with Cu electrodes indicates that Cu is not acceptable as an electrode material, which is consistent with the fact that it diffuses easily into the bulk crystal and introduces new radiative recombination centers.

  16. Photon recycling in lead iodide perovskite solar cells

    Science.gov (United States)

    Pazos-Outón, Luis M.; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M.; Crespo-Quesada, Micaela; Abdi-Jalebi, Mojtaba; Beeson, Harry J.; Vrućinić, Milan; Alsari, Mejd; Snaith, Henry J.; Ehrler, Bruno; Friend, Richard H.; Deschler, Felix

    2016-03-01

    Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

  17. Development of mercuric iodide detectors for XAS and XRD measurements

    International Nuclear Information System (INIS)

    A prototype element for an energy dispersive detector (EDD) array was constructed using a Mercuric Iodide detector. Both detector and front end FET could be thermoelectrically cooled. Tested at SSRL, the detector had 250 eV electronic noise and 315 eV resolution at 5.9 keV. K line fluorescence spectra were collected for selected elements between Cl (2622 eV) and Zn (8638 eV). Count rate capability to 60,000 cps was demonstrated. Several detector parameters were measured, including energy linearity, resolution vs. shaping time, and detector dead time. An EXAFS (extended x-ray absorption fine structure) spectrum was recorded and compared to simultaneously collected transmission data

  18. Polarographic determination of indium and thallium iodides in phosphor tablets

    International Nuclear Information System (INIS)

    The technique of polarographic determination of indium and thallium iodides in phosphor tablets without preliminary separation of elements was developed. Mercury-dropping electrode was used as an indicator, and saturated calomel electrode was used as an auxiliary electrode. A recording of reduction currents was performed in the potential interval from -0.25 up to 1.15 V at potential sweep speed of 200 mV/min. Optimum conditions of sample acidic decomposition and polarography were presented. A solution of ethylene diamine (0.5 M), of ammonia (0.25 M) and of potassium chloride (0.05 M) served as a background electrolyte. The suggested technique allows one to determine component contents in tablets with a satisfactory accuracy. A period of one tablet analysis constitutes 1.5 h

  19. Investigation of sodium iodide hydration and dehydration in moist atmosphere

    International Nuclear Information System (INIS)

    Effect of different factors on NaI hydration and dehydration kinetics under nonequilibrium conditions is studied. NaIx2H2O solid or homogeneous solution is established to be formed at sodium iodide interaction with water vapour depending on air humidity. At low humidity water absorption is not observed. Effect of water vapour pressure, the NaI particle size, the air flux rate over a salt on the absorption rate is studied. The latter points to process rate limitation by diffusion in a gaseous phase. The NaI solution decomposition at light with iodine formation is marked. The character of NaIx2H2O dehydration depends on water vapour removing from the over-salt space. Total water removing before and after crystal hydrate thermal degradation when aqueous solution evaporation occurs, is possible. At 143 deg C the water vapour pressure over solution equals the atmospheric one

  20. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    International Nuclear Information System (INIS)

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 deg. C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  1. Rapid sonochemical preparation of shape-selective lead iodide

    International Nuclear Information System (INIS)

    Graphical abstract: SEM morphologies of various PbI2 products obtained with the iodine concentration of 6.7 g/L and irradiation time of 1 minute at the reaction temperatures of 35 °C (a), 25 °C (b), and 15 °C (c). Highlights: ► PbI2 with various morphologies were rapidly formed at room temperature. ► We could well control the morphologies of PbI2 by changing reaction conditions. ► The PbI2 films could better resist rolling in a liquid media. -- Abstract: Lead iodide (PbI2) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI2 crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI2 films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.

  2. Ambient synthesis and optoelectronic properties of copper iodide semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: A simple chemical route to prepare crystalline γ-phase copper iodide semiconductor. Highlights: ► A new facile technique is developed to synthesize CuI semiconductor nanoparticles. ► As prepared material is highly crystalline γ-phase and visible fluorescent. ► It exhibits good electrical conductivity ∼10−4 (Ω cm)−1. ► Strong quantum confinement is observed, 22 nm size shows band gap shift of 1.7 eV. ► The γ-phase is thermodynamically more stable. -- Abstract: Electrically conducting copper iodide (CuI) nanoparticles have been synthesized at room temperature via a simple single step chemical route, using ethyl alcohol as a solvent. The resulting material was characterized by X-ray diffraction, differential scanning calorimetry, optical absorption, photoluminescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy and high resolution transmission electron microscopy to assess the quality of these semiconductor nanoparticles. Thin film was deposited on copper substrate that was used to investigate temperature dependent electrical conductivity. These investigations confirm that the material is semiconductor having a negative temperature coefficient of resistivity. Thermal analysis and X-ray diffraction studies reveal that it is of low temperature γ phase. Energy-dispersive X-ray spectroscopy measurements confirm the stoichiometry of as prepared material. The shift in optical absorption edge towards lower wavelength region (Eg ∼ 4.77 eV) as compared to its bulk absorption indicates that a decrease in particle size has a significant effect. Photoluminescence peak observed at 2.90 eV is unique to its material property. These optoelectronic properties of CuI will be helpful in the development of future electronic devices

  3. Evaluation of quaternary ammonium halides for removal of methyl iodide from flowing air streams

    International Nuclear Information System (INIS)

    The quaternary ammonium halides of several tertiary amines were used as impregnants on activated carbon and were tested for methyl iodide penetration in accordance with test Method A, ASTM D3803, 1979, ''Standard Test Methods for Radio-iodine Testing of Nuclear Grade Gas Phase Adsorbents''. The results suggest that the primary removal mechanism for methyl iodide-131 is isotopic exchange with the quaternary ammonium halide. For example, a 5 wt% impregnation of each of the tetramethyl, tetraethyl, tetrapropyl and tetrabutyl ammonium iodides on activated carbon yielded percent penetrations of 0.47, 0.53, 0.78, and 0.08 respectively when tested according to Method A of ASTM D3803. A sample impregnated with 5% tetramethyl ammonium hydroxide gave a methyl iodide penetration of 64.87%, thus supporting the isotopic exchange mechanism for removal. It has been a generally held belief that the success of tertiary amines as impregnants for radioiodine removal is a result of their ability to complex with the methyl iodide. The results of the work indicates that the superiority of the tertiary amines similar to triethylene diamine and quinuclidine, when compared to their straight chain analogs, is a result of their ease in reacting with methyl iodide-127 to form the quaternary ammonium iodide followed by isotopic exchange

  4. In Vivo Evaluation of Transdermal Iodide Microemulsion for Treating Iodine Deficiency Using Sprague Dawley Rats.

    Science.gov (United States)

    Alayoubi, Alaadin; Sullivan, Ryan D; Lou, Hao; Patel, Hemlata; Mandrell, Timothy; Helms, Richard; Almoazen, Hassan

    2016-06-01

    The objective of this study was to evaluate the transdermal efficiency of iodide microemulsion in treating iodine deficiency using rats as an animal model. Animals were fed either iodine-deficient diet (20 μg/kg iodide) or control diet (200 μg/kg iodide) over a 17-month period. At month 14, iodide microemulsion was applied topically in iodine-deficient group and physiological evaluations of thyroid gland functions were characterized by monitoring the thyroid hormones (T3, T4), thyroid-stimulating hormone (TSH), iodide ion excretion in urine, and the overall rat body weights in both groups. Moreover, morphological evaluations of thyroid gland before and after treatment were performed by ultrasound imaging and through histological assessment. Prior to microemulsion treatment, the levels of T3, T4, and TSH in iodine-deficient group were statistically significant as compared to that in the control group. The levels of T3 and T4 increased while TSH level decreased significantly in iodine-deficient group within the first 4 weeks of treatment. After treatment, iodide concentration in urine increased significantly. There was no statistical difference in weight between the two groups. Ultrasound imaging and histological evaluations showed evidence of hyperplasia in iodine-deficient group. Topical iodide microemulsion has shown a promising potential as a novel delivery system to treat iodine deficiency. PMID:26288943

  5. An Investigation of Diffusion of Iodide Ion in Compacted Bentonite Containing Ag2O

    International Nuclear Information System (INIS)

    In the compacted bentonite containing Ag2O, the transport of iodide ion was investigated by Through-diffusion method. It is confirmed that Iodide ion is transported by diffusion process in the compacted bentonite containing Ag2O as well as in the compacted bentonite without Ag2O. However, the lag-time of iodide ion in the compacted bentonite containing Ag2O is larger than that in the compacted bentonite without Ag2O. The increase of the lag-time was observed in pure iodide ion solution and also in 0.1M NaCl-iodide ion solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag2O has lower value than that in the compacted bentonite without Ag2O. The effect of Ag2O on the effective diffusion coefficient was not clearly investigated in the compacted bentonite containing Ag2O while the values of effective diffusion coefficient of iodide ion in the compacted bentonite without Ag2O obtained in this study were similar to those in the compacted bentonite reported in the literature

  6. Spectrophotometric determination of trace quantities of iodide after separation from large quantities of bromide, chloride, or sulfate by solvent extraction

    International Nuclear Information System (INIS)

    Iodide solutions were reacted with 2,4,6-triphenylpyrylium bisulfate to yield the triphenylpyrylium iodide which was extracted with chloroform and spectrophotometrically determined. The interference from perchlorate, bromide, chloride, and sulfate ions on the iodide determination was evaluated. An analytical procedure for the determination of iodide present as the iodate was developed using sodium sulfite to reduce the iodate to iodide. The use of this method for the determination of KI in commercial iodized salt gave results comparable to those obtained by the AOAC iodometric method. (U.S.)

  7. Effects of Excess Fluoride and Iodide on Thyroid Function and Morphology.

    Science.gov (United States)

    Jiang, Yaqiu; Guo, Xiujuan; Sun, Qiuyan; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    Exposure to high levels of iodide in Cangzhou, Shandong Province, China has been associated with increased incidence of thyroid disease; however, whether fluoride can affect the thyroid remains controversial. To investigate the effects of excess fluoride, we evaluated thyroid gland structure and function in rats exposed to fluoride and iodide, either alone or in combination. Five-week-old Wistar rats (n = 160 total) were randomly divided into eight groups: three groups that were given excess fluoride (15, 30, or 60 ppm F); one group given excess iodide (1200 μg/L I); three groups given excess iodide plus fluoride (1200 μg/L I plus 15, 30, or 60 ppm F); and one control group. The serum concentrations of the thyroid hormones TT3 and TT4 on day 150 were significantly reduced for certain fluoride groups; however, no significant differences were observed in concentrations for the pituitary hormone TSH among any groups. Hematoxylin and eosin staining revealed that iodide causes an increase in the areas of the colloid lumens and a decrease in the diameters of epithelial cells and nuclei; however, fluoride causes an increase in nuclear diameters. The damage to follicular epithelial cells upon fluoride or iodide treatment was easily observed by transmission electron microscopy, but the effects were most dramatic upon treatment with both fluoride and iodide. These results suggest that iodide causes the most damage but that fluoride can promote specific changes in the function and morphology of the thyroid, either alone or in combination with iodide. PMID:26319807

  8. Permeability of iodide in multilamellar liposomes modeled by two compartments and a reservoir.

    Science.gov (United States)

    Schullery, S E

    1977-07-14

    A previously published rate law for the diffusion of iodide from multilamellar egg phosphatidylcholine liposomes (Schullery, S.E. (1975) Chem. Phys. Lipids 14, 49-58) is fitted to the relatively simple mathematical model of two compartments in series with a reservoir. All of the inner liposome compartments are assumed to behave as effectively one compartment in series with the liposome's outermost compartment. Based on this model, reasonable values are calculated for the fraction of the total solution trapped by liposomes which is in the outermost liposome compartment, 17%, and the permeability coefficient of iodide against isotonic, mixed iodide-chloride solution, 2-10(-9) cm/s. PMID:884087

  9. Thyroglobulin in smoking mothers and their newborns at delivery suggests autoregulation of placental iodide transport overcoming thiocyanate inhibition

    DEFF Research Database (Denmark)

    Andersen, Stine L; Backman Nøhr, Susanne; Wu, Chun S; Olsen, Jørn; Pedersen, Klaus M; Laurberg, Peter

    2013-01-01

    BACKGROUND: Placental transport of iodide is required for fetal thyroid hormone production. The sodium iodide symporter (NIS) mediates active iodide transport into the thyroid and the lactating mammary gland and is also present in placenta. NIS is competitively inhibited by thiocyanate from...... maternal smoking, but compensatory autoregulation of iodide transport differs between organs. The extent of autoregulation of placental iodide transport remains to be clarified. OBJECTIVE: To compare the impact of maternal smoking on thyroglobulin (Tg) levels in maternal serum at delivery and in cord serum......: Maternal smoking increased the degree of iodine deficiency in parallel in the mother and the fetus, as reflected by increased Tg levels. However, placental iodide transport seemed unaffected despite high thiocyanate levels, suggesting that thiocyanate-insensitive iodide transporters alternative to NIS are...

  10. Durable donor engraftment after radioimmunotherapy using α-emitter astatine-211-labeled anti-CD45 antibody for conditioning in allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Chen, Yun; Kornblit, Brian; Hamlin, Donald K; Sale, George E; Santos, Erlinda B; Wilbur, D Scott; Storer, Barry E; Storb, Rainer; Sandmaier, Brenda M

    2012-02-01

    To reduce toxicity associated with external γ-beam radiation, we investigated radioimmunotherapy with an anti-CD45 mAb labeled with the α-emitter, astatine-211 ((211)At), as a conditioning regimen in dog leukocyte antigen-identical hematopoietic cell transplantation (HCT). Dose-finding studies in 6 dogs treated with 100 to 618 μCi/kg (211)At-labeled anti-CD45 mAb (0.5 mg/kg) without HCT rescue demonstrated dose-dependent myelosuppression with subsequent autologous recovery, and transient liver toxicity in dogs treated with (211)At doses less than or equal to 405 μCi/kg. Higher doses of (211)At induced clinical liver failure. Subsequently, 8 dogs were conditioned with 155 to 625 μCi/kg (211)At-labeled anti-CD45 mAb (0.5 mg/kg) before HCT with dog leukocyte antigen-identical bone marrow followed by a short course of cyclosporine and mycophenolate mofetil immunosuppression. Neutropenia (1-146 cells/μL), lymphopenia (0-270 cells/μL), and thrombocytopenia (1500-6560 platelets/μL) with prompt recovery was observed. Seven dogs had long-term donor mononuclear cell chimerism (19%-58%), whereas 1 dog treated with the lowest (211)At dose (155 μCi/kg) had low donor mononuclear cell chimerism (5%). At the end of follow-up (18-53 weeks), only transient liver toxicity and no renal toxicity had been observed. In conclusion, conditioning with (211)At-labeled anti-CD45 mAb is safe and efficacious and provides a platform for future clinical trials of nonmyeloablative transplantation with radioimmunotherapy-based conditioning. PMID:22134165

  11. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    International Nuclear Information System (INIS)

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  12. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S. [Extremadura Univ., Badajoz (Spain). Dept. de Fisica Aplicada

    2011-02-15

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  13. Production of 131-I iodide capsules in Argentina

    International Nuclear Information System (INIS)

    It is well known that 131I iodide capsules are better suited to be taken by the patient than the corresponding solution. Therefore most Pharmacopeias have monographs for 131I in both pharmaceutical forms: solution or capsules, for diagnosis but principally for therapeutic purposes. In Argentina this radiopharmaceutical has been made commercially available in November 2007. At this time Bacon Laboratories SAIC started its production, authorized by the Health and Nuclear Regulatory Authorities. 131I, in the pharmaceutical form of capsules, have evident advantages in radioprotection for the patients and the personnel involved in its administration. The intake of a 131I provokes frequently that the external part of the mouth (principally if there is a beard and/or a moustache) undergoes an external contamination. This problem is enhanced if the patient has some motor difficulties to take the glass with the solution. In this case he will need assistance from the medical or technical staff, who will receive a much greater radiation dose than in normal cases. In the capsule of 131I iodide, the solution is adsorbed on a sodium phosphate matrix. The capsule is in a plastic tube contained in an appropriate lead shielding. To take the capsule, the patient inclines the open lead shielding containing the capsule in the direction of the mouth. Once the capsule is in the mouth it is swallowed with a little portion of water. After its intake, the radiopharmaceutical is absorbed from the gastrointestinal tract. If a patient is unable to carry out the intake, the assistance by medical or technical staff is easy with practically no radiation harm, since the 131I is shielded by an adequate lead thickness. It is evident that the hands and external face of the patient are also protected since no possibility of contamination exists. The aim of this work is to present the production procedure, the packaging of the capsules and the decrease of the dose received by the involved personnel

  14. Recovery of iodide ions from geothermal water with silica with grafted alkylammonium groups

    International Nuclear Information System (INIS)

    Effect of a number of factors (time of contact and mass ratio of phases, acidity and temperature of the medium, concentrations of macro components of geothermal water) on the sorption recovery of iodide ions with 3-(octadecyldimethylammonium)propylsilica and 3-(trimethylammonium)propylsilica from aqueous solutions was studied. Sorption isotherms were discussed. The possibility of using 3-(octadecyldimethylammonium)-propylsilica for recovery of iodide ions from highly mineralized geothermal water was analyzed

  15. Activity coefficients of ferrocenium iodide in aqueous-organic salt solutions

    International Nuclear Information System (INIS)

    Values of electrode potentials were obtained by the method of potentiometric titration at 298.2 K, the standard values of emf and unified activity coefficients of ferrocenium iodide in water-acetone and water-ethanol solvents of different salt composition being calculated. It is shown that interaction of ferrocenium (Fc+) with iodide can occur with formation of two forms of complexes, i.e. [Fc+I-] and [Fc+I2]-

  16. Regioselective conversion of primary alcohols into iodides in unprotected methyl furanosides and pyranosides

    DEFF Research Database (Denmark)

    Skaanderup, Philip Robert; Poulsen, Carina Storm; Hyldtoft, Lene; Jørgensen, Malene R.; Madsen, Robert

    Two methods are described for the regioselective displacement of the primary hydroxy group in methyl glycosides with iodide. The first method is a modification of a literature procedure employing triphenylphosphine and iodine, where purification has been carried out on a reverse phase column in...... and substitution with iodide can be carried out in a one-pot process. Protection of the iodoglycosides is also described either by benzylation with benzyl trichloroacetimidate or silylation with triethylsilyl chloride....

  17. Optimization of mercuric iodide platelets growth by the polymer controlled vapor transport method

    OpenAIRE

    Fornaro L.; Mussio L.; Köncke M.; Luchini L.; Saucedo E.; Rivoir A.; Quagliata E.

    1999-01-01

    Mercuric iodide crystals in their platelet habit were grown by the polymer controlled vapor transport method. Mercuric iodide 99% in purity was sublimated at temperatures about 122 - 126 °C and vacuum conditions (10-5 mmHg), after selecting an appropriate polymer. Temperature profiles and experimental heat transfer models were determined for two growth furnaces using different insulator configurations for the cold extreme (air, ceramic wool, grilon, copper and ceramic wool). Growth conditions...

  18. Extending the C-V method of establishing MIS detector quality to mercuric iodide radiation detectors

    International Nuclear Information System (INIS)

    It has been observed that mercuric iodide capacitance measurements provide good indication about the quality of the crystal and its suitability as a room temperature radiation detector. Such capacitance / voltage measurements show a peak at low frequency. The sharpness of the peak is proportional to the quality of the crystal, and the peak is very similar to metal insulator semiconductor (MIS) capacitance curves. The paper proposes a model for the mercuric iodide capacitance. (author)

  19. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    Science.gov (United States)

    Cross, Eilene S.; Buffleben, George; Soria, Ed; James, Ralph; Schieber, Michael; Natarajan, Raj; Gerrish, Vern

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS), Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) and Gas Chromatography/Mass Spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper will discuss the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels.

  20. Critical Evaluation of Acetylthiocholine Iodide and Acetylthiocholine Chloride as Substrates for Amperometric Biosensors Based on Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Gabriel-Lucian Radu

    2013-01-01

    Full Text Available Numerous amperometric biosensors have been developed for the fast analysis of neurotoxic insecticides based on inhibition of cholinesterase (AChE. The analytical signal is quantified by the oxidation of the thiocholine that is produced enzymatically by the hydrolysis of the acetylthiocholine pseudosubstrate. The pseudosubstrate is a cation and it is associated with chloride or iodide as corresponding anion to form a salt. The iodide salt is cheaper, but it is electrochemically active and consequently more difficult to use in electrochemical analytical devices. We investigate the possibility of using acetylthiocholine iodide as pseudosubstrate for amperometric detection. Our investigation demonstrates that operational conditions for any amperometric biosensor that use acetylthiocholine iodide must be thoroughly optimized to avoid false analytical signals or a reduced sensitivity. The working overpotential determined for different screen-printed electrodes was: carbon-nanotubes (360 mV, platinum (560 mV, gold (370 mV, based on a catalytic effect of iodide or cobalt phthalocyanine (110 mV, but with a significant reduced sensitivity in the presence of iodide anions.

  1. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism

    International Nuclear Information System (INIS)

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrient, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen

  2. Novel Si-tripodand functionalized ionic liquids as iodide sources for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Novel ionic liquids with iodide anions and functionalized with silicon tripodand centers have been synthesized and tested as iodide sources for dye sensitized solar cells, 1-methyl-3-(3-(trimethoxysilyl)propyl)imidazolium iodide 3a, 1-methyl-3-(3-(tris(2-methoxyethoxy)silyl)propyl)imidazolium iodide 3b, and 1-methyl-3-(3-(tris(2-(2-methoxyethoxy)ethoxy)silyl)propyl)imidazolium iodide 3c. The compounds have been proved to be thermally and electrochemically stable, as evidenced by thermogravimetry and linear sweep voltammetry on platinum. Specific conductivities at 25 °C of pure ionic liquids are of the order of 10−4 S cm−1 and show little dependence on the length of oxaethylene chains. Conductivities rise to nearly 10−2 S cm−1 for the electrolytes prepared on their bases as a result of viscosity decrease. Model dye-sensitized solar cells show appreciable conversion efficiencies, reaching a maximum value of 5.08% for the electrolyte with 3b as iodide source. Electrochemical impedance spectroscopy measurements revealed high resistance associated with electron recombination on the interface of TiO2/dye/electrolyte and important contribution of electrolyte diffusion

  3. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    International Nuclear Information System (INIS)

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively coupled plasma/mass spectroscopy (ICP/MS), inductively coupled plasma/optical emission spectroscopy (ICP/OES) and gas chromatography/mass spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper discusses the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels. (orig.)

  4. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  5. Experimental study of retinoic acid on improving iodide uptake in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Liang; WU Jing-Chuan; DU Xue-Liang; LI Jia-Ning; WU Zhen; ZOU Ren-Jian

    2005-01-01

    The study aims to investigate the effect of retinoic acid on the iodide uptake of MCF-7 cells and its mechanism. The iodide uptake and expression of hNIS(human sodium/iodide symporter)mRNA in the breast cancer MCF-7 cells were compared individually before and after the intervention of all-trans retinoic acid (ATRA) with the iodide uptake assay and RT-PCR. The following results are obtained: (1) when treated with all-trans retinoic acid in the concentration of 1.0 μmol/L, the capacity of iodide uptake of MCF-7 cells reached about 1.5 times of the basal state; (2) 12 h after the intervention of 1.0 μmol/L ATRA, the hNISmRNA expression of the MCF-7 cells reached maximum. The study shows that all-trans retinoic acid has the effect to improve the iodide uptake of the MCF-7 cells and this effect may result from its up-regulation of the hNISmRNA expression.

  6. Polarization Effects in Methylammonium Lead Iodide Electronic Devices

    Science.gov (United States)

    Labram, John; Fabini, Douglas; Perry, Erin; Lehner, Anna; Wang, Hengbin; Glaudell, Anne; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael

    The immense success of group IV and III-V semiconductors has resulted in disruptive new photovoltaic (PV) cell technologies emerging extremely infrequently. For this reason, the recent progress in Methylammonium Lead Iodide (MAPbI3) solar cells can be viewed as a highly significant historic event. Despite the staggering recent progress made in reported power conversion efficiency (PCE), debate remains intense on the nature of the various instabilities synonymous with these devices. Using various electronic device measurements, we here present a body of experimental evidence consistent with the existence of a mobile ionic species within the MAPbI3 perovskite. Temperature-dependent transistor measurements reveal operating FET devices only below approximately 210K. This is attributed to ionic screening of the (otherwise charge-neutral) semiconductor-dielectric interface. Temperature-dependent pulsed-gate and impedance spectroscopy experiments also reveal behavior consistent with this interpretation. MAPbI3 PV cells were found to possess a PCE which decreases significantly below 210K. Combined, these set of measurements provide an interesting and consistent description of the internal processes at play within the MAPbI3 perovskite structure.

  7. Thermopower and activation energy of silver iodide based superionic materials

    International Nuclear Information System (INIS)

    Silver iodide based glasses, 60Agl-20Ag sub 2 O-20B sub 2O sub 3, 6 Agl-20Ag sub 2 O-20 MoO sub 3 and 60Agl-20Ag sub 2O-20WO sub 3, all in the mol % ratio, were prepared by rapidly quenching the melts of the chemicals in a stainless steel container; kept in a liquid nitrogen bath. The glassy nature of the as-quenched materials was confirmed by X-ray diffraction (XRD). The electrical conductivity of the glasses was measured at various temperatures ranging from 30 to 70 degree C using an impedance bridge operating in the frequency range between 40 Hz to 100 kHz. The plot of In σT versus 1000/T for each glassy material obeys Arrhenius law and the activation energy obtained is between 0.2 to 0.3 eV. Thermopower measurement was also carried out in the same temperature range as the conductivity measurement to obtain the heat of transport

  8. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  9. Preparation and evaluation of mercuric iodide for crystal growth

    Science.gov (United States)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; van den Berg, L.

    1989-11-01

    Large quantities (on the order of several hundred kilograms) of consistent, high-quality mercuric iodide (HgI2) for crystal growth have not been commercially available. The hydrocarbon, anion and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting material was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of HgI2 preparation in batches of 3 kg using Hg(NO3)2, or HgCl2 and KI. Since these salts are produced in much larger quantities than HgI2, more consistent quality is available. The impurity content of these batches and single crystals grown from them have been evaluated. These results and those from several commercially available starting materials and their grown single crystals are compared. Some of the single crystals grown using the in-house prepared HgI2 have yielded a large number of spectroscopy-grade nuclear detectors. The influence of the major impurities will be discussed.

  10. Correlation between mercuric iodide detector performance and crystalline perfection

    International Nuclear Information System (INIS)

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (HgI2) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: Spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of 137Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI2 detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies. (orig.)

  11. Correlation between mercuric iodide detector performance and crystalline perfection

    Science.gov (United States)

    Schieber, M.; Ortale, C.; van den Berg, L.; Schnepple, W.; Keller, L.; Wagner, C. N. J.; Yelon, W.; Ross, F.; Georgeson, G.; Milstein, F.

