Sample records for astacoidea

  1. Crustacean hyperglycemic and vitellogenesis-inhibiting hormones in the lobster Homarus gammarus. (United States)

    Ollivaux, Céline; Vinh, Joëlle; Soyez, Daniel; Toullec, Jean-Yves


    Crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH), produced by the X organ-sinus gland neurosecretory complex, belong to a peptide group referred to as the CHH family, which is widely distributed in arthropods. In this study, genetic variants and post-translationally modified isoforms of CHH and VIH were characterized in the European lobster Homarus gammarus. With the use of RP-HPLC and ELISA with specific antibodies that discriminate between stereoisomers of CHH and VIH, two groups of CHH-immunoreactive peaks were characterized from HPLC fractions of sinus gland extract (CHH A and CHH B); each group contained two variants (CHH and D-Phe3CHH). In the same way, two VIH-immunoreactive peaks (VIH and D-Trp4VIH) were demonstrated in HPLC fractions from sinus gland extract. The masses of these different neuropeptides were determined by FT-ICR MS: CHH A and CHH B spectra exhibited monoisotopic ions at 8557.05 Da and 8527.04 Da, respectively, and both VIH isomers displayed an m/z value of 9129.19 Da. Two full-length cDNAs encoding preprohomones of CHH A and CHH B and only one cDNA for VIH precursor were cloned and sequenced from X organ RNA. Comparison of CHH sequences between European lobster and other Astacoidea suggests that the most hydrophobic form appeared first during crustacean evolution. PMID:16649992

  2. Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda

    Directory of Open Access Journals (Sweden)

    Gérard Alcaraz


    Full Text Available Crustaceans have to cyclically replace their rigid exoskeleton in order to grow. Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca: three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components.