    1989-11-01

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (Hgl2) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of 137Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI2 detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies.

  12. Correlation between mercuric iodide detector performance and crystalline perfection

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.; Ortale, C.; Van den Berg, L.; Schnepple, W. (EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations); Keller, L.; Wagner, C.N.J. (California Univ., Los Angeles (USA). Dept. of Materials Science and Engineering); Yelon, W.; Ross, F. (Missouri Univ., Columbia (USA). Research Reactor Facility); Georgeson, G.; Milstein, F. (California Univ., Santa Barbara (USA). Dept. of Mechanical and Environmental Engineering)

    1989-11-01

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (HgI{sub 2}) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: Spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of {sup 137}Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI{sub 2} detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies. (orig.).

  13. Lead iodide perovskite light-emitting field-effect transistor

    Science.gov (United States)

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-06-01

    Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature.

  14. Digermylene Oxide Stabilized Group 11 Metal Iodide Complexes.

    Science.gov (United States)

    Yadav, Dhirendra; Siwatch, Rahul Kumar; Sinhababu, Soumen; Karwasara, Surendar; Singh, Dharmendra; Rajaraman, Gopalan; Nagendran, Selvarajan

    2015-12-01

    Use of a substituted digermylene oxide as a ligand has been demonstrated through the isolation of a series of group 11 metal(I) iodide complexes. Accordingly, the reactions of digermylene oxide [{(i-Bu)2ATIGe}2O] (ATI = aminotroponiminate) (1) with CuI under different conditions afforded [({(i-Bu)2ATIGe}2O)2(Cu4I4)] (2) with a Cu4I4 octahedral core, [({(i-Bu)2ATIGe}2O)2(Cu3I3)] (3) with a Cu3I3 core, and [{(i-Bu)2ATIGe}2O(Cu2I2)(C5H5N)2] (4) with a butterfly-type Cu2I2 core. The reactions of compound 1 with AgI and AuI produced [({(i-Bu)2ATIGe}2O)2(Ag4I4)] (5) with a Ag4I4 octahedral core and [{(i-Bu)2ATIGe}2O(Au2I2)] (6) with a Au2I2 core, respectively. The presence of metallophilic interactions in these compounds is shown through the single-crystal X-ray diffraction and atom-in-molecule (AIM) studies. Preliminary photophysical studies on compound 6 are also carried out. PMID:26558406

  15. Persistent photovoltage in methylammonium lead iodide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    A. Baumann

    2014-08-01

    Full Text Available We herein perform open circuit voltage decay (OCVD measurements on methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer–fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70BM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%–70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

  16. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    Science.gov (United States)

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. PMID:22541949

  17. Selective sorption of iodide onto organo-MnO2 film and its electrochemical desorption and detection

    International Nuclear Information System (INIS)

    Highlights: • HDPy/MnO2 film can selectively sorb iodide with expansion of interlayer spaces. • The sorbed iodide ions are oxidized anodically and expelled as I2 molecules. • The iodide concentration can be determined by anodic current during desorption. - Abstract: This paper reports an electrochemically grown film consisting of layered MnO2 intercalated with hexadecylpyridinium cations (HDPy+), which can selectively sorb and detect iodide anions in aqueous solution amperometrically. Sorption of iodide by the HDPy/MnO2 film did not occur via ion exchange, but through hydrophobic interactions between the interlayer organic phase of the film and iodide ions in solution. The sorption rate increased with the deposited amount of MnO2. During the sorption process, the interlayer spaces expanded, and new diffraction peaks appeared that were attributed to the incorporated species. Anodic polarization of the iodide-sorbed HDPy/MnO2 film led to electron transfer from the incorporated iodide to the underlying substrate through the MnO2 sheets. The oxidized iodide was expelled from the film as molecular I2, while the expanded interlayer spaces were restored to their original state. Thus, the MnO2 layers and the incorporated HDPy can synergistically sorb/desorb iodide anions, resulting in a unique “self-cleaning” function that can operate electrochemically. This property allowed amperometric detection of iodide at a concentration as low as 0.0186 μM, which was below the detection limits reported for previous iodide sensors

  18. Selective sorption of iodide onto organo-MnO{sub 2} film and its electrochemical desorption and detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Masaharu, E-mail: nkymm@yamaguchi-u.ac.jp; Sato, Ayu; Nakagawa, Kimiko

    2015-06-02

    Highlights: • HDPy/MnO{sub 2} film can selectively sorb iodide with expansion of interlayer spaces. • The sorbed iodide ions are oxidized anodically and expelled as I{sub 2} molecules. • The iodide concentration can be determined by anodic current during desorption. - Abstract: This paper reports an electrochemically grown film consisting of layered MnO{sub 2} intercalated with hexadecylpyridinium cations (HDPy{sup +}), which can selectively sorb and detect iodide anions in aqueous solution amperometrically. Sorption of iodide by the HDPy/MnO{sub 2} film did not occur via ion exchange, but through hydrophobic interactions between the interlayer organic phase of the film and iodide ions in solution. The sorption rate increased with the deposited amount of MnO{sub 2}. During the sorption process, the interlayer spaces expanded, and new diffraction peaks appeared that were attributed to the incorporated species. Anodic polarization of the iodide-sorbed HDPy/MnO{sub 2} film led to electron transfer from the incorporated iodide to the underlying substrate through the MnO{sub 2} sheets. The oxidized iodide was expelled from the film as molecular I{sub 2}, while the expanded interlayer spaces were restored to their original state. Thus, the MnO{sub 2} layers and the incorporated HDPy can synergistically sorb/desorb iodide anions, resulting in a unique “self-cleaning” function that can operate electrochemically. This property allowed amperometric detection of iodide at a concentration as low as 0.0186 μM, which was below the detection limits reported for previous iodide sensors.

  19. Characterization of strontium iodide scintillators with silicon photomultipliers

    Science.gov (United States)

    Mitchell, Lee J.; Phlips, Bernard

    2016-06-01

    This work characterizes a commercially available europium-doped strontium iodide detector recently developed by Radiation Monitoring Devices (RMD). The detector has been chosen for a space-based mission scheduled to launch in early 2017. The primary goal of this work was to characterize the detector's response over the expected operational range of -10 °C to 30 °C as well as the expected operational voltage range of +26.5-+28.5 V and identify background interferences that may develop due to neutron activation produced by cosmic-ray interactions. The 8 mm×8 mm×20 mm detectors use KETEK silicon photomultipliers (SiPM), with an active area of 6 mmx6 mm (KETEK PM6660). Our results show substantial integral nonlinearity due to the SiPM ranging from 0% to 25% at room temperature over the energy range of 80-2614 keV. The nonlinearity, a function of temperature and overvoltage, leads to an underestimate of the full width at half max (FWHM), which is 2.6% uncorrected at 662 keV and 3.8% corrected at 662 keV. The temperature dependence of the detector results in a noise threshold that increases substantially above 30 °C due to the SiPM dark rate. In an effort to simulate the harsh environment of space, neutron activation of the detector was also explored. Gamma-ray lines at 127 keV and 164 keV were observed in the detector along with Kα x-rays associated with europium. Beta decay from europium- and iodine-activation products were also observed within the detector.

  20. THERAPY OF GRAVES’ DISEASE WITH SODIUM IODIDE-131

    Directory of Open Access Journals (Sweden)

    I Wayan Hartadi Noor

    2013-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Graves’ disease is the most common form of thyrotoxicosis, with a peak incidence in the 20-40 year of age group. Females are involved about five times more commonly than male. The easiest sign to recognize patients with Graves’ disease is the present of Graves’ ophthalmopathy. The diagnosis of Graves’ disease may sometimes base only on a physical examination and a medical history. Diffuse thyroid enlargement and sign of thyrotoxicosis, mainly ophthalmopathy and to lesser extent dermopathy, usually adequate for diagnosis. TSH test combined with FT4 test is usually the first laboratory test performs in these patients. The patients suffered Graves’ disease can be treated with antithyroid drug therapy or undergo subtotal Thyroidectomy. Another therapy is by using sodium iodide-131, where this therapy has advantages including easy administration, effectiveness, low expense, and absence of pain. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  1. Rutherford Backsattering and Auger spectroscopy of mercuric iodide detectors

    International Nuclear Information System (INIS)

    The electrical properties of metallic contacts on solid state x-ray detectors can play an important role in determining the overall response and sensitivity of these devices. Rutherford Backscattering (RBS) and Auger electron spectroscopies have been utilized to characterize thin palladium contacts on mercuric iodide (HgI2) detectors. The RBS measurements were performed at room temperature with the metal contact preventing evaporate loss of the HgI2 and reducing contamination to the vacuum chamber. Computer simulations of the RBS results indicate that the interface region of a sample with a palladium contact had approximately the ideal stoichiometry but that the palladium film thickness (350 /angstrom/) was less than expected from the deposition conditions. Auger sputter profiling which removes the metal contact ''cap'' was performed with a rapid transfer system equipped with liquid nitrogen cooling to avoid evaporative loss of the sample and reduce vacuum system contamination. This technique indicated significant penetration of Hg and I into the Pd contact for a variety of samples. In many cases, the penetration extended all the way to the surface. For a 600 /angstrom/ contact, approximately two thirds or 400 /angstrom/ of the contact is part of a ''reaction zone'' in which there is strong intermixing of the palladium, mercury, and iodine. In one case, where copper was tried as an electrode, the ''reaction zone'' extended all the way to the surface, and the device failed as a detector. The relationship of the contact stoichiometry to the deposition process and device performance will be discussed. 5 refs., 4 figs

  2. Rutherford Backsattering and Auger spectroscopy of mercuric iodide detectors

    Energy Technology Data Exchange (ETDEWEB)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1987-01-01

    The electrical properties of metallic contacts on solid state x-ray detectors can play an important role in determining the overall response and sensitivity of these devices. Rutherford Backscattering (RBS) and Auger electron spectroscopies have been utilized to characterize thin palladium contacts on mercuric iodide (HgI/sub 2/) detectors. The RBS measurements were performed at room temperature with the metal contact preventing evaporate loss of the HgI/sub 2/ and reducing contamination to the vacuum chamber. Computer simulations of the RBS results indicate that the interface region of a sample with a palladium contact had approximately the ideal stoichiometry but that the palladium film thickness (350 /angstrom/) was less than expected from the deposition conditions. Auger sputter profiling which removes the metal contact ''cap'' was performed with a rapid transfer system equipped with liquid nitrogen cooling to avoid evaporative loss of the sample and reduce vacuum system contamination. This technique indicated significant penetration of Hg and I into the Pd contact for a variety of samples. In many cases, the penetration extended all the way to the surface. For a 600 /angstrom/ contact, approximately two thirds or 400 /angstrom/ of the contact is part of a ''reaction zone'' in which there is strong intermixing of the palladium, mercury, and iodine. In one case, where copper was tried as an electrode, the ''reaction zone'' extended all the way to the surface, and the device failed as a detector. The relationship of the contact stoichiometry to the deposition process and device performance will be discussed. 5 refs., 4 figs.

  3. Structure and scintillation of Eu2+-activated calcium bromide iodide

    International Nuclear Information System (INIS)

    We report the structure and scintillation properties of Eu2+-activated calcium bromide iodide. CaBr0.7I1.3 was the only composition that could be synthesized in the CaBr2–CaI2 system. The compound has an effective atomic number of 47 and crystallizes in a trigonal crystal system with the R-3 space group and a density of 3.93 g/cc. The structure is layered and contains Ca in an octahedral environment with the Br/I anions jointly occupying a single site. Eu2+-activated samples show an intense narrow emission, characteristic of the 5d–4f transition of Eu2+, when excited with UV or X-rays. The sample with 0.5% Eu shows a light output of 63,000 ph/MeV at 662 keV with 96% of the light emitted with a monoexponential decay time of 1332 ns. An energy resolution of 10.4% full width at half maximum (FWHM) has been achieved for 662 keV gamma rays at room temperature. - Highlights: • CaBr0.7I1.3 is the only composition that formed in the CaBr2–CaI2 system. • Crystallizes in a trigonal crystal system with the R-3 space group. • Eu2+-activation yields scintillator with bright blue emission centered at 465 nm. • Light output is 63,000 ph/MeV with 10.4% energy resolution at 662 keV. • Monoexponential decay time of 1332 ns

  4. Endothelium modulates anion channel-dependent aortic contractions to iodide.

    Science.gov (United States)

    Lamb, F S; Barna, T J

    2000-05-01

    Anion currents contribute to vascular smooth muscle (VSM) membrane potential. The substitution of extracellular chloride (Cl) with iodide (I) or bromide (Br) initially inhibited and then potentiated isometric contractile responses of rat aortic rings to norepinephrine. Anion substitution alone produced a small relaxation, which occurred despite a lack of active tone and minimal subsequent contraction of endothelium-intact rings (4.2 +/- 1.2% of the response to 90 mM KCl). Endothelium-denuded rings underwent a similar initial relaxation but then contracted vigorously (I > Br). Responses to 130 mM I (93.7 +/- 1.9% of 90 mM KCl) were inhibited by nifedipine (10(-6) M), niflumic acid (10(-5) M), tamoxifen (10(-5) M), DIDS (10(-4) M), and HCO(-)(3)-free buffer (HEPES 10 mM) but not by bumetanide (10(-5) M). Intact rings treated with N(omega)-nitro-L-arginine (10(-4) M) responded weakly to I (15.5 +/- 2.1% of 90 mM KCl), whereas hemoglobin (10(-5) M), indomethacin (10(-6) M), 17-octadecynoic acid (10(-5) M), and 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (10(-6) M) all failed to augment the response of intact rings to I. We hypothesize that VSM takes up I primarily via an anion exchanger. Subsequent I efflux through anion channels having a selectivity of I > Br > Cl produces depolarization. In endothelium-denuded or agonist-stimulated vessels, this current is sufficient to activate voltage-dependent calcium channels and cause contraction. Neither nitric oxide nor prostaglandins are the primary endothelial modulator of these anion channels. If they are regulated by an endothelium-dependent hyperpolarizing factor it is not a cytochrome P-450 metabolite. PMID:10775130

  5. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    OpenAIRE

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the inductio...

  6. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  7. Evaluation of the reversibility of iodide uptake by argillaceous rocks by the radial diffusion method

    International Nuclear Information System (INIS)

    Laboratory radial in- and out-diffusion experiments were performed to investigate the reversibility of the iodide (I-) uptake by argillaceous rocks from the Tournemire site (France). At first, the suitability of the method was demonstrated by means of deuterium depleted water (DDW) diffusion experiments. The values for the DDW effective diffusion coefficient (1.7 to 2.7 x 10-11 m2 s-1) are indeed very close to those obtained from previous through-diffusion experiments carried out on Tournemire samples with tritiated water. The diffusion of chloride and bromide led to the determination of halide-accessible porosities, which are necessary to calculate the retardation factor (R) and the distribution ratio (RD). The calculated values for the halide-accessible porosity (2 to 5%) clearly indicated the effect of anionic exclusion and are consistent with previous data. On the contrary, the in-diffusion experiments performed with iodide clearly showed its uptake by argillite, with rock capacity factor values ranging from 14% to 25%. The corresponding values of RD (0.035 to 0.08 L kg-1) are one order of magnitude lower than those previously derived from batch methods. At last, the experiments of iodide out-diffusion revealed that only iodide located in the halide-accessible porosity diffused out of the rock samples, suggesting that the uptake of iodide by argillite would not be reversible or that the kinetics of desorption would be low (> 70 days). (orig.)

  8. Functional activity of human sodium/iodide symporter in tumor cell lines

    International Nuclear Information System (INIS)

    Aim: The sodium/iodide symporter (NIS) actively transports iodide into thyrocytes. Thus, NIS represents a key protein for diagnosis and radioiodine therapy of differentiated thyroid cancer. Additionally, in the future the NIS gene may be used for cancer gene therapy of non-thyroid-derived malignancies. In this study we evaluated the functionality of NIS with respect to iodide uptake in a panel of tumor cell lines and compared this to gene transfer efficiency. Methods: A human NIS-containing expression vector and reporter-gene vectors encoding and beta;-Galactosidase- or EGFP were used for transient transfection of 13 tumor cell lines. Following transfection measurements of NIS-mediated radioiodide uptake using Na125I and of transfection efficiency were performed. The latter included β;-Galactosidase activity measurements using a commercial kit and observation by fluorescence microscopy for EGFP expression. Results: In contrast to respective parental cells, most NIS-transfected cell lines displayed high, perchlorate-sensitive radioiodide uptake. Differences in radioiodide uptake between cell lines apparently corresponded to transfection efficiencies, as judged from reporter-gene assays. Conclusion: With respect to iodide uptake we provide evidence that NIS is functional in different cellular context. As iodide uptake capacity appears to be well correlated to gene transfer efficiency, cell type-specific actions on NIS (e. g. post-translational modification such as glycosylation) are not inhibitory to NIS function. Our data support the promising role of NIS in cancer gene therapy strategies. (orig.)

  9. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells

    Directory of Open Access Journals (Sweden)

    Furlanetto T.W.

    2001-01-01

    Full Text Available Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02, to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003, and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02. In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02. A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.

  10. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  11. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line

    International Nuclear Information System (INIS)

    Introduction: Patients with metastatic thyroid cancers that do not uptake iodine need effective therapeutic option. Differentiation-inducing agents have been tried to restore functional expression of sodium iodide symporter (NIS) without success. Our objective was to assess the effect of alpha-lipoic acid (ALA), known as potential antioxidant, on expression of sodium iodide symporter in thyroid cancer cells. Methods: Human thyroid cancer-derived cell lines, TPC-1, were treated with ALA, and changes in NIS mRNA and protein expression were measured. ALA's effect on NIS gene promoter was evaluated, and functional NIS expression was assessed by iodide uptake assay. Results: Treatment with ALA increased NIS mRNA expression up to ten folds of control dose-dependently after 24 h of exposure. ALA increased NIS promoter activity, and increased iodide uptake by 1.6 fold. ALA induced expression of NIS protein, but had no significant effect on the plasma membrane trafficking. ALA increased phosphorylation of CREB and nuclear translocation of pCREB, and co-treatment of ALA and trichostatin A increased iodide uptake by three folds in TPC-1 cells. Conclusions: ALA is a potential agent to increase NIS transcription in TPC-1. It could be used as an adjunctive agent to increase efficacy of radioiodine therapy if combined with a strategy to increase NIS protein trafficking to cell membrane.

  12. Functional activity of human sodium/iodide symporter in tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Petrich, T.; Knapp, W.H.; Poetter, E. [Dept. of Nuclear Medicine, Medizinische Hochschule Hannover, Hannover (Germany)

    2003-02-01

    Aim: The sodium/iodide symporter (NIS) actively transports iodide into thyrocytes. Thus, NIS represents a key protein for diagnosis and radioiodine therapy of differentiated thyroid cancer. Additionally, in the future the NIS gene may be used for cancer gene therapy of non-thyroid-derived malignancies. In this study we evaluated the functionality of NIS with respect to iodide uptake in a panel of tumor cell lines and compared this to gene transfer efficiency. Methods: A human NIS-containing expression vector and reporter-gene vectors encoding β-Galactosidase- or EGFP were used for transient transfection of 13 tumor cell lines. Following transfection measurements of NIS-mediated radioiodide uptake using Na{sup 125}I and of transfection efficiency were performed. The latter included β-Galactosidase activity measurements using a commercial kit and observation by fluorescence microscopy for EGFP expression. Results: In contrast to respective parental cells, most NIS-transfected cell lines displayed high, perchlorate-sensitive radioiodide uptake. Differences in radioiodide uptake between cell lines apparently corresponded to transfection efficiencies, as judged from reporter-gene assays. Conclusion: With respect to iodide uptake we provide evidence that NIS is functional in different cellular context. As iodide uptake capacity appears to be well correlated to gene transfer efficiency, cell type-specific actions on NIS (e. g. post-translational modification such as glycosylation) are not inhibitory to NIS function. Our data support the promising role of NIS in cancer gene therapy strategies. (orig.)

  13. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nacapricha, D. [Mahidol Univ., Bangkok (Thailand); Taylor, C. [John Moores Univ., Liverpool (United Kingdom)

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  14. X-ray imaging performance of structured cesium iodide scintillators.

    Science.gov (United States)

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  15. Bromide and iodide removal from waters under dynamic conditions by Ag-doped aerogels.

    Science.gov (United States)

    Sánchez-Polo, M; Rivera-Utrilla, J; von Gunten, U

    2007-02-01

    The objective of this study was to analyze the efficiency of Ag-doped aerogels in the removal of bromide and iodide from water. To test the applicability of these aerogels in water treatment, adsorption of bromide and iodide was studied under dynamic conditions using waters from Lake Zurich and a mineral water. The results obtained by using these waters showed a high breakthrough volume (V(0.02)=0.4 L) of the columns, while the height of the mass transfer zone (H(MTZ)=6.8 cm) was low, regardless of the anion under study. Bromide- and iodide-saturated columns were regenerated with NH4OH. No change in the column characteristics was observed after two regeneration treatments, regardless of the type of water considered. PMID:17109877

  16. Doping in mercuric iodide crystals and its influence on electronic properties and material structure

    International Nuclear Information System (INIS)

    Doping of mercuric iodide single crystals with SbI3 was studied. Three major aspects of the influence of doping were investigated: the α to β solid phase transition, the crystal structure and the semiconducting properties. A controlled doping method and a new growth technique from the melt were developed. A quantitative correlation between the antimony concentration and the charge carrier transport properties as well as the nuclear detector characteristics of HgI2 were established for the first time. In the present work the influence of various impurities (Sb, Cu, Ag, Bi) on the solid state phase transformation of mercuric iodide has been investigated. In the second part of the work a new growth method for mercuric iodide single crystals containing a controlled amount of SbI3, has been developed. In the last part of this work the influence of the presence of impurities in the crystal on the charge carrier transport properties has been investigated. (author)

  17. Study on methyl iodide prepared without acute toxicant and its trial application in iodine adsorber test

    International Nuclear Information System (INIS)

    This paper studied a method of substitution, which substituted the non-toxic chlorotrimethylsilane (Me3SiCl) /sodium iodide (NaI) for the acutely toxic dimethyl sulphate (DMS) as a dealkylating agent for the first time to react with phosphate methylesters in preparing the gaseous radioactive methyl iodide. Comparative tests were carried out between substitution method and DMS method to measure respective cleaning efficiencies of iodine absorber both in lab and in the ventilation system of nuclear power plant. The impact of the substitutes on the organic material components of methyl iodide generator was also evaluated. The results showed that the substitution method was comparable to the former DMS method, and the substitutes was also compatible with the generator. Therefore, the substitution method can be preliminary judged applicable to both workshop and in-place tests of iodine adsorber in nuclear power plants. (authors)

  18. Quantification of propidium iodide delivery with millisecond electric pulses: A model study

    CERN Document Server

    Yu, Miao

    2014-01-01

    A model study of propidium iodide delivery with millisecond electric pulses is presented; this work is a companion of the experimental efforts by Sadik et al. [1]. Both membrane permeabilization and delivery are examined with respect to six extra-cellular conductivities. The transmembrane potential of the permeabilized regions exhibits a consistent value, which corresponds to a bifurcation point in the pore-radius-potential relation. Both the pore area density and membrane conductance increase with an increasing extra-cellular conductivity. On the other hand, the inverse correlation between propidium iodide delivery and extra-cellular conductivity as observed in the experiments is quantitatively captured by the model. This agreement confirms that this behavior is primarily mediated by electrophoretic transport during the pulse. The results suggest that electrophoresis is important even for the delivery of small molecules such as propidium iodide. The direct comparison between model prediction and experimental...

  19. Optimization of mercuric iodide platelets growth by the polymer controlled vapor transport method

    Directory of Open Access Journals (Sweden)

    Fornaro L.

    1999-01-01

    Full Text Available Mercuric iodide crystals in their platelet habit were grown by the polymer controlled vapor transport method. Mercuric iodide 99% in purity was sublimated at temperatures about 122 - 126 °C and vacuum conditions (10-5 mmHg, after selecting an appropriate polymer. Temperature profiles and experimental heat transfer models were determined for two growth furnaces using different insulator configurations for the cold extreme (air, ceramic wool, grilon, copper and ceramic wool. Growth conditions for few and separate nucleation points and large crystals were determined. Representative samples were characterized by optical microscopy and by measuring the current density and apparent resistivity of the material. Future optimization and comparisons with others mercuric iodide crystal growth methods are included.

  20. Iodide retention by cinnabar (HgS) and chalcocite (Cu{sub 2}S)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Balsley, S.D.; Brady, P.V.

    1995-07-01

    Sorption of iodide (I{sup {minus}}) on cinnabar (HgS) and chalcocite (Cu{sub 2}S) was examined as a function of pH at 25{degrees}C in a series of batch experiments. Calculated distribution ratios (K{sub d}) far exceed those reported for other minerals; maximal K{sub d}`s of 1375 cc/g (Cu{sub 2}S) and 3080 c/g (HgS) were observed between pH 4-5, but wre substantial at all pH`s measured (4 < pH < 10). Iodide sorption apparently occurs by the formation of an insoluble surface solid solution with exposed Hg and Cu sites. Surface solid solution formation is favored at low pH due to the lessened electrostatic repulsion of the iodide ion by the sulfide surfaces.

  1. Multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats

    International Nuclear Information System (INIS)

    A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in the euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4

  2. Tris(1,2-dimethoxyethane-κ2O,O′iodidocalcium iodide

    Directory of Open Access Journals (Sweden)

    Siou-Wei Ou

    2012-02-01

    Full Text Available In the title complex, [CaI(C4H10O23]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimethoxyethane (DME ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

  3. Thyroid hormones and iodide in the near-term pregnant rat.

    OpenAIRE

    Versloot, P.M.

    1998-01-01

    Thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are produced by the thyroid gland. To synthesize thyroid hormones the thyroid needs iodide. The uptake of iodide as well as the production and secretion of T4 and T3 by the thyroid gland is regulated by thyrotropin (TSH), which is produced by the pituitary. However, most of the biologically active form, T3, is produced from T4 via monodeiodination in peripheral tissues.This reaction is catalyzed by the deiodinases, type I (ID-...

  4. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene

    International Nuclear Information System (INIS)

    Human thyroperoxidase (hTPO) is critical for the accumulation of iodide in thyroid tissues. Poorly differentiated and anaplastic thyroid tumours which lack thyroid-specific gene expression fail to accumulate iodide and, therefore, do not respond to iodine-131 therapy. We consequently investigated whether transfer of the hTPO gene is sufficient to restore the iodide-trapping capacity in undifferentiated thyroid and non-thyroid tumour cells. The human anaplastic thyroid carcinoma cell lines C643 and SW1736, the rat Morris hepatoma cell line MH3924A and the rat papillary thyroid carcinoma cell line L2 were used as in vitro model systems. Employing a bicistronic retroviral vector based on the myeloproliferative sarcoma virus for the transfer of the hTPO and the neomycin resistance gene, the C643 cells and SW1736 cells were transfected while the L2 cells and MH3924A cells were infected with retroviral particles. Seven recombinant C643 and seven SW1736 cell lines as well as four recombinant L2 and four MH3924A cell lines were established by neomycin selection. They were studied for hTPO expression using an antibody-based luminescence kit, followed by determination of the enzyme activity in the guaiacol assay and of the iodide uptake capacity in the presence of Na125I. Genetically modified cell lines expressed up to 1,800 times more hTPO as compared to wild type tumour cells. The level of hTPO expression varied significantly between individual neomycin-resistant cell lines, suggesting that the recombinant retroviral DNA was integrated at different sites of the cellular genome. The accumulation of iodide, however, was not significantly enhanced in individual recombinant cell lines, irrespective of low or high hTPO expression. Moreover, there was no correlation between hTPO expression and enzyme activity in individual cell lines. The transduction of the hTPO gene per se is not sufficient to restore iodide trapping in non-iodide-concentrating tumour cells. Future studies

  5. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements

    Science.gov (United States)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Gentry, G. L.; Cheng, A. Y.; Ortale, C.

    1991-04-01

    Semitransparent palladium contacts on mercuric iodide were studied by low temperature photoluminescence spectroscopy and thermally stimulated conductivity. These contacts were deposited either by thermal evaporation or by plasma sputtering. Changes due to palladium deposition were found in the photoluminescence spectra and were attributed to modifications in the stoichiometry within the palladium/mercuric iodide interfacial region. Thermally stimulated conductivity measurements revealed two dominant traps with activation energies of 0.010 and 0.54 eV. The importance of these traps in the application of nuclear detection is discussed.

  6. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (US)); James, R.B.; Gentry, G.L. (Advanced Materials Research Division, Sandia National Laboratories, Livermore, California 94550 (US)); Cheng, A.Y.; Ortale, C. (EG G Energy Measurements, Inc., Goleta, California 93116 (US))

    1991-04-15

    Semitransparent palladium contacts on mercuric iodide were studied by low temperature photoluminescence spectroscopy and thermally stimulated conductivity. These contacts were deposited either by thermal evaporation or by plasma sputtering. Changes due to palladium deposition were found in the photoluminescence spectra and were attributed to modifications in the stoichiometry within the palladium/mercuric iodide interfacial region. Thermally stimulated conductivity measurements revealed two dominant traps with activation energies of 0.010 and 0.54 eV. The importance of these traps in the application of nuclear detection is discussed.

  7. Photoemission and optical constant measurements of a Cesium Iodide thin film photocathode

    International Nuclear Information System (INIS)

    The performance of cesium iodide as a reflective photocathode is presented. The absolute quantum efficiency of a 500 nm thick film of cesium iodide has been measured in the wavelength range 150 nm–200 nm. The optical absorbance has been analyzed in the wavelength range 190 nm–900 nm and the optical band gap energy has been calculated. The dispersion properties were determined from the refractive index using an envelope plot of the transmittance data. The morphological and elemental film composition have been investigated by atomic force microscopy and X-ray photo-electron spectroscopy techniques

  8. Hydrogen atom position in hydrated iodide anion from x-ray absorption near edge structure

    International Nuclear Information System (INIS)

    Hydrogen atom position in the hydrated iodide anion complex is determined from X-ray Absorption Near Edge Structure (XANES) of an aqueous iodide solution at both the K- and L-edges. The spectra are compared with the theoretical ones calculated by using the FEFF method for several model geometries having hydrogen atoms at different positions. Satisfactory agreements are obtained from models with an almost linear alignment of iodine-hydrogen-oxygen atoms, indicating the capability of the XANES analysis when it is combined with the multiple scattering calculations as a method to detect the positions of hydrogen atoms in the first coordination sphere. (author)

  9. Quick analytical method for the determination of iodide and iodate ions in aqueous solutions

    International Nuclear Information System (INIS)

    An analytical quick-test method was developed to determine iodide and iodate ions in aqueous solutions using solid phase extraction cartridges for sample preparation. Work was focussed on finding simple, but efficient conditions for quantitative separation of iodate and iodide. Iodine amounts were then determined by standard methods. Ion-exchange absorbers in cartridge form were used. Selectivity and yield of the species separation were studied at pH value of 5-10 and various solution compositions using 131I radioactive tracer. The electrolytes used were diluted alkaline, nitrate and boric acid-borate solutions. Application to nuclear reactor cooling water analysis or environmental investigations and monitoring is proposed. (author)

  10. Nitrosyl iodide, INO: A combined ab initio and high-resolution spectroscopic study

    Science.gov (United States)

    Bailleux, S.; Duflot, D.; Aiba, S.; Nakahama, S.; Ozeki, H.

    2016-04-01

    In the nitrosyl halides series (XNO, where X = F, Cl, Br, I), INO is the only chemical species whose rotational spectrum has not been reported. Nitrosyl iodide, together with the nitryl (INO2), nitrite (IONO) and nitrate (IONO2) iodides, is believed to impact tropospheric ozone levels. Guided by our quantum chemical calculations, we report the detection of INO in the gas phase by high-resolution spectroscopy for the first time. INO was generated by mixing continuously I2 and NO. The measurement and least-squares analysis of 173 a-type rotational transitions resulted in the accurate determination of molecular parameters.

  11. Studying the iodine leaching from the compositions based on epoxide resin and lead iodide

    International Nuclear Information System (INIS)

    When studying iodine leaching, the possibility to use solid compositions, produced by incorporation of dry powdered lead iodide and its aqueous suspension into epoxide resin for long-term immobilization of iodine-129 under conditions of monitored storage, is evaluated. Analysis of the results obtained has shown that leaching rate in the first 4 days has the maximum value and constitutes (4.2 - 2700.0) x 10-6 cm/day. Then the process of leaching is determined by diffusion mechanism. For samples, prepared by wet lead iodide incorporation the rate of leaching is higher than that of the corresponding samples prepared by dry compound incorporation

  12. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  13. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.

    Science.gov (United States)

    Sase, Shohei; Kakimoto, Ryo; Kimura, Ryutaro; Goto, Kei

    2015-01-01

    A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D₈]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase. PMID:26633336

  14. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid

    Directory of Open Access Journals (Sweden)

    Shohei Sase

    2015-12-01

    Full Text Available A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D8]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase.

  15. Analysis of iodide and iodate in Lake Mead, Nevada using a headspace derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Dorman, James W; Steinberg, Spencer M

    2010-02-01

    We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate. PMID:19184627

  16. The sodium iodide symporter: its implications for imaging and therapy; Der Natrium-Iodid-Symporter (NIS): Bedeutung fuer die Bildgebung und therapeutische Optionen

    Energy Technology Data Exchange (ETDEWEB)

    Spitzweg, C. [Medizinische Klinik und Poliklinik fuer Nuklearmedizin der Ludwig-Maximilians-Univ. Muenchen, Klinikum Grosshadern, Muenchen (Germany)

    2007-03-15

    The sodium iodide symporter (NIS) is an intrinsic plasma membrane glycoprotein that mediates the active transport of iodide in the thyroid gland and a number of extrathyroidal tissues, in particular lactating mammary gland. In addition to its key function in thyroid physiology, NIS-mediated iodide accumulation allows diagnostic thyroid scintigraphy as well as therapeutic radioiodine application in benign and malignant thyroid disease. NIS therefore represents one of the oldest targets for molecular imaging and therapy. Based on the effective administration of radioiodine that has been used for over 60 years in the management of follicular cell-derived thyroid cancer, cloning and characterization of the NIS gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on targeted NIS expression in thyroidal and nonthyroidal cancer cells followed by therapeutic application of {sup 131}I or alternative radionuclides, including {sup 188}Re and {sup 211}At. In addition, the possibility of direct and non-invasive imaging of functional NIS expression by {sup 123}I- and {sup 99m}Tc-scintigraphy or {sup 124}I-PET-imaging allows the application of NIS as a novel reporter gene. In conclusion, the dual role of NIS as diagnostic and therapeutic gene and the detection of extra-thyroidal endogenous NIS expression in breast cancer open promising perspectives in nuclear medicine and molecular oncology for diagnostic and therapeutic application of NIS outside the thyroid gland. (orig.)

  17. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  18. Effect of hot-pressing conditions on the properties of iodide sodalite

    International Nuclear Information System (INIS)

    Higher hot-pressing temperatures and pressures increase density and reduce porosity and leachability of the iodide sodalite products. The effect of temperature is more significant than pressure with a significantly superior waste form being produced at 10600C compared to 8200C. Products prepared at 10600C and 5000 to 7000 psi pressure have apparent densities of 2.60 g/cm3 (99.5% of theoretical), porosities -6 g/cm2/d. Iodine concentration in the products is 15 to 20 wt %. These tests further substantiate the viability of using hot-pressed iodide sodalites as long-term waste forms for isolating long-lived 129I from the environment. The products produced at high temperatures are extremely hard, mechanically stable, capable of incorporating large amounts of iodine in a small volume, and have excellent leaching characteristics. In this study, sodalite formed at high temperatures containing 20 wt % iodine, had cumulative fraction leach values of approx. 2.6 x 10-6 cm for 96 h, and incremental leach rates of approx. 3.2 x 10-7 cm/d. Even though initial results look promising, work should continue in the following areas: (1) long-term leaching of products; (2) determine optimum conditions and effect of process variables on hydrothermal reaction; (3) characterize structural, crystal, and mechanical properties of iodide sodalite product; and (4) develop better methods of measuring iodide losses during the process

  19. Solution enthalpy of potassium iodide in furfural and its mixtures with dimethylsulfoxide

    International Nuclear Information System (INIS)

    Solution enthalpy of potassium iodide in furfural-dimethylsulfoxide mixtures at 298.15 K and furfural concentration 17.3-100% are determined experimentally. K+ and I- ion solvate shell composition, which in the general case doesn't correspond to the mixed solvent composition, is calculated

  20. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James

    2011-01-01

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  1. Investigations related to the chemical behaviour of methyl iodide at severe PWR-accidents

    International Nuclear Information System (INIS)

    The decomposition velocity of methyl iodide in aqueous solutions of boric acid has been measured at temperatures up to 423 K and at chemical conditions which are expected to exist in the sumpwater pool during a severe reactor accident. The decomposition was due only to hydrolysis which increased by the expected amount at high temperature. No influence of the cooling water additives was observed. Treatment of the available kinetic data indicated that the influence of polluting material expectedly present in the sump is likely to be negligible too. A possible exception may be the enhancement of the decomposition rate by particulate and dissolved silver. The resistance of methyl iodide to gas phase decomposition by steam and oxygen at 423 K was investigated and only slow decomposition in the order of 10-7/s observed which is explained by reaction with steel surfaces. Neither gas phase oxidation nor hydrolysis occur at this temperature. The resistance to oxidation is of kinetic nature. Gas phase hydrolysis is not possible due to thermodynamics. This was confirmed by the observed gas phase formation of methyl iodide from hydrogen iodide and methanol at 423 K. The kinetics of this reaction are best explained by two parallel reactions, one of second order with a kinetic constant of 1.25 x 10-5/kPa s, and one of third order under action of steam with a constant of 2 x 10-6/kPa2 s. (orig./HP)

  2. Monochloramine determination using NN diethyl-p-phenylene-diamine. Influence of iodide traces

    International Nuclear Information System (INIS)

    When determining ''D.P.D.'' free oxidizers, the monochloramine interfers in particular for iodide levels analogous to those likely to be found in sea water. This is not so for iodate. The zero time extrapolation of the change in colour curve is one method that enables the method to be made more selective

  3. Photodissociation of sodium iodide and resonant ionization of sodium atom produced

    Institute of Scientific and Technical Information of China (English)

    HUO Bing-hai; Z.T.Salim; A.H.Bakery

    2004-01-01

    Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.

  4. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm

    OpenAIRE

    Park, Hyunwoong; vecitis, Chad D.; Cheng, Jie; Dalleska, Nathan F; Mader, Brian T.; Hoffmann, Michael R.

    2011-01-01

    The perfluoroalkyl compounds (PFCs), perfluoroalkyl sulfonates (PFXS) and perfluoroalkyl carboxylates (PFXA) are environmentally persistent and recalcitrant towards most conventional water treatment technologies. Here, we complete an in depth examination of the UV-254 nm production of aquated electrons during iodide photolysis for the reductive defluorination of six aquated perfluoroalkyl compounds (PFCs) of various headgroup and perfluorocarbon tail length. Cyclic voltammograms (CV) show tha...

  5. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%. PMID:27309951

  6. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  7. LIQUID-CRYSTALLINE AND THERMOCHROMIC BEHAVIOR OF 4-SUBSTITUTED 1-METHYLPYRIDINIUM IODIDE SURFACTANTS

    NARCIS (Netherlands)

    NUSSELDER, JJH; ENGBERTS, JBFN; VANDOREN, HA

    1993-01-01

    The mesogenic behaviour of a series of thirty-one 1-alkyl-4-(or 2-)alkyl-pyridinium salts and of a homologous series of four 1-methyl-4-n-alkoxycarbonylpyridinium iodides is described. The occurrence and stability range of the thermotropic phases depend dramatically on the structure of the surfactan

  8. Phase partitioning, retention kinetics, and leaching of fumigant methyl iodide in agricultural soils

    Science.gov (United States)

    Although it is not currently being sold in the USA, the recent US registration of the fumigant methyl iodide has led to an increased interest in its environmental fate and transport. Although some work has now considered its volatile emissions from soil, there remains a lack of experimental data reg...

  9. Mitigating 1,3-dichloropropene, chloropicrin, and methyl iodide emissions from fumigated soil with reactive film

    Science.gov (United States)

    Implicated as a stratospheric ozone-depleting compound, methyl bromide (MeBr) is being phased out despite being considered to be the most effective soil fumigant. Its alternatives, i.e., 1,3-dichloropropene (1,3-D, which includes cis- and trans- isomers), chloropicrin (CP) and methyl iodide (MeI), h...

  10. Expedient Method for Samarium(II) Iodide Preparation Utilizing a Flow Approach

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2013-01-01

    Roč. 24, č. 3 (2013), s. 394-396. ISSN 0936-5214 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : flow * samarium * iodide * reduction Subject RIV: CC - Organic Chemistry Impact factor: 2.463, year: 2013

  11. Surface treatments of silver rods with enhanced iodide adsorption for I-125 brachytherapy seeds

    International Nuclear Information System (INIS)

    This study described an effective method to load 125I on silver rods for the preparation of a brachytherapy source. We tested various ligands on the silver rod surface to screen the one with the highest adsorption and specific radioactivity. In addition, we investigated the effect of surface etching to increase the adsorption capability followed by the extended surface area. We also found that the use of an oxidant during iodide adsorption can increase the loading significantly. The maximum activity of 137.90 MBq/rod (3.7269 mCi/rod) was achieved on the etched silver rods with phosphate ligand and hydrogen peroxide as an oxidant. In addition, this is 4.5-fold higher than that of the conventional chloride treatment method. - Highlights: • Surface treatment of silver rods with several ligands was investigated to find optimum ligand for production of I-125 seeds. • Activity of adsorbed iodide was increased up to 499% on HNO3-etched rods compared to H2O-washed rods. • When H2O2 was used as an oxidant for surface-modification, the amount of adsorbed iodide was increased up to 589%. • Activity of adsorbed iodide exhibited the highest value (137.90 MBq/rod) on rods etched and treated with PO43− and H2O2

  12. The Reaction between Iron(II) Iodide and Potassium Dichromate(VI) in Acidified Aqueous Solution

    Science.gov (United States)

    Talbot, Christopher

    2013-01-01

    This "Science note" teaching lesson explores the possible reaction between the ions in a reaction mixture consisting of iron(II) iodide and potassium dichromate(VI) in acidified aqueous solution. The electrode potentials will be used to deduce any spontaneous reactions under standard thermodynamic conditions (298 K, 1 bar (approximately…

  13. Diffusion coefficient determination of sodium iodide vapor in rare gases with use of ionization sensor

    International Nuclear Information System (INIS)

    The diffusion coefficients of sodium iodide vapor in the rare gases, argon, krypton and xenon, are determined by a method combining the analysis of measured diffusing mass with continuous monitoring of the sodium iodide vapor concentration in a flowing stream of sodium iodide-rare gas mixture. The flowing sodium iodide vapor is ionized upon its passage over a heated filament, and the generated ions are collected by a negatively-charged arched plate saddling the filament. The resulting ion current, measured by digital current meter, is integrated in time to obtain cumulative values from outset of run. The curve of the integrated values plotted against time approaches linearity with progress of run. The asymptote of the curve intersects the time axis at a point whose position serves to determine the diffusion coefficient, by applying an equation derived from the formula given by Carslaw and Jaeger. The coefficients thus determined for the three rare gases in runs at temperatures between 660degC and 710degC have proved to agree well with the values estimated using the semi-empirical correlation presented by Wilke and Lee. (author)

  14. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  15. Heat and Radiation Effects on Iodide Sorption by Surfactant Modified Bentonite (SMB)

    International Nuclear Information System (INIS)

    Radioactive waste repository is designed using multiple barriers to prevent the release of radionuclides to environments. Bentonite has been used as engineering barrier in many countries. Although the bentonite is an effective sorbent for cationic radionuclides, it is not good for anions such as 129-I and 99-Tc because of negative surface charges over the pH. Radioactive iodine exists usually as anions such as iodate (IO3-) and iodide (I-) as stable iodine species in groundwater environments. Therefore, the iodine is one of the most difficult elements for its transport through engineering barrier (i. e., bentonite) to be controlled by sorption processes in the geological repository. We modified the bentonite using a cationic surfactant to enhance iodine sorption capability. The goal of this study is addressed to evaluate the effects of sorption of high heat and radiation on iodide sorption to surfactant modified bentonite (SMB) which can be used as engineering barrier in the repository. The iodide sorption on the SMBs was significantly affected by temperature conditions rather than radiation. As temperature increases, the iodide sorption decreases. Considering the similar sorption abilities between 100 and 200% SMBs, the 100% SMB is economical sorbent to apply for engineering barrier in a geological repository

  16. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    International Nuclear Information System (INIS)

    This report considers a model of aerosol nucleation from the vapour phase which has been developed by Buckle. The applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. (U.K.)

  17. Electrical properties of silver iodide nanoparticles system embedded into opal porous matrix

    International Nuclear Information System (INIS)

    Opal-based composite with silver iodide nanoparticles (AgI/opal) has been prepared by host-guest technology. Temperature and frequency dependences of electrical conductivity and those of dielectric permittivity of AgI/opal samples were measured. Size effects in this opal-based nanocomposite have been discussed

  18. Solvation thermodynamics of ammonium iodide ions in 2-propanol and its mixtures with water

    International Nuclear Information System (INIS)

    The electrometric method using chains without transfer has been applied to determine total thermodynamic characteristics of ammonium iodide ions salvation in 2-propanol and its mixtures with water at 278.15-308.15 K.Regularities of their changes with temperature and composition of a mixed solvent are considered

  19. Reversible stimulus-responsive Cu(I) iodide pyridine coordination polymer.

    Science.gov (United States)

    Amo-Ochoa, P; Hassanein, K; Gómez-García, C J; Benmansour, S; Perles, J; Castillo, O; Martínez, J I; Ocón, P; Zamora, F

    2015-10-01

    We present a structurally flexible copper-iodide-pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations. PMID:26264525

  20. Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters

    Science.gov (United States)

    Parmeggiani, Fabio; Sacchetti, Alessandro

    2012-01-01

    A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…

  1. Kinetic modeling of the purging of activated carbon after short term methyl iodide loading

    International Nuclear Information System (INIS)

    A bimolecular reaction model containing the physico-chemical parameters of the adsorption and desorption was developed earlier to describe the kinetics of methyl iodide retention by activated carbon adsorber. Both theoretical model and experimental investigations postulated constant upstream methyl iodide concentration till the maximum break-through. The work reported here includes the extension of the theoretical model to the general case when the concentration of the challenging gas may change in time. The effect of short term loading followed by purging with air, and an impulse-like increase in upstream gas concentration has been simulated. The case of short term loading and subsequent purging has been experimentally studied to validate the model. The investigations were carried out on non-impregnated activated carbon. A 4 cm deep carbon bed had been challenged by methyl iodide for 30, 90, 120 and 180 min and then purged with air, downstream methyl iodide concentration had been measured continuously. The main characteristics of the observed downstream concentration curves (time and slope of break-through, time and amplitude of maximum values) showed acceptable agreement with those predicted by the model

  2. The preparation and structural properties of trivalent lanthanide and actinide oxide iodides

    International Nuclear Information System (INIS)

    A report is presented on the preparation of NpOI, LaOI and ErOI by reacting the appropriate tri-iodide and antimony sesquioxide at moderate temperatures. Positional parameters for the atoms in NpOI, derived from X-ray powder diffraction intensity data, are also reported. (U.K.)

  3. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    Science.gov (United States)

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  4. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Ekberg, C. (Chalmers Univ. of Technology, Goeteborg (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT, Espoo (Finland)); Glaenneskog, H. (Vattenfall Power Consultant, Goeteborg (Sweden))

    2011-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment, was started. During year 2008 (NROI-1) the radiolytic oxidation of elemental iodine was investigated and during 2009 (NROI-2), the radiolytic oxidation of organic iodine was studied. This project (NROI-3) is a continuation of the investigation of the oxidation of organic iodine. The project has been divided into two parts. 1. The aims of the first part were to investigate the effect of ozone and UV-radiation, in dry and humid conditions, on methyl iodide. 2. The second project was about gamma radiation (approx20 kGy/h) and methyl iodide in dry and humid conditions. 1. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UV-radiation intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. The particle formation was instant and extensive when methyl iodide was exposed to ozone and/or radiation at all temperatures. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-200 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine oxides (I{sub xO{sub y}). However, the correct speciation of the formed particles was difficult to obtain because the particles melted and fused together under the electron beam. 2. The results from this sub-project are more inconsistent and hard to interpret. The particle formation was significant lesser than corresponding experiments when ozone/UV-radiation was used instead of gamma radiation. The transport of gaseous methyl iodide through the facility was

  5. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface

    Science.gov (United States)

    Pillar, E. A.; Guzman, M. I.

    2013-12-01

    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  6. The use of mercuric iodide in instruments for safeguards and non-proliferation applications

    International Nuclear Information System (INIS)

    Mercuric Iodide is a material exceptionally suited for solid state detectors operating at room temperature. The high density and the high atomic numbers of the constituent elements provide a large absorption factor and a high full-energy-peak efficiency at gamma ray energies. The large electronic bandgap results in a very high resistivity and therefore a low leakage current at temperatures within and outside the personal comfort range. Constellation Technology has developed the technology to grow large, high quality crystals from mercuric iodide. Spectrometry grade detectors with dimensions of 25 mm x 25 mm x 3 mm and with an energy resolution of approximately 3% FWHM at 662 keV can be fabricated from these mercuric iodide crystals. The spectral resolution is primarily determined by the transport properties of the holes that at present still have relatively low values. When radiation of lower energy needs to be measured, it is possible to reduce the thickness of the detector and still maintain an acceptable detection efficiency. The spectrum of a 1.5 mm thick detector is shown. The resolution of this detector approximately 1.8% FWHM and the peak-to-valley ratio is larger than twelve. Standard semi-Gaussian processing and no pulse-shape discrimination was used. These detectors can be conveniently incorporated into hand-held instruments to detect weak sources or heavily shielded sources. Previous measurements have shown that the Minimum Detectable Activity (MDA) of a 3 mm thick mercuric iodide detector with dimensions as given above is about 10% less than the MDA of a 50 mm x 50 mm sodium iodide detector, due to the superior energy resolution. Software methods are being developed to improve the identification of weak sources against a large background. Results of these measurements will be presented

  7. Synergistic Effect of Azadirachta Indica Extract and Iodide Ions on the Corrosion Inhibition of Aluminium in Acid Media

    International Nuclear Information System (INIS)

    The synergistic action caused by iodide ions on the corrosion inhibition of aluminium (Al) in 0.5 M HCl in the presence of Azadirachta Indica (AZI) plant extract has been investigated using potintiodynamic polarization and impedance techniques. It is found that AZI extract inhibits the corrosion of aluminium in 0.5 M HCl. The inhibition efficiency increases with the increase in AZI extract concentration, until 24% v/v of AZI extract, then Inh.% is decreased with father increase in AZI extract concentration. The adsorption of this extract in the studied concentration is found to obey Frewendlish adsorption isotherm. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The increase in Inh.% values in presence of fixed concentration of iodide ions indicates that AZI extract forms an insoluble complex at lower AZI extract concentrations by undergoing a joint adsorption. But at higher concentrations of AZI extract, competitive adsorption is found between iodide ions and the formed complex leading to less Inh.%. The Inh.% decreased in presence of iodide ions with AZI extract than in presence of AZI extract alone at all studied iodide concentrations. The synergism parameter S θ is defined and calculated from surface coverage values. This parameter in the case of AZI extract is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions

  8. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  9. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  10. Synthesis of cholesteryl-α-D-lactoside via generation and trapping of a stable β-lactosyl iodide

    Science.gov (United States)

    Davis, Ryan A.; Fettinger, James C.; Gervay-Hague, Jacquelyn

    2015-01-01

    The generation of β-lactosyl iodide was carried out under non-in situ-anomerization, metal free conditions by reacting commercially available β-per-O-acetylated lactose with trimethylsilyl iodide (TMSI). The β-iodide was surprisingly stable as evidenced by NMR spectroscopy. Introduction of octanol or cholesterol under microwave conditions gave high yields of α-linked glycoconjugates. Careful analysis of the reaction products and mechanistic considerations suggest an acid catalyzed rearrangement that provides α-linked glycosylation products with a free C2-hydroxyl. Accessibility to these compounds may further advance glycolipidomic profiling of immune modulating bacterial derived-glycans. PMID:26543257

  11. Part I. Voltammetric studies of potassium iodide at gold and platinum electrodes. Part II. Electrodeposition and characterization of poly(vinylferrocene) films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.J.

    1993-01-01

    A mechanism for the adsorption of iodide on platinum and gold has been proposed in the literature which assumes hydrogen gas is evolved along with an adsorbed iodide atom. A rotating platinum ring-disk electrode was used here to detect the presence of any hydrogen produced upon iodide adsorption. No evidence for hydrogen formation was found. A gold-gold/platinum gas permeable double membrane electrode also did not show any evidence of hydrogen gas produced at gold during iodide adsorption. The voltammetry of iodide and iodate was examined using both gold and platinum ring-disk electrodes and a gas permeable double membrane electrode. The oxidation of adsorbed iodide was examined. The successful determination of the various oxidation states of iodide in acid media were performed: I[sub 2], IO[sup [minus

  12. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.

    Science.gov (United States)

    Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U

    2006-08-01

    The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)water treatment, adsorption of bromide and iodide was studied under dynamic conditions using waters from Lake Zurich. Results obtained showed that the carbonization and activation processes increased the adsorptive capacity of the aerogel sample. However, results showed that the adsorption capacity of the aerogel samples studied was considerably lower in water from Lake Zurich. Results showed X(0.02) (amount adsorbed to initial breakthrough) values of 0.1 and 4.3 mg/g for chloride anion and dissolved organic carbon (DOC), respectively, during bromide adsorption process in water from Lake Zurich. This indicates that the adsorptive capacity reduction observed may be due to (i) blocking

  13. Cooperative effect of silver in copper-catalyzed trifluoromethylation of aryl iodides using Me3SiCF3

    KAUST Repository

    Weng, Zhiqiang

    2011-06-13

    An effective model of cooperative effect of silver for the coppercatalyzed trifluoromethylation of activated and unactivated aryl iodides to trifluoromethylated arenes using Me3SiCF3 was achieved with a broad substrate scope. © 2011 American Chemical Society.

  14. A mercuric ensemble based on a cycloruthenated complex as a visual probe for iodide in aqueous solution

    Science.gov (United States)

    Su, Xianlong; Guo, Lieping; Ma, Yajuan; Li, Xianghong

    2016-01-01

    A new water-soluble cycloruthenated complex Ru(bthiq)(dcbpy)2+ (1, Hbthiq = 1-(2-benzo[b]thiophenyl)isoquinoline, dcbpy = 4,4‧-dicarboxylate-2,2‧-bipyridine) was designed and synthesized to form its mercuric ensemble (1-Hg2+) to achieve visual detection of iodide anions. The binding constant of 1-Hg2+ is calculated to be 2.40 × 104 M-1, which is lower than that of HgI2. Therefore, the addition of I- to the aqueous solution of 1-Hg2+lead to significant color changes from yellow to deep-red by the release of 1. The results showed that iodide anions could be easily detected by the naked eyes. The detection limit of iodide anion is calculated as 0.77 μM. In addition, an easily-prepared test strip of 1-Hg2+ was obtained successfully to detect iodide anions.

  15. Iodide and iodate (129I and 127I) in surface water of the Baltic Sea, Kattegat and Skagerrak

    DEFF Research Database (Denmark)

    Hansen, Violeta; Yi, Peng; Hou, Xiaolin; Aldahan, Ala; Roos, Per; Possnert, Göran

    129I and 127I species as iodide and iodate in surface seawater samples collected from 16 locations in August 2006 and 19 locations in April 2007 in the Baltic Proper, Skagerrak and Kattegat. After extensive separation methods, the isotopes concentrations were determined using accelerator mass...... 127I−/127IO3− significantly increase from south to central Baltic Sea, and iodide (both isotopes) appears as the predominant inorganic iodine species along the Baltic Sea. The results show insignificant change in 129I and 127I speciation and suggest that reduction of iodate and oxidation of iodide in...... Skagerrak and Kattegat may be a slow process. Additionally, the positive correlation between salinity and iodide and iodate (both isotopes) may reflect effective control of Skagerrak water mass on iodine distribution in surface water of the Baltic Sea....

  16. Sodium-iodide symporter (NIS)-mediated accumulation of [211At]astatide in NIS-transfected human cancer cells

    International Nuclear Information System (INIS)

    The cellular expression of the sodium iodide symporter (NIS) has been shown to confer iodide-concentrating capacity in non-thyroid cell types. We examined the role of NIS in the uptake of the alpha-particle emitting radiohalide [211At]astatide in the UVW human glioma cell line transfected to express NIS. [211At]Astatide uptake is shown to be NIS-dependent, with characteristics similar to [131I]iodide uptake. These studies suggest [211At]astatide as a possible alternative radionuclide to [131I]iodide for NIS-based endoradiotherapy, and provide a model for the study of [211At]astatide behavior at a cellular level

  17. Heck Arylation of Acrylonitrile with Aryl Iodides Catalyzed by a Silica-bound Arsine Palladium(0) Complex

    Institute of Scientific and Technical Information of China (English)

    Ming Zhong CAI; Hong ZHAO; Rong Li ZHANG

    2005-01-01

    Acrylonitrile reacts with aryl iodides in the presence of tri-n-butylamine and a catalytic amount of a silica-bound arsine palladium(0) complex to afford stereoselectively (E)-cinnamonitriles in high yields.

  18. Growth of mercuric iodide (HgI2) for nuclear radiation detectors

    Science.gov (United States)

    Vandenberg, L.; Schnepple, W. F.

    1988-01-01

    Mercuric iodide is a material used for the fabrication of the sensing element in solid state X-ray and gamma ray detecting instruments. The operation of the devices is determined to a large degree by the density of structural defects in the single crystalline material used in the sensing element. Since there were strong indications that the quality of the material was degraded by the effects of gravity during the growth process, a research and engineering program was initiated to grow one or more crystals of mercuric iodide in the reduced gravity environment of space. A special furnace assembly was designed which could be accommodated in a Spacelab rack, and at the same time made it possible to use the same growth procedures and controls used when growing a crystal on the ground. The space crystal, after the flight, was subjected to the same evaluation methods used for earth-grown crystals, so that comparisons could be made.

  19. Reversible radiochromic plate based on polyvinyl alcohol-iodide complex containing silica nanoparticles

    International Nuclear Information System (INIS)

    A radiochromic plate based on a reversible change between iodide and iodine was prepared using a polyvinyl alcohol-iodide complex, silica nanoparticles, and agarose. X-ray (30 kV, 15 mA) irradiation of the plate changed it to a red color, which gradually disappeared and was completely erased within a day after stopping X-ray irradiation. The minimum detection dose was about 0.5 Gy for X-rays and 10 Gy for 137Cs γ-rays. The G-value for the oxidation of I- was estimated to be about 19.6 in a neutral solution and about 20.64 in an acidic solution. (author)

  20. Molecular hydrogen ion elimination from alkyl iodides under strong laser beam irradiation

    Science.gov (United States)

    Kosmidis, C.; Kaziannis, S.; Siozos, P.; Lyras, A.; Robson, L.; Ledingham, K. W. D.; McKenna, P.; Jaroszynski, D. A.

    2006-01-01

    The elimination of H2+ from alkyl iodides under strong (up to 5 × 1015 W cm-2) laser irradiation is studied by means of time-of-flight mass spectrometry. The study has been performed by using 60 fs ([lambda] = 800 nm) and 35 ps ([lambda] = 1064, 532, 355 and 266 nm) laser pulses. It is concluded that the H2+ ions are ejected from ionic states via Coulomb explosion processes. The molecular rearrangement leading to H2+ formation is attributed to a tunneling process through a H transfer barrier. For the case of methyl iodide, about 10% of the doubly charged parent ions undergo molecular rearrangement. From a comparison of the H2+/H+ ion yield ratio of the studied molecules, it turns out that the H2+ formation from H atoms bonded to a terminal carbon atom is more efficient than that arising from H atoms bonded to central C atoms of the molecular chain.

  1. Non-isothermal adsorption of radioactive methyl iodide at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Seon; Park, Geun Il; Lee, Jung Won; Yoon, Ju Hyeon [KAERI, Taejon (Korea, Republic of); Yang, Ho Yeon [KHNPC, Taejon (Korea, Republic of); Ryu, Seung Kon [Chungnam National Univ., Taejon (Korea, Republic of)

    2003-07-01

    Although activated carbon has been successfully used in nuclear power plants, it cannot be considered as a primary adsorbent in a high temperature system, because of its low ignition temperature and its adverse reaction with nitrogen oxide. Therefore, activated carbon is virtually ruled out for high temperature operating systems. The adsorption and dynamic characteristics of gaseous methyl iodide for silver ion-exchanged zeolites at high temperatures up to 400 .deg. C was evaluated. In this study a simple nonisothermal and axially dispersed plug-flow was adopted to simulate the experimental breakthrough curves. The Langmuir-Freundlich isotherm model was used to represent the equilibrium relationship, and the linear driving force (LDF) approximation was used to represent the article uptake. From the viewpoint of silver utilization for the removal of methyl iodide, both the optimal operating temperature and the effective silver ion-exchange level were also determined.

  2. Induction of iodide uptake in transformed thyrocytes: a compound screening in cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Eleonore [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Brossart, Peter [University of Tuebingen, Department of Haematology, Oncology, Immunology and Rheumatology, Internal Medicine, Tuebingen (Germany); Wahl, Richard [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Department IV, Internal Medicine, Tuebingen (Germany)

    2009-05-15

    Retinoic acid presently is the most advanced agent able to improve the efficacy of radioiodine therapy in differentiated thyroid carcinoma. In order to identify compounds with higher efficacy a panel of pharmacologically well-characterized compounds with antitumour action in solid cancer cell lines was screened. The effects of the compounds on iodide uptake, cell number, proliferation and apoptosis were evaluated. In general, compounds were more effective in cell lines derived from more aggressive tumours. The effectiveness in terms of number of responsive cell lines and maximal increase in iodide uptake achieved decreased in the order: APHA > valproic acid {approx} sirolimus {approx} arsenic trioxide > retinoic acid {approx} lovastatin > apicidine {approx} azacytidine {approx} retinol {approx} rosiglitazone {approx} bortezomib. We hypothesize that testing of cells from primary tumours or metastases in patients may be a way to identify compounds with optimum therapeutic efficacy for individualized treatment. (orig.)

  3. Parametric study on removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide

    International Nuclear Information System (INIS)

    The removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide is influenced by various parameters such as temperature, relative humidity, face velocity and packing density. This study is to evaluate the dependency of the removal efficiency on each parameter and these combined parameters, quantitatively. Four types of adsorbents, BC-727, AgX, CHC-50 and SS 208C 5KI3, were tested. From experimental data and mass transfer theory, an experimental equation for evaluating the removal efficiency of adsorbents was derived under a series of experiments for radioactive methyl iodine-131. It was concluded that the removal efficiency calculated from the experimental equation agreed well with the experimental value. Effects of experimental specific parameters, such as Pre-flow time, methyl iodide injection time and After-flow time, on the removal efficiency of adsorbent are also described

  4. Effects of indium and tin overlayers on the photoluminescence spectrum of mercuric iodide

    International Nuclear Information System (INIS)

    Mercuric iodide (HgI2 ) crystals with semitransparent metal overlayers of indium and tin were characterized using low-temperature photoluminescence (PL) spectroscopy. The PL spectra were found to differ for points beneath the thin metal overlayers and points that were masked off during each deposition. The photoluminescence data were compared with PL measurements taken on HgI2 photodetectors with indium-tin-oxide (ITO) entrance electrodes. The similarities of the spectra for the HgI2 samples with In, Sn, and ITO conducting overlayers indicate that the regions in the ITO-contacted photodetectors with relatively poor photoresponses are associated with the interaction of indium or tin with the mercuric iodide substrate

  5. A study of the homogeneity and deviations from stoichiometry in mercuric iodide

    Science.gov (United States)

    Burger, A.; Morgan, S.; He, C.; Silberman, E.; van den Berg, L.; Ortale, C.; Franks, L.; Schieber, M.

    1990-01-01

    We have been able to determine the deviations from stoichiometry of mercuric iodide (HgI 2) by using differential scanning calorimetry (DSC). Mercury excess or iodine deficiency in mercuric iodide can be evaluated from the eutectic melting of α-Hgl 2-Hg 2I 2 at 235 °C, which appears as an additional peak in DSC thermograms. I 2 excess can be found from the existence of the I 2-α-HgI 2 eutectic melting at 103°C. An additional DSC peak appears in some samples around 112°C, that could be explained by the presence of iodine inclusions. Using resonance fluorescence spectroscopy (RFS) we have been able to determine the presence of free I 2 that is released by samples during the heating at 120 °C (crystal growth temperature), thus giving additional support to the above DSC results.

  6. Effects of indium and tin overlayers on the photoluminescence spectrum of mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    James, R.B. (Advanced Materials Research Division, Sandia National Laboratories, Livermore, California 94550 (USA)); Bao, X.J.; Schlesinger, T.E. (Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (USA)); Ortale, C.; Cheng, A.Y. (EG G Energy Measurements, Inc., Santa Barbara Operations, Goleta, California 93116 (USA))

    1990-03-01

    Mercuric iodide (HgI{sub 2} ) crystals with semitransparent metal overlayers of indium and tin were characterized using low-temperature photoluminescence (PL) spectroscopy. The PL spectra were found to differ for points beneath the thin metal overlayers and points that were masked off during each deposition. The photoluminescence data were compared with PL measurements taken on HgI{sub 2} photodetectors with indium-tin-oxide (ITO) entrance electrodes. The similarities of the spectra for the HgI{sub 2} samples with In, Sn, and ITO conducting overlayers indicate that the regions in the ITO-contacted photodetectors with relatively poor photoresponses are associated with the interaction of indium or tin with the mercuric iodide substrate.

  7. Effects of indium and tin overlayers on the photoluminescence spectrum of mercuric iodide

    Science.gov (United States)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Ortale, C.; Cheng, A. Y.

    1990-03-01

    Mercuric iodide (HgI2 ) crystals with semitransparent metal overlayers of indium and tin were characterized using low-temperature photoluminescence (PL) spectroscopy. The PL spectra were found to differ for points beneath the thin metal overlayers and points that were masked off during each deposition. The photoluminescence data were compared with PL measurements taken on HgI2 photodetectors with indium-tin-oxide (ITO) entrance electrodes. The similarities of the spectra for the HgI2 samples with In, Sn, and ITO conducting overlayers indicate that the regions in the ITO-contacted photodetectors with relatively poor photoresponses are associated with the interaction of indium or tin with the mercuric iodide substrate.

  8. Efficiency of energy transfer from γ-irradiated ammonium halides in aqueous iodide and nitrate solutions

    International Nuclear Information System (INIS)

    It is well known that ammonium halide (NH4X) crystals, on γ-exposure, store energy in the form of primary and secondary radiolytic products. Such crystals on dissolution in aqueous iodide and nitrate solutions result in oxidation of iodide and reduction of nitrate, respectively. The yields of iodine and nitrite are determined by chemical methods under varying conditions of the amount, dose and particle size of the irradiated ammonium halide salts. The maximum values of the efficiency of energy transfer for oxidation and reduction processes for ammonium halide salts correspond to 40% and 10%, respectively. At low doses, an empirical relation proposed between the percent efficiency of energy transfer and the absorbed dose is valid. The concentrations of inherent oxidizing and reducing species initially present are 7.0*1018 and 1.0*1018 per mol of ammonium halide, respectively. (author) 21 refs.; 7 figs.; 2 tabs

  9. Valence photodissociation of trifluoroethyl iodide investigated by photoelectron photoion coincidence spectroscopy

    International Nuclear Information System (INIS)

    Highlights: •Experimental and theoretical Investigation of trifluoroethyl iodide molecule. •Photoelectron photoion coincidence spectra in the 10–22 eV range. •VUV photoionization and dissociation dynamics. -- Abstract: Dissociative photoionization of trifluoroethyl iodide (C2H2F3I) molecule has been investigated by electron-ion coincidence technique (PEPICO) and VUV synchrotron radiation. Mass spectra have been recorded for this molecule in the photon energy range of 10–22 eV. The molecular ion as well as cationic fragments have been detected and analyzed as a function of photon energy and the main dissociation pathways are proposed. We also performed ab initio calculations for the neutral molecule, its cation and the ion fragments in order to determine electronic and structural parameters

  10. Photolithography enhancement by incorporating photoluminescent nanoscale cesium iodide molecular dots into the photoresists

    International Nuclear Information System (INIS)

    This work demonstrated an enhancement effect of photolithograph by the incorporation of photoluminescent nanoscale cesium iodide molecular dots into ultraviolet photoresists. Cesium iodide molecular dots with the size of about 0.4 nm acted as centers of ultraviolet absorption and luminescence which enabled the improvement of the morphology of the figure edges and photosensitivity of photoresist pattern. These photoluminescent molecular dots decreased the light interference while increasing the resist sensitization of the photoresist. The detailed mechanism about the enhancement effects of photoluminescent molecular dots incorporated into photoresists on the ultraviolet absorption, photosensitivity, and light interference has been proposed. This increased effect in the enhancement of photoresists makes way for their potential use for future nanoscale photolithography

  11. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method

    Directory of Open Access Journals (Sweden)

    Veissid N.

    1999-01-01

    Full Text Available The bandgap energy as a function of temperature has been determined for lead iodide. The monocrystal was obtained in a vacuum sealed quartz ampoule inside a vertical furnace by Bridgman's method. The optical transmittance measurement enables to evaluate the values of Eg. By a fitting procedure of Eg as a function of temperature is possible to extract the parameters that govern its behavior. The variation of Eg with temperature was determined as: Eg(T = Eg(0 - aT2/(a + T, with: Eg(0 = (2.435 ± 0.008 eV, a = (8.7 ± 1.3 x 10-4 eV/K and a = (192 ± 90 K. The bandgap energy of lead iodide at room temperature was found to be 2.277 ± 0.007 eV.

  12. Performance of non-coconut base adsorbers in removal of iodine and organic iodides

    International Nuclear Information System (INIS)

    Systems for the removal of radioactive iodine and organic iodides have used impregnated coconut shell activated carbons almost exclusively. Coconut shell carbons have some disadvantages: their geographical origin determines their trace chemical content; pore structures and impregnant effectiveness are highly dependent on activation and impregnation techniques. The authors report laboratory performance of a group of iodine-organic iodide adsorbers using bases other than coconut shell carbon. These have been evaluated in conformity with USAEC Regulatory Guide 1.52 and RDT M16 1T. Performance with regard to 131I2 and CH3131I penetration and high-temperature elution have equaled or exceeded both the requirements of Guide 1.52 and results on typical coconut-shell carbons. Some performance outside Guide 1.52 ranges is included. Experimental problems in simulated LOCA testing are discussed. (U.S.)

  13. Small-molecule inhibitors of sodium iodide sym-porter function

    International Nuclear Information System (INIS)

    The Na+/l- sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  14. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    OpenAIRE

    Laishun Shi; Xiaomei Wang; Na Li; Jie Liu; Chunying Yan

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and...

  15. Peroxide effects of iodide excess on mitochondria in Fischer rat thyroid cell line in the early period

    Institute of Scientific and Technical Information of China (English)

    李敏

    2014-01-01

    Objective To investigate the peroxide effects of iodide excess on mitochondria in Fischer rat thyroid cell line(FRTL)in the early period.Methods After treatment with 0.0 mmol/L(control group)or 0.1 mmol/L potassium iodide(KI)for 2,4 and 24 h,respectively,changes of mitochondrial superoxide formation were assayed by flow cytometry and fluorescence microscopy using mitochondria-targeted hydroethidine(Mito SOX).

  16. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  17. Use of potassium iodide in Dermatology: updates on an old drug*

    OpenAIRE

    Costa, Rosane Orofino; de Macedo, Priscila Marques; Carvalhal, Aline; Bernardes-Engemann, Andréa Reis

    2013-01-01

    Potassium iodide, as a saturated solution, is a valuable drug in the dermatologist's therapeutic arsenal and is useful for the treatment of different diseases due to its immunomodulatory features. However, its prescription has become increasingly less frequent in dermatology practice. Little knowledge about its exact mechanism of action, lack of interest from the pharmaceutical industry, the advent of new drugs, and the toxicity caused by the use of high doses of the drug are some possible ex...

  18. CuO hollow nanosphere-catalyzed cross-coupling of aryl iodides with thiols

    OpenAIRE

    Woo, Hyunje; Mohan, Balaji; Heo, Eunjung; Park, Ji Chan; Song, Hyunjoon; Park, Kang Hyun

    2013-01-01

    New functionalized CuO hollow nanospheres on acetylene black (CuO/AB) and on charcoal (CuO/C) have been found to be effective catalysts for C-S bond formation under microwave irradiation. CuO catalysts showed high catalytic activity with a wide variety of substituents which include electron-rich and electron-poor aryl iodides with thiophenols by the addition of two equivalents of K2CO3 as base in the absence of ligands.

  19. Thyroid dose estimation with potassium iodide (KI) administration in a nuclear emergency

    International Nuclear Information System (INIS)

    In a breach-of-containment nuclear reactor accident, the near-field exposure is primarily through inhalation of radioiodine. Thyroid blockade by oral potassium iodide (KI) is a practical and effective protective measure for the general public in such an emergency. The retention functions incorporating the thyroid blocking effects by KI have been derived using a standard three-compartment model of iodine metabolism. This allows more accurate estimation of the thyroid dose by calculating the blocking factor. (authors)

  20. Angular distribution anisotropy of fragments ejected from methyl iodide clusters: Dependence on fs laser intensity

    Science.gov (United States)

    Karras, G.; Kosmidis, C.

    2010-10-01

    The angular distribution of the fragment ions ejected from the interaction of methyl iodide clusters with 20 fs strong laser pulses is studied by means of a mass spectrometer. Three types of angular distributions, one isotropic and two anisotropic, have been observed and their dependence on the laser intensity has been studied. There is strong evidence that the ions exhibiting anisotropic angular distribution with a maximum in the direction parallel to the laser polarization vector are produced via an electron impact ionization process.

  1. Reactants for the Removal of Iodine and Methyl Iodide and their Application in Foams

    International Nuclear Information System (INIS)

    The encapsulation of contaminated air by stable, reactive foams is potentially an efficient method for cleaning air because of large surface areas and long reaction times. Contained atmospheres encapsulated by foam demonstrate significant reductions in leakage. Addition of hydrazines to water based foams provided high removal rates for elemental iodine A 0.11 concentration of unsymmetrical dimethyl hydrazine (UDMH) in foam resulted in iodine reductions of 99 and 99.97% within 12 and 18 minutes, respectively. Screening tests of reactive foam solutions for removal of gaseous methyl iodide were made under static and dynamic (shaking) conditions and included the following reactants: hydrazine, UDMH, piperazine, tri-n-butylphosphine (TBP), triethylenediamine and thioacetamide. In the dynamic tests, 1/3 to 1/4 molal concentrations of the latter three reactants in an alkaline foam solution containing 1/3 molal UDMH required 7, 14 and 28 minutes, respectively, to reduce methyl iodide to 1% of the initial concentration (1-7 ppm). The other reactants were less effective by comparison. Water-foam encapsulation studies for air containing 0.8-2 0 ppm methyl iodide showed removal rates not significantly different from those found in the static screening tests for the same reactants, even though reactive surface areas were 20-100 times greater after foaming. This suggests that there is an absence of reactant in the foam bubble film probably caused by displacement by surfactants in the foaming agent. High removal rates of elemental iodine by hydrazine-type foams and of methyl iodide by TBP-containing foams are explained by noting that, in these cases, gas-phase rather than liquid-phase reactions are involved and that the foam bubble surfaces are collecting surfaces for the formed aerosol particles. (author)

  2. Determination of Trace Amounts of Iodide by an Inhibition Kinetic Spectrophotometric Method

    OpenAIRE

    GÜRKAN, Ramazan; BİÇER, Nilgün

    2004-01-01

    In this study, the reaction between Co(III)-EDTA and hypophosphite ion, catalyzed by Pd(II), was chosen as the indicator reaction. The inhibition kinetics of this catalytic reaction were investigated in the presence of iodide ion and the possibility of its analytical application was evaluated. Catalyzers other than PdCl2 (Pt, Au and Ni salts) were assayed for the indicator reaction and it was observed that these catalysts have no effect on the reaction. The important variables that ...

  3. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    OpenAIRE

    Momblona, C.; O. Malinkiewicz; Roldán-Carmona, C.; Soriano, A; L. Gil-Escrig; Bandiello, E.; Scheepers, M.; Edri, E.; Bolink, H. J.

    2014-01-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers...

  4. Preliminary Design of Molecular Sieve for Removing Organic Iodide in Containment Filtered Venting System

    International Nuclear Information System (INIS)

    In this paper, to increase the DF for gaseous iodine species, especially organic iodide, molecular sieve filled by silver exchanged zeolites is proposed and designed preliminarily. Its aerodynamic analysis is also performed and presented. In order to increase the DF for gaseous organic iodide, deep-bed type molecular sieve was proposed and designed preliminarily. Total 1,620kg of silver exchanged zeolites were filled evenly in 10 beds of the molecular sieve. The safety factor in the case of 20m3/s will be smaller than the counterpart of the standard case (6m3/s). However, if the adsorption capacity of the zeolites is larger than 3.09mg/g when the residence time is 0.09 second, the designed molecular sieve can be used at 20m3/s of volumetric flow rate. The removal efficiency for organic iodide should be considered as well as economical aspects in the design of molecular sieve. In the event of nuclear power plant (NPP) severe accident, the nuclear reactor containment might suffer damage resulting from overpressure caused by decay heat. In order to prevent this containment damage, containment venting has been considered as one of effective methods. However, since vented gases contain radioactive fission products, they should be filtered to be released to environment. Generally, containment filtered venting system (CFVS) is installed on NPP to achieve this aim. Even though great amount of efforts have been devoted to developing the CFVS using various filtering methods, the decontaminant factor (DF) for radioactive gaseous iodide is still unsatisfactory while DFs for radioactive aerosols and elemental iodine are very high

  5. Propidium iodide and PicoGreen as dyes for the DNA fluorescence correlation spectroscopy measurements

    Czech Academy of Sciences Publication Activity Database

    Kral, Teresa; Widerak, K.; Langner, M.; Hof, Martin

    2005-01-01

    Roč. 15, č. 2 (2005), s. 179-183. ISSN 1053-0509 R&D Projects: GA AV ČR(CZ) 1ET400400413; GA ČR(CZ) GA203/05/2308 Institutional research plan: CEZ:AV0Z40400503 Keywords : nucleic acid * fluorescence labeling * PicoGreen * propidium iodide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.038, year: 2005

  6. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    Science.gov (United States)

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-01

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude. PMID:27135266

  7. Iodide and iodate sodalites for the long-term storage of iodine-129

    International Nuclear Information System (INIS)

    There exist several proposals for the storage of 129I. None of these propose the use of a mineral with demonstrated geologic stability. The work described in this paper has identified the minerals iodide and iodate sodalites [Na8(AlSiO4)6I2/(IO3)2] as good candidates for the long-term storage of 129I. 4 tables

  8. Furnace design for the mercuric iodide crystal growth for new semiconductor radiation detector

    International Nuclear Information System (INIS)

    Mercuric iodide has been attracted an interest for 40 years due to its efficiency as room temperature detector for X and γ-rays. It is worthy to note that commercial γ-ray detectors such as Ge semiconductor detectors should cool down to liquid nitrogen temperature. Compared to other semiconductor detectors such as CdZnTe and CdTe, mercuric iodide has higher efficiency, lower leakage current and less degradation. In addition, mercuric iodide has useful properties such as large band gap of 2.15 eV, low electron-hole pair creation energy of 4.2 eV, and high atomic number (Hg : 80 and I : 53). However, it is difficult to obtain high quality single crystals and the long term reliability problem in devices so that the applications of α-HgI2 are limited. Mercuric iodide undergoes a structural phase transition from an orthorhombic yellow phase (β-HgI2) to a tetragonal red phase (α-HgI2) at 127 .deg. C. In addition, the melting temperature of HgI2 is 259 .deg. C. Thus, when it grows through a melting method over 259 .deg. C, the β-HgI2 phase can be included in the final crystals in the room temperature. In general, in order to grow α-HgI2single crystals, the operating temperature is below 127 .deg. C. Note that the crystals from the solution method have contamination problems and the crystals from the physical vapor method usually display a higher quality with a well defined structure. A good thing for the physical vapor method is that α-HgI2 has high vapor pressure (∼0.1 Torr at 120 .deg. C) indicating that α-HgI2 can be grown in closed ampoules

  9. Preparation of an ultra-fine, slightly dispersed silver iodide aerosol

    International Nuclear Information System (INIS)

    A silver iodide aerosol was prepared under clean conditions. The method was to react iodine vapor with a silver aerosol in an inert dry atmosphere and in darkness. Great care was taken to avoid contamination from atmosphere air. The ice nucleating properties of the ultrafine AgI aerosol obtained were studied in a cloud mixing chamber: the aerosol was found to be strangely inactive. (author)

  10. Crystal Structure of Iodotyrosine Deiodinase, a Novel Flavoprotein Responsible for Iodide Salvage in Thyroid Glands*

    OpenAIRE

    Thomas, Seth R.; McTamney, Patrick M.; Adler, Jennifer M.; LaRonde-LeBlanc, Nicole; Rokita, Steven E.

    2009-01-01

    The flavoprotein iodotyrosine deiodinase (IYD) salvages iodide from mono- and diiodotyrosine formed during the biosynthesis of the thyroid hormone thyroxine. Expression of a soluble domain of this membrane-bound enzyme provided sufficient material for crystallization and characterization by x-ray diffraction. The structures of IYD and two co-crystals containing substrates, mono- and diiodotyrosine, alternatively, were solved at resolutions of 2.0, 2.45, and 2.6 Å, respectively. The structure ...

  11. Production of gaseous tracer I2 from the sodium iodide salt

    International Nuclear Information System (INIS)

    Found in the nature in form different, the iodine has been used in diverse works in the area of the industry and health. The iodine is very unstable and volatile in the ambient temperature and the I2 is one of the diverse gaseous forms found. In this work was developed methodology for production of gaseous tracer from the sodium iodide (NaI) 0,1 M marked with 123I. The synthesis was processed with in chlorine acid (HCl) 1M and sodium iodate salt (NaIO3). The production of gas I2 initially was carried through in unit of glass with the inert material and the purpose was to study the kinetic of reaction. The synthesis occurs in the reaction bottle and the produced gas is stored in the collect bottle that contains a starch solution (5 g/100 mL water). To determine the efficiency of production of gas I2, analytic tests had been carried through, where the consumption of iodide ions of the bottle of reaction is measured. The optimization of production of the gaseous tracer was studied varying parameters as: concentration of iodide and iodate, concentration of acid and temperature. Then, the synthesis of the radiotracer was realized in the compact unit, being utilized as main reagent the salt radiated of sodium iodide, Na123I. The transportation of elementary iodine was studied by a scintillation detector NaI (2 x 2)'' placed in the reaction bottle. To acquire the data, the detector use a set of electronic modules for the acquisition of signals generated. (author)

  12. Parametric investigations on the retention of methyl iodide by a KI-impregnated activated carbon

    International Nuclear Information System (INIS)

    Investigations are described on the retention of methyl iodide (CH3I-131) by a typical batch of the activated carbon 207B (KI) which is mostly used in the iodine filters of German nuclear power plants. The results obtained with variation of about ten parameters are relevant both for the testing of activated carbons and for the design, operation and surveillance of iodine filters. (orig./HP)

  13. Nickel-catalyzed reductive arylation of activated alkynes with aryl iodides

    Science.gov (United States)

    Dorn, Stephanie C. M.; Olsen, Andrew K; Kelemen, Rachel E.; Shrestha, Ruja; Weix, Daniel J.

    2015-01-01

    The direct, regioselective, and stereoselective arylation of activated alkynes with aryl iodides using a nickel catalyst and manganese reductant is described. The reaction conditions are mild (40 °C in MeOH, no acid or base) and an intermediate organomanganese reagent is unlikely. Functional groups tolerated include halides and pseudohalides, free and protected anilines, and a benzyl alcohol. Other activated alkynes including an amide and a ketone also reacted to form arylated products in good yields. PMID:26028781

  14. How mobile is iodide in the Callovo-Oxfordian claystones under experimental conditions close to the in situ ones?

    International Nuclear Information System (INIS)

    The iodide behaviour towards the Callovo-Oxfordian claystone was studied using batch and diffusion experiments under conditions which limited the artefacts cited in the literature to be responsible for the iodide uptake (i.e. the experiments were carried out under anoxic conditions with N2/CO2 atmosphere with a monitoring of the iodine redox-state). The results show that all the radioactive iodine was 125I-, with no measurable activity for 125IO3- which is known to have a higher affinity for the rock than iodide. Moreover, the batch experiments revealed no sorption, independently of the initial iodide concentration (from 10-6 to 10-3 mol L-1) and the contact time (up to 106 days). Conversely, the diffusion experiments indicated a weak but measurable retention. The through-diffusion experiments led to distribution ratio values only significant (R-D similar to 0.05 mL g-1) for initial iodide concentration ≤ 10-4 mol L-1. Higher R-D values were estimated from out-diffusion experiments, ranging from about 0.05 mL g-1 for an initial concentration of 10-3 mol L-1 to 0.14 mL g-1 for the lowest one. A retention phenomenon that could be reversible and kinetically-controlled was proposed to explain the differences in the extent of the iodide retardation of the two types of diffusion experiments. (authors)

  15. Determination of microamounts of potassium in sodium iodide by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Microdetermination of potassium in sodium iodide was developed by the standard addition method. Twenty grams of sample were dissolved in 50 ml of water in a quartz beaker. To the solution, 30 ml of concentrated hydrochloric acid and 30 ml of 30% hydrogen peroxide were added, and evaporated to dryness. By this process sodium iodide was converted into sodium chloride. The cake thus obtained was dissolved in water and diluted to exactly 200 ml. To 25 ml aliquots of the solution, the standard potassium and cesium chloride solutions were added and diluted to 50 ml with water; the concentration of potassium was 0 -- 1 mg/l and that of cesium 4 mM. These solutions were introduced into an air-propane flame and the absorbances were measured at 769.9 nm. During the conversion reaction, hydrochloric acid was completely decomposed, and remained hydrogen peroxide had no influence for absorbance, and other backgrounds were negligible. The linear calibration curve was obtained in the range 0 -- 2 mg of potassium per liter. Potassium in sodium iodide was determined by this method within the coefficient of variation of +-(20 -- 3)% in the range (1.7 -- 32.5) ppm. (author)

  16. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications.

    Science.gov (United States)

    Harkness, Jennifer S; Dwyer, Gary S; Warner, Nathaniel R; Parker, Kimberly M; Mitch, William A; Vengosh, Avner

    2015-02-01

    The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment. PMID:25587644

  17. Study on multiphoton ionization dissociation processes of ethyl iodide at 800 nm laser radiation

    International Nuclear Information System (INIS)

    Multiphoton ionization-dissociation (MPID) process of ethyl iodide are studied at 800 nm femto-second laser, and time-of-flight mass spectrometer of ethyl iodide are obtained. The result of laser power index shows that the parent-ion mainly undergoes the 3 + 3 resonant enhanced multiphoton ionization (REMPI) process. The percentage of part fragment ions to the total ion current and the laser intensity dependence of the molecule are measured. Based on the experiment results, the multiphoton ionization- dissociation mechanism of ethyl iodide is discussed. The conclusion is that most of ion fragments are produced by C2H5I+ dissociation, this is consistent with the parent-ion dissociation staircase. The two possible dissociation channels of parent-ion are analyzed, but the C-I dissociation is the main channel. We also use Gaussian 03 calculated the energy change of the two channels with B3LYP/3-21G basis set, the theoretical results further demonstrated the experiment. (authors)

  18. Solidification of iodide ions by reaction with Bi2O3

    International Nuclear Information System (INIS)

    α-Bi2O3 is a candidate material for immobilization of radioactive iodine. Present study reports on experimental conditions under which α-Bi2O3 reacts with aqueous iodide to form a single phase of α-Bi5O7I. The reaction is studied in LiI, NaI, KI and NH4I solution. The concentration of aqueous iodide is not the most important factor to form a single phase of Bi5O7I but a ratio of gram molecule number of Bi2O3 and gram ion number of iodide ion determines formed phases. Only when this ratio is adjusted to a value between 5 : 2 and 1 : 2 in LiI solution, 4 : 1 and 1 : 2 in NaI solution, and 4 : 1 and 1 : 4 in KI solution, a reaction product is a single phase, Bi5O7I. A reaction in NH4I solution do not produce a single phase of Bi5O7I at any ratios. Scanning electron micrographs of starting material and reaction products are shown. (author)

  19. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    International Nuclear Information System (INIS)

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  20. Diffusion Coefficient of Iodide ions in Aqueous Medium and in Vacuum: An Appraisal

    International Nuclear Information System (INIS)

    Diffusion Coefficient of iodide ion was determined through cyclic voltammetric technique and compared with the values in literature. The contribution of (a) the fractal surface of the electrode, and (b) possible involvement of subsequent chemical reaction (EC) to the peak current affecting the diffusion coefficient were analyzed. It was concluded that the diffusion coefficient obtained via peak current of the cyclic voltammogram corrected for sweep dependence could be relied upon. The diffusion coefficient, D, of ion in aqueous media is deduced to be 1.95 (± 0.05) *10 /sup -5/ cm /sup 2/ s /sup -1/. Fractal analysis showed there is very negligible effect of fractal surface of the electrode. Diffusion coefficient of iodide ion in vacuum was calculated from equation , where h is Planck constant and mI-, is the mass of iodide ion. D of in vacuum came out to be much smaller, 2.5 *10 /sup -6/ cm /sup 2/ s /sup -1/, as compared to the one in aqueous solution. This D may be considered as the lower limit of the diffusion coefficient of a species, here. (author)

  1. Treatment of cultured glioma cells with the EGFR-TKI gefitinib (''Iressa'', ZD1839) increases the uptake of astatinated EGF despite the absence of gefitinib-mediated growth inhibition

    International Nuclear Information System (INIS)

    The EGFR-TKI (epidermal growth factor receptor tyrosine kinase inhibitor) gefitinib (''Iressa'', ZD1839), a reversible growth inhibitor of EGFR-expressing tumour cells, has been shown to enhance the antitumour effect of ionising radiation, and also to increase the uptake of radioiodinated EGF. Thus, combination of gefitinib treatment and radionuclide targeting is an interesting option for therapy of brain tumours that are difficult to treat with conventional methods. The aim of this study was to evaluate how pre-treatment with gefitinib affects binding of astatinated EGF (211At-EGF) to cultured glioma U343 cells, which express high levels of EGFR. The growth of U343 cells in the presence of gefitinib was investigated, and it was found that gefitinib does not significantly inhibit the growth of these cells. Nevertheless, the uptake of 211At-EGF in U343 cells was markedly increased (up to 3.5 times) in cells pre-treated with gefitinib (1 μM). This indicates that a combination of gefitinib treatment and radionuclide targeting to EGFR might be a useful therapeutic modality, even for patients who do not respond to treatment with gefitinib alone. (orig.)

  2. Administration of additional inactive iodide during radioiodine therapy for Graves' disease. Who might benefit?

    International Nuclear Information System (INIS)

    Aim: Graves' hyperthyroidism and antithyroid drugs empty the intrathyroid stores of hormones and iodine. The consequence is rapid 131I turnover and impending failure of radioiodine therapy. Can administration of additional inactive iodide improve 131I kinetics? Patients, methods: Fifteen consecutive patients, in whom the 48 h post-therapeutically calculated thyroid dose was between 150 and 249 Gy due to an unexpectedly short half-life, received 3 x 200 μg inactive potassium-iodide (127I) daily for 3 days (Group A), while 17 consecutive patients with a thyroid dose of = 250 Gy (Group B) served as the non-iodide group. 48 hours after 131I administration (M1) and 4 or 5 days later (M2) the following parameters were compared: effective 131I half-life, thyroid dose, total T3, total T4, 131I-activity in the T3- and T4-RIAs. Results: In Group A, the effective 131I half-life M1 before iodine (3.81 ± 0.93 days) was significantly (p 131I half-life M2 (4.65 ± 0.79 days). Effective 131I half-life M1 correlated with the benefit from inactive 127I (r = -0.79): Administration of 127I was beneficial in patients with an effective 131I half-life M1 of 131I activity of T3 and T4 showed lower specific 131I activity after addition of inactive iodine compared with patients from the same group with a lower initial specific 131I activity of T3 and T4 and compared with the patient group B who was given no additional inactive iodide. This correlation was mathematically described and reflected in the flatter gradient in Group A (y = 0.5195x + 0.8727 for 131I T3 and y = 1.0827x - 0.4444 for 131I T4) and steeper gradient for Group B (y = 0.6998x + 0.5417 for 131I T3 and y = 1.3191x - 0.2901 for 131I T4). Radioiodine therapy was successful in all 15 patients from Group A. Conclusion: The administration of 600 μg inactive iodide for three days during radioiodine therapy in patients with Graves' hyperthyroidism and an unexpectedly short half-life of <3 or 4 days was a safe and effective

  3. Reduction of stimulated sodium iodide symporter expression by estrogen receptor ligands in breast cancer cells

    International Nuclear Information System (INIS)

    Purpose: The sodium iodide symporter (NIS) mediates active iodide uptake in lactating breast tissue, and when its levels are enhanced by all-trans retinoic acid (atRA), NIS has been proposed as a target for the imaging and radiotherapy of breast cancer. Importantly, the estrogen receptor α (ERα) is an important regulator of atRA induced NIS gene expression in breast cancer cells. In this study, we investigated the effect of an ER agonist (17β-estradiol, E2) or antagonist [trans-hydroxytamoxifen (TOT) or raloxifene (RAL)] treatment on the regulation of NIS gene expression and iodide uptake in an ERα-positive breast cancer (MCF-7) model. Methods: NIS functional activity was measured in vitro by 125I uptake assay after incubation with E2 (from 10-15 to 10-5 M), TOT (from 5x10-8 to 5x10-6 M), or RAL (from 5x10-8 to 5x10-6 M) in the presence or absence of atRA (10-7 M). Under the same conditions, NIS mRNA expression was examined by reverse transcriptase polymerase chain reaction. Athymic mice with MCF-7 xenograft tumors were treated with atRA alone or atRA together with E2 to evaluate the change of 125I uptake in tumor tissues in vivo. Results: In the iodide uptake study in cells, E2, TOT, or RAL treatment alone did not stimulate 125I uptake. However, when iodide uptake was stimulated by atRA, cotreatment with E2, TOT or RAL decreased 125I uptake in a concentration-dependent manner. The hormone effects on NIS mRNA expression levels in MCF-7 cells were similar. The results of the in vivo biodistribution study showed that 125I uptake was reduced 50% in tumor tissues of mice treated with atRA/E2 as compared to tumors treated only with atRA. Conclusion: Our results suggest that combination treatment of atRA and ER ligands could limit the functional activity of the NIS gene induced by atRA, thereby compromising its use as a target for diagnosis or radiotherapy in breast cancer.

  4. The use of mercuric iodide in instruments for safeguards and non-proliferation applications

    International Nuclear Information System (INIS)

    Mercuric Iodide is a material exceptionally suited for solid state detectors operating at room temperature. The high density and the high atomic numbers of the constituent elements provide a large absorption factor and a high full-energy-peak efficiency at gamma ray energies. The large electronic bandgap results in a very high resistivity and therefore a low leakage current at temperatures within and outside the personal comfort range. Constellation Technology has developed the technology to grow large, high quality crystals from mercuric iodide. Spectrometry grade detectors with dimensions of 25 mm x 25 mm x 3 mm and with an energy resolution of approximately 3% FWHM at 662 keV can be fabricated from these mercuric iodide crystals. The resolution of this detector approximately 1.8% FWHM and the peak-to-valley ratio is larger than twelve. Standard semi-Gaussian processing and no pulse-shape discrimination was used. These detectors can be conveniently incorporated into hand-held instruments to detect weak sources or heavily shielded sources. Previous measurements have shown that the Minimum Detectable Activity (MDA) of a 3 mm thick mercuric iodide detector with dimensions as given above is about 10% less than the MDA of a 50 mm x 50 mm sodium iodide detector, due to the superior energy resolution. Software methods are being developed to improve the identification of weak sources against a large background. Results of these measurements will be presented. Smaller detectors can be used in safeguards applications where the intensity of the radiation is relatively high. The spectral resolution of the detectors is high enough to clearly identify the significant energy lines in the spectra of stored uranium and plutonium. The shape of the spectral peaks is constant over a large range of energies so that existing software systems can be used to analyze the spectra. The small size, ruggedness, temperature stability and high efficiency of these detectors makes them good

  5. Reduction of stimulated sodium iodide symporter expression by estrogen receptor ligands in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Su-Jin; Jang, DooRye; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee [Department of Nuclear Medicine, Cyclotron Research Center, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Katzenellenbogen, John A., E-mail: jkatzene@illinois.ed [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Kim, Dong Wook, E-mail: kimdw@chonbuk.ac.k [Department of Nuclear Medicine, Cyclotron Research Center, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2011-02-15

    Purpose: The sodium iodide symporter (NIS) mediates active iodide uptake in lactating breast tissue, and when its levels are enhanced by all-trans retinoic acid (atRA), NIS has been proposed as a target for the imaging and radiotherapy of breast cancer. Importantly, the estrogen receptor {alpha} (ER{alpha}) is an important regulator of atRA induced NIS gene expression in breast cancer cells. In this study, we investigated the effect of an ER agonist (17{beta}-estradiol, E{sub 2}) or antagonist [trans-hydroxytamoxifen (TOT) or raloxifene (RAL)] treatment on the regulation of NIS gene expression and iodide uptake in an ER{alpha}-positive breast cancer (MCF-7) model. Methods: NIS functional activity was measured in vitro by {sup 125}I uptake assay after incubation with E{sub 2} (from 10{sup -15} to 10{sup -5} M), TOT (from 5x10{sup -8} to 5x10{sup -6} M), or RAL (from 5x10{sup -8} to 5x10{sup -6} M) in the presence or absence of atRA (10{sup -7} M). Under the same conditions, NIS mRNA expression was examined by reverse transcriptase polymerase chain reaction. Athymic mice with MCF-7 xenograft tumors were treated with atRA alone or atRA together with E{sub 2} to evaluate the change of {sup 125}I uptake in tumor tissues in vivo. Results: In the iodide uptake study in cells, E{sub 2}, TOT, or RAL treatment alone did not stimulate {sup 125}I uptake. However, when iodide uptake was stimulated by atRA, cotreatment with E{sub 2}, TOT or RAL decreased {sup 125}I uptake in a concentration-dependent manner. The hormone effects on NIS mRNA expression levels in MCF-7 cells were similar. The results of the in vivo biodistribution study showed that {sup 125}I uptake was reduced 50% in tumor tissues of mice treated with atRA/E{sub 2} as compared to tumors treated only with atRA. Conclusion: Our results suggest that combination treatment of atRA and ER ligands could limit the functional activity of the NIS gene induced by atRA, thereby compromising its use as a target for diagnosis

  6. Effects of trichostatin a on the expression of sodium/iodide symporter mRNA and the uptake of iodide in human thyroid cancer cell lines

    International Nuclear Information System (INIS)

    Objective: To investigate the sodium/iodide symporter (NIS) expression and iodide uptake in thyroid cancer cells induced by the histone deacetyltransferase inhibitors (HDACi), Trichostatin A (TSA). Methods: Both the thyroid cancer cell lines, follicular thyroid carcinoma cell line FTC-133 and papillary thyroid carcinoma cell line K1, were firstly induced with TSA for 48 h. Then, the expression of NIS mRNA was analysed with reverse transcription-polymerase chain reaction (RT-PCR), the densitometric ratio of NIS/glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was calculated, and the iodide uptake in the thyroid cancer cells was also measured. Independent-sample t-test and one-way analysis of variance (ANOVA) were used to analyze the data. Results: For FTC-133 cells, increased NIS mRNA expression was detected after 48 h of TSA treatment, and the changes were dose-dependent (F=32.56, P0.05). Furthermore, FTC-133 cells showed the ability of accumulating radioiodide with 50 and 75 nmol/L TSA induction for 48 h: (15.42 ± 0.42) x 103 counts · min-1 · 10-5 cells vs (8.46 ± 0.84) x 103 counts · min-1 · 10-5 cells, t=3.018, P3 counts · min-1 · 10-5 cells vs (8.46 ± 0.84) x 103 counts · min-1 · 10-5 cells, t=3.557, P3 counts · min-1 · 10-5 cells, (6.97 ± 0.65) x 103 counts · min-1 · 10-5 cells vs (5.37 ± 0.88) x 103 counts · min-1 · 10-5 cells, t=0.185, P> 0.05 and t = 0.332, P > 0.05, respectively. Conclusion: TSA induced upregulated NIS mRNA expression in follicular thyroid cancer cells and augmented radioiodide uptake in thyroid cancer cells, while TSA had no remarkable effect on papillary thyroid carcinoma cell. (authors)

  7. Towards a biochemical and structural characterisation of the sodium-iodide sym-porter (Nis)

    International Nuclear Information System (INIS)

    Iodide is essential for thyroid hormone biosynthesis in mammals, and therefore for the control of cell metabolism and the development of the central nervous system in the foetus and newborns, but is relatively scarce element in the environment. To ensure its accumulation, the thyroid gland has evolved a remarkably efficient system, the sodium-iodide sym-porter (NIS), that was first characterized at the molecular level 10 years ago (1). NIS is an intrinsic protein mainly located in the basolateral membrane of thyroid follicular cells where it actively transports iodide ions using the sodium gradient as a driving force (2,3). In addition, this transporter has been found in lactating mammary gland, stomach, and salivary glands, and its mRNA was detected in brain, ovaries, testis. To date, the physiological role of NIS in these organs is not yet identified (3,4).The capacity of NIS to mediate the accumulation of radioactive iodide has been exploited for many years in the diagnosis of thyroid cancer as well as for the detection and radiotherapy of derived metastases. Moreover, the presence of NIS in some breast tumours and the possibility to express it by targeted gene therapy in tumour cells where it is not naturally present could also widen its medical application (4-7). In case of accidental contamination, NIS would also be responsible for accumulation of radioisotopes in the thyroid and for their transfer to the milk and the newborn, eventually causing thyroid cancers. This has motivated our research program in the perspective of designing novel specific therapeutics. During the last decade, the gene encoding the thyroid NIS has been identified and sequenced in various species including rat, mouse and human (1, 8). It was also demonstrated that the protein expression and activity are highly regulated both at the transcriptional and post-translational levels (3). A preliminary topological mode could be drawn from the protein sequence. It proposes a general

  8. Towards a biochemical and structural characterisation of the sodium-iodide sym-porter (Nis)

    Energy Technology Data Exchange (ETDEWEB)

    Darrouzet, E.; Marcellin, D.; Huc, S.; Quemeneur, E. [CEA Centre de Marcoule (SBTN), 30 - Bagnols-sur-Ceze (France); Pourcher, T. [Nice Univ., TIRO CEA, Sophia Antipolis, 06 - Nice (France)

    2006-07-01

    Iodide is essential for thyroid hormone biosynthesis in mammals, and therefore for the control of cell metabolism and the development of the central nervous system in the foetus and newborns, but is relatively scarce element in the environment. To ensure its accumulation, the thyroid gland has evolved a remarkably efficient system, the sodium-iodide sym-porter (NIS), that was first characterized at the molecular level 10 years ago (1). NIS is an intrinsic protein mainly located in the basolateral membrane of thyroid follicular cells where it actively transports iodide ions using the sodium gradient as a driving force (2,3). In addition, this transporter has been found in lactating mammary gland, stomach, and salivary glands, and its mRNA was detected in brain, ovaries, testis. To date, the physiological role of NIS in these organs is not yet identified (3,4).The capacity of NIS to mediate the accumulation of radioactive iodide has been exploited for many years in the diagnosis of thyroid cancer as well as for the detection and radiotherapy of derived metastases. Moreover, the presence of NIS in some breast tumours and the possibility to express it by targeted gene therapy in tumour cells where it is not naturally present could also widen its medical application (4-7). In case of accidental contamination, NIS would also be responsible for accumulation of radioisotopes in the thyroid and for their transfer to the milk and the newborn, eventually causing thyroid cancers. This has motivated our research program in the perspective of designing novel specific therapeutics. During the last decade, the gene encoding the thyroid NIS has been identified and sequenced in various species including rat, mouse and human (1, 8). It was also demonstrated that the protein expression and activity are highly regulated both at the transcriptional and post-translational levels (3). A preliminary topological mode could be drawn from the protein sequence. It proposes a general

  9. Development of Spectrophotometry Method For Iodide Determination Based on I2-Starch Complex Formation with Hypochlorite as oxidator

    Directory of Open Access Journals (Sweden)

    Qurrata Ayun

    2015-05-01

    Full Text Available Iodine is one of the most important elements for human body. Both, the overage and the deficiency supply of iodine give negative impact for human health. In this research, a simple and inexpensive spectrophotometric method is developed is based on starch-iodine complex formation, where iodide was oxidized with hypochlorite to form iodine, which then reacted with starch to form a blue starch-iodine complex. In this research, the common analytical parameters were optimized regarding to sensitivity and selectivity. It was noted that maximum wavelength for starch-iodine complex was 618 nm, optimum time for complex formation and oxidation was 15 minutes, and optimum hypochlorite concentration was 6 ppm. Under the obtained optimum conditions, the proposed method showed linearity from 0-20 ppm iodide (r2 = 0.994, with limit detection of 0.20 ppm. Determination of iodide with this method was unaffected by Cl-, and Br-; but SCN- affected the measurement of iodide at concentration of 1 ppm. Application to synthetic and urinary samples showed that the proposed method has good agreement with the standard spectrophotometry (leuco crystal violet method, and can be used as an alternative method for iodide measurement.

  10. Effect of solution pH on electrochemical oxidation of iodide ion at platinum electrode in sodium perchlorate solution

    International Nuclear Information System (INIS)

    In first several days during the severe accident of nuclear power plants, radioactive iodine-131 is one of the most hazardous volatile fission products which could be released from fuels of nuclear reactors. Due to its high radioactivity, high fission yield up to 2% and hazardous biological effects, many research groups have been studied the chemical behavior of iodine species. Iodine is reported to be released from the fuels as a cesium iodide form, CsI. And, as nuclear fuels are mostly placed in the water pool, it is easily dissolved in the water after released from the fuels. In water, iodide anion could be oxidized into molecular iodine. As the molecular iodine is a volatile species and the oxidizing rate is affected by many environmental facts such as pH, radiolysis products and temperature, the oxidation reaction of the iodide ion has been considered as an important chemical reaction related to the severe accident of nuclear power plants. In present work, the effect of the solution pH on the electrochemical oxidation of iodide anion was carried out using linear sweep voltammetry (LSV) technique in different pH solutions. We confirmed that the electrochemical oxidation reaction of iodide into iodine at Pt electrode is independent on the solution pH

  11. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.

    Science.gov (United States)

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit

    2016-06-01

    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. PMID:26830582

  12. Flow-injection determination of iodide ion in nuclear emergency tablets, using boron-doped diamond thin film electrode

    International Nuclear Information System (INIS)

    The electrochemical determination of iodide was studied at boron-doped diamond thin film electrodes (BDD) using cyclic voltammetry (CV) and flow-injection (FI) analysis, with amperometric detection. Cyclic voltammetry of iodide was conducted in a phosphate buffer pH 5. Experiments were performed using glassy carbon (GC) electrode as a comparison. Well-defined oxidation waves of the quasi-reversible cyclic voltammograms were observed at both electrodes. Voltammetric signal-to-background ratios (S/B) were comparable. However, the GC electrode gives much greater in the background current as usual. The potential sweep rate dependence exhibited that the peak current of iodide oxidation at 1mM varied linearly (r2 = 0.998) with the square root of the scan rate, from 0.01 to 0.30Vs-1. This result indicates that the reaction is a diffusion-controlled process with negligible adsorption on BDD surface, at this iodide concentration. Results of the flow-injection analysis show a highly reproducible amperometric response. The linear working range was observed up to 200μM (r2 = 0.999). The detection limit, as low as 0.01μM (3σ of blank), was obtained. This method was successfully applied for quantification of iodide contents in nuclear emergency tablets

  13. Electrical properties of solid iodo mercurates resulting from the reaction of HgI2 with alcaline iodides

    Science.gov (United States)

    Ponpon, J. P.; Amann, M.

    2005-01-01

    Potassium iodide solutions are currently used during the fabrication process of mercuric iodide based nuclear radiation detectors. However, KI treatment leaves the HgI2 surface covered with a residual compound (namely the potassium tri-iodo mercurate) which has a significant influence on the surface properties and stability of mercuric iodide devices and therefore on the detectors characteristics. Looking for other solutions to etch mercuric iodide, we found it interesting to investigate the electrical properties of the compounds which may form when etching HgI2 in NH4I, NaI, and RbI. For this purpose, solid iodo mercurates with the cations ammonium, sodium, and rubidium, have been prepared by reacting HgI2 with the solutions of interest. Study of the electrical properties of these samples and comparison with those of potassium tri-iodo mercurate ones, especially with respect to humidity, indicates noticeable stability differences in presence of water vapour. This could have interesting consequences on the surface cleaning of mercuric iodide.

  14. Electrochemistry of Iodide, Iodine, and Iodine Monochloride in Chloride Containing Nonhaloaluminate Ionic Liquids.

    Science.gov (United States)

    Bentley, Cameron L; Bond, Alan M; Hollenkamp, Anthony F; Mahon, Peter J; Zhang, Jie

    2016-02-01

    The electrochemical behavior of iodine remains a contemporary research interest due to the integral role of the I(-)/I3(-) couple in dye-sensitized solar cell technology. The neutral (I2) and positive (I(+)) oxidation states of iodine are known to be strongly electrophilic, and thus the I(-)/I2/I(+) redox processes are sensitive to the presence of nucleophilic chloride or bromide, which are both commonly present as impurities in nonhaloaluminate room temperature ionic liquids (ILs). In this study, the electrochemistry of I(-), I2, and ICl has been investigated by cyclic voltammetry at a platinum macrodisk electrode in a binary IL mixture composed of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2mim][NTf2]). In the absence of chloride (e.g., in neat [C2mim][NTf2]), I(-) is oxidized in an overall one electron per iodide ion process to I2 via an I3(-) intermediate, giving rise to two resolved I(-)/I3(-) and I3(-)/I2 processes, as per previous reports. In the presence of low concentrations of chloride ([Cl(-)] and [I(-)] are both complex anion [ICl2](-), in an overall two electron per iodide ion process. In the presence of a large excess of Cl(-) ([I(-)] ≈ 10 mM and [Cl(-)] ≈ 3.7 M), I(-) is oxidized in an overall two electron per iodide ion process to [ICl2](-) via an [I2Cl](-) intermediate (confirmed by investigating the voltammetric response of ICl and I2 under these conditions). In summary, the I(-)/I2/I(+) processes in nonhaloaluminate ILs involve a complicated interplay between multiple electron transfer pathways and homogeneous chemical reactions which may not be at equilibrium on the voltammetric time scale. PMID:26708364

  15. Removal of iodide from aqueous solutions by polyethylenimine-epichlorohydrin resins

    International Nuclear Information System (INIS)

    The iodide removal from aqueous solutions (initial I--concentration: 300-5,000 mg/L) by a low and a high molecular weight polyethylenimine-epichlorohydrin resin was investigated both in absence and presence of background electrolytes (NaCl and Na2SO4, ionic strength due to background electrolyte 0.1 M) using a batch technique, 131I as radioactive tracer and high-resolution γ-ray spectrometry. The experiments in absence of background electrolyte were performed using solutions of initial pH 3 and 7, whereas those in presence using solutions of initial pH 3. The results, which demonstrated the high iodide-removal efficiency of both resins, were modeled using the Langmuir and Freundlich isotherm equations. The experimental data were better reproduced using the Langmuir equation. Using this equation maximum sorption capacity values (Qmax) of 638.8 and 603.3 mg/g were obtained for the high molecular weight resin from solutions of initial pH 3 and 7 respectively, whereas the corresponding values for the low molecular weight one were slightly lower (552.4 and 507.5 mg/g respectively). The iodide uptake by the resins strongly depended on the presence of competing anions and especially of sulfates. The examination of sections of the I-loaded resins grains by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) revealed that iodine was evenly distributed throughout the bulk of the resins and not only bound to their surface. (author)

  16. Chemical dosimetry using an iodide/iodate aqueous solution: application to the gamma irradiation of blood

    International Nuclear Information System (INIS)

    A method is presented for measuring and verifying the radiation dose in gamma irradiators used for treating blood prior to transfusion. This method employs the iodide/iodate dosimeter (0.6 M iodide, 0.1 M iodate, and 0.01 borate at pH 9.25) which forms triiodide upon exposure to ionizing radiation; for Cs-137 radiation the G value is 14.1. Samples were placed in a canister and irradiated in a conventional blood bank irradiator containing several Cs-137 sources. The following were exposed: (a) nine 1.5 ml plastic tubes containing dosimetry solution taped inside a 250 ml blood bag, which, in turn, was filled with either water or blood, (b) 50 ml plastic syringes containing varying amounts of dosimetry solution, (c) a whole blood bag containing 250 ml of the dosimetry solution. A water phantom was not used during exposure. The absorbance changes at 352 nm due to triiodide formation were used to determine a dose rate, which was on the order of 10 Gy/min (±5%) for all samples measured. This value is consistent with an average time-decayed dose rate for the irradiation volume as determined from the manufacturers calibration of the unit taking into account the heterogeneous nature of the radiation field inside the irradiator and the absence of a water phantom. Because of its sensitivity, ease of operation, and reproducibility, it is suggested that the iodide/iodate dosimetry system be considered for on-site periodic conformation/verification of the radiation dose as part of a quality assurance requirement for blood irradiators

  17. Phase partitioning, retention kinetics, and leaching of fumigant methyl iodide in agricultural soils

    International Nuclear Information System (INIS)

    Although it is not currently being sold in the USA, the recent US registration of the fumigant methyl iodide has led to an increased interest in its environmental fate and transport. Although some work has now considered its volatile emissions from soil, there remains a lack of experimental data regarding its ability to be retained in soil and ultimately become transported with irrigation/rain waters. Using laboratory batch and soil column experiments, we aimed to better understand the phase partitioning of MeI, the ability of soils to retain MeI on the solid phase, and the potential for leaching of MeI and its primary degradation product, iodide, down a soil profile. Results indicated that MeI was retained by the solid phase of soil, being protected from volatilization and degradation, particularly in the presence of elevated organic matter. Retention was greater at lower moisture content, and maximum retention occurred after 56 days of incubation. At higher moisture content, the liquid phase also became important in retaining MeI within soil. Together with low observed KD values (0.10 to 0.57 mL g−1), these data suggest that MeI may be prone to leaching. Indeed, in a steady-state soil column study, initially retained MeI was transported with interstitial water. The MeI degradation product, iodide, was also readily transported in this manner. The data highlight a potentially significant process by which MeI fate and transport within the environment may be impacted. -- Highlights: ► Following fumigation and venting, MeI is retained by soil. ► Soil organic matter status is highly significant in MeI retention. ► Retained MeI is protected from degradation and volatilization. ► Retained MeI can be removed from the solid phase to the liquid phase and leached.

  18. Distribution and leaching of methyl iodide in soil following emulated shank and drip application.

    Science.gov (United States)

    Guo, Mingxin; Zheng, Wei; Papiernik, Sharon K; Yates, Scott R

    2004-01-01

    Methyl iodide (MeI) is a promising alternative to methyl bromide in soil fumigation. The pest-control efficacy and ground water contamination risks of MeI as a fumigant are highly related to its gas-phase distribution and leaching after soil application. In this study, the distribution and leaching of MeI in soil following shank injection and subsurface drip application were investigated. Methyl iodide (200 kg ha(-1)) was directly injected or drip-applied at a 20-cm depth into Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralfs) columns (12-cm i.d., 70-cm height) tarped with virtually impermeable film. Concentration profiles of MeI in the soil air were monitored for 7 d. Methyl iodide diffused rapidly after soil application, and reached a 70-cm depth within 2 h. Relative to shank injection, drip application inhibited diffusion, resulting in significantly lower concentration profiles in the soil air. Seven days after MeI application, fumigated soil was uncapped, aerated for 7 d, and leached with water. Leaching of MeI was significant from the soil columns under both application methods, with concentrations of >10 mug L(-1) in the early leachate. The leaching was greater following shank injection than drip application, with an overall potential of 33 g ha(-1) for shank injection and 19 g ha(-1) for drip application. Persistent residues of MeI remaining in soils after leaching were 50 to 240 ng kg(-1), and the contents were slightly higher following shank injection than drip application. The results suggest that fumigation with MeI may pose a risk of ground water contamination in vulnerable areas. PMID:15537937

  19. Synergy between iodide ions and mangrove tannins as inhibitors of mild steel corrosion

    OpenAIRE

    Adam, Mohd Ridhwan; Rahim, Afidah Abdul; Shah, Affaizza Mohamad

    2015-01-01

    Context Corrosion of materials is a problem faced by many industries. One of the solutions to this problem is to apply corrosion inhibitors.Aims In this study, the synergy between iodide ions and mangrove tannin extracted from mangrove bark (waste products of the charcoal industry) was tested on the inhibition of corrosion of mild steel in 0.5 M HCl and 0.25 M H2SO4. It was compared with the inhibition provided by mimosa and chestnut tannins.MethodsPotentiodynamic and electrochemical impedanc...

  20. Indirect Complexometric Determination of Mercury Using Potassium Iodide as Selective Masking Agent

    OpenAIRE

    RAO, B. Muralidhara

    1998-01-01

    This paper describes a indirect complexometric method for the determination of mercury in the presence of co-ions, based on the selective masking ability of potassium iodide. To the mixture of mercury (II) and other metal ion solution, EDTA solution was added in excess of the metal ions present. The pH of the solution was adjusted to 5.0-6.0 using solid hexamine (10 \\pm 2 g) and surplus EDTA was titrated with zinc sulfate solution using xylenol orange indicator. An excess of solid potassium i...

  1. Performance of neutron activation analysis in the evaluation of bismuth iodide purification methodology

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Ferraz, Caue de Mello; Hamada, Margarida M., E-mail: marmelin@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2015-07-01

    Bismuth tri-iodide (BrI{sub 3}) is an attractive material for using as a semiconductor. In this paper, BiI{sub 3} crystals have been grown by the vertical Bridgman technique using commercially available powder. The impurities were evaluated by instrumental neutron activation analysis (INAA). The results show that INAA is an analytical method appropriate for monitoring the impurities of: Ag, As, Br, Cr, K, Mo, Na and Sb in the various stages of the BiI{sub 3} purification methodology. (author)

  2. Continuous realtime radioiodine monitor employing on-line methyl iodide conversion

    International Nuclear Information System (INIS)

    An integrated 14C, 129I, and 85Kr monitor was proposed by Fernandez, et al. that separates 129I from 85Kr by selective permeation across thin silicone rubber membranes. Subsequent studies of the permeation of CH3I and I2 through silicone rubber membranes demonstrated that I2 transport across the membranes is too slow to be useful in a realtime monitor. Transport of methyl iodide, however, is rapid and gives a separation factor of greater than 100 from 85Kr

  3. Effects of contact materials on the thermally stimulated current spectra of mercuric iodide

    International Nuclear Information System (INIS)

    This paper reports that mercuric iodide (HgI2) single crystals deposited with transparent indium-tin-oxide (ITO), and semitransparent gold and nickel contacts were investigated by thermally stimulated current spectroscopy (TSC). The differences in the TSC spectra from these samples indicate that the defect structure in HgI2 may be modified by the contact material. These defects act as carrier traps and have strong implications in the application of HgI2 nuclear detectors. A method of numerical analysis was developed to extract information such as carrier trap activation energy, capture cross-section, and trap concentration-lifetime product from the TSC measurements

  4. A study on sodium iodide symporter gene mutation in congenital hypothyroidism

    International Nuclear Information System (INIS)

    Objective: To investigate the mutation of sodium iodide symporter (NIS) gene in the patients with congenital hypothyroidism (CH) in Tianjin area. Methods: Total genomic DNA was extracted from peripheral blood of 18 patients with CH and 35 normal subjects randomly selected. All 15 exons of NIS gene were individually amplified. Mutation was detected by single-strand conformational polymorphism(SSCP) technique and confirmed with direct sequencing. Results: Exons of NIS gene of all the subjects were successfully amplified by polymerase chain reaction. SSCP analysis displayed no abnormality. No mutation was found in these patients Conclusion: The CH in Tianjin urban area had no mutation of NIS gene. (authors)

  5. Removal of trace quantities of cadmium from aqueous iodide solutions by ion flotation

    International Nuclear Information System (INIS)

    Cadmium ions react with the collector, ethylhexadecyldimethylammonium bromide (EHDABr) to form a surface active sublate which can be removed from aqueous iodide solutions by ion flotation. A typical ion flotation procedure involves passing air through a 250-ml solution containing 5 ppm Cd2+, 0.120 M I- and 1 x 10 -3M EHDABr at a flow rate of 20 ml/min for 2 hrs. The procedure is simple and efficient. Chromium, copper and zinc ions do not interfere under the experimental conditions. (author)

  6. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    International Nuclear Information System (INIS)

    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI2 is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI2; recent progress is reported

  7. Determination of iodide in samples with complex matrices by hyphenation of capillary isotachophoresis and zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Pantůčková, Pavla; Urbánek, Marek; Křivánková, Ludmila

    Olomouc: Palacký University, 2007 - (Petr, J.; Znaleziona, J.; Ranc, V.; Vítková, K.). s. 134 ISBN 978-80-244-1705-9. [Advances in Chromatography and Electrophoresis 2007 & CHIRANAL 2007. 24.06.2007-27.06.2007, Olomouc] R&D Projects: GA ČR GA203/05/2106; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : hyphenation of capillary isotachophoresis and zone electrophoresis * iodide Subject RIV: CB - Analytical Chemistry, Separation

  8. Mercury iodide nucleation and crystal growth in vapor phase (4-IML-1)

    Science.gov (United States)

    Cadoret, Robert

    1992-01-01

    The objectives of this experiment are to grow simultaneously three single crystals of mercuric iodide (HgI2) in an imposed temperature profile and to assess the advantages of growth in microgravity on the HgI2 crystal quality. Growth in microgravity should reduce fluctuations in HgI2 concentrations and thus decrease the resultant crystal defects. In order to test this hypothesis, a seeded growth of HgI2 crystals will be performed on International Microgravity Lab. (IML-1).

  9. Synthesis of oligosaccharides using per-O-trimethylsilyl-glycosyl iodides as glycosyl donor.

    Science.gov (United States)

    Wang, Hong; Cui, Yanli; Zou, Rong; Cheng, Zhaodong; Yao, Weirong; Mao, Yangyi; Zhang, Yongmin

    2016-06-01

    Trimethylsilyl (TMS) protecting group has been found to be very useful for the simultaneous protection of both the glycosyl donor- and the acceptor-substrates in oligosaccharide synthesis. Thus, while the per-O-trimethylsilylated glycosyl iodides served as the glycosyl donor, those bearing selectively exposed primary hydroxyl groups were found suitable as the glycosyl acceptor for the reaction. The cheap and commercially available trialkylamine, triethylamine was found to be an effective promoter for the glycosylation. Importantly, the reaction was α-stereospecific and gave the products in 58%-78% yields. PMID:27077820

  10. Thermochemical properties of composites of synthetic zeolite ZSM5 and silver iodide

    Czech Academy of Sciences Publication Activity Database

    Čuvanová, S.; Reháková, M.; Bastl, Zdeněk; Pollicino, A.; Nagyová, S.; Fajnor, V. Š.

    2006-01-01

    Roč. 84, č. 3 (2006), s. 721-726. ISSN 1388-6150 R&D Projects: GA AV ČR KSK4040110 Grant ostatní: Scientific Grant Agency of the Slovak Republic(SK) 1/1385/04; Scientific Grant Agency of the Slovak Republic(SK) 1/1373/04 Institutional research plan: CEZ:AV0Z40400503 Keywords : silver iodide * synthetic zeolite * thermal analysis * XPS * X-ray Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.438, year: 2006

  11. Detection of experimentally produced acute pulmonary arterial occlusion by methyl iodide-131 inhalation imaging

    International Nuclear Information System (INIS)

    Methyl iodide-131 (CH3I-131) is described as an agent for detection of acute experimentally produced pulmonary arterial occlusion in dogs. When gaseous CH3I-131 is inhaled, radioactivity passes instantaneously from the alveoli to the lung capillary bed. Where pulmonary blood flow exists, activity is washed out into the systemic circulation, but in areas of blood stasis, a transient pulmonary hot spot remains. CH3I-131 is easily produced and inexpensive, but administration is awkward and strict radiation safety precautions are mandatory

  12. Atypical cutaneous sporotrichosis in an immunocompetent adult: Response to potassium iodide

    Directory of Open Access Journals (Sweden)

    Nikita Gandhi

    2016-01-01

    Full Text Available Cutaneous sporotrichosis, also known as “Rose Gardener's disease,” caused by dimorphic fungus Sporothrix schenkii, is usually characterized by indolent nodular or nodulo-ulcerative lesions arranged in a linear pattern. We report bizarre nonlinear presentation of Sporotrichosis, in an immunocompetent adult occurring after a visit to Amazon rain forest, speculating infection with more virulent species of Sporothrix. The diagnosis was reached with the help of periodic acid-Schiff positive yeast cells and cigar shaped bodies seen in skin biopsy along with the therapeutic response to potassium iodide.

  13. Performance of neutron activation analysis in the evaluation of bismuth iodide purification methodology

    International Nuclear Information System (INIS)

    Bismuth tri-iodide (BrI3) is an attractive material for using as a semiconductor. In this paper, BiI3 crystals have been grown by the vertical Bridgman technique using commercially available powder. The impurities were evaluated by instrumental neutron activation analysis (INAA). The results show that INAA is an analytical method appropriate for monitoring the impurities of: Ag, As, Br, Cr, K, Mo, Na and Sb in the various stages of the BiI3 purification methodology. (author)

  14. Polarographic determination of Iodide and Iodate, in Solutions Coming from Aerosols in Fission Products Containment Studies in Nuclear Power Stations

    International Nuclear Information System (INIS)

    A polarographic method is described for the iodine species determination, iodide and iodate in water solutions. the iodate can be determined by differential pulse polarography. Calibration curves and the detection and determination limits have been obtained. Iodides is oxidized to iodate with sodium hypochlorite and the excess of oxidizing agent is destroyed with sodium sulphide. The concentration of iodide is calculated as the difference between the concentration of iodate in the sample before and after the oxidation. As an application, species of iodine in samples coming from the experimental plants GIRS (Gaseous Iodine Removal by Sprays) of Nuclear Fission Department of the CIEMAT, dedicated to fission products containment studies in nuclear power station, were determined. (Author) 10 refs

  15. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

    Science.gov (United States)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  16. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    International Nuclear Information System (INIS)

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI)xM+ (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model

  17. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oberreit, Derek [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110 (United States); Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J., E-mail: hogan108@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-14

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  18. The effect of potassium iodide on the production of acid phosphatase by Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    P. S. Grover

    2003-06-01

    Full Text Available The present study was undertaken to find out the in vitro effect of potassium iodide (KI on the production of acid phosphatase by fully characterized strain of S.schenckii isolated from a patient of Cutaneous Sporotrichosis. The enzyme acid phosphatase was estimated during the 3 phases of growth of S.schenckii, without and with three concentrations of KI incorporated in the culture medium. In the control and in the test proper, with various concentrations of KI, no adverse effect of KI was observed on the production of acid phosphatase in early and mid log phase of fungal growth. Whereas in the exponential phase in test proper, there was a statistical significant decrease in the enzyme production with 0.8% and 3.2% of KI. The low activity at 0.8% and 3.2% KI indicates that KI has inhibitory effect on the growth of S.schenckii and has led to decrease in the activity of the enzyme. (Med J Indones 2003; 12: 65-8 Keywords: S.schenckii, acid phosphatase, potassium iodide

  19. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Filho, A.M. [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil); Mulato, M., E-mail: mmulato@ffclrp.usp.b [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil)

    2011-04-21

    Some semiconductor materials such as lead iodide (PbI{sub 2}) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 10{sup 8} {Omega} cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  20. A study of the homogeneity and deviations from stoichiometry in mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.; He, C.; Silberman, E.; van den Berg, L.; Ortale, C.; Franks, L.; Schieber, M.

    1989-01-01

    We have been able to determine the deviations from stoichiometry of mercuric iodide (HgI/sub 2/) by using Differential Scanning Calorimetry (DSC). Mercury excess or iodine deficiency in mercuric iodide can be evaluated from the eutectic melting of HgI/sub 2/-- Hg/sub 2/I/sub 2/ at 235/degree/C which appears as an additional peak in DSC thermograms. I/sub 2/ excess can be found from the existence of the I/sub 2/--HgI/sub 2/ eutectic melting at 103/degree/C. An additional DSC peak appears in some samples around 112/degree/C that could be explained by the presence of iodine inclusions. Using Resonance Fluorescence Spectroscopy (RFS) we have been able to determine the presence of free I/sub 2/ that is released by samples during the heating at 120/degree/C (crystal growth temperature) thus giving additional support to the above DSC results. 19 refs., 6 figs., 2 tabs.

  1. Study of stoichiometry in mercuric iodide by low-temperature photoluminescence spectroscopy

    Science.gov (United States)

    Bao, Xue J.; James, Ralph B.; Hung, C.-Y.; Schlesinger, Tuviah E.; Cheng, A. Y.; Ortale, Carol; van den Berg, Lodewijk

    1993-02-01

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI(subscript 2)) crystals that were surface-doped with either iodine or mercury. Two methods of treatment were used to achieve the surface doping. The first is the direct immersion of HgI(subscript 2) samples into potassium iodide (KI) aqueous solution saturated with iodine or immersion into elemental mercury liquid. The second is the storage of HgI(subscript 2) crystals under either iodine or mercury vapor. Certain features in the PL spectra were correlated with the stoichiometry of the HgI(subscript 2/ crystals modified by the surface doping. It was also found that if HgI(subscript 2) was exposed to air, an iodine deficient surface layer would form within a one-day period due to the preferential loss of iodine. Finally, the behavior of a broad emission band in the PL spectra and its implication in the fabrication of high quality HgI(subscript 2) nuclear detector is discussed.

  2. Sodium iodide symporter (NIS) in extrathyroidal malignancies: focus on breast and urological cancer

    International Nuclear Information System (INIS)

    Expression and function of sodium iodide symporter (NIS) is requisite for efficient iodide transport in thyrocytes, and its presence in cancer cells allows the use of radioiodine as a diagnostic and therapeutic tool in thyroid neoplasia. Discovery of NIS expression in extrathyroidal tissues, including transformed cells, has opened a novel field of research regarding NIS-expressing extrathyroidal neoplasia. Indeed, expression of NIS may be used as a biomarker for diagnostic, prognostic, and therapeutic purposes. Moreover, stimulation of endogenous NIS expression may permit the radioiodine treatment of extrathyroidal lesions by concentrating this radioisotope. This review describes recent findings in NIS research in extrathyroidal malignancies, focusing on breast and urological cancer, emphasizing the most relevant developments that may have clinical impact. Given the recent progress in the study of NIS regulation as molecular basis for new therapeutic approaches in extrathyroidal cancers, particular attention is given to studies regarding the relationship between NIS and clinical-pathological aspects of the tumors and the regulation of NIS expression in the experimental models

  3. Observation of crystallization and characterizations on thiourea cadmium iodide: A semi-organic optical material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preeti; Hasmuddin, Mohd. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Abdullah, M.M. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Promising Centre for Sensors and Electronic Devices (PCSED), Department of Physics, Faculty of Sciences and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Shkir, Mohd. [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India) and Department of Physics, ARSD College, University of Delhi, New Delhi 110021 (India); Wahab, M.A., E-mail: aries.pre84@gmail.com [Crystal Growth and XRD Lab, Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India)

    2013-10-15

    Graphical abstract: - Highlights: • Thiourea cadmium iodide (TCI) was grown by slow evaporation solution technique. • Morphology and growth rate of the grown compound are determined with the help of inverted microscope. • Optical band gap has been determined. • Microstructure analysis has been reported. • Electrical study has been reported and discussed. - Abstract: In this work, the single crystals of thiourea cadmium iodide were grown by slow evaporation solution technique in two different ratios 2:1 and 1:1. During the formation of their single crystals the morphological features and its live growth process were recorded with the help of inverted microscope. Structural studies of the grown crystals have been carried out by powder X-ray diffraction to confirm the crystal system and vibrational modes by Raman spectroscopy. The optical energy band gaps were investigated through UV–vis spectroscopy study. The surface morphology of the grown single crystals was analyzed by using Scanning Electron Microscope and thermal analysis was carried out by using thermogravimetric analysis. The electrical properties were also studied as a function of frequency and the obtained results are discussed.

  4. Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide.

    Science.gov (United States)

    Mori, Izumi C; Arias-Barreiro, Carlos R; Koutsaftis, Apostolos; Ogo, Atsushi; Kawano, Tomonori; Yoshizuka, Kazuharu; Inayat-Hussain, Salmaan H; Aoyama, Isao

    2015-02-01

    The aquatic ecotoxicity of chemicals involved in the manufacturing process of thin film transistor liquid crystal displays was assessed with a battery of four selected acute toxicity bioassays. We focused on tetramethylammonium hydroxide (TMAH, CAS No. 75-59-2), a widely utilized etchant. The toxicity of TMAH was low when tested in the 72 h-algal growth inhibition test (Pseudokirchneriellia subcapitata, EC50=360 mg L(-1)) and the Microtox® test (Vibrio fischeri, IC50=6.4 g L(-1)). In contrast, the 24h-microcrustacean immobilization and the 96 h-fish mortality tests showed relatively higher toxicity (Daphnia magna, EC50=32 mg L(-1) and Oryzias latipes, LC50=154 mg L(-1)). Isobologram and mixture toxicity index analyses revealed apparent synergism of the mixture of TMAH and potassium iodide when examined with the D. magna immobilization test. The synergistic action was unique to iodide over other halide salts i.e. fluoride, chloride and bromide. Quaternary ammonium ions with longer alkyl chains such as tetraethylammonium and tetrabutylammonium were more toxic than TMAH in the D. magna immobilization test. PMID:25151133

  5. Selective capture of iodide from solutions by microrosette-like δ-Bi₂O₃.

    Science.gov (United States)

    Liu, Long; Liu, Wei; Zhao, Xiaoliang; Chen, Daimei; Cai, Rongsheng; Yang, Weiyou; Komarneni, Sridhar; Yang, Dongjiang

    2014-09-24

    Radioactive iodine isotopes that are produced in nuclear power plants and used in medical research institutes could be a serious threat to the health of many people if accidentally released to the environment because the thyroid gland can absorb and concentrate them from a liquid. For this reason, uptake of iodide anions was investigated on microrosette-like δ-Bi2O3 (MR-δ-Bi2O3). The MR-δ-Bi2O3 adsorbent showed a very high uptake capacity of 1.44 mmol g(-1) by forming insoluble Bi4I2O5 phase. The MR-δ-Bi2O3 also displayed fast uptake kinetics and could be easily separated from a liquid after use because of its novel morphology. In addition, the adsorbent showed excellent selectivity for I(-) anions in the presence of large concentrations of competitive anions such as Cl(-) and CO3(2-), and could work in a wide pH range of 4-11. This study led to a new and highly efficient Bi-based adsorbent for iodide capture from solutions. PMID:25170974

  6. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    International Nuclear Information System (INIS)

    Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  7. Thermal effect on photolysis in 203Hg, 35S and 131I labeled mercury (II) iodide thiocyanate powders

    International Nuclear Information System (INIS)

    203Hg, 35S or 131I labeled mercury (II) iodide thiocyanate (HgISCN) powders were prepared, respectively. When the powders were exposed to sunlight, some parts of the crystals of the powders were decomposed and the decomposed atoms diffused toward crystal surface. This diffusion velocity was accelerated by thermal treatment of the darkened powders. The velocity is larger in order of 35S, 203Hg, 131I. Decomposed products consist of colloidal mercury, mercury iodide, mercury sulfide, sulfur dioxide and iodine. Mechanism of photochromism of HgISCN was discussed. (author)

  8. Inner Sphere and Outer Sphere Electron Transfer to Methyl Iodide. Deuterium and 13C Kinetic Isotope Effects

    DEFF Research Database (Denmark)

    Holm, Torkil; Crossland, Ingolf

    1996-01-01

    Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in......Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in...

  9. Administration of additional inactive iodide during radioiodine therapy for Graves' disease. Who might benefit?

    Energy Technology Data Exchange (ETDEWEB)

    Dietlein, M.; Moka, D.; Reinholz, U.; Schmidt, M.; Schomaecker, K.; Schicha, H.; Wellner, U. [Koeln Univ. (Germany). Dept. of Nuclear Medicine

    2007-07-01

    Aim: Graves' hyperthyroidism and antithyroid drugs empty the intrathyroid stores of hormones and iodine. The consequence is rapid {sup 131}I turnover and impending failure of radioiodine therapy. Can administration of additional inactive iodide improve 131I kinetics? Patients, methods: Fifteen consecutive patients, in whom the 48 h post-therapeutically calculated thyroid dose was between 150 and 249 Gy due to an unexpectedly short half-life, received 3 x 200 {mu}g inactive potassium-iodide ({sup 127}I) daily for 3 days (Group A), while 17 consecutive patients with a thyroid dose of = 250 Gy (Group B) served as the non-iodide group. 48 hours after {sup 131}I administration (M1) and 4 or 5 days later (M2) the following parameters were compared: effective {sup 131}I half-life, thyroid dose, total T3, total T4, {sup 131}I-activity in the T3- and T4-RIAs. Results: In Group A, the effective {sup 131}I half-life M1 before iodine (3.81 {+-} 0.93 days) was significantly (p <0.01) shorter than the effective {sup 131}I half-life M2 (4.65 {+-} 0.79 days). Effective {sup 131}I half-life M1 correlated with the benefit from inactive {sup 127}I (r = -0.79): Administration of {sup 127}I was beneficial in patients with an effective {sup 131}I half-life M1 of <3 or 4 days. Patients from Group A with high initial specific {sup 131}I activity of T3 and T4 showed lower specific {sup 131}I activity after addition of inactive iodine compared with patients from the same group with a lower initial specific {sup 131}I activity of T3 and T4 and compared with the patient group B who was given no additional inactive iodide. This correlation was mathematically described and reflected in the flatter gradient in Group A (y = 0.5195x + 0.8727 for {sup 131}I T3 and y = 1.0827x - 0.4444 for {sup 131}I T4) and steeper gradient for Group B (y = 0.6998x + 0.5417 for {sup 131}I T3 and y = 1.3191x - 0.2901 for {sup 131}I T4). Radioiodine therapy was successful in all 15 patients from Group A

  10. A reversible fluorescent INHIBIT logic gate for determination of silver and iodide based on the use of graphene oxide and a silver–selective probe DNA

    International Nuclear Information System (INIS)

    We describe a reversible fluorescent DNA–based INHIBIT logic gate for the determination of silver(I) and iodide ions using graphene oxide (GO) as a signal transducer and Ag(I) and iodide as mechanical activators. The basic performance, optimized conditions, sensitivity and selectivity of the logic gate were investigated and revealed that the method is highly sensitive and selective over potentially interfering ions. The limits of detection for Ag(I) and iodide are 10 nM and 50 nM, respectively. This logic gate was successfully applied to the determination of Ag(I) and iodide in (spiked) tap water and river water. It was also used for the determination of iodide in human urine samples with satisfactory results. Compared to other methods, this INHIBIT logic gate is simple in design and has small background interference. (author)

  11. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    Science.gov (United States)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-01

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  12. Sorption, degradation, and transport of methyl iodide and other iodine species in geologic media

    International Nuclear Information System (INIS)

    Iodine is an important element in studies of human nutrition to combat I deficiency disorders, and in protection of the environment and human health from anthropogenic release of radioactive I. Biogeochemical cycling of I in the subsurface environment is complex, because it occurs in multiple oxidation states and as inorganic and organic species that may be volatile, hydrophilic and biophilic. Predicting the fate and transport of anthropogenic radioiodine deposited from the atmosphere or released into the subsurface requires knowledge of the sorption and degradation behavior of the various I species that may interact with soils and sediments. In this study, sorption, degradation, and transport behavior of I species (iodide, iodate, methyl iodide, and 4-iodoaniline) were examined in 12 geologic samples of differing physico-chemical characteristics, collected at numerous nuclear facilities in the USA. In particular, this work focuses on the sorption and degradation behavior of CH3I in geologic media, for which few studies are available, even though it is recognized as an important gaseous form of I in the marine atmosphere, and as a major form released from nuclear fuel reprocessing facilities and during nuclear accidents. Results from complementary batch and column experiments show that different I species exhibit very different sorption and transport behavior in geologic media. Sorption of I− is in general minimal, but a low concentration (5 10−13 M) of radioactive 125I is found to be strongly sorbed onto samples with high organic matter. Sorption of IO3- is consistently greater than that of I−, and sorption of 4-iodoaniline is generally strong and seems to be related to the amount of organic matter in the media. Methyl iodide is weakly sorbed onto 12 geologic samples with a distribution coefficient of about 1 mL/g, but its degradation varies greatly as a function of organic matter content, with a regression line of t1/2 = 0.084 × OM + 0.088 (R2 = 0.898, N

  13. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  14. N,N-Dimethylbenzimidazolium iodide as a green catalyst for cross-coupling of aromatic aldehydeswith unactivated imines

    Directory of Open Access Journals (Sweden)

    Viwat Hahnvajana wong

    2016-03-01

    Full Text Available Cross-coupling of aromatic aldehydes with unactivated iminescatalyzed by N,N-dimethylbenzimidazolium iodide in ethanolic sodium hydroxide solution gave α-amino ketonesin satisfactory yields. Benzoin condensation and further oxidation of the resulted aroins also occurred as side reactions.

  15. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  16. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  17. Cyclization of 2′-hydroxychalcones to flavones using ammonium iodide as an iodine source: An eco-friendly approach

    OpenAIRE

    Kulkarni Pramod S.; Kondhare Dasharath D.; Varala Ravi; Zubaidha Pudukulathan K.

    2013-01-01

    Ammonium iodide in open air decomposes to ammonia and iodine. The in situ generated iodine has been used for cyclization of 2′-hydroxychalcones to corresponding flavones under solvent free conditions with good to excellent yields. This method would serve as an attractive alternative to the existing methods for synthesis of flavones and use of toxic molecular iodine is avoided.

  18. Cyclization of 2′-hydroxychalcones to flavones using ammonium iodide as an iodine source: An eco-friendly approach

    Directory of Open Access Journals (Sweden)

    Kulkarni Pramod S.

    2013-01-01

    Full Text Available Ammonium iodide in open air decomposes to ammonia and iodine. The in situ generated iodine has been used for cyclization of 2′-hydroxychalcones to corresponding flavones under solvent free conditions with good to excellent yields. This method would serve as an attractive alternative to the existing methods for synthesis of flavones and use of toxic molecular iodine is avoided.

  19. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium.

    Science.gov (United States)

    Sharma, Shikha; Ghosh, Sunil K; Sharma, Joti N

    2015-09-15

    A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L(+)I(-) and Ru(NO)(NO3)3. Ruthenium formed an adduct of structure LRu(NO)(NO3)3 I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste. PMID:25863580

  20. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  1. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  2. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  3. Iodide and iodate (129I and 127I) in surface water of the Baltic Sea, Kattegat and Skagerrak

    International Nuclear Information System (INIS)

    Despite the common incorporation of iodine in the biological cycle and occurrence of huge contamination of the radioactive isotope 129I in the Baltic Proper, Skagerrak and Kattegat, there is no data on chemical speciation of iodine in these waters. We here present first time data on iodine isotopes 129I and 127I species as iodide and iodate in surface seawater samples collected from 16 locations in August 2006 and 19 locations in April 2007 in the Baltic Proper, Skagerrak and Kattegat. After extensive separation methods, the isotopes concentrations were determined using accelerator mass spectrometry (AMS) technique for the 129I and inductively coupled plasma mass spectroscopy (ICP-MS) for 127I. High concentrations of both isotopes species were found in the Skagerrak–Kattegat basins, whereas the values in the Baltic Proper are low for both species. The ratios of 129I−/129IO3− and 127I−/127IO3− significantly increase from south to central Baltic Sea, and iodide (both isotopes) appears as the predominant inorganic iodine species along the Baltic Sea. The results show insignificant change in 129I and 127I speciation and suggest that reduction of iodate and oxidation of iodide in Skagerrak and Kattegat may be a slow process. Additionally, the positive correlation between salinity and iodide and iodate (both isotopes) may reflect effective control of Skagerrak water mass on iodine distribution in surface water of the Baltic Sea.

  4. Irrigation, organic matter addition, and tarping as methods of reducing emissions of methyl iodide from agricultural soil

    Science.gov (United States)

    Methyl iodide (MeI) is set to become increasingly used as a highly effective alternative to the soil fumigant methyl bromide. Due to its physical properties, its emission from soil to air is likely to be high and may become a human health risk. Using soil columns that make it possible to determine e...

  5. Coupling of soil solarization and reduced rate fumigation: Effects on methyl iodide emissions from raised beds under field conditions

    Science.gov (United States)

    Using field plots, we studied the effect on methyl iodide (MeI) emissions of coupling soil solarization (passive and active) and reduced rate fumigation (70% of a standard fumigation) in raised beds under virtually impermeable film (VIF). The results showed that for the standard fumigation and the p...

  6. Performance test of silver ion-exchanged zeolite for the removal of gaseous radioactive methyl iodide at high temperature condition

    International Nuclear Information System (INIS)

    Performance tests of silver ion-exchanged zeolite (AgX) adsorbent for the control of radioiodine gas generated from a high-temperature process were carried out using both non-radioactive and a radioactive methyl iodide tracers. From the identification of SEM-EDAX analysis, an experimental result of silver ion-exchanged ratio containing 10∼30 wt% of Ag was fit to that calculated by the weight increment, and it was confirmed that the silver was uniformly distributed inside the pores of the adsorbent. Demonstration test of AgX-10 adsorbent using radioactive methyl iodide tracer was performed. The removal efficiency of radioiodine with AgX-10 in the temperature ranges of 150 to 300 deg C was in the ranges of 99.9% to 99.99%, except for 300 deg C. The influence of the long-term weathering and the poisoning with NO2 gas (200 ppm) on adsorption capacity of AgX-10 was also analyzed. The removal efficiency of radioactive methyl iodide by AgX-10 weathered for 14 weeks was 99.95%. Long-term poisoning test showed that the adsorption efficiency of methyl iodide started to decrease after 10 weeks, and the removal efficiency of radioiodine by AgX-10, poisoned for 16 weeks, was 99% (DF=100). (author)

  7. Extremely sensitive method for determination of iodide in samples with complex matrices using hyphenation of capillary isotachophoresis and zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Urbánek, Marek; Křivánková, Ludmila

    Florence : University of Florence, 2004, s. 169. [PBA 2004. International Symposium on Pharmaceutical and Biomedical Analysis /15./. Florence (IT), 02.05.2004-06.05.2004] R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919 Keywords : Iodide * human urine * isotachophoresis-zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  8. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide.

    Science.gov (United States)

    Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo

    2016-09-01

    Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. PMID:27522547

  9. Characterisation of iodide retention on Callovo-Oxfordian argilites by batch, column and through-diffusion experiments

    International Nuclear Information System (INIS)

    Full text of publication follows: Iodine-129 is commonly among the largest contributors to the calculated health risk associated with long-term nuclear underground waste disposal. Therefore, its behaviour in Callovo-Oxfordian argilites, the argillaceous host rock of the ANDRA Meuse/Haute-Marne underground laboratory, must be fully characterized. A weak and reversible sorption of iodide on surface clay and oxide minerals is often opposed to an irreversible retention on organic matter, more intense but kinetically slower. In the present study, several experimental methods (batch experiments, Stop and Flow columns and through-diffusion cells) have been implemented to study and quantify iodide ion retention, using 125I- as radiotracer. Several argillite cores were studied, coming from different back-holes (EST205 and EST312/322). All the experiments were performed with a synthetic solution, as close as possible of the natural pore water. Thiosulfates were systematically added to the synthetic solution in order to ensure the predominance of iodide. Sorption/desorption on batch tubes and column experiments have firstly been conducted to investigate the nature of iodine retention on argilites. Irreversible sorption of iodide was demonstrated with both methods, when long contact duration was provided. On the contrary, no reversible sorption of iodide was detected. Nevertheless, rock oxidation, conversion to iodates, may be encountered with these long-time experiments. Hence, through-diffusion cells were carried out in order to get closer to in situ physico-chemical conditions. Moreover, these experiments allow to work directly on centimetric rock samples (without crushing). During preparation and equilibration, careful attention was brought to maintain a permanent anoxic atmosphere (operations in an anhydrous and anoxic glovebox). All sampling were also made under a CO2/N2 flux. Influence of total iodine concentration (2.10-7 to 10-3 mol.L-1) was studied, comparing 125I

  10. A review of recent measurements of optical and thermal properties of α-mercuric iodide

    International Nuclear Information System (INIS)

    The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide (α-HgI2) is a material which was found important applications as room temperature X-ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of α-HgI2 where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth and device fabrication

  11. Photoemission and optical constant measurements of Cesium Iodide thin film photocathode

    CERN Document Server

    Triloki,; Gupta, Nikita; Jammal, Nabeel F A; Singh, B K

    2014-01-01

    Performance of cesium iodide (CsI) as a reflective photocathode is presented. Absolute quantum efficiency (QE) measurement of 500 nm thick CsI film has been carried out in the wavelength range of 150 nm to 200 nm. Optical absorbance of 500 nm thick CsI film in the spectral range of 190 nm to 900 nm is analyzed and optical energy band gap is calculated using Tauc plot. To see the dispersive behavior of CsI film, refractive index has been determined by envelop plot of transmittance data, using Swanepoel method. Additional information on morphological and elemental composition results of CsI film, gained by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively are also reported in present work.

  12. Coordination-Induced Syntheses of Two Hybrid Framework Iodides: A Thermochromic Luminescent Thermometer.

    Science.gov (United States)

    Zhang, Ren-Chun; Wang, Jun-Jie; Zhang, Jing-Chao; Wang, Meng-Qi; Sun, Min; Ding, Feng; Zhang, Dao-Jun; An, Yong-Lin

    2016-08-01

    Two new 3D hybrid framework iodides, Hmta[(Hmta)Ag4I4] (1; Hmta = hexamethylenetetramine) and [(Hmta)2Ag8I6]I2 (2), have been synthesized under solvothermal conditions. Compound 1 consists of a neutral 3D framework built up from alternation of the tetrahedral Ag4I4 unit and Hmta with dia-b topology. Compound 2 features a 3D cationic framework with flu topology, constructed by cationic [Ag8I6](2+) units linked with Hmta. Tetrahedral Hmta plays crucial structure-directing roles in the formation of these 3D frameworks with high symmetry. The temperature-dependent photoluminescent measurement reveals luminescent thermochromism of the compounds, the emission maximum of which shows a gradual blue shift with increasing temperature. The results indicate that 1 is a promising wavelength- and intensity-dependent luminescent thermometer applicable in two different temperature ranges. PMID:27438190

  13. Ionization/dissociation processes in some alkyl iodides induced by strong picosecond laser beam

    Science.gov (United States)

    Siozos, P.; Kaziannis, S.; Kosmidis, C.; Lyras, A.

    2005-05-01

    The interaction of 1-, 2-iodopropane, 1-, 2-iodobutane and 1-iodopentane with strong (2 × 1015 W cm-2) picosecond laser fields at 1064, 532, 355 and 266 nm is studied by means of time-of-flight (TOF) mass spectrometry. The experimental findings are compared with those reported, for the same molecules, from fs experiments at similar laser intensities. The pertaining molecular ionization mechanism (multiphoton and/or field ionization) is found to depend on the laser wavelength, while the recorded multiply charged atomic ions are generated via field ionization processes in all cases. The identification of these ionization mechanisms has been based on the dependence of the signal intensity and the peak profiles on laser polarization. The recorded mass spectra are analyzed vis-à-vis those reported for methyl iodide. The observed similarities and differences are discussed in detail.

  14. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter

    Directory of Open Access Journals (Sweden)

    C. Massart

    2014-01-01

    Full Text Available NADPH oxidases (NOXes and dual oxidases (DUOXes generate O2.− and H2O2. Diphenyleneiodonium (DPI inhibits the activity of these enzymes and is often used as a specific inhibitor. It is shown here that DPI, at concentrations similar to those which inhibit the generation of O2 derivatives, activated the efflux of radioiodide but not of its analog 99mTcO4− nor of the K+ cation mimic 86Rb+ in thyroid cells, in the PCCl3 rat thyroid cell line and in COS cell lines expressing the iodide transporter NIS. Effects obtained with DPI, especially in thyroid cells, should therefore be interpreted with caution.

  15. Cesium-iodide-based nanocrystal for the detection of ionizing radiation

    Science.gov (United States)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.

    2016-05-01

    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  16. Electric field effects on the quantum efficiency of Cesium-iodide photocathodes in gas media

    International Nuclear Information System (INIS)

    We have measured the quantum efficiency (QE) of Cesium iodide photocathodes as a function of the electric field strength in a parallel-plate geometry, in CH4, C2H6 AND i-C4H10 both in charge collection and multiplication modes. It was found that in the collection mode the QE value in gases is lower compared to that of vacuum and is independent on the field; in gas media the QE starts to increase at the transition between collection and multiplication modes and reaches the vacuum value at high gas gain. We explain this effect by a decrease of the electron-molecule elastic backscattering while entering the multiplication mode. We conclude that the electric field effects observed here, would also apply for other photocathodes and gas mixtures. An enhancement of the QE after micro discharges was observed and is discussed in detail. (authors) 30 refs, 10 figs

  17. Thermodynamics of iodide adsorption at the instantaneous air-water interface

    Science.gov (United States)

    Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.

    2013-03-01

    We performed molecular dynamics simulations using both polarizable and non-polarizable force fields to study the adsorption of iodide to the air-water interface. A novel aspect of our analysis is that the progress of ion adsorption is measured as the distance from the instantaneous interface, which is defined by a coarse-graining scheme proposed recently by Willard and Chandler ["Instantaneous liquid interfaces," J. Phys. Chem. B 114, 1954-1958 (2010), 10.1021/jp909219k]. Referring structural and thermodynamic quantities to the instantaneous interface unmasks molecular-scale details that are obscured by thermal fluctuations when the same quantities are referred to an average measure of the position of the interface, such as the Gibbs dividing surface. Our results suggest that an ion adsorbed at the interface resides primarily in the topmost water layer, and the interfacial location of the ion is favored by enthalpy and opposed by entropy.

  18. Production of chromium base alloys by ball milling in hydrogen iodide

    Science.gov (United States)

    Arias, A.

    1975-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol% ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1540 C. Hot pressed Cr + ThO2 had a DBTT of 500 C as compared with -8 to 24 C for the hot rolled Cr + ThO2 and with 140 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  19. Role of -methyl-8-(alkoxy)quinolinium iodide in suppression of protein-protein interactions

    Indian Academy of Sciences (India)

    Bimlesh Ojha; Cirantan Kar; Gopal Das

    2013-03-01

    There is a great deal of interest in developing small molecule inhibitors of protein misfolding and aggregation due to a growing number of pathologic states known as amyloid disorders. In searching for alternative ways to reduce protein-protein interactions or to inhibit the amyloid formation, the inhibitory effects of cationic amphiphile viz. -methyl-8-(alkoxy)quinolinium iodide on aggregation behaviour of hen egg white lysozyme (HEWL) at alkaline pH has been studied. Even though the compounds did not protect native HEWL from conformational changes, they were effective in diminishing HEWL amyloid formation, delaying both nucleation and elongation phases. It is likely that strong binding in the HEWL compound complex, raises the activation energy barrier for protein misfolding and subsequent aggregation, thereby retarding the aggregation kinetics substantially.

  20. Photoluminescence spectroscopy of thin indium-tin-oxide contracts on mercuric iodide substrates

    International Nuclear Information System (INIS)

    This paper reports on mercuric iodide (HgI2) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectra obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse. Specimens of HgI2 with evaporated semi-transparent tin and indium films were also investigated. The spectra obtained from points beneath the Sn and In films suggest that the regions having poor photoresponse in the ITO-contacted photodetector contain either free tin or indium metal

  1. Photoluminescence variations associated with the deposition of palladium electrical contacts on detector-grade mercuric iodide

    Science.gov (United States)

    Wong, D.; Bao, X. J.; Schlesinger, T. E.; James, R. B.; Cheng, A.; Ortale, C.; van den Berg, L.

    1988-10-01

    Specimens of mercuric iodide with evaporated semitransparent palladium contacts have been studied using low-temperature photoluminescence spectroscopy. Distinct differences were found between spectra taken from beneath the Pd contacts and those taken from regions on the HgI2 sample that were masked during the Pd deposition, indicating that contact fabrication can change the defect structure near the contact/substrate interface. Comparison of the spectra from spots beneath the contacts with spectra from bulk material specimens and HgI2 detectors graded in terms of their nuclear detection performance suggests that the processing steps used to deposit electrical contacts and the choice of contact material may have a significant influence on detector performance.

  2. Photoluminescence variations associated with the deposition of palladium electrical contacts on detector-grade mercuric iodide

    International Nuclear Information System (INIS)

    Specimens of mercuric iodide with evaporated semitransparent palladium contacts have been studied using low-temperature photoluminescence spectroscopy. Distinct differences were found between spectra taken from beneath the Pd contacts and those taken from regions on the HgI2 sample that were masked during the Pd deposition, indicating that contact fabrication can change the defect structure near the contact/substrate interface. Comparison of the spectra from spots beneath the contacts with spectra from bulk material specimens and HgI2 detectors graded in terms of their nuclear detection performance suggests that the processing steps used to deposit electrical contacts and the choice of contact material may have a significant influence on detector performance

  3. Photoluminescence Spectroscopy Of Thin Indium-Tin-Oxide Contacts On Mercuric Iodide Substrates

    Science.gov (United States)

    James, Ralph B.; Bao, Xue J.; Schlesinger, Tuviah E.; Markakis, Jeff; Cheng, A. Y.; Ortale, Carol

    1989-05-01

    Mercuric iodide (HgI2) photodetectors with sputtered indium-tin-oxide (ITO) entrance electodes were studied using low-temperature photoluminesence spectroscopy. The photoluminescence spectra obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photo-current-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse. Specimens of HgI2 with evaporated semi-transparent tin and indium films were also investigated. The spectra obtained from points beneath the Sn and In films suggest that the regions having poor photoresponse in the ITO-contacted photodetector contain either free tin or indium metal.

  4. Optical detection of impurities and defects in detector-grade mercuric iodide vandenBerg, L.

    Science.gov (United States)

    James, R. B.; Ottesen, D. K.; Wong, D.; Schlesinger, T. E.; Schnepple, W. F.; Ortale, C.; Vandenberg, L.

    Fourier tranform infrared spectroscopy (FTIR) and low-temperature photoluminescence were used to study impurities and defects in mercuric iodide crystals. FTIR spectra of the transmittance and reflectance were obtained in the 400 to 4000 cm sup minus 1 range, and the results were found to vary for different samples due to the presence of impurities and stoichiometry deviations. The photoluminescence data were found to consist primarily of three distinct emission bands. The lowest energy band at about 680 nm (at 4.2 K) was shown to be related to the performance of nuclear radiation detectors fabricated from these samples. Further correlations between the spectral features obtained from FTIR and photoluminescence techniques and the detector response are also noted.

  5. Photoluminescence variations associated with the deposition of palladium electrical contacts on detector-grade mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.; Bao, X.J.; Schlesinger, T.E.; James, R.B.; Cheng, A.; Ortale, C.; van den Berg, L.

    1988-10-17

    Specimens of mercuric iodide with evaporated semitransparent palladium contacts have been studied using low-temperature photoluminescence spectroscopy. Distinct differences were found between spectra taken from beneath the Pd contacts and those taken from regions on the HgI/sub 2/ sample that were masked during the Pd deposition, indicating that contact fabrication can change the defect structure near the contact/substrate interface. Comparison of the spectra from spots beneath the contacts with spectra from bulk material specimens and HgI/sub 2/ detectors graded in terms of their nuclear detection performance suggests that the processing steps used to deposit electrical contacts and the choice of contact material may have a significant influence on detector performance.

  6. Optical detection of impurities and defects in detector-grade mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    James, R.B.; Ottesen, D.K.; Wong, D.; Schlesinger, T.E.; Schnepple, W.F.; Ortale, C.; van den Berg, L.

    1987-01-01

    Fourier tranform infrared spectroscopy (FTIR) and low-temperature photoluminescence were used to study impurities and defects in mercuric iodide crystals. FTIR spectra of the transmittance and reflectance were obtained in the 400 to 4000 cm/sup /minus/1/ range, and the results were found to vary for different samples due to the presence of impurities and stoichiometry deviations. The photoluminescence data were found to consist primarily of three distinct emission bands. The lowest energy band at about 680 nm (at 4.2 K) was shown to be related to the performance of nuclear radiation detectors fabricated from these samples. Further correlations between the spectral features obtained from FTIR and photoluminescence techniques and the detector response are also noted.

  7. Influence of ionic strength on the transport parameters of tritiated water and iodide in boom clay

    International Nuclear Information System (INIS)

    To fulfil its role as main barrier for High and Medium Level radioactive waste (HLW and MLW), Boom Clay relies on its advantageous capacity to minimise radionuclide transport by its slow diffusion and high retention properties. One of the key parameters in the radionuclide dispersion process is the diffusion accessible porosity (ηacc). Diffusion accessible porosity, is a transport parameter that is linked to the properties of each dispersing radionuclide and the geochemical conditions of Boom Clay. Disposing radioactive waste in Boom Clay will inevitably cause perturbations of which some can generate changes in the Boom Clay pore water chemistry. One effect of these chemical perturbations will be the increase of ionic strength of the pore water in the vicinity of a repository. This paper synthesises the results of the experimental work done to obtain the transport parameters of tritiated water and iodide for Boom Clay at different ionic strengths. (authors)

  8. Electron and Hole Drift Mobility Measurements on Methylammonium Lead Iodide Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.

    2016-04-25

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  9. A method for objectively quantifying propidium iodide exclusion in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Happ, Denise F; Tasker, Andrew

    2016-01-01

    BACKGROUND: Organotypic hippocampal slice cultures (OHSCs) are an attractive in vitro model to examine mechanisms of neuronal injury, because the normal hippocampal architecture, function and cellular diversity are mostly preserved. The effects of exposure to excitotoxins such as N......-methyl-d-aspartate (NMDA) on cell viability can be determined by propidium iodide (PI) staining. NEW METHOD: We describe a simple method to objectively quantify cell death in NMDA exposed slice cultures using PI that provides a standardized means of quantifying cell death in hippocampal subfields without the need to...... induce maximal cell death in each slice. The method employs separation of subfields using simple landmarks and densitometric quantification of PI intensity in 10 template-oriented counting fields. RESULTS: We show that exposure to increasing concentrations of NMDA results in a dose-dependent increase in...

  10. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells

    Science.gov (United States)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.

    2016-04-01

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  11. UV-VIS-NIR spectral optical properties of silver iodide borate glasses

    International Nuclear Information System (INIS)

    We present a study of optical properties of a series of silver iodide borate glasses(AgI)x(Ag2O·B2O3)1−xby UV-VIS-NIR spectroscopy. The results show an increased absorbance in the whole analysed spectral range when the AgI concentration is augmented. In particular, the enhanced intensity of the wavelength band at 400–500 nm with silver iodine content suggests that this band arises from plasmon-related absorption, describing the formation of silver nanoparticles. With respect to this study, our results could motivate novel target designs consisting of ternary silver boron based bulk glasses for generating resonant absorption of laser light by plasma.

  12. Electronic Curves Crossing in Methyl Iodide by Spin–Orbit Ab Initio Calculation

    International Nuclear Information System (INIS)

    An ab initio investigation of electronic curve crossing in a methyl iodide molecule is carried out using Spin–Orbit multiconfigurational quasidegenerate perturbation theory. The one-dimensional rigid potential curves and optimized effective curves of low-lying states, including Spin–Orbit coupling and relativistic effects, are calculated. The Spin–Orbit electronic curve crossing between 3Q0+and 1Q1, and the shadow minimum in potential energy curve of 3Q0+ at large internuclear distance are found in both sets of the curves according to the present calculations. The crossing position is in the range of RC–I = 0.2370 ± 00001 nm. Comparisons with other reports are presented. (atomic and molecular physics)

  13. Radiolysis of cesium iodide solutions in conditions prevailing in a pressurized water reactor severe accident

    International Nuclear Information System (INIS)

    Measurements were made of I/sub 2/ formed when aqueous cesium iodide (CsI) solutions were exposed to two temperatures, 43 and 950C, with irradiation. Iodine partition coefficients were obtained from the experiments. The parameters varied were dose, CsI concentration, and Cs/sub 2/CO/sub 3/ concentration, in the presence of air-carbon dioxide and air-carbon dioxide-hydrogen mixtures, to provide information to calculate the form in which iodine released from fuel as CsI in a reactor accident might reach the environment. In a series of experiments, a two-compartment cell was used to trap the gaseous iodine produced. In this case, it was found that the quantity of gaseous iodine produced increased approximately linearly with the dose (at the dose rate used)

  14. Investigation of the formation possibilities of alkyl iodides in nuclear power plants

    International Nuclear Information System (INIS)

    The radiolytic decomposition of ion-exchange resins used in Czechoslovak nuclear power plants for the purification of the reactor coolant and chemical control of H3B03 concentration in the coolant was studied with regard to the determination of sources of aliphatic hydrocarbons, which are potential precursors of alkyl iodides. On irradiation of ion-exchange resins in deaerated borate solution, C1-C4 hydrocarbons are formed. These hydrocarbons are produced also in the radiolysis of the emulsion of turbine oil in the same solution. The radiation stability of cation-exchange resins is higher than that of anion-exchange resins. Radiolytic and thermal reactions occuring in the gaseous mixtures containing I2, CH4, H20, and air/Ar give rise to CH3I. CH3I is produced also in the radiolysis of aqueous solutions containing CH4 and I2 or I-. (author)

  15. Investigation of the formation possibilities of alkyl iodides in nuclear power plants

    Science.gov (United States)

    Bartoníček, B.; Habersbergerová, A.

    The radiolytic decomposition of ion-exchange resins used in Czechoslovak nuclear power plants for the purification of the reactor coolant and chemical control of H 3BO 3 concentration in the coolant was studied with regard to the determination of sources of aliphatic hydrocarbons, which are potential precursors of alkyl iodides. On irradiation of ion-exchange resins in deaerated borate solution, C 1-C 4 hydrocarbons are formed. These hydrocarbons are produced also in the radiolysis of the emulsion of turbine oil in the same solution. The radiation stability of cation-exchange resins is higher than that of anion-exchange resins. Radiolytic and thermal reactions occuring in the gaseous mixtures containing I 2, CH 4, H 2O, and air/Ar give rise to CH 3I. CH 3I is produced also in the radiolysis of aqueous solutions containing CH 4 and I 2 or I -.

  16. 11C-methylations using 11C-methyl iodide and tetrabutylammonium fluoride

    International Nuclear Information System (INIS)

    Carbon-11 methylation reactions on functional groups such as phenols and amides require a base when using 11C-methyl iodide. This study demonstrates that tetrabutylammonium fluoride (TBAF) can be used as a base to prepare 11C-radiopharmaceuticals efficiently and in high yield. We have applied this method to raclopride, methylphenidate, PK11195, dihydrotetrabenazine and MDL100907 and have compared the results with the Alumina/KF and hydroxide methods. Our results indicate that TBAF gives equivalent or higher radiochemical yields compared to the other bases even when using as little as 200 μg of precursor. In the case of PK11195 the TBAF method was the only one that provided a reasonable yield of product. (orig.)

  17. Influence of various eluents on TLC of thyroxine triiodothyronine and iodide Pt. 2

    International Nuclear Information System (INIS)

    The Rsub(F) values of L-thyroxine (T4), 3,5,3'-L-triiodothyronine (T3) and iodide (I-) on a thin layer of silica gel have been studied. For the elution, elution systems of iso-alcohols with 2M NH3 and as the third component methanol or ethanol have been used. The study has been carried out with 125-iodine labelled compounds. From the point of view of separation of 125I-T4 from 125I-T3 and 125I- the best properties showed isopropanol-ethanol-2M NH3 (6:2:1) and isopropanol-2M (6:1) mixtures. (author)

  18. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D., E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Vourlias, George; Patsalas, Panos A. [Department of Physics, Laboratory of Applied Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  19. Growth of single crystals of mercuric iodide (HgI2) in spacelab III

    International Nuclear Information System (INIS)

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed

  20. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide

    Science.gov (United States)

    Yusof, Y. M.; Shukur, M. F.; Illias, H. A.; Kadir, M. F. Z.

    2014-03-01

    This work focuses on the characteristics of polymer blend electrolytes based on corn starch and chitosan doped with ammonium iodide (NH4I). The electrolytes were prepared using the solution cast method. A polymer blend comprising 80 wt% starch and 20 wt% chitosan was found to be the most amorphous blend and suitable to serve as the polymer host. Fourier transform infrared spectroscopy analysis proved the interaction between starch, chitosan and NH4I. The highest room temperature conductivity of (3.04 ± 0.32) × 10-4 S cm-1 was obtained when the polymer host was doped with 40 wt% NH4I. This result was further proven by field emission scanning electron microscopy study. All electrolytes were found to obey the Arrhenius rule. Dielectric studies confirm that the electrolytes obeyed non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting sample follows the quantum mechanical tunneling model.

  1. {sup 11}C-methylations using {sup 11}C-methyl iodide and tetrabutylammonium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.J.; Jivan, S.; Huser, J.M.; Lu, J. [TRIUMF Univ. of British Columbia, Vancouver (Canada)

    2000-07-01

    Carbon-11 methylation reactions on functional groups such as phenols and amides require a base when using {sup 11}C-methyl iodide. This study demonstrates that tetrabutylammonium fluoride (TBAF) can be used as a base to prepare {sup 11}C-radiopharmaceuticals efficiently and in high yield. We have applied this method to raclopride, methylphenidate, PK11195, dihydrotetrabenazine and MDL100907 and have compared the results with the Alumina/KF and hydroxide methods. Our results indicate that TBAF gives equivalent or higher radiochemical yields compared to the other bases even when using as little as 200 {mu}g of precursor. In the case of PK11195 the TBAF method was the only one that provided a reasonable yield of product. (orig.)

  2. Instrumental basis utilizing a sodium iodide detector for radioactive soil evaluations for site remediation

    International Nuclear Information System (INIS)

    This document provides the design rational for using a 5.08 by 5.08 cm (2 by 2 in.) sodium iodide detector to aid in boundary mapping of the radioactive contaminated soils at the Hanford Site. The detector can provide adequate response to a homogeneously contaminated soil volume of at least 1.22 to 1.52 m in diameter and up to 45.7 cm deep. The gamma activity basis is described by a soil column in a right circular cylinder that is uniformly isotopic. The detection techniques and characteristics are used to define contaminated areas requiring excavation by locating regions where gamma activities exceed cleanup standards. To determine the areas and boundary of contamination, the boundary and adjacent surfaces will be mapped using the detector operated in a windowed gross-gamma mode

  3. Colloidal silver iodide characterization within the framework of nuclear spent fuel dissolution

    International Nuclear Information System (INIS)

    Iodine-129 partitioning during the dissolution stage of the Purex reprocessing, based on volatile molecular iodine formation and stripping, is mainly limited by dissolved oxidized species such as iodate and insoluble forms such as colloidal silver iodide. The study of their formation and stability, not completely clarified, requires to prepare the colloid in a reproducible way under various conditions and to characterize it. The work reported here describes a first step towards this objective. Carried out under simplified operating conditions, speciation and physical characterization (spectrophotometry and TEM) made it possible to evaluate, for the first time, the molar extinction coefficient of the colloid per monomer and its variation with the nuclearity, ε(n), on the basis of a simplified coalescence model: ε(n) = εmax (1 - e-αn) where εmax ∼ 7000 L mol-1 cm-1 and α = 4.3 x 10-6 per monomer number in a particle. (authors)

  4. Determination of iodide by volumetric titration in support of the oil eletrolabeling with 123I

    International Nuclear Information System (INIS)

    The accuracy in measuring flow rate in pipelines is essential task to control various technical parameters in an industrial plant in oil industry and its derivatives. For this reason, it becomes increasingly widespread the uses of organic molecules labeled with radioactive isotopes mainly because of the wide possibility in use of different radioisotopes also due to the new labeling techniques. This paper presents a study to develop an electrochemical technique for oil labeling with iodine -123 and to determine the yield of production by measuring the concentration of iodide (I-) during this process. The volumetric titration technique was applied as a basis for quantitative and qualitative measures to monitor the labeling process. The results indicate the technical proposal as a viable alternative for monitoring electro labeling process of lubricating oils with iodine -123. (author)

  5. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    International Nuclear Information System (INIS)

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices

  6. Simulation of imaging with sodium iodide crystals and position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    There has recently been a growing interest in small gamma cameras for medical imaging applications in which full-sized conventional cameras are unsuitable. A prototype miniature gamma camera has been proposed and built at the University of Chicago (UC), and its imaging characteristics are currently being evaluated. The imaging characteristics of miniature gamma cameras that consist of a single sodium iodide (NaI(Tl)) crystal coupled to a position-sensitive photomultiplier tube (PSPMT) have been studied via Monte Carlo simulations. Images obtained with such cameras with the use of conventional position calculations exhibit considerable distortions, particularly compression. This study demonstrates that the distortions result primarily from non-uniform sensitivities of PSPMTs and secondarily from non-linear responses of PSPMTs, light-reflection properties resulting from the treatments of crystals, and light-refractive properties of glass interfaces between crystals and photocathodes. Simulation results are compared to images obtained with a prototype miniature gamma camera

  7. Lead iodide films as X-ray sensors tested in the mammography energy region

    International Nuclear Information System (INIS)

    We present an alternative method for the deposition of thin films of lead iodide (PbI2), which is a promising semiconductor candidate for applications in medical digital radiography. The spray pyrolysis technique enables the fabrication of thick films with a deposition rate of about 3.3 As-1. We investigate the influence of the main deposition parameters on the final properties of the films. They were substrate temperature from 150 up to 270 oC and nozzle-spray distance to substrate from 13.0 to 16.5 cm. The films were mainly investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Photoluminescence (PL) spectroscopy. Also, electrical characterizations were made in the dark as a function of temperature, and with the samples submitted to X-ray exposures in the energy range of mammography diagnosis

  8. Mercuric iodide composite films using polyamide, polycarbonate and polystyrene fabricated by casting

    International Nuclear Information System (INIS)

    Mercuric iodide (HgI2) composite films were obtained by using the casting technique. Insulator polymers such as polyamide, polycarbonate and polystyrene were mixed to HgI2 crystallites forming a final sub-millimeter thick self-standing film. Fabrication temperature varied from 10 to 100 oC, and total fabrication time reached at most 5 min. The larger the fabrication temperature, the thinner the film and the smaller its electrical resistivity. Electrical characterization was performed in the dark, under UV illumination and under mammographic X-ray exposure. The final properties of the films are discussed and related to fabrication conditions. The optimized composite film might be a better candidate for use as X-ray detector for medical imaging, in place of the single HgI2 crystalline device.

  9. Cell Cycle Analysis of CML Stem Cells Using Hoechst 33342 and Propidium Iodide.

    Science.gov (United States)

    DeSouza, Ngoc; Zhou, Megan; Shan, Yi

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disease with an expansion of white blood cells. The current treatments for CML are shown not to be long-term effective because of CML stem cells' insensitivity to tyrosine kinase inhibitors. Therefore, studying more about CML stem cells is essential to understand the pathways of CML stem cell development and proliferation and finally lead to effective treatments to eliminate CML stem cells and eradicate CML. This chapter describes two methods to analyze cell cycle of CML stem cells. The rare population of CML stem cells can be identified by staining with cell surface markers, and then DNA-binding dyes Hoechst 33342 and propidium iodide (PI) are added to stain the DNA content which is changed when cells go through different phases of the cell cycle. Samples are run through the flow cytometer to be analyzed based on different absorbance and emission wavelengths of different florescent colors. PMID:27581138

  10. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shikha [Bio-Organic Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Ghosh, Sunil K., E-mail: ghsunil@barc.gov.in [Bio-Organic Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Sharma, Joti N., E-mail: jnsharma@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-09-15

    Highlights: • A new class of quart-ammonium based ligands have been designed and synthesized. • Ligand showed high extractability and selectivity for Ru in nitric acid medium. • Results are better compared to other extractants reported so far. • The iodide ion played key role in extraction process. • The composition of the extracted complex was found to be L[Ru(NO)(NO{sub 3}){sub 3}I]. - Abstract: A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2 M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L{sup +}I{sup −} and Ru(NO)(NO{sub 3}){sub 3}. Ruthenium formed an adduct of structure LRu(NO)(NO{sub 3}){sub 3}I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste.

  11. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    International Nuclear Information System (INIS)

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na+/I- sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared 125I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in ∼ 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  12. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T. [Univ Nice Sophia Antipolis, Sch Med, CEA, DSV, iBEB, SBTN, TIRO, F-06107 Nice (France); Chang, P. [CNRS, UPMC Biol Dev, UMR 7009, F-06230 Villefranche Sur Mer (France); Huc, S.; Darrouzet, E. [CEA Valrho, DSV, iBEB, SBTN, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na{sup +}/I{sup -} sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared {sup 125}I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in {approx} 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  13. Radioiodine uptake and retention mediated by adenovirus transfer of the sodium iodide symphorter and thyroperoxidase gene in hepatic cancer cell

    International Nuclear Information System (INIS)

    Objective: Sodium iodide symporter (NIS) is capable of the thyroid to concentrate iodide, thyroperoxidase (TPO) is involved in iodide organification which promotes iodide retention within thyroid cells. Both are important for effectively treatment of differentiated thyroid cancers. To test whether this therapeutic strategy would be used to hepatic tumor by coupling radioiodide administration and organification with transfer of the NIS gene and TPO gene into target cells. Methods: hNIS and hTPO cDNA were amplified from Graves' patient's thyroid tissue by RT-PCR, then constructed recombinant adenovirus encoding the NIS and TPO gene under the control of the cytomegalovirus early promoter (AdNIS and AdTPO). Infection HeGp2 cells with AdNIS virus, coinfection with AdNIS and AdTPO. The uptake and effiux of 1251 was examined, and also performed 131I cytotoxicity experiment in vitro. Results: The cells infected with AdNIS showed 1251 uptake higher than that in noninfected cells. Whereas, radioiodide effiux was rapid, which limited tumor cell killing. In contrast, cotransfection AdNIS and AdTPO resulted in increased uptake and retention of radioiodide, and then greater cytotoxicity was observed in tumor cells. Conclusion: These data indicate that cotransfection AdNIS and AdTPO is sufficient to induce iodide uptake and organification in nonthyroid tumor cell, which will led to efficient tumor cell killing. However, we need apply this study in vivo, and solve the problem of selectively killing tumor cells when taking radioiodide therapy. (authors)

  14. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium

    International Nuclear Information System (INIS)

    Highlights: • A new class of quart-ammonium based ligands have been designed and synthesized. • Ligand showed high extractability and selectivity for Ru in nitric acid medium. • Results are better compared to other extractants reported so far. • The iodide ion played key role in extraction process. • The composition of the extracted complex was found to be L[Ru(NO)(NO3)3I]. - Abstract: A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2 M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L+I− and Ru(NO)(NO3)3. Ruthenium formed an adduct of structure LRu(NO)(NO3)3I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste

  15. PI3K activation is associated with intracellular sodium/iodide symporter protein expression in breast cancer

    International Nuclear Information System (INIS)

    The sodium/iodide symporter (NIS) is a membrane glycoprotein mediating active iodide uptake in the thyroid gland and is the molecular basis for radioiodide imaging and therapeutic ablation of thyroid carcinomas. NIS is expressed in the lactating mammary gland and in many human breast tumors, raising interest in similar use for diagnosis and treatment. However, few human breast tumors have clinically evident iodide uptake ability. We previously identified PI3K signaling as important in NIS upregulation in transgenic mouse models of breast cancer, and the PI3K pathway is commonly activated in human breast cancer. NIS expression, subcellular localization, and function were analyzed in MCF-7 human breast cancer cells and MCF-7 cells stably or transiently expressing PI3K p110alpha subunit using Western blot of whole cell lysate, cell surface biotinylation Western blot and immunofluorescence, and radioiodide uptake assay, respectively. NIS localization was determined in a human breast cancer tissue microarray using immunohistochemical staining (IHC) and was correlated with pre-existing pAkt IHC data. Statistical analysis consisted of Student's t-test (in vitro studies) or Fisher's Exact Test (in vivo correlational studies). In this study, we demonstrate that PI3K activation in MCF-7 human mammary carcinoma cells leads to expression of underglycosylated NIS lacking cell surface trafficking necessary for iodide uptake ability. PI3K activation also appears to interfere with cell surface trafficking of exogenous NIS as well as all-trans retinoic acid-induced endogenous NIS. A correlation between NIS expression and upregulation of PI3K signaling was found in a human breast cancer tissue microarray. Thus, the PI3K pathway likely plays a major role in the discordance between NIS expression and iodide uptake in breast cancer patients. Further study is warranted to realize the application of NIS-mediated radioiodide ablation in breast cancer

  16. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    International Nuclear Information System (INIS)

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. - Abstract: A colorimetric method for the recognition and sensing of iodide ions (I−) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I− in the presence of sodium thiosulfate (Na2S2O3). Specifically, I− together with Na2S2O3 can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na2S2O3, the etching reactions on TAg-NPs were observed not only by I− but also other halides ions. The Na2S2O3 plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na2S2O3/I mixture was proportional to the concentration of I− in the range 1.0 × 10−9–1.0 × 10−6 mol L−1. Moreover, no other ions besides I− can induce an eye discernible color change as low as 1.0 × 10−7 mol L−1. Finally, this method was successfully applied for I− determination in kelp samples

  17. Urinary iodide levels in term newborns and their mothers--a pilot study.

    Science.gov (United States)

    Chan-Cua, Sioksoan; Ng, Mercy; Dayao, Iona; Cuayo-Juico, Cynthia; King, Felisa; Tan, King King

    2003-01-01

    Although the Philippines is considered an iodine-deficient country, there are no documented iodine deficiency disorders (IDD) among newborns screened to be positive for congenital hypothyroidism. The objectives of this pilot study were: (1) to determine the levels of urinary iodide (UI) in normal term newborns and their mothers, and (2) to correlate the UI levels of newborns with that of their mothers. This study included 44 pairs of full term newborns and their mothers who delivered at two hospitals in Manila last July 2001. UI determination by the Rapid Urinary Iodide Test was done during the first 24 hours after delivery. Results showed that eighteen percent (8/44) of the neonates were iodine deficient (10-30microg/dl) and 11% (5/44) had high UI levels (>30microg/dl). None of the mothers had deficient UI levels. Among the neonates who had deficient UI levels, 50% (4/8) of the mothers had adequate UI levels and the other half (4/8) had high levels. Among the neonates who had adequate UI levels, most mothers had high UI levels (22/31 or 71%) and the rest (9/31 or 29%) had adequate UI. All newborns with high UI levels had mothers with high UI levels. Screening for Congenital Hypothyroidism was negative in all the neonates who underwent newborn screening (39/44). In conclusion, most term neonates (82%) had adequate to high UI levels, and 18% had deficient UI levels despite adequate maternal levels. In case of low UI level, repeat determination is advised. If the level remains low, newborn screening using TSH is useful to rule out hypothyroidism. A bigger multicenter study to determine the incidence of IDD in neonates and infants is recommended. PMID:15906725

  18. The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite

    International Nuclear Information System (INIS)

    The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH3I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH3I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH3I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10-14 cm2/s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs

  19. Thermochromic luminescence of copper iodide clusters: the case of phosphine ligands.

    Science.gov (United States)

    Perruchas, Sandrine; Tard, Cédric; Le Goff, Xavier F; Fargues, Alexandre; Garcia, Alain; Kahlal, Samia; Saillard, Jean-Yves; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-11-01

    Three copper(I) iodide clusters coordinated by different phosphine ligands formulated [Cu(4)I(4)(PPh(3))(4)] (1), [Cu(4)I(4)(Pcpent(3))(4)] (2), and [Cu(4)I(4)(PPh(2)Pr)(4)] (3) (PPh(3) = triphenylphosphine, Pcpent(3) = tricyclopentylphosphine, and PPh(2)Pr = diphenylpropylphosphine) have been synthesized and characterized by (1)H and (31)P NMR, elemental analysis and single crystal X-ray diffraction analysis. They crystallize in different space groups, namely, monoclinic P21/c, cubic Pa ̅3, and tetragonal I ̅42m for 1, 2, and 3, respectively. The photoluminescence properties of clusters 1 and 3 show reversible luminescence thermochromism with two highly intense emission bands whose intensities are temperature dependent. In accordance to Density Functional Theory (DFT) calculations, these two emission bands have been attributed to two different transitions, a cluster centered (CC) one and a mixed XMCT/XLCT one. Cluster 2 does not exhibit luminescence variation in temperature because of the lack of the latter transition. The absorption spectra of the three clusters have been also rationalized by time dependent DFT (TDDFT) calculations. A simplified model is suggested to represent the luminescence thermochromism attributed to the two different excited states in thermal equilibrium. In contrast with the pyridine derivatives, similar excitation profiles and low activation energy for these phosphine-based clusters reflect high coupling of the two emissive states. The effect of the Cu-Cu interactions on the emission properties of these clusters is also discussed. Especially, cluster 3 with long Cu-Cu contacts exhibits a controlled thermochromic luminescence which is to our knowledge, unknown for this family of copper iodide clusters. These phosphine-based clusters appear particularly interesting for the synthesis of original emissive materials. PMID:21957984

  20. Expression of sodium/iodide symporter transgene in neural stem cells

    International Nuclear Information System (INIS)

    The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to 20μM, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene expression of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions